WO2023092318A1 - 一种单片集成的高精度高速双光斑同步位置探测器结构 - Google Patents

一种单片集成的高精度高速双光斑同步位置探测器结构 Download PDF

Info

Publication number
WO2023092318A1
WO2023092318A1 PCT/CN2021/132695 CN2021132695W WO2023092318A1 WO 2023092318 A1 WO2023092318 A1 WO 2023092318A1 CN 2021132695 W CN2021132695 W CN 2021132695W WO 2023092318 A1 WO2023092318 A1 WO 2023092318A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitive detector
detector
spot
photosensitive
dual
Prior art date
Application number
PCT/CN2021/132695
Other languages
English (en)
French (fr)
Inventor
孙思维
孟祥旭
刘丰满
曹立强
Original Assignee
华进半导体封装先导技术研发中心有限公司
上海先方半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华进半导体封装先导技术研发中心有限公司, 上海先方半导体有限公司 filed Critical 华进半导体封装先导技术研发中心有限公司
Priority to PCT/CN2021/132695 priority Critical patent/WO2023092318A1/zh
Publication of WO2023092318A1 publication Critical patent/WO2023092318A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Definitions

  • the invention relates to the field of optoelectronic integration technology, in particular to a single-chip integrated high-precision and high-speed dual-spot synchronous position detector structure.
  • Position Sensitive Detector PSD is a semiconductor device based on the lateral photoelectric effect developed in the middle and late twentieth century. It can convert the spot intensity and displacement of the light source on the sensitive surface into a current signal, thereby The position of the incident light spot is detected. Position-sensitive detectors have the advantages of high position resolution, fast response speed, and simple signal processing, and become the core components of attitude measurement technology in laser tracking. The development of modern science and technology has put forward higher requirements for machining accuracy, installation accuracy and detection accuracy in many fields such as aerospace, aviation, machining and assembly, and instrumentation.
  • the high-precision camera T-Cam developed by Leica Co., Ltd. cooperates with the target unit to complete the attitude measurement function.
  • the laser tracker is used to realize the spatial position measurement by cooperating with the target unit.
  • the target unit is equipped with a reflective prism, which is used to receive the tracking beam on the laser tracker and reflect it back to the host to complete the three-dimensional point coordinate measurement;
  • the high-precision camera T-Cam above obtains the image information corresponding to multiple infrared light-emitting diodes on the target unit, and uses this to calculate the three-dimensional attitude angle of the target unit.
  • API also proposed a corresponding six-degree-of-freedom measurement solution with a laser tracker as a base station, and launched a series of products such as SmartTrack.
  • This series of products uses an intelligent composite probe.
  • the measurement target is mainly composed of a corner cube prism, a position sensitive detector PSD, an inclination sensor, an acquisition and transmission module, etc.
  • the basic principle is that the reflector installed on the measurement target and the PSD The measurement module is formed, and there is a small hole at the apex of the reflective prism.
  • the laser beam is incident on the PSD through the small hole, and the collected position information is used for attitude correction.
  • the laser reflected by the laser tracker is vertically reflected by the dual-axis servo mirror, that is Its own position detector is always kept perpendicular to the light beam, so as to obtain the attitude angle information of the measurement module in real time.
  • the advantages of this intelligent measurement system are high measurement accuracy and convenient operation. However, due to the selection of the inclinometer for roll angle measurement, the overall measurement update of the attitude angle and the corresponding rate decrease.
  • a dual-spot synchronous position detector including:
  • a separation region wherein the photosensitive regions of the first position sensitive detector and the second position sensitive detector are separated by the separation region.
  • the surface layer of the dual-spot synchronous position detector includes the first photosensitive area of the first position sensitive detector and the second photosensitive area of the second position sensitive detector, and the isolation area surrounds all The first photosensitive area, the second photosensitive area surrounds the isolation area.
  • the first photosensitive area of the first position-sensitive detector is a square shape
  • the isolation area surrounds the first photosensitive area
  • the second photosensitive area of the second position-sensitive detector is a circular shape.
  • the first photosensitive area and its surrounding isolation areas are embedded in the back-shaped inner frame of the second photosensitive area.
  • the first photosensitive area is the area where the first light spot can move
  • the second photosensitive area is the area where the second light spot can move.
  • electrodes are respectively designed at the four corners of the first position-sensitive detector and the second position-sensitive detector, and the current at each electrode is measured, and the first spot and the second spot are determined based on the current. The position of the second spot.
  • the position coordinates (X_1, Y_1) of the first light spot and the position coordinates (X_2, Y_2) of the second light spot are calculated according to formulas (1) and (2):
  • I 1 , I 2 , I 3 , and I 4 respectively represent the currents on the four-corner electrodes of the second position-sensitive detector
  • I 5 , I 6 , I 7 , and I 8 represent the currents on the four-corner electrodes of the first position-sensitive detector respectively.
  • d_1 represents the effective length of the photosensitive surface of the first position sensitive detector
  • d_2 represents the effective length of the photosensitive surface of the second position sensitive detector.
  • the isolation region is used to prevent crosstalk between the first position sensitive detector and the second position sensitive detector.
  • the electrodes of the first position-sensitive detector and the second position-sensitive detector lead signal wires to pads on the surface of the PCB substrate through wire bonding for signal processing.
  • the electrodes of the first position-sensitive detector and the second position-sensitive detector can lead the signal from the TSV to the back of the substrate through the 3D TSV conductive via, and use conductive bumps
  • the method is soldered together with the pad of the PCB substrate, and then the signal processing is performed on the PCB.
  • the present invention designs a single-chip integrated high-precision and high-speed dual-spot synchronous position detector.
  • this solution is a monolithic integrated device, which can greatly reduce the system volume and system complexity; compared with the camera to measure the roll angle, this structure is not affected by Influenced by the weather environment, the measurement results are reliable and stable; this structure can realize high-precision and high-speed roll angle measurement at the same time, which solves the problem of tracking and measuring the motion trajectory of the robotic arm of an intelligent robot and real-time high-precision measurement of the roll angle of aerospace equipment; in addition, This kind of PSD has a simple structure and a compact design, which is very conducive to large-scale integration. Therefore, this single-chip integrated high-precision high-speed dual-spot synchronous position detector has the following advantages: high speed, high precision, small size, can reduce system complexity, easy to integrate, free from environmental interference, and stable measurement results.
  • FIG. 1 shows a schematic structural diagram of a dual-spot synchronous position detector 100 according to an embodiment of the present invention.
  • Fig. 2 shows a two-dimensional grid point diagram of the first PSD of the inner ring of the dual-spot synchronous position detector according to the present invention.
  • Fig. 3 shows a two-dimensional grid point diagram of the second PSD of the outer ring of the dual-spot synchronous position detector according to the present invention.
  • FIG. 4 shows a schematic diagram of a wire bonding package structure of a dual-spot synchronous position detector according to an embodiment of the present invention.
  • FIG. 5 shows a schematic diagram of a TSV package structure of a dual-spot synchronous position detector according to an embodiment of the present invention.
  • FIG. 6 shows a schematic cross-sectional view of a TSV package structure of a dual-spot synchronous position detector according to an embodiment of the present invention.
  • the invention describes a single-chip integrated high-precision and high-speed dual-spot synchronous position detector for roll angle measurement.
  • FIG. 1 shows a schematic structural diagram of a dual-spot synchronous position detector 100 according to an embodiment of the present invention.
  • the dual-spot synchronous position detector 100 includes a first PSD 110 and a second PSD 120.
  • the first PSD 110 and the second PSD 120 form two circles of PSDs, inner and outer. The middle is separated by an isolation region 130 .
  • the first PSD 110 and the second PSD 120 can be a silicon-based device, and can be monolithically integrated using a CMOS standard process.
  • the surface layer of the double-spot synchronous position detector 100 includes the photosensitive area of the first PSD 110, the photosensitive area of the second PSD 120, the frame area 140, and the isolation area 130.
  • the photosensitive area is the area where the light spot can move.
  • the isolation region 130 isolates the photosensitive region of the first PSD 110 from the photosensitive region of the second PSD 120, thereby preventing crosstalk between the first PSD 110 and the second PSD 120.
  • the working principle of PSD can be equivalent to a non-uniform irradiation model. If the photosensitive surface of the p-n junction is non-uniformly irradiated, when the doping concentration of the p region is much smaller than that of the n region, the photogenerated electrons in the illuminated region can easily diffuse in the n region to achieve a uniform distribution, while the p region due to the resistivity Large, the photogenerated holes are partially accumulated in the illuminated area, and are distributed non-uniformly along the direction parallel to the junction plane, so that the original junction balance is destroyed, and a transverse electric field is formed in the direction parallel to the junction plane.
  • the position coordinates of the first light spot on the first PSD 110 can be calculated simultaneously by formula (1) (2) (X_1, Y_1) and the position coordinates (X_2, Y_2) of the second light spot on the second PSD 120, the position of the double light spot can be known at the same time.
  • I 1 , I 2 , I 3 , and I 4 respectively represent currents on the four-corner electrodes of the second PSD 120;
  • I 5 , I 6 , I 7 , and I 8 represent currents on the four-corner electrodes of the first PSD 110;
  • d_1 represents the current on the four-corner electrodes of the first PSD 110;
  • d_2 represents the effective photosensitive surface length of the second position sensitive detector.
  • the photosensitive region of the first PSD 110 is a square
  • the isolation region 130 surrounds the photosensitive region of the first PSD 110
  • the photosensitive region of the second PSD 120 is circular
  • the first PSD 110 The photosensitive area and the isolation area around it are embedded in the circular inner frame of the second PSD 120.
  • the shapes of the photosensitive regions of the first PSD 110 and the second PSD 120 shown in the above embodiments are only exemplary, not limiting. In other embodiments of the present invention, the shapes of the photosensitive regions of the first PSD 110 and the second PSD 120 are not limited to square, but may be any other shapes.
  • the photosensitive region of the first PSD 110 is circular
  • the isolation region 130 surrounds the photosensitive region of the first PSD 110
  • the photosensitive region of the second PSD 120 is annular
  • the photosensitive region of the first PSD 110 and the surrounding isolation The zone is embedded in the annular inner ring of the second PSD 120.
  • the shapes of the photosensitive areas of the first PSD 110 and the second PSD 120 can also be other polygons.
  • the most critical difficulty is to improve the measurement accuracy and eliminate the crosstalk between the two PSDs.
  • a special isolation area frame design is adopted, for example, the isolation area 130 can be designed as a square or a polygon; At the same time, it works without distortion and can eliminate the crosstalk between the two PSDs.
  • the invention uses the finite element method to simulate the detector structure.
  • FIG. 2 shows a two-dimensional grid point diagram of the first PSD in the inner ring of the dual-spot synchronous position detector according to the present invention
  • the solid square represents the actual position of the light spot
  • the solid circle represents the calculated position of the first PSD. It can be found that the calculated position is in good agreement with the actual position of the spot, and the position error can be ignored.
  • FIG. 3 shows a two-dimensional grid point diagram of the second PSD in the outer ring of the dual-spot synchronous position detector according to the present invention, the solid square represents the actual position of the light spot, and the solid circle represents the calculated position of the second PSD. As a result, the position accuracy calculated by the second PSD of the surface is very high.
  • the dual-spot synchronous position detector design can realize dual-spot synchronous detection, and has high-precision characteristics. And because PSD is a photoelectric device, its photoelectric response rate is very fast, which can reach the order of microseconds, so it also has high-speed characteristics.
  • the PSD has the characteristics of monolithic integration, continuous detection without blind spots, high speed, high precision, small monolithic integration volume, and can reduce the complexity of the entire measurement system. It is a great advantage in solving the roll angle measurement in the pose measurement system. scheme.
  • FIG. 4 shows a schematic diagram of a wire bonding package structure of a dual-spot synchronous position detector 400 according to an embodiment of the present invention.
  • the electrodes of the first and second PSD 410, 420 of the double-spot synchronous position detector 400 can lead the signal line to the pad 431 on the surface of the PCB 430 by wire bonding for signal processing.
  • FIG. 5 shows a schematic diagram of a TSV package structure of a dual-spot synchronous position detector 500 according to an embodiment of the present invention.
  • FIG. 6 shows a schematic cross-sectional view of a TSV package structure 500 of a dual-spot synchronous position detector according to an embodiment of the present invention.
  • the electrodes of the first and second PSDs 510, 520 of the dual-spot synchronous position detector 500 can lead the signal from the TSV to the back of the substrate through the 3D TSV conductive via.
  • the conductive bumps are welded together with the pads of the PCB 530, and then signal processing is performed on the PCB.
  • the advantage of the above-mentioned dual-spot synchronous position detector disclosed in the present invention is that a single-chip integrated high-precision and high-speed dual-spot synchronous position detector is designed from the principle level of the device.
  • this solution is a monolithic integrated device, which can greatly reduce the system volume and system complexity; compared with the camera to measure the roll angle, this structure is not affected by Influenced by the weather environment, the measurement results are reliable and stable; this structure can realize high-precision and high-speed roll angle measurement at the same time, which solves the problem of tracking and measuring the motion trajectory of the robotic arm of an intelligent robot and real-time high-precision measurement of the roll angle of aerospace equipment; in addition,
  • This kind of PSD has a simple structure and a compact design, which is very conducive to large-scale integration. Therefore, this single-chip integrated high-precision high-speed dual-spot synchronous position detector has the following advantages: high speed, high precision, small size, can

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种双光斑同步位置探测器(100),包括:第一位置敏感探测器(110);第二位置敏感探测器(120);以及隔离区(130),其中第一位置敏感探测器(110)和第二位置敏感探测器(120)的光敏区通过隔离区(130)分开。

Description

一种单片集成的高精度高速双光斑同步位置探测器结构 技术领域
本发明涉及光电集成技术领域,尤其涉及一种单片集成的高精度高速双光斑同步位置探测器结构。
背景技术
位置敏感探测器PSD(Position Sensitive Device)是二十世纪中后期发展起来的一种基于横向光电效应的半导体器件,它可以将光源照射在敏感面上的光斑强度和位移量转换成电流信号,从而对入射光斑的位置进行探测。位置敏感探测器具有位置分辨率高、响应速度快、信号处理简单等优点,在激光追踪中的姿态测量技术中成为其核心元器件。现代科学技术的发展,对航天、航空、机械加工与装配、仪表等众多领域内的加工精度、安装精度和检测精度提出了更高的要求。目前目标物体在空间的位姿与运动检测、被加工工件的定位、精密零件的安装等,都需要多个自由度的测量、调整和控制。如果采用多台仪器进行检测,系统将会非常复杂,调整困难。因此必须采用特殊的多自由度同时测量方法。目前,在多自由度测量中,滚转角测量是难点,国内外学者一直寻求简单、有效的高精度滚转角检测方法。目前还没有一种单片集成的、精度高、系统体积小,数据传输速率快的滚转角测量器件。
目前,国内外多家研究机构对激光跟踪仪的六自由度测量中的滚转角进行研究。徕卡公司研制的高精度相机T-Cam配合目标单元完成了姿态测量功能。使用激光跟踪仪通过配合目标单元实现了空间位置测量,目标单元上装配有反射棱镜,用于接收激光跟踪仪上的跟踪光束并反射回主机来完成三维点位坐标测量;使用安置于激光跟踪仪上方的高精度相机T-Cam获取目标单位上多个红外发光二极管对应的图像信息,并以此计算目标单元三维姿态角。该测量系统的优点是测量速率较快、操作方便、姿态测量的精度较高。但是高精度相机的成本很高,且测量结果受环境、天气的影响较大。API公司也提出了相应的 以激光跟踪仪为基站的六自由度测量方案,推出了SmartTrack等系列产品。该系列产品使用智能复合测头,测量靶标主要由开孔角锥棱镜、位置敏感探测器PSD、倾角传感器、采集及传输模块等构成,其基本原理为由安装在测量靶标上的反射镜和PSD构成测量模块,反射棱镜顶点处开有小孔,激光由小孔入射到PSD上,采集的位置信息用于姿态修正,利用双轴伺服反射镜对激光跟踪仪反射的激光进行垂直反射,即使得自身的位置探测器始终与光束保持垂直状态,从而实现实时获取测量模块姿态角信息。这种智能测量系统的优势是测量精度高、操作方便,但由于选用了倾角仪进行滚转角测量,导致姿态角整体测量更新及相应速率降低。
发明内容
针对现有技术中存在的问题,根据本发明的一个实施例,提供一种双光斑同步位置探测器,包括:
第一位置敏感探测器;
第二位置敏感探测器;以及
隔离区,其中所述第一位置敏感探测器和所述第二位置敏感探测器的光敏区通过所述隔离区分开。
在本发明的一个实施例中,所述双光斑同步位置探测器的表层包括第一位置敏感探测器的第一光敏区、第二位置敏感探测器的第二光敏区,所述隔离区包围所述第一光敏区,所述第二光敏区包围所述隔离区。
在本发明的一个实施例中,第一位置敏感探测器的第一光敏区为方形,所述隔离区围绕在第一光敏区的四周,第二位置敏感探测器的第二光敏区为回形,第一光敏区及其四周的隔离区嵌入在第二光敏区的回形的内框之中。
在本发明的一个实施例中,第一光敏区是第一光斑可移动的区域,第二光敏区是第二光斑可移动的区域。
在本发明的一个实施例中,在第一位置敏感探测器和第二位置敏感探测器的四角分别设计电极,并测量每个电极处的电流,基于所述电流确定所述第一光斑和第二光斑的位置。
在本发明的一个实施例中,根据由公式(1)和(2)计算出所述第一光斑 的位置坐标(X_1,Y_1)以及第二光斑的位置坐标(X_2,Y_2):
Figure PCTCN2021132695-appb-000001
Figure PCTCN2021132695-appb-000002
其中I 1、I 2、I 3、I 4分别表示第二位置敏感探测器的四角电极上电流;I 5、I 6、I 7、I 8分别表示第一位置敏感探测器的四角电极上电流;d_1表示第一位置敏感探测器的有效光敏面长度;d_2表示第二位置敏感探测器的有效光敏面长度。
在本发明的一个实施例中,所述隔离区用于防止第一位置敏感探测器和第二位置敏感探测器之间的串扰。
在本发明的一个实施例中,所述第一位置敏感探测器和第二位置敏感探测器的电极通过引线键合的方式将信号线引到PCB基板表面的焊盘,进行信号处理。
在本发明的一个实施例中,所述第一位置敏感探测器和第二位置敏感探测器的电极可通过3D TSV导电通孔的方式,将信号由TSV引到衬底背面,采用导电凸起的方式和PCB基板的焊盘焊接在一起,继而在PCB上进行信号处理。
本发明从器件的原理层面出发,设计了一种单片集成的高精度高速双光斑同步位置探测器。与采用多个CCD或者PSD分立器件进行滚转角测量的方案相比,该方案是单片集成器件,能极大缩小系统体积,降低系统复杂度;与相机测量滚转角相比,该结构不受天气环境的影响,测量结果可靠,稳定;该结构可同时实现高精度及高速滚转角测量,解决了智能机器人机械臂的运动轨迹跟踪测量及航空航天设备的滚转角实时高精度测量难题;另外,这种PSD结构简单,设计紧凑,非常有利于做大规模集成。因此,这种单片集成高精度高速双光斑同步位置探测器具有以下多种优点:高速、高精度、体积小、可降低 系统复杂度、易于集成、不受环境干扰、测量结果稳定等优势。
附图说明
为了进一步阐明本发明的各实施例的以上和其它优点和特征,将参考附图来呈现本发明的各实施例的更具体的描述。可以理解,这些附图只描绘本发明的典型实施例,因此将不被认为是对其范围的限制。在附图中,为了清楚明了,相同或相应的部件将用相同或类似的标记表示。
图1示出根据本发明的一个实施例的双光斑同步位置探测器100的结构示意图。
图2示出根据本发明的双光斑同步位置探测器的内圈第一PSD的二维网格点图。
图3示出根据本发明的双光斑同步位置探测器的外圈第二PSD的二维网格点图。
图4示出根据本发明的一个实施例的双光斑同步位置探测器的引线键合封装结构的示意图。
图5示出根据本发明的一个实施例的双光斑同步位置探测器的TSV封装结构的示意图。
图6示出根据本发明的一个实施例的双光斑同步位置探测器的TSV封装结构的截面示意图。
具体实施方式
在以下的描述中,参考各实施例对本发明进行描述。然而,本领域的技术人员将认识到可在没有一个或多个特定细节的情况下或者与其它替换和/或附加方法、材料或组件一起实施各实施例。在其它情形中,未示出或未详细描述公知的结构、材料或操作以免使本发明的各实施例的诸方面晦涩。类似地,为了解释的目的,阐述了特定数量、材料和配置,以便提供对本发明的实施例的全面理解。然而,本发明可在没有特定细节的情况下实施。此外,应理解附图中示出的各实施例是说明性表示且不一定按比例绘制。
在本说明书中,对“一个实施例”或“该实施例”的引用意味着结合该实施例描述的特定特征、结构或特性被包括在本发明的至少一个实施例中。在本说明书各处中出现的短语“在一个实施例中”并不一定全部指代同一实施例。
需要说明的是,本发明的实施例以特定顺序对工艺步骤进行描述,然而这只是为了方便区分各步骤,而并不是限定各步骤的先后顺序,在本发明的不同实施例中,可根据工艺的调节来调整各步骤的先后顺序。
本发明阐述了一种用于滚转角测量的单片集成的高精度高速双光斑同步位置探测器。
图1示出根据本发明的一个实施例的双光斑同步位置探测器100的结构示意图。
如图1所示,双光斑同步位置探测器100包括第一PSD 110和第二PSD 120。第一PSD 110和第二PSD 120形成内外两圈PSD。中间通过隔离区130分隔开。第一PSD 110和第二PSD 120可以是一种硅基器件,可采用CMOS标准工艺进行单片集成。双光斑同步位置探测器100的表层包括第一PSD 110的光敏区、第二PSD 120的光敏区、边框区140、隔离区130。光敏区是光斑可移动的区域。隔离区130将第一PSD 110的光敏区和第二PSD 120的光敏区隔离开,从而防止第一PSD 110和第二PSD 120之间的串扰。
PSD工作原理可以等效为非均匀辐照模型。如果p-n结的光敏面被非均匀辐照,当p区的掺杂浓度远小于n区的掺杂浓度,则光照区域的光生电子在n区很容易扩散达到均匀分布,而p区由于电阻率大,光生空穴在光照区域部分堆积,在沿着结平面平行的方向非均匀分布,使得原来的结平衡被破坏,在沿着结平面平行的方向形成横向电场。
如果在第一PSD 110和第二PSD 120的四角分别设计电极,并测量每个电极处的电流,由公式(1)(2)可以同时计算出第一PSD 110上的第一光斑的位置坐标(X_1,Y_1)以及第二PSD 120上的第二光斑的位置坐标(X_2,Y_2),即可同时得知双光斑的位置。
Figure PCTCN2021132695-appb-000003
Figure PCTCN2021132695-appb-000004
其中I 1、I 2、I 3、I 4分别表示第二PSD 120的四角电极上电流;I 5、I 6、I 7、I 8分别表示第一PSD 110的四角电极上电流;d_1表示第一位置敏感探测器的有效光敏面长度;d_2表示第二位置敏感探测器的有效光敏面长度。
在图1所示的实施例中,第一PSD 110的光敏区为方形,隔离区130围绕在第一PSD 110的光敏区的四周,第二PSD 120的光敏区为回形,第一PSD 110的光敏区及其四周的隔离区嵌入在第二PSD 120的回形的内框之中。然而,本领域的技术人员应该清楚,上述实施例所示的第一PSD 110和第二PSD120的光敏区的形状仅仅是示例性的,而非限制性的。在本发明的其他实施例中,第一PSD 110和第二PSD120的光敏区的形状不限于方形,而是可以是任何其他形状。例如,第一PSD 110的光敏区为圆形,隔离区130围绕在第一PSD 110的光敏区的四周,第二PSD 120的光敏区为环形,第一PSD 110的光敏区及其四周的隔离区嵌入在第二PSD 120的环形的内环之中。第一PSD 110和第二PSD120的光敏区的形状还可以是其他多边形。
在根据本发明的双光斑同步位置探测器设计中,最关键的难点是要提高测量的准确度,要消除两个PSD之间的串扰。在该设计中,一方面采用特殊的隔离区边框设计,例如,可以将隔离区130设计为方形或多边形;一方面通过优化PSD结构参数设计实现无畸变高精度的PSD,既可以实现两个PSD同时无畸变的工作,又能消除两个PSD之间的串扰。本发明利用有限元法对该探测器结构进行仿真。
图2示出根据本发明的双光斑同步位置探测器的内圈第一PSD的二维网格点图,实心方块代表光斑的实际位置,实心圆代表第一PSD的计算位置。可以 发现计算位置与光斑的实际位置符合的很好,位置误差可以忽略不计。同样,图3示出根据本发明的双光斑同步位置探测器的外圈第二PSD的二维网格点图,实心方块代表光斑的实际位置,实心圆代表第二PSD的计算位置。结果表面第二PSD所计算的位置精度很高。经过仿真验证,该双光斑同步位置探测器设计能实现双光斑同步探测,且具备高精度特性。又因PSD作为光电器件,其光电响应速率非常快,可到微秒量级,因此也具备高速特性。
在滚转角位姿测量系统中,由合作标靶出射两束平行激光,垂直入射到该双光斑同步位置探测器上,当合作标靶以一定的滚转角进行转动时,其上固定的两个平行光束出射的位置也会随之运动,此时探测器上的第一PSD和第二PSD分别探测这两个光斑,并给出实时位置,以反馈合作标靶的实时滚转角的角度。因此该PSD具备单片集成、可连续探测无盲区、高速率、高精度、单片集成体积小、可缩小整个测量系统复杂度的特性,是解决位姿测量系统中滚转角测量的极具优势的方案。
图4示出根据本发明的一个实施例的双光斑同步位置探测器400的引线键合封装结构的示意图。如图4所示,该双光斑同步位置探测器400的第一和第二PSD 410、420的电极可通过引线键合的方式将信号线引到PCB 430表面的焊盘431,进行信号处理。
图5示出根据本发明的一个实施例的双光斑同步位置探测器500的TSV封装结构的示意图。图6示出根据本发明的一个实施例的双光斑同步位置探测器的TSV封装结构500的截面示意图。如图5和图6所示,该双光斑同步位置探测器500的第一和第二PSD 510、520的电极可通过3D TSV导电通孔的方式,将信号由TSV引到衬底背面,采用导电凸起的方式和PCB 530的焊盘焊接在一起,继而在PCB上进行信号处理。
本发明的公开的上述双光斑同步位置探测器的优势是:从器件的原理层面出发,设计了一种单片集成的高精度高速双光斑同步位置探测器。与采用多个CCD或者PSD分立器件进行滚转角测量的方案相比,该方案是单片集成器件,能极大缩小系统体积,降低系统复杂度;与相机测量滚转角相比,该结构不受天气环境的影响,测量结果可靠,稳定;该结构可同时实现高精度及高速滚转角测量,解决了智能机器人机械臂的运动轨迹跟踪测量及航空航天设备的滚转 角实时高精度测量难题;另外,这种PSD结构简单,设计紧凑,非常有利于做大规模集成。因此,这种单片集成高精度高速双光斑同步位置探测器具有以下多种优点:高速、高精度、体积小、可降低系统复杂度、易于集成、不受环境干扰、测量结果稳定等优势。
尽管上文描述了本发明的各实施例,但是,应该理解,它们只是作为示例来呈现的,而不作为限制。对于相关领域的技术人员显而易见的是,可以对其做出各种组合、变型和改变而不背离本发明的精神和范围。因此,此处所公开的本发明的宽度和范围不应被上述所公开的示例性实施例所限制,而应当仅根据所附权利要求书及其等同替换来定义。

Claims (10)

  1. 一种双光斑同步位置探测器,包括:
    第一位置敏感探测器;
    第二位置敏感探测器;以及
    隔离区,其中所述第一位置敏感探测器和所述第二位置敏感探测器的光敏区通过所述隔离区分开。
  2. 如权利要求1所述的双光斑同步位置探测器,其特征在于,所述双光斑同步位置探测器的表层包括第一位置敏感探测器的第一光敏区、第二位置敏感探测器的第二光敏区,所述隔离区包围所述第一光敏区,所述第二光敏区包围所述隔离区。
  3. 如权利要求1所述的双光斑同步位置探测器,其特征在于,第一位置敏感探测器的第一光敏区为方形,所述隔离区围绕在第一光敏区的四周,第二位置敏感探测器的第二光敏区为回形,第一光敏区及其四周的隔离区嵌入在第二光敏区的回形的内框之中。
  4. 如权利要求3所述的双光斑同步位置探测器,其特征在于,第一光敏区是第一光斑可移动的区域,第二光敏区是第二光斑可移动的区域。
  5. 如权利要求4所述的双光斑同步位置探测器,其特征在于,在第一位置敏感探测器和第二位置敏感探测器的四角分别设计电极,并测量每个电极处的电流,基于所述电流确定所述第一光斑和第二光斑的位置。
  6. 如权利要求5所述的双光斑同步位置探测器,其特征在于,根据由公式(1)和(2)计算出所述第一光斑的位置坐标(X_1,Y_1)以及第二光斑的位置坐标(X_2,Y_2):
    Figure PCTCN2021132695-appb-100001
    Figure PCTCN2021132695-appb-100002
    其中I 1、I 2、I 3、I 4分别表示第二位置敏感探测器的四角电极上电流;I 5、I 6、I 7、I 8分别表示第一位置敏感探测器的四角电极上电流;d_1表示第一位置敏感探测器的有效光敏面长度;d_2表示第二位置敏感探测器的有效光敏面长度。
  7. 如权利要求1所述的双光斑同步位置探测器,其特征在于,所述隔离区用于防止第一位置敏感探测器和第二位置敏感探测器之间的串扰。
  8. 如权利要求1所述的双光斑同步位置探测器,其特征在于,所述第一位置敏感探测器和第二位置敏感探测器的电极通过引线键合的方式将信号线引到PCB基板表面的焊盘,进行信号处理。
  9. 如权利要求1所述的双光斑同步位置探测器,其特征在于,所述第一位置敏感探测器和第二位置敏感探测器的电极可通过3D TSV导电通孔的方式,将信号由TSV引到衬底背面,采用导电凸起的方式和PCB基板的焊盘焊接在一起,继而在PCB上进行信号处理。
  10. 如权利要求1所述的双光斑同步位置探测器,其特征在于,第一位置敏感探测器的光敏区为圆形,隔离区围绕在第一位置敏感探测器的光敏区的四周,第二位置敏感探测器的光敏区为环形,第一位置敏感探测器的光敏区及其四周的隔离区嵌入在第二位置敏感探测器的环形的内环之中。
PCT/CN2021/132695 2021-11-24 2021-11-24 一种单片集成的高精度高速双光斑同步位置探测器结构 WO2023092318A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/132695 WO2023092318A1 (zh) 2021-11-24 2021-11-24 一种单片集成的高精度高速双光斑同步位置探测器结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/132695 WO2023092318A1 (zh) 2021-11-24 2021-11-24 一种单片集成的高精度高速双光斑同步位置探测器结构

Publications (1)

Publication Number Publication Date
WO2023092318A1 true WO2023092318A1 (zh) 2023-06-01

Family

ID=86538694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132695 WO2023092318A1 (zh) 2021-11-24 2021-11-24 一种单片集成的高精度高速双光斑同步位置探测器结构

Country Status (1)

Country Link
WO (1) WO2023092318A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286813A (ja) * 1994-04-19 1995-10-31 Rikagaku Kenkyusho 標識方向検出装置
CN101771468A (zh) * 2009-12-24 2010-07-07 中国科学院安徽光学精密机械研究所 激光大气传输倾斜校正系统
CN102445923A (zh) * 2010-10-09 2012-05-09 无锡南理工科技发展有限公司 一种工业机器人运动学参数快速低成本标定装置及其方法
CN102460563A (zh) * 2009-05-27 2012-05-16 美国亚德诺半导体公司 使用位置敏感检测器的位置测量系统
CN107702644A (zh) * 2017-09-25 2018-02-16 中国科学院光电研究院 一种基于双psd的多自由度测量装置
CN113063394A (zh) * 2021-03-17 2021-07-02 中国科学院微电子研究所 一种基于双二维位置敏感探测器的高精度姿态测量系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286813A (ja) * 1994-04-19 1995-10-31 Rikagaku Kenkyusho 標識方向検出装置
CN102460563A (zh) * 2009-05-27 2012-05-16 美国亚德诺半导体公司 使用位置敏感检测器的位置测量系统
CN101771468A (zh) * 2009-12-24 2010-07-07 中国科学院安徽光学精密机械研究所 激光大气传输倾斜校正系统
CN102445923A (zh) * 2010-10-09 2012-05-09 无锡南理工科技发展有限公司 一种工业机器人运动学参数快速低成本标定装置及其方法
CN107702644A (zh) * 2017-09-25 2018-02-16 中国科学院光电研究院 一种基于双psd的多自由度测量装置
CN113063394A (zh) * 2021-03-17 2021-07-02 中国科学院微电子研究所 一种基于双二维位置敏感探测器的高精度姿态测量系统

Similar Documents

Publication Publication Date Title
US8427657B2 (en) Device for optical imaging, tracking, and position measurement with a scanning MEMS mirror
CN101995233B (zh) 用于太阳精密跟踪的数字式光电角度传感器
CN105093235B (zh) 一种同步扫描交会测量融合成像系统
CN110017810B (zh) 一种光电位置传感器与单目视觉组合姿态测量系统及方法
CN108413865B (zh) 基于三维测量和坐标系转换的二次反射镜面型检测方法
CN108063102A (zh) 一种基于四象限光电探测器的监测微镜的方法
CN105866739B (zh) 一种空间定位系统及方法、定位设备和光传感器模组
CN111953912A (zh) 一种高速运动光点空间位置的探测方法以及装置
CN108007424B (zh) 一种多视角二次反射镜姿态检测系统及其检测方法
CN108180886A (zh) 阵列式四象限探测器及其测角方法
CN102679875A (zh) 主动靶及采用该主动靶对束靶耦合传感器在线标定方法
WO2023092318A1 (zh) 一种单片集成的高精度高速双光斑同步位置探测器结构
CN210534336U (zh) 一种激光雷达
CN111811419A (zh) 一种基于激光的桥梁挠度检测系统及方法
CN101922927A (zh) 二座标高精度太阳跟踪传感器
CN114111577A (zh) 一种单片集成的高精度高速双光斑同步位置探测器结构
JP2009210280A (ja) 方位センサ装置
CN212749253U (zh) Tof测距装置
CN110411713B (zh) 一种同轴相机主次镜在轨姿态测量系统
Welch et al. MEMS optical position sensor for sun tracking
CN113251920B (zh) 一种消除象限探测器光斑定位误差的方法
CN105628007B (zh) 一种基于波带片的六维高精度快速对准、测量系统
CN111256649B (zh) 基于锥形透镜的光线入射角度测量系统与方法
CN109542124B (zh) 基于太阳光照角度感知的自动旋转对准装置及对准方法
CN207833013U (zh) 十二象限激光探测器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965056

Country of ref document: EP

Kind code of ref document: A1