WO2021167219A1 - Antibacterial titanium implant and manufacturing method therefor - Google Patents

Antibacterial titanium implant and manufacturing method therefor Download PDF

Info

Publication number
WO2021167219A1
WO2021167219A1 PCT/KR2020/018447 KR2020018447W WO2021167219A1 WO 2021167219 A1 WO2021167219 A1 WO 2021167219A1 KR 2020018447 W KR2020018447 W KR 2020018447W WO 2021167219 A1 WO2021167219 A1 WO 2021167219A1
Authority
WO
WIPO (PCT)
Prior art keywords
implant
titanium implant
chitosan
titanium
spacer
Prior art date
Application number
PCT/KR2020/018447
Other languages
French (fr)
Korean (ko)
Inventor
강인규
김훈
Original Assignee
주식회사 제일메디칼코퍼레이션
강인규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제일메디칼코퍼레이션, 강인규 filed Critical 주식회사 제일메디칼코퍼레이션
Publication of WO2021167219A1 publication Critical patent/WO2021167219A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0093Features of implants not otherwise provided for
    • A61C8/0096Implants for use in orthodontic treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/01Palates or other bases or supports for the artificial teeth; Making same
    • A61C13/02Palates or other bases or supports for the artificial teeth; Making same made by galvanoplastic methods or by plating; Surface treatment; Enamelling; Perfuming; Making antiseptic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/12Brackets; Arch wires; Combinations thereof; Accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0003Not used, see subgroups
    • A61C8/0004Consolidating natural teeth
    • A61C8/0006Periodontal tissue or bone regeneration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • A61C8/0013Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/41Anti-inflammatory agents, e.g. NSAIDs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses

Definitions

  • the present invention relates to a titanium implant, and more particularly to a titanium implant having antibacterial properties.
  • bioimplants used for medical purposes are used to permanently implant spinal fixation prostheses, interspecies correction prostheses, artificial joints, and the like, and require a biocompatible material that is very stable for human tissue.
  • the mechanical strength should be very high so as not to be deformed and destroyed even when repeated loads and instantaneous pressures are applied, and for medical use, the bonding strength with biological tissues, especially bone tissues, is very high. it is an instrument
  • These implants are removed from the bone tissue after being placed in the bone tissue to function permanently or only for a period of time performing the intended function. It is common to perform processing. Examples of such processing include roughening processing to increase a specific surface area with bone tissue, or coating a component similar to bone tissue, for example, a component such as hydroxyapatite on the implant surface.
  • the solution to side effects such as inflammation occurring in the surrounding tissue after the implant is placed is insufficient until now.
  • the act of generating orthodontic force such as pulling an orthodontic wire as a support for orthodontic implants after being placed like orthodontic micro-implants, forms a gap between the implant and the alveolar bone or surrounding tissues.
  • the causative agent penetrates and causes inflammation, which can lead to the failure of the implant placement procedure.
  • implant materials are generally implemented with biocompatible materials such as titanium to minimize in vivo side effects. It contains other elements, and these other elements sometimes cause side effects such as inflammation.
  • an orthodontic micro-implant as an example of an implant contains a trace amount of vanadium (V ++ ), and after implantation, vanadium ions are released from the implant to cause tissue inflammation, and this tissue inflammation is caused by the implant and the implanted bone and/or By creating a gap between the gums and making the gap more spaced apart, it can cause inflammation due to additional bacterial penetration.
  • the present invention has been devised in view of the above points, and it is possible to minimize the inflammatory reaction caused by metal ions or bacteria eluted from the implant after implantation in an in vivo tissue, for example, pubic tissue by imparting antibacterial activity to the titanium implant.
  • An object of the present invention is to provide a titanium implant having antibacterial properties and a method for manufacturing the same.
  • another object is to provide a titanium implant having antibacterial properties that can improve the treatment success rate by maintaining the antibacterial power imparted to the titanium implant for a treatment or correction period, and a method for manufacturing the same.
  • the present invention has been studied with the support of the following national R&D project, and detailed information of the national R&D project is as follows.
  • the present invention provides a titanium implant having antibacterial properties including chitosan fixed through a chemical bond on the surface of the titanium implant.
  • a spacer for forming a covalent bond with each of the titanium implant and the chitosan may be further provided between the titanium implant and the chitosan.
  • the surface of the titanium implant is modified to include an amine group
  • the spacer may be a compound having at least two carboxyl groups to form an amide bond with each of the amine group of the titanium implant and the amine group of chitosan.
  • the spacer may include at least one compound selected from the group consisting of polyacrylic acid, sulcinic acid, glutamic acid, and asphaltic acid. In this case, more preferably, the spacer may be sulcinic acid.
  • the chitosan may be 75-85% deacetylated, and the viscosity may be 20-800 cP.
  • the chitosan may be dissolved in a 1% aqueous solution of acetic acid or an aqueous solution of pH 6.5 or less.
  • the chitosan may be provided to cover 30% or more of the surface area of the titanium implant.
  • titanium implant surface may be modified through a 3-aminopropyltriethoxysilane (APTES) compound.
  • APTES 3-aminopropyltriethoxysilane
  • the present invention relates to the steps of (1) preparing a titanium implant having an amine group on the surface, (2) treating the surface of the micro-implant with a first solution having a spacer having at least two carboxyl groups on the surface of the carboxyl group and the implant. Inducing a chemical bond between the amine groups, and (3) treating a second solution containing chitosan to induce a chemical bond between the amine group of chitosan and the unreacted carboxyl group of the spacer.
  • a method for manufacturing a titanium implant is provided.
  • the titanium implant according to the present invention can minimize or prevent inflammation caused by metal ions eluted from the implant after being placed in the bone tissue, or bacteria that infiltrate and inhabit the interface between the implant and bone.
  • the treatment success rate of the implant can be improved, so that it can be widely used in clinics such as dentistry and orthopedics.
  • FIG. 1 is a schematic diagram of a process for manufacturing a micro-implant according to an embodiment of the present invention.
  • Ti-SA-Ch untreated titanium implant
  • 3 is a photograph showing the change of the water contact angle according to the surface modification process of the titanium implant.
  • FIG. 4 and 5 are chitosan-coupled titanium implants (FIG. 4, Ti-SA-Ch) and chitosan-coupled titanium implants via polyacrylic acid (FIG. 5, Ti) according to different embodiments of the present invention.
  • -AA-Ch is an image obtained by binding FITC fluorescent material.
  • FIG. 6 is a FE-SEM photographed after evaluating the adhesion of osteoblasts performed with respect to the titanium implant (TI-SA-Ch) and untreated titanium implant (TI) combined with chitosan according to an embodiment of the present invention; It's a photo.
  • FIG. 7 is a photograph of the result of performing Live/dead staining staining evaluation on osteoblasts cultured for 1 day and 3 days for the titanium implant coupled with chitosan and the untreated titanium implant according to an embodiment of the present invention; am.
  • 10 and 11 are photographs of the results of crystal violet staining after inoculation and culture of S. mutans for each titanium implant and untreated titanium implants combined with chitosan according to an embodiment of the present invention.
  • FIGS. 12 and 13 are photographs of the results of crystal violet staining after inoculation and culture of S. sobrinus for each of the titanium implant bound with chitosan and the untreated titanium implant according to an embodiment of the present invention.
  • FIG. 14 is a chitosan-coupled titanium implant according to an embodiment of the present invention, and for each of the untreated titanium implants, S. mutans and S. sobrinus are inoculated and cultured, respectively, a graph for absorbance evaluation results for the formed biofilm. am.
  • the titanium implant according to the present invention includes chitosan immobilized on the implant surface through chemical bonds.
  • the titanium implant can be used without limitation in the case of implants placed in vivo, such as for fixing fractures, artificial spine, artificial prostheses, orthodontic treatment, orthodontics.
  • the implant may be a material of a conventional implant used in a living body based on titanium, and for example, may be an alloy containing trace amounts of metals such as vanadium, aluminum, nickel, iron, and chromium in addition to titanium as a main component.
  • the size of the titanium implant may be, for example, about 1 to 2 mm in diameter and about 6 to 10 mm in length.
  • the chitosan is a material that provides antibacterial activity against bacteria that can penetrate the bone tissue in which the titanium implant is placed.
  • a physical barrier on the surface of the titanium implant it is possible to prevent or delay the elution of metal ions from the implant, thereby minimizing the inflammatory reaction caused by a trace metal element such as vanadium eluted.
  • the chitosan is 75 to 85% deacetylated, and may have a viscosity of 20-800 cP, and may be used that dissolves in 1% aqueous acetic acid solution or an aqueous solution of pH 6.5 or less, through which it is introduced into the titanium implant surface. It can be more advantageous, and the desired effect can be remarkably expressed through chitosan, and desorption or decomposition after chitosan is introduced into the titanium implant is minimized.
  • the above-described chitosan is fixed to the titanium implant surface through a chemical bond, and preferably, the chemical bond may be a covalent bond, through which it is possible to minimize the desorption of chitosan from the titanium implant surface.
  • a spacer that forms a covalent bond with the chitosan and the titanium implant surface may be further provided.
  • the spacer is a medium for mediating chemical bonding, and materials capable of forming covalent bonds with each of chitosan and titanium implants may be used without limitation.
  • the spacer may have a carboxyl group capable of forming a covalent bond with an amine group provided in chitosan.
  • the titanium implant may have a surface modified to include a carboxyl group or an amine group, and the spacer may have an amine group or a carboxyl group to form a covalent bond with a carboxyl group or an amine group provided on the titanium implant surface.
  • the spacer may have at least one carboxyl group capable of forming an amide bond with the amine group of chitosan and at least one carboxyl group or an amine group capable of forming an amide bond with an amine group or carboxyl group provided on the surface of the titanium implant.
  • a carboxyl group or an amine group provided on the surface of the titanium implant may be introduced into the titanium implant through a known method and a known material.
  • a biocompatible material that does not cause cytotoxicity and is harmless to the human body is preferable.
  • the amine group may be introduced through surface modification of the implant.
  • the amine group may be introduced using a method known in the art to introduce the amine group to the surface of the titanium implant, so the present invention is not particularly limited thereto.
  • an amine group can be introduced using a silane compound having a high hydroxyl group and reactive group.
  • the silane compound may be an aminosilane-based compound having an amino group, for example, a 3-aminopropyltriethoxysilane (APTES) compound.
  • APTES 3-aminopropyltriethoxysilane
  • the titanium implant surface modification through 3-aminopropyltriethoxysilane (APTES) compound is more advantageous to introduce an amine group into the titanium implant surface in an increased content, and the reaction with the carboxyl group provided in the spacer is easy. In addition, it may be more advantageous to increase the content of chitosan to be fixed through this.
  • APTES 3-aminopropyltriethoxysilane
  • the spacer may be a compound having at least two carboxyl groups, preferably at least one selected from the group consisting of polyacrylic acid, sulcinic acid, glutamic acid, and asphaltic acid. compounds may be included. More preferably, the spacer may be sulcinic acid. Compared to other materials, it may be more advantageous in terms of increasing the content of chitosan introduced into the titanium implant and maintaining the fixing force after the chitosan is introduced.
  • chitosan can be introduced to the implant surface so as to cover more than 30% of the titanium implant surface, through which it is possible to improve the antibacterial activity against bacteria, there is an advantage that can minimize the elution of metal ions from the titanium implant.
  • the implant according to an embodiment of the present invention described above may be implemented through a manufacturing method described later, but is not limited thereto.
  • the titanium implant comprises the steps of (1) preparing a titanium implant having an amine group on the surface, (2) treating the micro-implant surface with a first solution having a spacer having at least two carboxyl groups to form the carboxyl group and the implant. Inducing a chemical bond between the amine groups, and (3) treating a second solution containing chitosan to induce a chemical bond between the amine group of chitosan and the unreacted carboxyl group of the spacer.
  • step (1) of the present invention a step of manufacturing a titanium implant having an amine group on the surface is performed.
  • Methods known in the art for introducing an amine group to the surface of the titanium implant may be used without limitation.
  • an amine group may be introduced by treating the titanium implant surface with a solution containing an aminosilane-based compound, more specifically, 3-aminopropyltriethoxysilane (APTES).
  • APTES 3-aminopropyltriethoxysilane
  • the aminosilane-based compound may be included in the solution in an amount of 0.01 to 10% by weight, more preferably 1 to 5% by weight.
  • the amount of amine groups bonded to the surface of the micro-implant is small, so the content of chitosan that can be fixed may be significantly reduced, and if it exceeds 5% by weight, aminosilane added An increase in the amount of the introduced amine group relative to the amount of the based compound may be insignificant.
  • any conventional solvent capable of dissolving the aminosilane-based compound may be used without limitation, and may be, for example, water or ethanol, but is not limited thereto.
  • the method of treating the surface of the titanium implant with the solution containing the aminosilane-based compound may be, for example, an immersion method, but is not limited thereto.
  • the solution containing the aminosilane-based compound is treated on the titanium implant, it is reacted at 60 to 90° C. for 1 to 3 hours, and then washed to remove the physically bound aminosilane-based compound.
  • step (2) a first solution having a spacer having at least two carboxyl groups is treated on the surface of the titanium implant to induce a chemical bond between the carboxyl group of the spacer and the amine group of the titanium implant.
  • the first solution contains a spacer having at least two carboxyl groups, for example, succinic acid.
  • the first solution further includes a solvent capable of dissolving the spacer, and the solvent may be, for example, water, but is not limited thereto, and may be appropriately changed according to the specific type of the spacer.
  • the concentration of the spacer in the first solution may be 0.1 to 5% by weight, but is not limited thereto.
  • chemical bonding between the carboxyl group of the spacer and the amine group of the micro-implant can be performed through a known coupling reaction, specifically, a couple used in an activation method using water-soluble carbodiimide (WSC) known in the art.
  • WSC water-soluble carbodiimide
  • the reaction may be through a ring agent, and for example, NHS (Nhydroxysuccinimide) and EDC (1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide) may be used.
  • Coupling reaction through EDC / NHS is 0.1 to 0.5 parts by weight of EDC (N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide), 0.1 to 0.5 parts by weight of NHS (N-hydroxysuccinimide) and spacer with respect to 100 parts by weight of water.
  • EDC N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide
  • NHS N-hydroxysuccinimide
  • step (3) after fixing the spacer to the chitosan of step (3) to be described later, it may be fixed on the titanium surface, but it is very advantageous in terms of reactivity to perform step (3) after performing step (2) first. There is an advantage in that chitosan can be introduced to the titanium surface more easily and with high efficiency.
  • step (3) a step of inducing a chemical bond between the amine group of chitosan and the unreacted carboxyl group of the spacer is performed by treating the second solution containing chitosan.
  • the second solution includes chitosan, and may further include a solvent.
  • the solvent may be used without limitation in the case of a known biocompatible solvent capable of dissolving chitosan, for example, may be an acidic aqueous solution.
  • the chitosan may be included in a concentration of 0.1 to 5% by weight, preferably 0.5 to 2% by weight in the second solution.
  • the second solution may have a pH of 5 to 6, which may be advantageous for dissolution of chitosan.
  • the spacer-coupled micro-implant may be treated with the second solution for 6 to 10 hours, and may be impregnated, for example. Thereafter, it may be treated with an acidic solution of 0.1 to 2 N concentration for 1 to 20 minutes, and the acidic solution may be, for example, hydrochloric acid. After the acid solution treatment, the titanium implant may be subjected to a washing process one or several times more, and then it may be implemented as a titanium implant in which chitosan is immobilized on the surface through a further drying process.
  • micro-implants for orthodontics were prepared.
  • the micro implant is made of Ti6Al4V alloy material (Al 5.930wt%, Be 0.001wt%, Cd 0.001wt%, Co 0.001wt%, Cr 0.033wt%, Cu 0.001wt%, Fe 0.016wt%, Hf 0.001wt%, Mn 0.004 wt%, Mo 0.002wt%, Ni 0.031wt%, Pd 0.001wt%, V 3.880wt%, balance Ti) was prepared.
  • micro-implant was impregnated in a solution mixed with 3-aminopropyltriethoxysilane (APTES) to 2% by weight in 95% ethyl alcohol, and then left at 70° C. for 4 hours. Thereafter, the micro-implant was washed with ethanol once and then washed twice more with deionized water to remove APTES physically adsorbed on the surface, thereby preparing a micro-implant in which an amine group was introduced to the surface through APTES.
  • APTES 3-aminopropyltriethoxysilane
  • a first solution which is an aqueous solution having a pH of 5.6 containing 0.25% by weight of succinic acid
  • EDC and NHS were further added and stirred, and then a micro-implant in which an amine group was introduced into the surface was added and stirred again for 6 hours. After that, after washing with deionized water three times and drying the micro-implants to which succinic acid is bound, were prepared.
  • the second solution prepared by adding 0.5% by weight of chitosan to an aqueous solution having a pH of 5.6 containing 2% by weight of acetic acid and stirring for 4 hours was impregnated with succinic acid-bound micro-implants and reacted for 8 hours. .
  • Example 1 As can be seen from Table 1, it can be seen that the APTES-treated micro-implant having an amine group introduced onto the surface had a Si content of 11.4 wt%, confirming that the silane coupling agent containing the amine group was well introduced into the micro-implant. In addition, it can be confirmed that chitosan was introduced into the micro-implant through the decrease in the Si content in Examples 1 and 2. On the other hand, in Example 1 and Example 2, Example 1 (5.0%) of nitrogen was much higher than Example 2 (2.0%), so it can be seen that a large amount of chitosan was efficiently introduced when succinic acid was used as a medium.
  • FITC fluorescent material was bound to the amine group of chitosan through a conventional method, followed by fluorescence microscopy, and the results are shown in FIGS. 4 (Example 1) and 5 (Example 1), respectively.
  • Example 2 In order to confirm the chitosan introduced to the surface of the micro-implant, FITC fluorescent material was bound to the amine group of chitosan through a conventional method, followed by fluorescence microscopy, and the results are shown in FIGS. 4 (Example 1) and 5 (Example 1), respectively. Example 2).
  • Example 1 using succinic acid as a spacer shows a darker green color compared to Example 2 (FIG. 5) using polyacrylic acid, which is carried out at the content of chitosan introduced into the micro-implant
  • succinic acid was used as a spacer.
  • the biocompatibility of the chitosan-coupled titanium implant and untreated implant according to Example 1 was performed by evaluating the cell adhesion of osteoblasts in vitro.
  • a culture medium (DMEM) having a concentration of osteoblast cells (MC3T3-E1) of 3 x 10 3 cell/ml was prepared and seeded by 1 ml each. After incubation for 1 day and 3 days in an incubator at 37 ° C., 5% CO 2 , the culture medium was removed, washed carefully with PBS, fixed with 2.5% (w/v) glutaldehyde, and FE- The adhesion behavior was observed through the SEM image, and the results taken after incubation for 1 day and 3 days are shown in FIG. 6 .
  • Live staining staining evaluation was performed on cells cultured for 1 day and 3 days in Experimental Example 4, and after staining using the Live/dead staining staining method, confocal images were taken, and the results are shown in FIG. 7 .
  • Calcein-AM a reagent used for staining
  • PI propidium iodide
  • the chitosan according to Example 1 was combined with the result that green fluorescence was significantly higher in the micro implant (TI-SA-Ch) to which the chitosan according to Example 1 was fixed compared to the untreated micro implant (TI) through FIG. 7 . It can be confirmed that the proliferation of osteoblasts is greater in the titanium implant, and through this, a more improved bond with the tooth/gum is expressed, preventing bacterial penetration through the interface between the micro-implant and the tooth/gum, and thus the occurrence of inflammation is further increased. expected to decrease.
  • the experiment was performed as follows. A small amount of E. coli was added with a platinum tip to a liquid medium prepared by putting a nutrient medium in distilled water and cultured for 24 hours. After that, the strain solution was diluted to 1/200,000, put into a vial containing untreated titanium implant (Ti) and chitosan-coupled titanium implant (Ti-SA-Ch), and cultured for 24 hours. After taking a small amount of the solution from the vial and smearing it on the solid medium in a culture dish, the image of E. coli grown by standing still for 24 hours was taken and shown in FIGS. 8 (Example 1) and 9 (untreated titanium implant).
  • Ti untreated titanium implant
  • Ti-SA-Ch chitosan-coupled titanium implant
  • the titanium implant combined with chitosan according to Example 1 has an effect on inhibiting the proliferation of E. coli compared to the untreated implant.
  • S. mutans and S. sobrinus which are representative oral bacteria that frequently appear in corroded teeth, were inoculated with chitosan-conjugated titanium implants and untreated titanium implants according to Example 1 at 2 x 10 5 cells, respectively. After incubation at 37° C. for 8 hours, it was stained with crystal violet to evaluate the presence and extent of biofilm formed due to the strain, and photographs were taken and shown in FIGS. 10 to 13 . In addition, after removing the biofilm for quantitative evaluation of the degree of biofilm formation, absorbance was measured at 595 nm using a microplate reader, and the results are shown in FIG. 13 .
  • FIG. 10 and 11 are antimicrobial evaluation results for S. mutans, when the case of FIG. 10 (Example 1, Ti-SA-Ch) is compared to FIG. 11 (untreated micro-implant, Ti), the biofilm is almost You can check that it didn't happen.
  • FIGS. 12 and 13 are results of evaluation of antibacterial properties against S. sobrinus, and the biofilm was significantly improved in the case of FIG. 12 (Example 1, Ti-SA-Ch) compared to FIG. 13 (untreated titanium implant, Ti). It can be seen that a small amount occurred.
  • the titanium implant (Ti-SA-Ch) to which chitosan according to Example 1 is coupled is S. mutans and S. sobrinus. It can be seen that the antibacterial effect on the strain is significantly superior to that of the untreated titanium implant (Ti).

Abstract

The present invention relates to an antibacterial titanium implant using chitosan. Accordingly, the titanium implant can minimize or prevent inflammation caused by metal ions that are eluted from the implant after being implanted in bone tissue or by bacteria that invade and inhabit an interface between the implant and the bone. In addition, the antibacterial titanium implant can be widely used in clinical applications such as dentistry and orthopedic surgery, since the antibacterial titanium implant can continuously maintain anti-inflammatory performance such as antibacterial property, which has been retained until the continuation of treatment or correction post implantation, thereby improving the treatment success rate of the implant.

Description

항균성을 갖는 티타늄 임플란트 및 이의 제조방법Titanium implant having antibacterial properties and manufacturing method thereof
본 발명은 티타늄 임플란트에 관한 것이며, 보다 구체적으로는 항균성을 갖는 티타늄 임플란트에 관한 것이다.The present invention relates to a titanium implant, and more particularly to a titanium implant having antibacterial properties.
일반적으로 의료용으로 사용되는 생체 임플란트는 척추 고정 보형재, 종간 보정 보형재, 인공관절 등을 영구적으로 이식시키기 위해 사용하는 것으로서, 인간의 생체조직에 대하여 매우 안정적인 생체 친화적인 재료를 사용하여야 한다. 또한, 부작용이나 기타 화학, 생화학적 반응성이 없어야 하고, 반복적인 하중 및 순간적인 압력의 부과에도 변형 및 파괴되지 않도록 기계적 강도가 매우 높아야 하며, 생체조직 특히, 뼈 조직과의 결합력이 매우 높아야 하는 의료용 기구이다.In general, bioimplants used for medical purposes are used to permanently implant spinal fixation prostheses, interspecies correction prostheses, artificial joints, and the like, and require a biocompatible material that is very stable for human tissue. In addition, there should be no side effects or other chemical and biochemical reactivity, and the mechanical strength should be very high so as not to be deformed and destroyed even when repeated loads and instantaneous pressures are applied, and for medical use, the bonding strength with biological tissues, especially bone tissues, is very high. it is an instrument
이러한 임플란트는 뼈 조직에 식립된 후 영구적으로 기능을 발휘하도록 하거나 또는 목적하는 기능을 수행하는 기간 동안만 식립된 후 뼈 조직에서 제거되며, 식립된 동안 뼈 조직과의 결합력을 높이기 위해서 임플란트 표면에 여러 가공을 수행하는 것이 일반적이다. 이러한 가공의 예로서 뼈 조직과의 비표면적을 높이기 위한 거칠기 가공이나, 뼈 조직과 유사한 성분, 예를 들어 수산화아파타이트와 같은 성분을 임플란트 표면에 코팅하는 가공이 그것이다. These implants are removed from the bone tissue after being placed in the bone tissue to function permanently or only for a period of time performing the intended function. It is common to perform processing. Examples of such processing include roughening processing to increase a specific surface area with bone tissue, or coating a component similar to bone tissue, for example, a component such as hydroxyapatite on the implant surface.
그러나 이러한 골조직과의 결합력이 높도록 임플란트 표면을 가공한 경우에도 임플란트가 식립된 후 주변 조직에서 발생하는 염증 등의 부작용에 대한 해결은 현재까지 미흡한 실정에 있다. 특히 치아 교정용 마이크로 임플란트와 같이 식립된 후 교정을 위해서 임플란트를 지지대로 교정용 철선을 당기는 등의 교정력을 발생시키는 행위는 임플란트와 치조골이나 주변 조직 간 틈을 형성시키고, 이러한 틈으로 세균 등의 염증 유발 원인이 침투하여 염증을 발생시키고, 이로 인해 임플란트 식립 시술의 실패를 야기할 수 있다. However, even when the surface of the implant is processed so as to have a high bonding strength with the bone tissue, the solution to side effects such as inflammation occurring in the surrounding tissue after the implant is placed is insufficient until now. In particular, the act of generating orthodontic force, such as pulling an orthodontic wire as a support for orthodontic implants after being placed like orthodontic micro-implants, forms a gap between the implant and the alveolar bone or surrounding tissues. The causative agent penetrates and causes inflammation, which can lead to the failure of the implant placement procedure.
또한, 임플란트 재질은 일반적으로 티타늄과 같은 생체 친화적인 재료로 구현하여 생체 내 부작용을 최소화하는데, 상용화된 티타늄 임플란트의 경우에 티타늄 이외에 어떤 목적에 의해 의도적으로 또는 의도치 않게 제조과정 상의 불순물로 미량의 다른 원소를 포함하며, 이러한 다른 원소로 인해 염증과 같은 부작용이 야기되는 경우가 있다. 구체적으로 임플란트의 일예로 치아교정용 마이크로 임플란트는 바나듐(V++)을 미량 함유하는데, 식립 후 임플란트로부터 바나듐 이온이 방출되어 조직염증을 유발시키며, 이러한 조직염증은 임플란트와 식립된 골 및/또는 잇몸 사이 틈을 생성시키고, 틈을 더욱 이격되게 함으로써 추가적인 세균 침투에 의한 염증을 유발시키는 원인이 될 수 있다.In addition, implant materials are generally implemented with biocompatible materials such as titanium to minimize in vivo side effects. It contains other elements, and these other elements sometimes cause side effects such as inflammation. Specifically, an orthodontic micro-implant as an example of an implant contains a trace amount of vanadium (V ++ ), and after implantation, vanadium ions are released from the implant to cause tissue inflammation, and this tissue inflammation is caused by the implant and the implanted bone and/or By creating a gap between the gums and making the gap more spaced apart, it can cause inflammation due to additional bacterial penetration.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 티타늄 임플란트에 항균력을 부여하여 생체 내 조직, 예를 들어 치골조직에 식립 후 임플란트에서 용출되는 금속이온이나 세균에 의한 염증 반응을 최소화할 수 있는 항균성을 갖는 티타늄 임플란트 및 이의 제조방법을 제공하는데 목적이 있다. The present invention has been devised in view of the above points, and it is possible to minimize the inflammatory reaction caused by metal ions or bacteria eluted from the implant after implantation in an in vivo tissue, for example, pubic tissue by imparting antibacterial activity to the titanium implant. An object of the present invention is to provide a titanium implant having antibacterial properties and a method for manufacturing the same.
또한, 티타늄 임플란트에 부여된 항균력을 치료 또는 교정 기간 동안 지속시켜 치료성공률을 향상시킬 수 있는 항균성을 갖는 티타늄 임플란트 및 이의 제조방법을 제공하는데 다른 목적이 있다.In addition, another object is to provide a titanium implant having antibacterial properties that can improve the treatment success rate by maintaining the antibacterial power imparted to the titanium implant for a treatment or correction period, and a method for manufacturing the same.
본 발명은 아래와 같은 국가연구개발사업의 지원을 받아 연구된 것으로서 국가연구개발사업의 구체적인 정보는 이하와 같다.The present invention has been studied with the support of the following national R&D project, and detailed information of the national R&D project is as follows.
[과제고유번호] 20001590[Project unique number] 20001590
[부처명] 범부처(산업부, 과기부, 복지부)[Name of Ministry] All ministries (Ministry of Industry, Ministry of Science and Technology, Ministry of Welfare)
[연구관리 전문기관] 한국산업기술평가관리원[Research Management Specialized Institution] Korea Institute of Industrial Technology Evaluation and Planning
[연구사업명] 인공지능바이오로봇의료융합사업[Research Project Name] Artificial Intelligence Bio-Robot Medical Convergence Project
[연구과제명] 환자 맞춤형 골유착 임플란트 개발을 통한 4종 이상의 손동작과 정밀물체 파지가 가능한 인공지능 기반의 골지각형의수 개발[Research project name] Development of an artificial intelligence-based osseolithic arm capable of holding more than 4 types of hand movements and precision objects through the development of patient-customized osseointegration implants
[기여율] 1/1[Contribution rate] 1/1
[주관기관] (주)제일메디칼코퍼레이션[Organizer] Jeil Medical Corporation
[연구기간] 2018.05.01 ~ 2020.12.31 [Research Period] 2018.05.01 ~ 2020.12.31
상술한 과제를 해결하기 위하여 본 발명은 티타늄 임플란트 표면 상에 화학결합을 통해 고정된 키토산을 포함하는 항균성을 갖는 티타늄 임플란트를 제공한다. In order to solve the above problems, the present invention provides a titanium implant having antibacterial properties including chitosan fixed through a chemical bond on the surface of the titanium implant.
본 발명의 일 실시예에 의하면, 상기 티타늄 임플란트와 키토산 사이에는 상기 티타늄 임플란트 및 상기 키토산 각각과 공유결합을 형성하는 스페이서를 더 구비할 수 있다.According to an embodiment of the present invention, a spacer for forming a covalent bond with each of the titanium implant and the chitosan may be further provided between the titanium implant and the chitosan.
또한, 상기 티타늄 임플란트는 아민기를 구비하도록 표면이 개질된 것이며, 상기 티타늄 임플란트의 아민기와 키토산의 아민기 각각과 아마이드 결합을 형성하도록 상기 스페이서는 적어도 2개의 카르복시기를 갖는 화합물일 수 있다.In addition, the surface of the titanium implant is modified to include an amine group, and the spacer may be a compound having at least two carboxyl groups to form an amide bond with each of the amine group of the titanium implant and the amine group of chitosan.
또한, 상기 스페이서는 폴리아크릴산, 술시닉산, 글루탐산 및 아스팔틱산으로 이루어진 군에서 선택된 1종 이상의 화합물을 포함할 수 있다. 이때, 보다 바람직하게는 상기 스페이서는 술시닉산일 수 있다.In addition, the spacer may include at least one compound selected from the group consisting of polyacrylic acid, sulcinic acid, glutamic acid, and asphaltic acid. In this case, more preferably, the spacer may be sulcinic acid.
또한, 상기 키토산은 75 ~ 85% 탈아세틸화 된 것으로 점도가 20-800 cP인 것을 수 있다. 또한, 상기 키토산은 1% 초산 수용액 또는 pH 6.5 이하의 수용액에 용해되는 것일 수 있다.In addition, the chitosan may be 75-85% deacetylated, and the viscosity may be 20-800 cP. In addition, the chitosan may be dissolved in a 1% aqueous solution of acetic acid or an aqueous solution of pH 6.5 or less.
또한, 상기 키토산은 상기 티타늄 임플란트 표면적의 30% 이상을 덮도록 구비될 수 있다.In addition, the chitosan may be provided to cover 30% or more of the surface area of the titanium implant.
또한, 상기 티타늄 임플란트 표면은 3-아미노프로필트리에톡시실란(APTES) 화합물을 통해 개질 된 것일 수 있다.In addition, the titanium implant surface may be modified through a 3-aminopropyltriethoxysilane (APTES) compound.
또한, 본 발명은 (1) 표면에 아민기를 구비한 티타늄 임플란트를 제조하는 단계, (2) 적어도 2개의 카르복시기를 갖는 스페이서를 구비한 제1용액을 상기 마이크로 임플란트 표면에 처리하여 상기 카르복시기와 임플란트의 아민기 간 화학결합을 유도하는 단계, 및 (3) 키토산을 포함하는 제2용액을 처리하여 키토산의 아민기와 상기 스페이서의 비반응된 카르복시기 간 화학결합을 유도하는 단계를 포함하는 것을 특징으로 하는 항균성 티타늄 임플란트 제조방법을 제공한다.In addition, the present invention relates to the steps of (1) preparing a titanium implant having an amine group on the surface, (2) treating the surface of the micro-implant with a first solution having a spacer having at least two carboxyl groups on the surface of the carboxyl group and the implant. Inducing a chemical bond between the amine groups, and (3) treating a second solution containing chitosan to induce a chemical bond between the amine group of chitosan and the unreacted carboxyl group of the spacer. A method for manufacturing a titanium implant is provided.
본 발명에 따른 티타늄 임플란트는 뼈 조직에 식립된 후 임플란트에서 용출되는 금속이온이나, 임플란트와 뼈 사이 계면으로 침투하여 서식하는 세균에 의해 유발된 염증을 최소화 또는 방지할 수 있다. 또한, 식립된 후 치료 또는 교정이 지속될 때까지 보유한 항균 등의 염증 억제 성능을 지속적으로 유지시킬 수 있어서 임플란트의 치료 성공율을 향상시킬 수 있으므로 치과, 정형외과 등 임상에 널리 사용될 수 있다.The titanium implant according to the present invention can minimize or prevent inflammation caused by metal ions eluted from the implant after being placed in the bone tissue, or bacteria that infiltrate and inhabit the interface between the implant and bone. In addition, since it is possible to continuously maintain antibacterial and anti-inflammatory properties such as antibacterial until treatment or correction is continued after implantation, the treatment success rate of the implant can be improved, so that it can be widely used in clinics such as dentistry and orthopedics.
도 1은 본 발명의 일 실시예에 의한 마이크로 임플란트를 제조하는 공정에 대한 모식도이다.1 is a schematic diagram of a process for manufacturing a micro-implant according to an embodiment of the present invention.
도 2는 미처리된 티타늄 임플란트 (Ti), APTES 처리된 티타늄 임플란트(Ti-A), 아크릴산에 의해 키토산이 도입된 티타늄 임플란트 (Ti-AA-Ch) 및 본 발명의 일 실시예에 따른 숙신산을 통해 키토산이 결합된 티타늄 임플란트 (Ti-SA-Ch)에 대해서 수행한 XPS 분석 스펙트럼이다.2 is an untreated titanium implant (Ti), an APTES-treated titanium implant (Ti-A), a titanium implant in which chitosan is introduced by acrylic acid (Ti-AA-Ch), and succinic acid according to an embodiment of the present invention. This is the XPS analysis spectrum performed on the titanium implant (Ti-SA-Ch) bound to chitosan.
도 3은 티타늄 임플란트의 표면 개질 공정에 따른 물 접촉각의 변화를 나타낸 사진이다. 3 is a photograph showing the change of the water contact angle according to the surface modification process of the titanium implant.
도 4 및 도 5는 본 발명의 서로 다른 실시예에 의한 숙신산을 통해 키토산이 결합된 티타늄 임플란트(도 4, Ti-SA-Ch)와 폴리아크릴산을 통해 키토산이 결합된 티타늄 임플란트 (도 5, Ti-AA-Ch)에 FITC 형광물질을 결합시켜 얻은 이미지 사진이다.4 and 5 are chitosan-coupled titanium implants (FIG. 4, Ti-SA-Ch) and chitosan-coupled titanium implants via polyacrylic acid (FIG. 5, Ti) according to different embodiments of the present invention. -AA-Ch) is an image obtained by binding FITC fluorescent material.
도 6은 본 발명의 일 실시예에 의한 키토산이 결합된 티타늄 임플란트(TI-SA-Ch)와 미처리된 티타늄 임플란트(TI)에 대해서 수행한 조골세포의 부착성을 평가한 뒤 촬영한 FE-SEM 사진이다.6 is a FE-SEM photographed after evaluating the adhesion of osteoblasts performed with respect to the titanium implant (TI-SA-Ch) and untreated titanium implant (TI) combined with chitosan according to an embodiment of the present invention; It's a photo.
도 7은 본 발명의 일 실시예에 따른 키토산이 결합된 티타늄 임플란트와, 미처리된 티타늄 임플란트에 대해서 1일, 3일 동안 배양된 조골세포에 대해서 Live/dead staining 염색 평가를 수행한 결과에 대한 사진이다.7 is a photograph of the result of performing Live/dead staining staining evaluation on osteoblasts cultured for 1 day and 3 days for the titanium implant coupled with chitosan and the untreated titanium implant according to an embodiment of the present invention; am.
도 8 및 도 9는 본 발명의 일 실시예에 따른 키토산이 결합된 티타늄 임플란트와 미처리된 티타늄 임플란트 각각에 대해서 E.coli를 배양한 결과에 대한 사진이다.8 and 9 are photographs of the results of culturing E. coli for each titanium implant and untreated titanium implants combined with chitosan according to an embodiment of the present invention.
도 10 및 도 11은 본 발명의 일 실시예에 따른 키토산이 결합된 티타늄 임플란트와, 미처리된 티타늄 임플란트 각각에 대해서 S. mutans를 접종 및 배양 뒤 크리스탈 바이올렛 염색시킨 결과에 대한 사진이다.10 and 11 are photographs of the results of crystal violet staining after inoculation and culture of S. mutans for each titanium implant and untreated titanium implants combined with chitosan according to an embodiment of the present invention.
도 12 및 도 13은 본 발명의 일 실시예에 따른 키토산이 결합된 티타늄 임플란트와, 미처리된 티타늄 임플란트 각각에 대해서 S. sobrinus를 접종 및 배양 뒤 크리스탈 바이올렛 염색시킨 결과에 대한 사진이다.12 and 13 are photographs of the results of crystal violet staining after inoculation and culture of S. sobrinus for each of the titanium implant bound with chitosan and the untreated titanium implant according to an embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따른 키토산이 결합된 티타늄 임플란트와, 미처리된 티타늄 임플란트 각각에 대해서 S. mutans 및 S. sobrinus를 각각 접종 및 배양 뒤 형성된 바이오 필름에 대한 흡광도 평가 결과에 대한 그래프이다.14 is a chitosan-coupled titanium implant according to an embodiment of the present invention, and for each of the untreated titanium implants, S. mutans and S. sobrinus are inoculated and cultured, respectively, a graph for absorbance evaluation results for the formed biofilm. am.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those of ordinary skill in the art to which the present invention pertains can easily implement them. The present invention may be embodied in many different forms and is not limited to the embodiments described herein.
본 발명에 따른 티타늄 임플란트는 임플란트 표면 상에 화학결합을 통해 고정된 키토산을 포함한다. The titanium implant according to the present invention includes chitosan immobilized on the implant surface through chemical bonds.
상기 티타늄 임플란트는 골절 고정용, 인공척추, 인공 의수, 치아 교정용 등치료, 교정 등 생체 내 식립되는 임플란트의 경우 제한 없이 사용할 수 있다. 또한, 상기 임플란트는 티타늄을 주제로 하는 생체에 사용되는 통상적인 임플란트의 재질일 수 있으며, 일예로 주성분인 티타늄 이외에 바나듐, 알루미늄, 니켈, 철, 크롬 등의 금속이 미량 포함된 합금일 수 있다. 상기 티타늄 임플란트의 크기는 일예로 직경이 약 1 ~ 2㎜, 길이는 약 6 ~ 10㎜일 수 있다. The titanium implant can be used without limitation in the case of implants placed in vivo, such as for fixing fractures, artificial spine, artificial prostheses, orthodontic treatment, orthodontics. In addition, the implant may be a material of a conventional implant used in a living body based on titanium, and for example, may be an alloy containing trace amounts of metals such as vanadium, aluminum, nickel, iron, and chromium in addition to titanium as a main component. The size of the titanium implant may be, for example, about 1 to 2 mm in diameter and about 6 to 10 mm in length.
또한, 상기 키토산은 티타늄 임플란트가 식립된 골조직에 침투할 수 있는 세균에 대한 항균력을 부여하는 물질이다. 또한, 티타늄 임플란트 표면에 물리적인 배리어를 형성함을 통해서 임플란트로부터 금속이온의 용출을 방지 또는 지연시켜 용출되는 바나듐과 같은 미량의 금속원소에 의한 염증반응을 최소화할 수 있다. 상기 키토산은 75 ~ 85% 탈아세틸화 된 것으로써, 점도 20-800 cP인 것일 수 있으며, 1% 초산 수용액 또는 pH 6.5 이하의 수용액에 녹는 것을 사용할 수 있는데, 이를 통해 티타늄 임플란트 표면에 도입되기에 보다 유리할 수 있고, 키토산을 통해 목적하는 효과를 현저히 발현할 수 있으며, 키토산이 티타늄 임플란트에 도입된 후 탈리되거나 분해되는 것이 최소화 되어 키토산을 통해 목적하는 효과의 지속력을 높일 수 있는 이점이 있다.In addition, the chitosan is a material that provides antibacterial activity against bacteria that can penetrate the bone tissue in which the titanium implant is placed. In addition, by forming a physical barrier on the surface of the titanium implant, it is possible to prevent or delay the elution of metal ions from the implant, thereby minimizing the inflammatory reaction caused by a trace metal element such as vanadium eluted. The chitosan is 75 to 85% deacetylated, and may have a viscosity of 20-800 cP, and may be used that dissolves in 1% aqueous acetic acid solution or an aqueous solution of pH 6.5 or less, through which it is introduced into the titanium implant surface. It can be more advantageous, and the desired effect can be remarkably expressed through chitosan, and desorption or decomposition after chitosan is introduced into the titanium implant is minimized.
상술한 키토산은 티타늄 임플란트 표면에 화학결합을 통해 고정되며, 바람직하게는 상기 화학결합은 공유결합일 수 있으며, 이를 통해 키토산이 티타늄 임플란트 표면으로부터 탈리 되는 것을 최소화할 수 있다. The above-described chitosan is fixed to the titanium implant surface through a chemical bond, and preferably, the chemical bond may be a covalent bond, through which it is possible to minimize the desorption of chitosan from the titanium implant surface.
본 발명의 일 실시예에 의하면 상기 키토산과 티타늄 임플란트 표면 사이에는 이 둘과 각각 공유결합을 형성하는 스페이서를 더 구비할 수 있다. 상기 스페이서는 화학결합을 매개하는 매개체로써, 키토산과 티타늄 임플란트 각각과 공유결합을 형성할 수 있는 물질의 경우 제한 없이 사용할 수 있다. 이때, 바람직하게는 상기 스페이서는 키토산에 구비된 아민기와 공유결합을 형성할 수 있는 카르복시기를 구비하는 것일 수 있다. According to an embodiment of the present invention, a spacer that forms a covalent bond with the chitosan and the titanium implant surface may be further provided. The spacer is a medium for mediating chemical bonding, and materials capable of forming covalent bonds with each of chitosan and titanium implants may be used without limitation. In this case, preferably, the spacer may have a carboxyl group capable of forming a covalent bond with an amine group provided in chitosan.
한편, 티타늄 표면에는 히드록시기가 쉽게 구비될 수 있는데, 히드록시기는 카르복시기나 다른 종류의 작용기와 반응성이 미약해 키토산과 스페이서 간 공유결합이 형성된 경우에도 스페이서와 티타늄 임플란트 표면 간에는 공유결합이 형성되기 어려울 수 있다. 이에 본 발명의 일 실시예에 의하면 상기 티타늄 임플란트는 카르복시기 또는 아민기를 구비하도록 표면이 개질된 것일 수 있고, 상기 티타늄 임플란트 표면에 구비된 카르복시기 또는 아민기와 공유결합을 형성하도록 스페이서는 아민기 또는 카르복시기를 구비할 수 있다. 결국 상기 스페이서는 키토산의 아민기와 아마이드 결합을 형성할 수 있는 적어도 1개의 카르복시기와 상기 티타늄 임플란트 표면에 구비된 아민기 또는 카르복시기와 아마이드 결합을 형성할 수 있는 적어도 1개의 카르복시기 또는 아민기를 구비한 것일 수 있다. On the other hand, a hydroxyl group can be easily provided on the titanium surface, and the hydroxyl group has weak reactivity with a carboxyl group or other functional groups, so that even when a covalent bond is formed between chitosan and the spacer, it may be difficult to form a covalent bond between the spacer and the titanium implant surface. Accordingly, according to an embodiment of the present invention, the titanium implant may have a surface modified to include a carboxyl group or an amine group, and the spacer may have an amine group or a carboxyl group to form a covalent bond with a carboxyl group or an amine group provided on the titanium implant surface. can be provided Eventually, the spacer may have at least one carboxyl group capable of forming an amide bond with the amine group of chitosan and at least one carboxyl group or an amine group capable of forming an amide bond with an amine group or carboxyl group provided on the surface of the titanium implant. have.
이때, 상기 티타늄 임플란트 표면에 구비되는 카르복시기 또는 아민기는 공지의 방법과 공지의 물질을 통해 티타늄 임플란트에 도입될 수 있다. 다만 임플란트의 용도를 고려하여 세포독성을 유발하지 않으며, 인체에 무해한 생체 적합한 물질이 바람직하다.In this case, a carboxyl group or an amine group provided on the surface of the titanium implant may be introduced into the titanium implant through a known method and a known material. However, in consideration of the use of the implant, a biocompatible material that does not cause cytotoxicity and is harmless to the human body is preferable.
일예로, 상기 티타늄 임플란트 표면에 구비된 작용기가 아민기인 경우를 상정하여 구체적으로 설명하면, 상기 아민기는 임플란트의 표면 개질을 통해서 도입된 것일 수 있다. 상기 아민기를 티타늄 임플란트 표면에 도입시키는 것은 당업계에 공지된 방법을 사용하여 도입시킬 수 있어서 본 발명은 이에 대해 특별히 한정하지 않는다. 다만, 통상적인 티타늄 임플란트 표면에 존재하는 수산기는 반응성이 매우 낮기 때문에 수산기와 반응기가 높은 실란화합물을 이용해 아민기를 도입시킬 수 있다. 상기 실란화합물은 아미노기를 구비한 아미노실란계 화합물일 수 있으며, 일예로 3-아미노프로필트리에톡시실란(APTES) 화합물일 수 있다. 3-아미노프로필트리에톡시실란(APTES) 화합물을 통한 티타늄 임플란트 표면 개질은 아민기를 보다 증가된 함량으로 티타늄 임플란트 표면에 도입시키기에 보다 유리하며, 스페이서에 구비된 카르복시기와의 반응이 용이하다. 또한 이를 통해 고정되는 키토산의 함량을 증가시키는 것에도 더욱 유리할 수 있다. For example, if the functional group provided on the surface of the titanium implant is an amine group, the amine group may be introduced through surface modification of the implant. The amine group may be introduced using a method known in the art to introduce the amine group to the surface of the titanium implant, so the present invention is not particularly limited thereto. However, since the hydroxyl group present on the typical titanium implant surface has very low reactivity, an amine group can be introduced using a silane compound having a high hydroxyl group and reactive group. The silane compound may be an aminosilane-based compound having an amino group, for example, a 3-aminopropyltriethoxysilane (APTES) compound. The titanium implant surface modification through 3-aminopropyltriethoxysilane (APTES) compound is more advantageous to introduce an amine group into the titanium implant surface in an increased content, and the reaction with the carboxyl group provided in the spacer is easy. In addition, it may be more advantageous to increase the content of chitosan to be fixed through this.
또한, 상기 티타늄 임플란트 표면에 구비되는 작용기가 아민기일 경우 상기스페이서는 적어도 2개의 카르복시기를 갖는 화합물일 수 있는데, 바람직하게는폴리아크릴산, 술시닉산, 글루탐산 및 아스팔틱산으로 이루어진 군에서 선택된 1종 이상의 화합물을 포함할 수 있다. 보다 바람직하게는 상기 스페이서는 술시닉산일 수 있는데, 다른 물질에 대비해 티타늄 임플란트에 도입되는 키토산의 함량을 높이고 키토산이 도입된 후 고정력을 지속시킬 수 있는 측면에서 보다 유리할 수 있다. In addition, when the functional group provided on the surface of the titanium implant is an amine group, the spacer may be a compound having at least two carboxyl groups, preferably at least one selected from the group consisting of polyacrylic acid, sulcinic acid, glutamic acid, and asphaltic acid. compounds may be included. More preferably, the spacer may be sulcinic acid. Compared to other materials, it may be more advantageous in terms of increasing the content of chitosan introduced into the titanium implant and maintaining the fixing force after the chitosan is introduced.
한편, 키토산은 티타늄 임플란트 표면을 30% 이상 덮도록 임플란트 표면에 도입될 수 있는데, 이를 통해 세균에 대한 항균력을 향상시킬 수 있고, 티타늄 임플란트로부터 금속이온의 용출을 최소화할 수 있는 이점이 있다. On the other hand, chitosan can be introduced to the implant surface so as to cover more than 30% of the titanium implant surface, through which it is possible to improve the antibacterial activity against bacteria, there is an advantage that can minimize the elution of metal ions from the titanium implant.
상술한 본 발명의 일 실시예에 따른 임플란트는 후술하는 제조방법을 통해 구현될 수 있으나 이에 제한되는 것은 아니다. The implant according to an embodiment of the present invention described above may be implemented through a manufacturing method described later, but is not limited thereto.
구체적으로 티타늄 임플란트는 (1) 표면에 아민기를 구비한 티타늄 임플란트를 제조하는 단계, (2) 적어도 2개의 카르복시기를 갖는 스페이서를 구비한 제1용액을 상기 마이크로 임플란트 표면에 처리하여 상기 카르복시기와 임플란트의 아민기 간 화학결합을 유도하는 단계, 및 (3) 키토산을 포함하는 제2용액을 처리하여 키토산의 아민기와 상기 스페이서의 비반응된 카르복시기 간 화학결합을 유도하는 단계를 포함하여 제조될 수 있다. Specifically, the titanium implant comprises the steps of (1) preparing a titanium implant having an amine group on the surface, (2) treating the micro-implant surface with a first solution having a spacer having at least two carboxyl groups to form the carboxyl group and the implant. Inducing a chemical bond between the amine groups, and (3) treating a second solution containing chitosan to induce a chemical bond between the amine group of chitosan and the unreacted carboxyl group of the spacer.
먼저 본 발명의 (1) 단계로써, 표면에 아민기를 구비한 티타늄 임플란트를 제조하는 단계를 수행한다. 티타늄 임플란트 표면에 아민기를 도입시키는 것은 당업계에 공지된 방법은 제한 없이 사용할 수 있다. 일예로 아미노실란계 화합물, 보다 구체적으로는 3-아미노프로필트리에톡시실란(APTES)을 포함하는 용액으로 티타늄 임플란트 표면을 처리하여 아민기를 도입시킬 수 있다. 또한, 상기 아미노실란계 화합물은 상기 용액 내 0.01~10중량%, 보다 바람직하게는 1 ~ 5중량%로 포함할 수 있다. 만일 상기 용액 내 0.01 중량% 미만으로 포함될 경우 상기 마이크로 임플란트 표면에 결합되는 아민기의 양이 적어서 고정시킬 수 있는 키토산의 함량이 현저히 저하될 수 있으며, 만일 5중량%를 초과할 경우 첨가되는 아미노실란계 화합물의 양 대비 도입되는 아민기의 양 증가가 미미할 수 있다. First, as step (1) of the present invention, a step of manufacturing a titanium implant having an amine group on the surface is performed. Methods known in the art for introducing an amine group to the surface of the titanium implant may be used without limitation. For example, an amine group may be introduced by treating the titanium implant surface with a solution containing an aminosilane-based compound, more specifically, 3-aminopropyltriethoxysilane (APTES). In addition, the aminosilane-based compound may be included in the solution in an amount of 0.01 to 10% by weight, more preferably 1 to 5% by weight. If it is included in the solution in an amount of less than 0.01% by weight, the amount of amine groups bonded to the surface of the micro-implant is small, so the content of chitosan that can be fixed may be significantly reduced, and if it exceeds 5% by weight, aminosilane added An increase in the amount of the introduced amine group relative to the amount of the based compound may be insignificant.
상기 아미노실란계 화합물을 포함한 용액에 포함되는 용매로는 상기 아미노실란계 화합물을 용해시킬 수 있는 통상적인 용매라면 제한없이 사용될 수 있으며, 일예로 물 또는 에탄올일 수 있으나 이에 제한되지 않는다. As a solvent included in the solution including the aminosilane-based compound, any conventional solvent capable of dissolving the aminosilane-based compound may be used without limitation, and may be, for example, water or ethanol, but is not limited thereto.
또한, 상기 아미노실란계 화합물을 포함한 용액을 티타늄 임플란트에 표면에 처리하는 방법은 일예로 침지법일 수 있으나 이에 제한되지 않는다.In addition, the method of treating the surface of the titanium implant with the solution containing the aminosilane-based compound may be, for example, an immersion method, but is not limited thereto.
또한, 상기 아미노실란계 화합물을 포함하는 용액을 티타늄 임플란트에 처리한 뒤 60 ~ 90℃ 에서 1 ~ 3시간 동안 반응시킨 뒤, 세척하여 물리적으로 결합된 아미노실란계 화합물을 제거할 수 있다.In addition, after the solution containing the aminosilane-based compound is treated on the titanium implant, it is reacted at 60 to 90° C. for 1 to 3 hours, and then washed to remove the physically bound aminosilane-based compound.
다음으로 본 발명에 따른 (2) 단계로서, 적어도 2개의 카르복시기를 갖는 스페이서를 구비한 제1용액을 상기 티타늄 임플란트 표면에 처리하여 상기 스페이서의 카르복시기와 티타늄 임플란트의 아민기 간 화학결합을 유도하는 단계를 수행한다.Next, as step (2) according to the present invention, a first solution having a spacer having at least two carboxyl groups is treated on the surface of the titanium implant to induce a chemical bond between the carboxyl group of the spacer and the amine group of the titanium implant. carry out
상기 제1용액은 적어도 2개의 카르복시기를 갖는 스페이서, 일예로 숙신산을 함유한다. 상기 제1용액은 상기 스페이서를 용해시킬 수 있는 용매를 더 포함하며, 상기 용매는 일예로 물일 수 있으나 이에 제한되는 것은 아니며, 스페이서의 구체적 종류에 따라서 적절히 변경될 수 있다. 이때, 상기 제1용액에서 스페이서의 농도는 0.1 ~ 5중량%일 수 있는데 이에 제한되는 것은 아니다. The first solution contains a spacer having at least two carboxyl groups, for example, succinic acid. The first solution further includes a solvent capable of dissolving the spacer, and the solvent may be, for example, water, but is not limited thereto, and may be appropriately changed according to the specific type of the spacer. In this case, the concentration of the spacer in the first solution may be 0.1 to 5% by weight, but is not limited thereto.
또한, 상기 스페이서의 카르복시기와 마이크로 임플란트의 아민기 간 화학결합은 공지된 커플링 반응을 통해 수행할 수 있으며, 구체적으로 당업계에서 공지된 WSC(water-soluble carbodiimide)를 이용한 활성화 방법에 사용되는 커플링제를 통한 반응일 수 있고, 일 예로 NHS(Nhydroxysuccinimide) 및 EDC (1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide)를 통해 수행될 수 있다. EDC / NHS를 통한 커플링 반응은 물 100 중량부에 대해서 0.1 ~ 0.5중량부의 EDC(N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide), 0.1 ~ 0.5중량부의 NHS(N-hydroxysuccinimide) 및 스페이서를 포함하는 수용액에 티타늄 임플란트를 침지시킨 후 15 ~ 30시간 동안 교반하면서 수행될 수 있으나 이에 제한되는 것은 아니다. 반응이 종결된 후 탈이온수 등을 이용한 1회 이상의 세척과정을 거칠 수 있으며, 이를 통해 비반응 카르복시기를 함유하는 스페이서가 결합된 티타늄 임플란트를 제조할 수 있다. In addition, chemical bonding between the carboxyl group of the spacer and the amine group of the micro-implant can be performed through a known coupling reaction, specifically, a couple used in an activation method using water-soluble carbodiimide (WSC) known in the art. The reaction may be through a ring agent, and for example, NHS (Nhydroxysuccinimide) and EDC (1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide) may be used. Coupling reaction through EDC / NHS is 0.1 to 0.5 parts by weight of EDC (N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide), 0.1 to 0.5 parts by weight of NHS (N-hydroxysuccinimide) and spacer with respect to 100 parts by weight of water. After immersing the titanium implant in an aqueous solution containing After the reaction is completed, it may be washed one or more times using deionized water or the like, and through this, a titanium implant to which a spacer containing a non-reacted carboxyl group is bonded can be manufactured.
한편, 후술하는 (3) 단계의 키토산에 스페이서를 먼저 고정시킨 뒤, 이를 티타늄 표면 상에 고정시킬 수도 있으나, (2) 단계를 먼저 수행한 후 (3) 단계를 수행하는 것이 반응성 측면에서 매우 유리하며 키토산을 티타늄 표면에 보다 용이하고 높은 효율로 도입시킬 수 있는 이점이 있다. On the other hand, after fixing the spacer to the chitosan of step (3) to be described later, it may be fixed on the titanium surface, but it is very advantageous in terms of reactivity to perform step (3) after performing step (2) first. There is an advantage in that chitosan can be introduced to the titanium surface more easily and with high efficiency.
다음으로 본 발명에 따른 (3) 단계로서, 키토산을 포함하는 제2용액을 처리하여 키토산의 아민기와 상기 스페이서의 비반응된 카르복시기 간 화학결합을 유도하는 단계를 수행한다. Next, as step (3) according to the present invention, a step of inducing a chemical bond between the amine group of chitosan and the unreacted carboxyl group of the spacer is performed by treating the second solution containing chitosan.
상기 제2용액은 키토산을 포함하며, 용매를 더 포함할 수 있다. 상기 용매는 키토산을 용해시킬 수 있는 공지된 생체 적합한 용매의 경우 제한 없이 사용할 수 있고, 일예로, 산성 수용액일 수 있다. 상기 키토산은 제2용액 내 0.1 ~ 5중량%, 바람직하게는 0.5 ~ 2중량%의 농도로 포함할 수 있다. 한편, 상기 제2용액은 pH가 5 ~ 6일 수 있는데, 이를 통해 키토산의 용해에 유리할 수 있다. The second solution includes chitosan, and may further include a solvent. The solvent may be used without limitation in the case of a known biocompatible solvent capable of dissolving chitosan, for example, may be an acidic aqueous solution. The chitosan may be included in a concentration of 0.1 to 5% by weight, preferably 0.5 to 2% by weight in the second solution. On the other hand, the second solution may have a pH of 5 to 6, which may be advantageous for dissolution of chitosan.
스페이서가 결합된 마이크로 임플란트는 제2용액으로 6 ~ 10시간 동안 처리될 수 있고, 일예로 함침 될 수 있다. 이후 0.1 ~ 2 N 농도의 산성용액으로 1 ~ 20분 간 처리될 수 있으며, 상기 산성용액은 일예로 염산일 수 있다. 산성용액 처리 후 티타늄 임플란트는 세척공정을 1회 또는 수회 더 거칠 수 있으며, 이후 건조공정을 더 거쳐서 표면에 키토산이 고정화된 티타늄 임플란트로 구현될 수 있다. The spacer-coupled micro-implant may be treated with the second solution for 6 to 10 hours, and may be impregnated, for example. Thereafter, it may be treated with an acidic solution of 0.1 to 2 N concentration for 1 to 20 minutes, and the acidic solution may be, for example, hydrochloric acid. After the acid solution treatment, the titanium implant may be subjected to a washing process one or several times more, and then it may be implemented as a titanium implant in which chitosan is immobilized on the surface through a further drying process.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.The present invention will be described in more detail through the following examples, but the following examples are not intended to limit the scope of the present invention, which should be construed to aid understanding of the present invention.
<실시예1><Example 1>
티타늄 임플란트 중에서, 치아교정용 마이크로 임플란트를 준비했다. 상기 마이크로 임플란트는 Ti6Al4V 합금 재질(Al 5.930wt%, Be 0.001wt%, Cd 0.001wt%, Co 0.001wt%, Cr 0.033wt%, Cu 0.001wt%, Fe 0.016wt%, Hf 0.001wt%, Mn 0.004wt%, Mo 0.002wt%, Ni 0.031wt, Pd 0.001wt%, V 3.880wt%, 잔량 Ti)인 것을 준비했다. 이후 95% 에틸알코올에 2중량%가 되도록 3-아미노프로필트리에톡시실란(APTES)이 혼합된 용액에 마이크로 임플란트를 함침 후 70℃에서 4시간 동안 방치했다. 이후 마이크로 임플란트를 에탄올로 1회 세척 후 탈이온수로 2회 더 세척하여 표면에 물리적 흡착된 APTES를 제거하여 APTES를 통해 아민기가 표면에 도입된 마이크로 임플란트를 제조하였다.Among titanium implants, micro-implants for orthodontics were prepared. The micro implant is made of Ti6Al4V alloy material (Al 5.930wt%, Be 0.001wt%, Cd 0.001wt%, Co 0.001wt%, Cr 0.033wt%, Cu 0.001wt%, Fe 0.016wt%, Hf 0.001wt%, Mn 0.004 wt%, Mo 0.002wt%, Ni 0.031wt%, Pd 0.001wt%, V 3.880wt%, balance Ti) was prepared. Thereafter, the micro-implant was impregnated in a solution mixed with 3-aminopropyltriethoxysilane (APTES) to 2% by weight in 95% ethyl alcohol, and then left at 70° C. for 4 hours. Thereafter, the micro-implant was washed with ethanol once and then washed twice more with deionized water to remove APTES physically adsorbed on the surface, thereby preparing a micro-implant in which an amine group was introduced to the surface through APTES.
이후 0.25중량%의 숙신산을 함유한 pH 5.6인 수용액인 제1용액을 준비한 뒤 EDC, NHS를 더 투입하여 교반시켰고, 이후 아민기가 표면에 도입된 마이크로 임플란트를 투입시켜 다시 6시간 동안 교반하여 혼합한 뒤, 이후 3회 탈이온수로 세척 후 건조시켜 숙신산이 결합된 마이크로 임플란트를 제조하였다. After preparing a first solution, which is an aqueous solution having a pH of 5.6 containing 0.25% by weight of succinic acid, EDC and NHS were further added and stirred, and then a micro-implant in which an amine group was introduced into the surface was added and stirred again for 6 hours. After that, after washing with deionized water three times and drying the micro-implants to which succinic acid is bound, were prepared.
이후, 2중량%의 아세트산이 함유된 pH 5.6인 수용액에 키토산을 0.5중량% 함유하도록 투입하고 4시간 동안 교반하여 제조한 제2용액에 숙신산이 결합된 마이크로 임플란트를 함침시킨 뒤 8시간 동안 반응시켰다. 이후 1N 염산에 10분간 처리한 뒤 탈이온수로 세척하고 건조시켜 최종 키토산이 고정된 마이크로 임플란트(Ti-SA-Ch)를 제조하였다. Then, the second solution prepared by adding 0.5% by weight of chitosan to an aqueous solution having a pH of 5.6 containing 2% by weight of acetic acid and stirring for 4 hours was impregnated with succinic acid-bound micro-implants and reacted for 8 hours. . After treatment with 1N hydrochloric acid for 10 minutes, washed with deionized water and dried to prepare a micro-implant (Ti-SA-Ch) to which the final chitosan was fixed.
<실시예2><Example 2>
실시예1과 동일하게 실시하여 제조하되, 제1용액에 숙신산 대신에 폴리아크릴산을 투입하여 키토산이 고정된 마이크로 임플란트(Ti-AA-Ch)를 제조하였다. It was prepared in the same manner as in Example 1, but polyacrylic acid was added to the first solution instead of succinic acid to prepare a micro-implant (Ti-AA-Ch) in which chitosan was fixed.
<실험예1><Experimental Example 1>
미처리된 티타늄 임플란트(Ti), APTES 처리된 마이크로 임플란트(Ti-A) 및 실시예1(Ti-SA-Ch) 및 실시예2(Ti-AA-Ch)에 따른 마이크로 임플란트에 대해서 XPS 분석을 수행하여 그 결과를 도 2에 나타내었으며, 이들 피크의 면적비를 계산한 원소의 조성을 하기 표 1에 나타내었다.XPS analysis was performed on untreated titanium implants (Ti), APTES-treated micro-implants (Ti-A), and micro-implants according to Examples 1 (Ti-SA-Ch) and Example 2 (Ti-AA-Ch). Thus, the results are shown in FIG. 2, and the composition of the elements for which the area ratio of these peaks is calculated is shown in Table 1 below.
미처리된 마이크로 임플란트Atom(wt%)Untreated micro-implant atom (wt%) APTES 처리된 마이크로 임플란트Atom(wt%)APTES-treated micro-implant atom (wt%) 실시예1
(Ti-SA-Ch)
Atom (wt%)
Example 1
(Ti-SA-Ch)
Atom (wt%)
실시예2
(Ti-AA-Ch)
Atom(wt%)
Example 2
(Ti-AA-Ch)
Atom (wt%)
Ti Ti 15.815.8 4.94.9 4.14.1 4.04.0
AlAl 1.81.8 < 0.1< 0.1 < 0.1< 0.1 0.80.8
VV 0.40.4 < 0.1< 0.1 < 0.1< 0.1 < 0.1< 0.1
CC 26.926.9 59.459.4 60.860.8 62.562.5
OO 53.753.7 32.132.1 30.730.7 30.730.7
NN 1.41.4 3.63.6 5.05.0 2.02.0
SiSi -- 11.411.4 5.55.5 7.97.9
표 1을 통해 알 수 있듯이 APTES 처리된, 즉 아민기가 표면에 도입된 마이크로 임플란트는 Si 함량이 11.4 wt%로 마이크로 임플란트에 아민기를 함유하는 실란커플링제가 잘 도입된 것을 확인할 수 있다. 또한, 실시예1 및 실시예2에서 Si함량이 감소한 것을 통해서 키토산이 마이크로 임플란트에 도입되었음을 확인할 수 있다. 한편, 실시예1, 실시예2에서 질소의 실시예1(5.0%)이 실시예2(2.0%) 보다 훨씬 높아 숙신산을 매개로 하였을 때 키토산이 효율적으로 많이 도입되었음을 알 수 있다. As can be seen from Table 1, it can be seen that the APTES-treated micro-implant having an amine group introduced onto the surface had a Si content of 11.4 wt%, confirming that the silane coupling agent containing the amine group was well introduced into the micro-implant. In addition, it can be confirmed that chitosan was introduced into the micro-implant through the decrease in the Si content in Examples 1 and 2. On the other hand, in Example 1 and Example 2, Example 1 (5.0%) of nitrogen was much higher than Example 2 (2.0%), so it can be seen that a large amount of chitosan was efficiently introduced when succinic acid was used as a medium.
<실험예2><Experimental Example 2>
티타늄 마이크로 임플란트의 표면개질에 따른 젖음성의 변화를 조사하기 위해 물 접촉각 측정을 하여 도 3에 나타내었다. 미처리 티타늄 임플란트(Neat Ti) 표면의 접촉각은 71o를 나타내었고, 아미노실란화합물이 도입되면 82o로 오히려 소수성이 증가하였다. 여기에 숙신산이 반응하면 65o로 친수성으로 크게 감소했고, 키토산이 결합을 하면 당쇄에 존재하는 -OH 그룹으로 인해 더욱 친수화(57o) 되었다. 이와 같이 표면개질 공정에 따라 표면의 젖음성이 변화하는 것으로부터 개질반응이 잘 진행되었음을 알 수 있다. In order to investigate the change in wettability according to the surface modification of the titanium micro-implant, the water contact angle was measured and shown in FIG. 3 . The contact angle of the surface of the untreated titanium implant (Neat Ti) was 71 o , and when the aminosilane compound was introduced, the hydrophobicity increased to 82 o. When succinic acid reacted , the hydrophilicity was greatly reduced to 65 o , and when chitosan was combined, it became more hydrophilic (57 o ) due to the -OH group present in the sugar chain. As described above, it can be seen that the modification reaction proceeded well from the change in the wettability of the surface according to the surface modification process.
<실험예3><Experimental Example 3>
마이크로 임플란트 표면에 도입된 키토산을 확인하기 위하여 키토산의 아민기에 통상적인 방법을 통해서 FITC 형광물질을 결합시킨 후 형광현미경 검사를 실시하였으며, 그 결과를 각각 도 4(실시예1) 및 도 5(실시예2)에 나타내었다.In order to confirm the chitosan introduced to the surface of the micro-implant, FITC fluorescent material was bound to the amine group of chitosan through a conventional method, followed by fluorescence microscopy, and the results are shown in FIGS. 4 (Example 1) and 5 (Example 1), respectively. Example 2).
도 4 및 도 5에서 확인할 수 있듯이 녹색의 이미지가 관찰되는 것으로부터 키토산이 티타늄 임플란트 표면에 고정된 것을 확인할 수 있다. 한편, 스페이서로써 숙신산을 사용한 실시예1 (도 4)이 폴리아크릴산을 사용한 실시예2 (도 5)에 대비해 더욱 짙은 녹색을 나타내는 것을 확인할 수 있는데, 이를 통해 마이크로 임플란트에 도입된 키토산의 함량에서 실시예1에서와 같이 숙신산을 스페이서로 사용한 경우에 키토산의 함량이 현저히 증가한 것을 알 수 있다. As can be seen in FIGS. 4 and 5 , it can be confirmed that the chitosan is fixed to the surface of the titanium implant from the observation of the green image. On the other hand, it can be seen that Example 1 (FIG. 4) using succinic acid as a spacer shows a darker green color compared to Example 2 (FIG. 5) using polyacrylic acid, which is carried out at the content of chitosan introduced into the micro-implant As in Example 1, it can be seen that the content of chitosan significantly increased when succinic acid was used as a spacer.
<실험예 4> <Experimental Example 4>
실시예1에 따른 키토산이 결합된 티타늄 임플란트와 미처리된 임플란트에 대한 생체적합성을 in vitro에서 조골세포의 cell adhesion을 평가하는 것으로 수행했다. The biocompatibility of the chitosan-coupled titanium implant and untreated implant according to Example 1 was performed by evaluating the cell adhesion of osteoblasts in vitro.
구체적으로 4-Well dish에 이들 각각을 올려 놓은 후, osteoblast cell(MC3T3-E1)의 농도가 3 x 103 cell/ml인 배양액(DMEM)을 준비하여 1ml씩 cell seeding 하였다. 37℃, 5% CO2 incubator에서 1일, 3일 동안 각각 배양 후 배양액을 제거하여 PBS로 조심스럽게 세척하고 2.5%(w/v) 글루트알데히드(glutaldehyde)로 고정시킨(fixation) 후 FE-SEM 이미지를 통해 점착 거동을 관찰하였으며 1일, 3일 간 배양된 후 촬영된 결과를 도 6에 나타내었다. Specifically, after placing each of these in a 4-well dish, a culture medium (DMEM) having a concentration of osteoblast cells (MC3T3-E1) of 3 x 10 3 cell/ml was prepared and seeded by 1 ml each. After incubation for 1 day and 3 days in an incubator at 37 ° C., 5% CO 2 , the culture medium was removed, washed carefully with PBS, fixed with 2.5% (w/v) glutaldehyde, and FE- The adhesion behavior was observed through the SEM image, and the results taken after incubation for 1 day and 3 days are shown in FIG. 6 .
도 6을 통해 알 수 있듯이, 미처리된 티타늄 임플란트 (Ti)에 비해 실시예1(Ti-SA-Ch)에 따른 키토산이 도입된 티타늄 임플란트에서 1일, 3일 배양 모두 세포가 잘 퍼져서 부착된 것을 확인할 수 있고, 실시예1의 티타늄 임플란트(TI-SA-Ch)가 조골세포의 초기 접착과 세포 확장(cell spreading)에 좋은 영향을 미치는 것을 확인할 수 있다.As can be seen from Figure 6, compared to the untreated titanium implant (Ti), in the titanium implant in which chitosan according to Example 1 (Ti-SA-Ch) was introduced, cells were well spread and adhered for 1 day and 3 days in culture. It can be confirmed, and it can be confirmed that the titanium implant (TI-SA-Ch) of Example 1 has a good effect on the initial adhesion of osteoblasts and cell spreading.
<실험예5><Experimental Example 5>
실험예4에서 1일, 3일 동안 배양된 세포에 대해서 Live staining 염색 평가를 수행했으며, Live/dead staining 염색법을 이용하여 염색한 후 공초점 이미지를 촬영하여 그 결과를 도 7에 나타내었다. Live staining staining evaluation was performed on cells cultured for 1 day and 3 days in Experimental Example 4, and after staining using the Live/dead staining staining method, confocal images were taken, and the results are shown in FIG. 7 .
염색법에 사용하는 시약인 Calcein-AM은 비형광물질이었던 것이 세포에 들어가게 되면 세포 내 에스터 가수분해효소(esterase)에 의해 반응하여 형광물질로 전환되어 녹색형광을 띠게 되고, propidium iodide(PI)는 살아있는 세포막을 통과할 수 없어 세포막이 손상된 죽은 세포에만 들어가 음이온을 띄는 세포핵과 이온결합을 하여 붉은 형광을 나타내게 된다.Calcein-AM, a reagent used for staining, is a non-fluorescent material that, when it enters the cell, reacts with an intracellular esterase to convert it to a fluorescent material, giving it green fluorescence, and propidium iodide (PI) is a living cell membrane Since it cannot pass through the cell membrane, it enters only dead cells with damaged cell membranes and ionic bonds with the cell nucleus, which is an anion, resulting in red fluorescence.
도 7을 통해 미처리된 마이크로 임플란트(TI)에 대비해 실시예1에 따른 키토산이 고정된 마이크로 임플란트(TI-SA-Ch)에서 녹색 형광을 현저히 많이 띠는 결과를 통해서 실시예1에 따른 키토산이 결합된 티타늄 임플란트에서 조골세포의 증식이 더욱 큰 것을 확인할 수 있고, 이를 통해 보다 향상된 치아/잇몸과의 결합력을 발현하여 마이크로 임플란트와 치아/잇몸 사이의 계면을 통한 세균 침투가 방지됨에 따라서 염증발생이 더욱 감소할 것으로 예상된다.7, the chitosan according to Example 1 was combined with the result that green fluorescence was significantly higher in the micro implant (TI-SA-Ch) to which the chitosan according to Example 1 was fixed compared to the untreated micro implant (TI) through FIG. 7 . It can be confirmed that the proliferation of osteoblasts is greater in the titanium implant, and through this, a more improved bond with the tooth/gum is expressed, preventing bacterial penetration through the interface between the micro-implant and the tooth/gum, and thus the occurrence of inflammation is further increased. expected to decrease.
또한, 도 7을 통해 실시예1에 따른 키토산이 결합된 티타늄 임플란트(TI-SA-Ch)에서 붉은 색의 이미지로 나타나는 사멸된 세포는 없는 것으로 관찰되어 본 연구에서 사용한 키토산이 결합된 티타늄 임플란트는 생체 적합성이 매우 높다는 것을 확인할 수 있다. In addition, in the titanium implant (TI-SA-Ch) combined with chitosan according to Example 1 through FIG. 7, no dead cells appearing as a red image were observed, so the titanium implant combined with chitosan used in this study was It can be seen that the biocompatibility is very high.
<실험예6> <Experimental Example 6>
대장균을 이용한 티타늄 임플란트의 항균성 특성을 평가하기 위해 아래와 같이 실험을 실행하였다. 증류수에 영양배지를 넣어 만든 액체배지에 백금 팁으로 대장균 (E. coli)을 조금 넣고 24시간 배양하였다. 그 후 균주 액을 20만분의 1로 희석하여 미처리된 티타늄 임플란트(Ti) 및 키토산이 결합된 티타늄 임플란트 (Ti-SA-Ch)가 들어 있는 바이알에 넣고 24시간 배양시켰다. 바이알의 액을 조금 취해 배양접시의 고체배지 위에 도말 한 후 24시간 정치하여 성장한 대장균의 이미지를 촬영하여 도 8(실시예1)과 도 9(미처리 티타늄 임플란트)에 나타냈다. To evaluate the antibacterial properties of titanium implants using E. coli, the experiment was performed as follows. A small amount of E. coli was added with a platinum tip to a liquid medium prepared by putting a nutrient medium in distilled water and cultured for 24 hours. After that, the strain solution was diluted to 1/200,000, put into a vial containing untreated titanium implant (Ti) and chitosan-coupled titanium implant (Ti-SA-Ch), and cultured for 24 hours. After taking a small amount of the solution from the vial and smearing it on the solid medium in a culture dish, the image of E. coli grown by standing still for 24 hours was taken and shown in FIGS. 8 (Example 1) and 9 (untreated titanium implant).
도 8 및 도 9를 통해 확인할 수 있듯이 실시예1에 따른 키토산이 결합된 티타늄 임플란트는 미처리 임플란트에 비해 E. coli의 증식 억제에 대한 효과가 있는 것을 확인할 수 있다. As can be seen through FIGS. 8 and 9 , it can be confirmed that the titanium implant combined with chitosan according to Example 1 has an effect on inhibiting the proliferation of E. coli compared to the untreated implant.
부식된 치아에 자주 나타나는 대표적인 구강세균인 S. mutans과 S. sobrinus 2종의 균주 각각을 실시예1에 따른 키토산이 결합된 티타늄 임플란트와 미처리된 티타늄 임플란트에 각각에 2 x 105 세포수로 접종하고, 37℃, 8시간 동안 배양 후 크리스탈 바이올렛으로 염색하여 균주로 인해 형성된 바이오필름 유무 및 정도를 평가했고, 사진을 촬영하여 도 10 내지 도 13에 나타내었다. 또한, 바이오 필름 형성 정도에 대해서 정량적 평가를 위해 바이오 필름을 떼어낸 뒤 595 nm 에서 microplate reader를 이용하여 흡광도를 측정하여 그 결과를 도 13에 나타내었다.Two strains of S. mutans and S. sobrinus, which are representative oral bacteria that frequently appear in corroded teeth, were inoculated with chitosan-conjugated titanium implants and untreated titanium implants according to Example 1 at 2 x 10 5 cells, respectively. After incubation at 37° C. for 8 hours, it was stained with crystal violet to evaluate the presence and extent of biofilm formed due to the strain, and photographs were taken and shown in FIGS. 10 to 13 . In addition, after removing the biofilm for quantitative evaluation of the degree of biofilm formation, absorbance was measured at 595 nm using a microplate reader, and the results are shown in FIG. 13 .
도 10 및 도 11은 S. mutans에 대한 항균성 평가 결과로서, 도 10(실시예1, Ti-SA-Ch)의 경우가 도 11(미처리 마이크로 임플란트, Ti)에 대비했을 때, 바이오 필름이 거의 발생하지 않은 것을 확인할 수 있다. 10 and 11 are antimicrobial evaluation results for S. mutans, when the case of FIG. 10 (Example 1, Ti-SA-Ch) is compared to FIG. 11 (untreated micro-implant, Ti), the biofilm is almost You can check that it didn't happen.
한편, 도 12 및 도 13은 S. sobrinus에 대한 항균성 평가결과로서 도 12(실시예1, Ti-SA-Ch)의 경우가 도 13(미처리 티타늄 임플란트, Ti)에 대비했을 때 바이오 필름이 현저히 적은 양으로 발생한 것을 알 수 있다. On the other hand, FIGS. 12 and 13 are results of evaluation of antibacterial properties against S. sobrinus, and the biofilm was significantly improved in the case of FIG. 12 (Example 1, Ti-SA-Ch) compared to FIG. 13 (untreated titanium implant, Ti). It can be seen that a small amount occurred.
이와 같이 S. mutans와 S. sobrinus를 이용한 항균 실험에서 도 10 ~ 도 13을 통해 알 수 있듯이 실시예1에 따른 키토산이 결합된 티타늄 임플란트(Ti-SA-Ch)는 S. mutans 및 S. sobrinus 균주에 대한 항균효과가 미처리된 티타늄 임플란트(Ti) 보다 현저히 우수한 것을 알 수 있다. As can be seen from FIGS. 10 to 13 in the antibacterial experiment using S. mutans and S. sobrinus as described above, the titanium implant (Ti-SA-Ch) to which chitosan according to Example 1 is coupled is S. mutans and S. sobrinus. It can be seen that the antibacterial effect on the strain is significantly superior to that of the untreated titanium implant (Ti).
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments presented herein, and those skilled in the art who understand the spirit of the present invention can add components within the scope of the same spirit. , changes, deletions, additions, etc. will be able to easily suggest other embodiments, but this will also fall within the scope of the present invention.

Claims (9)

  1. 티타늄(Ti) 임플란트 표면 상에 화학결합을 통해 고정된 키토산을 포함하는 항균성을 갖는 티타늄 임플란트.A titanium implant having antibacterial properties comprising chitosan fixed through a chemical bond on a titanium (Ti) implant surface.
  2. 제1항에 있어서,According to claim 1,
    상기 티타늄 임플란트와 키토산 사이에는 상기 티타늄 임플란트 및 상기 키토산 각각과 공유결합을 형성하는 스페이서를 더 구비하는 것을 특징으로 하는 항균성을 갖는 티타늄 임플란트.A titanium implant having antibacterial properties, characterized in that it further comprises a spacer for forming a covalent bond with each of the titanium implant and the chitosan between the titanium implant and the chitosan.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 티타늄 임플란트는 아민기를 구비하도록 표면이 개질된 것이며,The titanium implant has a modified surface to have an amine group,
    상기 티타늄 임플란트의 아민기와 키토산의 아민기 각각과 아마이드 결합을 형성하도록 상기 스페이서는 적어도 2개의 카르복시기를 갖는 화합물인 것을 특징으로 하는 항균성을 갖는 티타늄 임플란트.Titanium implant having antibacterial properties, characterized in that the spacer is a compound having at least two carboxyl groups to form an amide bond with each of the amine group of the titanium implant and the amine group of chitosan.
  4. 제3항에 있어서, 4. The method of claim 3,
    상기 스페이서는 폴리아크릴산, 술시닉산(succinic acid), 글루탐산(glutamic acid) 및 아스팔틱산(aspartic acid)으로 이루어진 군에서 선택된 1종 이상의 화합물을 포함하는 것을 특징으로 하는 항균성을 갖는 티타늄 임플란트.The spacer is a titanium implant having antibacterial properties comprising at least one compound selected from the group consisting of polyacrylic acid, succinic acid, glutamic acid and aspartic acid.
  5. 제1항에 있어서,According to claim 1,
    상기 키토산은 75 ~ 85% 탈아세틸화된 것으로서, 점도가 20 ~ 800cP인 것을 특징으로 하는 항균성을 갖는 티타늄 임플란트.The chitosan is 75-85% deacetylated, and the titanium implant having antibacterial properties, characterized in that the viscosity is 20-800cP.
  6. 제1항에 있어서,According to claim 1,
    상기 키토산은 상기 티타늄 임플란트 표면적의 30% 이상을 덮도록 구비되는 것을 특징으로 하는 항균성을 갖는 티타늄 임플란트.The chitosan is a titanium implant having antibacterial properties, characterized in that it is provided to cover at least 30% of the surface area of the titanium implant.
  7. 제4항에 있어서, 5. The method of claim 4,
    상기 스페이서는 술시닉산인 것을 특징으로 하는 항균성을 갖는 티타늄 임플란트.The spacer is a titanium implant having antibacterial properties, characterized in that sulcinic acid.
  8. 제1항에 있어서, According to claim 1,
    상기 타타늄 임플란트 표면은 3-아미노프로필트리에톡시실란(APTES)으로 개질된 것을 특징으로 하는 항균성을 갖는 티타늄 임플란트.The titanium implant has antibacterial properties, characterized in that the titanium implant surface is modified with 3-aminopropyltriethoxysilane (APTES).
  9. (1) 표면에 아민기를 구비한 티타늄 임플란트를 제조하는 단계;(1) manufacturing a titanium implant having an amine group on the surface;
    (2) 적어도 2개의 카르복시기를 갖는 스페이서를 구비한 제1용액을 상기 티타늄 임플란트 표면에 처리하여 상기 카르복시기와 임플란트의 아민기 간 화학결합을 유도하는 단계; 및(2) inducing a chemical bond between the carboxyl group and the amine group of the implant by treating the surface of the titanium implant with a first solution having a spacer having at least two carboxyl groups; and
    (3) 키토산을 포함하는 제2용액을 처리하여 키토산의 아민기와 상기 스페이서의 비반응된 카르복시기 간 화학결합을 유도하는 단계;를 포함하는 것을 특징으로 하는 항균성을 갖는 티타늄 임플란트 제조방법.(3) inducing a chemical bond between the amine group of chitosan and the unreacted carboxyl group of the spacer by treating the second solution containing chitosan;
PCT/KR2020/018447 2020-02-21 2020-12-16 Antibacterial titanium implant and manufacturing method therefor WO2021167219A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200021688A KR102173456B1 (en) 2020-02-21 2020-02-21 Titanium implant having antimicrobial properties and method for manufacturing thereof
KR10-2020-0021688 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021167219A1 true WO2021167219A1 (en) 2021-08-26

Family

ID=73197846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018447 WO2021167219A1 (en) 2020-02-21 2020-12-16 Antibacterial titanium implant and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102173456B1 (en)
WO (1) WO2021167219A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102173456B1 (en) * 2020-02-21 2020-11-03 주식회사 제일메디칼코퍼레이션 Titanium implant having antimicrobial properties and method for manufacturing thereof
KR102639266B1 (en) * 2021-08-20 2024-02-22 주식회사 비투랩 Surface-treated implant structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012080706A2 (en) * 2010-12-16 2012-06-21 Imperial Innovations Limited Layered fibrous construct
KR20130092511A (en) * 2012-02-09 2013-08-20 고려대학교 산학협력단 Antibiotics and osteoinductive molecules-eluting implant or scaffold with enhanced osteointegration and antibacterial activity and the manufacturing method thereof
KR20140098273A (en) * 2013-01-29 2014-08-08 단국대학교 산학협력단 Preparation method of implant comprising drug delivery layer and implant compostion for living donor transplantation comprising the same
KR102173456B1 (en) * 2020-02-21 2020-11-03 주식회사 제일메디칼코퍼레이션 Titanium implant having antimicrobial properties and method for manufacturing thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101507916B1 (en) 2013-06-17 2015-04-07 강릉원주대학교산학협력단 Orthodontic screw

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012080706A2 (en) * 2010-12-16 2012-06-21 Imperial Innovations Limited Layered fibrous construct
KR20130092511A (en) * 2012-02-09 2013-08-20 고려대학교 산학협력단 Antibiotics and osteoinductive molecules-eluting implant or scaffold with enhanced osteointegration and antibacterial activity and the manufacturing method thereof
KR20140098273A (en) * 2013-01-29 2014-08-08 단국대학교 산학협력단 Preparation method of implant comprising drug delivery layer and implant compostion for living donor transplantation comprising the same
KR102173456B1 (en) * 2020-02-21 2020-11-03 주식회사 제일메디칼코퍼레이션 Titanium implant having antimicrobial properties and method for manufacturing thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LY NGUYEN THI; SHIN HANBYEOL; GUPTA KAILASH CHANDRA; KANG INN KYU; YU WONJAE: "Bioactive Antibacterial Modification of Orthodontic Microimplants Using Chitosan Biopolymer", MACROMOLECULAR RESEARCH, POLYMER SOCIETY OF KOREA, SEOUL, KR, vol. 27, no. 5, 21 May 2019 (2019-05-21), KR, pages 504 - 510, XP036787603, ISSN: 1598-5032, DOI: 10.1007/s13233-019-7069-5 *
MARTIN HOLLY J., SCHULZ KIRK H., BUMGARDNER JOEL D., WALTERS KEISHA B.: "XPS Study on the Use of 3-Aminopropyltriethoxysilane to Bond Chitosan to a Titanium Surface", LANGMUIR, AMERICAN CHEMICAL SOCIETY, US, vol. 23, no. 12, 1 June 2007 (2007-06-01), US, pages 6645 - 6651, XP055839651, ISSN: 0743-7463, DOI: 10.1021/la063284v *
MITRA TAPAS, SAILAKSHMI G., GNANAMANI A., MANDAL A. B.: "Studies on Cross-linking of succinic acid with chitosan/collagen", MATERIALS RESEARCH, DOT EDITORAÇÃO ELETRÔNICA, SAO CARLOS, BR, vol. 16, no. 4, 1 January 2013 (2013-01-01), BR, pages 755 - 765, XP055839654, ISSN: 1516-1439, DOI: 10.1590/S1516-14392013005000059 *

Also Published As

Publication number Publication date
KR102173456B1 (en) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2021167219A1 (en) Antibacterial titanium implant and manufacturing method therefor
Hämmerle Biofilm on dental implants: a review of the literature
Gould et al. Ultrastructural study of the attachment of human gingiva to titanium in vivo
CN102341132B (en) Antibacterial surface and method of fabrication
Ozbas et al. Reactions of connective tissue to compomers, composite and amalgam root-end filling materials.
WO2021256820A1 (en) Peek implant having excellent osseointegration ability and method for manufacturing same
EP1841314A1 (en) Antimicrobial nanoparticulate additives forming non-leachable sustained antimicrobial polymeric compositions
DE10061195B4 (en) Use of impression materials for the production of treatment devices
Cheng et al. Bioactive mono-dispersed nanospheres with long-term antibacterial effects for endodontic sealing
CN113952511A (en) Method for constructing antifouling and antibacterial coating on surface of titanium-based material and application of antifouling and antibacterial coating
US5814331A (en) Process for inhibiting pathogenic bacteria in the oral cavity and for binding peptide growth factors on surfaces
US20100098738A1 (en) Surface bound actives
Touyz et al. Disinfection of alginate impression material using disinfectants as mixing and soak solutions
Palenik et al. Antimicrobial abilities of various dentine bonding agents and restorative materials
Mansfield et al. Antimicrobial effects from incorporation of disinfectants into gypsum casts.
EP1919436B1 (en) Material primarily for medical, long-term in vivo use, and method for the production thereof
CN110157948B (en) Medical titanium alloy special for implant and capable of achieving immediate implantation and preparation method thereof
CN114213570A (en) Acid-sensitive antibacterial coating and preparation method and application thereof
Azmy et al. Microbiological evaluation for antifungal activity of some metal oxides nanofillers incorporated into cold cured soft lining materials: clinical based study
CN110141684B (en) Hydrothermal sterilization method for in-situ synthesis of antibacterial silver phosphate on surface of hydroxyapatite coating
CN114748692A (en) Surface functionalized titanium-based implant based on mesoporous silica and preparation method and application thereof
Fu et al. Chemical property and antibacterial activity of metronidazole-decorated Ti through adhesive dopamine
EP4070823B1 (en) Antibacterial implant coating composition, method of coating an implant and antibacterial coated implant
WO2023074983A1 (en) Composition for orthodontic use and prevention and treatment of dental diseases having excellent physical properties and biostability, reduction in bacterial attachment and biofilm formation, and sod activity amplification effect
Qu et al. Application of an Antibacterial Coating Layer via Amine-Terminated Hyperbranched Zirconium–Polysiloxane for Stainless Steel Orthodontic Brackets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919797

Country of ref document: EP

Kind code of ref document: A1