JPH0788612A - Method for cooling amorphous alloy and device therefor - Google Patents

Method for cooling amorphous alloy and device therefor

Info

Publication number
JPH0788612A
JPH0788612A JP25482793A JP25482793A JPH0788612A JP H0788612 A JPH0788612 A JP H0788612A JP 25482793 A JP25482793 A JP 25482793A JP 25482793 A JP25482793 A JP 25482793A JP H0788612 A JPH0788612 A JP H0788612A
Authority
JP
Japan
Prior art keywords
casting
refrigerant
mold
time
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25482793A
Other languages
Japanese (ja)
Other versions
JP3075897B2 (en
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Takao Nakamura
孝夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Machinery and Metal Co Ltd
Original Assignee
Toyo Machinery and Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Machinery and Metal Co Ltd filed Critical Toyo Machinery and Metal Co Ltd
Priority to JP05254827A priority Critical patent/JP3075897B2/en
Publication of JPH0788612A publication Critical patent/JPH0788612A/en
Application granted granted Critical
Publication of JP3075897B2 publication Critical patent/JP3075897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To secure a cooling rate sufficient for making a cast alloy material nonamorphous even if a nonamorphous alloy is not completely solidified in the part of a metal mold gate and sufficient packing is possible. CONSTITUTION:The metal molds 1 are kept heated before casting of a nonamorphous alloy material 5 and the cast alloy material 5 is made nonamorphous by rapidly cooling the metal molds 1 simultaneously when the nonamorphous alloy material 5 is cast into the metal molds 1 at the time of casting the nonamorphous alloy material 5 into the metal molds 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非晶質合金材料の新規
な鋳込み・冷却方法とその方法を実施する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel casting / cooling method for an amorphous alloy material and an apparatus for carrying out the method.

【0002】[0002]

【従来の技術】従来のダイカスト鋳造装置や射出成形機
などの金型温調は、金型温調器の使用や、冷却水量の調
整によって行われ、これにより金型の温度を安定させる
事が、欠陥のない成形品を作る上で重要とされて来た。
例えば非晶質合金のダイカスト鋳造では約10,000
℃/sec以上の超急速冷却が、鋳込み金属を非晶質に形成
する上で不可欠であった。
2. Description of the Related Art The temperature control of a conventional die casting machine or injection molding machine is carried out by using a mold temperature controller and adjusting the amount of cooling water, thereby stabilizing the temperature of the mold. , Has been regarded as important in making defect-free molded products.
For example, in die casting of amorphous alloys, about 10,000
Ultra-quick cooling of ℃ / sec or more was indispensable for forming cast metal into amorphous.

【0003】換言すれば、金型温度が高い事は、冷却速
度がそれだけ低くなり(約200℃の金型では冷却速度
はせいぜい100〜1000℃/secである。)、冷却速
度が不十分で非晶質合金を得る事が出来ない。そこで、
超急冷のために金型温度を低くする事を目的として冷却
水のかわりに、例えば、冷媒として液体窒素を使用し
た。
In other words, a high mold temperature results in a lower cooling rate (a mold of about 200 ° C. has a cooling rate of 100 to 1000 ° C./sec at most), and the cooling rate is insufficient. Amorphous alloy cannot be obtained. Therefore,
Liquid nitrogen, for example, was used as a coolant instead of cooling water for the purpose of lowering the mold temperature for super-quenching.

【0004】しかし、金型温度が0℃〜−30℃となる
と、どうしても金型キャビティ内への鋳込み金属の充填
が完了する手前で鋳込み金属が金型ゲートで凝固してし
まい、充填不足を起こして完全なる成形品が得られない
事が解った。
However, when the mold temperature is 0 ° C. to −30 ° C., the cast metal is inevitably solidified in the mold gate before the filling of the cast metal into the mold cavity is completed, resulting in insufficient filling. It was found that a perfect molded product could not be obtained.

【0005】このことから、非晶質合金のダイカストに
よる作製は、非晶質合金が、充填されつつある時は、金
型温度を高く保持して非晶質合金の凝固を防止し、充填
完了時には、冷却速度が非晶質化に必要な速度まで速く
なる様に金型を冷却させる事が必要となってくる。
Therefore, when the amorphous alloy is produced by die casting, when the amorphous alloy is being filled, the mold temperature is kept high to prevent the amorphous alloy from solidifying, and the filling is completed. At times, it is necessary to cool the mold so that the cooling rate is as fast as required for amorphization.

【0006】[0006]

【発明が解決しようとする課題】前記問題点に鑑みて本
発明の解決しようとする課題は、非晶質合金が金型ゲー
トの部分で凝固してしまわず、十分な充填が可能である
にも拘わらず、非晶質化に十分な冷却速度を確保できる
ようにする事である。
In view of the above problems, the problem to be solved by the present invention is that the amorphous alloy is not solidified at the mold gate portion and sufficient filling is possible. Nevertheless, it is necessary to ensure a sufficient cooling rate for amorphization.

【0007】[0007]

【課題を解決するための手段】請求項1の非晶質合金の
冷却方法によれば、『非晶質合金材料(5)を金型(1)に鋳
造する際に、非晶質合金材料(5)の鋳込み前は金型(1)を
加熱しておき、非晶質合金材料(5)が金型(1)に鋳込まれ
ると同時に金型(1)を急冷して鋳込み合金材料(5)を非晶
質化する』事を特徴とする。
According to the method for cooling an amorphous alloy according to claim 1, "When the amorphous alloy material (5) is cast in a mold (1), the amorphous alloy material is Before casting (5), the mold (1) is heated, and the amorphous alloy material (5) is cast into the mold (1) and at the same time the mold (1) is rapidly cooled to cast alloy material. (5) is made amorphous ”.

【0008】これによれば、鋳込み前は金型(1)の温度
が高いために鋳込み開始時での鋳込み合金(5)の凝固が
遅れ、鋳込み合金(5)の金型(1)への充填が十分に行わ
れ、鋳込みと同時に鋳込み合金(5)を急冷するので、非
晶質化を達成する事ができる。その結果、充填不足のな
い非晶質合金ダイカスト鋳物を得ることができる。
According to this, since the temperature of the mold (1) is high before casting, the solidification of the casting alloy (5) at the start of casting is delayed, and the casting alloy (5) to the mold (1) is delayed. Since the filling is sufficiently performed and the cast alloy (5) is rapidly cooled at the same time as the casting, it is possible to achieve amorphization. As a result, it is possible to obtain an amorphous alloy die cast product that is not insufficiently filled.

【0009】請求項2の非晶質合金の冷却方法は請求項
1を限定したもので『鋳込み後の鋳込み合金材料(5)の
凝固による金型ゲート閉塞時間(t3)より、鋳込み合金
(5)の金型(1)への鋳込み完了迄の時間(t4)の方を短くす
る』事を特徴とする。これにより、鋳込み完了迄の時間
(t4)の方が、鋳込み合金材料(5)の凝固による金型ゲー
ト閉塞時間(t3)より十分早いので、鋳込み合金(5)の金
型キャビティ(1d)への完全に充填がなされる事になる。
The method for cooling an amorphous alloy according to a second aspect is a method for limiting the first aspect, wherein "a casting alloy is cast from a die gate closing time (t3) due to solidification of a casting alloy material (5) after casting.
The time (t4) until the completion of the casting of (5) into the mold (1) is shortened ”. As a result, the time to complete casting
(t4) is sufficiently faster than the mold gate closing time (t3) due to solidification of the casting alloy material (5), so that the casting cavity (1d) of the casting alloy (5) should be completely filled. become.

【0010】請求項3の非晶質合金の冷却方法は『非晶
質合金材料(5)を金型(1)に鋳造する際に、非晶質合金材
料(5)の鋳込み前は金型(1)を加熱しておき、非晶質合金
材料(5)が金型(1)に鋳込まれると同時に金型(1)を急冷
する非晶質合金(5)の冷却方法において、鋳込み合金材
料(5)が金型ゲート(7)に達すると同時に冷媒(30)が冷媒
通過路(26)の入り口(26a)に達するように、鋳込み装置
始動開始時刻(t1)から非晶質鋳込み材料(5)が金型ゲー
ト(7)に到達する迄の鋳込み材料到達時間(T1)と、冷媒
供給装置始動開始時刻(t2)から冷媒(30)が冷媒通過路(2
6)の入り口(26a)に達する冷媒到達時間(T2)を算出して
おき、鋳込み材料到達時間(T1)から冷媒到達時間(T2)を
差し引いた時間(Δt)だけを鋳込み装置始動開始時刻(t
1)より遅く冷媒(30)の供給を開始する』事を特徴とす
る。これにより、鋳込み材料(5)の金型ゲート(7)に到達
する迄の時間(T1)と、冷媒供給装置が始動して冷媒(30)
が冷媒通過路(26)の入り口(26a)に達する迄の時間(T2)
のタイムラグ(Δt)を調節して非晶質合金材料(5)の金型
(1)への鋳込みと金型(1)の急冷開始とを一致させる事が
出来、充填不足なしで非晶質部材をダイカスティングす
る事ができた。
According to a third aspect of the present invention, there is provided a method for cooling an amorphous alloy, wherein "when the amorphous alloy material (5) is cast into a mold (1), the amorphous alloy material (5) is cast before the casting. In the cooling method of the amorphous alloy (5), in which the amorphous alloy material (5) is cast into the mold (1) at the same time as (1) is heated and the mold (1) is rapidly cooled. The alloy material (5) reaches the mold gate (7), and at the same time the refrigerant (30) reaches the inlet (26a) of the refrigerant passage (26), the amorphous casting is started from the pouring device start start time (t1). From the starting time (t2) of the refrigerant supply device start time (T1) until the material (5) reaches the mold gate (7), the refrigerant (30) passes through the refrigerant passage (2).
The refrigerant arrival time (T2) reaching the entrance (26a) of 6) is calculated in advance, and only the time (Δt) obtained by subtracting the refrigerant arrival time (T2) from the casting material arrival time (T1) (Δt) is set to the casting device start start time ( t
1) The supply of the refrigerant (30) is started later than that of 1) '. As a result, the time (T1) until the casting material (5) reaches the mold gate (7), and the refrigerant supply device starts to operate the refrigerant (30).
Until the refrigerant reaches the inlet (26a) of the refrigerant passage (26) (T2)
Amorphous alloy material (5) mold by adjusting the time lag (Δt) of
It was possible to match the casting into (1) with the start of quenching of the mold (1), and it was possible to die cast the amorphous member without insufficient filling.

【0011】請求項4は非晶質合金の冷却装置は『冷媒
通過路(26)と熱媒通過路(28)とを有する金型(1)と、冷
媒通過路(26)の入り口(26a)に設けられた冷媒通過セン
サ(25)と、冷媒通過路(25)に冷媒(30)を供給する冷媒供
給部(11)と、熱媒通過路(28)に熱媒(31)を供給する熱媒
供給部(12)と、金型(1)に非晶質合金材料(5)を鋳込む前
には熱媒供給部(12)を作動させて熱媒(31)を熱媒通過路
(28)に通過させて金型(1)を加熱しておき、冷媒供給装
置始動開始時刻(t2)から冷媒通過センサ(25)にて冷媒(3
0)が冷媒通過路(26)の入り口(26a)に達する冷媒到達時
間(T2)並びに鋳込み装置始動開始時刻(t1)から非晶質鋳
込み材料(5)が金型ゲート(7)に到達するまでの鋳込み材
料到達時間(T1)とを予め演算しておいて、鋳込み時に
は、鋳込み材料到達時間(T1)から冷媒到達時間(T2)を差
し引いた時間(Δt)だけ鋳込み装置始動開始時刻(t1)よ
り遅く冷媒(30)の供給開始を行うように冷媒供給部(11)
を作動させて金型冷却を行う制御部(24)とで構成され
た』事を特徴とするこれにより、本発明方法の実施が行
われる。
According to a fourth aspect of the present invention, there is provided a cooling device for an amorphous alloy which comprises a "mold (1) having a refrigerant passage (26) and a heat medium passage (28) and an inlet (26a) of the refrigerant passage (26). ), A refrigerant passage sensor (25), a refrigerant supply unit (11) for supplying the refrigerant (30) to the refrigerant passage (25), and a heat medium (31) for the heat medium passage (28). Before the amorphous alloy material (5) is cast into the heat medium supply unit (12) and the mold (1), the heat medium supply unit (12) is operated to pass the heat medium (31) through the heat medium. Road
The mold (1) is heated by passing it through (28), and the refrigerant (3) is cooled by the refrigerant passage sensor (25) from the refrigerant supply device start start time (t2).
Amorphous casting material (5) reaches the mold gate (7) from the arrival time (T2) of the refrigerant reaching the inlet (26a) of the refrigerant passage (26) and the start time of the casting device start (t1). The casting material arrival time up to (T1) has been calculated in advance, and at the time of casting, the casting device start start time (t1 ) Refrigerant supply unit (11) so that the supply of refrigerant (30) is started later than
And a control unit (24) for cooling the mold to operate the mold. ”Thus, the method of the present invention is carried out.

【0012】[0012]

【実施例】以下、本発明を図示実施例に従って詳述する
が、これによって本発明が限定されるものではない。図
1は本発明にかかる立射出ダイカスト成形装置の一例
の、射出装置(2)を中心とする部分概略断面図である。
同図において、(1)は金型、(2)は射出装置、(3)は傾倒
機構、(6)はトグル機構をそれぞれ示す。
The present invention will be described in detail below with reference to the illustrated embodiments, but the present invention is not limited thereto. FIG. 1 is a partial schematic cross-sectional view of an example of a vertical injection die casting molding apparatus according to the present invention, centering on an injection device (2).
In the figure, (1) shows a mold, (2) shows an injection device, (3) shows a tilting mechanism, and (6) shows a toggle mechanism.

【0013】金型(1)は、固定金型(1a)と移動金型(1b)
とで構成されている。固定金型(1a)は固定プレート(14)
に装着されており、移動金型(1b)は、移動金型取付プレ
ート(1c)を介して移動プレート(15)に固定されている。
(19)は成形品押出のための押出ピンである。移動プレー
ト(15)はタイバー(17)にスライド自在に装着されてお
り、トグル機構(6)の作用にて移動金型(1b)を開閉する
ようになっている。(6a)はリンク機構のトグルリンクで
ある。(16)は支持ローラで、移動プレート(15)に装着さ
れており、移動プレート(15)の荷重を受けてレール上を
往復走行するようになっている。
The mold (1) includes a fixed mold (1a) and a movable mold (1b).
It consists of and. Fixed mold (1a) is fixed plate (14)
The moving die (1b) is fixed to the moving plate (15) via the moving die mounting plate (1c).
(19) is an extrusion pin for extruding a molded product. The moving plate (15) is slidably mounted on the tie bar (17), and the moving die (1b) is opened and closed by the action of the toggle mechanism (6). (6a) is a toggle link of the link mechanism. Reference numeral (16) is a support roller, which is mounted on the moving plate (15) and is configured to reciprocate on the rail under the load of the moving plate (15).

【0014】射出装置(2)は、射出スリーブ(4)と、前記
射出スリーブ(4)内を摺動自在に往復駆動されるチップ
(27)と、該チップ(27)を先端に装着したプランジャロッ
ド(10a)並びにプランジャロッド(10a)を作動させるため
の射出シリンダ(10)とから構成されている。
The injection device (2) comprises an injection sleeve (4) and a tip which is slidably reciprocally driven in the injection sleeve (4).
(27), a plunger rod (10a) with the tip (27) attached to the tip, and an injection cylinder (10) for operating the plunger rod (10a).

【0015】傾倒機構(3)は、射出装置(2)をその中央部
で軸支するフレーム(20)と、射出装置(2)を傾斜させる
傾動シリンダ(8)とから主として構成されている。(20a)
は傾倒軸である。
The tilting mechanism (3) is mainly composed of a frame (20) which pivotally supports the injection device (2) at its central portion and a tilting cylinder (8) which tilts the injection device (2). (20a)
Is the tilt axis.

【0016】射出スリーブ(4)には原料加熱手段(9)が設
けられている。これは、例えば射出スリーブ(4)の外周
に巻着されたヒータや誘導加熱コイルであり、射出スリ
ーブ(4)が所定の温度を保つように温調され、射出スリ
ーブ(4)に供給された非晶質合金を熔融状態に保ってい
る。
The injection sleeve (4) is provided with a raw material heating means (9). This is, for example, a heater or an induction heating coil wound around the outer circumference of the injection sleeve (4), and the temperature of the injection sleeve (4) is adjusted so as to maintain a predetermined temperature and supplied to the injection sleeve (4). The amorphous alloy is kept in a molten state.

【0017】次に本発明に係る金型冷却装置の一実施例
を図2・図3に従って説明する。図2は冷却用回路を示
すブッロク図であり、図3は温度調節用回路のブッロク
図で、両者は説明のために別個に描かれているが、1つ
の金型(1)に装着されている。
Next, an embodiment of the mold cooling device according to the present invention will be described with reference to FIGS. FIG. 2 is a block diagram showing the cooling circuit, and FIG. 3 is a block diagram of the temperature adjusting circuit. Both are drawn separately for explanation, but they are attached to one mold (1). There is.

【0018】図1及び図4から分かるように金型(1)に
は冷媒通過路(26)及び熱媒通過路(28)が多数穿設されて
おり、冷媒通過路(26)には冷媒(30)が、熱媒通過路(28)
には熱媒(31)がそれぞれ通流されるようになっている。
金型(1)のパーティング面(P)にはキャビティ(1d)が凹設
されており、金型ゲート(7)を介して射出スリーブ(4)が
接続するようになっている。
As can be seen from FIGS. 1 and 4, the mold (1) is provided with a large number of refrigerant passages (26) and heat medium passages (28), and the refrigerant passages (26) are provided with a refrigerant. (30) is heat medium passage (28)
A heat medium (31) is allowed to flow through each.
A cavity (1d) is provided in the parting surface (P) of the mold (1) so that the injection sleeve (4) is connected through the mold gate (7).

【0019】金型(1)の冷媒通過路(26)の出口には冷媒
(30)を貯留した保冷タンク(17)が接続されており、保冷
タンク(17)内の冷媒(30)は冷却器(11a)によって冷媒通
過路(26)に送り込まれるようになっている。冷却器(11
a)から冷媒通過路(26)の入り口までの管路には冷却バル
ブ(20)が設置されており、前記管路にエアーバルブ(22)
を介してエアー源(29)が接続されている。又、冷媒通過
路(26)の入り口には冷媒通過センサ(25)が設置されてお
り、冷却器(11a)によって供給された冷媒(30)が冷媒通
過路(26)の入り口に達したかどうかを検出している。
At the outlet of the refrigerant passage (26) of the mold (1), the refrigerant is
A cold insulation tank (17) storing (30) is connected, and the refrigerant (30) in the cold insulation tank (17) is fed to the refrigerant passage (26) by the cooler (11a). Cooler (11
A cooling valve (20) is installed in the pipeline from a) to the inlet of the refrigerant passage (26), and an air valve (22) is installed in the pipeline.
An air source (29) is connected via. Further, a refrigerant passage sensor (25) is installed at the inlet of the refrigerant passage (26), and whether the refrigerant (30) supplied by the cooler (11a) reaches the inlet of the refrigerant passage (26). Is detecting.

【0020】冷媒通過センサ(25)の検出データは制御部
(24)に送られる。制御部(24)は冷却バルブ(20)を始めエ
アーバルブ(22)(23)、温調バルブ(21)等の開閉を演算結
果に基づいて行うものである。ここでは、冷却バルブ(2
0)を開にしてから冷媒通過センサ(25)によって冷媒(30)
が冷媒通過路(26)の入り口に到達するまでの時間を検出
することにより、冷却器(11a)により冷媒(30)が冷却バ
ルブ(20)を開にした後、冷媒通過路(26)の入り口に到達
するまでの時間が測定できる。
The detection data of the refrigerant passage sensor (25) is the control unit.
Sent to (24). The control unit (24) opens and closes the cooling valve (20), the air valves (22) and (23), the temperature control valve (21), and the like based on the calculation result. Here, the cooling valve (2
0) is opened and then the refrigerant (30) is detected by the refrigerant passage sensor (25).
By detecting the time until it reaches the inlet of the refrigerant passage (26), after the refrigerant (30) opens the cooling valve (20) by the cooler (11a), the refrigerant passage (26) The time to reach the entrance can be measured.

【0021】エアー源(29)は冷却バルブ(22)並びに温調
バルブ(23)を介して冷媒通過路(26)並びに熱媒通過路(2
8)に接続されており、冷却バルブ(22)又は温調バルブ(2
3)を開にする事により、圧縮エアーが冷媒通過路(26)又
は熱媒通過路(28)に吹き込まれて冷媒通過路(26)又は熱
媒通過路(28)に残っている冷媒(30)や熱媒(31)が吹き飛
ばされて保冷タンク(17)や保温タンク(18)に戻されるよ
うになっている。
The air source (29) is provided with a refrigerant passage (26) and a heat medium passage (2) via a cooling valve (22) and a temperature control valve (23).
8) and is connected to the cooling valve (22) or temperature control valve (2
By opening 3), compressed air is blown into the refrigerant passage (26) or the heat medium passage (28) and remains in the refrigerant passage (26) or the heat medium passage (28) ( The heat medium (31) and the heat medium (31) are blown off and returned to the cold insulation tank (17) and the heat insulation tank (18).

【0022】図3は温調用回路で、冷媒通過路(26)に平
行して穿設された熱媒通過路(28)に熱媒(31)を通流させ
る回路である。熱媒通過路(28)の出口には熱媒(31)を貯
留した保温タンク(18)が設置されている。保温タンク(1
8)と熱媒通過路(28)との入り口には温調器(12a)が設置
されており、温調器(12a)の出口側に設置された温調バ
ルブ(21)によって熱媒(31)の熱媒通過路(28)への供給が
断続されるようになっている。熱媒(31)を供給する管路
にはエアーバルブ(23)を介して、エアー源(29)が接続さ
れている。前記冷媒(30)は、例えば水又は液体窒素など
が使用される。熱媒(31)は例えば熱湯や、油などが使用
される。
FIG. 3 is a temperature control circuit, which is a circuit for allowing the heat medium (31) to flow through the heat medium passage (28) formed in parallel with the refrigerant passage (26). A heat insulation tank (18) storing the heat medium (31) is installed at the outlet of the heat medium passage (28). Thermal insulation tank (1
The temperature controller (12a) is installed at the entrance of the heat medium passage (28) and the heat medium passage (28), and the heat medium (12a) is installed by the temperature control valve (21) at the outlet side of the temperature controller (12a). The supply of 31) to the heat medium passage (28) is intermittent. An air source (29) is connected to a pipeline for supplying the heat medium (31) via an air valve (23). The coolant (30) is, for example, water or liquid nitrogen. As the heat medium (31), for example, hot water or oil is used.

【0023】次に上記成形装置の作動について図面を参
照して説明する。 トグル機構(6)のトグルリンク(6a)を収縮させて移動
金型(1b)を固定金型(1a)から離間させ、型開きを行う。
続いて、傾動機構(3)を作動させて射出装置(2)を傾動軸
(20a)の回りに回転させ、射出装置(2)を傾斜させる。
Next, the operation of the molding apparatus will be described with reference to the drawings. The toggle link (6a) of the toggle mechanism (6) is contracted to separate the moving mold (1b) from the fixed mold (1a), and the mold is opened.
Then, the tilting mechanism (3) is activated to move the injection device (2) to the tilt axis.
Rotate around (20a) and tilt the injection device (2).

【0024】次に、金型(1a)(1b)のパーティング面
(P)間並びに傾けられた射出スリーブ(4)の直上に位置さ
せ、潤滑剤噴射ノズル(25)から潤滑剤(26)を噴出させて
金型(1a)(1b)のパーティング面(P)、射出スリーブ(4)の
面に潤滑剤(26)を塗布する。
Next, the parting surface of the mold (1a) (1b)
(P) and directly above the inclined injection sleeve (4), and the lubricant (26) is ejected from the lubricant injection nozzle (25) to allow the mold (1a) (1b) parting surface (P ), And apply the lubricant (26) to the surface of the injection sleeve (4).

【0025】続いて射出スリーブ(4)に非晶質合金材
料の溶湯(5)を不活性ガス雰囲気中で供給し、傾動機構
(3)を逆方向に作動させて射出装置(2)を垂直に起こす。
Subsequently, the molten metal (5) of the amorphous alloy material is supplied to the injection sleeve (4) in an inert gas atmosphere, and the tilting mechanism is set.
Operate (3) in the opposite direction to raise the injection device (2) vertically.

【0026】この間、ヒータ(9)によって射出スリー
ブ(4)は加熱されており、射出スリーブ(4)内の溶湯(5)
は、溶融状態に保たれている。
During this time, the heater (9) is heating the injection sleeve (4), and the molten metal (5) in the injection sleeve (4) is heated.
Are kept in a molten state.

【0027】続いてトグル機構(6)のトグルリンク(6
a)を伸長させて移動金型(1b)を閉じ、両金型(1a)(1b)の
パーティング面(P)に設けられた湯道孔に射出スリーブ
(4)の先端を連結する。
Subsequently, the toggle link (6) of the toggle mechanism (6)
a) is extended to close the moving mold (1b), and the injection sleeve is inserted into the runner hole provided on the parting surface (P) of both molds (1a) and (1b).
Connect the tip of (4).

【0028】最後に、射出シリンダ(10)を作動させ、
プランジャロッド(10a)を介してこれに連接しているチ
ップ(27)を急速に上昇させ、溶湯(5a)を押上げて型窩に
溶湯(5a)を鋳込む。
Finally, the injection cylinder (10) is activated,
The tip (27) connected to the plunger rod (10a) is rapidly raised to push up the molten metal (5a) and cast the molten metal (5a) into the mold cavity.

【0029】射出シリンダ(10)が作動してシリンダロッ
ド(10a)により溶湯(5)が金型キャビティ(1d)の金型ゲー
ト(7)に向かって押し上げられ、金型ゲート(7)に到達す
る瞬間まで温調器(12a)の作動によって熱媒(31)は温調
バルブ(21)を通り熱媒通過路(28)を通流し、金型(1)を
所定の温度に保つ。
The injection cylinder (10) operates and the cylinder rod (10a) pushes the molten metal (5) toward the mold gate (7) of the mold cavity (1d) and reaches the mold gate (7). The heat medium (31) passes through the temperature control valve (21) and the heat medium passage (28) by the operation of the temperature controller (12a) until the moment, and the mold (1) is maintained at a predetermined temperature.

【0030】金型温度は一般的には、50〜100℃内
外の温度に保たれる。溶湯(5)が金型ゲート(7)に達した
時、冷却器(11a)の冷却が開始される事になるのである
が、冷却バルブ(20)を開にしてから冷媒通過路(26)の入
り口に達するまで、一定の時間が掛かり、金型(1)の冷
却開始が遅れる事になる。そこで、冷却バルブ(20)から
冷媒通過路(26)の入り口に冷媒(30)が達するまでの時間
を演算し、これを考慮に入れ、早めに冷却バルブ(20)を
開にすることにより、溶湯(5)が金型ゲート(7)に到達す
る時刻と冷媒(30)が冷媒通過路(26)の入り口に到達する
時刻とを一致させるようにする。
The mold temperature is generally maintained at a temperature of 50 to 100 ° C. When the molten metal (5) reaches the mold gate (7), cooling of the cooler (11a) will be started, but the cooling passage (26) will be opened after the cooling valve (20) is opened. It will take a certain amount of time to reach the entrance of, and the start of cooling the mold (1) will be delayed. Therefore, by calculating the time until the refrigerant (30) reaches the inlet of the refrigerant passage (26) from the cooling valve (20), taking this into account, by opening the cooling valve (20) early, The time when the molten metal (5) reaches the die gate (7) and the time when the refrigerant (30) reaches the entrance of the refrigerant passage (26) are made to coincide with each other.

【0031】これにより非晶質合金材料の鋳込み開始
(溶湯(5)が金型ゲート(7)に到達する時刻)と金型冷却
開始とを一致させることができるのである。以下、その
方法を説明する。 金型(1)の冷却バルブ(20)をオンした時より、金型
(1)の冷却通過路(26)の入り口直前に設けた冷媒通過セ
ンサ(25)が作動するまでの時刻を制御部(24)にて予め測
定しておく。
This makes it possible to match the start of casting of the amorphous alloy material (time when the molten metal (5) reaches the mold gate (7)) with the start of mold cooling. The method will be described below. From when the cooling valve (20) of the mold (1) was turned on, the mold
The time until the refrigerant passage sensor (25) provided immediately before the entrance of the cooling passage (26) of (1) is activated is measured in advance by the control unit (24).

【0032】 射出直前までは、図3の温調バルブ(2
1)がオンになっており、金型(1)は約50℃〜100℃
に温調されている。
Up to immediately before injection, the temperature control valve (2
1) is turned on and the mold (1) is about 50 ℃ -100 ℃
The temperature is regulated.

【0033】 射出スタートと同時に図2の温調バル
ブ(21)はオフになり、同時に図3に示したエアーバルブ
(23)がオンになり、金型(1)内の温調用の温水又は温熱
油をすべて保温タンク(18)に収容する。比熱の大きい水
などの熱媒(31)が金型(1)内に残っていると、冷却する
場合に、熱媒(31)も同時に冷却しなければならず、その
分冷却速度が遅くなるのでエアーによって冷却前に予め
全て排出される。
At the same time when the injection is started, the temperature control valve (21) of FIG. 2 is turned off, and at the same time, the air valve shown in FIG.
(23) is turned on, and all hot water or hot oil for temperature control in the mold (1) is stored in the heat retaining tank (18). If the heat medium (31) with a large specific heat such as water remains in the mold (1), when cooling, the heat medium (31) must be cooled at the same time, and the cooling rate becomes slower accordingly. Therefore, it is completely discharged by air before cooling.

【0034】 射出スピードなど、射出条件はあらか
じめ制御部(24)にインプットされているため、射出開始
時より、充填完了(射出停止)までの射出時間は制御部(2
4)にて容易に計算出来、で計算した冷媒到達時間を射
出時間より差し引いて、充填完了時に丁度冷媒(30)が、
金型(1)の冷媒通過路(26)の入り口(26a)の直前に来る
様、射出開始時より上記で計算した時間を測定し、時間
到達と同時に、金型(1)の冷却バルブ(20)をオンにす
る。これにより、非晶質合金(5)の金型ゲート(7)通過と
金型冷却開始とが一致し、以後、超急冷がなされ、非晶
質化が図られる。
Since the injection conditions such as the injection speed are input to the control unit (24) in advance, the injection time from the start of injection to the completion of filling (injection stop) is controlled by the control unit (2).
It can be easily calculated in 4), the refrigerant arrival time calculated in is subtracted from the injection time, and the refrigerant (30) will be exactly
Measure the time calculated above from the start of injection so that it comes immediately before the inlet (26a) of the refrigerant passage (26) of the mold (1), and at the same time when the time arrives, the cooling valve of the mold (1) ( Turn on 20). As a result, the passage of the amorphous alloy (5) through the die gate (7) coincides with the start of die cooling, and thereafter, ultra-quick cooling is performed to achieve amorphization.

【0035】 非晶質合金が冷却され、凝固した後、
金型(1)内より取り出されるが、取り出しとほぼ同時に
図2の冷却バルブ(20)がオフになり、エアーバルブ(22)
が少し遅れてオンになる。これで冷却配管及び金型(1)
の冷媒通過路(26)の冷媒(30)はすべて保温タンク(17)に
回収される。即ち、比熱の大きい水などの冷媒(30)が金
型(1)の冷媒通過路(26)内に残っていると、時サイクル
の金型(1)の熱を奪う事になり、温調効果を阻害するこ
とになるので、前述のようにエアーによって全て排出さ
れることになる。
After the amorphous alloy has cooled and solidified,
Although it is taken out from the mold (1), the cooling valve (20) of Fig. 2 is turned off almost at the same time as it is taken out, and the air valve (22)
Turns on with a little delay. This is the cooling pipe and mold (1)
All the refrigerant (30) in the refrigerant passage (26) is collected in the heat insulation tank (17). That is, if the refrigerant (30) such as water having a large specific heat remains in the refrigerant passage (26) of the mold (1), the heat of the mold (1) in the time cycle is taken away, and the temperature control is performed. Since the effect is hindered, it is completely discharged by the air as described above.

【0036】 図3の温調用バルブ(21)がオンされ、
再び熱媒(31)が熱媒通過路(28)に通流し、金型(1)は加
熱される。
The temperature control valve (21) of FIG. 3 is turned on,
The heat medium (31) flows through the heat medium passage (28) again, and the die (1) is heated.

【0037】 射出された溶湯(5a)がキャビティ(1d)
内で凝固すると、再度トグル機構(6)を収縮させて移動
金型(1b)を固定金型(1a)から離間させて型開きを行い、
押出ピン(19)にて成形品を押出し出す。以下、前述の作
業が繰り返される。
The injected molten metal (5a) is a cavity (1d)
When it solidifies inside, the toggle mechanism (6) is contracted again, the moving mold (1b) is separated from the fixed mold (1a), and the mold is opened.
The molded product is extruded by the extruding pin (19). Hereinafter, the above-mentioned work is repeated.

【0038】[0038]

【発明の効果】金型温度が高いため、金型ゲートを非晶
質合金が通過している時の金型ゲートにおける凝固が少
し遅れるため、良好な溶湯の流れが確保され、溶湯の金
型キャビティへの充填不良などがなくなるという効果が
得られた。また、非晶質合金の金型キャビティへの鋳込
みと同時に金型冷却が行われ、急激に金型温度が低くな
り、非晶質合金も同時に急冷されるため、充填不足を生
じることなく非晶質合金を得る事が可能となった。
Since the mold temperature is high, solidification in the mold gate is slightly delayed when the amorphous alloy is passing through the mold gate, so that a good flow of the molten metal is ensured and the mold of the molten metal is secured. The effect of eliminating defective filling of the cavity was obtained. Further, since the mold is cooled at the same time when the amorphous alloy is cast into the mold cavity, the mold temperature is rapidly lowered, and the amorphous alloy is also rapidly cooled, so that the amorphous alloy can be formed without insufficient filling. It became possible to obtain quality alloys.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の立射出ダイカスト成形装置の一例の射
出装置を中心とする部分概略縦断面図
FIG. 1 is a partial schematic vertical sectional view centering on an injection device of an example of a vertical injection die casting molding device of the present invention.

【図2】図1における冷却用回路のブロック図FIG. 2 is a block diagram of a cooling circuit in FIG.

【図3】図1における温調用回路のブロック図FIG. 3 is a block diagram of a temperature adjustment circuit in FIG.

【図4】本発明に使用される一方の金型の斜視図FIG. 4 is a perspective view of one of the molds used in the present invention.

【図5】本発明に使用される金型の閉成時の正面図FIG. 5 is a front view of the mold used in the present invention when the mold is closed.

【図6】本発明における冷却及び温調サイクルを示すグ
ラフ
FIG. 6 is a graph showing a cooling and temperature control cycle in the present invention.

【符号の説明】[Explanation of symbols]

(1)…金型 (2)…射出装置 (3)…傾倒機構 (4)…射出スリーブ (5)…溶湯 (6)…トグル機構 (7)…金型ゲート (9)…原料加熱手段 (10)…射出シリンダ (11)…冷媒供給部 (12)…熱媒供給部 (13)…制御部 (27)…チップ (30)…冷媒 (31)…熱媒 (1)… Mold (2)… Injection device (3)… Tilt mechanism (4)… Injection sleeve (5)… Molten metal (6)… Toggle mechanism (7)… Mold gate (9)… Material heating means ( 10) ... Injection cylinder (11) ... Refrigerant supply part (12) ... Heat medium supply part (13) ... Control part (27) ... Chip (30) ... Refrigerant (31) ... Heat medium

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増本 健 宮城県仙台市青葉区上杉三丁目8番22号 (72)発明者 井上 明久 宮城県仙台市青葉区川内 川内住宅11− 806(番地なし) (72)発明者 中村 孝夫 兵庫県明石市二見町福里字西之山523番ノ 1 東洋機械金属株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ken Masumoto, 3-8-22 Uesugi, Aoba-ku, Sendai-shi, Miyagi Prefecture (72) Akihisa Inoue Kawauchi, Kawauchi, Aoba-ku, Sendai-shi, Miyagi 11-806 (no house number) (72) Inventor Takao Nakamura 523 No. 1 Nishinoyama, Fukusato, Futami-cho, Akashi-shi, Hyogo Prefecture Toyo Kikai Kinzoku Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非晶質合金材料を金型に鋳造する
際に、非晶質合金材料の鋳込み前は金型を加熱してお
き、非晶質合金材料が金型に鋳込まれると同時に金型を
急冷して鋳込み合金材料を非晶質化する事を特徴とする
非晶質合金の冷却方法。
1. When casting an amorphous alloy material into a die, the die is heated before the amorphous alloy material is cast, and the amorphous alloy material is cast into the die at the same time. A method for cooling an amorphous alloy, which comprises quenching a die to amorphize a cast alloy material.
【請求項2】 鋳込み後の鋳込み合金材料の凝固
による金型ゲート閉塞時間より、鋳込み金属の金型への
鋳込み完了迄の時間の方を短くする事を特徴とする請求
項1に記載の非晶質合金の冷却方法。
2. The method according to claim 1, wherein the time taken to complete the casting of the cast metal into the die is shorter than the time for closing the die gate due to the solidification of the cast alloy material after casting. Cooling method for crystalline alloy.
【請求項3】 非晶質合金材料を金型に鋳造する
際に、非晶質合金材料の鋳込み前は金型を加熱してお
き、非晶質合金材料が金型に鋳込まれると同時に金型を
急冷する非晶質合金の冷却方法において、 鋳込み合金材料が金型ゲートに達すると同時に冷媒が冷
媒通過路の入り口に達するように、鋳込み装置始動開始
時刻から非晶質鋳込み材料が金型ゲートに到達する迄の
鋳込み材料到達時間と、冷媒供給装置始動開始時刻から
冷媒が冷媒通過路の入り口に達する冷媒到達時間を算出
しておき、鋳込み材料到達時間から冷媒到達時間を差し
引いた時間だけを鋳込み装置始動開始時刻より遅く冷媒
の供給を開始する事を特徴とする非晶質合金の冷却方
法。
3. When casting an amorphous alloy material into a die, the die is heated before casting the amorphous alloy material, and the amorphous alloy material is cast into the die at the same time. In a method of cooling an amorphous alloy in which a die is rapidly cooled, the amorphous casting material is cooled from the start time of the casting device so that the casting alloy material reaches the die gate and the refrigerant reaches the inlet of the refrigerant passage at the same time. The arrival time of the casting material until reaching the mold gate and the arrival time of the refrigerant at the inlet of the refrigerant passage from the starting time of the refrigerant supply device are calculated, and the arrival time of the casting material is subtracted from the arrival time of the refrigerant. A method for cooling an amorphous alloy, characterized in that the supply of the refrigerant is started later than the starting time of the pouring device.
【請求項4】 冷媒通過路と熱媒通過路とを有す
る金型と、冷媒通過路の入り口に設けられた冷媒通過セ
ンサと、冷媒通過路に冷媒を供給する冷媒供給部と、熱
媒通過路に熱媒を供給する熱媒供給部と、金型に非晶質
合金材料を鋳込む前には熱媒供給部を作動させて熱媒を
熱媒通過路に通過させて金型を加熱しておき、冷媒供給
装置始動開始時刻から冷媒通過センサにて冷媒が冷媒通
過路の入り口に達する冷媒到達時間並びに鋳込み装置始
動開始時刻から非晶質鋳込み材料が金型ゲートに到達す
るまでの鋳込み材料到達時間とを予め演算しておいて、
鋳込み時には、鋳込み材料到達時間から冷媒到達時間を
差し引いた時間だけ鋳込み装置始動開始時刻より遅く冷
媒の供給開始を行うように冷媒供給部を作動させて金型
冷却を行う制御部とで構成された事を特徴とする非晶質
合金の冷却装置。
4. A mold having a refrigerant passage and a heat medium passage, a refrigerant passage sensor provided at an inlet of the refrigerant passage, a refrigerant supply unit for supplying the refrigerant to the refrigerant passage, and a heat medium passage. The heat medium supply unit that supplies the heat medium to the passage and the heat medium supply unit is activated before the amorphous alloy material is cast into the mold to allow the heat medium to pass through the heat medium passage and heat the mold. In advance, from the start time of the coolant supply device to the time when the coolant reaches the entrance of the coolant passage by the coolant passage sensor, and from the start time of the casting device until the amorphous casting material reaches the mold gate. Calculate the material arrival time in advance,
At the time of casting, it was configured with a control unit that operates the coolant supply unit to cool the mold so that the supply of the coolant is started later than the start time of the casting device by the time obtained by subtracting the coolant arrival time from the casting material arrival time. Cooling device for amorphous alloys.
JP05254827A 1993-09-17 1993-09-17 Amorphous alloy cooling method and apparatus Expired - Fee Related JP3075897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05254827A JP3075897B2 (en) 1993-09-17 1993-09-17 Amorphous alloy cooling method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05254827A JP3075897B2 (en) 1993-09-17 1993-09-17 Amorphous alloy cooling method and apparatus

Publications (2)

Publication Number Publication Date
JPH0788612A true JPH0788612A (en) 1995-04-04
JP3075897B2 JP3075897B2 (en) 2000-08-14

Family

ID=17270418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05254827A Expired - Fee Related JP3075897B2 (en) 1993-09-17 1993-09-17 Amorphous alloy cooling method and apparatus

Country Status (1)

Country Link
JP (1) JP3075897B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269329A (en) * 2009-05-20 2010-12-02 Olympus Corp Method and apparatus for forming amorphous alloy
WO2013112129A1 (en) * 2012-01-23 2013-08-01 Crucible Intellectual Property Llc Continuous alloy feedstock production mold
CN111112572A (en) * 2018-10-31 2020-05-08 惠州比亚迪实业有限公司 Die, device and method for amorphous alloy die-casting molding and amorphous alloy die-casting part
CN111112579A (en) * 2018-10-31 2020-05-08 惠州比亚迪实业有限公司 Amorphous alloy vacuum die-casting forming device and method and amorphous alloy vacuum die-casting part
CN112760503A (en) * 2020-12-23 2021-05-07 兰州理工大学 Supercooling melt die-casting forming method and device for amorphous alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5389462B2 (en) * 2009-02-10 2014-01-15 オリンパス株式会社 Continuous casting method and continuous casting apparatus for amorphous alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269329A (en) * 2009-05-20 2010-12-02 Olympus Corp Method and apparatus for forming amorphous alloy
WO2013112129A1 (en) * 2012-01-23 2013-08-01 Crucible Intellectual Property Llc Continuous alloy feedstock production mold
CN111112572A (en) * 2018-10-31 2020-05-08 惠州比亚迪实业有限公司 Die, device and method for amorphous alloy die-casting molding and amorphous alloy die-casting part
CN111112579A (en) * 2018-10-31 2020-05-08 惠州比亚迪实业有限公司 Amorphous alloy vacuum die-casting forming device and method and amorphous alloy vacuum die-casting part
CN112760503A (en) * 2020-12-23 2021-05-07 兰州理工大学 Supercooling melt die-casting forming method and device for amorphous alloy

Also Published As

Publication number Publication date
JP3075897B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
KR101070972B1 (en) Method and apparatus for manufacturing metallic parts by die casting
US4334575A (en) Method for cooling a plunger tip in a die casting machine of the cold chamber type and apparatus therefor
JPH05345334A (en) Method and apparatus for runnerless injection molding equipped with valve gate
US4976305A (en) Method of and apparatus for controlling die temperature in low-pressure casting process
CN104550822B (en) Building mortion, the manufacture device of semi-solid metal, manufacturing process and manufacture method
JP3075897B2 (en) Amorphous alloy cooling method and apparatus
US7025116B2 (en) Mold and method of molding metallic product
JP2981957B2 (en) Mold temperature control method and apparatus
JP3558165B2 (en) Metal alloy injection mold
JP2003039158A (en) Metal injection molding method
JPH09277336A (en) Method for manufacturing foamed resin molding and apparatus therefor
JP2009166054A (en) Molding method and molding machine
JP4005094B2 (en) Thermoplastic resin injection molding method
JPH05131254A (en) Method and device for vertical injection die cast molding
JPS6031929A (en) Compression molding method of thermoplastic resin
JPH0685992B2 (en) Pressure cooling control method for molten metal in low pressure casting
JP2009137014A (en) Die device, molding machine, and molding method
JP4359826B2 (en) Metal material forming equipment
JP3908341B2 (en) Casting method
JPH06190528A (en) Die casting
JP2808050B2 (en) Method and apparatus for measuring hot water temperature in vertical injection die casting
JP2024024714A (en) Hollow casting apparatus and hollow casting method
JPH0649406Y2 (en) Temperature control device for casting mold
JPH03174966A (en) Injection forming apparatus
JP2011156773A (en) Injection molding method and injection molding apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080609

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100609

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110609

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20130609

LAPS Cancellation because of no payment of annual fees