WO2019132472A1 - Photocurable composition and molded article manufactured using same - Google Patents

Photocurable composition and molded article manufactured using same Download PDF

Info

Publication number
WO2019132472A1
WO2019132472A1 PCT/KR2018/016576 KR2018016576W WO2019132472A1 WO 2019132472 A1 WO2019132472 A1 WO 2019132472A1 KR 2018016576 W KR2018016576 W KR 2018016576W WO 2019132472 A1 WO2019132472 A1 WO 2019132472A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
photocurable composition
weight
bisphenol
Prior art date
Application number
PCT/KR2018/016576
Other languages
French (fr)
Korean (ko)
Inventor
박성원
Original Assignee
박성원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박성원 filed Critical 박성원
Publication of WO2019132472A1 publication Critical patent/WO2019132472A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • C08F291/12Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00 on to nitrogen-containing macromolecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0006Production methods
    • A61C13/0019Production methods using three dimensional printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1065Esters of polycondensation macromers of alcohol terminated (poly)urethanes, e.g. urethane(meth)acrylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/147Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/148Polysiloxanes

Definitions

  • the present invention relates to a photo-curing resin composition for dental use in which a 3D printer can be used, and a dental molding manufactured using the same.
  • tooth restorations usually made of metal, porcelain (ceramics), polymeric materials, etc. are used to repair damaged teeth in the oral cavity.
  • ceramic restorations are mainly used in consideration of esthetics.
  • Examples of the method of manufacturing the ceramic restoration include a method of laminating a ceramic material on a metal tube and firing the ceramic material, a method of laminating the ceramic material on the ceramic core and firing or pressing the ceramic material, a method of forming a ceramic block by CAD / CAM ) System to obtain a molded body and sinter it.
  • a method of processing and firing a ceramic block through a CAD / CAM system is superior in productivity, elaborate, superior in aesthetic and mechanical properties to zirconia Zirconia) can be used as the material, has received the spotlight recently.
  • the conventional technology has a problem that the loss rate of the ceramic block is high in the manufacturing process, the number of the restoration to be manufactured is less than the time required for manufacturing the restoration, and the amount of cutting tools used in the manufacturing process is large.
  • a method for manufacturing a dental restoration using a 3D printer has recently been spotlighted.
  • the data obtained by scanning a work model is designed and corrected using a CAD program, and then a process of printing and solidification of a polymer or a metal powder material is repeated to obtain a molded article.
  • a 3D printer is used, a large amount of various restorations can be manufactured in a short time.
  • conventional dental compositions have been difficult to use 3D printers because of the slow curing rate and high viscosity.
  • the present invention provides a photocurable composition
  • a photocurable composition comprising a (meth) acrylate modified siloxane resin, a urethane (meth) acrylate oligomer, a di (meth) acrylate based reactive monomer and a photopolymerization initiator.
  • the present invention provides a molded article produced by printing and curing the above-mentioned photocurable composition through a 3D printer.
  • the photocurable composition of the present invention can use a 3D printer due to its low viscosity and high curing speed, it is possible to produce a dental molding having excellent workability and productivity at the time of production of a molded product, and having excellent aesthetics and mechanical properties .
  • the photocurable composition according to the present invention is applicable to the manufacture of a dental molding.
  • the photocurable composition according to the present invention is a composition capable of producing a three-dimensional molded article usable for dental treatment through a 3D printer.
  • the photocurable composition includes a (meth) acrylate modified siloxane resin, a urethane (meth) acrylate oligomer, Acrylate-based reactive monomer and a photopolymerization initiator.
  • (meth) acrylate means acrylate or methacrylate.
  • the (meth) acrylate modified siloxane resin prevents yellowing of the photocurable composition and contributes to enhancement of tensile strength.
  • the (meth) acrylate modified siloxane is a siloxane compound having a (meth) acrylate group, and a compound having a (meth) acrylate group bonded to one end or both ends of the siloxane can be used have.
  • the (meth) acrylate modified siloxane may be represented by the following formula (1) or (2).
  • R 1 to R 8 are the same or different groups and are an alkyl group or an alkenyl group having 1 to 10 carbon atoms,
  • n is an integer of 0 to 5
  • n is an integer from 0 to 100;
  • R 9 to R 16 are the same or different groups and are an alkyl group or an alkenyl group having 1 to 10 carbon atoms,
  • n and m ' are the same or different integers of 0 to 5
  • n is an integer from 0 to 100;
  • (Meth) acrylate modified polydimethylsiloxane such as mono- (meth) acryloxy-modified polydialkylsiloxane can be used as the (meth) acrylate modified siloxane, Alkyl-terminated polydimethylsiloxane or bis- (meth) acryloxyalkyl-terminated polydimethylsiloxane. These may be used alone or in combination of two or more.
  • the weight average molecular weight (Mw) of the (meth) acrylate modified siloxane may be 1,000 to 5,000 g / mol and the viscosity (25 ° C) may be 10 to 100 cps.
  • the content of (meth) acrylate in the (meth) acrylate modified siloxane may be from 0.25 to 0.85 mmol / g.
  • the content of the (meth) acrylate modified siloxane ranges from about 3 to 35% by weight based on the total weight of the photocurable composition. If the content of the (meth) acrylate modified siloxane is less than the above range, the flexural strength and flexural modulus of the final molded product may be lowered. If the content is larger than the above range, the shore D hardness of the final molded product may be lowered.
  • the urethane (meth) acrylate oligomer is a component that controls the physical properties (e.g., hardness, adhesion, flexibility, etc.) of the cured resin by forming a crosslinking structure with the (meth) acrylate based reactive monomer which is a photoreactive monomer , Molding workability, elasticity and adhesiveness can be improved in the production of a molded article by a 3D printer.
  • urethane (meth) acrylate oligomer a reaction product of an aliphatic or aromatic diisocyanate and a hydroxy (meth) acrylate monomer may be used.
  • the urethane (meth) acrylate resin may be, for example, a urethane di (meth) acrylate resin, a urethane tri (meth) acrylate resin, a urethane tetra (meth) acrylate resin or a urethane hexa .
  • Examples of the aliphatic or aromatic diisocyanate include 1,4-butylene diisocyanate, 1,6-hexamethylene diisocyanate, cyclopentylene-1,3-diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, iso Tolylene diisocyanate, 4,4'-methylenebis (phenylisocyanate), 2,2-diphenylpropane-diisocyanate, 2,4-tolylene diisocyanate, 4,4'-diisocyanate, p-phenylenediisocyanate, m-phenylenediisocyanate, xylene diisocyanate, 1,4-naphthylene diisocyanate, 1,5-naphthylene diisocyanate, Isocyanate, azobenzene-4,4'-diisocyanate, m- or p-tetramethyl xylene diisocyanate
  • the hydroxy (meth) acrylate monomer is not limited as long as it is well known in the art, and examples thereof include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) Hydroxybutyl (meth) acrylate, 2-hydroxyethyleneglycol (meth) acrylate, 2-hydroxypropyleneglycol (meth) (Meth) acrylate, and the like, but are not limited thereto. These may be used alone or in combination of two or more.
  • the weight average molecular weight of the urethane (meth) acrylate oligomer may range, for example, from about 300 to 1,000 g / mol, and in another example from about 400 to 600 g / mol.
  • the viscosity (25 ⁇ ) of the urethane (meth) acrylate oligomer may range, for example, from about 8,000 to 9,000 cps.
  • the content of the urethane (meth) acrylate oligomer ranges from about 25 to 45% by weight based on the total weight of the photocurable composition. If the content of the urethane (meth) acrylate oligomer is smaller than the above-mentioned range, the bending strength of the final molded product may be lowered. If the content is larger than the above-mentioned range, the bending elastic modulus of the final molded product may be lowered.
  • the di (meth) acrylate-based reactive monomer includes a mixture of a bisphenol A ethoxylate di (meth) acrylate monomer and an alkylene glycol di (meth) acrylate monomer.
  • the bisphenol A ethoxylate di (meth) acrylate monomer affects the water resistance and adhesiveness of the molded product, and the alkylene glycol di (meth) acrylate monomer can control the viscosity of the composition and control the cross- . If the content of the bisphenol A ethoxylate di (meth) acrylate monomer is too small, the bending strength and flexural modulus may be lowered, and if the content is too high, the bending strength may be lowered. In addition, when the alkylene glycol di (meth) acrylate is used in too small amounts, Shore D strength and bending strength may be lowered.
  • the bisphenol A ethoxylate di (meth) acrylate monomer used in the present invention is a compound having an intramolecular ethylene oxide group and having a (meth) acrylate group at the terminal, and may be used without limitation as long as it is known in the art.
  • the bisphenol A ethoxylate di (meth) acrylate monomer may be represented by the following formula (3).
  • n are the same or different integers of 0 to 20,
  • the bisphenol A ethoxylate di (meth) acrylate monomer may be a mixture of two or more bisphenol A ethoxylate di (meth) acrylate monomers having different molar numbers.
  • the bisphenol A ethoxylate di (meth) acrylate monomer may be selected from the group consisting of a first bisphenol A ethoxylated di (meth) acrylate monomer having a number of moles of ethylene oxide (EO) (n + m) And a second bisphenol A ethoxylate di (meth) acrylate monomer having a number of moles (n + m) of ethylene oxide (EO) in the range of 7 to 20.
  • a copolymer comprising two or more first bisphenol A ethoxylate di (meth) acrylate monomers having a number of moles of ethylene oxide (EO) (n + m) in the range of 0 to 6 or a number of moles of ethylene oxide (EO) (meth) acrylate monomers having a number-average molecular weight (Mn) in the range of 7 to 20, and a second bisphenol A ethoxylate di (meth) acrylate monomer having an n + m range of 7 to 20.
  • EO ethylene oxide
  • Mn number-average molecular weight
  • the mixing ratio of the first bisphenol A ethoxylate di (meth) acrylate monomer to the second bisphenol A ethoxylate di (meth) acrylate monomer is, for example, 1: 1 to 2: 1: 1.1 to 1.5 weight ratio.
  • the weight average molecular weight of the bisphenol A ethoxylate di (meth) acrylate monomer may range, for example, from 300 to 800 g / mol, in other embodiments from about 400 to 600 g / mol.
  • the viscosity (25 ⁇ ) of the ethoxylated di (meth) acrylate monomer may range from about 1,300 to 2,500 cps.
  • alkylene glycol di (meth) acrylate monomer compounds known in the art having an intramolecular (meth) acrylate group and an alkylene structure can be used without limitation.
  • alkylene glycol di (meth) acrylates that can be used include polyethylene glycol diacrylate (PEGDA), glycerin diacrylate, triethylene glycol dimethacrylate (TEGDMA), hexanediol Diacrylate and the like. These may be used alone or in combination of two or more.
  • PEGDA polyethylene glycol diacrylate
  • glycerin diacrylate glycerin diacrylate
  • TEGDMA triethylene glycol dimethacrylate
  • hexanediol Diacrylate hexanediol Diacrylate
  • Such alkylene glycol di (meth) acrylate monomers may have a weight average molecular weight in the range of about 100 to 500 g / mol, and in another example about 200 to 400 g / mol.
  • the viscosity (25 ⁇ ) of the alkylene glycol di (meth) acrylate monomer may range from about 5 to 12 cps.
  • the di (meth) acrylate-based reactive monomer may further include a bisphenol A glycol di (meth) acrylate monomer.
  • the bisphenol A glycol di (meth) acrylate monomer affects the mechanical properties such as the hardness of the final molded article. If the bisphenol A glycol di (meth) acrylate monomer is used in an excessively small amount, the Shore D hardness, bending strength and flexural modulus may be lowered, and if too large, the flexural strength and flexural modulus may decrease. According to one example, from 10 to 40% by weight, based on the total weight of the photocurable composition, bisphenol A glycol di (meth) acrylate monomers can be mixed and used.
  • the bisphenol A glycol di (meth) acrylate monomer used in the present invention may have a weight average molecular weight ranging from about 400 to 600 g / mol, for example.
  • the viscosity (65 ⁇ ) of the bisphenol A glycol di (meth) acrylate monomer may range, for example, from about 1,400 to 2,000 cps.
  • the photopolymerization initiator is a component that is excited by ultraviolet (UV) or visible light to induce photopolymerization, and any photopolymerization initiator known in the art can be used without limitation.
  • UV ultraviolet
  • visible light any photopolymerization initiator known in the art can be used without limitation.
  • the photopolymerization initiator examples include a carbonyl compound photopolymerization initiator of? -Diketone type such as camphor quinone and an acylphosphine oxide photopolymerization initiator.
  • a photopolymerization initiator usually uses a hydrogen donor as a cocatalyst, and a tertiary amine-based catalyst can work together.
  • Non-limiting examples of usable photopolymerization initiators include tertiary amine initiators, diphenyl iodonium chloride, diphenyl iodonium hexafluorophosphate, diphenyl iodonium tetrafluoroborate, tolyl cumyl iodonium tetra Bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-dihydroxybenzoate, Trimethylpentyl) phosphine oxide, ethyl-2,4,6-trimethylbenzyl phenylphosphinate, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide and 2-hydroxy- Phenylpropan-1-one and the like. These may be used alone or in combination of two or more.
  • the content of such a photopolymerization initiator is not particularly limited and may be, for example, in the range of 1 to 5 wt% based on the total weight of the photocurable composition, and in another example, in the range of about 1 to 3 wt%. If the content of the photopolymerization initiator is less than the above range, it may lead to deterioration of appearance and deterioration of physical properties due to lowering of curability and uncuredness. If the content is larger than the above range, contamination due to unreacted photopolymerization initiator, , Causing cracks.
  • the weight average molecular weight of the photopolymerization initiator may range, for example, from about 200 to 600 g / mol, in other embodiments from about 300 to 450 g / mol.
  • the photocurable composition of the present invention may further contain additives commonly known in the art, in addition to the above-mentioned components, so long as the effects of the present invention are not impaired.
  • additives include polymerization inhibitors, pigments, coupling agents, reinforcing agents, and acrylic resins. These may be used alone or in combination of two or more.
  • the polymerization inhibitor is used to improve the storage stability of the composition while controlling the polymerization of the composition.
  • the polymerization inhibitor is not particularly limited as long as it is commonly used in the art and includes, for example, butylated hydroxytoluene, hydroquinone (HQ), methylhydroquinone (MQ), hydroquinone Hydroquinone monomethyl ether, 2,2-methylene-bis (4-methyl-6-tertiarybutylphenol), phenothiazine, 4-methoxyphenol, pyrogallol, Di-t-butyl-4-methylphenol, 2-naphthol, p-benzoquinone, 2,5-diphenyl-p-benzoquinone and the like.
  • the content of the polymerization inhibitor may range, for example, from about 0.01 to 0.5% by weight, and in another example, from about 0.05 to 0.3% by weight, based on the total weight of the photocurable composition.
  • Pigments are used to express various tooth colors (e.g., white, colored, etc.) of the final dental molding.
  • the pigment that can be used in the present invention is not particularly limited as long as it is a pigment conventionally used in a dental restoration material. Examples thereof include iron oxide pigments of yellow, navy blue and red, and inorganic pigments such as titanium dioxide, but are not limited thereto. These may be used alone or in combination of two or more.
  • the content of such a pigment is not particularly limited and may be, for example, in the range of 0.005 to 0.5% by weight, and in another example, in the range of about 0.01 to 0.5% by weight based on the total weight of the photocurable composition.
  • the coupling agent is used to improve the compatibility between the hydrophobic di (meth) acrylate and a hydrophilic substance (e.g., an inorganic filler such as silica) while improving the elasticity and strength of the final molded product.
  • a hydrophilic substance e.g., an inorganic filler such as silica
  • the coupling agent usable in the present invention is not particularly limited as long as it is known in the art, and examples thereof include silane coupling agents, titanate coupling agents, zirconate coupling agents and the like, Or a mixture of two or more of them may be used.
  • silane coupling agent examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3- 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, Aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -aminopropylmethyldimethoxysilane, N-2- (aminoethyl) Trimethoxysilane, and the like, but are not limited thereto.
  • titanate-based coupling agent examples include cyclodioctyl pyrophosphate dioctyl pyrophosphate dioctyl titanate, dicyanodioctyl pyrophosphate dioctyl titanate ( dicyclo (dioctyl) pyrophosphate dioctyl titanate, neopentyl (diallyl) oxy trineodecanoyl titanate, neopentyldialyloxy-tridodecylbenzenesulfonyltitanate (neopentyl (dodecyl) benzene-sulfonyl titanate, neopentyl (diallyl) oxy tri (dioctyl) phosphato titanate, neopentyldialyloxy-tridioctyl pyrophosphate Neopentyl (diallyl) oxy tri (diooc
  • zirconate-based coupling agent examples include neopentyldiallyl oxy-trineodecanoyl zirconate, neopentyldiallyloxy-tridodecylbenzenesulfonyl (Diallyl) oxy tri (dodecyl) benzene-sulfonyl zirconate, neopentyl (diallyl) oxy tri (dioctyl) phosphato zirconate, neopentyl (Diallyl) oxy tri (dioctyl) pyro-phosphato zirconate, neopentyldiallyloxy-tri (n-ethylenediamino) ethyl zirconate neopentyl (diallyl) oxy tri (N-ethylenediamino) ethyl zirconate, neopentyldiallyloxy tri (N-ethylenediamino
  • the content of such a coupling agent is not particularly limited and may be, for example, in the range of about 0.01 to 5 wt% based on the total weight of the photocurable composition, and in another example, in the range of about 0.1 to 3 wt%.
  • the reinforcing agent is used to improve the strength and abrasion resistance of the molded article.
  • the reinforcing agent usable in the present invention is not particularly limited as long as it is known in the art, and examples thereof include inorganic particles such as alumina, silica, zirconia, titanium dioxide, and carbon, or resins in which the inorganic particles are dispersed.
  • the size of the inorganic particles may be in the range of, for example, about 10 to 100 nm, and in another example, in the range of about 10 to 50 nm.
  • a thermoplastic acrylic resin can be used as the resin for dispersing the inorganic particles.
  • the content of the reinforcing agent in the present invention is not particularly limited and may be, for example, in the range of about 0.01 to 20% by weight, in another example about 5 to 10% by weight, based on the total weight of the photocurable composition.
  • the acrylic resin is used to improve the elasticity of the molded article.
  • the acrylic resin is a polymer obtained by polymerizing a (meth) acrylic ester monomer containing a C 1 -C 14 alkyl group and containing at least one acrylic repeating unit.
  • Examples of the (meth) acrylate monomer containing the C 1 -C 14 alkyl group include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, butyl (Meth) acrylate, hexyl (meth) acrylate, allyl (meth) acrylate, glycerol di (meth) acrylate, glycerol tri (meth) acrylate, ethylene glycerol di Propane diol di (meth) acrylate, 1,2,4-butanetriol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and the like.
  • the content of the acrylic resin in the present invention is not particularly limited and can be, for example, in the range of about 0.01 to 10% by weight, and in another example about 3 to 7% by weight based on the total weight of the photocurable composition.
  • medicines or other therapeutic materials may be optionally added to the photo-curable composition.
  • the content of the additive may be suitably controlled within the range known in the art, and may be 0.001 to 5 wt%, for example, based on the total weight of the photocurable composition.
  • the photo-curable composition according to the present invention is a photo-curable composition comprising a (meth) acrylate modified siloxane resin, a urethane (meth) acrylate oligomer, a di (meth) acrylate- based reactive monomer, a photopolymerization initiator and, , A reinforcing agent, an acrylic resin, and other additives according to a conventional method known in the art.
  • a high-speed stirrer is used in combination with (meth) acrylate modified siloxane resin, urethane (meth) acrylate oligomer, di (meth) acrylate based reactive monomer, photopolymerization initiator, polymerization inhibitor, coupling agent, The mixture is stirred for 0.5 to 60 minutes, then the pigment is added thereto, and the mixture is stirred at a rate of 1,000 to 3,000 rpm for 0.5 to 60 minutes to prepare a photocurable composition.
  • the photocurable composition of the present invention which is constituted as described above, can maintain a low viscosity even without containing a diluent or a solvent, so that a 3D printer can be used in the production of a molded article, The problem can be solved.
  • the composition of the present invention produces a molded article using a 3D printer, it is superior in workability and productivity as compared with the production of a conventional ceramic restoration using a ceramic block.
  • the composition of the present invention can exhibit excellent aesthetics and mechanical properties (e.g., bending strength, flexural modulus, shore strength, etc.).
  • the curable composition may have a viscosity at 25 DEG C of about 500 cps or less.
  • the curable composition constituted as described above is applicable to various applications applicable in the field of dentistry.
  • it can be used for dental restorative materials or fillers, and more specifically dental adhesives, orthodontic adhesives, composites, temporary restorative materials, indirect restorative materials, dental cements, orthodontic cements, sealants, coatings, impression materials, Materials or combinations thereof.
  • the present invention provides a molded article (e.g., a dental molded article such as a restorative material such as an artificial tooth, a denture, etc.) formed by printing the above-described photo-curable resin composition in a three-dimensional shape using a 3D printer.
  • a molded article is excellent in aesthetic and mechanical properties (for example, bending strength (bending strength), etc.) by using a photocurable composition in which the mixing ratio between the (meth) acrylate modified siloxane resin, the urethane (meth) acrylate oligomer and the di , Flexural modulus, shore D hardness, etc.).
  • the dental molding has a Shore D hardness D 80 to 90 according to the ISO 868: 2003 test method, a bending strength according to the ISO 10477: 2003 test method of 85 MPa or more, and the ISO 10477: 2033 test method
  • the flexural modulus of elasticity is 2.1 MPa or more.
  • the dental molding has a toughness of 5 or more according to the ASTM D638 test method, and does not cause yellowing.
  • Such a molded article can be produced by a 3D printer method.
  • a 3D printer method For example, after patient teeth are scanned, they are designed and corrected using a dental CAD / CAM program, and then the photocurable dental resin composition is printed (laminated) through a 3D printer based on the design, And the curing process is repeatedly carried out to produce an artificial tooth having a three-dimensional shape.
  • the 3D printer is generally operated according to a digital light process method or a stereolithography method.
  • the work model After the work model is scanned, it is designed and corrected using a CAD / CAM program. Then, the process of printing the photocurable composition prepared in the above 1-1 with a 3D printer and then hardening (solidifying) .
  • a photo-curable composition and a molded article were prepared in the same manner as in Example 1, except that the compositions shown in Table 2 were used.
  • each component content unit of the composition is% by weight based on the total weight of the composition.
  • UDMA urethane dimethacrylate - Viscosity (25 ° C): 8,200 cps, MW: 470
  • TEGDMA triethylene glycol dimethacrylate - Viscosity (25 ° C): 10 cps, MW: 286
  • Photopolymerization initiator Bis (2,4,6-trimethylbenzoyl) -phenylphosphineoxide - MW: 418
  • Coupling agent 1 neopentyl (diallyl) oxytri (dioctyl) pyro-phosphato titanate (neopentyl
  • Coupling agent 2 Neopentyldialyloxy-tri (n-ethylenediamino) ethyl zirconate (neopentyl (diallyl) oxy tri (N-ethylenediamino) ethyl zirconate)
  • the molded article of Example 1-12 had a Shore D hardness of 85-93, a flexural strength of 88-96 MPs, a flexural modulus of 2.5-3.2 MPa, a tensile strength of 6-9 MPs, E) was measured as 2.1-2.4. That is, the molded article produced from the photo-curing composition according to the present invention has a desired physical property (Shore D hardness: 80-95, bending strength: 85 MPa or more, flexural modulus: 2.1 MPa or more, tensile strength: 5 MPs or more , And yellowing ( ⁇ E): 2.5 or less). On the other hand, the molded articles of Comparative Examples 1-5 all suffered yellowing, and did not satisfy the target properties required in the art in at least one of Shore D hardness, bending strength and tensile strength.
  • the present invention provides a photocurable composition having a low viscosity and a high curing speed and exhibiting excellent aesthetics and mechanical properties.
  • the photocurable composition of the present invention is capable of producing a molded article having excellent workability and productivity at the time of production of a molded article, and having excellent aesthetics and mechanical properties.
  • the photocurable composition according to the present invention is applicable to the manufacture of a dental molding.

Abstract

The present invention relates to a photocurable composition and a molded article manufactured using the same. The photocurable composition comprises a (meth)acrylate-modified siloxane resin, a urethane (meth)acrylate oligomer, a di(meth)acrylate-based reactive monomer, and a photopolymerization initiator.

Description

광경화성 조성물 및 이를 이용하여 제조된 성형품Photocurable composition and molded article made therefrom
본 발명은 3D 프린터를 이용할 수 있는 치과용 광경화성 수지 조성물 및 이를 이용하여 제조된 치과용 성형품에 관한 것이다.The present invention relates to a photo-curing resin composition for dental use in which a 3D printer can be used, and a dental molding manufactured using the same.
구강 내 치아가 손상된 경우, 손상된 치아를 치료하기 위해 일반적으로 금속, 도재(세라믹스), 고분자 재료 등을 이용하여 제조된 치아 수복물을 사용하는데, 이 중에서도 심미성을 고려하여 도재 수복물을 주로 사용한다.In order to treat injured teeth, tooth restorations usually made of metal, porcelain (ceramics), polymeric materials, etc. are used to repair damaged teeth in the oral cavity. Among them, ceramic restorations are mainly used in consideration of esthetics.
상기 도재 수복물의 제조방법으로는 금속관 위에 도재를 치관 모양으로 축성하고 소성하는 방법, 세라믹 코어 상에 도재를 축성하고 소성하거나 가압 성형하는 방법, 세라믹 블록을 CAD/CAM(Computer Aided Design/Computer Aided Manufacturing) 시스템으로 가공하여 성형체를 얻고 이를 소성하는 방법 등이 있다. 특히, 세라믹 블록을 CAD/CAM 시스템을 통해 가공하고 소성하는 방법(예컨대, 대한민국 등록특허공보 제10-0506417호)은 다른 제조방법에 비해 생산성이 높고, 정교하고, 심미성 및 기계적 특성이 우수한 지르코니아(Zirconia)와 같은 소재를 사용할 수 있기 때문에, 최근 각광을 받고 있다. 그러나, 종래기술은 제조 과정에서 세라믹 블록의 손실율이 높고, 수복물 제조에 소요되는 시간이 비해 제조되는 수복물의 수량이 적을 뿐만 아니라, 제조 과정에서 사용되는 절삭 도구들의 소모량이 많다는 문제점이 있다.Examples of the method of manufacturing the ceramic restoration include a method of laminating a ceramic material on a metal tube and firing the ceramic material, a method of laminating the ceramic material on the ceramic core and firing or pressing the ceramic material, a method of forming a ceramic block by CAD / CAM ) System to obtain a molded body and sinter it. Particularly, a method of processing and firing a ceramic block through a CAD / CAM system (for example, Korean Patent Registration No. 10-0506417) is superior in productivity, elaborate, superior in aesthetic and mechanical properties to zirconia Zirconia) can be used as the material, has received the spotlight recently. However, the conventional technology has a problem that the loss rate of the ceramic block is high in the manufacturing process, the number of the restoration to be manufactured is less than the time required for manufacturing the restoration, and the amount of cutting tools used in the manufacturing process is large.
이에, 최근 3D 프린터를 이용하여 치과용 수복물을 제조하는 방법이 각광을 받고 있다. 상기 제조 방법은 작업모형을 스캔하여 얻은 자료를 CAD 프로그램을 이용하여 설계 및 보정한 다음, 고분자나 금속 분말 소재를 얇은 층으로 프린팅하고 고형화(solidification)시키는 과정을 반복하여 성형체를 얻는다. 이와 같이 3D 프린터를 이용할 경우, 대량의 다양한 수복물을 빠른 시간에 제조할 수 있다. 그러나, 종래 치과용 조성물은 느린 경화속도와 높은 점도로 인해서 3D 프린터를 이용하기 어려웠다. Accordingly, a method for manufacturing a dental restoration using a 3D printer has recently been spotlighted. In the above manufacturing method, the data obtained by scanning a work model is designed and corrected using a CAD program, and then a process of printing and solidification of a polymer or a metal powder material is repeated to obtain a molded article. As described above, when a 3D printer is used, a large amount of various restorations can be manufactured in a short time. However, conventional dental compositions have been difficult to use 3D printers because of the slow curing rate and high viscosity.
한편, 점도 및 경화 특성을 개선하기 위해, 우레탄 (메타)아크릴레이트 올리고머, 실리콘 (메타)아크릴레이트 올리고머 및 디(메타)아크릴레이트계 반응성 모노머를 사용하는 광경화성 조성물에 대한 개발이 지속적으로 이루어지고 있지만, 아직까지 만족할 수준의 심미성(황변 개선) 및 기계적 물성(인성 등)에 도달하지 못한 상태이다. On the other hand, in order to improve viscosity and curing characteristics, development of a photo-curing composition using a urethane (meth) acrylate oligomer, a silicone (meth) acrylate oligomer and a di (meth) However, it has not yet reached the satisfactory level of aesthetics (yellowing improvement) and mechanical properties (toughness, etc.).
본 발명은 저점도 및 고경화속도를 가지며, 우수한 심미성 및 기계적 물성을 발휘할 수 있는 광경화성 조성물을 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a photocurable composition having a low viscosity and a high curing speed and exhibiting excellent aesthetics and mechanical properties.
또한, 본 발명은 3D 프린터를 통해 상기 광경화성 조성물을 3차원 형상으로 경화한 성형품을 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a molded article obtained by curing the photocurable composition in a three-dimensional shape through a 3D printer.
본 발명은 (메타)아크릴레이트 변성 실록산 수지, 우레탄 (메타)아크릴레이트 올리고머, 디(메타)아크릴레이트계 반응성 모노머 및 광중합 개시제를 포함하는 광경화성 조성물을 제공한다. The present invention provides a photocurable composition comprising a (meth) acrylate modified siloxane resin, a urethane (meth) acrylate oligomer, a di (meth) acrylate based reactive monomer and a photopolymerization initiator.
본 발명은 3D 프린터를 통해 전술한 광경화성 조성물을 프린팅하고 경화하여 제조된 성형품을 제공한다.The present invention provides a molded article produced by printing and curing the above-mentioned photocurable composition through a 3D printer.
본 발명의 광경화성 조성물은 저점도 및 고경화속도로 인해 3D 프린터를 이용할 수 있기 때문에, 성형품의 제조 시 작업성 및 생산성이 우수할 뿐만 아니라, 심미성 및 기계적 물성이 우수한 치과용 성형품을 제조할 수 있다. 본 발명에 따른 광경화성 조성물은 치과용 성형품 제조에 적용 가능하다.Since the photocurable composition of the present invention can use a 3D printer due to its low viscosity and high curing speed, it is possible to produce a dental molding having excellent workability and productivity at the time of production of a molded product, and having excellent aesthetics and mechanical properties . The photocurable composition according to the present invention is applicable to the manufacture of a dental molding.
이하, 본 발명에 대하여 상세히 설명한다. 그러나, 하기 내용에 의해서만 한정되는 것은 아니며, 필요에 따라 각 구성 요소가 다양하게 변형되거나 선택적으로 혼용될 수 있다. 따라서, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Hereinafter, the present invention will be described in detail. However, it should be understood that the present invention is not limited to the following embodiments, and various elements may be modified or selectively mixed according to need. Accordingly, it is to be understood that the invention includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
<광경화성 조성물>&Lt; Photocurable composition >
본 발명에 따른 광경화성 조성물은 치과 치료에 이용 가능한 3차원의 성형품을 3D 프린터를 통해 제조할 수 있는 조성물로, (메타)아크릴레이트 변성 실록산 수지, 우레탄 (메타)아크릴레이트 올리고머, 디(메타)아크릴레이트계 반응성 모노머 및 광중합 개시제를 포함한다. 본 명세서에서 (메타)아크릴레이트는 아크릴레이트 또는 메타크릴레이트를 의미한다.The photocurable composition according to the present invention is a composition capable of producing a three-dimensional molded article usable for dental treatment through a 3D printer. The photocurable composition includes a (meth) acrylate modified siloxane resin, a urethane (meth) acrylate oligomer, Acrylate-based reactive monomer and a photopolymerization initiator. In the present specification, (meth) acrylate means acrylate or methacrylate.
이하, 상기 광경화성 조성물의 각 성분에 대하여 살펴보면 다음과 같다.Hereinafter, each component of the photocurable composition will be described.
(메타)아크릴레이트 변성 실록산 수지(Meth) acrylate-modified siloxane resin
본 발명에서, (메타)아크릴레이트 변성 실록산 수지는 광경화성 조성물의 황변을 방지하고 인장강도 향상에 기여한다.In the present invention, the (meth) acrylate modified siloxane resin prevents yellowing of the photocurable composition and contributes to enhancement of tensile strength.
상기 (메타)아크릴레이트 변성 실록산은 (메타)아크릴레이트기를 갖는 실록산 화합물이고, 실록산의 한쪽 말단(single-end) 또는 양쪽 말단(dual-end)에 (메타)아크릴레이트기가 결합된 화합물을 사용할 수 있다.The (meth) acrylate modified siloxane is a siloxane compound having a (meth) acrylate group, and a compound having a (meth) acrylate group bonded to one end or both ends of the siloxane can be used have.
상기 (메타)아크릴레이트 변성 실록산은 하기 화학식 1 또는 화학식 2로 표시될 수 있다.The (meth) acrylate modified siloxane may be represented by the following formula (1) or (2).
[화학식 1][Chemical Formula 1]
Figure PCTKR2018016576-appb-I000001
Figure PCTKR2018016576-appb-I000001
식 중, Wherein,
R1 내지 R8은 동일 또는 상이한 기로서 탄소수 1 내지 10의 알킬기 또는 알케닐기이고, R 1 to R 8 are the same or different groups and are an alkyl group or an alkenyl group having 1 to 10 carbon atoms,
m은 0 내지 5의 정수이고,m is an integer of 0 to 5,
n은 0 내지 100의 정수이다.n is an integer from 0 to 100;
[화학식 2](2)
Figure PCTKR2018016576-appb-I000002
Figure PCTKR2018016576-appb-I000002
식 중, Wherein,
R9 내지 R16은 동일 또는 상이한 기로서 탄소수 1 내지 10의 알킬기 또는 알케닐기이고, R 9 to R 16 are the same or different groups and are an alkyl group or an alkenyl group having 1 to 10 carbon atoms,
m 및 m'는 동일 또는 상이한 0 내지 5의 정수이고, m and m 'are the same or different integers of 0 to 5,
n은 0 내지 100의 정수이다.n is an integer from 0 to 100;
상기 (메타)아크릴레이트 변성 실록산으로 (메타)아크릴레이트 변성 폴리디알킬실록산을 사용할 수 있고, 비제한적인 예로, (메타)아크릴레이트 변성 폴리디메틸실록산(PDMS), 예컨대 모노-(메타)아크릴옥시알킬 말단 폴리디메틸실록산 또는 비스-(메타)아크릴옥시알킬 말단 폴리디메틸실록산 등을 들 수 있다. 이들은 단독으로 또는 2종 이상 혼합하여 사용될 수 있다.(Meth) acrylate modified polydimethylsiloxane (PDMS) such as mono- (meth) acryloxy-modified polydialkylsiloxane can be used as the (meth) acrylate modified siloxane, Alkyl-terminated polydimethylsiloxane or bis- (meth) acryloxyalkyl-terminated polydimethylsiloxane. These may be used alone or in combination of two or more.
상기 (메타)아크릴레이트 변성 실록산의 중량평균분자량(Mw)은 1,000 내지 5,000 g/mol일 수 있고, 점도(25 ℃)는 10 내지 100 cps일 수 있다. 또한, 상기 (메타)아크릴레이트 변성 실록산 내 (메타)아크릴레이트의 함량은 0.25 내지 0.85 mmol/g일 수 있다.The weight average molecular weight (Mw) of the (meth) acrylate modified siloxane may be 1,000 to 5,000 g / mol and the viscosity (25 ° C) may be 10 to 100 cps. The content of (meth) acrylate in the (meth) acrylate modified siloxane may be from 0.25 to 0.85 mmol / g.
본 발명의 일례에 따르면, 상기 (메타)아크릴레이트 변성 실록산의 함량은 광경화성 조성물의 전체 중량을 기준으로 약 3 내지 35 중량% 범위이다. 상기 (메타)아크릴레이트 변성 실록산의 함량이 전술한 범위보다 작을 경우 최종 성형품의 굽힘강도 및 굴곡탄성율이 저하될 수 있고, 전술한 범위보다 클 경우 최종 성형품의 쇼어 D 경도가 저하될 수 있다.According to one embodiment of the present invention, the content of the (meth) acrylate modified siloxane ranges from about 3 to 35% by weight based on the total weight of the photocurable composition. If the content of the (meth) acrylate modified siloxane is less than the above range, the flexural strength and flexural modulus of the final molded product may be lowered. If the content is larger than the above range, the shore D hardness of the final molded product may be lowered.
우레탄 (메타)아크릴레이트 올리고머Urethane (meth) acrylate oligomer
본 발명에서, 우레탄 (메타)아크릴레이트 올리고머는 광반응성 모노머인 (메타)아크릴레이트계 반응성 모노머와 가교구조를 형성하여 경화된 수지의 물성(예, 경도, 밀착력, 유연성 등)을 제어하는 성분으로, 3D 프린터에 의한 성형품의 제조 시 성형 가공성, 탄성 및 접착성을 향상시킬 수 있다.In the present invention, the urethane (meth) acrylate oligomer is a component that controls the physical properties (e.g., hardness, adhesion, flexibility, etc.) of the cured resin by forming a crosslinking structure with the (meth) acrylate based reactive monomer which is a photoreactive monomer , Molding workability, elasticity and adhesiveness can be improved in the production of a molded article by a 3D printer.
상기 우레탄 (메타)아크릴레이트 올리고머로서 지방족 또는 방향족 디이소시아네이트와 히드록시 (메타)아크릴레이트 모노머의 반응 생성물을 사용할 수 있다. 우레탄 (메타)아크릴레이트 수지는 예를 들어, 우레탄 디(메타)아크릴레이트 수지, 우레탄 트리(메타)아크릴레이트 수지, 우레탄 테트라(메타)아크릴레이트 수지 또는 우레탄 헥사(메타)아크릴레이트 수지일 수 있다.As the urethane (meth) acrylate oligomer, a reaction product of an aliphatic or aromatic diisocyanate and a hydroxy (meth) acrylate monomer may be used. The urethane (meth) acrylate resin may be, for example, a urethane di (meth) acrylate resin, a urethane tri (meth) acrylate resin, a urethane tetra (meth) acrylate resin or a urethane hexa .
상기 지방족 또는 방향족 디이소시아네이트의 예로는 1,4-부틸렌디이소시아네이트, 1,6-헥사메틸렌디이소시아네이트, 시클로펜틸렌-1,3-디이소시아네이트, 4,4'-디시클로헥실메탄디이소시아네이트, 이소포론디이소시아네이트, 시클로헥센-1,4-디이소시아네이트, 2,4-톨릴렌디이소시아네이트, 2,6-톨릴렌디이소시아네이트, 4,4'-메틸렌비스(페닐이소시아네이트), 2,2-디페닐프로판-4,4'-디이소시아네이트, p-페닐렌디이소시아네이트, m-페닐렌디이소시아네이트, 자일렌디이소시아네이트, 1,4-나프틸렌디이소시아네이트, 1,5-나프틸렌디이소시아네이트, 4,4'-디페닐디이소시아네이트, 아조벤젠-4,4'-디이소시아네이트, m- 또는 p-테트라메틸자일렌디이소시아네이트, 1-클로로벤젠-2,4-디이소시아네이트 등이 있는데, 이에 한정되지 않는다. 이들은 단독으로 또는 2종 이상 혼합하여 사용될 수 있다.Examples of the aliphatic or aromatic diisocyanate include 1,4-butylene diisocyanate, 1,6-hexamethylene diisocyanate, cyclopentylene-1,3-diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, iso Tolylene diisocyanate, 4,4'-methylenebis (phenylisocyanate), 2,2-diphenylpropane-diisocyanate, 2,4-tolylene diisocyanate, 4,4'-diisocyanate, p-phenylenediisocyanate, m-phenylenediisocyanate, xylene diisocyanate, 1,4-naphthylene diisocyanate, 1,5-naphthylene diisocyanate, Isocyanate, azobenzene-4,4'-diisocyanate, m- or p-tetramethyl xylene diisocyanate, 1-chlorobenzene-2,4-diisocyanate, and the like. These may be used alone or in combination of two or more.
상기 히드록시 (메타)아크릴레이트 모노머는 당해 기술분야에서 자명하게 공지된 것이면 제한되지 않으며, 예를 들면, 2-히드록시에틸(메타)아크릴레이트, 2-히드록시프로필(메타)아크릴레이트, 2-히드록시부틸(메타)아크릴레이트, 4-히드록시부틸(메타)아크릴레이트, 6-히드록시헥실(메타)아크릴레이트, 2-히드록시에틸렌글리콜(메타)아크릴레이트와 2-히드록시프로필렌글리콜(메타)아크릴레이트 등의 히드록시알킬렌(탄소수 2-4)글리콜(메타)아크릴레이트 등이 있는데, 이에 한정되지 않는다. 이들은 단독으로 또는 2종 이상 혼합하여 사용될 수 있다.The hydroxy (meth) acrylate monomer is not limited as long as it is well known in the art, and examples thereof include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) Hydroxybutyl (meth) acrylate, 2-hydroxyethyleneglycol (meth) acrylate, 2-hydroxypropyleneglycol (meth) (Meth) acrylate, and the like, but are not limited thereto. These may be used alone or in combination of two or more.
상기 우레탄 (메타)아크릴레이트 올리고머의 중량평균분자량은 일례로 약 300 내지 1,000 g/mol 범위, 다른 예로는 약 400 내지 600 g/mol 범위일 수 있다. 상기 우레탄 (메타)아크릴레이트 올리고머의 점도(25 ℃)는 예컨대 약 8,000 내지 9,000 cps 범위일 수 있다. 상기 우레탄 (메타)아크릴레이트 올리고머가 전술한 점도와 분자량 범위를 가질 경우, 경화물의 제조 시 성형 가공성이 우수하고, 탄성 및 접착성 등이 우수하다. The weight average molecular weight of the urethane (meth) acrylate oligomer may range, for example, from about 300 to 1,000 g / mol, and in another example from about 400 to 600 g / mol. The viscosity (25 캜) of the urethane (meth) acrylate oligomer may range, for example, from about 8,000 to 9,000 cps. When the urethane (meth) acrylate oligomer has a viscosity and a molecular weight range as described above, it is excellent in moldability during production of the cured product, and excellent in elasticity and adhesiveness.
본 발명의 일례에 따르면, 상기 우레탄 (메타)아크릴레이트 올리고머의 함량은 광경화성 조성물의 전체 중량을 기준으로 약 25 내지 45 중량% 범위이다. 상기 우레탄 (메타)아크릴레이트 올리고머의 함량이 전술한 범위보다 작을 경우 최종 성형품의 굽힘강도가 저하될 수 있고, 전술한 범위보다 클 경우 최종 성형품의 굴곡탄성율이 저하될 수 있다.According to one embodiment of the present invention, the content of the urethane (meth) acrylate oligomer ranges from about 25 to 45% by weight based on the total weight of the photocurable composition. If the content of the urethane (meth) acrylate oligomer is smaller than the above-mentioned range, the bending strength of the final molded product may be lowered. If the content is larger than the above-mentioned range, the bending elastic modulus of the final molded product may be lowered.
디(메타)아크릴레이트계 반응성 모노머The di (meth) acrylate-based reactive monomer
본 발명에서, 디(메타)아크릴레이트계 반응성 모노머는 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머 및 알킬렌글리콜 디(메타)아크릴레이트 모노머의 혼합물을 포함한다. 이들을 혼용함으로써, 수지 조성물의 점도 및 가교밀도를 용이하게 조절하면서, 최종 성형품의 내수성, 경도 등의 물성을 향상시킬 수 있다.In the present invention, the di (meth) acrylate-based reactive monomer includes a mixture of a bisphenol A ethoxylate di (meth) acrylate monomer and an alkylene glycol di (meth) acrylate monomer. By mixing them, the physical properties such as water resistance and hardness of the final molded article can be improved while easily controlling the viscosity and crosslinking density of the resin composition.
비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머는 성형품의 내수성이나 접착성 등을 좌우하고, 알킬렌글리콜 디(메타)아크릴레이트 모노머는 조성물의 점도를 제어할 수 있으며, 고분자 간의 가교밀도를 조절하는 역할을 한다. 상기 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머의 함량이 너무 작을 경우 굽힘강도 및 굴곡탄성율이 저하될 수 있고, 이의 함량이 너무 많을 경우 굽힘강도가 저하될 수 있다. 또한, 상기 알킬렌글리콜 디(메타)아크릴레이트가 너무 소량 사용될 경우 쇼어 D 강도나 굽힘강도가 저하될 수 있다.The bisphenol A ethoxylate di (meth) acrylate monomer affects the water resistance and adhesiveness of the molded product, and the alkylene glycol di (meth) acrylate monomer can control the viscosity of the composition and control the cross- . If the content of the bisphenol A ethoxylate di (meth) acrylate monomer is too small, the bending strength and flexural modulus may be lowered, and if the content is too high, the bending strength may be lowered. In addition, when the alkylene glycol di (meth) acrylate is used in too small amounts, Shore D strength and bending strength may be lowered.
일례에 따르면, 광경화성 조성물의 전체 중량을 기준으로 30 내지 60 중량%의 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머 및 5 내지 35 중량%의 알킬렌글리콜 디(메타)아크릴레이트 모노머가 혼합되어 사용된다. 상기 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머의 함량이 30 중량% 미만인 경우 굽힘강도 및 굴곡탄성율이 저하될 수 있고, 60 중량%를 초과할 경우 굽힘강도가 저하될 수 있다. 상기 알킬렌글리콜 디(메타)아크릴레이트 모노머의 함량이 전술한 범위일 때 우수한 쇼어 D 강도 및 굽힘강도를 얻을 수 있다.According to one example, a mixture of 30 to 60 weight percent bisphenol A ethoxylate di (meth) acrylate monomer and 5 to 35 weight percent alkylene glycol di (meth) acrylate monomer based on the total weight of the photo- . If the content of the bisphenol A ethoxylate di (meth) acrylate monomer is less than 30% by weight, the bending strength and flexural modulus may be lowered, and if it exceeds 60% by weight, the bending strength may be decreased. When the content of the alkylene glycol di (meth) acrylate monomer is in the range described above, excellent shore D strength and bending strength can be obtained.
본 발명에서 사용되는 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머는 분자 내 에틸렌옥사이드기를 포함하며, 말단에 (메타)아크릴레이트기를 갖는 화합물로, 당 분야에 공지된 것이라면 제한 없이 사용할 수 있다. 상기 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머는 하기 화학식 3으로 표시될 수 있다.The bisphenol A ethoxylate di (meth) acrylate monomer used in the present invention is a compound having an intramolecular ethylene oxide group and having a (meth) acrylate group at the terminal, and may be used without limitation as long as it is known in the art. The bisphenol A ethoxylate di (meth) acrylate monomer may be represented by the following formula (3).
[화학식 3](3)
Figure PCTKR2018016576-appb-I000003
Figure PCTKR2018016576-appb-I000003
식 중,Wherein,
m 및 n은 동일 또는 상이한 0 내지 20의 정수이고, m and n are the same or different integers of 0 to 20,
0 < m+n ≤ 20 이다.0 &lt; m + n? 20.
이러한 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머의 분자 내 에틸렌옥사이드기[EO, -(O-CH2-CH2)n-), -(O-CH2-CH2)m-)]의 몰수(n+m)에 따라 조성물의 물성(예, 내수성, 접착성 등)을 조절할 수 있다. (EO, - (O-CH 2 -CH 2 ) n -), - (O-CH 2 -CH 2 ) m -) of the bisphenol A ethoxylate di (meth) acrylate monomer, (E.g., water resistance, adhesiveness, etc.) of the composition can be controlled according to the number of moles of the polymer (n + m).
일례에 따르면, 상기 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머는 몰수가 상이한 2종 이상의 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머를 혼용할 수 있다. 예를 들어, 상기 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머는 에틸렌옥사이드(EO)의 몰수(n+m)가 0 내지 6 범위인 제1 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머 및 에틸렌 옥사이드(EO)의 몰수(n+m)가 7 내지 20 범위인 제2 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머를 포함할 수 있다. 다른 예로, 에틸렌옥사이드(EO)의 몰수(n+m)가 0 내지 6 범위인 제1 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머를 2종 이상 포함하거나, 에틸렌옥사이드(EO)의 몰수(n+m)가 7 내지 20 범위인 제2 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머를 2종 이상 포함할 수도 있다. According to one example, the bisphenol A ethoxylate di (meth) acrylate monomer may be a mixture of two or more bisphenol A ethoxylate di (meth) acrylate monomers having different molar numbers. For example, the bisphenol A ethoxylate di (meth) acrylate monomer may be selected from the group consisting of a first bisphenol A ethoxylated di (meth) acrylate monomer having a number of moles of ethylene oxide (EO) (n + m) And a second bisphenol A ethoxylate di (meth) acrylate monomer having a number of moles (n + m) of ethylene oxide (EO) in the range of 7 to 20. As another example, it is possible to use a copolymer comprising two or more first bisphenol A ethoxylate di (meth) acrylate monomers having a number of moles of ethylene oxide (EO) (n + m) in the range of 0 to 6 or a number of moles of ethylene oxide (EO) (meth) acrylate monomers having a number-average molecular weight (Mn) in the range of 7 to 20, and a second bisphenol A ethoxylate di (meth) acrylate monomer having an n + m range of 7 to 20.
예컨대, 에틸렌옥사이드(EO)의 몰수(n+m)가 2인 제1 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머 및 에틸렌 옥사이드(EO)의 몰수(n+m)가 4인 제1 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머를 포함하거나, 에틸렌옥사이드(EO)의 몰수(n+m)가 6인 제1 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머 및 에틸렌 옥사이드(EO)의 몰수(n+m)가 8인 제2 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머를 포함하거나, 에틸렌옥사이드(EO)의 몰수(n+m)가 4인 제1 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머 및 에틸렌 옥사이드(EO)의 몰수(n+m)가 8인 제2 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머를 포함하거나, 에틸렌옥사이드(EO)의 몰수(n+m)가 4인 제1 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머 및 에틸렌 옥사이드(EO)의 몰수(n+m)가 6인 제1 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머를 포함하거나, 에틸렌옥사이드(EO)의 몰수(n+m)가 2인 제1 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머 및 에틸렌 옥사이드(EO)의 몰수(n+m)가 8인 제2 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머를 포함할 수 있다.For example, the first bisphenol A ethoxylate di (meth) acrylate monomer having an ethylene oxide (EO) mole number (n + m) of 2 and the first bisphenol A having an n + m mole number of ethylene oxide (EO) (Meth) acrylate monomers and ethylene oxide (EO) monomers containing ethylene oxide (EO) moles (n + m) of 6 and bisphenol A diisocyanate (Meth) acrylate monomer having a number of moles (n + m) of 8 (n + m) of 8 or a second bisphenol A ethoxylate (Meth) acrylate monomer and a second bisphenol A ethoxylate di (meth) acrylate monomer having an ethylene oxide (EO) mole number (n + m) of 8 or a number n of ethylene oxide (meth) acrylate monomer having a number-average molecular weight (Mw) + m) of 4 and bisphenol A (Meth) acrylate monomer having a molar number (n + m) of ethylene oxide (EO) of 6, and a first bisphenol A A second bisphenol A ethoxylate di (meth) acrylate monomer having an ethoxylate di (meth) acrylate monomer and an ethylene oxide (EO) mole number (n + m) of 8.
이때, 상기 제1 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머와 제2 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머의 혼합 비율은 예를 들어 1 : 1 내지 2 중량비율, 또 다른 예로 1 : 1.1 내지 1.5 중량비율일 수 있다. In this case, the mixing ratio of the first bisphenol A ethoxylate di (meth) acrylate monomer to the second bisphenol A ethoxylate di (meth) acrylate monomer is, for example, 1: 1 to 2: 1: 1.1 to 1.5 weight ratio.
상기 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머의 중량평균분자량은 예컨대 300 내지 800 g/mol, 다른 예로 약 400 내지 600 g/mol 범위일 수 있다. 상기 에톡실레이트 디(메타)아크릴레이트 모노머의 점도(25 ℃)는 약 1,300 내지 2,500 cps 범위일 수 있다. The weight average molecular weight of the bisphenol A ethoxylate di (meth) acrylate monomer may range, for example, from 300 to 800 g / mol, in other embodiments from about 400 to 600 g / mol. The viscosity (25 캜) of the ethoxylated di (meth) acrylate monomer may range from about 1,300 to 2,500 cps.
본 발명에서, 알킬렌글리콜 디(메타)아크릴레이트 모노머로는 분자 내 (메타)아크릴레이트기와 알킬렌 구조를 갖는 당 분야에 공지된 화합물을 제한 없이 사용할 수 있다. In the present invention, as the alkylene glycol di (meth) acrylate monomer, compounds known in the art having an intramolecular (meth) acrylate group and an alkylene structure can be used without limitation.
사용 가능한 알킬렌글리콜 디(메타)아크릴레이트의 비제한적인 예를 들면, 폴리에틸렌글리콜 디아크릴레이트(PEGDA), 글리세린 디아크릴레이트, 트리에틸렌글리콜 디메타크릴레이트(triethylene glycol dimethacrylate, TEGDMA), 헥산디올 디아크릴레이트 등이 있다. 이들을 단독으로 사용하거나 또는 2종 이상 혼용할 수 있다. Nonlimiting examples of alkylene glycol di (meth) acrylates that can be used include polyethylene glycol diacrylate (PEGDA), glycerin diacrylate, triethylene glycol dimethacrylate (TEGDMA), hexanediol Diacrylate and the like. These may be used alone or in combination of two or more.
이러한 알킬렌글리콜 디(메타)아크릴레이트 모노머는 중량평균분자량이 일례로 약 100 내지 500 g/mol, 다른 예로 약 200 내지 400 g/mol 범위일 수 있다. 상기 알킬렌글리콜 디(메타)아크릴레이트 모노머의 점도(25 ℃)는 약 5 내지 12 cps 범위일 수 있다. 상기 알킬렌글리콜 디(메타)아크릴레이트 모노머가 전술한 분자량 및 점도 범위를 가질 경우, 최종 성형품의 점도 및 가교밀도를 용이하게 조절할 수 있다. Such alkylene glycol di (meth) acrylate monomers may have a weight average molecular weight in the range of about 100 to 500 g / mol, and in another example about 200 to 400 g / mol. The viscosity (25 캜) of the alkylene glycol di (meth) acrylate monomer may range from about 5 to 12 cps. When the alkylene glycol di (meth) acrylate monomer has the above-mentioned molecular weight and viscosity range, viscosity and crosslinking density of the final molded product can be easily controlled.
필요에 따라, 상기 디(메타)아크릴레이트계 반응성 모노머는 비스페놀A 글리콜 디(메타)아크릴레이트 모노머를 더 포함할 수 있다. If necessary, the di (meth) acrylate-based reactive monomer may further include a bisphenol A glycol di (meth) acrylate monomer.
비스페놀A 글리콜 디(메타)아크릴레이트 모노머는 최종 성형품의 경도 등의 기계적 물성을 좌우한다. 상기 비스페놀A 글리콜 디(메타)아크릴레이트 모노머가 너무 소량 사용될 경우 쇼어 D 경도, 굽힘강도 및 굴곡탄성율이 저하될 수 있고, 너무 과량 사용될 경우 굽힘강도 및 굴곡탄성율이 저하될 수 있다. 일례에 따르면, 광경화성 조성물의 전체 중량을 기준으로 10 내지 40 중량%의 비스페놀A 글리콜 디(메타)아크릴레이트 모노머가 혼합되어 사용될 수 있다.The bisphenol A glycol di (meth) acrylate monomer affects the mechanical properties such as the hardness of the final molded article. If the bisphenol A glycol di (meth) acrylate monomer is used in an excessively small amount, the Shore D hardness, bending strength and flexural modulus may be lowered, and if too large, the flexural strength and flexural modulus may decrease. According to one example, from 10 to 40% by weight, based on the total weight of the photocurable composition, bisphenol A glycol di (meth) acrylate monomers can be mixed and used.
본 발명에서 사용되는 비스페놀A 글리콜 디(메타)아크릴레이트 모노머는 중량평균분자량이 예컨대 약 400 내지 600 g/mol 범위일 수 있다. 상기 비스페놀A 글리콜 디(메타)아크릴레이트 모노머의 점도(65 ℃)는 예컨대 약 1,400 내지 2,000 cps 범위일 수 있다.The bisphenol A glycol di (meth) acrylate monomer used in the present invention may have a weight average molecular weight ranging from about 400 to 600 g / mol, for example. The viscosity (65 캜) of the bisphenol A glycol di (meth) acrylate monomer may range, for example, from about 1,400 to 2,000 cps.
광중합 개시제Photopolymerization initiator
본 발명에서, 광중합 개시제는 자외선(UV)이나 가시광선 등에 의해 여기되어 광중합을 유도하는 역할을 하는 성분으로, 당 분야에서 통상적으로 알려진 광중합 개시제라면 제한없이 사용될 수 있다. In the present invention, the photopolymerization initiator is a component that is excited by ultraviolet (UV) or visible light to induce photopolymerization, and any photopolymerization initiator known in the art can be used without limitation.
상기 광중합 개시제로는 캠퍼 퀴논(camphor quinone)과 같은 α-디케톤계의 카르보닐 화합물 광중합 개시제와 아실포스파인 옥사이드계 광중합 개시제 등이 있다. 이러한 광중합 개시제는 통상적으로 조촉매로서 수소 공여체를 사용하며, 주로 3급 아민계 촉매가 함께 작용할 수 있다.Examples of the photopolymerization initiator include a carbonyl compound photopolymerization initiator of? -Diketone type such as camphor quinone and an acylphosphine oxide photopolymerization initiator. Such a photopolymerization initiator usually uses a hydrogen donor as a cocatalyst, and a tertiary amine-based catalyst can work together.
사용 가능한 광중합 개시제의 비제한적인 예를 들면, 3차 아민 개시제, 디페닐요오도늄 클로라이드, 디페닐요오도늄 헥사플루오로포스페이트, 디페닐요오도늄 테트라플루오로보레이트, 톨릴쿠밀요오도늄테트라키스(펜타플루오로페닐)보레이트, 아실 및 비스아실 포스핀 산화물, 비스(2,4,6-트리메틸벤조일)페닐포스핀 옥시드, 비스(2,6-디메톡시벤조일)-2,4,4-트리메틸펜틸)포스핀 산화물, 에틸-2,4,6-트리메틸벤질페닐 포스피네이트, 비스(2,4,6-트리메틸벤조일)페닐 포스핀옥시드 및 2-히드록시-2-메틸-1-페닐프로판-1-온 등이 있다. 이들을 단독으로 사용하거나 2종 이상을 혼용할 수 있다.Non-limiting examples of usable photopolymerization initiators include tertiary amine initiators, diphenyl iodonium chloride, diphenyl iodonium hexafluorophosphate, diphenyl iodonium tetrafluoroborate, tolyl cumyl iodonium tetra Bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-dihydroxybenzoate, Trimethylpentyl) phosphine oxide, ethyl-2,4,6-trimethylbenzyl phenylphosphinate, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide and 2-hydroxy- Phenylpropan-1-one and the like. These may be used alone or in combination of two or more.
이러한 광중합 개시제의 함량은 특별히 한정되지 않으며, 예컨대 광경화성 조성물의 전체 중량을 기준으로 1 내지 5 중량% 범위, 다른 예로 약 1 내지 3 중량% 범위일 수 있다. 상기 광중합 개시제의 함량이 전술한 범위보다 작을 경우 경화성 저하와 미경화로 인해 외관 불량 및 물성 저하를 초래할 수 있으며, 전술한 범위보다 클 경우 미반응된 광중합 개시제로 인한 오염, 저중합도에 의한 부착성 저하, 크랙을 유발할 수 있다.The content of such a photopolymerization initiator is not particularly limited and may be, for example, in the range of 1 to 5 wt% based on the total weight of the photocurable composition, and in another example, in the range of about 1 to 3 wt%. If the content of the photopolymerization initiator is less than the above range, it may lead to deterioration of appearance and deterioration of physical properties due to lowering of curability and uncuredness. If the content is larger than the above range, contamination due to unreacted photopolymerization initiator, , Causing cracks.
상기 광중합 개시제의 중량평균분자량은 예컨대 약 200 내지 600 g/mol 범위, 다른 예로 약 300 내지 450 g/mol 범위일 수 있다.The weight average molecular weight of the photopolymerization initiator may range, for example, from about 200 to 600 g / mol, in other embodiments from about 300 to 450 g / mol.
첨가제additive
본 발명의 광경화성 조성물은 전술한 성분들 이외에, 당해 발명의 효과를 저해하지 않는 범위에서 당 분야에서 통상적으로 알려진 첨가제를 더 포함할 수 있다. 사용 가능한 첨가제의 예로는 중합 금지제, 안료, 커플링제, 보강제, 아크릴수지 등이 있다. 이들은 단독으로 또는 2종 이상이 혼합되어 사용될 수 있다.The photocurable composition of the present invention may further contain additives commonly known in the art, in addition to the above-mentioned components, so long as the effects of the present invention are not impaired. Examples of usable additives include polymerization inhibitors, pigments, coupling agents, reinforcing agents, and acrylic resins. These may be used alone or in combination of two or more.
중합 금지제는 조성물의 중합을 제어하면서 조성물의 저장 안정성을 향상시키기 위해 사용된다. 이러한 중합 금지제는 당 분야에서 통상적으로 사용되는 것이라면 특별히 한정되지 않으며, 예를 들어 부틸레이티드 히드록시톨루엔(butylated hydroxytoluene), 하이드로퀴논(hydroquinone, HQ), 메틸하이드로퀴논(methylhydroquinone, MQ), 하이드로퀴논 모노메틸에테르(hydroquinone monomethyl ether), 2,2-메틸렌-비스(4-메틸-6-터셔리부틸페놀), 페노티아진(phenothiazine), 4-메톡시페놀, 피로가롤, 카테콜, 2,6-디-t-부틸-4-메틸페놀, 2-나프톨, p-벤조퀴논, 2,5-디페닐-p-벤조퀴논 등이 있는데, 이에 한정되지 않는다The polymerization inhibitor is used to improve the storage stability of the composition while controlling the polymerization of the composition. The polymerization inhibitor is not particularly limited as long as it is commonly used in the art and includes, for example, butylated hydroxytoluene, hydroquinone (HQ), methylhydroquinone (MQ), hydroquinone Hydroquinone monomethyl ether, 2,2-methylene-bis (4-methyl-6-tertiarybutylphenol), phenothiazine, 4-methoxyphenol, pyrogallol, Di-t-butyl-4-methylphenol, 2-naphthol, p-benzoquinone, 2,5-diphenyl-p-benzoquinone and the like.
상기 중합 금지제의 함량은 예컨대 광경화성 조성물의 전체 중량을 기준으로 약 0.01 내지 0.5 중량% 범위, 다른 예로 약 0.05 내지 0.3 중량% 범위일 수 있다. The content of the polymerization inhibitor may range, for example, from about 0.01 to 0.5% by weight, and in another example, from about 0.05 to 0.3% by weight, based on the total weight of the photocurable composition.
안료는 최종 치과용 성형품의 다양한 치아 색상(예, 백색, 유색 등)을 발현하기 위해 사용된다. 본 발명에서 사용 가능한 안료는 치과용 수복 재료에 통상적으로 사용되는 안료라면 특별히 한정되지 않는다. 예컨대, 황색, 감색 및 적색의 산화철계 안료, 티타늄디옥사이드(titaniumdioxide) 등의 무기안료 등이 있는데, 이에 한정되지 않는다. 이들은 단독으로 또는 2종 이상이 혼합되어 사용될 수 있다.Pigments are used to express various tooth colors (e.g., white, colored, etc.) of the final dental molding. The pigment that can be used in the present invention is not particularly limited as long as it is a pigment conventionally used in a dental restoration material. Examples thereof include iron oxide pigments of yellow, navy blue and red, and inorganic pigments such as titanium dioxide, but are not limited thereto. These may be used alone or in combination of two or more.
이러한 안료의 함량은 특별히 한정되지 않으며, 예컨대 광경화성 조성물의 전체 중량을 기준으로 0.005 내지 0.5 중량% 범위, 다른 예로 약 0.01 내지 0.5 중량% 범위일 수 있다.The content of such a pigment is not particularly limited and may be, for example, in the range of 0.005 to 0.5% by weight, and in another example, in the range of about 0.01 to 0.5% by weight based on the total weight of the photocurable composition.
커플링제는 소수성인 디(메타)아크릴레이트와 친수성 물질(예, 실리카 등의 무기 필러) 간의 혼화성을 향상시키면서, 최종 성형품의 탄성 및 강도를 향상시키기 위해 사용된다. 본 발명에서 사용 가능한 커플링제로는 당 분야에 알려진 것이라면 특별히 한정되지 않으며, 예컨대 실란계 커플링제, 티타네이트(titanate)계 커플링제, 지르코네이트(zirconate)계 커플링제 등이 있는데, 이들은 단독으로 또는 2종 이상이 혼합되어 사용될 수 있다.The coupling agent is used to improve the compatibility between the hydrophobic di (meth) acrylate and a hydrophilic substance (e.g., an inorganic filler such as silica) while improving the elasticity and strength of the final molded product. The coupling agent usable in the present invention is not particularly limited as long as it is known in the art, and examples thereof include silane coupling agents, titanate coupling agents, zirconate coupling agents and the like, Or a mixture of two or more of them may be used.
상기 실란계 커플링제의 구체적인 예로는 2-(3,4-에폭시사이클로헥실)에틸트리메톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필메틸디에톡시실란, 3-글리시독시프로필트리에톡시실란, 3-메타크릴옥시프로필메틸디메톡시실란, 3-메타크릴옥시프로필트리메톡시실란, 3-메타크릴옥시프로필메틸디에톡시실란, 3-메타크릴옥시프로필트리에톡시실란, 3-아미노프로필트리메톡시실란, 3-아미노프로필트리에톡시실란, N-2-(아미노에틸)-아미노프로필메틸디메톡시실란, N-2-(아미노에틸)-3-아미노프로필트리메톡시실란 등이 있는데, 이에 한정되지 않는다.Specific examples of the silane coupling agent include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3- 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, Aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -aminopropylmethyldimethoxysilane, N-2- (aminoethyl) Trimethoxysilane, and the like, but are not limited thereto.
상기 티타네이트(titanate)계 커플링제의 구체적인 예로는, 사이클로디옥틸파이로포스페이토 디옥틸 티타네이트(cyclo(dioctyl)pyrophosphate dioctyl titanate), 디사이클로디옥틸파이로포스페이토 디옥틸 티타네이트(dicyclo(dioctyl)pyrophosphate dioctyl titanate), 네오펜틸디알릴옥시-트리네오데칸올 티타네이트(neopentyl(diallyl)oxy trineodecanoyl titanate), 네오펜틸디알릴옥시-트리도데실벤젠설포닐 티타네이트(neopentyl(diallyl)oxy tri(dodecyl)benzene-sulfonyl titanate), 네오펜틸디알릴옥시-트리디옥틸포스페이토 티타네이트(neopentyl(diallyl)oxy tri(dioctyl)phosphato titanate), 네오펜틸디알릴옥시-트리디옥틸파이로포스페이토 티타네이트(neopentyl(diallyl)oxy tri(dioctyl)pyro-phosphato titanate), 네오펜틸디알릴옥시-트리(n-에틸렌디아미노)에틸 티타네이트(neopentyl(diallyl)oxy tri(N-ethylenediamino)ethyl titanate), 네오펜틸디알릴옥시-트리(m-아미노)페닐 티타네이트(neopentyl(diallyl)oxy tri(m-amino)phenyl titanate), 네오펜틸디알릴옥시-트리하이드록시 카프로일 티타네이트(neopentyl(diallyl)oxy trihydroxy caproyl titanate) 등이 있는데, 이에 한정되지 않는다.Specific examples of the titanate-based coupling agent include cyclodioctyl pyrophosphate dioctyl pyrophosphate dioctyl titanate, dicyanodioctyl pyrophosphate dioctyl titanate ( dicyclo (dioctyl) pyrophosphate dioctyl titanate, neopentyl (diallyl) oxy trineodecanoyl titanate, neopentyldialyloxy-tridodecylbenzenesulfonyltitanate (neopentyl (dodecyl) benzene-sulfonyl titanate, neopentyl (diallyl) oxy tri (dioctyl) phosphato titanate, neopentyldialyloxy-tridioctyl pyrophosphate Neopentyl (diallyl) oxy tri (dioctyl) pyro-phosphato titanate, neopentyl (diallyl) oxy tri (N-ethylenediamino) ethyl titanate, neopentyl (M-amino) phenyl titanate, neopentyl (diallyl) oxy trihydroxy caproyl titanate (diallyl) oxypropyl titanate ), But the present invention is not limited thereto.
상기 지르코네이트(zirconate)계 커플링제의 구체적인 예로는, 네오펜틸디알릴옥시-트리네오데칸올 지르코네이트(neopentyl(diallyl)oxy trineodecanoyl zirconate), 네오펜틸디알릴옥시-트리도데실벤젠설포닐 지르코네이트(neopentyl(diallyl)oxy tri(dodecyl)benzene-sulfonyl zirconate), 네오펜틸디알릴옥시-트리디옥틸포스페이토 지르코네이트(neopentyl(diallyl)oxy tri(dioctyl)phosphato zirconate), 네오펜틸디알릴옥시-트리디옥틸파이로포스페이토 지르코네이트(neopentyl(diallyl)oxy tri(dioctyl)pyro-phosphato zirconate), 네오펜틸디알릴옥시-트리(n-에틸렌디아미노)에틸 지르코네이트(neopentyl(diallyl)oxy tri(N-ethylenediamino)ethyl zirconate), 네오펜틸디알릴옥시-트리(m-아미노)페닐 지르코네이트(neopentyl(diallyl)oxy tri(m-amino)phenyl zirconate), 네오펜틸디알릴옥시-트리메타크릴 지르코네이트(neopentyl(diallyl)oxy trimethacryl zirconate), 네오펜틸디알릴옥시-트리아크릴 지르코네이트(neopentyl(diallyl)oxy triacryl zirconate), 디네오펜틸디알릴옥시-디파라아미노 벤조올 지르코네이트(dineopentyl(diallyl)oxy diparamino zirconate), 디네오펜틸디알릴옥시-(디(3-메르캅토)프로피오닉 지르코네이트(dineopentyl(diallyl)oxy di(3-mercapto)propionic zirconate) 등이 있는데, 이에 한정되지 않는다.Specific examples of the zirconate-based coupling agent include neopentyldiallyl oxy-trineodecanoyl zirconate, neopentyldiallyloxy-tridodecylbenzenesulfonyl (Diallyl) oxy tri (dodecyl) benzene-sulfonyl zirconate, neopentyl (diallyl) oxy tri (dioctyl) phosphato zirconate, neopentyl (Diallyl) oxy tri (dioctyl) pyro-phosphato zirconate, neopentyldiallyloxy-tri (n-ethylenediamino) ethyl zirconate neopentyl (diallyl) oxy tri (N-ethylenediamino) ethyl zirconate, neopentyldiallyloxy-tri (m-amino) phenyl zirconate, neopentyl Allyloxy-trimethacrylic zirconate (neopentyl (diallyl) oxy trimethacryl zirco nate, neopentyl (diallyl) oxy triacryl zirconate, dineopentyl (diallyl) oxy diparamino zirconate, dineopentyldialyloxy- But are not limited to, neopentyldiallyloxy- (di (3-mercapto) propionic zirconate, dineopentyl (diallyl) oxy di (3-mercapto) propionic zirconate).
이러한 커플링제의 함량은 특별히 한정되지 않으며, 예컨대 광경화성 조성물의 전체 중량을 기준으로 약 0.01 내지 5 중량% 범위, 다른 예로 약 0.1 내지 3 중량% 범위일 수 있다. The content of such a coupling agent is not particularly limited and may be, for example, in the range of about 0.01 to 5 wt% based on the total weight of the photocurable composition, and in another example, in the range of about 0.1 to 3 wt%.
보강제는 성형품의 강도 및 내마모성을 향상시키기 위해 사용된다. 본 발명에서 사용 가능한 보강제로는 당 분야에 알려진 것이라면 특별히 한정되지 않으며, 예컨대 알루미나, 실리카, 지르코니아, 이산화티타늄, 카본 등의 무기 입자 또는 상기 무기 입자가 분산된 수지 등이 있다. The reinforcing agent is used to improve the strength and abrasion resistance of the molded article. The reinforcing agent usable in the present invention is not particularly limited as long as it is known in the art, and examples thereof include inorganic particles such as alumina, silica, zirconia, titanium dioxide, and carbon, or resins in which the inorganic particles are dispersed.
상기 무기 입자가 분산된 수지에서, 무기 입자의 크기는 예컨대 약 10 내지100 ㎚ 범위, 다른 예로 약 10 내지 50 ㎚ 범위일 수 있다. 상기 무기 입자를 분산하기 위한 수지로는 예를 들어 열가소성 아크릴수지를 사용할 수 있다. In the resin in which the inorganic particles are dispersed, the size of the inorganic particles may be in the range of, for example, about 10 to 100 nm, and in another example, in the range of about 10 to 50 nm. As the resin for dispersing the inorganic particles, for example, a thermoplastic acrylic resin can be used.
본 발명에서 보강제의 함량은 특별히 한정되지 않으며, 예컨대 광경화성 조성물의 전체 중량을 기준으로 약 0.01 내지 20 중량% 범위, 다른 예로 약 5 내지 10 중량% 범위일 수 있다.The content of the reinforcing agent in the present invention is not particularly limited and may be, for example, in the range of about 0.01 to 20% by weight, in another example about 5 to 10% by weight, based on the total weight of the photocurable composition.
아크릴계 수지는 성형품의 탄성을 향상시키기 위해 사용된다. 본 발명에서, 상기 아크릴계 수지는 C1-C14의 알킬기를 함유하는 (메타)아크릴산 에스테르계 모노머를 중합시켜 얻은 것으로, 하나 이상의 아크릴계 반복단위를 포함하는 고분자이다. The acrylic resin is used to improve the elasticity of the molded article. In the present invention, the acrylic resin is a polymer obtained by polymerizing a (meth) acrylic ester monomer containing a C 1 -C 14 alkyl group and containing at least one acrylic repeating unit.
상기 C1-C14의 알킬기를 함유하는 (메타)아크릴산 에스테르계 모노머의 예로는 메틸(메타)아크릴레이트, 에틸(메타)아크릴레이트, 이소프로필(메타)아크릴레이트, 부틸(메타)아크릴레이트, 헥실(메타)아크릴레이트, 알릴(메타)아크릴레이트(allyl(meth)acrylte), 글리세롤디(메타)아크릴레이트, 글리세롤트리(메타)아크릴레이트, 에틸렌글리세롤디(메타)아크릴레이트, 1,3-프로판디올디(메타)아크릴레이트, 1,2,4-부탄트리올트리(메타)아크릴레이트, 펜타에리쓰리톨테트라(메타)아크릴레이트 등이 있는데, 이에 한정되지 않는다.Examples of the (meth) acrylate monomer containing the C 1 -C 14 alkyl group include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, butyl (Meth) acrylate, hexyl (meth) acrylate, allyl (meth) acrylate, glycerol di (meth) acrylate, glycerol tri (meth) acrylate, ethylene glycerol di Propane diol di (meth) acrylate, 1,2,4-butanetriol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and the like.
본 발명에서 아크릴계 수지의 함량은 특별히 한정되지 않으며, 예컨대 광경화성 조성물의 전체 중량을 기준으로 약 0.01 내지 10 중량% 범위, 다른 예로 약 3 내지 7 중량% 범위일 수 있다.The content of the acrylic resin in the present invention is not particularly limited and can be, for example, in the range of about 0.01 to 10% by weight, and in another example about 3 to 7% by weight based on the total weight of the photocurable composition.
추가적으로, 의약품 또는 다른 치료용 물질이 광경화성 조성물에 선택적으로 첨가될 수 있다. 일례로, 치과용 광경화성 조성물에 사용되는 유형의 플루오라이드 공급원, 미백제, 항우식제(예를 들어, 자일리톨), 칼슘 공급원, 인 공급원, 재광화제(remineralizing agent) (예를 들어, 인산칼슘 화합물), 효소, 구강청정제, 마취제, 응혈제, 산 중화제, 화학요법제, 면역 반응 조절제, 틱소트로프(thixotrope), 폴리올, 항염증제, 항미생물제 (항미생물성 지질 성분 이외), 항진균제, 구강건조증 치료제, 감감작제(desensitizer) 등이 포함될 수 있다. In addition, medicines or other therapeutic materials may be optionally added to the photo-curable composition. In one example, a type of fluoride source, a whitening agent, an anti-aging agent (e.g. xylitol), a calcium source, a phosphorus source, a remineralizing agent (e.g., calcium phosphate compound) used in dental photocurable compositions, (Other than antimicrobial lipid components), antifungal agents, agents for the treatment of dry mouth, sensitization, antimicrobial agents, antimicrobial agents, antioxidants, antioxidants, enzymes, oral fresheners, anesthetics, coagulants, acid neutralizing agents, chemotherapeutic agents, immune response modifiers, thixotrope, A desensitizer, and the like.
상기 첨가제의 함량은 당 분야에 공지된 범위 내에서 적절히 조절할 수 있으며, 일례로 광경화성 조성물의 총 중량을 기준으로 하여 각각 0.001 내지 5 중량%일 수 있다. The content of the additive may be suitably controlled within the range known in the art, and may be 0.001 to 5 wt%, for example, based on the total weight of the photocurable composition.
본 발명에 따른 광경화성 조성물은, (메타)아크릴레이트 변성 실록산 수지, 우레탄 (메타)아크릴레이트 올리고머, 디(메타)아크릴레이트계 반응성 모노머, 광중합 개시제 및 필요에 따라 중합 금지제, 안료, 커플링제, 보강제, 아크릴계 수지, 그 밖의 첨가제를 당 분야에 알려진 통상적인 방법에 따라 혼합 및 교반하여 제조될 수 있다.The photo-curable composition according to the present invention is a photo-curable composition comprising a (meth) acrylate modified siloxane resin, a urethane (meth) acrylate oligomer, a di (meth) acrylate- based reactive monomer, a photopolymerization initiator and, , A reinforcing agent, an acrylic resin, and other additives according to a conventional method known in the art.
일례로, (메타)아크릴레이트 변성 실록산 수지, 우레탄 (메타)아크릴레이트 올리고머, 디(메타)아크릴레이트계 반응성 모노머, 광중합 개시제, 중합 금지제, 커플링제, 보강제, 아크릴계 수지 등을 고속 교반기를 사용하여 0.5 내지 60분간 교반한 후, 여기에 안료를 투입하여 1,000 내지 3,000 rpm의 속도로 0.5 내지 60분간 교반하여 광경화성 조성물을 제조할 수 있다. For example, a high-speed stirrer is used in combination with (meth) acrylate modified siloxane resin, urethane (meth) acrylate oligomer, di (meth) acrylate based reactive monomer, photopolymerization initiator, polymerization inhibitor, coupling agent, The mixture is stirred for 0.5 to 60 minutes, then the pigment is added thereto, and the mixture is stirred at a rate of 1,000 to 3,000 rpm for 0.5 to 60 minutes to prepare a photocurable composition.
전술한 바와 같이 구성되는 본 발명의 광경화성 조성물은, 희석제나 용제를 포함하지 않음에도 낮은 점도를 유지할 수 있으므로, 성형품을 제조함에 있어 3D 프린터를 이용할 수 있을 뿐만 아니라, 희석제 사용에 따른 높은 중합수축율 문제를 개선할 수 있다. 또한, 본 발명의 조성물은 3D 프린터를 이용하여 성형품을 제조하기 때문에, 세라믹 블록을 이용하는 종래 도재 수복물의 제조에 비해 작업성 및 생산성이 우수하다. 또한, 본 발명의 조성물은 우수한 심미성 및 기계적 물성(예, 굽힘강도, 굴곡탄성율, 쇼어 강도 등)을 발현시킬 수 있다. The photocurable composition of the present invention, which is constituted as described above, can maintain a low viscosity even without containing a diluent or a solvent, so that a 3D printer can be used in the production of a molded article, The problem can be solved. In addition, since the composition of the present invention produces a molded article using a 3D printer, it is superior in workability and productivity as compared with the production of a conventional ceramic restoration using a ceramic block. In addition, the composition of the present invention can exhibit excellent aesthetics and mechanical properties (e.g., bending strength, flexural modulus, shore strength, etc.).
본 발명의 일 구체예에 따르면, 상기 경화성 조성물은 25℃에서의 점도가 약 500 cps 이하일 수 있다.According to one embodiment of the present invention, the curable composition may have a viscosity at 25 DEG C of about 500 cps or less.
전술한 바와 같이 구성되는 경화성 조성물은, 치과 분야에서 적용 가능한 다양한 용도에 적용 가능하다. 일례로, 치과용 수복재 또는 충전재에 사용될 수 있으며, 보다 구체적으로 치과용 접착제, 치열 교정용 접착제, 복합재, 임시 수복재, 간접 수복재, 치과용 시멘트, 치열 교정용 시멘트, 실란트, 코팅, 인상 재료, 충전 재료 또는 이들의 조합으로서 사용될 수 있다. The curable composition constituted as described above is applicable to various applications applicable in the field of dentistry. For example, it can be used for dental restorative materials or fillers, and more specifically dental adhesives, orthodontic adhesives, composites, temporary restorative materials, indirect restorative materials, dental cements, orthodontic cements, sealants, coatings, impression materials, Materials or combinations thereof.
<성형품><Molded article>
본 발명은 3D 프린터를 이용하여 전술한 광경화성 수지 조성물을 3차원 형상으로 프린팅하여 형성된 성형품(예, 인공 치아, 의치 등의 수복재와 같은 치과용 성형품)을 제공한다. 이러한 성형품은 (메타)아크릴레이트 변성 실록산 수지, 우레탄 (메타)아크릴레이트 올리고머 및 디(메타)아크릴레이트 모노머 간의 혼합 비율을 조절한 광경화성 조성물을 이용함으로써, 우수한 심미성 및 기계적 물성(예, 굽힘강도, 굴곡탄성율, 쇼어 D 경도 등)을 갖는다.The present invention provides a molded article (e.g., a dental molded article such as a restorative material such as an artificial tooth, a denture, etc.) formed by printing the above-described photo-curable resin composition in a three-dimensional shape using a 3D printer. Such a molded article is excellent in aesthetic and mechanical properties (for example, bending strength (bending strength), etc.) by using a photocurable composition in which the mixing ratio between the (meth) acrylate modified siloxane resin, the urethane (meth) acrylate oligomer and the di , Flexural modulus, shore D hardness, etc.).
일례에 따르면, 상기 치과용 성형품은 ISO 868:2003 시험법에 의한 쇼어 D 경도가 D 80 내지 90이고, ISO 10477:2003 시험법에 의한 굽힘강도가 85 MPa 이상이며, ISO 10477:2033 시험법에 의한 굴곡탄성율이 2.1 MPa 이상이다. 또한, 상기 치과용 성형품은 ASTM D638 시험법에 의한 인장강도(toughness)가 5 이상이고, 황변 현상이 발생하지 않는다.According to one example, the dental molding has a Shore D hardness D 80 to 90 according to the ISO 868: 2003 test method, a bending strength according to the ISO 10477: 2003 test method of 85 MPa or more, and the ISO 10477: 2033 test method The flexural modulus of elasticity is 2.1 MPa or more. In addition, the dental molding has a toughness of 5 or more according to the ASTM D638 test method, and does not cause yellowing.
이러한 성형품은 3D 프린터법을 통해 제조될 수 있다. 예를 들어, 환자 치아를 스캔한 후, 치과용 CAD/CAM 프로그램을 이용하여 설계, 보정한 다음, 상기 설계를 기반으로 3D 프린터를 통해 상기 광경화성 치과용 수지 조성물을 얇은 층으로 프린팅(적층)하고 경화시키는 과정을 반복 수행하여 3차원 형상의 인공 치아를 제조할 수 있다. 이때, 상기 3D 프린터는 일반적으로 디지털 광학 처리(digital light process) 방법 또는 스테레오리소그래피(stereolithography) 방법에 따라 작동된다.Such a molded article can be produced by a 3D printer method. For example, after patient teeth are scanned, they are designed and corrected using a dental CAD / CAM program, and then the photocurable dental resin composition is printed (laminated) through a 3D printer based on the design, And the curing process is repeatedly carried out to produce an artificial tooth having a three-dimensional shape. At this time, the 3D printer is generally operated according to a digital light process method or a stereolithography method.
이하, 본 발명을 실시예를 통해 구체적으로 설명하나, 하기 실시예 및 실험예는 본 발명의 한 형태를 예시하는 것에 불과할 뿐이며, 본 발명의 범위가 하기 실시예 및 실험예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described concretely with reference to Examples. However, the following Examples and Experimental Examples are merely illustrative of one form of the present invention, and the scope of the present invention is not limited by the following Examples and Experimental Examples .
[실시예 1-12]  [Example 1-12]
1-1. 광경화성 조성물의 제조1-1. Preparation of photocurable composition
하기 표 1에 기재된 조성에 따라 (메타)아크릴레이트 변성 실록산 수지, 우레탄 (메타)아크릴레이트 올리고머, 메타크릴레이트계 반응성 모노머, 광중합 개시제 및 중합 금지제를 혼합하고 45분 동안 교반한 다음, 안료를 첨가한 후 30분 동안 고속 교반하여 광경화성 조성물(25 ℃에서의 점도: 500 cps)을 제조하였다. 하기 표 1에서 조성물의 각 성분 함량 단위는 당해 조성물 전제 중량 대비 중량%이다. (Meth) acrylate modified siloxane resin, a urethane (meth) acrylate oligomer, a methacrylate reactive monomer, a photopolymerization initiator and a polymerization inhibitor were mixed and stirred for 45 minutes in accordance with the composition shown in the following Table 1, And the mixture was stirred at a high speed for 30 minutes to prepare a photocurable composition (viscosity at 25 DEG C: 500 cps). In the following Table 1, each component content unit of the composition is% by weight based on the total weight of the composition.
1-2. 성형품의 제조1-2. Manufacture of molded parts
작업 모형을 스캔한 후, CAD/CAM 프로그램을 이용하여 설계 및 보정한 다음, 상기 1-1에서 제조된 광경화성 조성물을 3D 프린터로 프린팅한 후 경화(고형화)시키는 과정을 반복 수행하여 3차원 형상의 성형품을 제조하였다. After the work model is scanned, it is designed and corrected using a CAD / CAM program. Then, the process of printing the photocurable composition prepared in the above 1-1 with a 3D printer and then hardening (solidifying) .
[비교예 1-5] [Comparative Example 1-5]
하기 표 2에 기재된 조성에 따른 것을 제외하고는, 실시예와 동일한 방법으로 광경화성 조성물 및 성형품을 제조하였다. 하기 표 2에서 조성물의 각 성분 함량 단위는 당해 조성물 전제 중량 대비 중량%이다.A photo-curable composition and a molded article were prepared in the same manner as in Example 1, except that the compositions shown in Table 2 were used. In the following Table 2, each component content unit of the composition is% by weight based on the total weight of the composition.
Figure PCTKR2018016576-appb-T000001
Figure PCTKR2018016576-appb-T000001
1) (메타)아크릴레이트 변성 실록산 수지 1: 화학식 1(R1=R2=R3=R4=R5=R6=R7=R8=CH3, n=20, m=2) , 점도(25℃): 30 cps, 메타크릴레이트 함량: 0.28 mmol/g1) (meth) acrylate-modified siloxane resin 1: Viscosity (25 占 폚): 30 cps (R1 = R2 = R3 = R4 = R5 = R6 = R7 = R8 = CH3, n = 20, m = , Methacrylate content: 0.28 mmol / g
2) (메타)아크릴레이트 변성 실록산 수지 2: 화학식 1(R1=R2=R3=R4=R5=R6=R7=R8=CH3, n=30, m=4), 점도(25℃): 35 cps, 메타크릴레이트 함량: 0.44 mmol/g2) (meth) acrylate modified siloxane resin 2: Viscosity (25 占 폚): 35 cps (R1 = R2 = R3 = R4 = R5 = R6 = R7 = R8 = CH3, n = 30, m = , Methacrylate content: 0.44 mmol / g
3) (메타)아크릴레이트 변성 실록산 수지 3: 화학식 2(R9=R10=R11=R12=R13=R14=R15=R16=CH3, n=25, m=m'=3), 점도(25℃): 35 cps, 메타크릴레이트 함량: 0.55 mmol/g3) (meth) acrylate modified siloxane resin 3: Viscosity (25 占 폚) of formula (2) (R9 = R10 = R11 = R12 = R13 = R14 = R15 = R16 = CH3, n = 25, m = : 35 cps, methacrylate content: 0.55 mmol / g
4) (메타)아크릴레이트 변성 실록산 수지 4: 화학식 2(R9=R10=R11=R12=R13=R14=R15=R16=CH3, n=35, m=m'=4), 점도(25℃): 65 cps, 메타크릴레이트 함량: 0.75 mmol/g4) (meth) acrylate modified siloxane resin 4: Viscosity (25 占 폚) of formula 2 (R9 = R10 = R11 = R12 = R13 = R14 = R15 = R16 = CH3, n = 35, m = : 65 cps, methacrylate content: 0.75 mmol / g
5) UDMA: urethane dimethacrylate - 점도(25℃): 8,200 cps, MW: 470 5) UDMA: urethane dimethacrylate - Viscosity (25 ° C): 8,200 cps, MW: 470
6) Bis-EMA 1: ethoxylated bisphenol A glycol Dimethacrylate - 화학식 3(n=m=1), 점도(25℃): 1,400 cps, MW: 452 6) Bis-EMA 1: ethoxylated bisphenol A glycol dimethacrylate - Formula 3 (n = m = 1), viscosity (25 ° C): 1,400 cps, MW: 452
7) Bis-EMA 2: ethoxylated bisphenol A glycol Dimethacrylate - 화학식 3(n=m=2), 점도(25℃): 1,700 cps, MW: 5407) Bis-EMA 2: ethoxylated bisphenol A glycol dimethacrylate - Formula 3 (n = m = 2), viscosity (25 ° C): 1,700 cps, MW: 540
8) Bis-EMA 3: ethoxylated bisphenol A glycol Dimethacrylate - 화학식 3(n=m=3), 점도(25℃): 2,000 cps 8) Bis-EMA 3: ethoxylated bisphenol A glycol dimethacrylate - Formula 3 (n = m = 3), viscosity (25 ° C): 2,000 cps
9) Bis-EMA 4: ethoxylated bisphenol A glycol Dimethacrylate - 화학식 3(n=m=4), 점도(25℃): 2,300 cps 9) Bis-EMA 4: ethoxylated bisphenol A glycol dimethacrylate - Formula 3 (n = m = 4), viscosity (25 캜): 2,300 cps
10) TEGDMA: triethylene glycol dimethacrylate - 점도(25℃): 10 cps, MW: 28610) TEGDMA: triethylene glycol dimethacrylate - Viscosity (25 ° C): 10 cps, MW: 286
11) 광중합 개시제: Bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide - MW: 418 11) Photopolymerization initiator: Bis (2,4,6-trimethylbenzoyl) -phenylphosphineoxide - MW: 418
12) 중합 금지제: Butylated hydroxytoluene(BHT)12) Polymerization inhibitor: Butylated hydroxytoluene (BHT)
13) 안료: TiO2 13) Pigment: TiO 2
14) 커플링제 1: 네오펜틸디알릴옥시-트리디옥틸프로포스포테이트 티타네이트(neopentyl(diallyl)oxytri(dioctyl)pyro-phosphato titanate)14) Coupling agent 1: neopentyl (diallyl) oxytri (dioctyl) pyro-phosphato titanate (neopentyl
15) 커플링제 2: 네오펜틸디알릴옥시-트리(n-에틸렌디아미노)에틸 지르코네이트(neopentyl(diallyl)oxy tri(N-ethylenediamino)ethyl zirconate)15) Coupling agent 2: Neopentyldialyloxy-tri (n-ethylenediamino) ethyl zirconate (neopentyl (diallyl) oxy tri (N-ethylenediamino) ethyl zirconate)
Figure PCTKR2018016576-appb-T000002
Figure PCTKR2018016576-appb-T000002
[실험예 1] [Experimental Example 1]
실시예 1-12 및 비교예 1-5에서 각각 제조된 성형품에 대한 기계적 물성을 하기와 같이 각각 평가하였고, 그 결과를 표 3 및 표 4에 각각 나타내었다. The mechanical properties of the molded articles prepared in Examples 1-12 and Comparative Examples 1-5 were respectively evaluated as follows, and the results are shown in Tables 3 and 4, respectively.
(1) 쇼어 D 경도(Hardness Shore): ISO 868:2003 시험법에 따라 측정함(1) Shore D Hardness Shore: Measured according to ISO 868: 2003 test method.
(2) 굽힘강도(Flexural strength): ISO 10477:2003 시험법에 따라 측정함(2) Flexural strength: Measured according to the ISO 10477: 2003 test method.
(3) 굴곡탄성율(Flexural modulus): ISO 10477:2033 시험법에 따라 측정함(3) Flexural modulus: Measured according to the ISO 10477: 2033 test method.
(4) 인장강도: ASTM D638 시험법에 따라 측정함(4) Tensile strength: Measured according to ASTM D638 Test Method
(5) 황변: 시편을 QUV 시험기에 넣고, 평균 파장 313 nm인 UV 램프를 사용하여 Irradiance 0.72 W/m2, 온도 70℃의 조건으로 100시간 동안 노출시킨 후, 색차계를 이용하여 초기와 UV 노출 후의 색차(△E)를 측정함(5) Yellow: The specimens were placed in a QUV tester, exposed to Irradiance 0.72 W / m 2 at a temperature of 70 ° C for 100 hours using a UV lamp having an average wavelength of 313 nm, Measure the color difference (ΔE) after exposure
Figure PCTKR2018016576-appb-T000003
Figure PCTKR2018016576-appb-T000003
Figure PCTKR2018016576-appb-T000004
Figure PCTKR2018016576-appb-T000004
실험 결과, 실시예 1-12의 성형품은 쇼어 D 경도가 85-93이고, 굽힘강도가 88-96 MPs이며, 굴곡탄성율이 2.5-3.2 MPa이며, 인장강도가 6-9 MPs이며, 황변(△E)은 2.1-2.4로 측정되었다. 즉, 본 발명에 따른 광경화성 조성물로 제조된 성형품은 당 분야에서 요구하는 목표 물성(쇼어 D 경도: 80-95, 굽힘강도: 85 MPa 이상, 굴곡탄성율: 2.1 MPa 이상, 인장강도: 5 MPs 이상, 황변(△E): 2.5 이하)을 모두 만족하였다. 반면, 비교예 1-5의 성형품은 모두에서 황변이 발생하였으며, 또한 쇼어 D 경도, 굽힘강도 및 인장강도의 하나 이상에서 당 분야에서 요구하는 목표 물성을 만족하지 못하였다.As a result of the test, the molded article of Example 1-12 had a Shore D hardness of 85-93, a flexural strength of 88-96 MPs, a flexural modulus of 2.5-3.2 MPa, a tensile strength of 6-9 MPs, E) was measured as 2.1-2.4. That is, the molded article produced from the photo-curing composition according to the present invention has a desired physical property (Shore D hardness: 80-95, bending strength: 85 MPa or more, flexural modulus: 2.1 MPa or more, tensile strength: 5 MPs or more , And yellowing (ΔE): 2.5 or less). On the other hand, the molded articles of Comparative Examples 1-5 all suffered yellowing, and did not satisfy the target properties required in the art in at least one of Shore D hardness, bending strength and tensile strength.
본 발명은 저점도 및 고경화속도를 가지며, 우수한 심미성 및 기계적 물성을 발휘할 수 있는 광경화성 조성물을 제공한다. 본 발명의 광경화성 조성물은 성형품의 제조 시 작업성 및 생산성이 우수할 뿐만 아니라, 심미성 및 기계적 물성이 우수한 성형품을 제조할 수 있다. 본 발명에 따른 광경화성 조성물은 치과용 성형품 제조에 적용 가능하다.The present invention provides a photocurable composition having a low viscosity and a high curing speed and exhibiting excellent aesthetics and mechanical properties. The photocurable composition of the present invention is capable of producing a molded article having excellent workability and productivity at the time of production of a molded article, and having excellent aesthetics and mechanical properties. The photocurable composition according to the present invention is applicable to the manufacture of a dental molding.

Claims (9)

  1. (메타)아크릴레이트 변성 실록산 수지 3 내지 35 중량%,3 to 35% by weight of a (meth) acrylate modified siloxane resin,
    우레탄 (메타)아크릴레이트 올리고머 25 내지 45 중량%, 25 to 45% by weight of a urethane (meth) acrylate oligomer,
    비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머 30 내지 60 중량%,30 to 60% by weight of a bisphenol A ethoxylate di (meth) acrylate monomer,
    알킬렌글리콜 디(메타)아크릴레이트 모노머 5 내지 35 중량% 및5 to 35% by weight of an alkylene glycol di (meth) acrylate monomer and
    광중합 개시제 1 내지 5 중량%1 to 5% by weight of a photopolymerization initiator,
    를 포함하는 광경화성 조성물. &Lt; / RTI &gt;
  2. 제1항에 있어서, 비스페놀A 글리콜 디(메타)아크릴레이트 모노머를 더 포함하는 광경화성 조성물.The photocurable composition of claim 1, further comprising a bisphenol A glycol di (meth) acrylate monomer.
  3. 제1항에 있어서, 상기 (메타)아크릴레이트 변성 실록산 수지는 하기 화학식 1로 표시되는 광경화성 조성물:The photocurable composition according to claim 1, wherein the (meth) acrylate modified siloxane resin is represented by the following formula (1)
    [화학식 1][Chemical Formula 1]
    Figure PCTKR2018016576-appb-I000004
    Figure PCTKR2018016576-appb-I000004
    식 중, Wherein,
    R1 내지 R8은 동일 또는 상이한 기로서 탄소수 1 내지 10의 알킬기 또는 알케닐기이고, R 1 to R 8 are the same or different groups and are an alkyl group or an alkenyl group having 1 to 10 carbon atoms,
    m은 0 내지 5의 정수이고,m is an integer of 0 to 5,
    n은 0 내지 100의 정수임.n is an integer from 0 to 100;
  4. 제1항에 있어서, 상기 (메타)아크릴레이트 변성 실록산 수지는 하기 화학식 2로 표시되는 광경화성 조성물:The photocurable composition according to claim 1, wherein the (meth) acrylate modified siloxane resin is represented by the following formula (2):
    [화학식 2](2)
    Figure PCTKR2018016576-appb-I000005
    Figure PCTKR2018016576-appb-I000005
    식 중, Wherein,
    R9 내지 R16은 동일 또는 상이한 기로서 탄소수 1 내지 10의 알킬기 또는 알케닐기이고, R 9 to R 16 are the same or different groups and are an alkyl group or an alkenyl group having 1 to 10 carbon atoms,
    m 및 m'는 동일 또는 상이한 0 내지 5의 정수이고,m and m 'are the same or different integers of 0 to 5,
    n은 0 내지 100의 정수임.n is an integer from 0 to 100;
  5. 제1항에 있어서, 상기 (메타)아크릴레이트 변성 실록산 수지는 중량평균분자량(Mw)이 1,000 내지 5,000 g/mol이고, 점도(25 ℃)가 10 내지 100 cps이고, (메타)아크릴레이트의 함량이 0.25 내지 0.85 mmol/g인 광경화성 조성물.The composition according to claim 1, wherein the (meth) acrylate modified siloxane resin has a weight average molecular weight (Mw) of 1,000 to 5,000 g / mol, a viscosity of 25 to 100 cps and a content of (meth) Is from 0.25 to 0.85 mmol / g.
  6. 제1항에 있어서, 상기 우레탄 (메타)아크릴레이트 올리고머는 중량평균분자량이 300 내지 1,000 g/mol이고, 25 ℃에서의 점도가 8,000 내지 9,000 cps인 광경화성 조성물.2. The photocurable composition of claim 1, wherein the urethane (meth) acrylate oligomer has a weight average molecular weight of 300 to 1,000 g / mol and a viscosity at 25 DEG C of 8,000 to 9,000 cps.
  7. 제1항에 있어서, 상기 비스페놀A 에톡실레이트 디(메타)아크릴레이트 모노머는 하기 화학식 3으로 표시되는 광경화성 조성물:2. The photocurable composition according to claim 1, wherein the bisphenol A ethoxylate di (meth) acrylate monomer is represented by the following formula (3)
    [화학식 3](3)
    Figure PCTKR2018016576-appb-I000006
    Figure PCTKR2018016576-appb-I000006
    식 중,Wherein,
    m 및 n은 동일 또는 상이한 0 내지 20의 정수이고, m and n are the same or different integers of 0 to 20,
    0 < m+n ≤ 20임.0 &lt; m + n? 20.
  8. 제1항에 있어서, 상기 알킬렌글리콜 디(메타)아크릴레이트 모노머의 중량평균분자량이 100 내지 500 g/mol이고, 25 ℃에서의 점도가 5 내지 12 cps인 광경화성 조성물.The photocurable composition according to claim 1, wherein the alkylene glycol di (meth) acrylate monomer has a weight average molecular weight of 100 to 500 g / mol and a viscosity at 25 DEG C of 5 to 12 cps.
  9. 3D 프린터를 이용하여, 제1항 내지 제8항 중 어느 한 항에 기재된 광경화성 조성물을 프린팅하고 경화하여 형성된 성형품.A molded article formed by printing and curing the photocurable composition according to any one of claims 1 to 8 using a 3D printer.
PCT/KR2018/016576 2017-12-29 2018-12-24 Photocurable composition and molded article manufactured using same WO2019132472A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0184739 2017-12-29
KR1020170184739A KR102020131B1 (en) 2017-12-29 2017-12-29 Photo-curable resin compositions and article using the same

Publications (1)

Publication Number Publication Date
WO2019132472A1 true WO2019132472A1 (en) 2019-07-04

Family

ID=67067872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016576 WO2019132472A1 (en) 2017-12-29 2018-12-24 Photocurable composition and molded article manufactured using same

Country Status (2)

Country Link
KR (1) KR102020131B1 (en)
WO (1) WO2019132472A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110294817A (en) * 2019-07-23 2019-10-01 杭州天地数码科技股份有限公司 Organosilicon-modified acrylate emulsion and preparation method thereof, thermal transfer back coating liquid, heat transfer printing carbon tape back coating and carbon ribbon
CN115835851A (en) * 2020-08-26 2023-03-21 Ods株式会社 Artificial tooth molding composition, method for manufacturing artificial tooth, and artificial tooth manufactured by the method
WO2023179286A1 (en) * 2022-03-22 2023-09-28 广州黑格智造信息科技有限公司 Photocuring 3d printing material used for dental model, and preparation method therefor
US11932697B2 (en) 2016-11-28 2024-03-19 Chugai Seiyaku Kabushiki Kaisha Antigen-binding domain, and polypeptide including conveying section

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102539485B1 (en) * 2020-06-29 2023-06-05 에이온 주식회사 method and apparatus for determining slice color set in 3-dimension printing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236342A1 (en) * 2000-06-13 2003-12-25 Dentsply Research & Development Corp. Low shrinking polymerizable dental material
JP2015086363A (en) * 2013-09-27 2015-05-07 株式会社リコー Active energy ray-curable composition, cured product of the same, container that accommodates the composition, and inkjet discharging device including the container
KR20150065659A (en) * 2012-07-06 2015-06-15 메르츠 덴탈 게엠베하 Polymerisable mixture composition, use of said mixture composition and a dental prosthetic
KR20160087151A (en) * 2015-01-13 2016-07-21 한국전자통신연구원 Composition for three-dimensional prototyping of guide for operating dental implant
JP2016525150A (en) * 2014-01-13 2016-08-22 デンカ インク Photocurable resin composition and method of use in three-dimensional printing for producing artificial teeth and denture bases

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY148595A (en) * 2009-06-12 2013-05-15 Univ Malaya Polyurethane oligomers for use in restorative dentistry
JP6197043B2 (en) * 2012-11-14 2017-09-13 デンツプライ シロナ インコーポレーテッド Three-dimensional processing material system for manufacturing dental products
KR101579055B1 (en) * 2013-12-17 2015-12-21 주식회사 바이오세텍 Manufacturing method of detal ceramic-resin hybrid block

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236342A1 (en) * 2000-06-13 2003-12-25 Dentsply Research & Development Corp. Low shrinking polymerizable dental material
KR20150065659A (en) * 2012-07-06 2015-06-15 메르츠 덴탈 게엠베하 Polymerisable mixture composition, use of said mixture composition and a dental prosthetic
JP2015086363A (en) * 2013-09-27 2015-05-07 株式会社リコー Active energy ray-curable composition, cured product of the same, container that accommodates the composition, and inkjet discharging device including the container
JP2016525150A (en) * 2014-01-13 2016-08-22 デンカ インク Photocurable resin composition and method of use in three-dimensional printing for producing artificial teeth and denture bases
KR20160087151A (en) * 2015-01-13 2016-07-21 한국전자통신연구원 Composition for three-dimensional prototyping of guide for operating dental implant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11932697B2 (en) 2016-11-28 2024-03-19 Chugai Seiyaku Kabushiki Kaisha Antigen-binding domain, and polypeptide including conveying section
CN110294817A (en) * 2019-07-23 2019-10-01 杭州天地数码科技股份有限公司 Organosilicon-modified acrylate emulsion and preparation method thereof, thermal transfer back coating liquid, heat transfer printing carbon tape back coating and carbon ribbon
CN115835851A (en) * 2020-08-26 2023-03-21 Ods株式会社 Artificial tooth molding composition, method for manufacturing artificial tooth, and artificial tooth manufactured by the method
WO2023179286A1 (en) * 2022-03-22 2023-09-28 广州黑格智造信息科技有限公司 Photocuring 3d printing material used for dental model, and preparation method therefor

Also Published As

Publication number Publication date
KR20190088097A (en) 2019-07-26
KR102020131B1 (en) 2019-09-09

Similar Documents

Publication Publication Date Title
WO2019132472A1 (en) Photocurable composition and molded article manufactured using same
WO2019132473A1 (en) Photocurable composition and molded article manufactured using same
US10973742B2 (en) Photocurable composition, denture base, and plate denture
US6057383A (en) Dental material based on polymerizable waxes
WO2020080643A1 (en) Photocurable composition for 3d printer for producing transparent orthodontic device
WO2022124509A1 (en) Transparent orthodontic appliance having increased correctability
EP0531483A1 (en) Use of compositions based on organically modified polycondensates of silicic acid for coating teeth and tooth replacement parts.
JPH07258018A (en) Thermosetting composition used as dental material
JP2003507499A (en) Composition crosslinkable using visible light and use thereof
JPH1045521A (en) Dental material
WO2020040414A1 (en) Radiation curable polymer composition for 3d printer
WO2020166869A1 (en) Dental composite comprising crystallized glass
WO2018181832A1 (en) Photocurable composition, denture base, and plate denture
WO2019132595A1 (en) Dental composite blank and method for manufacturing same
KR101517628B1 (en) Materials for deriving improved dental composites and dental composites made therefrom
CA2099221C (en) Dental material
CN114344171B (en) Double-component condensed type room temperature fast curing silicone rubber for false tooth repair
EP4188971A1 (en) Additive manufacturing composition for 3-d printed object
KR20180106524A (en) Curable composition
WO2023204416A1 (en) Method for manufacturing transparent bleaching tray
WO2020262814A1 (en) Dental composite blank and method for manufacturing same
WO2017195927A1 (en) Novel 2,4,6-triaminotriazine-based urethane acrylate compound and preparation method therefor
WO2018169309A2 (en) Emulsion, production method therefor, and method for forming coating layer using same
KR20190001794A (en) Photo-curable resin compositions and article using the same
WO2016171303A1 (en) Dental impression material composition having favorable scanning performance and mechanical properties, and dental impression material including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897341

Country of ref document: EP

Kind code of ref document: A1