WO2023090779A1 - Antimicrobial 3d printing composition and antimicrobial 3d-printed dental product using same - Google Patents

Antimicrobial 3d printing composition and antimicrobial 3d-printed dental product using same Download PDF

Info

Publication number
WO2023090779A1
WO2023090779A1 PCT/KR2022/017841 KR2022017841W WO2023090779A1 WO 2023090779 A1 WO2023090779 A1 WO 2023090779A1 KR 2022017841 W KR2022017841 W KR 2022017841W WO 2023090779 A1 WO2023090779 A1 WO 2023090779A1
Authority
WO
WIPO (PCT)
Prior art keywords
antimicrobial
printing composition
printing
weight
parts
Prior art date
Application number
PCT/KR2022/017841
Other languages
French (fr)
Korean (ko)
Inventor
오명환
김도현
배나래찬
유현철
김윤기
Original Assignee
(주) 베리콤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220150129A external-priority patent/KR20230073986A/en
Application filed by (주) 베리콤 filed Critical (주) 베리콤
Publication of WO2023090779A1 publication Critical patent/WO2023090779A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/84Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms six-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives

Definitions

  • the present invention relates to an antibacterial 3D printing composition capable of improving antibacterial properties by including a nitrogen-containing aliphatic heterocyclic derivative and an antibacterial 3D printing product for dental use using the same.
  • 3D printing medical technology is developing with a focus on dental, orthopedic, and plastic surgery medical products because it has the advantage of being able to manufacture customized medical devices.
  • 3D scanning technology using a scanner enables faster and more sophisticated production of dental prostheses than conventional casting methods.
  • the most widely used printing technique is a photocurable method in which a light source is irradiated to a polymer in the form of a photocurable resin, photocured instantaneously, and then laminated to produce a three-dimensional complex shape. Due to the nature of the photocurable method through laser irradiation, The shape precision is very excellent, so the production of precise dental prosthesis is most optimized. However, due to the nature of photocurable materials, it is difficult to utilize implantable materials in the body, and there are limitations in toxicity and biocompatibility of polymers in oral use as well. there is.
  • Antibacterial means to prevent the propagation or creation of microorganisms on the surface of an object in advance, that is, to suppress the proliferation of viruses rather than to kill them. Attachment of cells and viruses to dental prostheses is essential, and in order to suppress this, ion components adhere to the surface of cells using antibacterial material surface components to remove cell walls or inhibit the growth of bacteria by inhibiting energy metabolism. suppress
  • an antibacterial 3D printing composition capable of manufacturing dental products using 3D printing, while satisfying the required physical properties of dental products and having biological stability and antibacterial properties.
  • the present invention is to solve the above problems, an antibacterial 3D printing composition having improved antibacterial properties by including a monomer containing a nitrogen-containing aliphatic heterocyclic derivative, and using the same to prevent caries by bacteria and bacteria, thereby providing long-term physical properties It is intended to provide dental antibacterial 3D printing products that can maintain
  • the present invention provides an oligomer containing an acrylate functional group or a methacrylate functional group; A first monomer containing an acrylate functional group or a methacrylate functional group; a second monomer comprising a nitrogen-containing aliphatic heterocyclic derivative; photoinitiators; And, it provides an antibacterial 3D printing composition comprising a ceramic filler.
  • the antibacterial 3D printing composition Based on 100 parts by weight of the antibacterial 3D printing composition, 10 to 30 parts by weight of the oligomer; 5 to 15 parts by weight of the first monomer; 5 to 15 parts by weight of the second monomer; 0.1 to 10 parts by weight of the photoinitiator; and 40 to 85 parts by weight of the ceramic filler.
  • the second monomer including the nitrogen-containing aliphatic heterocyclic derivative may have antibacterial properties.
  • the nitrogen-containing aliphatic heterocyclic derivative is morpholine, thiomorphine, piperazine, triazinane, 1,3,5-oxadiazinane ), 1,3,5-dioxazinane, 1,3,5-thiadiazinane, pyrrolidine, azetidine ( Azetidine), aziridine, and combinations thereof.
  • the photoinitiator is bis-acylphosphine oxide, phenylphosphine oxide, and 2,4,6-trimethylbenzoyldiphenyl phosphine oxide (2,4,6-trimethylbenzoyldiphenyl phosphine oxide). It may include one or more selected from the group consisting of.
  • the ceramic filler is barium silicate, barium borosilicate, barium fluoroaluminoborosilicate, barium aluminoborosilicate, alumino silicate ), zirconia, aluminum oxide, and zirconium oxide.
  • An average particle size of the ceramic filler may be 0.1 to 10 ⁇ m.
  • the antimicrobial 3D printing composition may further include an inhibitor and a pigment as additives.
  • the pigment may include at least one selected from the group consisting of inorganic pigments and organic pigments.
  • the antimicrobial 3D printing composition may have a viscosity of 5,500 to 7,000 cps at 25°C.
  • the present invention provides an antibacterial 3D printing product for dental use printed through a 3D printer using the antimicrobial 3D printing composition.
  • the antibacterial dental 3D printing product may have a flexural strength of 170 to 180 MPa and a flexural modulus of 7.5 to 8.5 GPa.
  • the antibacterial 3D printing composition according to the present invention can improve the antimicrobial properties of the composition by including a nitrogen-containing aliphatic heterocyclic derivative, and has a level of viscosity (5,500 to 7,000 cps at 25 ° C) applicable to general photocurable 3D printers. As a result, it can be used as a 3D printing composition.
  • an antibacterial 3D printing product for dental use using the antibacterial 3D printing composition of the present invention has a flexural strength of 170 to 180 MPa and a flexural modulus of 7.5 to 8.5 GPa.
  • the term "comprises” or “has” is intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
  • Dental resins placed in the teeth for a long time may have antibacterial properties in order to maintain physical properties for a long period of time by preventing caries by germs and bacteria present in the teeth.
  • currently released 3D printing dental resins have no such antibacterial properties on the market.
  • an antimicrobial 3D printing composition having improved antimicrobial properties is provided by using nitrogen-containing aliphatic heterocycle derivatives, rather than conventionally known antimicrobial materials.
  • the antimicrobial 3D printing composition of the present invention is an oligomer containing an acrylate functional group or a methacrylate functional group; A first monomer containing an acrylate functional group or a methacrylate functional group; a second monomer comprising a nitrogen-containing aliphatic heterocyclic derivative; photoinitiators; and a ceramic filler.
  • the antimicrobial 3D printing composition is based on 100 parts by weight of the antimicrobial 3D printing composition, 10 to 30 parts by weight of the oligomer; 5 to 15 parts by weight of the first monomer; 5 to 15 parts by weight of the second monomer; 0.1 to 10 parts by weight of the photoinitiator; and 40 to 85 parts by weight of the ceramic filler.
  • the antibacterial 3D printing composition 20 to 30 parts by weight of the oligomer; 5 to 10 parts by weight of the first monomer; 5 to 10 parts by weight of the second monomer; 0.1 to 1 part by weight of the photoinitiator; and 50 to 70 parts by weight of the ceramic filler.
  • the second monomer including the nitrogen-containing aliphatic heterocyclic derivative may have antibacterial properties.
  • the nitrogen-containing aliphatic heterocyclic derivative it is possible to maintain biological stability and antibacterial properties while satisfying the required physical properties of a composition for 3D printing.
  • the nitrogen-containing aliphatic heterocyclic derivative is morpholine, thiomorphine, piperazine, triazinane, 1,3,5-oxadiazinane ), 1,3,5-dioxazinane, 1,3,5-thiadiazinane, pyrrolidine, azetidine (Azetidine), aziridine (Aziridine), and may include one or more selected from the group consisting of combinations thereof.
  • the oligomer containing the acrylate functional group or the methacrylate functional group or the first monomer containing the acrylate functional group or the methacrylate functional group is methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl Methacrylate, isobutyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, n-decyl methacrylate, n-dodecyl methacrylate, 2-hydroxy Roxyethyl methacrylate, 2- or 3-hydroxypropyl methacrylate, 2-methoxyethyl methacrylate, 2-ethoxyethyl methacrylate, 2- or 3-ethoxypropyl methacrylate, tetrahydro Furfuryl methacrylate, isobornyl methacrylate, 2-(2-ethoxye
  • the photoinitiators include bis-acylphosphine oxide, phenylphosphineoxide, and 2,4,6-trimethylbenzoyldiphenyl phosphine oxide. It may include one or more selected from the group consisting of.
  • the photoinitiator may include a phosphine oxide-based material.
  • the ceramic filler is barium silicate, barium borosilicate, barium fluoroaluminoborosilicate, barium aluminoborosilicate, alumino silicate ), zirconia, aluminum oxide, and zirconium oxide.
  • An average particle size of the ceramic filler may be 0.1 to 10 ⁇ m.
  • the average particle size of the ceramic filler may be 0.1 to 5 ⁇ m, 0.1 to 3 ⁇ m, 0.1 to 1 ⁇ m, 1 to 10 ⁇ m, 3 to 10 ⁇ m, 5 to 10 ⁇ m, or 1 to 3 ⁇ m.
  • the ceramic filler may include heterogeneous ceramic fillers each having a different size.
  • the oligomers or monomers uniformly penetrate between the ceramic fillers, thereby reducing non-uniformity in the antimicrobial 3D printing composition and improving mechanical properties.
  • the antimicrobial 3D printing composition may further include an inhibitor and a pigment as additives.
  • the inhibitor is a group consisting of Mequinol, Dibutyl hydroxy toluene, Irganox 245, Irganox 1076, and Irgafos 168 It may include one or more phenolic antioxidants selected from.
  • the inhibitor may be included to maintain the color of an output product printed using a 3D printing composition, and to maintain the color before and after printer output and after curing. It can also help with photostability or shelf life of products.
  • the inhibitor may include 0.01 to 0.2 parts by weight based on 100 parts by weight of the antimicrobial 3D printing composition.
  • the pigment may include 0.0001 to 0.2 parts by weight based on 100 parts by weight of the antimicrobial 3D printing composition.
  • the pigment may include at least one selected from the group consisting of inorganic pigments and organic pigments.
  • the antimicrobial 3D printing composition may have a viscosity of 5,500 to 7,000 cps at 25°C. If the viscosity of the composition used for 3D printing is too high, printing cannot be performed, so 7,000 cps or less is appropriate. Accordingly, the viscosity of the antimicrobial 3D printing composition according to the present invention may be suitable for use in 3D printing.
  • the present invention provides a dental antibacterial 3D printing product output through a 3D printer using the antimicrobial 3D printing composition.
  • the antimicrobial 3D printing product for dentistry may be a resin for a permanent crown.
  • the antibacterial 3D printing product for dental use may be to produce a product of a desired shape by repeatedly stacking the curing process after outputting the antimicrobial 3D printing composition through a 3D printer, and the antimicrobial 3D printing composition is photocurable It may be resin.
  • the antibacterial dental 3D printing product may have a flexural strength of 170 to 180 MPa and a flexural modulus of 7.5 to 8.5 GPa.
  • the flexural strength and flexural modulus are physical properties obtained by printing a product specimen with a printer according to ISO 10477 and testing after post-curing.
  • an example sample was prepared by mixing the materials shown in Table 1 and the corresponding content in order to prepare an antimicrobial 3D printing composition.
  • the composition of Table 1 below was prepared under the same conditions except for the second monomer.
  • BHI Brain Heart Infusion
  • test strain was collected from the plate medium, inoculated into the liquid medium, and then cultured at 37° C. and 120 rpm.
  • the cultured strain was diluted to 1 ⁇ 10 8 CFU/mL.
  • the concentration of the sample (the above example) was dissolved to be 0.38 wt%. Thereafter, the samples were treated in a 96-well plate by serial dilution method. After sample treatment, the inoculum was inoculated and incubated at 37°C for 16 to 24 hours. After culturing, the control group and the example (test group) were observed through a microscope to confirm the minimum inhibitory concentration, and the results of the first to third measurements of the same example are shown in Table 2 below.
  • the minimum inhibitory concentration which is the lowest concentration at which bacterial growth is completely inhibited, was measured as 0.007 wt% in the first to third measurements through the microscope.
  • BHI Brain Heart Infusion
  • test strain was collected from the plate medium, inoculated into the liquid medium, and then cultured at 37° C. and 120 rpm.
  • the cultured strain was diluted to 3 ⁇ 10 7 CFU/mL.
  • Example (sample containing Acryloyl morpholine as the second monomer) and Comparative Example (sample not containing the second monomer) samples were placed in a 12-well plate, and 1 mL of the inoculation solution was inoculated on the specimen, and the temperature was 72 °C at 37 °C. cultured for more than an hour. After culturing, the relative staining degree of Examples and Comparative Examples was compared through crystal violet staining.
  • the example having antibacterial activity was less dyed than the comparative example having no antibacterial activity and the color was light. It was found that the number of objects to be stained was smaller than that of the comparative example because the amount of the test strain was reduced by the antibacterial properties of the example sample.
  • the present invention can be widely used in an antibacterial 3D printing composition and dental antibacterial 3D printing products using the same.

Abstract

The present invention relates to: an antimicrobial 3D printing composition which, by comprising a nitrogen-containing aliphatic heterocyclic derivative, can improve the antimicrobial activity of the composition, and which has a level of viscosity (5,500-7,000 cps at 25 °C) that is applicable to general photocurable 3D printers, and thus can be used as a 3D printing composition; and an antimicrobial 3D-printed dental product using same.

Description

항균성 3D 프린팅 조성물 및 이를 이용한 치과용 항균성 3D 프린팅 제품Antibacterial 3D printing composition and dental antibacterial 3D printing product using the same
본 발명은 질소-함유 지방족 헤테로고리 유도체를 포함함으로써 항균성을 향상시킬 수 있는 항균성 3D 프린팅 조성물 및 이를 이용한 치과용 항균성 3D 프린팅 제품에 관한 것이다.The present invention relates to an antibacterial 3D printing composition capable of improving antibacterial properties by including a nitrogen-containing aliphatic heterocyclic derivative and an antibacterial 3D printing product for dental use using the same.
현재 3D 프린팅 의료기술은 맞춤형 의료기기를 제작할 수 있다는 장점이 두드러져 치과, 정형외과, 성형외과 의료 제품을 중심으로 발전하고 있다. 특히, 치과 보철물의 경우 스캐너를 활용한 3D 스캔 기술을 통해 기존 주조방식보다 더 빠르고 정교한 치과 보철물 제작이 가능하다. 이를 통해 생산비용 감소는 물론 치아 모델제작까지 걸리는 시간이 단축되었으며, 다양한 특허 출현과 산업군으로 확대되고 있다.Currently, 3D printing medical technology is developing with a focus on dental, orthopedic, and plastic surgery medical products because it has the advantage of being able to manufacture customized medical devices. In particular, in the case of dental prostheses, 3D scanning technology using a scanner enables faster and more sophisticated production of dental prostheses than conventional casting methods. Through this, not only the production cost has been reduced, but the time taken to produce a tooth model has been shortened, and various patents have appeared and are expanding to industrial groups.
치과용 3D 프린팅 재료는 금속, 고분자, 세라믹 소재를 프린팅하여 인공지지체 형태를 제작하는 방식을 택하고 있으며, 향후 바이오 프린팅으로 대변되는 세포 및 단백질을 포함하는 바이오 잉크에 대한 연구가 지속적으로 연구되고 있다. For dental 3D printing materials, a method of producing artificial scaffolds by printing metal, polymer, and ceramic materials is chosen, and research on bio-ink containing cells and proteins, which is represented by bio-printing, is being continuously studied. .
가장 많이 활용되는 프린팅기법은 광경화성 방법으로 광경화성 수지 형태의 고분자에 광원을 조사하여 순간적으로 광경화 시킨 후 적층하여 3차원의 복잡한 형상을 제작하는 방식으로, 레이저 조사를 통한 광경화방식의 특성상 형상 정밀도가 매우 우수하여 정밀한 치과 보철물 제작이 가장 최적화 되어있다. 그러나 광경화성 소재의 특성상 체내 이식형 소재 활용은 어려우며, 구강내 사용 역시 폴리머의 독성 및 생체 적합성의 한계가 존재하며, 그밖에 강도/내구성의 문제로 인해 이를 응용한 세라믹 프린팅이나 다른 시도들도 활발히 일어나고 있다.The most widely used printing technique is a photocurable method in which a light source is irradiated to a polymer in the form of a photocurable resin, photocured instantaneously, and then laminated to produce a three-dimensional complex shape. Due to the nature of the photocurable method through laser irradiation, The shape precision is very excellent, so the production of precise dental prosthesis is most optimized. However, due to the nature of photocurable materials, it is difficult to utilize implantable materials in the body, and there are limitations in toxicity and biocompatibility of polymers in oral use as well. there is.
현재 치과 보철물 제작방식으로서 가장 현실적인 방법인 광경화성 기반 3D 프린팅 재료의 개발은 많은 연구가 진행중이나, 이와 더불어 인지해야 될 사항은 구강내환경은 기본적으로 세균이 서식하는 환경으로 이에 대한 대비책으로 항균성을 함유한 재료 사용이 필수적이며, 이를 통해 수복된 치아의 재우식을 방지하는 노력이 매우 필요하다. Currently, many studies are being conducted on the development of photocurable-based 3D printing materials, which are the most realistic method for manufacturing dental prostheses. It is essential to use the material containing the tooth, and efforts to prevent re-cavity of the restored tooth through this are very necessary.
항균이란 사전적으로 물건의 표면에 미생물의 번식이나 생성을 막는 것을 의미하며, 즉 바이러스를 죽이는 것이 아닌 증식을 억제하는 것이다. 치과 보철물에 세포 및 바이러스의 부착은 필수적이며, 이를 억제하기 위해서는 항균성 있는 재료의 표면 성분을 이용하여 해당 표면에 이온 성분이 세포 표면에 달라붙어 세포벽을 제거하거나 에너지 대사를 저해하는 방식으로 세균 성장을 억제시킨다. Antibacterial means to prevent the propagation or creation of microorganisms on the surface of an object in advance, that is, to suppress the proliferation of viruses rather than to kill them. Attachment of cells and viruses to dental prostheses is essential, and in order to suppress this, ion components adhere to the surface of cells using antibacterial material surface components to remove cell walls or inhibit the growth of bacteria by inhibiting energy metabolism. suppress
이와 관련하여, 일본공개특허 제1998-025218호에서는 유기 복합 필러로 항균성을 부여하고 있지만, 구강 내에서의 장기적인 효과에 대해서는 불명하다 하고, 유기 필러 안의 유기 성분을 늘리게 되기 때문에, 컴포지트 레진 등의 경화물로 했을 때에는, 기계적 강도 저하를 일으킨다고 하는 문제가 있었다.In this regard, in Japanese Laid-open Patent Publication No. 1998-025218, antibacterial properties are imparted to an organic composite filler, but the long-term effect in the oral cavity is unknown, and since the organic component in the organic filler is increased, composites such as resins When it was used as cargo, there was a problem of causing a decrease in mechanical "strength".
따라서, 치과용 제품의 요구 물성을 만족하는 동시에 생물학적 안정성과 항균성을 보유하고, 3D 프린팅을 이용하여 치과용 제품을 제조할 수 있는 항균성 3D 프린팅 조성물이 필요한 실정이다.Therefore, there is a need for an antibacterial 3D printing composition capable of manufacturing dental products using 3D printing, while satisfying the required physical properties of dental products and having biological stability and antibacterial properties.
본 발명은 상기의 문제점을 해결하기 위한 것으로, 질소-함유 지방족 헤테로고리 유도체를 포함하는 모노머를 포함함으로써 항균성이 향상되는 항균성 3D 프린팅 조성물 및 이를 이용하여 세균 및 박테리아에 의해 우식되는 것을 방지하여 장기간 물성을 유지할 수 있는 치과용 항균성 3D 프린팅 제품을 제공하고자 한다.The present invention is to solve the above problems, an antibacterial 3D printing composition having improved antibacterial properties by including a monomer containing a nitrogen-containing aliphatic heterocyclic derivative, and using the same to prevent caries by bacteria and bacteria, thereby providing long-term physical properties It is intended to provide dental antibacterial 3D printing products that can maintain
상기 과제를 해결하기 위하여,In order to solve the above problems,
본 발명은 일실시예에서, 아크릴레이트 작용기 또는 메타크릴레이트 작용기를 포함하는 올리고머; 아크릴레이트 작용기 또는 메타크릴레이트 작용기를 포함하는 제1 모노머; 질소-함유 지방족 헤테로고리 유도체를 포함하는 제2 모노머; 광개시제; 및, 세라믹 필러를 포함하는 항균성 3D 프린팅 조성물을 제공한다.In one embodiment, the present invention provides an oligomer containing an acrylate functional group or a methacrylate functional group; A first monomer containing an acrylate functional group or a methacrylate functional group; a second monomer comprising a nitrogen-containing aliphatic heterocyclic derivative; photoinitiators; And, it provides an antibacterial 3D printing composition comprising a ceramic filler.
상기 항균성 3D 프린팅 조성물 100 중량부에 대하여, 상기 올리고머 10 내지 30 중량부; 상기 제1 모노머 5 내지 15 중량부; 상기 제2 모노머 5 내지 15 중량부; 상기 광개시제 0.1 내지 10 중량부; 및, 상기 세라믹 필러 40 내지 85 중량부를 포함할 수 있다.Based on 100 parts by weight of the antibacterial 3D printing composition, 10 to 30 parts by weight of the oligomer; 5 to 15 parts by weight of the first monomer; 5 to 15 parts by weight of the second monomer; 0.1 to 10 parts by weight of the photoinitiator; and 40 to 85 parts by weight of the ceramic filler.
상기 질소-함유 지방족 헤테로고리 유도체를 포함하는 제2 모노머는 항균성을 가지는 것일 수 있다.The second monomer including the nitrogen-containing aliphatic heterocyclic derivative may have antibacterial properties.
상기 질소-함유 지방족 헤테로고리 유도체는 모르폴린(Morpholine), 티오모르핀(Thiomorphine), 피페라진(Piperazine), 트리아지난(Triazinane), 1,3,5-옥사디아지난(1,3,5-Oxadiazinane), 1,3,5-디옥사지난(1,3,5-dioxazinane), 1,3,5-티아디아지난(1,3,5-Thiadiazinane), 피롤리딘(Pyrrolidine), 아제티딘(Azetidine), 아지리딘(Aziridine) 및 이들의 조합들로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.The nitrogen-containing aliphatic heterocyclic derivative is morpholine, thiomorphine, piperazine, triazinane, 1,3,5-oxadiazinane ), 1,3,5-dioxazinane, 1,3,5-thiadiazinane, pyrrolidine, azetidine ( Azetidine), aziridine, and combinations thereof.
상기 광개시제는 비스-아실포스핀옥사이드(Bis-acylphosphine oxide), 페닐포스핀옥사이드(Phenylphosphineoxide), 및 2,4,6-트라이메틸벤조일다이페닐 포스핀옥사이드(2,4,6-trimethylbenzoyldiphenyl phosphine oxide로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.The photoinitiator is bis-acylphosphine oxide, phenylphosphine oxide, and 2,4,6-trimethylbenzoyldiphenyl phosphine oxide (2,4,6-trimethylbenzoyldiphenyl phosphine oxide). It may include one or more selected from the group consisting of.
상기 세라믹 필러는 바륨 실리케이트(barium silicate), 바륨보로실리케리트 (barium borosilicate), 바륨 플루오로알루미노보로실리케이트(barium fluoroaluminoborosilicate), 바륨 알루미노보로실리케이트(barium aluminoborosilicate), 알루미노실리케이트(alumino silicate), 지르코니아(zirconia), 산화 알루미늄 (aluminium oxide), 및 산화 지르코늄으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.The ceramic filler is barium silicate, barium borosilicate, barium fluoroaluminoborosilicate, barium aluminoborosilicate, alumino silicate ), zirconia, aluminum oxide, and zirconium oxide.
상기 세라믹 필러의 평균 입자 크기는 0.1 내지 10 ㎛인 것일 수 있다.An average particle size of the ceramic filler may be 0.1 to 10 μm.
상기 항균성 3D 프린팅 조성물은 첨가제로 억제제 및 안료를 추가 포함하는 것일 수 있다.The antimicrobial 3D printing composition may further include an inhibitor and a pigment as additives.
상기 안료는 무기안료 또는 유기안료로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.The pigment may include at least one selected from the group consisting of inorganic pigments and organic pigments.
상기 항균성 3D 프린팅 조성물의 25℃에서 점도가 5,500 내지 7,000 cps인 것일 수 있다.The antimicrobial 3D printing composition may have a viscosity of 5,500 to 7,000 cps at 25°C.
또한, 본 발명은 일실시예에서, 상기 항균성 3D 프린팅 조성물을 이용하여 3D 프린터를 통해 출력한 치과용 항균성 3D 프린팅 제품을 제공한다.In addition, in one embodiment, the present invention provides an antibacterial 3D printing product for dental use printed through a 3D printer using the antimicrobial 3D printing composition.
상기 치과용 항균성 3D 프린팅 제품의 굴곡강도가 170 내지 180 MPa 이고, 굴곡계수는 7.5 내지 8.5 GPa인 것일 수 있다.The antibacterial dental 3D printing product may have a flexural strength of 170 to 180 MPa and a flexural modulus of 7.5 to 8.5 GPa.
본 발명에 따른 항균성 3D 프린팅 조성물은 질소-함유 지방족 헤테로고리 유도체를 포함함으로써 조성물의 항균성을 향상시킬 수 있으며, 일반 광경화형 3D 프린터에 적용가능한 수준의 점도(25℃에서 5,500 내지 7,000 cps)를 가짐으로써 3D 프린팅 조성물로서 이용할 수 있다. The antibacterial 3D printing composition according to the present invention can improve the antimicrobial properties of the composition by including a nitrogen-containing aliphatic heterocyclic derivative, and has a level of viscosity (5,500 to 7,000 cps at 25 ° C) applicable to general photocurable 3D printers. As a result, it can be used as a 3D printing composition.
또한, 본 발명의 항균성 3D 프린팅 조성물을 이용하여 치과용 항균성 3D 프린팅 제품의 제조가 가능하고, 제조된 제품은 굴곡강도가 170 내지 180 MPa 이고, 굴곡계수는 7.5 내지 8.5 GPa인 특징이 있다.In addition, it is possible to manufacture an antibacterial 3D printing product for dental use using the antibacterial 3D printing composition of the present invention, and the manufactured product has a flexural strength of 170 to 180 MPa and a flexural modulus of 7.5 to 8.5 GPa.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 구체적으로 설명하고자 한다.Since the present invention can make various changes and have various embodiments, specific embodiments will be illustrated in the drawings and described in detail in the detailed description.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present invention, the term "comprises" or "has" is intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
이하, 본 발명에 대하여 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in detail.
치아 내에 장시간 위치하는 치과용 레진은 치아에 존재하는 세균 및 박테리아에 의해 우식되는 것을 방지하여 장기간 물성을 유지하기 위해 항균성을 가지면 좋다. 그러나, 현재 출시된 3D 프린팅 치과용 레진은 이러한 항균성을 부여하고 있는 제품은 출시된 것이 없다. Dental resins placed in the teeth for a long time may have antibacterial properties in order to maintain physical properties for a long period of time by preventing caries by germs and bacteria present in the teeth. However, currently released 3D printing dental resins have no such antibacterial properties on the market.
이에, 항균성을 부여하는 방법으로 기존에 알려진 항균성 소재들이 아닌, 질소-함유 지방족 헤테로고리 유도체(N-contained aliphatic heterocycle derivatives) 물질을 사용하여 항균성이 향상된 항균성 3D 프린팅 조성물을 제공한다.Accordingly, as a method of imparting antibacterial properties, an antimicrobial 3D printing composition having improved antimicrobial properties is provided by using nitrogen-containing aliphatic heterocycle derivatives, rather than conventionally known antimicrobial materials.
구체적으로, 본 발명의 항균성 3D 프린팅 조성물은 아크릴레이트 작용기 또는 메타크릴레이트 작용기를 포함하는 올리고머; 아크릴레이트 작용기 또는 메타크릴레이트 작용기를 포함하는 제1 모노머; 질소-함유 지방족 헤테로고리 유도체를 포함하는 제2 모노머; 광개시제; 및, 세라믹 필러를 포함한다.Specifically, the antimicrobial 3D printing composition of the present invention is an oligomer containing an acrylate functional group or a methacrylate functional group; A first monomer containing an acrylate functional group or a methacrylate functional group; a second monomer comprising a nitrogen-containing aliphatic heterocyclic derivative; photoinitiators; and a ceramic filler.
상기 항균성 3D 프린팅 조성물은 상기 항균성 3D 프린팅 조성물 100 중량부에 대하여, 상기 올리고머 10 내지 30 중량부; 상기 제1 모노머 5 내지 15 중량부; 상기 제2 모노머 5 내지 15 중량부; 상기 광개시제 0.1 내지 10 중량부; 및, 상기 세라믹 필러 40 내지 85 중량부를 포함할 수 있다. The antimicrobial 3D printing composition is based on 100 parts by weight of the antimicrobial 3D printing composition, 10 to 30 parts by weight of the oligomer; 5 to 15 parts by weight of the first monomer; 5 to 15 parts by weight of the second monomer; 0.1 to 10 parts by weight of the photoinitiator; and 40 to 85 parts by weight of the ceramic filler.
예를 들어, 상기 항균성 3D 프린팅 조성물 100 중량부에 대하여, 상기 올리고머 20 내지 30 중량부; 상기 제1 모노머 5 내지 10 중량부; 상기 제2 모노머 5 내지 10 중량부; 상기 광개시제 0.1 내지 1 중량부; 및, 상기 세라믹 필러 50 내지 70 중량부를 포함할 수 있다.For example, based on 100 parts by weight of the antibacterial 3D printing composition, 20 to 30 parts by weight of the oligomer; 5 to 10 parts by weight of the first monomer; 5 to 10 parts by weight of the second monomer; 0.1 to 1 part by weight of the photoinitiator; and 50 to 70 parts by weight of the ceramic filler.
상기 질소-함유 지방족 헤테로고리 유도체를 포함하는 제2 모노머는 항균성을 가지는 것일 수 있다. 상기 질소-함유 지방족 헤테로고리 유도체를 포함함으로써, 3D 프린팅을 위한 조성물의 요구 물성을 만족하는 동시에 생물학적 안정성과 항균성을 보유할 수 있다.The second monomer including the nitrogen-containing aliphatic heterocyclic derivative may have antibacterial properties. By including the nitrogen-containing aliphatic heterocyclic derivative, it is possible to maintain biological stability and antibacterial properties while satisfying the required physical properties of a composition for 3D printing.
상기 질소-함유 지방족 헤테로고리 유도체는 모르폴린(Morpholine), 티오모르핀(Thiomorphine), 피페라진(Piperazine), 트리아지난(Triazinane), 1,3,5-옥사디아지난(1,3,5-Oxadiazinane), 1,3,5,-디옥사지난(1,3,5-dioxazinane), 1,3,5-티아디아지난(1,3,5-Thiadiazinane), 피롤리딘(Pyrrolidine), 아제티딘(Azetidine), 아지리딘(Aziridine) 및 이들의 조합들로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.The nitrogen-containing aliphatic heterocyclic derivative is morpholine, thiomorphine, piperazine, triazinane, 1,3,5-oxadiazinane ), 1,3,5-dioxazinane, 1,3,5-thiadiazinane, pyrrolidine, azetidine (Azetidine), aziridine (Aziridine), and may include one or more selected from the group consisting of combinations thereof.
상기 아크릴레이트 작용기 또는 메타크릴레이트 작용기를 포함하는 올리고머 또는 아크릴레이트 작용기 또는 메타크릴레이트 작용기를 포함하는 제1 모노머는, 메틸메타크릴레이트, 에틸메타크릴레이트, n-프로필메타크릴레이트, n-부틸메타크릴레이트, 이소부틸메타크릴레이트, n-헥실메타크릴레이트, 2-에틸헥실메타크릴레이트, n-옥틸메타크릴레이트, n-데실메타크릴레이트, n-도데실메타크릴레이트, 2-히드록시에틸 메타크릴레이트, 2- 또는 3-히드록시프로필 메타크릴레이트, 2-메톡시에틸 메타크릴레이트, 2-에톡시에틸 메타크릴레이트, 2- 또는 3-에톡시프로필 메타크릴레이트, 테트라히드로푸르푸릴 메타크릴레이트, 이소보닐 메타크릴레이트, 2-(2-에톡시에톡시에틸 아크릴레이트, 사이클로헥실 메타크릴리에트, 2-페녹시에틸 아크릴레이트, 글리시딜 아크릴레이트, 이소데실 아크릴레이트, 2-페녹시에틸 메타크릴레이트, 라우릴메타르릴레이트, 알릴아크릴레이트, 알릴메타크릴레이트, 트리에틸렌 글리콜 디메타크릴레이트, 트리사이클로데칸 디메탄올 디아크릴레이트, 및 사이클로헥산 디메탄올 디아크릴레이트를 포함하는 아크릴레이트; 1,3- 또는 1,4-부탄디올, 네오펜틸 글리콜, 1,6-헥산디올, 디에틸렌 글리콜, 트리에틸렌 글리콜, 테트라에틸렌 글리콜, 폴리에틸렌 글리콜, 트리프로필렌 글리콜, 에톡시화 또는 프로폭실화 네오펜틸 글리콜, 1,4-디히드록시메틸사이클로헥산, 2,2-비스(4-히드록시사이클로헥실)프로판, 비스(4-히드록시사이클로헥실)메탄, 히드로퀴논, 4,4'-디히드록시비페닐, 비스페놀 A, 비스페놀 F, 비스페놀 S, 에톡시화 또는 프로폭실화 비스페놀 A, 엑톡시화 또는 프로폭실화 비스페놀 F, 및 에톡시화 또는 프로폭실화 비스페놀 S를 포함하는 지방족, 지환족 또는 방향족 디올의 디아크릴레이트 또는 디메타크릴레이트 에스테르; 및 이들의 조합들로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.The oligomer containing the acrylate functional group or the methacrylate functional group or the first monomer containing the acrylate functional group or the methacrylate functional group is methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl Methacrylate, isobutyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, n-decyl methacrylate, n-dodecyl methacrylate, 2-hydroxy Roxyethyl methacrylate, 2- or 3-hydroxypropyl methacrylate, 2-methoxyethyl methacrylate, 2-ethoxyethyl methacrylate, 2- or 3-ethoxypropyl methacrylate, tetrahydro Furfuryl methacrylate, isobornyl methacrylate, 2-(2-ethoxyethoxyethyl acrylate, cyclohexyl methacrylate, 2-phenoxyethyl acrylate, glycidyl acrylate, isodecyl acrylate , 2-phenoxyethyl methacrylate, lauryl methacrylate, allyl acrylate, allyl methacrylate, triethylene glycol dimethacrylate, tricyclodecane dimethanol diacrylate, and cyclohexane dimethanol diacrylate Acrylates, including acrylates: 1,3- or 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, tripropylene glycol, ethoxylation or propoxylated neopentyl glycol, 1,4-dihydroxymethylcyclohexane, 2,2-bis(4-hydroxycyclohexyl)propane, bis(4-hydroxycyclohexyl)methane, hydroquinone, 4,4 '- aliphatic, alicyclic, including dihydroxybiphenyl, bisphenol A, bisphenol F, bisphenol S, ethoxylated or propoxylated bisphenol A, ectoxylated or propoxylated bisphenol F, and ethoxylated or propoxylated bisphenol S diacrylate or dimethacrylate ester of a group or aromatic diol; and one or more selected from the group consisting of combinations thereof.
상기 광개시제는 비스-아실포스핀옥사이드(Bis-acylphosphine oxide), 페닐포스핀옥사이드(Phenylphosphineoxide), 및 2,4,6-트라이메틸벤조일다이페닐 포스핀옥사이드(2,4,6-trimethylbenzoyldiphenyl phosphine oxide) 로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다. 예를 들어, 상기 광개시제는 포스핀옥사이드 계열 물질을 포함하는 것일 수 있다.The photoinitiators include bis-acylphosphine oxide, phenylphosphineoxide, and 2,4,6-trimethylbenzoyldiphenyl phosphine oxide. It may include one or more selected from the group consisting of. For example, the photoinitiator may include a phosphine oxide-based material.
상기 세라믹 필러는 바륨 실리케이트(barium silicate), 바륨보로실리케리트 (barium borosilicate), 바륨 플루오로알루미노보로실리케이트(barium fluoroaluminoborosilicate), 바륨 알루미노보로실리케이트(barium aluminoborosilicate), 알루미노실리케이트(alumino silicate), 지르코니아(zirconia), 산화 알루미늄 (aluminium oxide), 및 산화 지르코늄으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.The ceramic filler is barium silicate, barium borosilicate, barium fluoroaluminoborosilicate, barium aluminoborosilicate, alumino silicate ), zirconia, aluminum oxide, and zirconium oxide.
상기 세라믹 필러의 평균 입자 크기는 0.1 내지 10 ㎛인 것일 수 있다. 예를 들어, 상기 세라믹 필러의 평균 입자 크기는 0.1 내지 5 ㎛, 0.1 내지 3 ㎛, 0.1 내지 1 ㎛, 1 내지 10 ㎛, 3 내지 10 ㎛, 5 내지 10 ㎛ 또는 1 내지 3 ㎛일 수 있다. An average particle size of the ceramic filler may be 0.1 to 10 μm. For example, the average particle size of the ceramic filler may be 0.1 to 5 μm, 0.1 to 3 μm, 0.1 to 1 μm, 1 to 10 μm, 3 to 10 μm, 5 to 10 μm, or 1 to 3 μm.
상기 세라믹 필러는 각각 크기가 다른 이종의 세라믹 필러를 포함하는 것일 수 있다. 상기 세라믹 필러의 사이로 상기 올리고머 또는 모노머들이 균일하게 침투하여 항균성 3D 프린팅 조성물 내의 불균일도가 감소하고 기계적 특성을 향상시킬 수 있다.The ceramic filler may include heterogeneous ceramic fillers each having a different size. The oligomers or monomers uniformly penetrate between the ceramic fillers, thereby reducing non-uniformity in the antimicrobial 3D printing composition and improving mechanical properties.
상기 항균성 3D 프린팅 조성물은 첨가제로 억제제 및 안료를 추가 포함하는 것일 수 있다.The antimicrobial 3D printing composition may further include an inhibitor and a pigment as additives.
상기 억제제는 메퀴놀(Mequinol), 디부틸히드록시톨루엔(Dibutyl hydroxy toluene), 이르가녹스245(Irganox 245), 이르가녹스 1076(Irganox 1076), 및 이르가포스 168(Irgafos 168)로 이루어진 군으로부터 선택되는 1종 이상의 페놀계 산화방지제를 포함할 수 있다.The inhibitor is a group consisting of Mequinol, Dibutyl hydroxy toluene, Irganox 245, Irganox 1076, and Irgafos 168 It may include one or more phenolic antioxidants selected from.
상기 억제제는 주로 3D 프린팅 조성물을 이용하여 출력한 출력물의 색상 유지를 위해 포함될 수 있으며, 프린터 출력 전후 및 후경화 전후의 색상을 유지할 수 있도록 한다. 또한, 제품의 광안정성이나 유효기간에도 도움이 될 수 있다.The inhibitor may be included to maintain the color of an output product printed using a 3D printing composition, and to maintain the color before and after printer output and after curing. It can also help with photostability or shelf life of products.
상기 억제제는 상기 항균성 3D 프린팅 조성물 100 중량부에 대하여, 0.01 내지 0.2 중량부를 포함할 수 있다. The inhibitor may include 0.01 to 0.2 parts by weight based on 100 parts by weight of the antimicrobial 3D printing composition.
상기 안료는 상기 항균성 3D 프린팅 조성물 100 중량부에 대하여, 0.0001 내지 0.2 중량부를 포함할 수 있다.The pigment may include 0.0001 to 0.2 parts by weight based on 100 parts by weight of the antimicrobial 3D printing composition.
상기 안료는 무기안료 또는 유기안료로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.The pigment may include at least one selected from the group consisting of inorganic pigments and organic pigments.
상기 항균성 3D 프린팅 조성물의 25℃에서 점도가 5,500 내지 7,000 cps인 것일 수 있다. 3D 프린팅에 사용되는 조성물의 점도는 너무 높으면 출력을 할 수 없어, 7,000 cps 이하가 적절하다. 이에, 본 발명에 따른 항균성 3D 프린팅 조성물의 점도는 3D 프린팅에 사용하기에 적합할 수 있다.The antimicrobial 3D printing composition may have a viscosity of 5,500 to 7,000 cps at 25°C. If the viscosity of the composition used for 3D printing is too high, printing cannot be performed, so 7,000 cps or less is appropriate. Accordingly, the viscosity of the antimicrobial 3D printing composition according to the present invention may be suitable for use in 3D printing.
또한, 본 발명은 상기 항균성 3D 프린팅 조성물을 이용하여 3D 프린터를 통해 출력한 치과용 항균성 3D 프린팅 제품을 제공한다.In addition, the present invention provides a dental antibacterial 3D printing product output through a 3D printer using the antimicrobial 3D printing composition.
예를 들어, 상기 치과용 항균성 3D 프린팅 제품은 영구치관용 레진일 수 있다.For example, the antimicrobial 3D printing product for dentistry may be a resin for a permanent crown.
상기 치과용 항균성 3D 프린팅 제품은, 상기 항균성 3D 프린팅 조성물을 3D 프린터를 통해 출력한 후 경화시키는 과정을 반복하여 층층이 쌓음으로써 원하는 모양의 제품을 제조하는 것일 수 있고, 상기 항균성 3D 프린팅 조성물은 광경화성 수지일 수 있다.The antibacterial 3D printing product for dental use may be to produce a product of a desired shape by repeatedly stacking the curing process after outputting the antimicrobial 3D printing composition through a 3D printer, and the antimicrobial 3D printing composition is photocurable It may be resin.
상기 치과용 항균성 3D 프린팅 제품의 굴곡강도는 170 내지 180 MPa 이고, 굴곡계수는 7.5 내지 8.5 GPa인 것일 수 있다. 구체적으로, 상기 굴곡강도 및 굴곡계수는 ISO 10477에 따라 제품의 시편을 프린터로 출력하고 후경화까지 마친 후 테스트하여 수득된 물성이다.The antibacterial dental 3D printing product may have a flexural strength of 170 to 180 MPa and a flexural modulus of 7.5 to 8.5 GPa. Specifically, the flexural strength and flexural modulus are physical properties obtained by printing a product specimen with a printer according to ISO 10477 and testing after post-curing.
이하 본 발명에 따르는 실시예 등을 통해 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples and the like according to the present invention, but the scope of the present invention is not limited by the examples presented below.
[실시예] [Example]
제조예: 항균성 3D 프린팅 조성물의 제조Preparation Example: Preparation of Antimicrobial 3D Printing Composition
본 실시예에서, 항균성 3D 프린팅 조성물을 제조하기 위해 하기 표 1에 나타낸 물질 및 그에 따른 함량을 혼합하여 실시예 시료를 제조하였다. 비교예로는 하기 표 1의 조성에서 제2 모노머를 제외한 나머지 조건을 동일하게 하여 제조하였다.In this example, an example sample was prepared by mixing the materials shown in Table 1 and the corresponding content in order to prepare an antimicrobial 3D printing composition. As a comparative example, the composition of Table 1 below was prepared under the same conditions except for the second monomer.
Figure PCTKR2022017841-appb-img-000001
Figure PCTKR2022017841-appb-img-000001
실험예 1: 최소억제농도 확인Experimental Example 1: Confirmation of Minimum Inhibitory Concentration
1) 시험 조건1) Test conditions
- 균주: Streptococcus mutans (KCOM 1217)- Strains: Streptococcus mutans (KCOM 1217)
- 배양조건: 37℃, 호기배양- Culture condition: 37℃, aerobic culture
- 배지: BHI (Brain Heart Infusion)- Medium: BHI (Brain Heart Infusion)
- 용액: 멸균인산완충용액 (pH 7.2)- Solution: Sterile phosphate buffer solution (pH 7.2)
2) 시험 규격2) Test standard
ISO 20776-1:2019 Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices-Part1: Broth micro-dilution reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases.ISO 20776-1:2019 Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices-Part1: Broth micro-dilution reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases.
3) 접종액 준비3) Preparation of inoculum
시험 균주를 평판배지에서 채취하여 액체 배지에 접종한 후 37℃ 120 rpm에서 배양하였다. 배양한 균주를 1×108 CFU/mL가 되도록 희석하였다.The test strain was collected from the plate medium, inoculated into the liquid medium, and then cultured at 37° C. and 120 rpm. The cultured strain was diluted to 1×10 8 CFU/mL.
4) 시험방법 및 결과4) Test method and result
시료(상기 실시예)의 농도가 0.38 wt%가 되도록 녹였다. 이후, 96-well plate에 연속희석법으로 시료를 처리하였다. 시료 처리 후 접종액을 접종하고 37℃에서 16~24 시간 동안 배양하였다. 배양 후 대조군과 실시예(시험군)을 현미경을 통해 관찰하여 최소억제농도를 확인하였고, 동일 실시예를 1 내지 3차로 측정한 결과를 하기 표 2에 나타내었다.The concentration of the sample (the above example) was dissolved to be 0.38 wt%. Thereafter, the samples were treated in a 96-well plate by serial dilution method. After sample treatment, the inoculum was inoculated and incubated at 37°C for 16 to 24 hours. After culturing, the control group and the example (test group) were observed through a microscope to confirm the minimum inhibitory concentration, and the results of the first to third measurements of the same example are shown in Table 2 below.
표 2에 나타낸 바와 같이, 현미경을 통해 균증식이 완전히 억제된 가장 낮은 농도인 최소억제농도가 1 내지 3차의 측정에서 모두 0.007 wt%로 측정되었다.As shown in Table 2, the minimum inhibitory concentration, which is the lowest concentration at which bacterial growth is completely inhibited, was measured as 0.007 wt% in the first to third measurements through the microscope.
Figure PCTKR2022017841-appb-img-000002
Figure PCTKR2022017841-appb-img-000002
실험예 2: 항균성 여부 평가Experimental Example 2: Evaluation of antimicrobial activity
1) 시험 조건1) Test conditions
- 균주: Streptococcus mutans (KCOM 1217)- Strains: Streptococcus mutans (KCOM 1217)
- 배양조건: 37℃, 호기배양- Culture condition: 37℃, aerobic culture
- 배지: BHI (Brain Heart Infusion)- Medium: BHI (Brain Heart Infusion)
- 용액: 멸균인산완충용액 (pH 7.2)- Solution: Sterile phosphate buffer solution (pH 7.2)
2) 접종액 준비2) Preparation of inoculum
시험 균주를 평판배지에서 채취하여 액체 배지에 접종한 후 37℃ 120 rpm에서 배양하였다. 배양한 균주를 3×107 CFU/mL가 되도록 희석하였다The test strain was collected from the plate medium, inoculated into the liquid medium, and then cultured at 37° C. and 120 rpm. The cultured strain was diluted to 3×10 7 CFU/mL.
3) 시험방법 및 결과3) Test method and result
실시예(제2 모노머로 Acryloyl morpholine을 포함하는 시료)와 비교예(제2 모노머를 포함하지 않는 시료) 시료를 12-well plate에 놓고, 시편 위에 접종액을 1 mL씩 접종하여 37℃에서 72 시간 이상 배양하였다. 배양 후 crystal violet 염색을 통해 실시예와 비교예의 상대적인 염색정도를 비교하였다. Example (sample containing Acryloyl morpholine as the second monomer) and Comparative Example (sample not containing the second monomer) samples were placed in a 12-well plate, and 1 mL of the inoculation solution was inoculated on the specimen, and the temperature was 72 °C at 37 °C. cultured for more than an hour. After culturing, the relative staining degree of Examples and Comparative Examples was compared through crystal violet staining.
그 결과는 항균성을 갖는 실시예는 항균성을 갖지 않는 비교예에 비해 염색이 덜 되어 색이 연한 것을 확인할 수 있었다. 이는 실시예 시료의 항균성에 의해 시험균주의 양이 줄어들었기 때문에 염색되는 개체의 수가 비교예에 비해 적다는 것을 알 수 있었다.As a result, it was confirmed that the example having antibacterial activity was less dyed than the comparative example having no antibacterial activity and the color was light. It was found that the number of objects to be stained was smaller than that of the comparative example because the amount of the test strain was reduced by the antibacterial properties of the example sample.
본 발명은 항균성 3D 프린팅 조성물 및 이를 이용한 치과용 항균성 3D 프린팅 제품에 광범위하게 사용될 수 있다.The present invention can be widely used in an antibacterial 3D printing composition and dental antibacterial 3D printing products using the same.

Claims (12)

  1. 아크릴레이트 작용기 또는 메타크릴레이트 작용기를 포함하는 올리고머;an oligomer containing an acrylate functional group or a methacrylate functional group;
    아크릴레이트 작용기 또는 메타크릴레이트 작용기를 포함하는 제1 모노머;A first monomer containing an acrylate functional group or a methacrylate functional group;
    질소-함유 지방족 헤테로고리 유도체를 포함하는 제2 모노머;a second monomer comprising a nitrogen-containing aliphatic heterocyclic derivative;
    광개시제; 및,photoinitiators; and,
    세라믹 필러를 포함하는 항균성 3D 프린팅 조성물.An antimicrobial 3D printing composition comprising a ceramic filler.
  2. 제 1 항에 있어서,According to claim 1,
    상기 항균성 3D 프린팅 조성물 100 중량부에 대하여,With respect to 100 parts by weight of the antimicrobial 3D printing composition,
    상기 올리고머 10 내지 30 중량부;10 to 30 parts by weight of the oligomer;
    상기 제1 모노머 5 내지 15 중량부;5 to 15 parts by weight of the first monomer;
    상기 제2 모노머 5 내지 15 중량부;5 to 15 parts by weight of the second monomer;
    상기 광개시제 0.1 내지 10 중량부; 및,0.1 to 10 parts by weight of the photoinitiator; and,
    상기 세라믹 필러 40 내지 85 중량부를 포함하는 것을 특징으로 하는 항균성 3D 프린팅 조성물.Antimicrobial 3D printing composition comprising 40 to 85 parts by weight of the ceramic filler.
  3. 제 1 항에 있어서,According to claim 1,
    상기 질소-함유 지방족 헤테로고리 유도체를 포함하는 제2 모노머는 항균성을 가지는 것을 특징으로 하는 항균성 3D 프린팅 조성물.The second monomer comprising the nitrogen-containing aliphatic heterocyclic derivative is an antimicrobial 3D printing composition, characterized in that it has antimicrobial properties.
  4. 제 1 항에 있어서,According to claim 1,
    상기 질소-함유 지방족 헤테로고리 유도체는 모르폴린(Morpholine), 티오모르핀(Thiomorphine), 피페라진(Piperazine), 트리아지난(Triazinane), 1,3,5-옥사디아지난(1,3,5-Oxadiazinane), 1,3,5-디옥사지난(1,3,5-dioxazinane), 1,3,5-티아디아지난(1,3,5-Thiadiazinane), 피롤리딘(Pyrrolidine), 아제티딘(Azetidine), 아지리딘(Aziridine) 및 이들의 조합들로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 항균성 3D 프린팅 조성물.The nitrogen-containing aliphatic heterocyclic derivative is morpholine, thiomorphine, piperazine, triazinane, 1,3,5-oxadiazinane ), 1,3,5-dioxazinane, 1,3,5-thiadiazinane, pyrrolidine, azetidine ( Azetidine), aziridine, and combinations thereof.
  5. 제 1 항에 있어서,According to claim 1,
    상기 광개시제는 비스-아실포스핀옥사이드(Bis-acylphosphine oxide), 페닐포스핀옥사이드(Phenylphosphineoxide), 및 2,4,6-트라이메틸벤조일다이페닐 포스핀옥사이드(2,4,6-trimethylbenzoyldiphenyl phosphine oxide)로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는  항균성 3D 프린팅 조성물.The photoinitiators include bis-acylphosphine oxide, phenylphosphineoxide, and 2,4,6-trimethylbenzoyldiphenyl phosphine oxide. Characterized in that it comprises at least one selected from the group consisting of   antimicrobial 3D printing composition.
  6. 제 1 항에 있어서,According to claim 1,
    상기 세라믹 필러는 바륨 실리케이트(barium silicate), 바륨보로실리케리트 (barium borosilicate), 바륨 플루오로알루미노보로실리케이트(barium fluoroaluminoborosilicate), 바륨 알루미노보로실리케이트(barium aluminoborosilicate), 알루미노실리케이트(alumino silicate), 지르코니아(zirconia), 산화 알루미늄 (aluminium oxide), 및 산화 지르코늄 (zirconium oxide)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 항균성 3D 프린팅 조성물.The ceramic filler is barium silicate, barium borosilicate, barium fluoroaluminoborosilicate, barium aluminoborosilicate, alumino silicate ), zirconia (zirconia), aluminum oxide (aluminium oxide), and zirconium oxide (zirconium oxide) characterized in that it comprises at least one member selected from the group consisting of   antibacterial 3D printing composition.
  7. 제 1 항에 있어서,According to claim 1,
    상기 세라믹 필러의 평균 입자 크기는 0.1 내지 10 ㎛인 것을 특징으로 하는 항균성 3D 프린팅 조성물.The average particle size of the ceramic filler is an antimicrobial 3D printing composition, characterized in that 0.1 to 10 ㎛.
  8. 제 1 항에 있어서,According to claim 1,
    상기 항균성 3D 프린팅 조성물은 첨가제로 억제제 및 안료를 추가 포함하는 것을 특징으로 하는 항균성 3D 프린팅 조성물.The antimicrobial 3D printing composition is an antimicrobial 3D printing composition, characterized in that it further comprises an inhibitor and a pigment as an additive.
  9. 제 8 항에 있어서,According to claim 8,
    상기 안료는 무기안료 또는 유기안료로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 항균성 3D 프린팅 조성물.The pigment is an antimicrobial 3D printing composition, characterized in that it comprises at least one selected from the group consisting of inorganic pigments or organic pigments.
  10. 제 1 항에 있어서,According to claim 1,
    상기 항균성 3D 프린팅 조성물의 25℃에서 점도가 5,500 내지 7,000 cps인 것을 특징으로 하는 항균성 3D 프린팅 조성물.Antimicrobial 3D printing composition, characterized in that the viscosity is 5,500 to 7,000 cps at 25 ℃ of the antimicrobial 3D printing composition.
  11. 제 1 항 내지 제 10 항 중 어느 한 항에 따른 항균성 3D 프린팅 조성물을 이용하여 3D 프린터를 통해 출력한 치과용 항균성 3D 프린팅 제품.An antimicrobial dental 3D printing product printed through a 3D printer using the antimicrobial 3D printing composition according to any one of claims 1 to 10.
  12. 제 11 항에 있어서,According to claim 11,
    상기 치과용 항균성 3D 프린팅 제품의 굴곡강도가 170 내지 180 MPa 이고, 굴곡계수는 7.5 내지 8.5 GPa인 것을 특징으로 하는 치과용 항균성 3D 프린팅 제품.The antibacterial dental 3D printing product for dental use, characterized in that the flexural strength of the 3D printing product is 170 to 180 MPa, the flexural modulus is 7.5 to 8.5 GPa.
PCT/KR2022/017841 2021-11-19 2022-11-14 Antimicrobial 3d printing composition and antimicrobial 3d-printed dental product using same WO2023090779A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210160409 2021-11-19
KR10-2021-0160409 2021-11-19
KR1020220150129A KR20230073986A (en) 2021-11-19 2022-11-11 Antibacterial 3D printing composition and dental antibacterial 3D printing product using same
KR10-2022-0150129 2022-11-11

Publications (1)

Publication Number Publication Date
WO2023090779A1 true WO2023090779A1 (en) 2023-05-25

Family

ID=86397478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017841 WO2023090779A1 (en) 2021-11-19 2022-11-14 Antimicrobial 3d printing composition and antimicrobial 3d-printed dental product using same

Country Status (1)

Country Link
WO (1) WO2023090779A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170100869A (en) * 2016-02-26 2017-09-05 주식회사 엘지화학 An Ink Composition for 3D Printing Support and the Manufacturing Method using the Same
KR20210064191A (en) * 2018-09-25 2021-06-02 디아이씨 가부시끼가이샤 Curable resin composition, cured product and three-dimensional object
KR20210065101A (en) * 2018-09-24 2021-06-03 바스프 에스이 Photocurable composition for use in 3D printing
EP3888616A1 (en) * 2020-03-16 2021-10-06 Shofu Inc. Dental photocurable composition excellent in color tone selectivity
KR20210132023A (en) * 2019-02-19 2021-11-03 나가세케무텍쿠스가부시키가이샤 Photocurable resin composition and three-dimensional stereolithography using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170100869A (en) * 2016-02-26 2017-09-05 주식회사 엘지화학 An Ink Composition for 3D Printing Support and the Manufacturing Method using the Same
KR20210065101A (en) * 2018-09-24 2021-06-03 바스프 에스이 Photocurable composition for use in 3D printing
KR20210064191A (en) * 2018-09-25 2021-06-02 디아이씨 가부시끼가이샤 Curable resin composition, cured product and three-dimensional object
KR20210132023A (en) * 2019-02-19 2021-11-03 나가세케무텍쿠스가부시키가이샤 Photocurable resin composition and three-dimensional stereolithography using same
EP3888616A1 (en) * 2020-03-16 2021-10-06 Shofu Inc. Dental photocurable composition excellent in color tone selectivity

Similar Documents

Publication Publication Date Title
Candeiro et al. Cytotoxicity, genotoxicity and antibacterial effectiveness of a bioceramic endodontic sealer
Schaeffer et al. Efficient detection of soft agar grown colonies using a tetrazolium salt
WO2018226051A2 (en) Serum-free medium composition for culturing cells including exosome derived from human stem cell
WO2018221918A1 (en) Composition and method for culturing organoids
WO2013154381A1 (en) Method for selective cell attachment/detachment, cell patternization and cell harvesting by means of near infrared rays
WO2020166869A1 (en) Dental composite comprising crystallized glass
WO2019132472A1 (en) Photocurable composition and molded article manufactured using same
Cândea Ciurea et al. Evaluation of the biocompatibility of resin composite‐based dental materials with gingival mesenchymal stromal cells
DhahirTaher et al. Effect of silver nanoparticles on some physical& biological properties of fluid denture base material
WO2023090779A1 (en) Antimicrobial 3d printing composition and antimicrobial 3d-printed dental product using same
WO2021167219A1 (en) Antibacterial titanium implant and manufacturing method therefor
WO2018151423A1 (en) Transparent disk-shaped microparticles coated with polydopamine
WO2018093069A1 (en) Method for 3d-culturing cell
KR20230073986A (en) Antibacterial 3D printing composition and dental antibacterial 3D printing product using same
WO2018021754A1 (en) Method for manufacturing three-dimensional cell culture support having double crosslink, and casting tray for manufacturing three-dimensional cell culture support
WO2013119045A1 (en) Neural differentiation of mesenchymal stem cells in thermosensitive hydrogel and composition for neural differentiation
Reinholdt et al. Cultivation of periodontal ligament fibroblasts on extracted monkey incisors: A histologic study of three culturing methods
CN116121174A (en) Method for three-dimensional culture and separation of chicken embryo fibroblasts in vitro
Zara et al. Anti‐adhesive and pro‐apoptotic effects of 2‐hydroxyethyl methacrylate on human gingival fibroblasts co‐cultured with Streptococcus mitis strains
Ismail et al. Cytotoxicity assessment of zirconia-reinforced experimental nanohybrid dental composite using MTT assay
Müller et al. An experimental study on the biocompatibility of lining cements based on glass ionomer as compared with calcium hydroxide
WO2012161363A1 (en) Dental complex composition containing crystallized glass-ceramic
KR20220074545A (en) Photocured gelatin methacryloyl hydrogel for an artificial mucosal tissue model
WO2020130312A1 (en) Heart tissue simulating sheet for heart transplants, containing adipose stem cell sheet, and manufacturing method therefor
WO2024090832A1 (en) Three-dimensional neuromuscular junction model, method for manufacturing same and drug screening method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895985

Country of ref document: EP

Kind code of ref document: A1