WO2023090262A1 - Molding machine and spray device - Google Patents

Molding machine and spray device Download PDF

Info

Publication number
WO2023090262A1
WO2023090262A1 PCT/JP2022/042032 JP2022042032W WO2023090262A1 WO 2023090262 A1 WO2023090262 A1 WO 2023090262A1 JP 2022042032 W JP2022042032 W JP 2022042032W WO 2023090262 A1 WO2023090262 A1 WO 2023090262A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
mold
molding cycle
spray
cooling
Prior art date
Application number
PCT/JP2022/042032
Other languages
French (fr)
Japanese (ja)
Inventor
一康 竹井
Original Assignee
芝浦機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芝浦機械株式会社 filed Critical 芝浦機械株式会社
Publication of WO2023090262A1 publication Critical patent/WO2023090262A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature

Definitions

  • the present disclosure relates to a molding machine and a spray device used in the molding machine.
  • a molding machine fills a mold cavity with a molding material to obtain a molded product, and is, for example, a die casting machine or an injection molding machine.
  • the spray device for example, sprays the mold with a mold release agent.
  • Patent Documents 1 to 3 It is known that the temperature of the mold affects the quality of the molded product when the molding material is filled into the cavity of the mold to obtain the molded product (for example, Patent Documents 1 to 3 below). It is also known that a release agent or the like sprayed onto the mold affects the temperature of the mold (Patent Documents 1 and 2).
  • Patent Document 1 discloses a molding machine that sprays at multiple locations on the mold.
  • This molding machine has temperature sensors at multiple locations on the mold, and based on the values detected by the multiple temperature sensors, mold release agents are sprayed at multiple locations on the mold so that the temperature of the mold becomes uniform. control the amount.
  • this molding machine detects the temperature before spraying in each molding cycle, compares the temperature detected in the previous molding cycle with the temperature detected in the current molding cycle, and determines the temperature in the current molding cycle. determines the amount of release agent to be sprayed.
  • Patent document 2 discloses a spray system that sprays by sequentially moving a spray head to a plurality of blocks obtained by dividing the inner surface of the mold. This system uses a non-contact thermometer mounted on the spray head to detect the temperature of the block immediately before spraying, and sets the spray discharge pattern based on that temperature.
  • Patent Document 3 discloses a detection device that detects a sign of temperature abnormality based on an image of mold temperature obtained by thermography.
  • a molding machine repeats a molding cycle.
  • the molding machine has a machine body, a cooling section, and a control device.
  • the machine body sequentially performs mold closing, injection and mold opening within each molding cycle.
  • the cooling section cools the mold within each molding cycle.
  • the control device controls the cooling section based on a signal from a sensor that detects the temperature of the mold.
  • the cooling section includes a spray device that sprays the mold prior to closing within each molding cycle.
  • the controller controls the temperature difference between a first temperature sensed by the sensor prior to the spraying and a second temperature sensed after the spraying within the molding cycle in which the first temperature was sensed. , to control the operation of the cooling unit.
  • a spray device includes a spray device main body and a spray control section.
  • the spray device main body sprays toward the mold before mold closing in each molding cycle when molding cycles including mold closing, injection and mold opening are repeated.
  • the spray control section controls the main body of the spray device based on a signal from a sensor that detects the temperature of the mold.
  • the spray control is based on a temperature difference between a first temperature sensed by the sensor prior to the spraying and a second temperature sensed after the spraying within the molding cycle in which the first temperature was sensed. control the operation of the spray device body during subsequent molding cycles.
  • FIG. 1 is a side view showing the configuration of a die casting machine according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a schematic diagram showing an example of a configuration related to a cooling section of the die casting machine of FIG. 1
  • FIG. 2 is a schematic diagram showing another example of the configuration of the cooling section of the die casting machine of FIG. 1
  • 2 is a flowchart for explaining the operation of the die casting machine of FIG. 1
  • FIGS. 5(a) and 5(b) are timing charts showing one example and another example of a method for adjusting the amount of refrigerant supplied.
  • 6(a) and 6(b) are timing charts showing one example and another example of a method for adjusting the supply amount of the release agent.
  • FIG. 1 is a side view (partly including a cross-sectional view) showing the configuration of a die casting machine 1 according to an embodiment of the present disclosure.
  • FIG. 1 is provided with an orthogonal coordinate system xyz for convenience.
  • the z direction is the vertical direction and the +z side is upward.
  • the die casting machine 1 holds a mold 101.
  • the mold 101 includes, for example, a fixed mold 103 and a movable mold 105 .
  • the die casting machine 1 brings the movable die 105 closer to the stationary die 103 and brings it into contact with the fixed die 103 as indicated by the chain double-dashed line in FIG. 1 (the die is closed).
  • a cavity Ca having a shape similar to that of a molded product (in other words, a die-cast product or product) is formed between the fixed mold 103 and the movable mold 105 .
  • the die casting machine 1 for example, fills the cavity Ca with an uncured metal material (performs injection).
  • the metal material filled in the cavity Ca is solidified by the mold 101 depriving it of heat.
  • the die casting machine 1 separates the movable mold 105 from the fixed mold 103 (performs mold opening) in order to take out the molded product.
  • the die casting machine 1 repeats, for example, a molding cycle in which the mold closing, injection and mold opening described above are performed in order.
  • a mold release agent or the like is sprayed against the opposing surfaces of the fixed mold 103 and the movable mold 105 .
  • the release agent forms, for example, a film on the surface of the mold 101 and intervenes between the surface of the mold 101 and the metal material filled in the mold 101 .
  • the mold release agent reduces the probability of occurrence of seizure in which the metal material adheres to the mold 101, and reduces the resistance (mold release resistance) when the molded product is peeled off from the mold 101. contribute to The mold release agent can also help cool the mold 101, which has increased in temperature in the previous molding cycle.
  • FIG. 4 is a flowchart for explaining the operation of the die casting machine 1.
  • the die casting machine 1 repeats the molding cycle MC.
  • spraying step ST1
  • mold closing step ST2
  • injection step ST3
  • mold opening step ST4
  • the mold 101 is cooled at an appropriate time by a cooling section 13 (described later) within the molding cycle MC.
  • the cooling operation by the cooling unit 13 includes spraying.
  • cooling operations other than spraying may be performed during the period of spraying.
  • the die casting machine 1 detects, for example, the temperature of the mold 101 before spraying and the temperature of the mold 101 after spraying in each molding cycle (steps ST11 and ST12).
  • the former temperature may be called “first temperature” or “first temperature D1”
  • the latter temperature may be called “second temperature” or “second temperature D2”.
  • the difference between the first temperature and the second temperature in one (same) molding cycle serves as an index value for quantitatively evaluating the cooling effect of the mold 101 by the cooling unit 13 . Therefore, the die casting machine 1 controls the operation of the cooling section 13 based on the difference between the first temperature and the second temperature.
  • the molding cycle detected these temperatures based on the first and second temperatures, as indicated by the arrows extending from the first temperature D1 and the second temperature D2 and the control command (command D3).
  • the manner in which the spray in the next molding cycle is controlled is exemplified.
  • the die casting machine 1 operates the cooling unit 13 thereafter (for example, in the next molding cycle) based on the difference between the first temperature and the second temperature in the same molding cycle. Control. Therefore, for example, it is possible to quantitatively grasp the cooling effect of the cooling unit 13 and specify the operation state of the cooling unit 13 necessary to obtain the target temperature. From another point of view, the operating state of the cooling part 13 is, for example, an operation amount or a manipulated variable of the cooling part 13 (a value of a parameter such as a gain from another point of view), or a physical quantity related to cooling. In this way, the accuracy of controlling the temperature of the mold 101 is improved. Generally, the amount of decrease in temperature of the mold 101 is large when spraying is being performed. Therefore, by controlling the operation of the cooling unit 13 based on the first temperature and the second temperature measured before and after spraying, the accuracy of controlling the temperature of the mold 101 is further improved.
  • the die casting machine 1 shown in FIG. 1 injects an uncured metal material into the space (including the cavity Ca) formed by the mold 101 .
  • the uncured state is, for example, a liquid state or a solid-liquid coexisting state.
  • the solid-liquid coexistence state is a semi-solid state in which solidification has progressed from a liquid state, or a semi-molten state in which melting has progressed from a solid state.
  • Metals are, for example, aluminum alloys, zinc alloys or magnesium alloys.
  • expressions may be made on the premise that the uncured metal material is molten metal (liquid metal material).
  • the mold 101 includes, for example, a fixed mold 103 and a movable mold 105.
  • the cross section of the fixed mold 103 or the movable mold 105 is indicated by one type of hatching.
  • each mold may be of a direct carving type that is integrally formed as a whole, or may be of a nesting type that is configured by inserting a nest into a main mold.
  • the mold 101 may have a fixed core fixed to the fixed mold 103 or the movable mold 105 and/or a movable core sandwiched between the fixed mold 103 and the movable mold 105 .
  • the die casting machine 1 has a cooling section 13 that cools the mold 101 .
  • the cooling section 13 includes a spray device 15 that sprays the mold 101 .
  • the machine main body 3 includes, for example, a mold clamping device 7 for opening and closing the mold 101 and for clamping the mold, an injection device 9 for injecting molten metal into the mold 101, and a fixed mold 103 or a movable mold 105 (FIG. 1). has an extruder 11 for extruding from a moving die 105).
  • the die casting machine 1 also has a control device 5 (FIG. 2 or 3 described later) that controls the machine main body 3 and the cooling section 13 .
  • the control device 5 may be regarded as a component separate from the machine body 3, the cooling section 13, or the spray device 15, or may be regarded as a component of the machine body 3, the cooling section 13, or the spray device 15. .
  • the former may be used and the latter may be used.
  • the configuration and operation of the machine body 3 may be in various modes, and may be a known configuration.
  • the cooling unit 13 and the spray device 15 may be configured in various manners and known configurations, except for the portions related to their control.
  • the mold clamping device 7 may perform mold opening/closing and mold clamping using a toggle mechanism (example in FIG. 1), or may not have a toggle mechanism. In the latter aspect, mold opening and closing and mold clamping may be performed by separate drive sources. Further, for example, the drive system of the mold clamping device 7 may be an electric system, a hydraulic system (hydraulic system), or a hybrid system combining these.
  • the injection device 9 may be, for example, one for a cold chamber machine (example in FIG. 1), one for a hot chamber machine, or a hybrid type in which both are combined.
  • the drive system of the injection device 9 may be an electric system, a hydraulic system (hydraulic system), or a hybrid system combining these.
  • the extrusion device 11 may, for example, extrude a molded product from a movable mold 105 (example in FIG. 1) or may extrude a molded product from a fixed mold 103. Further, for example, the extrusion device 11 may have an electric or hydraulic (hydraulic) drive source, or may utilize mold opening by the mold clamping device 7 (without a drive source). ).
  • the control device 5 may be configured by a computer, for example.
  • the computer includes, for example, a CPU (central processing unit), a ROM (read only memory), a RAM (random access memory), and an external storage device (not shown).
  • Various functional units (described later) that perform control and the like are constructed by the CPU executing programs stored in the ROM and/or the external storage device.
  • the control device 5 may include a logic circuit that performs only certain processing.
  • FIG. 2 is a schematic diagram showing a cooling section 13A as a specific example of the cooling section 13.
  • FIG. 3 is a schematic diagram showing a cooling section 13B as another specific example of the cooling section 13. As shown in FIG.
  • A may be added to the reference numerals of the constituent elements of the cooling section 13A, and B may be attached to the reference numerals of the constituent elements of the cooling section 13B.
  • the constituent elements may be referred to by omitting A and B (see also FIG. 1 for the reference numerals in this case).
  • the cooling unit 13 for example, in addition to the spray device 15 (15A or 15B), is supplied to the flow path 107 provided in the mold 101 (the fixed mold 103 and/or the movable mold 105). It has an internal cooling device 17 (17A or 17B) that regulates the flow.
  • the cooling unit 13 may be regarded as having the controller 5 (or part thereof) as described above.
  • the spray device 15 atomizes the liquid, for example, and sprays it onto the mold 101 .
  • the liquid is, for example, a release agent and/or water.
  • the release agent is taken as an example of the liquid.
  • Various known release agents may be used, for example, they may be water-soluble or oil-based.
  • a water-soluble release agent that is, a release agent containing water
  • the release agent may be ejected as it is, or may be diluted with water or the like before being ejected, or may be diluted with water or the like ejected at the same time as the original solution after ejection.
  • the spray device 15 may not collect the spouted release agent, or may collect and reuse it.
  • the configuration of the spray device 15 may have various configurations, as described above, except for the configuration related to its control, and may have a known configuration, for example.
  • the spray device 15 has one or more (a plurality in the illustrated example) nozzles 19 (19A or 19B) for ejecting the mold release agent toward the mold 101 .
  • the spray device 15 may move the nozzle 19 into and out of the space between the fixed mold 103 and the movable mold 105 which are opened (examples of FIGS. 2 and 3), or may
  • the nozzle 19 may be fixed.
  • the former mode will be referred to as an "insertion type".
  • the surface of the stationary mold 103 or the movable mold 105 to which the release agent is to be applied (for example, the surface that becomes the inner surface of the cavity Ca) is referred to as the coated surface 109 .
  • one or more nozzles 19 are sequentially moved to a plurality of divided areas of the surface 109 to be coated, and the release agent is ejected to the entire surface 109 to be coated.
  • a release agent may be applied. In the latter aspect, the movement of the nozzle 19 and/or ejection of the release agent may be performed continuously or intermittently.
  • the spray device 15 illustrated in FIGS. 1 to 3 is of an insertion type, and includes, for example, a head 21 (21A or 21B) including a plurality of nozzles 19 and a driving device 23 (23A or 21B) for moving the head 21. 23B). Moreover, as shown in FIGS. 2 and 3, the spray device 15 has a supply device 27 for supplying the release agent to the head 21 (in other words, the nozzle 19).
  • the head 21 has, for example, a base portion 25 (25A or 25B) that holds the plurality of nozzles 19 in addition to the plurality of nozzles 19 .
  • the base 25 is held by the driving device 23, for example. Further, the base 25 has a flow channel inside, although not shown, and the flow channel connects the supply device 27 and the nozzle 19 .
  • the head 21A is illustrated as having a plurality of nozzles 19A each made up of a relatively long pipe (eg, copper pipe).
  • Each nozzle 19A can adjust the position and orientation of its tip (discharge port) by, for example, bending so as to cause plastic deformation.
  • the plurality of nozzles 19A extends from one surface (lower surface in the illustrated example) of the base 25A. Note that the head 21A is illustrated as the head 21 in FIG.
  • FIG. 3 illustrates the head 21B having a plurality of relatively short nozzles 19B.
  • the plurality of nozzles 19B are provided on two surfaces of the base 25B facing the fixed mold 103 or the movable mold 105, and generally spray the release agent from the two surfaces toward the fixed mold 103 or the movable mold 105. Dispense.
  • the plurality of nozzles 19B may be changeable in discharge direction by changing the orientation with respect to the base 25B, or may not be changeable.
  • the plurality of nozzles 19 (19A or 19B) may have the same or different ejection amounts of the release agent. Further, the ejection amount of the releasing agent may be uniformly controlled from the plurality of nozzles 19, or may be controlled individually. Any of the nozzle 19 , the base 25 and the supply device 27 may be provided with a configuration for making the discharge amounts different from each other or for controlling the discharge amounts individually.
  • the nozzle 19 (19A or 19B) may or may not be detachable from the base 25.
  • the base 25 (25A and 25B) holds a first portion held by the driving device 23 and connected to the supply device 27, and the nozzle 19. It may be configured to have a detachable second portion, or may not be configured as such.
  • FIGS. 2 and 3 are schematic diagrams, the release agent is simultaneously applied only to a part of the coated surface 109 of the mold 101 .
  • the heads 21A and 21B may be used in such a manner as to spray the release agent onto the entire coating surface 109 of the mold 101 at a predetermined position, or may be used to sequentially separate a plurality of divided areas of the coating surface 109. It may be used in a mode of spraying a stencil agent.
  • the driving device 23 is capable of moving the head 21 at least in the direction of putting it in and out between the fixed mold 103 and the movable mold 105 (vertical direction in the illustrated example). Further, the driving device 23 may be capable of moving the head 21 in the direction in which the fixed mold 103 and the movable mold 105 face each other, or in a direction intersecting the direction of insertion/removal and the direction of facing (for example, in FIG. 1). x direction)).
  • the drive device 23 may have any specific configuration for realizing the movement of the head 21 as described above.
  • the driving device 23 may be a vertically articulated robot having a rotating arm (example in FIG. 1), or may be an orthogonal coordinate robot that translates a slide axis.
  • the drive system of the drive device 23 is, for example, an electric type, and FIGS. 2 and 3 schematically show an electric motor (reference numerals omitted) as the drive device 23 .
  • the driving device 23 is installed, for example, on the upper surface of a die plate (not numbered) that holds the fixed mold 103 of the mold clamping device 7 .
  • the supply device 27 supplies air to the head 21 (base portion 25) in parallel with the release agent.
  • a release agent channel and an air channel are formed in the base portion 25.
  • the release agent and air are mixed at an appropriate position and atomized, and sprayed onto the coating surface 109 of the mold 101 .
  • the release agent and air may be mixed in the base 25 , in the nozzle 19 , or outside the nozzle 19 .
  • the supply device 27 may be capable of ejecting only air from the nozzle 19 toward the mold 101 by supplying only air to the head 21 . That is, the spray device 15 may be capable of blowing air. The air blow may be used, for example, to clean the mold 101 before spraying the release agent and/or to remove moisture after spraying the release agent.
  • the supply device 27 may have any specific configuration for realizing the supply of the releasing agent as described above.
  • the supply device 27 has the following components.
  • a tank 29 holding a release agent.
  • a pump 31 for sending air to the tank 29 to pressurize and deliver the release agent in the tank 29 .
  • a valve 33 that controls the flow of released release agent.
  • the valve 33 may only allow or prohibit the flow of the release agent, or may be a flow control valve capable of controlling the flow rate of the release agent.
  • the flow control valve may or may not be a pressure-compensated flow control valve capable of maintaining a desired flow rate regardless of pressure fluctuations, and may or may not be a servo valve.
  • a pump that sucks and discharges the release agent from the tank 29 may be provided. Also, two or more valves may be provided at appropriate positions. A control valve may be provided to control the pressure of the release agent. In addition to or instead of controlling the valve 33, the presence or absence of the release agent supply or the flow rate may be controlled by controlling the pump. In this case, valve 33 may be omitted.
  • the supply device 27 may have sensors that detect various physical quantities related to the release agent.
  • the supply device 27 includes a sensor 35 for detecting the flow rate of the release agent, a sensor (not shown) for detecting the pressure of the release agent, a sensor (not shown) for detecting the temperature of the release agent, and/or a release agent. It may have a sensor (not shown) that detects the concentration of the template.
  • Sensor 35 may be used for feedback control of flow, for example, in embodiments in which valve 33 is a flow control valve.
  • the supply device 27 has the following components.
  • the supply device 27 may have an appropriate sensor such as the sensor 41 for detecting the pressure or flow rate of air.
  • the valve 39 may only permit or prohibit the flow of air, or may be capable of controlling the pressure or flow rate of air. Unlike the illustrated example, two or more valves may be provided at appropriate locations. In addition to or instead of controlling the valve 39 , the presence or absence of air supply or the pressure (or flow rate) may be controlled by controlling the pump 37 . In this case, valve 39 may be omitted.
  • FIGS. 2 and 3 Flow path and internal cooling device
  • the fixed mold 103 may also be provided with the channel 107 .
  • the internal cooling device 17 may supply coolant to the channel 107 of the fixed mold 103 and the channel 107 of the movable mold 105 .
  • the coolant may be liquid, gas, or mist, and may change state as heat is absorbed from the mold 101 .
  • the constituents of the refrigerant are also arbitrary. Examples of liquid refrigerants include water. In the following description, expressions may be based on the premise that the refrigerant is water (liquid). Further, hereinafter, the water supplied to the mold 101 may simply be referred to as cooling water without modification such as being supplied to the mold 101 .
  • the flow path 107 may be of a so-called DC type, a circulation type, a jet type, or a combination thereof.
  • DC type for example, a plurality of flow paths 107 extending in one direction (for example, linearly) in the mold (103 or 105) are provided in parallel to contribute to cooling of the entire mold.
  • circulation type for example, the channel 107 extends so as to surround a local portion of the mold and contributes to cooling of the local portion.
  • the flow path 107 includes a space within a local part of the mold (for example, a fixed core) and a pipe inserted into the space, and the cooling water flowing out from the tip of the pipe into the space is flow to the root side of the pipe cools the local area.
  • a local part of the mold for example, a fixed core
  • the shape and dimensions of the plurality of channels 107 may be the same or different.
  • two or more and/or all of the plurality of flow paths 107 may be controlled together in permitting/prohibiting the flow of cooling water and/or in flow rate, or may be controlled separately. Separate control may be realized, for example, by providing a plurality of valves 45 (described later) that the internal cooling device 17 has.
  • the internal cooling device 17 may continuously supply cooling water to the mold 101 over the entire period of each molding cycle, or may intermittently supply cooling water to the mold 101 in each molding cycle. It may be something to do. In the latter aspect, the internal cooling device 17 may or may not supply air to the mold 101 during a period in which cooling water is not supplied. The air may, for example, help purge cooling water within the flow path 107 . For the sake of convenience, the description of air supply is omitted below.
  • the internal cooling device 17 may not recover the cooling water supplied to the mold 101 (example in FIG. 2), or may recover the cooling water supplied to the mold 101 (example in FIG. 3). There may be. In any case, the specific configuration is arbitrary.
  • the internal cooling device 17A illustrated in FIG. 2 has a pump 43 for sending cooling water and a valve 45 for controlling the flow of the sent cooling water.
  • the pump 43 sucks, for example, cooling water stored in a tank (not shown) and sends it to the flow path 107 .
  • the pump 43 may be factory equipment that supplies cooling water to other machines (for example, other die casting machines). From another point of view, the internal cooling device 17A may not have the pump 43 .
  • the valve 45 may only allow or prohibit the flow of cooling water, or may be a flow control valve capable of controlling the flow of cooling water.
  • the flow control valve may or may not be a pressure-compensated flow control valve capable of maintaining a desired flow rate regardless of pressure fluctuations, and may or may not be a servo valve.
  • the internal cooling device 17A may have sensors at appropriate positions that detect various physical quantities related to the cooling water.
  • the internal cooling device 17 includes a sensor 47 that detects the flow rate of cooling water, a sensor (not shown) that detects the pressure of cooling water, and/or a sensor (not shown) that detects the temperature of cooling water. 107 upstream and/or downstream.
  • Sensor 47 may be used for feedback control of flow, for example in embodiments in which valve 45 is a flow control valve.
  • the internal cooling device 17B illustrated in FIG. 3 has a recovery unit 51 for recovering the cooling water flowing out from the mold 101 in addition to the same configuration as the internal cooling device 17A.
  • the pump 43 sends the cooling water recovered by the recovery unit 51 to the mold 101 . Except for this point, the above description of the internal cooling device 17A may be applied to the internal cooling device 17B.
  • the recovery unit 51 may have one or more tanks for storing cooling water and a device for cooling the cooling water (for example, a heat pump). Part or all of the recovery unit 51 may be factory equipment that also supplies cooling water to other machines (eg, other die casting machines). From another point of view, the internal cooling device 17B may not have the collection section 51 .
  • the internal cooling device 17 (17A or 17B) creates a negative pressure in the channel 107 in addition to or in place of the pump 43 that delivers cooling water to the channel 107 of the mold 101.
  • a pump 49 may be included. Then, cooling water may be caused to flow into the mold 101 by negative pressure. In this case, the possibility that cooling water leaks to the outside of flow path 107 is reduced.
  • the internal cooling device 17 (17A or 17B) includes a valve that controls the flow on the outflow side of the flow path 107 in addition to or instead of the valve 45 that controls the flow on the inflow side of the flow path 107. may have.
  • This valve may control the presence or absence of supply of cooling water, and may control the flow rate.
  • control device 5 includes, for example, a body control section 53 that controls the machine body 3, a spray control section 55 that controls the spray device 15, and an internal cooling device that controls the internal cooling device 17. and a control unit 57 .
  • These functional units are, for example, configured by the CPU executing programs as described above.
  • the main body control unit 53, the spray control unit 55, and the internal cooling control unit 57 may be distributed to each other in terms of hardware, or may be integrated. Taking the former example, the main body control section 53 and the internal cooling control section 57 are configured by hardware distributed together with the machine body 3 , while the spray control section 55 is configured by hardware distributed together with the spray device 15 . may be In this case, the spray control section 55 may control the operation of the spray device 15, for example, based on a signal received from the body control section 53 via a cable (not shown).
  • the temperature sensor 59 (59A or 59B) shown in FIG. 2 or 3 detects, for example, the temperature of the mold 101 before spraying and the temperature of the mold 101 after spraying, as understood from the above description used for detection.
  • the temperature sensor 59 may be regarded as part of the die casting machine 1, the cooling section 13, the spray device 15, or the internal cooling control section 57, or may be regarded as a component separate from these.
  • the configuration of the temperature sensor 59 may take various forms, for example, it may be similar to a known form.
  • the temperature sensor may be a contact type (eg, thermocouple, thermistor, or resistance temperature detector) or a non-contact type (eg, radiation thermometer).
  • the temperature sensor may directly detect the temperature of the mold 101, or may detect a physical quantity highly correlated with the temperature of the mold 101 (for example, the temperature of the cooling water flowing through the flow path 107). It may be one that detects.
  • the temperature sensor may be a transducer only, or may include a circuit for processing such as amplification in addition to the transducer.
  • a contact temperature sensor 59A is illustrated.
  • the temperature sensor 59A for detecting the temperature of the movable mold 105 is shown for ease of illustration, but the temperature sensor 59A for detecting the temperature of the fixed mold 103 may be provided. is.
  • the position of the temperature sensor 59A is arbitrary.
  • the temperature sensor 59A may be positioned in any range.
  • the detected value of the temperature sensor 59A may be used as it is, or may be used after being appropriately corrected.
  • the corrected value is also a type of detected value. The same applies to the example of FIG. 3, which will be described later.
  • one mold may be provided with two or more temperature sensors 59A.
  • the two or more temperature sensors 59A may be arranged at different positions when viewed in the opposing direction of the fixed mold 103 and the movable mold 105, or may be arranged at different positions when viewed in a direction orthogonal to the opposing direction. may
  • the detected values of the two or more temperature sensors 59A may be used to identify the representative value of the temperature in the entire mold (103 or 105) or the entire surface to be coated 109, or the temperature in the mold or the surface to be coated 109 It may be used to identify the temperature distribution. Representative values include average values (arithmetic averages) and weighted average values.
  • the detected value of each temperature sensor itself may be used, or in addition to or instead of the detected value itself, a value obtained by interpolation may be used.
  • the value obtained by interpolation is also a type of detection value.
  • a non-contact temperature sensor 59B is illustrated as the temperature sensor 59 in FIG. In FIG. 3, only the temperature sensor 59B for detecting the temperature of the movable mold 105 is shown for ease of illustration, but the temperature sensor 59B for detecting the temperature of the fixed mold 103 may be provided. is.
  • the temperature sensor 59B is, for example, a thermography that acquires an image of the temperature distribution of the surface 109 to be coated.
  • the temperature sensor 59B may acquire the temperature distribution of the entire coated surface 109 or the temperature distribution of a partial area of the coated surface 109 .
  • a plurality of temperature sensors 59B (or imaging units thereof) that capture images of different regions of the surface to be coated 109 may be provided to obtain the temperature distribution of the entire surface to be coated 109. .
  • the position of the temperature sensor 59B is arbitrary.
  • the temperature sensor 59B may be positioned above (example shown), laterally or below the mold (103 or 105).
  • the imaging section of the temperature sensor 59B may be fixed, or may be changeable in position and/or orientation. In other words, temperature sensor 59B may or may not be mechanically scannable.
  • the temperature distribution obtained by the temperature sensor 59B may be used to specify the representative value of the temperature on the surface to be coated 109, or to specify the representative value of the temperature for each region obtained by dividing the surface to be coated 109. or to extract the temperature at a specific location on the coated surface 109 .
  • Representative values include average values (arithmetic averages) and weighted average values.
  • the die casting machine 1 determines the temperature difference between the first temperature and the second temperature within the same molding cycle. , controls the operation of the cooling section 13 thereafter (eg in the next molding cycle). More specifically, for example, the control device 5 controls the cooling unit 13 based on the difference between the first temperature and the second temperature, specifying the amount of operation of the cooling unit 13 required to obtain the target temperature, and the like. do.
  • the control of the operation of the cooling unit based on the first temperature and the second temperature will be described in the following order. Overall control of the operation of the cooling unit based on the first temperature and the second temperature (Fig.
  • the body control unit 53 controls the mold clamping device 7 to close the mold (step ST2). Although not shown in particular, after the molds are closed (for example, after the movable mold 105 comes into contact with the fixed mold 103), the body control unit 53 activates the mold clamping device 7 so as to clamp the movable mold 105 and the fixed mold 103. Control. Also, although not shown, the body control unit 53 controls, for example, a hot water supply device (not shown) to supply molten metal to the injection device 9 . When the supply of the molten metal is completed, the body control section 53 controls the injection device 9 to inject the molten metal into the cavity Ca (step ST3).
  • the body control section 53 controls the mold clamping device 7 to open the mold (step ST4).
  • the body control unit 53 controls the extrusion device 11 to extrude the molded product in parallel with the mold opening or after the mold opening.
  • the body control unit 53 repeats such control (molding cycle MC).
  • the spray control unit 55 controls the spray device 15 at an appropriate time from after opening the mold (usually after extrusion of the molded product) to before closing the mold (usually before the start of closing the mold) to release the mold.
  • a chemical agent is sprayed (step ST1).
  • the spray control unit 55 may sequentially spray release agents (liquids) having different components.
  • the spray that serves as the reference for the detection timing of the first temperature D1 and the second temperature D2 may be the spray of any one type of release agent, or the spray of all types of release agents.
  • the spray control unit 55 is designed to clean the mold 101 by blowing air before spraying the mold release agent, and to remove water by blowing air after spraying the mold release agent.
  • a spray device 15 may be controlled.
  • the molding cycle MC is defined as a reference point in time (the end point of the previous molding cycle MC and the start point of a new molding cycle MC) of any step among a plurality of steps that are sequentially performed.
  • the molding cycle MC may be expressed with the time point at which the mold opening in step ST4 (or the extrusion step (not shown) for extruding the molded product) is completed as the reference time point.
  • the control device 5 controls the first temperature D1 and the second temperature D1 detected by the temperature sensor 59, as described above.
  • a temperature D2 is acquired (steps ST11 and ST12).
  • the point in time when the temperature is measured by the temperature sensor 59 and the point in time when the control device 5 acquires the information on the measured temperature from the temperature sensor 59 are expressed without particular distinction.
  • the time point of measurement of the first temperature D1 is before the spray (step ST1), as described above. Whether or not it is "before spraying" may be reasonably determined in light of the above-described effects of the present embodiment.
  • the first temperature D1 may be measured before spraying is started.
  • the time point at which the first temperature D1 is measured may be immediately before the start of spraying, or may be some time before the start time of spraying. Examples of the latter include, for example, at the start of mold opening, immediately after mold opening, or immediately after extruding the molded product.
  • the point of time when spraying is started or immediately after the spraying is started can be mentioned. In other words, the time of measurement of the first temperature D1 may be before at least part of the spraying period, rather than before the entire spraying period.
  • the second temperature D2 is measured after spraying (step ST1), as described above. Whether it is “after spraying” may be rationally determined in light of the above-described effects of the present embodiment, similarly to "before spraying.” For example, typically, the second temperature D2 may be measured after spraying is completed. In this case, the second temperature D2 may be measured immediately after the spray is completed, or may be some time after the spray is completed. Examples of the latter include, for example, when mold closing is started, when mold closing is completed, when mold closing is started, when mold closing is completed, or immediately before injection is started. Other than the typical example, the point at which spraying is completed or immediately before spraying is completed can be mentioned. In other words, the second temperature D2 is measured not after the entire spraying period, but after at least a part of the spraying period (but after the first temperature D1 is measured). It's okay.
  • Before spraying and “after spraying” may be before and after at least a portion of the period during which spraying occurs. From another point of view, at least part of the period during which the spray is performed may be included in the period from the measurement of the first temperature D1 to the measurement of the second temperature D2. In this case, the above part may be, for example, 30% or more, 50% or more, or 80% or more of the entire period during which spraying is performed, and may be near the start of spraying or near the completion of spraying. or in between.
  • the period from the time when the first temperature D1 is measured to the time when the second temperature D2 is measured is the period during which no spray is performed (the period before the start of the spray and/or the completion of the spray). later period).
  • the ratio of the period during which the spray is being performed (at least a part of the period from the start to the completion of the spray) to the period from when the first temperature D1 is measured to when the second temperature D2 is measured is arbitrary. is.
  • the ratio may be 10% or more, 30% or more, 50% or more, or 80% or more.
  • the duration of spraying in each molding cycle may change.
  • the time points at which the first temperature D1 is measured and/or the time points at which the second temperature D2 is measured may or may not be changed.
  • the operation of the spray device 15 is controlled based on the difference between the first temperature D1 and the second temperature D2.
  • the operation of the internal cooling device 17 (or the operation of further cooling means) is controlled based on the difference between the first temperature D1 and the second temperature D2. good too.
  • the operation of one cooling means is adjusted by the difference between the first temperature D1 and the second temperature D2. and the operation of the other cooling means is not adjusted by the difference between the first temperature D1 and the second temperature D2.
  • the first temperature D1 and the second temperature D2 are detected in each molding cycle (in other words, in all molding cycles). Also, the first temperature D1 and the second temperature D2 detected in each molding cycle are used to control the operation of the cooling section 13 in the next molding cycle.
  • this aspect is basically taken as an example.
  • the first temperature D1 and the second temperature D2 are detected every two or more predetermined molding cycles (in only one molding cycle among the predetermined number of molding cycles). It may be held on an irregular basis.
  • An example of the latter is, for example, a mode in which detection is performed when some abnormality is detected. Then, for example, the first temperature D1 and the second temperature D2 detected every predetermined number of times or irregularly detected may be used for a plurality of subsequent molding cycles.
  • the operation of the cooling unit 13 in subsequent molding cycles is controlled based on the first temperature D1 and the second temperature D2 detected in each of a plurality of molding cycles.
  • the average value (moving average value) of the first temperature D1 and the second temperature D2 in the plurality of molding cycles ) may be calculated.
  • the operation of the cooling section 13 in the subsequent molding cycle may be controlled. In this case, for example, the influence of a specific error in the detected temperature that occurs in any one molding cycle on the operation of the cooling unit 13 is reduced.
  • control of the operation of the cooling unit 13 based on the difference between the first temperature D1 and the second temperature D2 may be started without waiting for the start of the next molding cycle.
  • the change in operation of the cooling unit 13 according to the difference between the first temperature D1 and the second temperature D2 may occur within the molding cycle in which the first temperature D1 and the second temperature D2 are detected.
  • the operation of the cooling unit 13 controlled based on the difference between the first temperature D1 and the second temperature D2 in this case is assumed to affect the difference between the first temperature D1 and the second temperature D2 in the next molding cycle.
  • the changed behavior in another aspect, the manipulated variable
  • the changed behavior in response to the difference between the first temperature D1 and the second temperature D2 may be maintained until the spray period of the next molding cycle.
  • FIG. 5(b) A specific example of such an aspect will be described later.
  • Control of the operation of the cooling unit 13 based on the difference between the first temperature D1 and the second temperature D2 may be performed in all of a plurality of molding cycles MC (from the first molding cycle to the last molding cycle), or may be performed in a plurality of molding cycles MC. It may be performed only in a part of the molding cycles MC of one molding cycle MC. As an example of the latter, for example, there is a mode in which the above control is performed only when the temperature of the mold 101 is not stable (for example, when a plurality of molding cycles MC are started). Even though the above control is performed in all of a plurality of molding cycles MC, strictly speaking, the above control is not performed in all of the molding cycles MC, depending on the specific aspects of the above control. For example, before the first temperature D1 and the second temperature D2 are first detected in the first molding cycle MC, the operation of the cooling section 13 is controlled based on predetermined initial settings.
  • Controlling the operation of the cooling unit 13 based on the difference between the first temperature and the second temperature may be performed in various ways. Hereinafter, control of the operation of the cooling unit 13 based on the difference between the first temperature and the second temperature will be described by exemplifying a relatively simple control mode.
  • the cooling unit 13 is controlled by the manipulated variable u to bring the temperature of the mold 101 to the target temperature Tb. do.
  • Equation (1) can be regarded as an equation representing proportional control in which the period of the molding cycle is the period of feedback.
  • the same symbols are used for the manipulated variables in formulas (1) and (2), they may be different. From another point of view, the time difference between Ta and Tb and the time difference between D2 and D1 may be the same or different.
  • the proportional gain K may be set based on a map in which D2-D1 (or D1 and D2), the manipulated variable u, and the proportional gain K are associated with each other instead of the above formula.
  • the differential gain and/or the integral gain may be calculated based on the history of past molding cycles or the like. Since there is a correlation between the relationship between the manipulated variable and the cooling effect in the period from the first temperature to the second temperature and the relationship between the manipulated variable and the cooling effect in other periods, The manipulated variable can also be adjusted to achieve the target temperature at the appropriate time.
  • the above idea can also be applied to the aspect of controlling the temperature of multiple regions (multiple positions from another point of view) of the mold 101 .
  • the temperatures of the multiple regions may be detected by multiple contact temperature sensors 59A and/or by thermographic temperature sensors 59B, and may be obtained by interpolation.
  • the temperature control of a plurality of regions is performed by controlling the discharge amounts of the plurality of nozzles 19 of the spray device 15 individually, or by sequentially moving the head 21 of the spray device 15 to a plurality of regions to perform spraying. It may be realized by controlling the amount for each region and/or by individually controlling the amount of cooling water supplied to the plurality of channels 107 .
  • Equation (3) shows the determinant when the concept of equations (1) and (2) is extended to temperatures in multiple regions.
  • ⁇ T 1 to ⁇ T n indicate temperature changes in the first to n-th regions and correspond to D2-D1 in equation (2) (or Tb-Ta in equation (1)).
  • T 1 to T n indicate the temperatures of the first to n-th regions and correspond to D1 in formula (2) (or Ta in formula (1)).
  • u 1 to u m indicate the manipulated variables related to the 1st to m-th cooling, and correspond to u in the formula (2) (or the formula (1)).
  • a 11 to A nn are coefficients representing the influence of the first to n-th regions on each other with respect to temperature . It is a coefficient that indicates the effect on the temperature changes ⁇ T 1 to ⁇ T n that occur until the second temperature is measured. The coefficient may be obtained based on theory and/or experiments.
  • B 11 to B nm (components of the n ⁇ m matrix) are coefficients representing the effects of the manipulated variables u 1 to u m on the temperature changes ⁇ T 1 to ⁇ T n , and are represented by equation (2) (or equation (1) ) is equivalent to 1/K. Therefore, the measured T 1 to T n and ⁇ T 1 to ⁇ T n and the manipulated variables u 1 to u m at the time of measurement are substituted into the equation (3) in which A 11 to A nn are preset. , B 11 to B nm , the manipulated variables u 1 to u m for obtaining the target temperature in each of the n regions in the next molding cycle can be obtained.
  • n ⁇ m there is a mode in which the amount of spray discharge in n regions and the flow rate of cooling water in one or more flow paths 107 are used as the manipulated variables u 1 to u m .
  • n>m there is a mode in which, as the manipulated variables u 1 to u m , the discharge amount of the spray in a region with a smaller number of divisions than the number of divisions of the coated surface 109 for obtaining the temperature distribution is used.
  • the m manipulated variables may be manipulated variables corresponding to different regions of the same type of manipulated variables, or may be different types of manipulated variables.
  • the different types of operation amounts may be operation amounts of cooling elements that are different from each other, such as the difference between the operation amount of the spray device 15 and the operation amount of the internal cooling device 17, or the time during which the spray is performed.
  • the operation of the cooling unit 13 controlled based on the first temperature and the second temperature may be various.
  • the operation of the cooling unit 13 that changes according to the change in the difference between the first temperature and the second temperature or the physical quantity related to the operation may be various.
  • the length of time during which the spray is performed, the discharge amount per unit time in the spray, and/or the temperature of the release agent may be adjusted. Adjusting the length of time and/or the amount dispensed per unit of time may be performed as one type of adjustment of the total amount of release agent dispensed over the duration of the spray. Also, the adjustment of the physical quantity may be performed for only some nozzles 19 of the plurality of nozzles 19 or may be performed for all nozzles 19 . Also, the adjustment amount of the physical quantity may be different for each nozzle 19 or for each of two or more nozzles 19 , or may be common to all nozzles 19 .
  • the length of time that the cooling water is supplied to the mold 101, the flow rate of the cooling water per unit time, and/or the temperature of the cooling water may be adjusted. Adjusting the length of time and the flow rate per unit of time may be done as one type of adjusting the total amount of cooling water supplied to the mold 101 over the duration of the molding cycle. Also, the adjustment of the physical quantity may be performed in only some of the plurality of channels 107 or in all of the channels 107 . Also, the adjustment amount of the physical quantity may be different for each channel 107 or for each of two or more channels 107 , or may be common to all channels 107 .
  • FIG. 5(a) is a timing chart showing an example of a manner in which the length of time for supplying cooling water to the mold 101 is controlled based on the first temperature and the second temperature.
  • time t1 indicates the start time of the molding cycle MC (or the end time of the previous molding cycle MC).
  • time t1 is defined as the start time of the period during which the spray is performed (spray period SP), and is defined as the time point when the first temperature D1 is detected.
  • time t2 is the time when the spray period SP is completed.
  • time t2 is defined as the time at which the second temperature D2 is detected.
  • the spray period SP may be read as the detection period DP (reference numeral is shown in FIG. 6(a)) from the detection of the first temperature D1 to the detection of the second temperature D2.
  • cooling water is supplied intermittently within each molding cycle. Further, the flow rate Q when cooling water is supplied is set to a constant flow rate Qc. That is, the internal cooling device 17 permits and prohibits the supply of cooling water, but does not control the flow rate Q of the cooling water. Then, the internal cooling device 17 (control device 5 from another point of view) controls the length of time for supplying the cooling water based on the difference between the first temperature D1 and the second temperature D2.
  • the internal cooling device 17 starts supplying cooling water within the spray period SP of each molding cycle MC, and resumes supplying cooling water at an appropriate time after the spray period SP. Stop. Examples of the timing for stopping the cooling water include the start of mold opening, the completion of mold opening, and the completion of extruding the molded product. Unlike the illustrated example, the supply of cooling water may be stopped after the next molding cycle is started (but before the supply of cooling water for the next molding cycle is started).
  • the internal cooling device 17 changes the start point of cooling water supply in the molding cycle following the molding cycle MC in which the first temperature and the second temperature are detected. do. This changes the length of time for which cooling water is supplied.
  • FIG. 5(a) illustrates a situation where the length of time is lengthened from TM1 to TM2. The illustrated example may be interpreted as changing the length of time during which cooling water is supplied within the spray period SP from TM5 to TM6.
  • FIG. 5(b) is a timing chart showing an example of a mode of controlling the flow rate per unit time of cooling water supplied to the mold 101 based on the first temperature and the second temperature.
  • the horizontal axis (elapsed time t), vertical axis (flow rate Q per unit time), time t1 and time t2 are the same as in FIG. 5(a).
  • the spray period SP may be read as a detection period DP (reference symbol in FIG. 6A) from the detection of the first temperature D1 to the detection of the second temperature D2.
  • cooling water is continuously supplied throughout the molding cycle MC. Also, the flow rate Q of the cooling water is set to an arbitrary value or a preset value in a plurality of stages. Then, the internal cooling device 17 (control device 5 from another point of view) controls the flow rate Q based on the difference between the first temperature D1 and the second temperature D2.
  • the internal cooling device 17 changes the flow rate Q at a predetermined time t3 and maintains the flow rate Q until time t3 of the next molding cycle MC.
  • Time t3 may be any time during the molding cycle MC.
  • the time t3 may be positioned within the period from the completion of the spray period SP to the start of injection (when the temperature of the mold 101 starts rising), or during the start of injection. , after completion of injection.
  • the time t3 may be the period from the start of the molding cycle MC to the start of spraying in a mode where the spraying is started after the molding cycle MC is started.
  • time t3 may be during the spray period.
  • the internal cooling device 17 detects the first temperature t3 (the first temperature and the second temperature in the illustrated example) after detecting the first temperature and the second temperature. 2.
  • the flow rate Q is changed.
  • FIG. 5(b) illustrates a situation where the flow rate Q increases from Q1 to Q2 and from Q2 to Q3.
  • the flow rate Q is changed from the flow rate Q within the spray period SP in the molding cycle in which the first temperature and the second temperature are detected to the flow rate Q within the spray period SP in the next molding cycle. may be taken as
  • FIG. 6(a) is a timing chart showing an example of a mode of controlling the length of time for spraying based on the first temperature and the second temperature.
  • the horizontal axis indicates the elapsed time t.
  • the vertical axis represents the release agent per unit time discharged from one nozzle 19, two or more nozzles 19, or all nozzles 19 (hereinafter simply referred to as nozzles 19; the same applies to the description of FIG. 6B). It shows the discharge amount q.
  • the time point t1 indicates the start time point of the molding cycle MC, as in FIG. 5A, and is the time point at which the first temperature D1 is detected (the time point at which the detection period DP starts).
  • the time t1 is not set as the start time of the spray period SP.
  • the time t2 is the detection time of the second temperature D2 (end time of the detection period DP), as in FIG. 5(a).
  • the time t2 is not set as the completion time of the spray period SP.
  • the ejection amount q of the release agent when spraying is set to be a constant ejection amount qc. That is, the spray device 15 controls the length of time for spraying (TM11 and TM12), but does not control the discharge amount q. Then, the spray device 15 (control device 5 from another point of view) controls the length of time for spraying based on the difference between the first temperature D1 and the second temperature D2.
  • the spray device 15 starts and completes spraying within the detection period DP of each molding cycle MC. Then, according to the difference between the first temperature and the second temperature, the spray device 15 determines the length of time (TM11 and TM12 ). This change may be made by changing the play start time point, by changing the play end time point, or by changing both (example shown).
  • FIG. 6(a) illustrates a situation in which the length of time during which the spray is performed increases from TM11 to TM12.
  • FIG. 6(b) is a timing chart showing an example of a mode of controlling the discharge amount of the release agent per unit time based on the first temperature and the second temperature.
  • the horizontal axis (elapsed time t), vertical axis (discharge amount q per unit time), time t1 and time t2 are the same as those in FIG. 6(a).
  • the length of time when the spray is performed is a constant length of time TMc.
  • the discharge amount q of the release agent is set to an arbitrary value or a preset value in a plurality of stages.
  • the spray device 15 detects the first temperature D1 and the second temperature D2 based on the difference between the first temperature D1 and the second temperature D2. Change the discharge amount q in the cycle.
  • FIG. 6B illustrates a situation where the discharge amount increases from q1 to q2.
  • the constant time length TMc is shorter than the time length of the detection period DP and falls within the detection period DP.
  • TMc is not limited to such aspects.
  • the formula (1) can be regarded as a formula showing control in which feedback is performed in one molding cycle.
  • normal feedback control may be performed at a period shorter than the period of the molding cycle.
  • the flow rate Q1, Q2 or Q3 or the value obtained by multiplying these flow rates by the period of the molding cycle (total amount of cooling water in one molding cycle) is the manipulated variable of equation (1) It may be taken as an example of u.
  • the operation amount of the valve 45 (different from the operation amount u) is calculated from the deviation between the detected value of the flow rate Q and the flow rate Q1, Q2 or Q3 in a cycle shorter than the cycle of the molding cycle, and is fed back. control may be performed.
  • the die casting machine 1 repeats the molding cycle MC, and includes the machine main body 3 , the cooling section 13 and the control device 5 .
  • the machine body 3 sequentially performs mold closing, injection and mold opening within each molding cycle.
  • the cooling unit 13 cools the mold (the mold 101) within each molding cycle.
  • the control device 5 controls the cooling section 13 based on a signal from a sensor (temperature sensor 59 ) that detects the temperature of the mold 101 .
  • the cooling section 13 includes a spray device 15 that sprays toward the mold 101 before mold closing in each molding cycle.
  • the control device 5 detects a first temperature D1 detected by the temperature sensor 59 before spraying, and a second temperature D2 detected by the temperature sensor 59 after spraying within the molding cycle in which the first temperature D1 is detected.
  • the operation of the cooling unit 13 is controlled based on the temperature difference between the .
  • the control device 5 may control the operation of the cooling section 13 when spraying is performed in the next molding cycle after each molding cycle based on the difference between the first temperature and the second temperature in each molding cycle.
  • the temperature is detected for each molding cycle, and the detection result is immediately reflected in the control of the cooling unit 13, so the accuracy of control is quickly improved.
  • the cooling unit 13 is controlled during the spray period of the next molding cycle based on the temperature during the spray period, so that when the molding cycle is repeated, the correlation between the control content and the temperature detection result is high. As a result, for example, when the molding cycle is repeated, the control tends to be stable, and the accuracy of the control is improved.
  • the temperature detected in the current molding cycle may be utilized.
  • controlling the operation of the cooling unit when spraying is performed in the next molding cycle as in the example of FIG. may occur in the current molding cycle and its changed state is maintained in the next molding cycle.
  • the cooling section 13 may include an internal cooling device 17 that supplies coolant (eg, water) into the channel 107 provided in the mold 101 .
  • the control device 5 may adjust the physical quantity of cooling water for subsequent (for example, subsequent molding cycles) based on the difference between the first temperature and the second temperature within the same molding cycle.
  • the operation of the internal cooling device 17 is easier to change than the spray device 15. Specifically, it is as follows.
  • the operation of the spray device 15 is controlled to take into account not only cooling effects, but also effects such as seizure and/or demolding resistance.
  • the internal cooling device 17 basically does not need to expect other effects from the cooling water. Therefore, the operation of the internal cooling device 17 can be flexibly changed.
  • the temperature is detected based on the period of spraying during which the temperature of the die 101 is greatly lowered, and the internal cooling device 17 adjusts the cooling effect based on the detected temperature. Overall, good temperature control is achieved.
  • the physical quantity related to the cooling water may include the length of time during which the cooling water is supplied into the flow path 107 in each molding cycle (Fig. 5(a)).
  • the need to adjust the flow rate of cooling water is reduced.
  • the need to provide a flow control valve or the need to increase the precision of the flow control valve) is reduced, and cost reduction of the internal cooling device 17 is facilitated.
  • the above physical quantity related to the cooling water may include the flow rate Q per unit time of the cooling water flowing into the flow path 107 during a predetermined period in each molding cycle (Fig. 5(b)).
  • the "predetermined period” is a period corresponding to the time length of the molding cycle from time t3 to the next time t3.
  • the spray period SP or the detection period DP may be regarded as corresponding to the predetermined period.
  • the gradient of the temperature change of the mold 101 can be changed by changing the flow rate Q.
  • the timing at which the gradient of the temperature change of the mold 101 changes can be maintained. Therefore, for example, the probability of an unintended temperature change occurring due to a change in the interrelationship between the timing of cooling by the internal cooling device 17, the timing of temperature change due to the operation of the machine body 3, and the timing of cooling by the spray is reduced. be done.
  • the control device 5 may adjust the physical quantity related to spraying in subsequent molding cycles based on the difference between the first temperature and the second temperature within the same molding cycle.
  • the operation of the cooling means that is highly correlated with the difference between the first temperature and the second temperature is controlled.
  • the temperature of the mold 101 tends to become stable (within the molding cycle temperature changes tend to be the same between multiple molding cycles.)
  • the above physical quantity related to spraying may include the time during which spraying is performed in each molding cycle (Fig. 6(a)).
  • the above physical quantity related to the spray may include the amount of liquid ejected by the spray per unit time (discharge amount q) in each molding cycle.
  • the timing at which the slope of the temperature change of the mold 101 changes can be maintained in the same manner as in the mode of changing the flow rate Q of the cooling water.
  • the likelihood of unintended temperature changes occurring, for example, due to changes in interrelationships with the timing of operations of other components that affect temperature changes is reduced.
  • the die 101 is appropriately replaced by the user of the die casting machine 1.
  • the temperature sensor 59 may be attached to the mold 101 . Therefore, the die casting machine 1 may be regarded as a machine that does not include the mold 101 and the temperature sensor 59 or as a machine that includes the mold 101 and the temperature sensor 59 .
  • the spray device may have a main body of the spray device (the spray device 15 when the spray device 15 and the control device 5 are regarded as separate components) and a spray control section 55 .
  • the spray device 15 sprays toward the mold (the mold 101) before mold closing in each molding cycle when the molding cycle including mold closing, injection and mold opening is repeated.
  • the spray controller 55 may control the spray device 15 based on a signal from a sensor (temperature sensor 59 ) that detects the temperature of the mold 101 .
  • the spray control unit 55 controls the first temperature D1 detected by the temperature sensor 59 before spraying and the second temperature D1 detected by the temperature sensor 59 after spraying within the molding cycle in which the first temperature D1 is detected. Based on the temperature difference from temperature D2, the operation of spray device 15 may be controlled in subsequent molding cycles.
  • a spray device including such a spray control unit 55 may be distributed (or capable of such distribution) separately from the machine main body 3 and the main body control unit 53, or may be distributed separately from the main body 3 and main body control unit 53. It may be one that is not distributed (or impossible). Also, in either aspect, the spray device may or may not include a temperature sensor 59 .
  • molding machines are not limited to die casting machines.
  • the molding machine may be another metal molding machine, an injection molding machine that molds resin, or a molding machine that molds a material obtained by mixing wood flour with thermoplastic resin or the like. There may be.
  • the molding machine is not limited to horizontal clamping and horizontal injection, and may be, for example, vertical clamping and vertical injection, vertical clamping and horizontal injection, or horizontal clamping and vertical injection.
  • the flow rate Q was changed over the entire cycle (period from time t3 to the next time t3) corresponding to the cycle of the molding cycle.
  • the flow rate Q may be changed only in part of the cycle (for example, the spray period SP or the detection period DP).
  • the operation of the cooling section is adjusted in the molding cycle after the molding cycle in which these temperatures are detected.
  • the operation of the cooling section may be adjusted only within the molding cycle in which these temperatures are detected.
  • the time during which cooling water is supplied within the spray period SP may be the same for a plurality of molding cycles. Then, based on the difference between the first temperature and the second temperature, the time for supplying cooling water may be adjusted only within the molding cycle in which these temperatures are detected.
  • the flow rate Q within the spray period SP may be the same for a plurality of molding cycles. Then, based on the difference between the first temperature and the second temperature, the flow rate Q may be adjusted only within the molding cycle in which these temperatures are detected.
  • the operation of the cooling unit within the detection period DP is sufficient for a plurality of moldings. It may be the same from cycle to cycle. In such a mode, for example, when the cooling effect of the cooling unit with respect to the operation amount of the cooling unit changes due to some abnormality or change in the environmental temperature, it is possible to make adjustments according to the change.
  • the operation amount of the cooling unit Adjustments can be made to account for the effect of the change on the change in cooling effect of the cooling unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

A die casting machine 1 repeats a molding cycle MC, and has a machine body 3, a cooling unit 13, and a control device 5. The machine body 3 performs mold closing, injection, and mold opening in each molding cycle in sequence. The cooling unit 13 cools a die 101 in each molding cycle. The control device 5 controls the cooling unit 13 on the basis of a signal from a temperature sensor 59 for detecting the temperature of the die 101. The cooling unit 13 includes a spray device 15 for spraying toward the die 101 before mold closing in each molding cycle. The control device 5 controls the operation of the cooling unit 13 on the basis of the temperature difference between a first temperature D1 detected by the temperature sensor 59 before the spraying and a second temperature D2 detected by the temperature sensor 59 after the spraying in the molding cycle in which the first temperature D1 was detected.

Description

成形機及びスプレイ装置Molding machine and spray equipment
 本開示は、成形機及び当該成形機に利用されるスプレイ装置に関する。成形機は、型のキャビティに成形材料を充填して成形品を得るものであり、例えば、ダイカストマシン又は射出成形機である。スプレイ装置は、例えば、型に離型剤をスプレイする。 The present disclosure relates to a molding machine and a spray device used in the molding machine. A molding machine fills a mold cavity with a molding material to obtain a molded product, and is, for example, a die casting machine or an injection molding machine. The spray device, for example, sprays the mold with a mold release agent.
 型のキャビティに成形材料を充填して成形品を得るときに、型の温度が成形品の品質に影響を及ぼすことが知られている(例えば下記特許文献1~3)。また、型にスプレイされる離型剤等が型の温度に影響を及ぼすことも知られている(特許文献1及び2)。 It is known that the temperature of the mold affects the quality of the molded product when the molding material is filled into the cavity of the mold to obtain the molded product (for example, Patent Documents 1 to 3 below). It is also known that a release agent or the like sprayed onto the mold affects the temperature of the mold (Patent Documents 1 and 2).
 特許文献1は、型の複数個所にスプレイを行う成形機を開示している。この成形機は、型の複数個所に温度センサを有しており、複数の温度センサの検出値に基づいて、型の温度が均一になるように型の複数個所へスプレイされる離型剤の量を制御する。また、この成形機は、各成形サイクルにおいてスプレイの前に温度を検出し、前回の成形サイクルで検出された温度と、今回の成形サイクルで検出された温度とを比較して、今回の成形サイクルでスプレイされる離型剤の量を決定する。 Patent Document 1 discloses a molding machine that sprays at multiple locations on the mold. This molding machine has temperature sensors at multiple locations on the mold, and based on the values detected by the multiple temperature sensors, mold release agents are sprayed at multiple locations on the mold so that the temperature of the mold becomes uniform. control the amount. In addition, this molding machine detects the temperature before spraying in each molding cycle, compares the temperature detected in the previous molding cycle with the temperature detected in the current molding cycle, and determines the temperature in the current molding cycle. determines the amount of release agent to be sprayed.
 特許文献2は、金型の内面を分割した複数のブロックへスプレイヘッドを順次移動させてスプレイを行うスプレイシステムを開示している。このシステムは、スプレイヘッドに搭載された非接触温度計によって、スプレイがなされる直前のブロックの温度を検出し、その温度に基づいてスプレイの吐出パターンを設定する。 Patent document 2 discloses a spray system that sprays by sequentially moving a spray head to a plurality of blocks obtained by dividing the inner surface of the mold. This system uses a non-contact thermometer mounted on the spray head to detect the temperature of the block immediately before spraying, and sets the spray discharge pattern based on that temperature.
 特許文献3は、サーモグラフィーによって得られた金型温度の画像に基づいて、温度異常の予兆を検知する検知装置を開示している。 Patent Document 3 discloses a detection device that detects a sign of temperature abnormality based on an image of mold temperature obtained by thermography.
特開平10-193070号公報JP-A-10-193070 特開2015-150617号公報JP 2015-150617 A 特開2019-84556号公報JP 2019-84556 A
 特許文献1及び2の技術では、型の温度を目標値にすることが困難な場合が生じ得る。例えば、型の温度の目標値と型の温度の計測値との温度差に所定の係数を乗じて離型剤の噴出量を設定しても、上記係数が適切に設定されていなければ、型の温度は目標値とはならない。また、例えば、冷却のための設備の状態の変化(例えば流路の詰まり又は圧力変動)又は環境温度の変化によって、上記の係数の適切な値が変化することがある。従って、型の温度の制御における精度を向上させることができる成形機及びスプレイ装置が提供されることが望まれる。 With the techniques of Patent Documents 1 and 2, it may be difficult to set the temperature of the mold to the target value. For example, even if the ejection amount of the release agent is set by multiplying the temperature difference between the target value of the mold temperature and the measured value of the mold temperature by a predetermined coefficient, if the above coefficient is not set appropriately, the mold may is not a target value. Also, for example, changes in the condition of the equipment for cooling (eg clogging of channels or pressure fluctuations) or changes in the ambient temperature may change the appropriate values of the above factors. Accordingly, it would be desirable to provide a molding machine and spray apparatus that can improve the accuracy in controlling the temperature of the mold.
 本開示の一態様に係る成形機は、成形サイクルを繰り返す。前記成形機は、機械本体と、冷却部と、制御装置と、を有している。前記機械本体は、各成形サイクル内の、型閉じ、射出及び型開きを順に行う。前記冷却部は、各成形サイクル内で型を冷却する。前記制御装置は、前記型の温度を検出するセンサからの信号に基づいて前記冷却部を制御する。前記冷却部は、各成形サイクル内で型閉じ前の前記型に向けてスプレイを行うスプレイ装置を含んでいる。前記制御装置は、前記スプレイの前に前記センサによって検出された第1温度と、当該第1温度が検出された成形サイクル内で前記スプレイの後に検出された第2温度との温度差に基づいて、前記冷却部の動作を制御する。 A molding machine according to one aspect of the present disclosure repeats a molding cycle. The molding machine has a machine body, a cooling section, and a control device. The machine body sequentially performs mold closing, injection and mold opening within each molding cycle. The cooling section cools the mold within each molding cycle. The control device controls the cooling section based on a signal from a sensor that detects the temperature of the mold. The cooling section includes a spray device that sprays the mold prior to closing within each molding cycle. The controller controls the temperature difference between a first temperature sensed by the sensor prior to the spraying and a second temperature sensed after the spraying within the molding cycle in which the first temperature was sensed. , to control the operation of the cooling unit.
 本開示の一態様に係るスプレイ装置は、スプレイ装置本体と、スプレイ制御部と、を有している。前記スプレイ装置本体は、型閉じ、射出及び型開きを含む成形サイクルが繰り返されるときに、各成形サイクル内で型閉じ前の前記型に向けてスプレイを行う。前記スプレイ制御部は、前記型の温度を検出するセンサからの信号に基づいて前記スプレイ装置本体を制御する。前記スプレイ制御部は、前記スプレイの前に前記センサによって検出された第1温度と、当該第1温度が検出された成形サイクル内で前記スプレイの後に検出された第2温度との温度差に基づいて、その後の成形サイクル内の前記スプレイ装置本体の動作を制御する。 A spray device according to one aspect of the present disclosure includes a spray device main body and a spray control section. The spray device main body sprays toward the mold before mold closing in each molding cycle when molding cycles including mold closing, injection and mold opening are repeated. The spray control section controls the main body of the spray device based on a signal from a sensor that detects the temperature of the mold. The spray control is based on a temperature difference between a first temperature sensed by the sensor prior to the spraying and a second temperature sensed after the spraying within the molding cycle in which the first temperature was sensed. control the operation of the spray device body during subsequent molding cycles.
 上記の構成によれば、型の温度の制御における精度を向上させることができる。 According to the above configuration, it is possible to improve the accuracy in controlling the temperature of the mold.
本開示の実施形態に係るダイカストマシンの構成を示す側面図。1 is a side view showing the configuration of a die casting machine according to an embodiment of the present disclosure; FIG. 図1のダイカストマシンの冷却部に係る構成の一例を示す模式図。FIG. 2 is a schematic diagram showing an example of a configuration related to a cooling section of the die casting machine of FIG. 1; 図1のダイカストマシンの冷却部に係る構成の他の例を示す模式図。FIG. 2 is a schematic diagram showing another example of the configuration of the cooling section of the die casting machine of FIG. 1; 図1のダイカストマシンの動作を説明するためのフローチャート。2 is a flowchart for explaining the operation of the die casting machine of FIG. 1; 図5(a)及び図5(b)は冷媒の供給量の調整方法の一例及び他の例を示すタイミングチャート。FIGS. 5(a) and 5(b) are timing charts showing one example and another example of a method for adjusting the amount of refrigerant supplied. 図6(a)及び図6(b)は離型剤の供給量の調整方法の一例及び他の例を示すタイミングチャート。6(a) and 6(b) are timing charts showing one example and another example of a method for adjusting the supply amount of the release agent.
 以下では、まず、本開示の一実施形態に係るダイカストマシンの概要について説明し、その後、ダイカストマシンの詳細について説明する。 Below, first, an outline of a die casting machine according to an embodiment of the present disclosure will be described, and then details of the die casting machine will be described.
(ダイカストマシンの概要)
 図1は、本開示の実施形態に係るダイカストマシン1の構成を示す側面図(一部に断面図を含む。)である。図1には、便宜上、直交座標系xyzを付す。z方向は、鉛直方向であり、+z側は上方である。
(Overview of die casting machine)
FIG. 1 is a side view (partly including a cross-sectional view) showing the configuration of a die casting machine 1 according to an embodiment of the present disclosure. FIG. 1 is provided with an orthogonal coordinate system xyz for convenience. The z direction is the vertical direction and the +z side is upward.
 ダイカストマシン1は、金型101を保持している。金型101は、例えば、固定型103と、移動型105とを含んでいる。ダイカストマシン1は、図1において2点鎖線で示されているように、固定型103に対して移動型105を近づけて当接させる(型閉じを行う)。これにより、固定型103と移動型105との間に成形品(別の表現ではダイカスト品又は製品)の形状と同様の形状を有するキャビティCaが構成される。ダイカストマシン1は、例えば、キャビティCaに未硬化状態の金属材料を充填する(射出を行う。)。キャビティCaに充填された金属材料は金型101に熱を奪われて凝固する。これにより、成形品が作製される。その後、ダイカストマシン1は、成形品を取り出すために、移動型105を固定型103から離す(型開きを行う。)。ダイカストマシン1は、例えば、上記のような型閉じ、射出及び型開きが順に行われる成形サイクルを繰り返す。 The die casting machine 1 holds a mold 101. The mold 101 includes, for example, a fixed mold 103 and a movable mold 105 . The die casting machine 1 brings the movable die 105 closer to the stationary die 103 and brings it into contact with the fixed die 103 as indicated by the chain double-dashed line in FIG. 1 (the die is closed). Thereby, a cavity Ca having a shape similar to that of a molded product (in other words, a die-cast product or product) is formed between the fixed mold 103 and the movable mold 105 . The die casting machine 1, for example, fills the cavity Ca with an uncured metal material (performs injection). The metal material filled in the cavity Ca is solidified by the mold 101 depriving it of heat. Thereby, a molded product is produced. After that, the die casting machine 1 separates the movable mold 105 from the fixed mold 103 (performs mold opening) in order to take out the molded product. The die casting machine 1 repeats, for example, a molding cycle in which the mold closing, injection and mold opening described above are performed in order.
 各成形サイクルにおいては、型閉じの前に、固定型103及び移動型105の互いに対向する面に対して離型剤等を吹き付けるスプレイが行われる。離型剤は、例えば、金型101の表面に被膜を形成し、金型101の表面と金型101内に充填される金属材料との間に介在する。そして、離型剤は、金属材料が金型101に付着してしまう焼付きが発生する蓋然性を低減したり、成形品を金型101から引き剥がすときの抵抗(離型抵抗)を低減したりすることに寄与する。また、離型剤は、前回の成形サイクルにおいて温度が上昇した金型101を冷却することにも寄与し得る。 In each molding cycle, before the molds are closed, a mold release agent or the like is sprayed against the opposing surfaces of the fixed mold 103 and the movable mold 105 . The release agent forms, for example, a film on the surface of the mold 101 and intervenes between the surface of the mold 101 and the metal material filled in the mold 101 . The mold release agent reduces the probability of occurrence of seizure in which the metal material adheres to the mold 101, and reduces the resistance (mold release resistance) when the molded product is peeled off from the mold 101. contribute to The mold release agent can also help cool the mold 101, which has increased in temperature in the previous molding cycle.
 図4は、ダイカストマシン1の動作を説明するためのフローチャートである。 FIG. 4 is a flowchart for explaining the operation of the die casting machine 1.
 上述したように、ダイカストマシン1は、成形サイクルMCを繰り返し行う。各成形サイクルMCにおいては、例えば、スプレイ(ステップST1)、型閉じ(ステップST2)、射出(ステップST3)及び型開き(ステップST4)が順に行われる。金型101は、成形サイクルMC内において、冷却部13(後述)によって適宜な時期に冷却される。例えば、冷却部13による冷却動作は、スプレイを含む。また、スプレイ以外の冷却動作もスプレイの期間中に行われてよい。 As described above, the die casting machine 1 repeats the molding cycle MC. In each molding cycle MC, for example, spraying (step ST1), mold closing (step ST2), injection (step ST3) and mold opening (step ST4) are sequentially performed. The mold 101 is cooled at an appropriate time by a cooling section 13 (described later) within the molding cycle MC. For example, the cooling operation by the cooling unit 13 includes spraying. Also, cooling operations other than spraying may be performed during the period of spraying.
 本実施形態では、ダイカストマシン1は、例えば、各成形サイクルにおいて、スプレイの前の金型101の温度と、スプレイの後の金型101の温度と、を検出する(ステップST11及びST12)。なお、前者の温度を「第1温度」又は「第1温度D1」ということがあり、後者の温度を「第2温度」又は「第2温度D2」ということがある。 In this embodiment, the die casting machine 1 detects, for example, the temperature of the mold 101 before spraying and the temperature of the mold 101 after spraying in each molding cycle (steps ST11 and ST12). The former temperature may be called "first temperature" or "first temperature D1", and the latter temperature may be called "second temperature" or "second temperature D2".
 1つの(同一の)成形サイクルにおける第1温度と第2温度との差は、冷却部13による金型101の冷却効果を定量的に評価する指標値となる。そこで、ダイカストマシン1は、第1温度と第2温度との差に基づいて、冷却部13の動作を制御する。図4では、第1温度D1及び第2温度D2から延びる矢印及び制御指令(指令D3)によって示されているように、第1温度及び第2温度に基づいて、これらの温度を検出した成形サイクルの次の成形サイクルにおけるスプレイが制御される態様が例示されている。 The difference between the first temperature and the second temperature in one (same) molding cycle serves as an index value for quantitatively evaluating the cooling effect of the mold 101 by the cooling unit 13 . Therefore, the die casting machine 1 controls the operation of the cooling section 13 based on the difference between the first temperature and the second temperature. In FIG. 4, the molding cycle detected these temperatures based on the first and second temperatures, as indicated by the arrows extending from the first temperature D1 and the second temperature D2 and the control command (command D3). The manner in which the spray in the next molding cycle is controlled is exemplified.
 以上のとおり、本実施形態では、ダイカストマシン1は、同一の成形サイクル内の第1温度と第2温度との差に基づいて、その後の(例えば次の成形サイクルの)冷却部13の動作を制御する。従って、例えば、冷却部13による冷却の効果を定量的に把握して、目標温度を得るために必要な冷却部13の動作状態を特定することができる。冷却部13の動作状態は、別の観点では、例えば、冷却部13の動作量若しくは操作量(別の観点ではゲイン等のパラメータの値)、又は冷却に係る物理量である。このようにして、金型101の温度の制御の精度が向上する。一般に、金型101の温度の低下量は、スプレイが行われているときに大きい。従って、スプレイの前後に計測した第1温度と第2温度とに基づいて冷却部13の動作を制御することによって、金型101の温度の制御の精度が更に向上する。 As described above, in the present embodiment, the die casting machine 1 operates the cooling unit 13 thereafter (for example, in the next molding cycle) based on the difference between the first temperature and the second temperature in the same molding cycle. Control. Therefore, for example, it is possible to quantitatively grasp the cooling effect of the cooling unit 13 and specify the operation state of the cooling unit 13 necessary to obtain the target temperature. From another point of view, the operating state of the cooling part 13 is, for example, an operation amount or a manipulated variable of the cooling part 13 (a value of a parameter such as a gain from another point of view), or a physical quantity related to cooling. In this way, the accuracy of controlling the temperature of the mold 101 is improved. Generally, the amount of decrease in temperature of the mold 101 is large when spraying is being performed. Therefore, by controlling the operation of the cooling unit 13 based on the first temperature and the second temperature measured before and after spraying, the accuracy of controlling the temperature of the mold 101 is further improved.
(ダイカストマシンの詳細)
 ここでは、概略、下記の順にダイカストマシン1の説明を行う。
 ・ダイカストマシン1の全体構成(図1)
 ・金型101を冷却する冷却部13(図2又は図3)
 ・金型101の温度を検出する温度センサ59(図2又は図3)
 ・第1温度D1及び第2温度D2に基づく冷却部13の動作の制御(図4~図6(b))
 ・実施形態のまとめ
(details of die casting machine)
Here, the die casting machine 1 will be described in the following order.
・Overall configuration of die casting machine 1 (Fig. 1)
・Cooling unit 13 for cooling the mold 101 (Fig. 2 or Fig. 3)
- A temperature sensor 59 for detecting the temperature of the mold 101 (Fig. 2 or Fig. 3)
・Control of the operation of the cooling unit 13 based on the first temperature D1 and the second temperature D2 (FIGS. 4 to 6B)
・Summary of embodiment
(ダイカストマシンの全体構成)
 図1に示すダイカストマシン1は、既述のように、未硬化状態の金属材料を金型101が構成している空間(キャビティCaを含む。)へ射出する。未硬化状態は、例えば、液状又は固液共存状態である。固液共存状態は、液状から凝固が進んだ半凝固状態、又は固体状から溶融が進んだ半溶融状態である。金属は、例えば、アルミニウム合金、亜鉛合金又はマグネシウム合金である。なお、以下では、未硬化状態の金属材料が溶湯(液状の金属材料)であることを前提とした表現をすることがある。
(Overall configuration of die casting machine)
As described above, the die casting machine 1 shown in FIG. 1 injects an uncured metal material into the space (including the cavity Ca) formed by the mold 101 . The uncured state is, for example, a liquid state or a solid-liquid coexisting state. The solid-liquid coexistence state is a semi-solid state in which solidification has progressed from a liquid state, or a semi-molten state in which melting has progressed from a solid state. Metals are, for example, aluminum alloys, zinc alloys or magnesium alloys. In addition, hereinafter, expressions may be made on the premise that the uncured metal material is molten metal (liquid metal material).
 既述のように、金型101は、例えば、固定型103及び移動型105を含んでいる。本開示の図面では、便宜上、固定型103又は移動型105の断面を1種類のハッチングで示す。ただし、各型は、その全体が一体的に形成された直彫り式のものであってもよいし、入れ子をおも型にはめ込んで構成された入れ子式のものであってもよい。また、金型101は、固定型103若しくは移動型105に固定された固定中子、及び/又は、固定型103と移動型105とに挟まれる移動中子を有していてもよい。 As described above, the mold 101 includes, for example, a fixed mold 103 and a movable mold 105. In the drawings of the present disclosure, for convenience, the cross section of the fixed mold 103 or the movable mold 105 is indicated by one type of hatching. However, each mold may be of a direct carving type that is integrally formed as a whole, or may be of a nesting type that is configured by inserting a nest into a main mold. Moreover, the mold 101 may have a fixed core fixed to the fixed mold 103 or the movable mold 105 and/or a movable core sandwiched between the fixed mold 103 and the movable mold 105 .
 ダイカストマシン1は、金型101を冷却する冷却部13を有している。冷却部13は、金型101にスプレイを行うスプレイ装置15を含んでいる。 The die casting machine 1 has a cooling section 13 that cools the mold 101 . The cooling section 13 includes a spray device 15 that sprays the mold 101 .
 ダイカストマシン1の機械的動作を行う部分のうち、冷却部13を除く部分を機械本体3というものとする。機械本体3は、例えば、金型101の開閉及び型締めを行う型締装置7と、金型101内に溶湯を射出する射出装置9と、ダイカスト品を固定型103又は移動型105(図1では移動型105)から押し出す押出装置11とを有している。 Of the parts that mechanically operate the die casting machine 1, the parts excluding the cooling part 13 are called the machine main body 3. The machine main body 3 includes, for example, a mold clamping device 7 for opening and closing the mold 101 and for clamping the mold, an injection device 9 for injecting molten metal into the mold 101, and a fixed mold 103 or a movable mold 105 (FIG. 1). has an extruder 11 for extruding from a moving die 105).
 また、ダイカストマシン1は、機械本体3及び冷却部13を制御する制御装置5(後述する図2又は図3)を有している。制御装置5は、機械本体3、冷却部13又はスプレイ装置15とは別個の構成要素として捉えられてもよいし、機械本体3、冷却部13又はスプレイ装置15の構成要素として捉えられてもよい。本開示の説明では、便宜上、前者のように捉えた表現をしたり、後者のように捉えた表現をしたりすることがある。 The die casting machine 1 also has a control device 5 (FIG. 2 or 3 described later) that controls the machine main body 3 and the cooling section 13 . The control device 5 may be regarded as a component separate from the machine body 3, the cooling section 13, or the spray device 15, or may be regarded as a component of the machine body 3, the cooling section 13, or the spray device 15. . In the description of the present disclosure, for the sake of convenience, the former may be used and the latter may be used.
 機械本体3(例えば、型締装置7、射出装置9及び押出装置11)の構成及び動作は、種々の態様とされてよく、公知の構成とされて構わない。また、冷却部13及びスプレイ装置15についても、その制御に係る部分を除いては、種々の態様とされてよく、公知の構成とされて構わない。 The configuration and operation of the machine body 3 (for example, the mold clamping device 7, the injection device 9, and the extrusion device 11) may be in various modes, and may be a known configuration. Also, the cooling unit 13 and the spray device 15 may be configured in various manners and known configurations, except for the portions related to their control.
 例えば、型締装置7は、トグル機構を利用して型開閉及び型締めを行うものであってもよいし(図1の例)、トグル機構を有さないものであってもよい。後者の態様において、型開閉と、型締めとは別個の駆動源によって行われてもよい。また、例えば、型締装置7の駆動方式は、電動式、液圧式(油圧式)又はこれらを組み合わせたハイブリッド式であってよい。 For example, the mold clamping device 7 may perform mold opening/closing and mold clamping using a toggle mechanism (example in FIG. 1), or may not have a toggle mechanism. In the latter aspect, mold opening and closing and mold clamping may be performed by separate drive sources. Further, for example, the drive system of the mold clamping device 7 may be an electric system, a hydraulic system (hydraulic system), or a hybrid system combining these.
 射出装置9は、例えば、コールドチャンバマシン用のものであってもよいし(図1の例)、ホットチャンバマシン用のものであってもよいし、両者を組みわせたようなハイブリッド式のものであってもよい。また、例えば、射出装置9の駆動方式は、電動式、液圧式(油圧式)又はこれらを組み合わせたハイブリッド式であってよい。 The injection device 9 may be, for example, one for a cold chamber machine (example in FIG. 1), one for a hot chamber machine, or a hybrid type in which both are combined. may be Further, for example, the drive system of the injection device 9 may be an electric system, a hydraulic system (hydraulic system), or a hybrid system combining these.
 押出装置11は、例えば、移動型105から成形品を押し出すものであってもよいし(図1の例)、固定型103から成形品を押し出すものであってもよい。また、例えば、押出装置11は、電動式又は液圧式(油圧式)の駆動源を有するものであってもよいし、型締装置7による型開きを利用するもの(駆動源を有さないもの)であってもよい。 The extrusion device 11 may, for example, extrude a molded product from a movable mold 105 (example in FIG. 1) or may extrude a molded product from a fixed mold 103. Further, for example, the extrusion device 11 may have an electric or hydraulic (hydraulic) drive source, or may utilize mold opening by the mold clamping device 7 (without a drive source). ).
 制御装置5は、例えば、コンピュータによって構成されてよい。コンピュータは、例えば、特に図示しないが、CPU(central processing unit)、ROM(read only memory)、RAM(random access memory)及び外部記憶装置を含んで構成されている。CPUがROM及び/又は外部記憶装置に記憶されているプログラムを実行することによって、制御等を行う各種の機能部(後述)が構築される。なお、制御装置5は、一定の処理のみを行う論理回路を含んでいてもよい。 The control device 5 may be configured by a computer, for example. The computer includes, for example, a CPU (central processing unit), a ROM (read only memory), a RAM (random access memory), and an external storage device (not shown). Various functional units (described later) that perform control and the like are constructed by the CPU executing programs stored in the ROM and/or the external storage device. Note that the control device 5 may include a logic circuit that performs only certain processing.
(冷却部の構成)
 図2は、冷却部13の具体的な一例としての冷却部13Aを示す模式図である。図3は、冷却部13の具体的な他の例としての冷却部13Bを示す模式図である。
(Structure of cooling unit)
FIG. 2 is a schematic diagram showing a cooling section 13A as a specific example of the cooling section 13. As shown in FIG. FIG. 3 is a schematic diagram showing a cooling section 13B as another specific example of the cooling section 13. As shown in FIG.
 なお、以下では、冷却部13Aが有する構成要素の符号にAを付すことがあり、冷却部13Bが有する構成要素の符号にBを付すことがある。また、符号にA又はBが付された構成要素を区別せずに、A及びBを省略して当該構成要素に言及することがある(この場合の符号については図1も参照)。 It should be noted that hereinafter, A may be added to the reference numerals of the constituent elements of the cooling section 13A, and B may be attached to the reference numerals of the constituent elements of the cooling section 13B. In addition, without distinguishing the constituent elements to which A or B is added to the reference numerals, the constituent elements may be referred to by omitting A and B (see also FIG. 1 for the reference numerals in this case).
 冷却部13は、例えば、スプレイ装置15(15A又は15B)の他に、金型101(固定型103及び/又は移動型105)に設けられた流路107に供給される冷媒(例えば水)の流れを調整する内部冷却装置17(17A又は17B)を有している。冷却部13は、既述のように制御装置5(又はその一部)を有していると捉えられてよい。 The cooling unit 13, for example, in addition to the spray device 15 (15A or 15B), is supplied to the flow path 107 provided in the mold 101 (the fixed mold 103 and/or the movable mold 105). It has an internal cooling device 17 (17A or 17B) that regulates the flow. The cooling unit 13 may be regarded as having the controller 5 (or part thereof) as described above.
 ここでは、概略、下記の順に冷却部13の構成要素について説明する。
 ・スプレイ装置15
 ・流路107及び内部冷却装置17
 ・冷却部13の制御を行う制御部
Here, the constituent elements of the cooling unit 13 will be described in the following order.
Spray device 15
- Flow path 107 and internal cooling device 17
A control unit that controls the cooling unit 13
(スプレイ装置)
 スプレイ装置15は、例えば、液体を霧状にして金型101に吹き付ける。液体は、例えば、離型剤及び/又は水である。以下の説明では、便宜上、液体として離型剤のみを例に取る。離型剤は、公知の種々のものとされてよく、例えば、水溶性のものであってもよいし、油性のものであってもよい。なお、冷却効果は、水溶性離型剤(すなわち水を含む離型剤)の方が油性離型剤よりも高い。離型剤は、原液のまま噴出されてもよいし、水等によって希釈されて噴出されてもよいし、噴出後に原液と同時に噴出された水等によって希釈されてもよい。スプレイ装置15は、噴出された離型剤を回収しなくてもよいし、回収して再利用してもよい。
(spray device)
The spray device 15 atomizes the liquid, for example, and sprays it onto the mold 101 . The liquid is, for example, a release agent and/or water. In the following description, for the sake of convenience, only the release agent is taken as an example of the liquid. Various known release agents may be used, for example, they may be water-soluble or oil-based. A water-soluble release agent (that is, a release agent containing water) has a higher cooling effect than an oil-based release agent. The release agent may be ejected as it is, or may be diluted with water or the like before being ejected, or may be diluted with water or the like ejected at the same time as the original solution after ejection. The spray device 15 may not collect the spouted release agent, or may collect and reuse it.
 スプレイ装置15の構成は、既述のように、その制御に係る構成を除いて、種々の構成とされてよく、例えば、公知の構成とされて構わない。例えば、スプレイ装置15は、金型101に向けて離型剤を噴出する1以上(図示の例では複数)のノズル19(19A又は19B)を有している。スプレイ装置15は、型開きされている固定型103と移動型105との間の空間にノズル19を出し入れするものであってもよいし(図2及び図3の例)、上記空間の外部にノズル19が固定されているものであってもよい。なお、便宜上、前者の態様を「挿入式」というものとする。 The configuration of the spray device 15 may have various configurations, as described above, except for the configuration related to its control, and may have a known configuration, for example. For example, the spray device 15 has one or more (a plurality in the illustrated example) nozzles 19 (19A or 19B) for ejecting the mold release agent toward the mold 101 . The spray device 15 may move the nozzle 19 into and out of the space between the fixed mold 103 and the movable mold 105 which are opened (examples of FIGS. 2 and 3), or may The nozzle 19 may be fixed. For the sake of convenience, the former mode will be referred to as an "insertion type".
 固定型103又は移動型105の離型剤が塗布されるべき表面(例えばキャビティCaの内面となる表面)を被塗布面109というものとする。挿入式のスプレイ装置15は、例えば、型開きされている固定型103と移動型105との間の空間内の所定位置で停止している複数のノズル19から被塗布面109の全体に離型剤を塗布するものであってもよいし、被塗布面109を分割した複数の領域に対して1以上のノズル19を順次移動させながら離型剤を噴出することによって被塗布面109の全体に離型剤を塗布するものであってもよい。後者の態様において、ノズル19の移動及び/又は離型剤の噴出は、連続的に行われてもよいし、間欠的に行われてもよい。 The surface of the stationary mold 103 or the movable mold 105 to which the release agent is to be applied (for example, the surface that becomes the inner surface of the cavity Ca) is referred to as the coated surface 109 . The insertion-type spray device 15, for example, sprays a mold release onto the entire surface 109 to be coated from a plurality of nozzles 19 stopped at predetermined positions in the space between the fixed mold 103 and the movable mold 105 which are opened. Alternatively, one or more nozzles 19 are sequentially moved to a plurality of divided areas of the surface 109 to be coated, and the release agent is ejected to the entire surface 109 to be coated. A release agent may be applied. In the latter aspect, the movement of the nozzle 19 and/or ejection of the release agent may be performed continuously or intermittently.
 図1~図3に例示するスプレイ装置15は、挿入式のものとされており、例えば、複数のノズル19を含むヘッド21(21A又は21B)と、ヘッド21を移動させる駆動装置23(23A又は23B)とを有している。また、図2及び図3に示すように、スプレイ装置15は、ヘッド21(換言すればノズル19)へ離型剤を供給する供給装置27を有している。 The spray device 15 illustrated in FIGS. 1 to 3 is of an insertion type, and includes, for example, a head 21 (21A or 21B) including a plurality of nozzles 19 and a driving device 23 (23A or 21B) for moving the head 21. 23B). Moreover, as shown in FIGS. 2 and 3, the spray device 15 has a supply device 27 for supplying the release agent to the head 21 (in other words, the nozzle 19).
 ヘッド21は、例えば、複数のノズル19に加えて、複数のノズル19を保持する基部25(25A又は25B)を有している。基部25は、例えば、駆動装置23に保持されている。また、基部25は、特に図示しないが、内部に流路を有しており、当該流路は、供給装置27とノズル19とを接続している。 The head 21 has, for example, a base portion 25 (25A or 25B) that holds the plurality of nozzles 19 in addition to the plurality of nozzles 19 . The base 25 is held by the driving device 23, for example. Further, the base 25 has a flow channel inside, although not shown, and the flow channel connects the supply device 27 and the nozzle 19 .
 図2においては、ヘッド21Aとして、それぞれ比較的長いパイプ(例えば銅管)によって構成されている複数のノズル19Aを有しているものが例示されている。各ノズル19Aは、例えば、塑性変形を生じるように曲げられることにより、その先端(吐出口)の位置及び向きを調整可能である。複数のノズル19Aは、例えば、基部25Aの一の面(図示の例では下面)から延び出ている。なお、図1では、ヘッド21Aがヘッド21として例示されている。 In FIG. 2, the head 21A is illustrated as having a plurality of nozzles 19A each made up of a relatively long pipe (eg, copper pipe). Each nozzle 19A can adjust the position and orientation of its tip (discharge port) by, for example, bending so as to cause plastic deformation. The plurality of nozzles 19A, for example, extends from one surface (lower surface in the illustrated example) of the base 25A. Note that the head 21A is illustrated as the head 21 in FIG.
 図3においては、ヘッド21Bとして、比較的短い複数のノズル19Bを有しているものが例示されている。複数のノズル19Bは、基部25Bの固定型103又は移動型105に対向する2つの面に設けられており、概ね、上記2つの面から固定型103又は移動型105への方向へ離型剤を吐出する。複数のノズル19Bは、基部25Bに対する向きを変更することによって吐出方向を変更可能であってもよいし、そのような変更が不可能であってもよい。 FIG. 3 illustrates the head 21B having a plurality of relatively short nozzles 19B. The plurality of nozzles 19B are provided on two surfaces of the base 25B facing the fixed mold 103 or the movable mold 105, and generally spray the release agent from the two surfaces toward the fixed mold 103 or the movable mold 105. Dispense. The plurality of nozzles 19B may be changeable in discharge direction by changing the orientation with respect to the base 25B, or may not be changeable.
 複数のノズル19(19A又は19B)は、離型剤の吐出量が互いに同一であってもよいし、互いに異なっていてもよい。また、複数のノズル19は、離型剤の吐出量が一律に制御されてもよいし、個別に制御されてもよい。吐出量を互いに異ならせたり、吐出量を互いに個別に制御したりするための構成は、ノズル19、基部25及び供給装置27のいずれに設けられていてもよい。 The plurality of nozzles 19 (19A or 19B) may have the same or different ejection amounts of the release agent. Further, the ejection amount of the releasing agent may be uniformly controlled from the plurality of nozzles 19, or may be controlled individually. Any of the nozzle 19 , the base 25 and the supply device 27 may be provided with a configuration for making the discharge amounts different from each other or for controlling the discharge amounts individually.
 ノズル19(19A又は19B)は、基部25に対して着脱可能であってもよいし、着脱不可能であってもよい。また、特に図示しないが、基部25(25A及び25B)は、駆動装置23に保持されているとともに供給装置27に接続されている第1部分と、ノズル19を保持しており、第1部分に着脱される第2部分とを有する構成であってもよいし、そのような構成でなくてもよい。 The nozzle 19 (19A or 19B) may or may not be detachable from the base 25. Although not shown, the base 25 (25A and 25B) holds a first portion held by the driving device 23 and connected to the supply device 27, and the nozzle 19. It may be configured to have a detachable second portion, or may not be configured as such.
 図2及び図3は模式図であることから、離型剤は、金型101の被塗布面109の一部のみに同時に塗布されている。ただし、ヘッド21A及び21Bは、所定位置にて金型101の被塗布面109の全体に離型剤を吹き付ける態様で利用されてもよいし、被塗布面109を分割した複数の領域に順に離型剤を吹き付ける態様で利用されてもよい。 Since FIGS. 2 and 3 are schematic diagrams, the release agent is simultaneously applied only to a part of the coated surface 109 of the mold 101 . However, the heads 21A and 21B may be used in such a manner as to spray the release agent onto the entire coating surface 109 of the mold 101 at a predetermined position, or may be used to sequentially separate a plurality of divided areas of the coating surface 109. It may be used in a mode of spraying a stencil agent.
 駆動装置23は、少なくとも、固定型103及び移動型105の間に出し入れする方向(図示の例では上下方向)にヘッド21を移動させることが可能である。また、駆動装置23は、固定型103と移動型105との対向方向にヘッド21を移動させることが可能であってもよいし、上記の出し入れの方向及び対向方向に交差する方向(例えば図1のx方向)にヘッド21を移動させることが可能であってもよい。 The driving device 23 is capable of moving the head 21 at least in the direction of putting it in and out between the fixed mold 103 and the movable mold 105 (vertical direction in the illustrated example). Further, the driving device 23 may be capable of moving the head 21 in the direction in which the fixed mold 103 and the movable mold 105 face each other, or in a direction intersecting the direction of insertion/removal and the direction of facing (for example, in FIG. 1). x direction)).
 駆動装置23において、上記のようなヘッド21の移動を実現する具体的な構成は任意である。例えば、駆動装置23は、回転するアームを有する垂直多関節ロボットであってもよいし(図1の例)、スライド軸を平行移動させる直交座標ロボットであってもよい。また、駆動装置23の駆動方式は、例えば、電動式であり、図2及び図3では、駆動装置23として、電動機(符号省略)が模式的に示されている。駆動装置23は、例えば、型締装置7の、固定型103を保持するダイプレート(符号省略)の上面に設置されている。 The drive device 23 may have any specific configuration for realizing the movement of the head 21 as described above. For example, the driving device 23 may be a vertically articulated robot having a rotating arm (example in FIG. 1), or may be an orthogonal coordinate robot that translates a slide axis. The drive system of the drive device 23 is, for example, an electric type, and FIGS. 2 and 3 schematically show an electric motor (reference numerals omitted) as the drive device 23 . The driving device 23 is installed, for example, on the upper surface of a die plate (not numbered) that holds the fixed mold 103 of the mold clamping device 7 .
 供給装置27は、例えば、離型剤と並列にエアをヘッド21(基部25)に供給する。基部25内には、離型剤の流路及びエアの流路が形成されている。離型剤及びエアは適宜な位置で混合されて霧状にされ、金型101の被塗布面109に吹き付けられる。離型剤とエアとの混合は、基部25内で行われてもよいし、ノズル19内で行われてもよいし、ノズル19の外部で行われてもよい。 For example, the supply device 27 supplies air to the head 21 (base portion 25) in parallel with the release agent. In the base portion 25, a release agent channel and an air channel are formed. The release agent and air are mixed at an appropriate position and atomized, and sprayed onto the coating surface 109 of the mold 101 . The release agent and air may be mixed in the base 25 , in the nozzle 19 , or outside the nozzle 19 .
 供給装置27は、エアのみをヘッド21に供給することによって、ノズル19からエアのみを金型101に向けて噴出させることが可能であってよい。すなわち、スプレイ装置15は、エアブローが可能であってよい。エアブローは、例えば、離型剤のスプレイ前における金型101の洗浄、及び/又は離型剤のスプレイ後の水分の除去に利用されてよい。 The supply device 27 may be capable of ejecting only air from the nozzle 19 toward the mold 101 by supplying only air to the head 21 . That is, the spray device 15 may be capable of blowing air. The air blow may be used, for example, to clean the mold 101 before spraying the release agent and/or to remove moisture after spraying the release agent.
 供給装置27において、上記のような離型剤の供給を実現する具体的な構成は任意である。図示の例では、供給装置27は、以下の構成要素を有している。離型剤を保持するタンク29。タンク29にエアを送ってタンク29の離型剤を加圧して送出するポンプ31。送出された離型剤の流れを制御するバルブ33。 The supply device 27 may have any specific configuration for realizing the supply of the releasing agent as described above. In the illustrated example, the supply device 27 has the following components. A tank 29 holding a release agent. A pump 31 for sending air to the tank 29 to pressurize and deliver the release agent in the tank 29 . A valve 33 that controls the flow of released release agent.
 バルブ33は、離型剤の流れを許容又は禁止するだけのものであってもよいし、離型剤の流量を制御可能な流量制御弁であってもよい。流量制御弁は、圧力変動に関わらずに所望の流量を維持できる圧力補償付き流量制御弁であってもなくてもよく、また、サーボバルブであってもなくてもよい。 The valve 33 may only allow or prohibit the flow of the release agent, or may be a flow control valve capable of controlling the flow rate of the release agent. The flow control valve may or may not be a pressure-compensated flow control valve capable of maintaining a desired flow rate regardless of pressure fluctuations, and may or may not be a servo valve.
 図示の例とは異なり、タンク29から離型剤を吸引して吐出するポンプが設けられてもよい。また、2以上のバルブが適宜な位置に設けられてもよい。離型剤の圧力を制御する制御弁が設けられてもよい。バルブ33の制御に加えて、又は代えて、ポンプの制御によって離型剤の供給の有無又は流量が制御されてもよい。この場合、バルブ33は省略されてもよい。 Unlike the illustrated example, a pump that sucks and discharges the release agent from the tank 29 may be provided. Also, two or more valves may be provided at appropriate positions. A control valve may be provided to control the pressure of the release agent. In addition to or instead of controlling the valve 33, the presence or absence of the release agent supply or the flow rate may be controlled by controlling the pump. In this case, valve 33 may be omitted.
 供給装置27は、離型剤に関する種々の物理量を検出するセンサを有していてもよい。例えば、供給装置27は、離型剤の流量を検出するセンサ35、離型剤の圧力を検出するセンサ(不図示)、離型剤の温度を検出するセンサ(不図示)、及び/又は離型剤の濃度を検出するセンサ(不図示)を有してよい。センサ35は、例えば、バルブ33が流量制御弁である態様において、流量のフィードバック制御に利用されてよい。 The supply device 27 may have sensors that detect various physical quantities related to the release agent. For example, the supply device 27 includes a sensor 35 for detecting the flow rate of the release agent, a sensor (not shown) for detecting the pressure of the release agent, a sensor (not shown) for detecting the temperature of the release agent, and/or a release agent. It may have a sensor (not shown) that detects the concentration of the template. Sensor 35 may be used for feedback control of flow, for example, in embodiments in which valve 33 is a flow control valve.
 供給装置27において、エアの供給を実現する具体的な構成も任意である。図示の例では、供給装置27は、以下の構成要素を有している。エアを送出するポンプ37。送出されたエアの流れを制御するバルブ39。また、供給装置27は、エアの圧力又は流量を検出するセンサ41等の適宜なセンサを有してよい。 In the supply device 27, a specific configuration for realizing air supply is also arbitrary. In the illustrated example, the supply device 27 has the following components. A pump 37 for delivering air. A valve 39 that controls the flow of delivered air. Moreover, the supply device 27 may have an appropriate sensor such as the sensor 41 for detecting the pressure or flow rate of air.
 バルブ39は、エアの流れを許容又は禁止するだけのものであってもよいし、エアの圧力又は流量を制御可能なものであってもよい。図示の例とは異なり、2以上のバルブが適宜な位置に設けられてもよい。バルブ39の制御に加えて、又は代えて、ポンプ37の制御によって、エアの供給の有無又は圧力(若しくは流量)が制御されてもよい。この場合、バルブ39は省略されてもよい。 The valve 39 may only permit or prohibit the flow of air, or may be capable of controlling the pressure or flow rate of air. Unlike the illustrated example, two or more valves may be provided at appropriate locations. In addition to or instead of controlling the valve 39 , the presence or absence of air supply or the pressure (or flow rate) may be controlled by controlling the pump 37 . In this case, valve 39 may be omitted.
(流路及び内部冷却装置)
 図2及び図3では、図解を容易にするために、移動型105に設けられた流路107のみが模式的に示されている。実際には、固定型103にも流路107が設けられてよい。また、内部冷却装置17は、固定型103の流路107及び移動型105の流路107に冷媒を供給してよい。
(Flow path and internal cooling device)
In FIGS. 2 and 3, only the flow path 107 provided in the moving mold 105 is schematically shown for ease of illustration. In practice, the fixed mold 103 may also be provided with the channel 107 . In addition, the internal cooling device 17 may supply coolant to the channel 107 of the fixed mold 103 and the channel 107 of the movable mold 105 .
 冷媒は、液体、気体又はミストとされてよく、また、金型101からの吸熱に伴って状態が変化してもよい。冷媒の成分も任意である。液体の冷媒としては、例えば、水が挙げられる。以下では、冷媒が水(液状)である態様を前提とした表現をすることがある。また、以下において、金型101に供給される水を、金型101に供給される等の修飾をせずに、単に冷却水ということがある。 The coolant may be liquid, gas, or mist, and may change state as heat is absorbed from the mold 101 . The constituents of the refrigerant are also arbitrary. Examples of liquid refrigerants include water. In the following description, expressions may be based on the premise that the refrigerant is water (liquid). Further, hereinafter, the water supplied to the mold 101 may simply be referred to as cooling water without modification such as being supplied to the mold 101 .
 流路107の具体的な形状及び寸法等は任意である。例えば、流路107は、いわゆる直流式、循環式若しくは噴流式又はこれらの組み合わせとされてよい。直流式では、例えば、型(103又は105)を一方向に(例えば直線状に)延びる複数の流路107が並列に設けられ、型全体の冷却に寄与する。循環式では、例えば、流路107は、型の局部を囲むように延びており、局部の冷却に寄与する。噴流式では、例えば、流路107は、型の局部(例えば固定中子)内の空間と、当該空間に挿入されている管とを含んでおり、管の先端から空間内に流出した冷却水が管の根元側へ流れることによって局部が冷却される。 The specific shape, dimensions, etc. of the flow path 107 are arbitrary. For example, the flow path 107 may be of a so-called DC type, a circulation type, a jet type, or a combination thereof. In the DC type, for example, a plurality of flow paths 107 extending in one direction (for example, linearly) in the mold (103 or 105) are provided in parallel to contribute to cooling of the entire mold. In the circulation type, for example, the channel 107 extends so as to surround a local portion of the mold and contributes to cooling of the local portion. In the jet type, for example, the flow path 107 includes a space within a local part of the mold (for example, a fixed core) and a pipe inserted into the space, and the cooling water flowing out from the tip of the pipe into the space is flow to the root side of the pipe cools the local area.
 複数の流路107が設けられている態様において、複数の流路107の形状及び寸法は、互いに同一であってもよいし、互いに異なっていてもよい。また、複数の流路107の2つ以上及び/又は全部は、冷却水の流れの許容及び禁止、及び/又は流量が共に制御されてもよいし、別個に制御されてもよい。別個の制御は、例えば、内部冷却装置17が有しているバルブ45(後述)が複数設けられることによって実現されてよい。 In a mode in which a plurality of channels 107 are provided, the shape and dimensions of the plurality of channels 107 may be the same or different. In addition, two or more and/or all of the plurality of flow paths 107 may be controlled together in permitting/prohibiting the flow of cooling water and/or in flow rate, or may be controlled separately. Separate control may be realized, for example, by providing a plurality of valves 45 (described later) that the internal cooling device 17 has.
 内部冷却装置17は、各成形サイクルの全期間に亘って継続的に金型101に冷却水を供給するものであってもよいし、各成形サイクルにおいて間欠的に金型101に冷却水を供給するものであってもよい。後者の態様において、内部冷却装置17は、冷却水を供給していない期間において、エアを金型101に供給してもよいし、供給しなくてもよい。エアは、例えば、流路107内の冷却水をパージすることに寄与してよい。なお、以下では、便宜上、エアの供給に関しては説明を省略する。内部冷却装置17は、金型101に供給した冷却水を回収しないもの(図2の例)であってもよいし、金型101に供給した冷却水を回収するもの(図3の例)であってもよい。また、いずれにせよ、その具体的な構成は任意である。 The internal cooling device 17 may continuously supply cooling water to the mold 101 over the entire period of each molding cycle, or may intermittently supply cooling water to the mold 101 in each molding cycle. It may be something to do. In the latter aspect, the internal cooling device 17 may or may not supply air to the mold 101 during a period in which cooling water is not supplied. The air may, for example, help purge cooling water within the flow path 107 . For the sake of convenience, the description of air supply is omitted below. The internal cooling device 17 may not recover the cooling water supplied to the mold 101 (example in FIG. 2), or may recover the cooling water supplied to the mold 101 (example in FIG. 3). There may be. In any case, the specific configuration is arbitrary.
 図2に例示する内部冷却装置17Aは、冷却水を送出するポンプ43と、送出された冷却水の流れを制御するバルブ45とを有している。ポンプ43は、例えば、不図示のタンクに貯留されている冷却水を吸引して流路107へ送出する。なお、ポンプ43は、他の機械(例えば他のダイカストマシン)にも冷却水を供給する工場の設備であってもよい。別の観点では、内部冷却装置17Aは、ポンプ43を有していなくてもよい。 The internal cooling device 17A illustrated in FIG. 2 has a pump 43 for sending cooling water and a valve 45 for controlling the flow of the sent cooling water. The pump 43 sucks, for example, cooling water stored in a tank (not shown) and sends it to the flow path 107 . Note that the pump 43 may be factory equipment that supplies cooling water to other machines (for example, other die casting machines). From another point of view, the internal cooling device 17A may not have the pump 43 .
 内部冷却装置17Aにおいて、バルブ45は、冷却水の流れを許容又は禁止するだけのものであってもよいし、冷却水の流量を制御可能な流量制御弁であってもよい。流量制御弁は、圧力変動に関わらずに所望の流量を維持できる圧力補償付き流量制御弁であってもなくてもよく、また、サーボバルブであってもなくてもよい。 In the internal cooling device 17A, the valve 45 may only allow or prohibit the flow of cooling water, or may be a flow control valve capable of controlling the flow of cooling water. The flow control valve may or may not be a pressure-compensated flow control valve capable of maintaining a desired flow rate regardless of pressure fluctuations, and may or may not be a servo valve.
 内部冷却装置17Aは、冷却水に関する種々の物理量を検出するセンサを適宜な位置に有していてもよい。例えば、内部冷却装置17は、冷却水の流量を検出するセンサ47、冷却水の圧力を検出するセンサ(不図示)、及び/又は冷却水の温度を検出するセンサ(不図示)を、流路107の上流及び/又は下流に有してよい。センサ47は、例えば、バルブ45が流量制御弁である態様において、流量のフィードバック制御に利用されてよい。 The internal cooling device 17A may have sensors at appropriate positions that detect various physical quantities related to the cooling water. For example, the internal cooling device 17 includes a sensor 47 that detects the flow rate of cooling water, a sensor (not shown) that detects the pressure of cooling water, and/or a sensor (not shown) that detects the temperature of cooling water. 107 upstream and/or downstream. Sensor 47 may be used for feedback control of flow, for example in embodiments in which valve 45 is a flow control valve.
 図3に例示する内部冷却装置17Bは、内部冷却装置17Aと同様の構成に加えて、金型101から流出した冷却水を回収する回収部51を有している。ポンプ43は、回収部51に回収された冷却水を金型101に送出する。この点を除いて、内部冷却装置17Aの既述の説明は、内部冷却装置17Bに援用されて構わない。 The internal cooling device 17B illustrated in FIG. 3 has a recovery unit 51 for recovering the cooling water flowing out from the mold 101 in addition to the same configuration as the internal cooling device 17A. The pump 43 sends the cooling water recovered by the recovery unit 51 to the mold 101 . Except for this point, the above description of the internal cooling device 17A may be applied to the internal cooling device 17B.
 回収部51は、例えば、特に図示しないが、冷却水を貯留する1以上のタンク、及び冷却水を冷却するための装置(例えばヒートポンプ)を有してよい。回収部51の一部又は全部は、他の機械(例えば他のダイカストマシン)にも冷却水を供給する工場の設備であってもよい。別の観点では、内部冷却装置17Bは、回収部51を有していなくてもよい。 For example, although not shown, the recovery unit 51 may have one or more tanks for storing cooling water and a device for cooling the cooling water (for example, a heat pump). Part or all of the recovery unit 51 may be factory equipment that also supplies cooling water to other machines (eg, other die casting machines). From another point of view, the internal cooling device 17B may not have the collection section 51 .
 図3に示すように、内部冷却装置17(17A又は17B)は、金型101の流路107に冷却水を送出するポンプ43に加えて、又は代えて、流路107に負圧を生じさせるポンプ49を有してもよい。そして、負圧によって冷却水を金型101内に流れさせてもよい。この場合、冷却水が流路107の外部に漏れる蓋然性が低減される。 As shown in FIG. 3, the internal cooling device 17 (17A or 17B) creates a negative pressure in the channel 107 in addition to or in place of the pump 43 that delivers cooling water to the channel 107 of the mold 101. A pump 49 may be included. Then, cooling water may be caused to flow into the mold 101 by negative pressure. In this case, the possibility that cooling water leaks to the outside of flow path 107 is reduced.
 特に図示しないが、内部冷却装置17(17A又は17B)は、流路107の流入側の流れを制御するバルブ45に加えて、又は代えて、流路107の流出側の流れを制御するバルブを有していてもよい。そして、このバルブによって、冷却水の供給の有無が制御されたり、流量が制御されたりしてもよい。 Although not particularly shown, the internal cooling device 17 (17A or 17B) includes a valve that controls the flow on the outflow side of the flow path 107 in addition to or instead of the valve 45 that controls the flow on the inflow side of the flow path 107. may have. This valve may control the presence or absence of supply of cooling water, and may control the flow rate.
(冷却部を制御する制御部)
 図2及び図3に示すように、制御装置5は、例えば、機械本体3を制御する本体制御部53と、スプレイ装置15を制御するスプレイ制御部55と、内部冷却装置17を制御する内部冷却制御部57とを有している。これらの機能部は、例えば、既述のように、CPUがプログラムを実行することによって構成されている。
(control unit that controls the cooling unit)
As shown in FIGS. 2 and 3, the control device 5 includes, for example, a body control section 53 that controls the machine body 3, a spray control section 55 that controls the spray device 15, and an internal cooling device that controls the internal cooling device 17. and a control unit 57 . These functional units are, for example, configured by the CPU executing programs as described above.
 本体制御部53、スプレイ制御部55及び内部冷却制御部57は、ハードウェア的に互いに分散されていてもよいし、纏められていてもよい。前者の例を挙げると、本体制御部53及び内部冷却制御部57が機械本体3と共に流通されるハードウェアによって構成される一方で、スプレイ制御部55がスプレイ装置15と共に流通されるハードウェアによって構成されてよい。この場合、スプレイ制御部55は、例えば、本体制御部53から不図示のケーブルを介して受信した信号に基づいて、スプレイ装置15の動作を制御してよい。 The main body control unit 53, the spray control unit 55, and the internal cooling control unit 57 may be distributed to each other in terms of hardware, or may be integrated. Taking the former example, the main body control section 53 and the internal cooling control section 57 are configured by hardware distributed together with the machine body 3 , while the spray control section 55 is configured by hardware distributed together with the spray device 15 . may be In this case, the spray control section 55 may control the operation of the spray device 15, for example, based on a signal received from the body control section 53 via a cable (not shown).
(温度センサ)
 図2又は図3に示す温度センサ59(59A又は59B)は、既述の説明から理解されるように、例えば、スプレイの前の金型101の温度及びスプレイの後の金型101の温度を検出することに利用される。温度センサ59は、ダイカストマシン1、冷却部13、スプレイ装置15又は内部冷却制御部57の一部として捉えられてもよいし、これらとは別個の構成要素として捉えられてもよい。
(temperature sensor)
The temperature sensor 59 (59A or 59B) shown in FIG. 2 or 3 detects, for example, the temperature of the mold 101 before spraying and the temperature of the mold 101 after spraying, as understood from the above description used for detection. The temperature sensor 59 may be regarded as part of the die casting machine 1, the cooling section 13, the spray device 15, or the internal cooling control section 57, or may be regarded as a component separate from these.
 温度センサ59の構成は、種々の態様のものとされてよく、例えば、公知の態様と同様とされて構わない。例えば、温度センサは、接触式のもの(例えば、熱電対、サーミスタ又は測温抵抗体)であってもよいし、非接触式のもの(例えば放射温度計)であってもよい。また、例えば、温度センサは、金型101の温度を直接的に検出するものであってもよいし、金型101の温度と相関が高い物理量(例えば流路107を流れる冷却水の温度)を検出するものであってもよい。温度センサは、トランスデューサーのみであってもよいし、トランスデューサーに加えて、増幅等の処理を行う回路を含むものであってもよい。 The configuration of the temperature sensor 59 may take various forms, for example, it may be similar to a known form. For example, the temperature sensor may be a contact type (eg, thermocouple, thermistor, or resistance temperature detector) or a non-contact type (eg, radiation thermometer). Further, for example, the temperature sensor may directly detect the temperature of the mold 101, or may detect a physical quantity highly correlated with the temperature of the mold 101 (for example, the temperature of the cooling water flowing through the flow path 107). It may be one that detects. The temperature sensor may be a transducer only, or may include a circuit for processing such as amplification in addition to the transducer.
 図2では、温度センサ59として、接触式の温度センサ59Aが例示されている。図2では、図解を容易にするために、移動型105の温度を検出する温度センサ59Aのみが図示されているが、固定型103の温度を検出する温度センサ59Aが設けられてよいことはもちろんである。 In FIG. 2, as the temperature sensor 59, a contact temperature sensor 59A is illustrated. In FIG. 2, only the temperature sensor 59A for detecting the temperature of the movable mold 105 is shown for ease of illustration, but the temperature sensor 59A for detecting the temperature of the fixed mold 103 may be provided. is.
 温度センサ59Aの位置は任意である。例えば、型(103又は105)をx方向、y方向又はz方向において3等分したときに、温度センサ59Aは、いずれの範囲に位置してもよい。温度センサ59Aの検出値は、そのまま利用されてもよいし、適宜な補正がなされてから利用されてもよい。なお、本開示の説明では、補正後の値も検出値の一種であるものとする。後述する図3の例についても同様である。 The position of the temperature sensor 59A is arbitrary. For example, when the mold (103 or 105) is divided into three equal parts in the x-direction, y-direction or z-direction, the temperature sensor 59A may be positioned in any range. The detected value of the temperature sensor 59A may be used as it is, or may be used after being appropriately corrected. In addition, in the description of the present disclosure, the corrected value is also a type of detected value. The same applies to the example of FIG. 3, which will be described later.
 特に図示しないが、1つの型(103又は105)において、2以上の温度センサ59Aが設けられていてもよい。2以上の温度センサ59Aは、固定型103と移動型105との対向方向に見て互いに異なる位置に配されていてもよいし、対向方向に直交する方向に見て互いに異なる位置に配されていてもよい。 Although not shown, one mold (103 or 105) may be provided with two or more temperature sensors 59A. The two or more temperature sensors 59A may be arranged at different positions when viewed in the opposing direction of the fixed mold 103 and the movable mold 105, or may be arranged at different positions when viewed in a direction orthogonal to the opposing direction. may
 2以上の温度センサ59Aの検出値は、型(103又は105)の全体又は被塗布面109の全体における温度の代表値を特定することに利用されてもよいし、型又は被塗布面109における温度分布を特定することに利用されてもよい。代表値としては、平均値(相加平均)及び加重平均値が挙げられる。温度分布の特定においては、各温度センサの検出値自体が用いられてもよいし、検出値自体に加えて、又は代えて、補間によって得られた値が用いられてもよい。なお、本開示の説明では、補間によって得られた値も検出値の一種であるものとする。 The detected values of the two or more temperature sensors 59A may be used to identify the representative value of the temperature in the entire mold (103 or 105) or the entire surface to be coated 109, or the temperature in the mold or the surface to be coated 109 It may be used to identify the temperature distribution. Representative values include average values (arithmetic averages) and weighted average values. In specifying the temperature distribution, the detected value of each temperature sensor itself may be used, or in addition to or instead of the detected value itself, a value obtained by interpolation may be used. In addition, in the description of the present disclosure, the value obtained by interpolation is also a type of detection value.
 図3では、温度センサ59として、非接触式の温度センサ59Bが例示されている。図3では、図解を容易にするために、移動型105の温度を検出する温度センサ59Bのみが図示されているが、固定型103の温度を検出する温度センサ59Bが設けられてよいことはもちろんである。 A non-contact temperature sensor 59B is illustrated as the temperature sensor 59 in FIG. In FIG. 3, only the temperature sensor 59B for detecting the temperature of the movable mold 105 is shown for ease of illustration, but the temperature sensor 59B for detecting the temperature of the fixed mold 103 may be provided. is.
 温度センサ59Bは、より詳細には、例えば、被塗布面109の温度分布の画像を取得するサーモグラフィーである。温度センサ59Bは、被塗布面109の全体の温度分布を取得してもよいし、被塗布面109の一部の領域の温度分布を取得してもよい。特に図示しないが、被塗布面109の互いに異なる領域を撮像する複数の温度センサ59B(又はそのうちの撮像部)が設けられ、これにより、被塗布面109の全体の温度分布が取得されてもよい。 More specifically, the temperature sensor 59B is, for example, a thermography that acquires an image of the temperature distribution of the surface 109 to be coated. The temperature sensor 59B may acquire the temperature distribution of the entire coated surface 109 or the temperature distribution of a partial area of the coated surface 109 . Although not particularly shown, a plurality of temperature sensors 59B (or imaging units thereof) that capture images of different regions of the surface to be coated 109 may be provided to obtain the temperature distribution of the entire surface to be coated 109. .
 温度センサ59Bの位置は任意である。例えば、温度センサ59Bは、型(103又は105)に対して、上方(図示の例)、側方又は下方のいずれに配置されてもよい。また、温度センサ59Bの撮像部は、固定されていてもよいし、位置及び/又は向きを変更可能であってもよい。換言すれば、温度センサ59Bは、機械的な走査が不可能であってもよいし、可能であってもよい。 The position of the temperature sensor 59B is arbitrary. For example, the temperature sensor 59B may be positioned above (example shown), laterally or below the mold (103 or 105). Also, the imaging section of the temperature sensor 59B may be fixed, or may be changeable in position and/or orientation. In other words, temperature sensor 59B may or may not be mechanically scannable.
 温度センサ59Bによって得られた温度分布は、被塗布面109における温度の代表値を特定することに利用されてもよいし、被塗布面109を複数に分割した領域毎の温度の代表値を特定することに利用されてもよいし、被塗布面109の特定の位置における温度の抽出に利用されてもよい。代表値としては、平均値(相加平均)及び加重平均値が挙げられる。 The temperature distribution obtained by the temperature sensor 59B may be used to specify the representative value of the temperature on the surface to be coated 109, or to specify the representative value of the temperature for each region obtained by dividing the surface to be coated 109. or to extract the temperature at a specific location on the coated surface 109 . Representative values include average values (arithmetic averages) and weighted average values.
(第1温度及び第2温度に基づく冷却部の動作の制御)
 既述のように、ダイカストマシン1(別の観点では制御装置5、スプレイ制御部55又は内部冷却制御部57)は、同一の成形サイクル内の第1温度と第2温度との差に基づいて、その後の(例えば次の成形サイクルの)冷却部13の動作を制御する。より詳細には、例えば、制御装置5は、第1温度及び第2温度との差に基づいて、目標温度を得るために必要な冷却部13の操作量等を特定して冷却部13を制御する。ここでは、概略、下記の順で、第1温度及び第2温度に基づく冷却部の動作の制御について説明する。
 ・第1温度及び第2温度に基づく冷却部の動作の制御全体(図4)
 ・第1温度及び第2温度に基づく操作量の計算方法の例
 ・第1温度及び第2温度に基づいて制御される冷却部の動作の具体例(図5(a)~図6(b))
(Control of operation of cooling unit based on first temperature and second temperature)
As already mentioned, the die casting machine 1 (or alternatively the controller 5, the spray controller 55 or the internal cooling controller 57) determines the temperature difference between the first temperature and the second temperature within the same molding cycle. , controls the operation of the cooling section 13 thereafter (eg in the next molding cycle). More specifically, for example, the control device 5 controls the cooling unit 13 based on the difference between the first temperature and the second temperature, specifying the amount of operation of the cooling unit 13 required to obtain the target temperature, and the like. do. Here, the control of the operation of the cooling unit based on the first temperature and the second temperature will be described in the following order.
Overall control of the operation of the cooling unit based on the first temperature and the second temperature (Fig. 4)
・Example of calculation method of the manipulated variable based on the first temperature and the second temperature ・Specific example of the operation of the cooling unit controlled based on the first temperature and the second temperature (Fig. 5(a) to Fig. 6(b) )
(第1温度及び第2温度に基づく冷却部の動作の制御全体)
 図4の概要については、既に述べたとおりである。より詳細には、以下のとおりである。
(Overall control of operation of cooling unit based on first temperature and second temperature)
The outline of FIG. 4 has already been described. More details are as follows.
 本体制御部53は、型締装置7を制御して型閉じを行う(ステップST2)。特に図示しないが、型閉じ後(例えば移動型105が固定型103に接触した後)、本体制御部53は、移動型105と固定型103とを締め付ける型締めを行うように型締装置7を制御する。また、特に図示しないが、本体制御部53は、例えば、不図示の給湯装置を制御して射出装置9に溶湯を供給する。溶湯の供給が完了すると、本体制御部53は、射出装置9を制御してキャビティCaに溶湯を射出する(ステップST3)。射出された溶湯が凝固すると、本体制御部53は、型締装置7を制御して型開きを行う(ステップST4)。特に図示しないが、型開きに並行して、又は型開き後、本体制御部53は、押出装置11を制御して成形品を押し出す。本体制御部53は、このような制御(成形サイクルMC)を繰り返す。 The body control unit 53 controls the mold clamping device 7 to close the mold (step ST2). Although not shown in particular, after the molds are closed (for example, after the movable mold 105 comes into contact with the fixed mold 103), the body control unit 53 activates the mold clamping device 7 so as to clamp the movable mold 105 and the fixed mold 103. Control. Also, although not shown, the body control unit 53 controls, for example, a hot water supply device (not shown) to supply molten metal to the injection device 9 . When the supply of the molten metal is completed, the body control section 53 controls the injection device 9 to inject the molten metal into the cavity Ca (step ST3). When the injected molten metal solidifies, the body control section 53 controls the mold clamping device 7 to open the mold (step ST4). Although not shown, the body control unit 53 controls the extrusion device 11 to extrude the molded product in parallel with the mold opening or after the mold opening. The body control unit 53 repeats such control (molding cycle MC).
 スプレイ制御部55は、型開き後(通常は成形品の押出しよりも後)から型閉じ前(通常は型閉じ開始よりも前)までの適宜な時期において、スプレイ装置15を制御して離型剤をスプレイする(ステップST1)。特に図示しないが、スプレイ制御部55は、成分が互いに異なる離型剤(液体)のスプレイを順次行ってもよい。このような態様において、第1温度D1及び第2温度D2の検出時期の基準となるスプレイは、いずれか1種の離型剤のスプレイであってもよいし、全種の離型剤のスプレイであってもよい。また、既に触れたように、スプレイ制御部55は、離型剤のスプレイの前にエアブローによる金型101の洗浄を行ったり、離型剤のスプレイ後にエアブローによる水分の除去を行ったりするようにスプレイ装置15を制御してもよい。 The spray control unit 55 controls the spray device 15 at an appropriate time from after opening the mold (usually after extrusion of the molded product) to before closing the mold (usually before the start of closing the mold) to release the mold. A chemical agent is sprayed (step ST1). Although not shown, the spray control unit 55 may sequentially spray release agents (liquids) having different components. In such an embodiment, the spray that serves as the reference for the detection timing of the first temperature D1 and the second temperature D2 may be the spray of any one type of release agent, or the spray of all types of release agents. may be As already mentioned, the spray control unit 55 is designed to clean the mold 101 by blowing air before spraying the mold release agent, and to remove water by blowing air after spraying the mold release agent. A spray device 15 may be controlled.
 なお、成形サイクルMCは、順次行われる複数のステップのうちの、いずれのステップのいずれの時点が基準時点(これまでの成形サイクルMCの終了時点及び新たな成形サイクルMCの開始時点)として定義されてもよい。本開示の説明においては、便宜上、ステップST4の型開き(又は成形品を押し出す不図示の押出しステップ)が完了した時点を基準時点として成形サイクルMCを表現することがある。 In addition, the molding cycle MC is defined as a reference point in time (the end point of the previous molding cycle MC and the start point of a new molding cycle MC) of any step among a plurality of steps that are sequentially performed. may In the description of the present disclosure, for the sake of convenience, the molding cycle MC may be expressed with the time point at which the mold opening in step ST4 (or the extrusion step (not shown) for extruding the molded product) is completed as the reference time point.
 制御装置5(別の観点では機械本体3、スプレイ制御部55又は内部冷却制御部57。以下、同様。)は、既述のように、温度センサ59によって検出される第1温度D1及び第2温度D2を取得する(ステップST11及びST12)。なお、本開示の説明では、温度センサ59によって温度が計測される時点と、計測された温度の情報を温度センサ59から制御装置5が取得する時点とを特に区別せずに表現する。 The control device 5 (from another point of view, the machine main body 3, the spray control unit 55, or the internal cooling control unit 57; hereinafter the same) controls the first temperature D1 and the second temperature D1 detected by the temperature sensor 59, as described above. A temperature D2 is acquired (steps ST11 and ST12). In the description of the present disclosure, the point in time when the temperature is measured by the temperature sensor 59 and the point in time when the control device 5 acquires the information on the measured temperature from the temperature sensor 59 are expressed without particular distinction.
 第1温度D1の計測時点は、既述のように、スプレイ(ステップST1)の前である。「スプレイの前」であるか否かは、本実施形態の既述の作用に照らして合理的に判断されてよい。例えば、典型的には、第1温度D1の計測時点は、スプレイが開始される前とされてよい。この場合において、第1温度D1の計測時点は、スプレイが開始される直前であってもよいし、スプレイの開始時点に対して、ある程度の時間長さで前の時点であってもよい。後者の例としては、例えば、型開き開始時、型開き直後又は成形品の押出し直後等を挙げることができる。また、典型的な例以外としては、スプレイ開始時点又はスプレイ開始直後を挙げることができる。換言すれば、第1温度D1の計測時点は、スプレイが行われる全期間の前ではなく、スプレイが行われる期間の少なくとも一部の前であってよい。 The time point of measurement of the first temperature D1 is before the spray (step ST1), as described above. Whether or not it is "before spraying" may be reasonably determined in light of the above-described effects of the present embodiment. For example, typically, the first temperature D1 may be measured before spraying is started. In this case, the time point at which the first temperature D1 is measured may be immediately before the start of spraying, or may be some time before the start time of spraying. Examples of the latter include, for example, at the start of mold opening, immediately after mold opening, or immediately after extruding the molded product. Besides the typical example, the point of time when spraying is started or immediately after the spraying is started can be mentioned. In other words, the time of measurement of the first temperature D1 may be before at least part of the spraying period, rather than before the entire spraying period.
 第2温度D2の計測時点は、既述のように、スプレイ(ステップST1)の後である。「スプレイの後」であるか否かは、「スプレイの前」と同様に、本実施形態の既述の作用に照らして合理的に判断されてよい。例えば、典型的には、第2温度D2の計測時点は、スプレイが完了した後とされてよい。この場合において、第2温度D2の計測時点は、スプレイが完了した直後であってもよいし、スプレイの完了時点に対して、ある程度の時間長さで後の時点であってもよい。後者の例としては、例えば、型閉じ開始時、型閉じ完了時、型締め開始時、型締め完了時又は射出開始直前を挙げることができる。また、典型的な例以外としては、スプレイ完了時点又はスプレイ完了直前を挙げることができる。換言すれば、第2温度D2の計測時点は、スプレイが行われる全期間の後ではなく、スプレイが行われる期間の少なくとも一部の後(ただし、第1温度D1の計測時点よりも後)であってよい。 The second temperature D2 is measured after spraying (step ST1), as described above. Whether it is "after spraying" may be rationally determined in light of the above-described effects of the present embodiment, similarly to "before spraying." For example, typically, the second temperature D2 may be measured after spraying is completed. In this case, the second temperature D2 may be measured immediately after the spray is completed, or may be some time after the spray is completed. Examples of the latter include, for example, when mold closing is started, when mold closing is completed, when mold closing is started, when mold closing is completed, or immediately before injection is started. Other than the typical example, the point at which spraying is completed or immediately before spraying is completed can be mentioned. In other words, the second temperature D2 is measured not after the entire spraying period, but after at least a part of the spraying period (but after the first temperature D1 is measured). It's okay.
 上記のように。「スプレイの前」及び「スプレイの後」は、スプレイが行われる期間の少なくとも一部の前及び後であってよい。別の観点では、第1温度D1の計測時点から第2温度D2の計測時点までの期間に、スプレイが行われる期間の少なくとも一部が含まれればよい。この場合の上記一部は、例えば、スプレイが行われる全期間の3割以上、5割以上又は8割以上とされてよく、また、スプレイ開始時点に近くてもよいし、スプレイ完了時点に近くてもよいし、両者の中間に位置してもよい。 As described above. "Before spraying" and "after spraying" may be before and after at least a portion of the period during which spraying occurs. From another point of view, at least part of the period during which the spray is performed may be included in the period from the measurement of the first temperature D1 to the measurement of the second temperature D2. In this case, the above part may be, for example, 30% or more, 50% or more, or 80% or more of the entire period during which spraying is performed, and may be near the start of spraying or near the completion of spraying. or in between.
 また、上記から理解されるように、第1温度D1の計測時点から第2温度D2の計測時点までの期間は、スプレイが行われていない期間(スプレイの開始前の期間及び/又はスプレイの完了後の期間)を含んでいてもよい。この場合において、第1温度D1の計測時点から第2温度D2の計測時点までの期間に、スプレイが行われている期間(スプレイの開始から完了までの少なくとも一部の期間)が占める割合は任意である。例えば、当該割合は、1割以上、3割以上、5割以上又は8割以上とされてよい。 Further, as understood from the above, the period from the time when the first temperature D1 is measured to the time when the second temperature D2 is measured is the period during which no spray is performed (the period before the start of the spray and/or the completion of the spray). later period). In this case, the ratio of the period during which the spray is being performed (at least a part of the period from the start to the completion of the spray) to the period from when the first temperature D1 is measured to when the second temperature D2 is measured is arbitrary. is. For example, the ratio may be 10% or more, 30% or more, 50% or more, or 80% or more.
 後述するように、各成形サイクルにおいてスプレイが行われる期間は変更されることがある。このような態様において、第1温度D1の計測時点及び/又は第2温度D2の計測時点は、変更されてもよいし、変更されなくてもよい。 As will be described later, the duration of spraying in each molding cycle may change. In such an aspect, the time points at which the first temperature D1 is measured and/or the time points at which the second temperature D2 is measured may or may not be changed.
 図4の例では、第1温度D1及び第2温度D2の差に基づいて、スプレイ装置15の動作が制御されている。ただし、スプレイ装置15の動作に加えて、又は代えて、第1温度D1及び第2温度D2の差に基づいて、内部冷却装置17の動作(又は更に他の冷却手段の動作)が制御されてもよい。念のために記載すると、2以上の冷却手段による冷却が同時期(例えばスプレイの期間)に行われる態様において、一方の冷却手段の動作は、第1温度D1及び第2温度D2の差によって調整され、他方の冷却手段の動作は、第1温度D1及び第2温度D2の差によっては調整されないという制御が選択されてもよい。 In the example of FIG. 4, the operation of the spray device 15 is controlled based on the difference between the first temperature D1 and the second temperature D2. However, in addition to or instead of the operation of the spray device 15, the operation of the internal cooling device 17 (or the operation of further cooling means) is controlled based on the difference between the first temperature D1 and the second temperature D2. good too. Just to be sure, in embodiments in which cooling by two or more cooling means is performed at the same time (e.g. during spraying), the operation of one cooling means is adjusted by the difference between the first temperature D1 and the second temperature D2. and the operation of the other cooling means is not adjusted by the difference between the first temperature D1 and the second temperature D2.
 図4の例では、1回の成形サイクル毎に(換言すれば全ての成形サイクルにおいて)第1温度D1及び第2温度D2の検出が行われている。また、各成形サイクルにおいて検出された第1温度D1及び第2温度D2は、次の成形サイクルにおける冷却部13の動作の制御に利用されている。本実施形態の説明では、基本的に、この態様を例に取る。 In the example of FIG. 4, the first temperature D1 and the second temperature D2 are detected in each molding cycle (in other words, in all molding cycles). Also, the first temperature D1 and the second temperature D2 detected in each molding cycle are used to control the operation of the cooling section 13 in the next molding cycle. In the description of this embodiment, this aspect is basically taken as an example.
 ただし、図示の例とは異なり、例えば、第1温度D1及び第2温度D2の検出は、2以上の所定回数の成形サイクル毎に(所定回数の成形サイクルのうち1つの成形サイクルのみにおいて)行われてもよいし、不定期に行われてもよい。後者の例としては、例えば、何らかの異常が検出されたときに検出が行われる態様が挙げられる。そして、例えば、所定回数毎に検出された、又は不定期に検出された第1温度D1及び第2温度D2は、その後の複数回の成形サイクルに利用されてもよい。 However, unlike the illustrated example, for example, the first temperature D1 and the second temperature D2 are detected every two or more predetermined molding cycles (in only one molding cycle among the predetermined number of molding cycles). It may be held on an irregular basis. An example of the latter is, for example, a mode in which detection is performed when some abnormality is detected. Then, for example, the first temperature D1 and the second temperature D2 detected every predetermined number of times or irregularly detected may be used for a plurality of subsequent molding cycles.
 また、例えば、図示の例とは異なり、複数回の成形サイクルのそれぞれにおいて検出された第1温度D1及び第2温度D2に基づいて、その後の成形サイクルにおける冷却部13の動作の制御がなされてもよい。例えば、複数回の成形サイクルのそれぞれにおいて検出された第1温度D1及び第2温度D2に基づいて、その複数回の成形サイクルにおける第1温度D1及び第2温度D2それぞれの平均値(移動平均値)が算出されてよい。そして、その平均値に基づいて、その後の成形サイクルにおける冷却部13の動作が制御されてよい。この場合、例えば、いずれか1つの成形サイクルにおいて生じた検出温度の特異的な誤差が冷却部13の動作に及ぼす影響が低減される。 Further, for example, unlike the illustrated example, the operation of the cooling unit 13 in subsequent molding cycles is controlled based on the first temperature D1 and the second temperature D2 detected in each of a plurality of molding cycles. good too. For example, based on the first temperature D1 and the second temperature D2 detected in each of a plurality of molding cycles, the average value (moving average value) of the first temperature D1 and the second temperature D2 in the plurality of molding cycles ) may be calculated. Then, based on the average value, the operation of the cooling section 13 in the subsequent molding cycle may be controlled. In this case, for example, the influence of a specific error in the detected temperature that occurs in any one molding cycle on the operation of the cooling unit 13 is reduced.
 また、例えば、第1温度D1及び第2温度D2の差に基づく冷却部13の動作の制御は、次の成形サイクルの開始を待たずに開始されてよい。別の観点では、第1温度D1及び第2温度D2の差に応じた冷却部13の動作の変化は、その第1温度D1及び第2温度D2が検出された成形サイクル内で生じてもよい。この場合の第1温度D1及び第2温度D2の差に基づいて制御される冷却部13の動作は、次の成形サイクルにおける第1温度D1及び第2温度D2の差に影響を及ぼすものとされてよい。例えば、第1温度D1及び第2温度D2の差に応じて変化した動作(別の観点では操作量)は、次の成形サイクルのスプレイの期間まで維持されてよい。このような態様の具体例については後述する(図5(b))。 Also, for example, control of the operation of the cooling unit 13 based on the difference between the first temperature D1 and the second temperature D2 may be started without waiting for the start of the next molding cycle. From another point of view, the change in operation of the cooling unit 13 according to the difference between the first temperature D1 and the second temperature D2 may occur within the molding cycle in which the first temperature D1 and the second temperature D2 are detected. . The operation of the cooling unit 13 controlled based on the difference between the first temperature D1 and the second temperature D2 in this case is assumed to affect the difference between the first temperature D1 and the second temperature D2 in the next molding cycle. you can For example, the changed behavior (in another aspect, the manipulated variable) in response to the difference between the first temperature D1 and the second temperature D2 may be maintained until the spray period of the next molding cycle. A specific example of such an aspect will be described later (FIG. 5(b)).
 第1温度D1及び第2温度D2の差に基づく冷却部13の動作の制御は、複数回の成形サイクルMCの全部(最初の成形サイクルから最後の成形サイクルまで)行われてもよいし、複数回の成形サイクルMCのうちの一部の成形サイクルMCのみにおいて行われてもよい。後者の例としては、例えば、金型101の温度が安定していないとき(例えば複数回の成形サイクルMCを開始したとき)にのみ上記制御が行われる態様が挙げられる。なお、上記制御が複数回の成形サイクルMCの全部で行われるといっても、上記制御の具体的な態様によっては、厳密には、全ての成形サイクルMCにおいて上記制御が行われるわけではない。例えば、最初の成形サイクルMCにおいて第1温度D1及び第2温度D2の最初の検出が行われる前においては、冷却部13の動作は、所定の初期設定に基づいて制御される。 Control of the operation of the cooling unit 13 based on the difference between the first temperature D1 and the second temperature D2 may be performed in all of a plurality of molding cycles MC (from the first molding cycle to the last molding cycle), or may be performed in a plurality of molding cycles MC. It may be performed only in a part of the molding cycles MC of one molding cycle MC. As an example of the latter, for example, there is a mode in which the above control is performed only when the temperature of the mold 101 is not stable (for example, when a plurality of molding cycles MC are started). Even though the above control is performed in all of a plurality of molding cycles MC, strictly speaking, the above control is not performed in all of the molding cycles MC, depending on the specific aspects of the above control. For example, before the first temperature D1 and the second temperature D2 are first detected in the first molding cycle MC, the operation of the cooling section 13 is controlled based on predetermined initial settings.
(第1温度及び第2温度に基づく操作量の計算方法の例)
 第1温度及び第2温度の差に基づく冷却部13の動作の制御は、種々の態様で行われてよい。以下では、比較的簡単な制御の態様を例示して、第1温度及び第2温度の差に基づく冷却部13の動作の制御について説明する。
(Example of calculation method of manipulated variable based on first temperature and second temperature)
Controlling the operation of the cooling unit 13 based on the difference between the first temperature and the second temperature may be performed in various ways. Hereinafter, control of the operation of the cooling unit 13 based on the difference between the first temperature and the second temperature will be described by exemplifying a relatively simple control mode.
 各成形サイクルにおいて、金型101の温度を検出して検出温度Taが得られたときに、操作量uで冷却部13を制御して、金型101の温度を目標温度Tbにする場合を想定する。このとき、例えば、以下の(1)式によって操作量uを算出してよい。
   u=K(Tb-Ta)   (1)
In each molding cycle, when the temperature of the mold 101 is detected and the detected temperature Ta is obtained, the cooling unit 13 is controlled by the manipulated variable u to bring the temperature of the mold 101 to the target temperature Tb. do. At this time, for example, the manipulated variable u may be calculated by the following equation (1).
u=K(Tb−Ta) (1)
 なお、Kを比例ゲインということがある。操作量uは、例えば、1回の成形サイクルにおいて1回算出される。(1)式は、成形サイクルの周期をフィードバックの周期とする比例制御を示す式として捉えることが可能である。 It should be noted that K is sometimes called a proportional gain. The manipulated variable u is calculated, for example, once in one molding cycle. Equation (1) can be regarded as an equation representing proportional control in which the period of the molding cycle is the period of feedback.
 本実施形態では、第1温度D1及び第2温度D2の差に基づいて、制御装置5が比例ゲインKを設定する。例えば、同一の成形サイクルにおいて、第1温度D1及び第2温度D2が検出され、また、第1温度D1の検出時点から第2温度D2の検出時点までの操作量がuであったとする。この場合において、次の成形サイクルで用いられる比例ゲインKを以下の(2)式によって算出する。
   K=u/(D2-D1)   (2)
In this embodiment, the control device 5 sets the proportional gain K based on the difference between the first temperature D1 and the second temperature D2. For example, assume that a first temperature D1 and a second temperature D2 are detected in the same molding cycle, and that the manipulated variable from the detection of the first temperature D1 to the detection of the second temperature D2 is u. In this case, the proportional gain K used in the next molding cycle is calculated by the following equation (2).
K=u/(D2-D1) (2)
 なお、(1)式と(2)式とで、操作量に同一の記号を用いているが、両者は異なっていてもよい。別の観点では、TaとTbとの時間差と、D2とD1との時間差とは同じであってもよいし、異なっていてもよい。 Although the same symbols are used for the manipulated variables in formulas (1) and (2), they may be different. From another point of view, the time difference between Ta and Tb and the time difference between D2 and D1 may be the same or different.
 以上が第1温度及び第2温度に基づく冷却部13の動作の制御の簡単な態様の一例である。実際の制御は、上記以外の種々の態様で行われて構わない。例えば、上記のような式に代えて、D2-D1(又はD1及びD2)、操作量u及び比例ゲインKを対応付けたマップに基づいて、比例ゲインKが設定されてもよい。過去の成形サイクルの履歴等に基づいて微分ゲイン及び/又は積分ゲインが算出されてもよい。第1温度から第2温度までの期間の操作量と冷却効果との関係と、それ以外の他の期間の操作量と冷却効果との関係との間には相関があるから、他の期間における操作量を調整して、適宜な時期の目標温度を達成することもできる。 The above is an example of a simple mode of controlling the operation of the cooling unit 13 based on the first temperature and the second temperature. Actual control may be performed in various modes other than the above. For example, the proportional gain K may be set based on a map in which D2-D1 (or D1 and D2), the manipulated variable u, and the proportional gain K are associated with each other instead of the above formula. The differential gain and/or the integral gain may be calculated based on the history of past molding cycles or the like. Since there is a correlation between the relationship between the manipulated variable and the cooling effect in the period from the first temperature to the second temperature and the relationship between the manipulated variable and the cooling effect in other periods, The manipulated variable can also be adjusted to achieve the target temperature at the appropriate time.
 上記の考え方は、金型101の複数の領域(別の観点では複数の位置)の温度を制御する態様にも応用できる。既述のように、複数の領域の温度は、複数の接触式の温度センサ59Aによって、及び/又はサーモグラフィーである温度センサ59Bによって検出されてよく、また、補間によって得られてもよい。また、複数の領域の温度の制御は、スプレイ装置15の複数のノズル19の吐出量を個別に制御したり、スプレイ装置15のヘッド21を複数の領域に順次移動させてスプレイを行うときの吐出量を領域毎に制御したり、及び/又は複数の流路107への冷却水の供給量を個別に制御したりすることによって実現されてよい。 The above idea can also be applied to the aspect of controlling the temperature of multiple regions (multiple positions from another point of view) of the mold 101 . As previously mentioned, the temperatures of the multiple regions may be detected by multiple contact temperature sensors 59A and/or by thermographic temperature sensors 59B, and may be obtained by interpolation. Further, the temperature control of a plurality of regions is performed by controlling the discharge amounts of the plurality of nozzles 19 of the spray device 15 individually, or by sequentially moving the head 21 of the spray device 15 to a plurality of regions to perform spraying. It may be realized by controlling the amount for each region and/or by individually controlling the amount of cooling water supplied to the plurality of channels 107 .
 下記の(3)式は、(1)式及び(2)式の考え方を複数の領域の温度に拡張した場合の行列式を示している。 The following equation (3) shows the determinant when the concept of equations (1) and (2) is extended to temperatures in multiple regions.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、ΔT~ΔTは、第1番目~第n番目の領域の温度変化を示しており、(2)式のD2-D1(又は(1)式のTb-Ta)に相当する。T~Tは、第1番目~第n番目の領域の温度を示しており、(2)式のD1(又は(1)式のTa)に相当する。u~uは、第1番目~第m番目の冷却に係る操作量を示しており、(2)式(又は(1)式)のuに相当する。 Here, ΔT 1 to ΔT n indicate temperature changes in the first to n-th regions and correspond to D2-D1 in equation (2) (or Tb-Ta in equation (1)). T 1 to T n indicate the temperatures of the first to n-th regions and correspond to D1 in formula (2) (or Ta in formula (1)). u 1 to u m indicate the manipulated variables related to the 1st to m-th cooling, and correspond to u in the formula (2) (or the formula (1)).
 A11~Ann(n×nの行列の成分)は、第1番目~第n番目の領域が温度に関して相互に及ぼす影響を表す係数であり、より詳細には、温度T~Tが第2温度の計測時点までに生じる温度変化ΔT~ΔTに及ぼす影響を示す係数である。当該係数は、理論及び/又は実験に基づいて求められてよい。 A 11 to A nn (elements of an n×n matrix) are coefficients representing the influence of the first to n-th regions on each other with respect to temperature . It is a coefficient that indicates the effect on the temperature changes ΔT 1 to ΔT n that occur until the second temperature is measured. The coefficient may be obtained based on theory and/or experiments.
 B11~Bnm(n×mの行列の成分)は、操作量u~uが温度変化ΔT~ΔTに及ぼす影響を表す係数であり、(2)式(又は(1)式)の1/Kに相当する。従って、A11~Annが予め設定されている(3)式に、計測されたT~T及びΔT~ΔTと、その計測時の操作量u~uとを代入し、B11~Bnmの解を求めれば、次の成形サイクルでn個の領域それぞれにおいて目標温度を得るための操作量u~uが求まることになる。 B 11 to B nm (components of the n×m matrix) are coefficients representing the effects of the manipulated variables u 1 to u m on the temperature changes ΔT 1 to ΔT n , and are represented by equation (2) (or equation (1) ) is equivalent to 1/K. Therefore, the measured T 1 to T n and ΔT 1 to ΔT n and the manipulated variables u 1 to u m at the time of measurement are substituted into the equation (3) in which A 11 to A nn are preset. , B 11 to B nm , the manipulated variables u 1 to u m for obtaining the target temperature in each of the n regions in the next molding cycle can be obtained.
 温度が制御される複数の領域の数nと、複数の操作量の数mとの大小関係は任意である。すなわち、n=m、n<m、n>mのいずれであってもよい。n=mの例としては、操作量u~uとして、n個の領域におけるスプレイの吐出量を用いた態様が挙げられる。n<mの例としては、操作量u~uとして、n個の領域におけるスプレイの吐出量と、1以上の流路107における冷却水の流量とを用いた態様が挙げられる。n>mの例としては、操作量u~uとして、温度分布を求めるための被塗布面109の分割数よりも少ない分割数の領域におけるスプレイの吐出量を用いた態様が挙げられる。操作量u~uとして、1以上の領域におけるスプレイの吐出量と、1以上の流路107における冷却水の流量とを操作量として用いた場合において、n=m又はn<mとなってもよい。 The magnitude relationship between the number n of multiple regions whose temperature is controlled and the number m of multiple manipulated variables is arbitrary. That is, any of n=m, n<m, and n>m is acceptable. As an example of n=m, there is a mode in which the amount of spray discharged in n regions is used as the manipulated variables u 1 to u m . As an example of n<m, there is a mode in which the amount of spray discharge in n regions and the flow rate of cooling water in one or more flow paths 107 are used as the manipulated variables u 1 to u m . As an example of n>m, there is a mode in which, as the manipulated variables u 1 to u m , the discharge amount of the spray in a region with a smaller number of divisions than the number of divisions of the coated surface 109 for obtaining the temperature distribution is used. When the amount of spray discharge in one or more regions and the flow rate of cooling water in one or more flow paths 107 are used as the manipulated variables u 1 to u m , n=m or n<m. may
 上記の説明からも理解されるように、m個の操作量は、同種の操作量の異なる領域に対応する操作量であってもよいし、異なる種類の操作量であってもよい。また、異なる種類の操作量は、スプレイ装置15の操作量と、内部冷却装置17の操作量との相違のように、互いに異なる冷却要素の操作量であってもよいし、スプレイが行われる時間長さと、スプレイにおける単位時間当たりの吐出量とのように、同一の冷却要素の異なる種類の操作量であってもよい。 As can be understood from the above description, the m manipulated variables may be manipulated variables corresponding to different regions of the same type of manipulated variables, or may be different types of manipulated variables. In addition, the different types of operation amounts may be operation amounts of cooling elements that are different from each other, such as the difference between the operation amount of the spray device 15 and the operation amount of the internal cooling device 17, or the time during which the spray is performed. There may be different types of manipulated variables of the same cooling element, such as length and output per unit time in spray.
(第1温度及び第2温度に基づいて制御される冷却部の動作の具体例)
 上記においても触れたように、第1温度及び第2温度に基づいて制御される冷却部13の動作は、種々のものとされてよい。別の観点では、第1温度及び第2温度の差の変化に応じて変化する冷却部13の動作又は当該動作に係る物理量は、種々のものとされてよい。
(Specific example of operation of cooling unit controlled based on first temperature and second temperature)
As mentioned above, the operation of the cooling unit 13 controlled based on the first temperature and the second temperature may be various. From another point of view, the operation of the cooling unit 13 that changes according to the change in the difference between the first temperature and the second temperature or the physical quantity related to the operation may be various.
 例えば、スプレイ装置15の動作に関しては、スプレイが行われる時間長さ、スプレイにおける単位時間当たりの吐出量、及び/又は離型剤の温度が調整されてよい。時間長さ及び/又は単位時間当たりの吐出量の調整は、スプレイの期間全体に亘って吐出される離型剤の総量の調整の一種として行われてよい。また、物理量の調整は、複数のノズル19の一部のノズル19においてのみなされてもよいし、全部のノズル19においてなされてもよい。また、物理量の調整量は、ノズル19毎又は2以上のノズル19毎に異なっていてもよいし、全部のノズル19で共通していてもよい。 For example, regarding the operation of the spray device 15, the length of time during which the spray is performed, the discharge amount per unit time in the spray, and/or the temperature of the release agent may be adjusted. Adjusting the length of time and/or the amount dispensed per unit of time may be performed as one type of adjustment of the total amount of release agent dispensed over the duration of the spray. Also, the adjustment of the physical quantity may be performed for only some nozzles 19 of the plurality of nozzles 19 or may be performed for all nozzles 19 . Also, the adjustment amount of the physical quantity may be different for each nozzle 19 or for each of two or more nozzles 19 , or may be common to all nozzles 19 .
 また、例えば、内部冷却装置17の動作に関しては、金型101に冷却水が供給される時間長さ、冷却水の単位時間当たりの流量、及び/又は冷却水の温度が調整されてよい。時間長さ及び単位時間当たりの流量の調整は、成形サイクルの期間全体に亘って金型101に供給される冷却水の総量の調整の一種として行われてよい。また、物理量の調整は、複数の流路107の一部の流路107においてのみなされてもよいし、全部の流路107においてなされてもよい。また、物理量の調整量は、流路107毎又は2以上の流路107毎に異なっていてもよいし、全部の流路107で共通していてもよい。 Further, for example, regarding the operation of the internal cooling device 17, the length of time that the cooling water is supplied to the mold 101, the flow rate of the cooling water per unit time, and/or the temperature of the cooling water may be adjusted. Adjusting the length of time and the flow rate per unit of time may be done as one type of adjusting the total amount of cooling water supplied to the mold 101 over the duration of the molding cycle. Also, the adjustment of the physical quantity may be performed in only some of the plurality of channels 107 or in all of the channels 107 . Also, the adjustment amount of the physical quantity may be different for each channel 107 or for each of two or more channels 107 , or may be common to all channels 107 .
 図5(a)は、第1温度及び第2温度に基づいて冷却水を金型101に供給する時間長さを制御する態様の一例を示すタイミングチャートである。 FIG. 5(a) is a timing chart showing an example of a manner in which the length of time for supplying cooling water to the mold 101 is controlled based on the first temperature and the second temperature.
 この図において、横軸は経過時間tを示している。縦軸は、金型101(又は1若しくは複数の流路107。以下、同様。)に供給される冷却水の単位時間当たりの流量Qを示している。横軸において、時点t1は、成形サイクルMCの開始時点(又は前の成形サイクルMCの終了時点)を示している。また、ここでは、図解を容易にするために、時点t1は、スプレイが行われる期間(スプレイ期間SP)の開始時点とされているとともに、第1温度D1の検出時点とされている。時点t2は、スプレイ期間SPの完了時点とされている。また、ここでは、図解を容易にするために、時点t2は、第2温度D2の検出時点とされている。図5(a)の説明において、スプレイ期間SPは、第1温度D1を検出してから第2温度D2を検出するまでの検出期間DP(符号は図6(a))に読み替えられてよい。 In this figure, the horizontal axis indicates the elapsed time t. The vertical axis indicates the flow rate Q per unit time of cooling water supplied to the mold 101 (or one or more flow paths 107; the same shall apply hereinafter). On the horizontal axis, time t1 indicates the start time of the molding cycle MC (or the end time of the previous molding cycle MC). Here, for ease of illustration, time t1 is defined as the start time of the period during which the spray is performed (spray period SP), and is defined as the time point when the first temperature D1 is detected. Time t2 is the time when the spray period SP is completed. Also, here, for ease of illustration, time t2 is defined as the time at which the second temperature D2 is detected. In the description of FIG. 5(a), the spray period SP may be read as the detection period DP (reference numeral is shown in FIG. 6(a)) from the detection of the first temperature D1 to the detection of the second temperature D2.
 この例では、冷却水の供給は、各成形サイクル内で間欠的に行われる。また、冷却水が供給されるときの流量Qは、一定の流量Qcとされている。すなわち、内部冷却装置17は、冷却水の供給の許容及び禁止を行うが、流量Qの制御は行わない。そして、内部冷却装置17(別の観点では制御装置5)は、第1温度D1及び第2温度D2の差に基づいて、冷却水を供給する時間長さを制御する。 In this example, cooling water is supplied intermittently within each molding cycle. Further, the flow rate Q when cooling water is supplied is set to a constant flow rate Qc. That is, the internal cooling device 17 permits and prohibits the supply of cooling water, but does not control the flow rate Q of the cooling water. Then, the internal cooling device 17 (control device 5 from another point of view) controls the length of time for supplying the cooling water based on the difference between the first temperature D1 and the second temperature D2.
 より詳細には、図示の例では、内部冷却装置17は、各成形サイクルMCのスプレイ期間SP内において冷却水の供給を開始し、そのスプレイ期間SPの後の適宜な時期に冷却水の供給を停止する。冷却水の停止の時期としては、例えば、型開き開始時、型開きの完了時、成形品の押出し完了時等が挙げられる。図示の例とは異なり、次の成形サイクルが開始された後(ただし、次の成形サイクルの冷却水の供給の開始前)に冷却水の供給が停止されてもよい。 More specifically, in the illustrated example, the internal cooling device 17 starts supplying cooling water within the spray period SP of each molding cycle MC, and resumes supplying cooling water at an appropriate time after the spray period SP. Stop. Examples of the timing for stopping the cooling water include the start of mold opening, the completion of mold opening, and the completion of extruding the molded product. Unlike the illustrated example, the supply of cooling water may be stopped after the next molding cycle is started (but before the supply of cooling water for the next molding cycle is started).
 そして、内部冷却装置17は、第1温度及び第2温度の差に応じて、その第1温度及び第2温度を検出した成形サイクルMCの次の成形サイクルにおける冷却水の供給の開始時点を変更する。これにより、冷却水が供給される時間長さが変更される。図5(a)では、時間長さが、TM1からTM2へと長くされている状況が例示されている。なお、図示の例は、スプレイ期間SP内において冷却水が供給される時間長さをTM5からTM6へ変化させていると捉えられてもよい。 Then, according to the difference between the first temperature and the second temperature, the internal cooling device 17 changes the start point of cooling water supply in the molding cycle following the molding cycle MC in which the first temperature and the second temperature are detected. do. This changes the length of time for which cooling water is supplied. FIG. 5(a) illustrates a situation where the length of time is lengthened from TM1 to TM2. The illustrated example may be interpreted as changing the length of time during which cooling water is supplied within the spray period SP from TM5 to TM6.
 図5(b)は、第1温度及び第2温度に基づいて金型101に供給される冷却水の単位時間当たりの流量を制御する態様の一例を示すタイミングチャートである。 FIG. 5(b) is a timing chart showing an example of a mode of controlling the flow rate per unit time of cooling water supplied to the mold 101 based on the first temperature and the second temperature.
 この図において、横軸(経過時間t)、縦軸(単位時間当たりの流量Q)、時点t1及び時点t2は、図5(a)のものと同様である。ここでも、スプレイ期間SPは、第1温度D1を検出してから第2温度D2を検出するまでの検出期間DP(符号は図6(a))に読み替えられてよい。 In this figure, the horizontal axis (elapsed time t), vertical axis (flow rate Q per unit time), time t1 and time t2 are the same as in FIG. 5(a). Here, too, the spray period SP may be read as a detection period DP (reference symbol in FIG. 6A) from the detection of the first temperature D1 to the detection of the second temperature D2.
 この例では、冷却水の供給は、成形サイクルMCの全期間に亘って継続的に行われる。また、冷却水の流量Qは、任意の値又は予め設定された複数段階のいずれかの値とされる。そして、内部冷却装置17(別の観点では制御装置5)は、第1温度D1及び第2温度D2の差に基づいて、流量Qを制御する。 In this example, cooling water is continuously supplied throughout the molding cycle MC. Also, the flow rate Q of the cooling water is set to an arbitrary value or a preset value in a plurality of stages. Then, the internal cooling device 17 (control device 5 from another point of view) controls the flow rate Q based on the difference between the first temperature D1 and the second temperature D2.
 より詳細には、図示の例では、内部冷却装置17は、所定の時点t3において流量Qを変化させ、その流量Qを次の成形サイクルMCの時点t3まで維持する。時点t3は、成形サイクルMCの期間内の任意の時点とされてよい。例えば、時点t3は、スプレイ期間SPの完了時点から射出開始時点(金型101の温度が上昇を開始する時点)までの期間内に位置してもよいし、射出開始中であってもよいし、射出完了後であってもよい。さらに、図示の例とは異なり、時点t3は、成形サイクルMCの開始後にスプレイが開始される態様における、成形サイクルMCの開始からスプレイ開始までの期間であってもよい。さらに、時点t3は、スプレイ期間中であってもよい。 More specifically, in the illustrated example, the internal cooling device 17 changes the flow rate Q at a predetermined time t3 and maintains the flow rate Q until time t3 of the next molding cycle MC. Time t3 may be any time during the molding cycle MC. For example, the time t3 may be positioned within the period from the completion of the spray period SP to the start of injection (when the temperature of the mold 101 starts rising), or during the start of injection. , after completion of injection. Further, unlike the illustrated example, the time t3 may be the period from the start of the molding cycle MC to the start of spraying in a mode where the spraying is started after the molding cycle MC is started. Furthermore, time t3 may be during the spray period.
 そして、内部冷却装置17は、第1温度及び第2温度の差に応じて、その第1温度及び第2温度を検出した時点の後の最初の時点t3(図示の例では第1温度及び第2温度を検出した成形サイクルMCと同一の成形サイクル内の時点t3)において、流量Qを変更する。図5(b)では、流量Qが、Q1からQ2へ、さらにはQ2からQ3へ増加している状況が例示されている。なお、図示の例は、第1温度及び第2温度を検出した成形サイクルにおけるスプレイ期間SP内の流量Qから、次の成形サイクルにおけるスプレイ期間SP内の流量Qへ、流量Qを変化させていると捉えられてもよい。 Then, according to the difference between the first temperature and the second temperature, the internal cooling device 17 detects the first temperature t3 (the first temperature and the second temperature in the illustrated example) after detecting the first temperature and the second temperature. 2. At time t3) in the same molding cycle as the molding cycle MC in which the temperature is detected, the flow rate Q is changed. FIG. 5(b) illustrates a situation where the flow rate Q increases from Q1 to Q2 and from Q2 to Q3. In the illustrated example, the flow rate Q is changed from the flow rate Q within the spray period SP in the molding cycle in which the first temperature and the second temperature are detected to the flow rate Q within the spray period SP in the next molding cycle. may be taken as
 図6(a)は、第1温度及び第2温度に基づいてスプレイを行う時間長さを制御する態様の一例を示すタイミングチャートである。 FIG. 6(a) is a timing chart showing an example of a mode of controlling the length of time for spraying based on the first temperature and the second temperature.
 この図において、横軸は経過時間tを示している。縦軸は、1つのノズル19、2以上のノズル19又は全てのノズル19(以下、単にノズル19という。図6(b)の説明においても同様)から吐出される離型剤の単位時間当たりの吐出量qを示している。横軸において、時点t1は、図5(a)と同様に、成形サイクルMCの開始時点を示し、また、第1温度D1の検出時点(検出期間DPの開始時点)とされている。ただし、ここでは、図5(a)とは異なり、時点t1は、スプレイ期間SPの開始時点とはされていない。また、時点t2は、図5(a)と同様に、第2温度D2の検出時点(検出期間DPの終了時点)とされている。ただし、ここでは、図5(a)とは異なり、時点t2は、スプレイ期間SPの完了時点とはされていない In this figure, the horizontal axis indicates the elapsed time t. The vertical axis represents the release agent per unit time discharged from one nozzle 19, two or more nozzles 19, or all nozzles 19 (hereinafter simply referred to as nozzles 19; the same applies to the description of FIG. 6B). It shows the discharge amount q. On the horizontal axis, the time point t1 indicates the start time point of the molding cycle MC, as in FIG. 5A, and is the time point at which the first temperature D1 is detected (the time point at which the detection period DP starts). However, here, unlike FIG. 5A, the time t1 is not set as the start time of the spray period SP. Also, the time t2 is the detection time of the second temperature D2 (end time of the detection period DP), as in FIG. 5(a). However, here, unlike FIG. 5A, the time t2 is not set as the completion time of the spray period SP.
 この例では、スプレイが行われるときの離型剤の吐出量qは、一定の吐出量qcとされている。すなわち、スプレイ装置15は、スプレイを行う時間長さ(TM11及びTM12)を制御するが、吐出量qの制御を行わない。そして、スプレイ装置15(別の観点では制御装置5)は、第1温度D1及び第2温度D2の差に基づいて、スプレイを行う時間長さを制御する。 In this example, the ejection amount q of the release agent when spraying is set to be a constant ejection amount qc. That is, the spray device 15 controls the length of time for spraying (TM11 and TM12), but does not control the discharge amount q. Then, the spray device 15 (control device 5 from another point of view) controls the length of time for spraying based on the difference between the first temperature D1 and the second temperature D2.
 より詳細には、図示の例では、スプレイ装置15は、各成形サイクルMCの検出期間DP内においてスプレイを開始するとともにスプレイを完了する。そして、スプレイ装置15は、第1温度及び第2温度の差に応じて、その第1温度及び第2温度を検出した成形サイクルの次の成形サイクルにおけるスプレイが行われる時間長さ(TM11及びTM12)を変更する。この変更は、スプレイ開始時点の変更によって行われてもよいし、スプレイ完了時点の変更によって行われてもよいし、双方の変更によって行われてもよい(図示の例)。図6(a)では、スプレイが行われる時間長さがTM11からTM12へ長くなっている状況が例示されている。 More specifically, in the illustrated example, the spray device 15 starts and completes spraying within the detection period DP of each molding cycle MC. Then, according to the difference between the first temperature and the second temperature, the spray device 15 determines the length of time (TM11 and TM12 ). This change may be made by changing the play start time point, by changing the play end time point, or by changing both (example shown). FIG. 6(a) illustrates a situation in which the length of time during which the spray is performed increases from TM11 to TM12.
 図6(b)は、第1温度及び第2温度に基づいて離型剤の単位時間当たりの吐出量を制御する態様の一例を示すタイミングチャートである。この図において、横軸(経過時間t)、縦軸(単位時間当たりの吐出量q)、時点t1及び時点t2は、図6(a)のものと同様である。 FIG. 6(b) is a timing chart showing an example of a mode of controlling the discharge amount of the release agent per unit time based on the first temperature and the second temperature. In this figure, the horizontal axis (elapsed time t), vertical axis (discharge amount q per unit time), time t1 and time t2 are the same as those in FIG. 6(a).
 この例では、スプレイが行われるときの時間長さは一定の時間長さTMcとされている。一方、離型剤の吐出量qは、任意の値又は予め設定された複数段階のいずれかの値とされる。そして、スプレイ装置15(別の観点では制御装置5)は、第1温度D1及び第2温度D2の差に基づいて、その第1温度D1及び第2温度D2を検出した成形サイクルの次の成形サイクルにおける吐出量qを変更する。図6(b)の例では、吐出量がq1からq2へ増加している状況が例示されている。なお、図示の例では、一定の時間長さTMcは、検出期間DPの時間長さよりも短くされて、検出期間DPに収まっているが、これまでの説明から理解されるように、時間長さTMcは、そのような態様に限定されない。 In this example, the length of time when the spray is performed is a constant length of time TMc. On the other hand, the discharge amount q of the release agent is set to an arbitrary value or a preset value in a plurality of stages. Then, the spray device 15 (from another point of view, the control device 5) detects the first temperature D1 and the second temperature D2 based on the difference between the first temperature D1 and the second temperature D2. Change the discharge amount q in the cycle. The example of FIG. 6B illustrates a situation where the discharge amount increases from q1 to q2. In the illustrated example, the constant time length TMc is shorter than the time length of the detection period DP and falls within the detection period DP. TMc is not limited to such aspects.
 なお、既述のように、(1)式は、1つの成形サイクルの周期でフィードバックが行われる制御を示す式として捉えられてよい。このような制御を実現するために、成形サイクルの周期よりも短い周期で、通常のフィードバック制御が行われてよいことはもちろんである。例えば、図5(b)の例において、流量Q1、Q2若しくはQ3又はこれらの流量に成形サイクルの周期を乗じた値(1つの成形サイクルにおける冷却水の総量)は、(1)式の操作量uの一例として捉えられてよい。この場合において、成形サイクルの周期よりも短い周期で、流量Qの検出値と、流量Q1、Q2又はQ3との偏差からバルブ45の操作量(操作量uとは異なる。)が算出され、フィードバック制御が行われてよい。 As described above, the formula (1) can be regarded as a formula showing control in which feedback is performed in one molding cycle. In order to realize such control, of course, normal feedback control may be performed at a period shorter than the period of the molding cycle. For example, in the example of FIG. 5(b), the flow rate Q1, Q2 or Q3 or the value obtained by multiplying these flow rates by the period of the molding cycle (total amount of cooling water in one molding cycle) is the manipulated variable of equation (1) It may be taken as an example of u. In this case, the operation amount of the valve 45 (different from the operation amount u) is calculated from the deviation between the detected value of the flow rate Q and the flow rate Q1, Q2 or Q3 in a cycle shorter than the cycle of the molding cycle, and is fed back. control may be performed.
(実施形態のまとめ)
 以上のとおり、本実施形態に係るダイカストマシン1は、成形サイクルMCを繰り返すものであって、機械本体3と、冷却部13と、制御装置5とを有している。機械本体3は、各成形サイクル内の、型閉じ、射出及び型開きを順に行う。冷却部13は、各成形サイクル内で型(金型101)を冷却する。制御装置5は、金型101の温度を検出するセンサ(温度センサ59)からの信号に基づいて冷却部13を制御する。冷却部13は、各成形サイクル内で型閉じ前の金型101に向けてスプレイを行うスプレイ装置15を含んでいる。制御装置5は、スプレイの前に温度センサ59によって検出された第1温度D1と、当該第1温度D1が検出された成形サイクル内でスプレイの後に温度センサ59によって検出された第2温度D2との温度差に基づいて、冷却部13の動作を制御する。
(Summary of embodiment)
As described above, the die casting machine 1 according to this embodiment repeats the molding cycle MC, and includes the machine main body 3 , the cooling section 13 and the control device 5 . The machine body 3 sequentially performs mold closing, injection and mold opening within each molding cycle. The cooling unit 13 cools the mold (the mold 101) within each molding cycle. The control device 5 controls the cooling section 13 based on a signal from a sensor (temperature sensor 59 ) that detects the temperature of the mold 101 . The cooling section 13 includes a spray device 15 that sprays toward the mold 101 before mold closing in each molding cycle. The control device 5 detects a first temperature D1 detected by the temperature sensor 59 before spraying, and a second temperature D2 detected by the temperature sensor 59 after spraying within the molding cycle in which the first temperature D1 is detected. The operation of the cooling unit 13 is controlled based on the temperature difference between the .
 従って、例えば、既述のように、冷却部13による冷却の効果を定量的に把握して、目標温度を得るために必要な冷却部13の操作量等を特定することができる。その結果、金型101の温度の制御の精度が向上する。 Therefore, for example, as described above, it is possible to quantitatively grasp the effect of cooling by the cooling unit 13 and specify the operation amount of the cooling unit 13 required to obtain the target temperature. As a result, the accuracy of controlling the temperature of the mold 101 is improved.
 制御装置5は、各成形サイクル内の第1温度と第2温度との差に基づいて、各成形サイクルの次の成形サイクルでスプレイが行われるときの冷却部13の動作を制御してよい。 The control device 5 may control the operation of the cooling section 13 when spraying is performed in the next molding cycle after each molding cycle based on the difference between the first temperature and the second temperature in each molding cycle.
 この場合、例えば、1回の成形サイクル毎に温度が検出され、その検出結果が冷却部13の制御に即座に反映されるから、制御の精度が速やかに向上する。また、例えば、スプレイ期間中の温度に基づいて、次の成形サイクルのスプレイ期間中に冷却部13の制御が行われるから、成形サイクルを繰り返したときに、制御内容と温度の検出結果との相関が高い。その結果、例えば、成形サイクルを繰り返したときに制御が安定しやすく、ひいては、制御の精度が向上する。 In this case, for example, the temperature is detected for each molding cycle, and the detection result is immediately reflected in the control of the cooling unit 13, so the accuracy of control is quickly improved. Further, for example, the cooling unit 13 is controlled during the spray period of the next molding cycle based on the temperature during the spray period, so that when the molding cycle is repeated, the correlation between the control content and the temperature detection result is high. As a result, for example, when the molding cycle is repeated, the control tends to be stable, and the accuracy of the control is improved.
 なお、「各成形サイクル内の第1温度と第2温度との差に基づく」という場合、第1温度及び第2温度の移動平均値を用いる場合のように、現在の成形サイクルで検出した第1温度及び第2温度と共に、以前の成形サイクルで検出した第1温度及び第2温度が利用されてもよい。また、「次の成形サイクルでスプレイが行われるときの冷却部の動作を制御する」という場合、図5(b)の例のように、第1温度及び第2温度の差に応じた変化自体は、現在の成形サイクルで生じ、その変化後の状態が次の成形サイクルに維持されてもよい。 In the case of "based on the difference between the first temperature and the second temperature in each molding cycle", as in the case of using the moving average value of the first temperature and the second temperature, the temperature detected in the current molding cycle Along with the first and second temperatures, the first and second temperatures detected in previous molding cycles may be utilized. Also, in the case of "controlling the operation of the cooling unit when spraying is performed in the next molding cycle", as in the example of FIG. may occur in the current molding cycle and its changed state is maintained in the next molding cycle.
 冷却部13は、金型101に設けられている流路107内に冷媒(例えば水)を供給する内部冷却装置17を含んでいてよい。制御装置5は、同一の成形サイクル内の第1温度と第2温度との差に基づいて、その後の(例えばその後の成形サイクルの)冷却水に係る物理量を調整してよい。 The cooling section 13 may include an internal cooling device 17 that supplies coolant (eg, water) into the channel 107 provided in the mold 101 . The control device 5 may adjust the physical quantity of cooling water for subsequent (for example, subsequent molding cycles) based on the difference between the first temperature and the second temperature within the same molding cycle.
 内部冷却装置17は、スプレイ装置15に比較して、その動作の変更が容易である。具体的には、以下のとおりである。スプレイ装置15の動作は、冷却の効果だけでなく、焼付き及び/又は離型抵抗等の効果も考慮して制御される。一方、内部冷却装置17は、基本的に、冷却水に他の効果を期待する必要はない。従って、内部冷却装置17の動作は柔軟に変更可能である。温度の検出が、金型101の温度低下が大きいスプレイの期間を基準として行われる一方で、その検出された温度に基づく冷却効果の調整が内部冷却装置17によって行われることによって、ダイカストマシン1の全体として、好適に温度制御が行われる。 The operation of the internal cooling device 17 is easier to change than the spray device 15. Specifically, it is as follows. The operation of the spray device 15 is controlled to take into account not only cooling effects, but also effects such as seizure and/or demolding resistance. On the other hand, the internal cooling device 17 basically does not need to expect other effects from the cooling water. Therefore, the operation of the internal cooling device 17 can be flexibly changed. The temperature is detected based on the period of spraying during which the temperature of the die 101 is greatly lowered, and the internal cooling device 17 adjusts the cooling effect based on the detected temperature. Overall, good temperature control is achieved.
 上記の冷却水に係る物理量は、各成形サイクル内の、流路107内へ冷却水が供給される時間長さを含んでよい(図5(a))。 The physical quantity related to the cooling water may include the length of time during which the cooling water is supplied into the flow path 107 in each molding cycle (Fig. 5(a)).
 この場合、例えば、冷却水の流量を調整する必要性が低減される。その結果、例えば、流量制御弁を設ける必要性(又は流量制御弁の高精度化の必要性)が低減され、内部冷却装置17のコスト削減が容易化される。 In this case, for example, the need to adjust the flow rate of cooling water is reduced. As a result, for example, the need to provide a flow control valve (or the need to increase the precision of the flow control valve) is reduced, and cost reduction of the internal cooling device 17 is facilitated.
 上記の冷却水に係る物理量は、各成形サイクル内の、所定期間に流路107内へ流れ込む冷却水の単位時間当たりの流量Qを含んでよい(図5(b))。なお、図5(b)の例では、上記の「所定期間」は、時点t3から次の時点t3までの成形サイクルの時間長さに相当する期間である。スプレイ期間SP又は検出期間DPが上記の所定期間に相当すると捉えられてもよい。 The above physical quantity related to the cooling water may include the flow rate Q per unit time of the cooling water flowing into the flow path 107 during a predetermined period in each molding cycle (Fig. 5(b)). In the example of FIG. 5B, the "predetermined period" is a period corresponding to the time length of the molding cycle from time t3 to the next time t3. The spray period SP or the detection period DP may be regarded as corresponding to the predetermined period.
 この場合、例えば、流量Qの変化によって、金型101の温度変化の勾配を変化させることができる。換言すれば、金型101の温度変化の勾配が変化するタイミングは維持できる。従って、例えば、内部冷却装置17による冷却のタイミングと、機械本体3の動作による温度変化のタイミングと、スプレイによる冷却のタイミングとの相互関係の変化によって、意図されていない温度変化が生じる蓋然性が低減される。 In this case, for example, the gradient of the temperature change of the mold 101 can be changed by changing the flow rate Q. In other words, the timing at which the gradient of the temperature change of the mold 101 changes can be maintained. Therefore, for example, the probability of an unintended temperature change occurring due to a change in the interrelationship between the timing of cooling by the internal cooling device 17, the timing of temperature change due to the operation of the machine body 3, and the timing of cooling by the spray is reduced. be done.
 制御装置5は、同一の成形サイクル内の第1温度と第2温度との差に基づいて、その後の成形サイクルのスプレイに係る物理量を調整してよい。 The control device 5 may adjust the physical quantity related to spraying in subsequent molding cycles based on the difference between the first temperature and the second temperature within the same molding cycle.
 この場合、例えば、第1温度及び第2温度の差と相関が高い冷却手段の動作を制御することになる。その結果、例えば、成形サイクルの繰り返しに伴って第1温度及び第2温度に基づく冷却に係る操作量の修正を繰り返していったときに、金型101の温度が安定していきやすい(成形サイクル内の温度変化が複数の成形サイクル同士で同等になりやすい。)。 In this case, for example, the operation of the cooling means that is highly correlated with the difference between the first temperature and the second temperature is controlled. As a result, for example, as the molding cycle is repeated, the temperature of the mold 101 tends to become stable (within the molding cycle temperature changes tend to be the same between multiple molding cycles.)
 上記のスプレイに係る物理量は、各成形サイクル内の、スプレイが行われる時間を含んでよい(図6(a))。 The above physical quantity related to spraying may include the time during which spraying is performed in each molding cycle (Fig. 6(a)).
 この場合、例えば、冷却水を流路107に供給する時間を調整する態様と同様に、流量制御弁を設ける必要性(又は流量制御弁の高精度化の必要性)が低減され、スプレイ装置15のコスト削減が容易化される。 In this case, for example, similarly to the aspect of adjusting the time to supply the cooling water to the flow path 107, the need for providing a flow control valve (or the need for increasing the accuracy of the flow control valve) is reduced, and the spray device 15 cost reduction is facilitated.
 上記のスプレイに係る物理量は、各成形サイクル内の、スプレイで噴出される単位時間当たりの液量(吐出量q)を含んでよい。 The above physical quantity related to the spray may include the amount of liquid ejected by the spray per unit time (discharge amount q) in each molding cycle.
 この場合、例えば、冷却水の流量Qを変化させる態様と同様に、金型101の温度変化の勾配が変化するタイミングを維持できる。その結果、例えば、温度変化に影響を及ぼす他の構成要素の動作のタイミングとの相互関係の変化によって、意図されていない温度変化が生じる蓋然性が低減される。 In this case, for example, the timing at which the slope of the temperature change of the mold 101 changes can be maintained in the same manner as in the mode of changing the flow rate Q of the cooling water. As a result, the likelihood of unintended temperature changes occurring, for example, due to changes in interrelationships with the timing of operations of other components that affect temperature changes is reduced.
 なお、金型101は、ダイカストマシン1のユーザによって適宜に交換されるものである。また、温度センサ59は、金型101に取り付けられている場合がある。従って、ダイカストマシン1は、金型101及び温度センサ59を含まないマシンとして捉えられてもよいし、金型101及び温度センサ59を含むマシンとして捉えられてもよい。 The die 101 is appropriately replaced by the user of the die casting machine 1. Also, the temperature sensor 59 may be attached to the mold 101 . Therefore, the die casting machine 1 may be regarded as a machine that does not include the mold 101 and the temperature sensor 59 or as a machine that includes the mold 101 and the temperature sensor 59 .
 また、本実施形態に係るダイカストマシン1からは、スプレイ制御部55を含む装置として捉えられるスプレイ装置を抽出可能である。当該スプレイ装置は、スプレイ装置本体(スプレイ装置15と制御装置5とを別個の構成要素として捉えた場合のスプレイ装置15)と、スプレイ制御部55とを有してよい。スプレイ装置15は、型閉じ、射出及び型開きを含む成形サイクルが繰り返されるときに、各成形サイクル内で型閉じ前の型(金型101)に向けてスプレイを行う。スプレイ制御部55は、金型101の温度を検出するセンサ(温度センサ59)からの信号に基づいてスプレイ装置15を制御してよい。また、スプレイ制御部55は、スプレイの前に温度センサ59によって検出された第1温度D1と、当該第1温度D1が検出された成形サイクル内でスプレイの後に温度センサ59によって検出された第2温度D2との温度差に基づいて、その後の成形サイクル内のスプレイ装置15の動作を制御してよい。 Also, from the die casting machine 1 according to the present embodiment, it is possible to extract a spray device that can be regarded as a device including the spray control unit 55. The spray device may have a main body of the spray device (the spray device 15 when the spray device 15 and the control device 5 are regarded as separate components) and a spray control section 55 . The spray device 15 sprays toward the mold (the mold 101) before mold closing in each molding cycle when the molding cycle including mold closing, injection and mold opening is repeated. The spray controller 55 may control the spray device 15 based on a signal from a sensor (temperature sensor 59 ) that detects the temperature of the mold 101 . Further, the spray control unit 55 controls the first temperature D1 detected by the temperature sensor 59 before spraying and the second temperature D1 detected by the temperature sensor 59 after spraying within the molding cycle in which the first temperature D1 is detected. Based on the temperature difference from temperature D2, the operation of spray device 15 may be controlled in subsequent molding cycles.
 このようなスプレイ制御部55を含むスプレイ装置は、機械本体3及び本体制御部53と別個に流通されるもの(又はそのような流通が可能なもの)であってもよいし、そのような別個の流通がなされないもの(又は不可能なもの)であってもよい。また、いずれの態様においても、スプレイ装置は、温度センサ59を含んでいてもよいし、含んでいなくてもよい。 A spray device including such a spray control unit 55 may be distributed (or capable of such distribution) separately from the machine main body 3 and the main body control unit 53, or may be distributed separately from the main body 3 and main body control unit 53. It may be one that is not distributed (or impossible). Also, in either aspect, the spray device may or may not include a temperature sensor 59 .
 本開示に係る技術は、以上の実施形態に限定されず、種々の態様で実施されてよい。 The technology according to the present disclosure is not limited to the above embodiments, and may be implemented in various aspects.
 例えば、成形機は、ダイカストマシンに限定されない。例えば、成形機は、他の金属成形機であってもよいし、樹脂を成形する射出成形機であってもよいし、木粉に熱可塑性樹脂等を混合させた材料を成形する成形機であってもよい。また、成形機は、横型締横射出に限定されず、例えば、縦型締縦射出、縦型締横射出、横型締縦射出であってもよい。 For example, molding machines are not limited to die casting machines. For example, the molding machine may be another metal molding machine, an injection molding machine that molds resin, or a molding machine that molds a material obtained by mixing wood flour with thermoplastic resin or the like. There may be. Further, the molding machine is not limited to horizontal clamping and horizontal injection, and may be, for example, vertical clamping and vertical injection, vertical clamping and horizontal injection, or horizontal clamping and vertical injection.
 図5(b)の例では、成形サイクルの周期に相当する周期(時点t3から次の時点t3までの期間)の全体に亘って流量Qを変化させた。ただし、当該周期の一部のみ(例えばスプレイ期間SP又は検出期間DP)のみにおいて、流量Qを変化させてもよい。 In the example of FIG. 5(b), the flow rate Q was changed over the entire cycle (period from time t3 to the next time t3) corresponding to the cycle of the molding cycle. However, the flow rate Q may be changed only in part of the cycle (for example, the spray period SP or the detection period DP).
 実施形態では、第1温度及び第2温度の差に基づいて、これらの温度を検出した成形サイクルの後の成形サイクルにおける冷却部の動作が調整された。ただし、第1温度及び第2温度に基づいて、これらの温度を検出した成形サイクル内においてのみ冷却部の動作が調整されてもよい。 In the embodiment, based on the difference between the first temperature and the second temperature, the operation of the cooling section is adjusted in the molding cycle after the molding cycle in which these temperatures are detected. However, based on the first temperature and the second temperature, the operation of the cooling section may be adjusted only within the molding cycle in which these temperatures are detected.
 例えば、図5(a)の例において、スプレイ期間SP内(検出期間DP内)において冷却水が供給される時間は複数の成形サイクル同士で同一とされてよい。そして、第1温度及び第2温度の差に基づいて、これらの温度を検出した成形サイクル内でのみ、冷却水を供給する時間が調整されてよい。同様に、図5(b)の例において、スプレイ期間SP内(検出期間DP内)の流量Qは複数の成形サイクル同士で同一としてよい。そして、第1温度及び第2温度の差に基づいて、これらの温度を検出した成形サイクル内でのみ、流量Qを調整してもよい。 For example, in the example of FIG. 5(a), the time during which cooling water is supplied within the spray period SP (within the detection period DP) may be the same for a plurality of molding cycles. Then, based on the difference between the first temperature and the second temperature, the time for supplying cooling water may be adjusted only within the molding cycle in which these temperatures are detected. Similarly, in the example of FIG. 5(b), the flow rate Q within the spray period SP (within the detection period DP) may be the same for a plurality of molding cycles. Then, based on the difference between the first temperature and the second temperature, the flow rate Q may be adjusted only within the molding cycle in which these temperatures are detected.
 上記から理解されるように、成形サイクルの繰り返しによって、第1温度と第2温度との差が変化しても、検出期間DP内(スプレイ期間SP)内の冷却部の動作は、複数の成形サイクル同士で同一であってよい。このような態様では、例えば、何らかの異常又は環境温度の変化によって、冷却部の操作量に対する冷却部による冷却効果が変化したときに、その変化に応じた調整を行うことができる。また、実施形態のように、第1温度及び第2温度の差に応じて、その後の成形サイクルの検出期間DP内の冷却部の動作を調整する態様においては、例えば、冷却部の操作量の変化が冷却部による冷却効果の変化に及ぼす影響を考慮した調整を行うことができる。 As can be understood from the above, even if the difference between the first temperature and the second temperature changes due to the repetition of the molding cycle, the operation of the cooling unit within the detection period DP (spray period SP) is sufficient for a plurality of moldings. It may be the same from cycle to cycle. In such a mode, for example, when the cooling effect of the cooling unit with respect to the operation amount of the cooling unit changes due to some abnormality or change in the environmental temperature, it is possible to make adjustments according to the change. Further, as in the embodiment, in a mode in which the operation of the cooling unit within the detection period DP of the subsequent molding cycle is adjusted according to the difference between the first temperature and the second temperature, for example, the operation amount of the cooling unit Adjustments can be made to account for the effect of the change on the change in cooling effect of the cooling unit.
 1…ダイカストマシン(成形機)、3…機械本体、5…制御装置、13…冷却部、15…スプレイ装置、59…温度センサ(センサ)、101…金型(型)。 1... Die casting machine (molding machine), 3... Machine body, 5... Control device, 13... Cooling part, 15... Spray device, 59... Temperature sensor (sensor), 101... Mold (mold).

Claims (10)

  1.  成形サイクルを繰り返す成形機であって、
     各成形サイクル内の、型閉じ、射出及び型開きを順に行う機械本体と、
     各成形サイクル内で型を冷却する冷却部と、
     前記型の温度を検出するセンサからの信号に基づいて前記冷却部を制御する制御装置と、
     を有しており、
     前記冷却部は、各成形サイクル内で型閉じ前の前記型に向けてスプレイを行うスプレイ装置を含んでおり、
     前記制御装置は、前記スプレイの前に前記センサによって検出された第1温度と、当該第1温度が検出された成形サイクル内で前記スプレイの後に検出された第2温度との温度差に基づいて、前記冷却部の動作を制御する
     成形機。
    A molding machine that repeats the molding cycle,
    a machine body that sequentially performs mold closing, injection and mold opening in each molding cycle;
    a cooling section for cooling the mold within each molding cycle;
    a control device that controls the cooling unit based on a signal from a sensor that detects the temperature of the mold;
    and
    The cooling unit includes a spray device that sprays toward the mold before closing the mold in each molding cycle,
    The controller controls the temperature difference between a first temperature sensed by the sensor prior to the spraying and a second temperature sensed after the spraying within the molding cycle in which the first temperature was sensed. , a molding machine for controlling the operation of the cooling unit.
  2.  前記制御装置は、各成形サイクル内の前記温度差に基づいて、各成形サイクルの次の成形サイクルで前記スプレイが行われるときの前記冷却部の動作を制御する
     請求項1に記載の成形機。
    2. The molding machine according to claim 1, wherein the control device controls the operation of the cooling section when the spray is performed in the molding cycle following each molding cycle based on the temperature difference within each molding cycle.
  3.  前記冷却部は、前記型に設けられている流路内に冷媒を供給する内部冷却装置を含んでおり、
     前記制御装置は、前記温度差に基づいて前記冷媒に係る物理量を調整する
     請求項1又は2に記載の成形機。
    the cooling unit includes an internal cooling device that supplies a coolant to a channel provided in the mold;
    The molding machine according to claim 1 or 2, wherein the control device adjusts a physical quantity related to the coolant based on the temperature difference.
  4.  前記冷媒に係る物理量は、各成形サイクル内の、前記流路内へ前記冷媒が供給される時間長さを含む
     請求項3に記載の成形機。
    4. The molding machine according to claim 3, wherein the physical quantity related to the coolant includes a length of time during which the coolant is supplied into the flow path in each molding cycle.
  5.  前記冷媒に係る物理量は、各成形サイクル内の、所定期間に前記流路内へ流れ込む前記冷媒の単位時間当たりの流量を含む
     請求項3又は4に記載の成形機。
    5. The molding machine according to claim 3, wherein the physical quantity related to the refrigerant includes a flow rate per unit time of the refrigerant flowing into the flow path during a predetermined period in each molding cycle.
  6.  前記制御装置は、前記温度差に基づいて前記スプレイに係る物理量を調整する
     請求項1~5のいずれか1項に記載の成形機。
    The molding machine according to any one of claims 1 to 5, wherein the controller adjusts a physical quantity related to the spray based on the temperature difference.
  7.  前記スプレイに係る物理量は、各成形サイクル内の、前記スプレイが行われる時間を含む
     請求項6に記載の成形機。
    7. The molding machine according to claim 6, wherein the physical quantity related to the spray includes the time during which the spray is performed within each molding cycle.
  8.  前記スプレイに係る物理量は、各成形サイクル内の、前記スプレイで噴出される単位時間当たりの液量を含む
     請求項6又は7に記載の成形機。
    The molding machine according to claim 6 or 7, wherein the physical quantity related to the spray includes the amount of liquid ejected by the spray per unit time in each molding cycle.
  9.  前記型と、
     前記センサと、
     を更に有している請求項1~8のいずれか1項に記載の成形機。
    said mold;
    the sensor;
    The molding machine according to any one of claims 1 to 8, further comprising:
  10.  型閉じ、射出及び型開きを含む成形サイクルが繰り返されるときに、各成形サイクル内で型閉じ前の前記型に向けてスプレイを行うスプレイ装置本体と、
     前記型の温度を検出するセンサからの信号に基づいて前記スプレイ装置本体を制御するスプレイ制御部と、
     を有しており、
     前記スプレイ制御部は、前記スプレイの前に前記センサによって検出された第1温度と、当該第1温度が検出された成形サイクル内で前記スプレイの後に検出された第2温度との温度差に基づいて、その後の成形サイクル内の前記スプレイ装置本体の動作を制御する
     スプレイ装置。
    a spray device main body that sprays toward the mold before mold closing in each molding cycle when molding cycles including mold closing, injection and mold opening are repeated;
    a spray control unit for controlling the main body of the spray device based on a signal from a sensor that detects the temperature of the mold;
    and
    The spray control is based on a temperature difference between a first temperature sensed by the sensor prior to the spraying and a second temperature sensed after the spraying within the molding cycle in which the first temperature was sensed. to control the operation of said spray device body within a subsequent molding cycle.
PCT/JP2022/042032 2021-11-16 2022-11-11 Molding machine and spray device WO2023090262A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-186188 2021-11-16
JP2021186188A JP2023073623A (en) 2021-11-16 2021-11-16 Molding machine and spraying device

Publications (1)

Publication Number Publication Date
WO2023090262A1 true WO2023090262A1 (en) 2023-05-25

Family

ID=86396914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042032 WO2023090262A1 (en) 2021-11-16 2022-11-11 Molding machine and spray device

Country Status (2)

Country Link
JP (1) JP2023073623A (en)
WO (1) WO2023090262A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7430952B1 (en) 2023-08-04 2024-02-14 デザインパーツ株式会社 Cooling device and cooling method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961565A (en) * 1982-09-29 1984-04-07 Sintokogio Ltd Method for controlling temperature of die
JPS6092047A (en) * 1983-10-26 1985-05-23 Toshiba Mach Co Ltd Sprayer for die casting machine
JPH01210161A (en) * 1988-02-19 1989-08-23 Honda Motor Co Ltd Method for controlling temperature of die for casting
JPH01210162A (en) * 1988-02-19 1989-08-23 Honda Motor Co Ltd Method for controlling temperature of die for casting
JPH02258139A (en) * 1989-03-30 1990-10-18 Toyota Motor Corp Method for controlling temperature of metallic mold
JPH1147883A (en) * 1997-07-31 1999-02-23 Honda Motor Co Ltd Device for controlling temperature of mold
JP2000015420A (en) * 1998-06-30 2000-01-18 Aisin Takaoka Ltd Method for cooling die for die casting
JP2012055938A (en) * 2010-09-10 2012-03-22 Toyota Motor Corp Method for applying release agent
JP2021094565A (en) * 2019-12-13 2021-06-24 トヨタ自動車株式会社 Abnormality determination method of release agent spray device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961565A (en) * 1982-09-29 1984-04-07 Sintokogio Ltd Method for controlling temperature of die
JPS6092047A (en) * 1983-10-26 1985-05-23 Toshiba Mach Co Ltd Sprayer for die casting machine
JPH01210161A (en) * 1988-02-19 1989-08-23 Honda Motor Co Ltd Method for controlling temperature of die for casting
JPH01210162A (en) * 1988-02-19 1989-08-23 Honda Motor Co Ltd Method for controlling temperature of die for casting
JPH02258139A (en) * 1989-03-30 1990-10-18 Toyota Motor Corp Method for controlling temperature of metallic mold
JPH1147883A (en) * 1997-07-31 1999-02-23 Honda Motor Co Ltd Device for controlling temperature of mold
JP2000015420A (en) * 1998-06-30 2000-01-18 Aisin Takaoka Ltd Method for cooling die for die casting
JP2012055938A (en) * 2010-09-10 2012-03-22 Toyota Motor Corp Method for applying release agent
JP2021094565A (en) * 2019-12-13 2021-06-24 トヨタ自動車株式会社 Abnormality determination method of release agent spray device

Also Published As

Publication number Publication date
JP2023073623A (en) 2023-05-26

Similar Documents

Publication Publication Date Title
WO2023090262A1 (en) Molding machine and spray device
EP2445701B1 (en) Consumable materials having customized characteristics
JP2009137075A (en) Injection molding method and mold temperature adjustment device
US7431871B2 (en) Method for regulating the contraction of molded parts
WO2011086776A1 (en) Method and device for molding semi-solidified metal, and cooling circuit structure for cooling jig
JP4696706B2 (en) Spray agent coating method and spray agent coating apparatus
JPH06166063A (en) Plastic molding device
CN118234579A (en) Forming machine and spraying device
JP5719166B2 (en) Mold for molding
JP5419364B2 (en) Injection molding system and injection molding method
US10391548B2 (en) Casting device and casting method
EP4302961A1 (en) Extrusion device and extrusion molding die used by same, monitoring device and program, strand manufacturing method, and strand diameter adjustment method
JP3770872B2 (en) Strand cooling device and cooling method
US7841854B2 (en) Temperature adjustment mechanism for injection molding machine
JP2019171629A (en) Mold system
JP4994916B2 (en) Injection molding machine and injection molding method
JP2008179105A (en) Applicator of powdered mold release and applying method of powdered mold release
JPH09277336A (en) Method for manufacturing foamed resin molding and apparatus therefor
JPH0788612A (en) Method for cooling amorphous alloy and device therefor
JP3702098B2 (en) Cooling method of die casting mold
JP6385855B2 (en) Injection device
WO2022244221A1 (en) Injection molding device
JP2003039158A (en) Metal injection molding method
US20240100591A1 (en) Method and system for die casting
JP2021041435A (en) Temperature measurement device for casting mold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895544

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401003062

Country of ref document: TH