WO2023090255A1 - Multi-part type curable composition - Google Patents

Multi-part type curable composition Download PDF

Info

Publication number
WO2023090255A1
WO2023090255A1 PCT/JP2022/041972 JP2022041972W WO2023090255A1 WO 2023090255 A1 WO2023090255 A1 WO 2023090255A1 JP 2022041972 W JP2022041972 W JP 2022041972W WO 2023090255 A1 WO2023090255 A1 WO 2023090255A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
agent
meth
curable composition
weight
Prior art date
Application number
PCT/JP2022/041972
Other languages
French (fr)
Japanese (ja)
Inventor
聖 宮藤
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2023561564A priority Critical patent/JPWO2023090255A1/ja
Priority to CN202280075425.1A priority patent/CN118251461A/en
Publication of WO2023090255A1 publication Critical patent/WO2023090255A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to a multi-component curable composition and a cured product obtained by curing the composition.
  • Organic polymers having hydroxyl groups or hydrolyzable groups on silicon atoms and having silicon groups capable of forming siloxane bonds by hydrolysis/condensation reactions are It is known to cure with moisture contained in to give a rubber-like cured product.
  • Such polymers are used as adhesives, sealants, fillers, etc. by utilizing their physical properties.
  • moisture-curable compositions containing such polymers are said to be insufficient in depth curability because the progress of the curing reaction depends on moisture in the air, and curing progresses from the surface of the applied composition. There's a problem.
  • the present invention provides a multicomponent curable composition containing a main agent containing an organic polymer having a reactive silicon group and an auxiliary agent containing water, which has improved adhesion to plastic substrates. It is an object of the present invention to provide a possible multi-component curable composition.
  • the inventors of the present invention have made intensive studies to solve the above problems, and have found that a polyoxyalkylene-based polymer and a (meth)acrylic acid ester-based polymer are used in combination as the organic polymer having a reactive silicon group in the main agent.
  • the above problems are solved by blending a specific compound and blending an inorganic filler together with a polyoxyalkylene polymer having a reactive silicon group and / or a plasticizer in an auxiliary agent containing water. I found that it can be done, and completed the present invention.
  • the present invention is a multi-component curable composition containing agent A and agent B, wherein agent A is a polyoxyalkylene polymer (A) having a reactive silicon group and a reactive silicon group ( A meth)acrylic acid ester-based polymer (B) and at least one compound (C) selected from the group consisting of dialkoxydialkylsilanes, dialkoxydiarylsilanes, and alkylsulfonic acid esters, and agent B Is selected from the group consisting of a polyoxyalkylene polymer (A) having a reactive silicon group, a (meth)acrylic acid ester polymer (B) having a reactive silicon group, and a plasticizer (D) containing at least one compound, an inorganic filler (E), and water (F); either or both of agent A and agent B contain a silanol condensation catalyst (G);
  • the present invention relates to a multi-component curable composition in which the group is represented by the following general formula (1).
  • agent A contains a dialkoxydiarylsilane as compound (C).
  • agent A contains a dialkoxydiarylsilane and an alkylsulfonate as compound (C).
  • the (meth)acrylic acid ester polymer (B) contains 40% by weight or more of the total monomers of alkyl (meth)acrylates having 1 to 3 carbon atoms.
  • the A agent further contains an amino group-containing silane coupling agent (H).
  • the multi-component curable composition is a two-component curable composition comprising an A agent and a B agent.
  • the present invention also relates to a cured product obtained by curing the multicomponent curable composition.
  • a multicomponent curable composition comprising a main component containing an organic polymer having a reactive silicon group and an auxiliary agent containing water, wherein the multicomponent curable composition is capable of improving adhesion to plastic substrates.
  • a liquid curable composition can be provided. According to a preferred aspect of the present invention, it is possible to achieve both the dischargeability of a mixture obtained by mixing a main agent and an auxiliary agent and the shape retention property of a coating film obtained by coating the mixture on a substrate.
  • Agent A includes at least a polyoxyalkylene polymer (A) having a reactive silicon group, a (meth)acrylic acid ester polymer (B) having a reactive silicon group, a dialkoxydialkylsilane, a dialkoxy It contains at least one compound (C) selected from the group consisting of diarylsilanes and alkylsulfonic acid esters.
  • Agent B comprises at least a polyoxyalkylene polymer (A) having a reactive silicon group, a (meth)acrylate polymer (B) having a reactive silicon group, and/or a plasticizer (D).
  • the curable composition according to the present embodiment does not contain an epoxy resin.
  • the polyoxyalkylene polymer (A) has a reactive silicon group represented by the following general formula (1). —SiR 1 3-a X a (1) (Wherein, R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms; X represents a hydroxyl group or a hydrolyzable group; a represents 2 or 3.)
  • the number of carbon atoms in the hydrocarbon group of R 1 is preferably 1-10, more preferably 1-5, even more preferably 1-3.
  • Specific examples of R 1 include methyl group, ethyl group, chloromethyl group, methoxymethyl group and N,N-diethylaminomethyl group. Preferred are methyl group, ethyl group, chloromethyl group and methoxymethyl group, and more preferred are methyl group and methoxymethyl group.
  • Examples of X include halogen, alkoxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group and alkenyloxy group.
  • an alkoxy group is more preferable, and a methoxy group and an ethoxy group are particularly preferable, since they are moderately hydrolyzable and easy to handle.
  • Specific examples of the reactive silicon group possessed by the polyoxyalkylene polymer (A) include a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, a triacetoxysilyl group, and dimethoxymethyl silyl group, diethoxymethylsilyl group, dimethoxyethylsilyl group, (chloromethyl)dimethoxysilyl group, (chloromethyl)diethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group, (N ,N-diethylaminomethyl)dimethoxysilyl group, (N,N-diethylaminomethyl)diethoxysilyl group, and the like, but are not limited thereto.
  • methyldimethoxysilyl trimethoxysilyl, triethoxysilyl, (chloromethyl)dimethoxysilyl, (methoxymethyl)dimethoxysilyl, (methoxymethyl)diethoxysilyl, (N,N- Diethylaminomethyl)dimethoxysilyl group is preferred because it exhibits high activity and gives a cured product with good mechanical properties, and a trimethoxysilyl group and a triethoxysilyl group are more preferred because a cured product with high rigidity can be obtained. A trimethoxysilyl group is more preferred.
  • the polyoxyalkylene polymer (A) may have an average of 1 or less reactive silicon groups at one terminal site, or an average of more than 1 reactive silicon group at one terminal site may have a silicon group.
  • having more than one reactive silicon group on average at one terminal site means that the polyoxyalkylene polymer (A) has two or more reactive silicon groups at one terminal site. It shows that polyoxyalkylene is included.
  • a terminal site having two or more reactive silicon groups can be represented, for example, by the following general formula (2).
  • R 2 and R 4 each independently represent a divalent C 1-6 bonding group, and the atoms bonded to the respective carbon atoms adjacent to R 2 and R 4 are carbon, oxygen, nitrogen
  • R 3 and R 5 each independently represent hydrogen or a hydrocarbon group having 1 to 10 carbon atoms
  • n is an integer of 1 to 10
  • R 1 , X, and a represent the formula ( 1) is as described above.
  • R 2 and R 4 may be a divalent organic group having 1 to 6 carbon atoms, or may be a hydrocarbon group which may contain an oxygen atom.
  • the number of carbon atoms in the hydrocarbon group is preferably 1-4, more preferably 1-3, even more preferably 1-2.
  • Specific examples of R 2 include -CH 2 OCH 2 -, -CH 2 O- and -CH 2 -, but -CH 2 OCH 2 - is preferred.
  • R 4 include -CH 2 - and -CH 2 CH 2 -, preferably -CH 2 -.
  • the number of carbon atoms in the hydrocarbon groups of R 3 and R 5 is preferably 1-5, more preferably 1-3, even more preferably 1-2.
  • Specific examples of R 3 and R 5 include a hydrogen atom, a methyl group and an ethyl group, preferably a hydrogen atom and a methyl group, more preferably a hydrogen atom.
  • the terminal portion represented by the general formula (2) is such that R 2 is —CH 2 OCH 2 —, R 4 is —CH 2 —, and R 3 and R 5 are each hydrogen atoms.
  • n is preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and even more preferably 1 or 2.
  • n is not limited to one value, and may be a mixture of multiple values.
  • the polyoxyalkylene polymer (A) may have an average of 1.0 or less reactive silicon groups at one terminal site.
  • the average number is preferably 0.4 or more, more preferably 0.5 or more, even more preferably 0.6 or more.
  • the polyoxyalkylene polymer (A) may have an average of more than 1.0 reactive silicon groups at one terminal site.
  • the average number is more preferably 1.1 or more, still more preferably 1.5 or more, and even more preferably 2.0 or more.
  • the average number is preferably 5 or less, more preferably 3 or less.
  • the polyoxyalkylene-based polymer (A) may have reactive silicon groups in addition to the terminal sites, but having them only at the terminal sites yields a rubber-like cured product with high elongation and low elastic modulus. It is preferable because it becomes easy to be
  • the average number of reactive silicon groups per molecule of the polyoxyalkylene polymer (A) is preferably more than 1.0, more preferably 1.2 or more, from the viewpoint of the strength of the cured product. , is more preferably 1.3 or more, even more preferably 1.5 or more, and particularly preferably 1.7 or more.
  • the average number may be 2.0 or less, or may be more than 2.0. From the viewpoint of elongation of the cured product, the number is preferably 6.0 or less, more preferably 5.5 or less, and most preferably 5.0 or less.
  • the main chain skeleton of the polyoxyalkylene polymer (A) is not particularly limited, and examples include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, Examples include polyoxypropylene-polyoxybutylene copolymers. Among them, polyoxypropylene is preferred.
  • the number average molecular weight of the polyoxyalkylene polymer (A) is preferably 3,000 or more and 100,000 or less, more preferably 3,000 or more and 50,000 or less, in terms of polystyrene equivalent molecular weight in GPC, and particularly preferably It is 3,000 or more and 30,000 or less.
  • the organic polymer precursor before the introduction of the reactive silicon group was subjected to the hydroxyl value measurement method of JIS K 1557 and the iodine value of JIS K 0070.
  • the terminal group concentration was measured by titration analysis based on the principle of the measurement method, and indicate the terminal group equivalent molecular weight obtained by considering the structure of the organic polymer (degree of branching determined by the polymerization initiator used).
  • the terminal group-equivalent molecular weight of the polyoxyalkylene-based polymer (A) is determined by preparing a calibration curve of the number average molecular weight obtained by general GPC measurement of the organic polymer precursor and the above-mentioned terminal-group-equivalent molecular weight. It is also possible to convert the number-average molecular weight of the polymer (A) obtained by GPC into a terminal group-equivalent molecular weight.
  • the molecular weight distribution (Mw/Mn) of the polyoxyalkylene polymer (A) is not particularly limited, it is preferably narrow, specifically less than 2.0, more preferably 1.6 or less. 5 or less is more preferable, and 1.4 or less is particularly preferable. Moreover, from the viewpoint of improving various mechanical properties such as improving the durability and elongation of the cured product, it is preferably 1.2 or less.
  • the molecular weight distribution of the polyoxyalkylene polymer (A) can be obtained from the number average molecular weight and weight average molecular weight obtained by GPC measurement.
  • the main chain structure of the polyoxyalkylene polymer (A) may be linear or branched.
  • the method for synthesizing the polyoxyalkylene polymer (A) is not particularly limited.
  • an initiator having a hydroxyl group is polymerized with an epoxy compound to obtain a hydroxyl group-terminated polymer.
  • an alkali metal salt for example, sodium methoxide
  • a halogenated hydrocarbon compound having a carbon-carbon unsaturated bond for example, allyl chloride
  • a reactive silicon group-containing polyoxyalkylene polymer (A) can be obtained by reacting a reactive silicon group-containing hydrosilane compound (eg, dimethoxymethylsilane, trimethoxysilane).
  • a polyoxyalkylene polymer (A) having an average of more than 1.0 reactive silicon groups at one terminal site which is a preferred embodiment, can be obtained as follows. After reacting the hydroxyl group of the hydroxyl-terminated polymer with the alkali metal salt in the same manner as described above, an epoxy compound having a carbon-carbon unsaturated bond (eg, allyl glycidyl ether) is first reacted, and then the carbon-carbon unsaturated bond is reacted. Two or more carbon-carbon unsaturated bonds are introduced at one end by reacting a halogenated hydrocarbon compound having a saturated bond (eg, allyl chloride). After that, a reactive silicon group-containing hydrosilane compound may be reacted.
  • an epoxy compound having a carbon-carbon unsaturated bond eg, allyl glycidyl ether
  • Two or more carbon-carbon unsaturated bonds are introduced at one end by reacting a halogenated hydrocarbon compound having a saturated bond (eg,
  • a cured product obtained from a curable composition containing a polyoxyalkylene polymer (A) containing an ester bond or an amide segment may have high hardness and strength due to the action of hydrogen bonds and the like.
  • the polyoxyalkylene polymer (A) containing amide segments and the like may be cleaved by heat or the like.
  • a curable composition containing a polyoxyalkylene polymer (A) containing an amide segment or the like tends to have a high viscosity.
  • polyoxyalkylene polymer (A) a polyoxyalkylene containing an amide segment or the like may be used, or a polyoxyalkylene containing no amide segment or the like may be used. You may
  • Examples of the amide segment represented by the general formula (3) include the reaction between an isocyanate group and a hydroxyl group, the reaction between an amino group and a carbonate, the reaction between an isocyanate group and an amino group, and the reaction between an isocyanate group and a mercapto group. etc. can be mentioned.
  • the amide segment represented by the general formula (3) also includes those formed by the reaction of the amide segment containing an active hydrogen atom with an isocyanate group.
  • a polyoxyalkylene having an active hydrogen-containing group at its terminal is reacted with a polyisocyanate compound to produce a polymer having an isocyanate group at its terminal.
  • a compound having both a functional group for example, a hydroxyl group, a carboxyl group, a mercapto group, a primary amino group or a secondary amino group
  • a reactive silicon group after or simultaneously with the synthesis of the coalescence can be mentioned.
  • Another example is a method of reacting a polyoxyalkylene having an active hydrogen-containing group at its end with a reactive silicon group-containing isocyanate compound.
  • the number (average value) of amide segments per molecule of the polyoxyalkylene polymer (A) is preferably 1 to 10, and 1.5 to 5. is more preferred, and 2 to 3 are particularly preferred. If this number is less than 1, the curability may not be sufficient, and conversely if it is greater than 10, the polyoxyalkylene polymer (A) may become highly viscous and difficult to handle. There is In order to lower the viscosity of the curable composition and improve workability, the polyoxyalkylene polymer (A) preferably does not contain an amide segment.
  • Agent A includes a polyoxyalkylene polymer (A) having a reactive silicon group and a (meth)acrylic acid ester polymer (B) having a reactive silicon group (hereinafter referred to as "(meth)acrylic acid ester (also referred to as "polymer (B)"). This can improve adhesion to plastic substrates.
  • the (meth)acrylate polymer (B) is preferably contained in either or both of the A agent and the B agent.
  • it is preferable that the (meth)acrylic acid ester-based polymer (B) is blended with the A agent.
  • the (meth)acrylate monomer constituting the main chain of the (meth)acrylate polymer (B) is not particularly limited, and various types can be used. Specifically, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate.
  • tert-butyl (meth)acrylate n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, n-heptyl (meth)acrylate, n-(meth)acrylate -octyl, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, phenyl (meth)acrylate, toluyl (meth)acrylate, (meth)acrylate Benzyl acrylate, 2-methoxyethyl (meth)acrylate, 3-methoxybutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, stearyl (meth)acrylate , glycidyl (meth)acrylate, (3
  • the (meth)acrylate polymer (B) has a reactive silicon group represented by the general formula (1) shown above.
  • the reactive silicon group of the (meth)acrylate polymer (B) may be the same as or different from the reactive silicon group of the polyoxyalkylene polymer (A).
  • Specific examples of the reactive silicon group possessed by the (meth)acrylate polymer (B) include a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, and a triacetoxysilyl group. etc., but not limited to these.
  • a trimethoxysilyl group and a triethoxysilyl group are more preferable, and a trimethoxysilyl group is even more preferable, since a cured product having a high Young's modulus can be obtained.
  • the method of introducing a reactive silicon group into the (meth)acrylate polymer (B) is not particularly limited, but for example, a method of copolymerizing a (meth)acrylate monomer having a reactive silicon group
  • the chain transfer agent include a method of performing polymerization in the presence of a mercaptosilane compound having a reactive silicon group.
  • mercaptosilane compounds having a reactive silicon group include 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyltrimethoxysilane, (mercaptomethyl)dimethoxymethylsilane, (mercaptomethyl)trimethoxysilane and the like.
  • the reactive silicon group equivalent of the (meth)acrylate polymer (B) is not particularly limited, but is preferably 0.1 mmol/g or more, more preferably 0.5 mmol/g or more, and 0.6 mmol/g or more. is more preferred.
  • the reactive silicon group equivalent is preferably 2.0 mmol/g or less, and more preferably 1.0 mmol/g or less from the viewpoint of suppressing a decrease in elongation of the cured product.
  • the (meth)acrylic acid ester-based polymer (B) contains 40% by weight or more of alkyl (meth)acrylate having 1 to 3 carbon atoms in the total monomer, so that the strength becomes high. preferable.
  • the number average molecular weight of the (meth)acrylic acid ester polymer (B) is not particularly limited, it is preferably 500 or more and 50,000 or less, more preferably 500 or more and 30,000 or less, in terms of polystyrene equivalent molecular weight by GPC measurement. ,000 or more and 10,000 or less is particularly preferable.
  • the weight ratio (A):(B) of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B) is 95:5 to 50:50, that is, the ratio of (A) is preferably 50% by weight or more and 95% by weight or less. Within this range, a cured product exhibiting flexibility and high shear adhesive strength can be obtained. Further, from the viewpoint of achieving both high strength and flexibility, (A):(B) is preferably 80:20 to 50:50, more preferably 70:30 to 50:50.
  • Compound (C) is at least one compound selected from the group consisting of dialkoxydialkylsilanes, dialkoxydiarylsilanes, and alkylsulfonic acid esters. Compound (C) is included in the A agent. This can improve the adhesiveness of the multi-component curable composition according to the present embodiment to the plastic substrate.
  • the dialkoxydialkylsilane is a hydrolyzable compound in which two alkoxy groups and two alkyl groups are bonded to a silicon atom.
  • the number of carbon atoms in the alkoxy group is not particularly limited, it is preferably 1 to 5, more preferably 1 to 3, for example.
  • a methoxy group and an ethoxy group are particularly preferred.
  • the number of carbon atoms in the alkyl group is also not particularly limited, but is preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3, for example.
  • the alkyl group may or may not have a substituent such as a halogen group or an alkoxy group.
  • alkyl group include methyl group, ethyl group, chloromethyl group, methoxymethyl group and the like. A methyl group is preferred.
  • dialkoxydialkylsilane examples include dimethoxydimethylsilane, diethoxydimethylsilane, diisopropyldimethoxysilane, di-n-butyldimethoxysilane, t-butylisopropyldimethoxysilane, n-octylmethyldimethoxysilane, and the like.
  • dimethoxydimethylsilane is particularly preferred.
  • the dialkoxydiarylsilane is a hydrolyzable compound in which two alkoxy groups and two aryl groups are bonded to a silicon atom.
  • the number of carbon atoms in the alkoxy group is not particularly limited, it is preferably 1 to 5, more preferably 1 to 3, for example.
  • a methoxy group and an ethoxy group are particularly preferred.
  • the number of carbon atoms in the aryl group is not particularly limited, it is preferably 6 to 10, more preferably 6 to 8, and even more preferably 6, for example.
  • the aryl group may or may not have a substituent such as an alkyl group, a halogen group, or an alkoxy group.
  • aryl group include phenyl group, naphthyl group, methylphenyl group, dodecylphenyl group, chlorophenyl group, methoxyphenyl group and the like.
  • a phenyl group is preferred.
  • dialkoxydiarylsilane include dimethoxydiphenylsilane and diethoxydiphenylsilane. Dimethoxydiphenylsilane is particularly preferred.
  • the alkyl sulfonate ester is a compound known as a plasticizer. Specific examples include alkylsulfonic acid phenyl esters. Commercially available products of the compound include Mesamoll® manufactured by LANXESS.
  • dialkoxydiarylsilane As compound (C), it is preferable to use at least dialkoxydiarylsilane as compound (C). At this time, at least one kind of dialkoxydiarylsilane may be used alone, or a combination of dialkoxydiarylsilane, dialkoxydialkylsilane and/or alkylsulfonic acid ester may be used.
  • the mixture obtained by mixing the main agent and the auxiliary agent can be discharged and the coating film obtained by applying the mixture to the substrate can be obtained. There is an advantage that it is possible to achieve both shape retention.
  • the amount used is the same as the polyoxyalkylene polymer (A) and (meth ) with respect to a total of 100 parts by weight of the acrylic ester polymer (B), it is preferably 0.1 parts by weight or more and 20 parts by weight or less, more preferably 0.3 parts by weight or more and 15 parts by weight or less, and 0 .5 parts by weight or more and 10 parts by weight or less is more preferable, and 1 part by weight or more and 5 parts by weight or less is particularly preferable.
  • the amount used is the same as the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer, from the viewpoint of the effect of improving the adhesion to plastic substrates.
  • the total 100 parts by weight of (B) it is preferably 1 part by weight or more and 120 parts by weight or less, more preferably 5 parts by weight or more and 100 parts by weight or less, and further preferably 10 parts by weight or more and 50 parts by weight or less. 1 part by weight or more and 30 parts by weight or less is particularly preferable.
  • the plasticizer (D) is preferably blended with the B agent. It may be blended only in the B agent, or may be blended in each of the A agent and the B agent. When the plasticizer (D) is blended, the viscosity of the curable composition can be lowered and handling becomes easier. In particular, by blending in the B agent, mixing of the A agent and the B agent can be easily achieved. However, the alkylsulfonic acid ester described above as the compound (C) is not included in this plasticizer (D). However, instead of blending the plasticizer (D) into the B agent, the polyoxyalkylene polymer (A) and/or the (meth)acrylate polymer (B) may be blended into the B agent. .
  • a agent and B agent can be easily realized also by this aspect.
  • the plasticizer (D) and the polyoxyalkylene polymer (A) and/or the (meth)acrylic acid ester polymer (B) may be blended in the B agent. It is preferable to blend the (meth)acrylate polymer (B), the polyoxyalkylene polymer (A) and/or the plasticizer (D) into the B agent.
  • the plasticizer (D) is not particularly limited, and examples thereof include phthalates such as dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), and butylbenzyl phthalate.
  • phthalates such as dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), and butylbenzyl phthalate.
  • terephthalic acid ester compounds such as bis(2-ethylhexyl)-1,4-benzenedicarboxylate; non-phthalic acid ester compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester; dioctyl adipate, dioctyl sebacate, sebacin Aliphatic polyvalent carboxylic acid ester compounds such as dibutyl acid, diisodecyl succinate, and acetyl tributyl citrate; unsaturated fatty acid ester compounds such as butyl oleate and methyl acetylricinoleate; phosphoric acid ester compounds; trimellitic acid ester compounds chlorinated paraffin; hydrocarbon oils such as alkyldiphenyl and partially hydrogenated terphenyl; process oil; epoxidized soybean oil, epoxidized linseed oil, bis(2-ethylhexyl)-4,5-ep
  • a polymeric plasticizer can also be used as the plasticizer (D).
  • polymeric plasticizers include vinyl polymers; polyester plasticizers; polyether polyols such as polyethylene glycol and polypropylene glycol having a number average molecular weight of 500 or more; polyether plasticizers such as derivatives converted to polystyrenes; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene and the like.
  • polymer plasticizers are preferred, polyether plasticizers are more preferred, and polypropylene glycol is particularly preferred.
  • the plasticizer (D) only one type may be used, or two or more types may be used in combination.
  • the total blending amount of the plasticizer (D) is 5 to 150 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). is preferred, 10 to 120 parts by weight is more preferred, and 20 to 100 parts by weight is particularly preferred.
  • the inorganic filler (E) is blended at least with the B agent. It may be blended only in the B agent, or may be blended in each of the A agent and the B agent.
  • the addition of the inorganic filler (E) can improve the strength of the cured product, and the addition of the inorganic filler (E) to the B agent also contributes to the improvement of the stability of the B agent.
  • the inorganic filler (E) is not particularly limited, but heavy calcium carbonate, colloidal calcium carbonate, magnesium carbonate, diatomaceous earth, clay, talc, titanium oxide, fumed silica, wet silica, crystalline silica, fused silica, anhydrous Silicic acid, hydrous silicic acid, alumina, carbon black, ferric oxide, fine aluminum powder, zinc oxide, activated zinc white, glass fibers and filaments.
  • calcium carbonate, fumed silica, wet silica, and titanium oxide are preferred.
  • the inorganic filler (E) only one type may be used, or two or more types may be used in combination.
  • the total blending amount of the inorganic filler (E) is 1 to 300 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). is preferred, and 10 to 250 parts by weight is more preferred.
  • the proportion of the inorganic filler (E) contained in agent B to the total amount of agent B is preferably 10% by weight or more.
  • the proportion is more preferably 15% by weight or more, and even more preferably 20% by weight or more.
  • the upper limit of the ratio is preferably 60% by weight or less, more preferably 50% by weight or less, and even more preferably 40% by weight or less.
  • Water (F) is blended with the B agent.
  • water (F) the hydrolysis reaction of the reactive silicon groups of the polyoxyalkylene-based polymer (A) and the (meth)acrylic acid ester-based polymer (B) when the agents A and B are mixed. is promoted, and the expression of initial strength is improved.
  • water (F) is blended in the B agent, deterioration of the storage stability of the A agent containing the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B) is avoided. can do.
  • the amount of water (F) added is, from the viewpoint of the effect of improving adhesion to plastic substrates, to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). , preferably 0.1 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, still more preferably 0.1 to 3 parts by weight, and 0.1 parts by weight Parts by weight or more and 2 parts by weight or less are particularly preferred. Further, the proportion of water (F) in the total amount of agent B is preferably 0.5 to 30% by weight. Within this range, mixing of the A agent and the B agent can be easily realized. More preferably 1 to 20% by weight, still more preferably 3 to 15% by weight.
  • the silanol condensation catalyst (G) can promote the condensation reaction of the reactive silicon groups of the polyoxyalkylene polymer (A) and the (meth)acrylate polymer (B).
  • the silanol condensation catalyst (G) may be blended with either or both of the A agent and the B agent, but is preferably blended with the A agent.
  • the silanol condensation catalyst (G) By blending the silanol condensation catalyst (G) with the A agent instead of the B agent, the hydrolysis of the silanol condensation catalyst (G) can be suppressed, and the initial strength after mixing the A and B agents can be improved. You can take advantage of getting better.
  • silanol condensation catalyst (G) examples include organic tin compounds, carboxylic acid metal salts, amine compounds, carboxylic acids, and alkoxy metals.
  • organic tin compounds include dibutyltin dilaurate, dibutyltin dioctanoate, dibutyltin bis(butyl maleate), dibutyltin diacetate, dibutyltin oxide, dibutyltin bis(acetylacetonate), dioctyltin bis(acetylacetonate), phosphate), dioctyltin dilaurate, dioctyltin distearate, dioctyltin diacetate, dioctyltin oxide, etc., reaction products of dibutyltin oxide and silicate compounds, reaction products of dioctyltin oxide and silicate compounds, dibutyltin Reaction products of oxides and phthalates are also included.
  • carboxylate metal salts include tin carboxylate, bismuth carboxylate, titanium carboxylate, zirconium carboxylate, and iron carboxylate.
  • carboxylic acid metal salt the following carboxylic acid and various metals can be combined.
  • amine compounds include amines such as octylamine, 2-ethylhexylamine, laurylamine, and stearylamine; pyridine, 1,8-diazabicyclo[5,4,0]undecene-7 (DBU), 1,5 - nitrogen-containing heterocyclic compounds such as diazabicyclo[4,3,0]nonene-5(DBN); guanidines such as guanidine, phenylguanidine and diphenylguanidine; butylbiguanide, 1-o-tolylbiguanide and 1-phenylbiguanide biguanides such as; amino group-containing silane coupling agents; and ketimine compounds.
  • amines such as octylamine, 2-ethylhexylamine, laurylamine, and stearylamine
  • pyridine 1,8-diazabicyclo[5,4,0]undecene-7 (DBU), 1,5 - nitrogen-containing heterocyclic compounds
  • carboxylic acids include acetic acid, propionic acid, butyric acid, 2-ethylhexanoic acid, lauric acid, stearic acid, oleic acid, linoleic acid, neodecanoic acid, and versatic acid.
  • alkoxy metals include titanium compounds such as tetrabutyl titanate titanium tetrakis (acetylacetonate), diisopropoxytitanium bis (ethylacetoacetate), aluminum tris (acetylacetonate), and diisopropoxyaluminum ethylacetoacetate. and zirconium compounds such as zirconium tetrakis (acetylacetonate).
  • the amount of the silanol condensation catalyst (G) used is 100 parts by weight in total of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B) from the viewpoint of promoting the condensation reaction of the reactive silicon group. , preferably 0.001 to 20 parts by weight, more preferably 0.01 to 15 parts by weight, and even more preferably 0.01 to 10 parts by weight.
  • Agent A preferably further contains an amino group-containing silane coupling agent (H). Addition of the amino group-containing silane coupling agent (H) can further improve adhesion to plastic substrates.
  • the amino group-containing silane coupling agent (H) refers to a compound having both an amino group and a hydrolyzable silyl group in one molecule.
  • the amino group may be a primary amino group, a secondary amino group, or a tertiary amino group, but is preferably a primary amino group or a secondary amino group.
  • the hydrolyzable silyl group refers to a silyl group having 1 to 3 hydrolyzable groups on a silicon atom. From the viewpoint of improving adhesiveness, a silyl group having two or three hydrolyzable groups is preferred, and a silyl group having three hydrolyzable groups is more preferred.
  • the hydrolyzable group the groups described above for X in component (A) can be used. Among them, an alkoxy group is preferable, and a methoxy group or an ethoxy group is particularly preferable.
  • amino group-containing silane coupling agent (H) are not particularly limited, but ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltriisopropoxysilane, ⁇ -aminopropylmethyl Dimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, ⁇ -(2-aminoethyl)aminopropyltrimethoxysilane, ⁇ -(2-aminoethyl)aminopropylmethyldimethoxysilane, ⁇ -(2-aminoethyl)aminopropyl triethoxysilane, ⁇ -(2-aminoethyl)aminopropylmethyldiethoxysilane, ⁇ -(2-aminoethyl)aminopropyltriisopropoxysilane, ⁇ -(6-amino
  • the amount of the amino group-containing silane coupling agent (H) used is 0.1 weight part with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). parts by weight or more and 20 parts by weight or less, more preferably 0.3 parts by weight or more and 15 parts by weight or less, even more preferably 0.5 parts by weight or more and 10 parts by weight or less, and particularly 1 part by weight or more and 5 parts by weight or less. preferable.
  • the curable composition according to the present embodiment includes a polyoxyalkylene polymer (A), a (meth)acrylic acid ester polymer (B), a compound (C), a plasticizer (D), an inorganic filler ( In addition to E), water (F), a silanol condensation catalyst (G), and an optional amino group-containing silane coupling agent (H), additives such as organic fillers, adhesion imparting agents, dehydrating agents, rheology Control agents, antioxidants, light stabilizers, UV absorbers, tackifying resins and other resins may be added.
  • additives such as organic fillers, adhesion imparting agents, dehydrating agents, rheology Control agents, antioxidants, light stabilizers, UV absorbers, tackifying resins and other resins may be added.
  • additives may be added to the curable composition according to the present embodiment as necessary for the purpose of adjusting various physical properties of the curable composition or cured product.
  • additives include solvents, diluents, photo-curing substances, oxygen-curing substances, surface property modifiers, silicates, curability modifiers, radical inhibitors, metal deactivators, ozone Degradation inhibitors, phosphorus-based peroxide decomposers, lubricants, pigments, antifungal agents, flame retardants, foaming agents and the like.
  • Adhesion imparting agents can be added to the curable composition.
  • a silane coupling agent other than the amino group-containing silane coupling agent (H) and a reactant of the silane coupling agent can be added.
  • silane coupling agents include ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatomethyltrimethoxysilane, ⁇ -isocyanatomethyldimethoxymethylsilane, and the like.
  • isocyanate group-containing silanes ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane and other mercapto group-containing silanes; ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - Epoxy group-containing silanes such as (3,4-epoxycyclohexyl)ethyltrimethoxysilane can be mentioned.
  • the adhesiveness-imparting agent may be used alone or in combination of two or more. Reaction products of various silane coupling agents can also be used.
  • the amount of adhesion-imparting agent used is preferably 0.1 to 20 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate polymer (B). 0.5 to 10 parts by weight is more preferred.
  • a dehydrating agent can be added to the curable composition.
  • a dehydrating agent is preferably added to the A agent to improve the stability of the A agent.
  • the dehydrating agent is preferably a compound capable of reacting with water, more preferably a silicon compound capable of reacting with water (excluding compounds corresponding to component (C) or component (H)); Alkoxysilane compounds are particularly preferred.
  • dehydrating agent examples include, but are not particularly limited to, vinyl group-containing silanes such as vinyltrimethoxysilane, vinyltriethoxysilane, and vinylmethyldimethoxysilane. Only one type of dehydrating agent may be used, or two or more types may be used.
  • the amount of the dehydrating agent used is preferably 0.1 to 20 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). 5 to 10 parts by weight is more preferable, and 1 to 5 parts by weight is even more preferable.
  • a rheology control agent may be added to the curable composition to prevent sagging and improve workability.
  • rheology control agents include, but are not limited to, fatty acid amide waxes, hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate and barium stearate. These rheology control agents may be used alone or in combination of two or more.
  • the amount of the rheology control agent used is preferably 0.1 to 20 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate polymer (B).
  • antioxidant antioxidant agent
  • An antioxidant can be used in the curable composition.
  • the use of an antioxidant can enhance the weather resistance of the cured product.
  • antioxidants include hindered phenols, monophenols, bisphenols, and polyphenols. Specific examples of antioxidants are also described in JP-A-4-283259 and JP-A-9-194731.
  • the amount of antioxidant used is preferably 0.1 to 10 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). .2 to 5 parts by weight is more preferred.
  • a light stabilizer can be used in the curable composition.
  • the use of a light stabilizer can prevent photo-oxidative deterioration of the cured product.
  • Benzotriazole-based, hindered amine-based, and benzoate-based compounds can be exemplified as light stabilizers, and hindered amine-based compounds are particularly preferred.
  • the amount of light stabilizer used is preferably 0.1 to 10 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). .2 to 5 parts by weight is more preferred.
  • a UV absorber can be used in the curable composition.
  • the use of an ultraviolet absorber can enhance the surface weather resistance of the cured product.
  • Examples of UV absorbers include benzophenone-based, benzotriazole-based, salicylate-based, substituted tolyl-based and metal chelate-based compounds, and benzotriazole-based compounds are particularly preferred.
  • Tinuvin 327, Tinuvin 328, Tinuvin 329, and Tinuvin 571 manufactured by BASF).
  • the amount of the ultraviolet absorber used is preferably 0.1 to 10 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). .2 to 5 parts by weight is more preferred.
  • a tackifying resin can be added to the curable composition for the purpose of enhancing the adhesiveness or adhesion to the substrate, or for other purposes.
  • the tackifier resin there is no particular limitation and any commonly used one can be used.
  • terpene-based resins aromatic modified terpene resins, hydrogenated terpene resins, terpene-phenolic resins, phenolic resins, modified phenolic resins, xylene-phenolic resins, cyclopentadiene-phenolic resins, coumarone-indene resins, rosin-based Resins, rosin ester resins, hydrogenated rosin ester resins, xylene resins, low molecular weight polystyrene resins, styrene copolymer resins, styrene block copolymers and hydrogenated products thereof, petroleum resins (e.g., C5 hydrocarbon resins, C9 hydrocarbon resins, C5C9 hydrocarbon copolymer resins, etc.), hydrogenated petroleum resins, DCPD resins, and the like. These may be used alone or in combination of two or more.
  • petroleum resins e.g., C5 hydrocarbon resins, C9 hydrocarbon resins, C
  • the amount of the tackifying resin used is preferably 2 to 100 parts by weight, preferably 5 to 50 parts by weight, based on a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). Parts by weight is more preferred, and 5 to 30 parts by weight is even more preferred.
  • the curable composition according to the present embodiment comprises a polyoxyalkylene polymer (A), an acrylic acid ester polymer (B), an A agent containing a compound (C), and the like, and a polyoxyalkylene polymer ( A), at least one of a (meth)acrylic acid ester polymer (B) and a plasticizer (D), an inorganic filler (E), and a B agent containing water (F), etc. It is preferable to prepare as a multi-liquid type in which agent A and agent B are mixed before use.
  • the curable composition according to this embodiment may be cured at room temperature or may be cured by heating.
  • the heating temperature is not particularly limited, but is preferably 40° C. or higher, more preferably 60° C. or higher, and even more preferably 80° C. or higher. However, if the temperature rises to 100°C or higher, the water in agent B evaporates and may cause voids, so the heating temperature is preferably lower than 100°C.
  • the curable composition according to the present embodiment can exhibit good adhesion to various adherends such as plastics, metals, and composites, and in particular adhesion to adherends made of plastic. can be improved, it can be suitably used for bonding plastic substrates.
  • the adhesion of plastic substrates may be adhesion between plastic substrates or adhesion between a plastic substrate and another substrate.
  • the plastic is not particularly limited, and examples include acrylonitrile-butadiene-styrene copolymer (ABS) resin; polycarbonate (PC) resin; polycarbonate alloy resin such as PC/ABS; polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT). ) polyester resin such as resin; polymethyl methacrylate (PMMA) resin; polystyrene (PS) resin; polyimide (PI) resin; polyolefin (PO) resin such as polyethylene, polypropylene, polyisoprene, polybutadiene, polymethylpentene; ; polyisocyanate resin; epoxy resin and the like.
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • polyester resin such as resin; polymethyl methacrylate (PMMA) resin; polystyrene (PS
  • the adherend when used as an adhesive for non-polar materials such as polypropylene and engineering plastics with rigid molecular chains such as polyphenylene sulfide, in order to increase adhesion to these adherends and obtain stable adhesive strength,
  • the adherend can be previously surface-treated by known methods. For example, surface treatment techniques such as sanding, flame treatment, corona discharge, arc discharge, plasma treatment, etc. can be used. Plasma treatment is preferred because it causes less damage to the adherend and provides stable adhesion. These surface treatments are also effective for removing release agents used during molding and remaining on the adherend surface.
  • the curable composition according to a preferred embodiment exhibits the desired physical properties by performing a long-term curing (curing) step after joining the adherends, and has a characteristic that the strength rises quickly. obtain. Therefore, the curable composition can be suitably used for bonding adherends in a continuous line production system.
  • the conditions of the final curing (curing) step for the curable composition to express the final desired physical properties are not particularly limited, but for example, the temperature is 5 to 90 ° C. and the time is 24 hours to 1 week. be done.
  • the curable composition is suitable for use as an adhesive composition, sealing materials for buildings, ships, automobiles, roads, etc., adhesives for joining panels of buses, trailers, trains, etc., adhesives, waterproofing. It can be used for materials.
  • the curable compositions are also suitable for joining dissimilar materials such as aluminum-steel, steel-composites, and aluminum-composites. When dissimilar materials are joined, it is preferable to cover the joint with a sealer to prevent corrosion.
  • a sealer it is possible to use a polymer having reactive silicon groups as shown in this application.
  • Applications in which the curable composition is used include automobile parts such as vehicle panels, large vehicle parts such as trucks and buses, train vehicle parts, aircraft parts, ship parts, electrical parts, and various machine parts. It is preferably used as an adhesive.
  • a multi-component curable composition comprising agent A and agent B, Agent A is a polyoxyalkylene polymer (A) having a reactive silicon group, a (meth)acrylate polymer (B) having a reactive silicon group, dialkoxydialkylsilane, and dialkoxydiarylsilane. , and containing at least one compound (C) selected from the group consisting of alkylsulfonic acid esters, Agent B is selected from the group consisting of a polyoxyalkylene polymer (A) having a reactive silicon group, a (meth)acrylic acid ester polymer (B) having a reactive silicon group, and a plasticizer (D).
  • a multicomponent curable composition wherein the reactive silicon group is represented by the following general formula (1). —SiR 1 3-a X a (1) (Wherein, R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms; X represents a hydroxyl group or a hydrolyzable group; a is 2 or 3.)
  • the number average molecular weight in the examples is the GPC molecular weight measured under the following conditions.
  • Liquid delivery system Tosoh HLC-8120GPC
  • Column TSK-GEL H type manufactured by Tosoh Solvent: THF
  • Molecular weight Polystyrene equivalent Measurement temperature: 40°C
  • the terminal group equivalent molecular weights in the examples were obtained by determining the hydroxyl value by the measurement method of JIS K 1557, the iodine value by the measurement method of JIS K 0070, and the structure of the organic polymer (the degree of branching determined by the polymerization initiator used). It is the molecular weight obtained by taking into consideration.
  • the average number of carbon-carbon unsaturated bonds introduced per terminal of the polymer shown in the examples was calculated by the following formula.
  • (Average introduction number) [Unsaturated group concentration of polymer determined from iodine value (mol/g) - Unsaturated group concentration of precursor polymer determined from iodine value (mol/g)]/[Determined from hydroxyl value hydroxyl group concentration (mol/g) of the precursor polymer].
  • the average number of silyl groups introduced per terminal of the polymer (A) shown in Examples was calculated by NMR measurement.
  • a linear reactive silicon group-containing polyoxypropylene polymer (A-1) having an average of 3.2 trimethoxysilyl groups and a number average molecular weight of 28,500 was thus obtained.
  • a platinum divinyldisiloxane complex (3% by weight of isopropyl alcohol solution in terms of platinum) was added to 100 parts by weight of the obtained allyl group-terminated polyoxypropylene polymer, and while stirring, 1.26 weight of trimethoxysilane was added. was slowly added dropwise and reacted at 90° C. for 2 hours, and then unreacted trimethoxysilane was distilled off under reduced pressure to give a terminal trimethoxysilyl group and an average of 1 silicon group per molecule.
  • Example 1 60 parts by weight of the reactive silicon group-containing polyoxypropylene polymer (A-1) obtained in Synthesis Example 1 and the (meth)acrylate copolymer (B-1) obtained in Synthesis Example 3 After the isobutanol solution was mixed so that the solid content was 40 parts by weight, the isobutanol was devolatilized by heating. To the resulting mixture, 1 part by weight of Nocrac CD (antioxidant, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.) and 1 part by weight of ADEKA STAB AO-60 (antioxidant, manufactured by ADEKA Co., Ltd.) were added as stabilizers.
  • Nocrac CD antioxidant, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • ADEKA STAB AO-60 antioxidant, manufactured by ADEKA Co., Ltd.
  • C Mesamoll (alkyl sulfonic acid phenyl ester, manufactured by ADEKA Co., Ltd.) 11.6 parts by weight, CCR-S10 as a filler (colloidal calcium carbonate, manufactured by Shiraishi Kogyo Co., Ltd.) 42.4 parts by weight, Asahi 0.05 parts by weight of thermal (carbon black, manufactured by Asahi Carbon Co., Ltd.) and 3 parts by weight of Crayvallac SL (fatty acid amide wax, manufactured by ARKEMA) as a rheology control agent were mixed using a planetary mixer, and then heated at 120°C for 1 hour. It was dehydrated by heating under reduced pressure for 1 hour.
  • composition was cooled, and 3 parts by weight of A-171 (vinyltrimethoxysilane, manufactured by Momentive) as a dehydrating agent and KBM-603 (N-(2-aminoethyl)-3-aminopropyl Trimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) 3 parts by weight, compound (C) Z6447 (dimethoxydiphenylsilane, manufactured by Dow Toray Co., Ltd.) 2 parts by weight, silanol condensation catalyst (G) Neostan U- 0.3 parts by weight of 810 (dioctyltin dilaurate, manufactured by Nitto Kasei Co., Ltd.) was mixed to obtain agent A.
  • A-171 vinyltrimethoxysilane, manufactured by Momentive
  • KBM-603 N-(2-aminoethyl)-3-aminopropyl Trimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Acclaim 12200 polypropylene glycol having a number average molecular weight of 14,600, manufactured by Covestro AG
  • plasticizer (D) 10.3 parts by weight
  • CCR-S10 colloidal calcium carbonate, Shiraishi Kogyo ( Co., Ltd.) 3.2 parts by weight
  • AEROSIL R-202 hydrophobic fumed silica, manufactured by Nippon Aerosil Co., Ltd.
  • R-820 titanium oxide, manufactured by Ishihara Sangyo Co., Ltd. 2 parts by weight parts and 1.5 parts by weight of water (F) were mixed using a planetary mixer to obtain a B agent.
  • Agent A and Agent B prepared in Example 1 were added to a two-liquid mixing cartridge (NORDSON Co., Ltd. ) made). Using a static mixer with an element diameter of 10 mm and an element number of 24, the A agent and the B agent were mixed to obtain a mixture.
  • the state of failure was visually confirmed using CF as cohesive failure (destruction at the adhesive portion) and AF as interfacial failure (peeling at the interface between the adhesive and the adherend). When both are mixed, the ratio of each is shown. For example, when the cohesive failure rate is 50% and the interfacial failure rate is 50%, it is described as C50A50. Table 1 shows the results.
  • Example 2-8 Comparative Example 1-4
  • Agents A and B were prepared and evaluated in the same manner as in Example 1, except that the formulations were changed to those shown in Table 1. Table 1 shows the results.
  • Agent A was prepared in the same manner as in Example 1, except that the proportions were changed to those shown in Table 1, and evaluated as a one-component curable composition. Table 1 shows the results.
  • a two-component curable composition containing at least one compound (C) selected from the group consisting of alkoxydialkylsilanes, dialkoxydiarylsilanes, and alkylsulfonate esters is a comparison containing no compound (C). It can be seen that the adhesiveness to the plastic substrate is better than the two-part curable composition of Examples 1 to 3 and Comparative Example 4 that does not contain the (meth)acrylic acid ester copolymer (B). .
  • Viscosity evaluation A parallel disk plate with a diameter of 20 mm was used as a jig, the gap was set to 0.3 mm, and the shear rate was increased from 1 ⁇ 10 -3 (1/sec) to 100 (1/sec) for 7 minutes at 23 ° C. and the flow lamp measurement was performed.
  • a rheometer (DHR-2) manufactured by TA Instruments was used as an apparatus. Viscosity was read at shear rates of 5 ⁇ 10 ⁇ 3 (1/sec) and 100 (1/sec). The viscosity ratio is a value calculated from [viscosity at 5 ⁇ 10 ⁇ 3 (1/sec)/viscosity at 100 (1/sec)]. Table 2 shows the results.
  • the compound in addition to the polyoxyalkylene polymer (A) having a reactive silicon group and the (meth) acrylic acid ester copolymer (B) having a reactive silicon group, the compound It can be seen that the A agent of Example 1 containing both an alkylsulfonic acid ester and a dialkoxydiarylsilane as (C) has a higher viscosity ratio than the A agents of Examples 3, 4, and 6. From this, the two-component curable composition of Example 1 has good dischargeability of the mixture obtained by mixing the main agent and the auxiliary agent, and good shape retention of the coating film obtained by applying the mixture to the substrate. It can be said that

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a multi-part type curable composition that comprises a main agent containing an organic polymer having a reactive silicon group and an assistant containing water, and that can improve the adhesive property thereof with respect to plastic base materials. This multi-part type curable composition contains an agent A and an agent B. The agent A contains: a polyoxyalkylene-based polymer (A) having a reactive silicon group; a (meth)acrylic acid ester-based polymer (B) having a reactive silicon group; and at least one compound (C) selected from the group consisting of dialkoxy dialkyl silanes, dialkoxy diaryl silanes, and alkyl sulfonic acid esters. The agent B contains: at least one compound selected from the group consisting of the polyoxyalkylene-based polymer (A) having a reactive silicon group, the (meth)acrylic acid ester-based polymer (B) having a reactive silicon group, and a plasticizing agent (D); an inorganic filler (E); and water (F). One or both of the agent A and the agent B contain a silanol condensation catalyst (G).

Description

多液型硬化性組成物Multi-component curable composition
 本発明は、多液型硬化性組成物、及び、当該組成物を硬化させて得られる硬化物に関する。 The present invention relates to a multi-component curable composition and a cured product obtained by curing the composition.
 ケイ素原子上に水酸基または加水分解性基を有し、加水分解・縮合反応によってシロキサン結合を形成し得るケイ素基(以下、「反応性ケイ素基」ともいう。)を有する有機重合体は、周囲環境に含まれる湿分によって硬化し、ゴム状硬化物を与えることが知られている。当該重合体はその物性を利用して、接着剤や、シーリング材、充填剤などとして使用されている。 Organic polymers having hydroxyl groups or hydrolyzable groups on silicon atoms and having silicon groups capable of forming siloxane bonds by hydrolysis/condensation reactions (hereinafter also referred to as "reactive silicon groups") are It is known to cure with moisture contained in to give a rubber-like cured product. Such polymers are used as adhesives, sealants, fillers, etc. by utilizing their physical properties.
 しかし、当該重合体を含む湿分硬化性組成物は、硬化反応の進行が空気中の水分に依存しており、塗布した組成物の表面から硬化が進行するため、深部硬化性が十分でないという問題がある。 However, moisture-curable compositions containing such polymers are said to be insufficient in depth curability because the progress of the curing reaction depends on moisture in the air, and curing progresses from the surface of the applied composition. There's a problem.
 そこで、反応性ケイ素基を有する有機重合体を主剤とし、水を助剤とする2液型の組成物を構成することによって、深部硬化性を改善することが報告されている(例えば、特許文献1を参照)。 Therefore, it has been reported that deep-part curability is improved by constructing a two-liquid type composition in which an organic polymer having a reactive silicon group is used as a main component and water is used as an auxiliary agent (for example, Patent Document 1).
米国特許出願公開第2007/0088110号明細書U.S. Patent Application Publication No. 2007/0088110
 しかしながら、このような水を助剤として含む2液型の組成物は、湿分で硬化する1液型の組成物と比較して、プラスチック基材に対する接着性が低下する傾向があることが判明した。 However, it has been found that such a two-component composition containing water as a coagent tends to have lower adhesion to plastic substrates than a one-component composition that cures with moisture. bottom.
 本発明は、上記現状に鑑み、反応性ケイ素基を有する有機重合体を含む主剤と、水を含む助剤とを含む多液型硬化性組成物であって、プラスチック基材に対する接着性が改善可能な多液型硬化性組成物を提供することを目的とする。 In view of the above-mentioned current situation, the present invention provides a multicomponent curable composition containing a main agent containing an organic polymer having a reactive silicon group and an auxiliary agent containing water, which has improved adhesion to plastic substrates. It is an object of the present invention to provide a possible multi-component curable composition.
 本発明者らは、上記課題を解決するために鋭意検討した結果、主剤において、反応性ケイ素基を有する有機重合体として、ポリオキシアルキレン系重合体と(メタ)アクリル酸エステル系重合体を併用し、かつ特定の化合物を配合すると共に、水を含む助剤に、反応性ケイ素基を有するポリオキシアルキレン系重合体及び/または可塑剤と共に、無機充填剤を配合することで、前記課題を解決できることを見出し、本発明を完成させた。 The inventors of the present invention have made intensive studies to solve the above problems, and have found that a polyoxyalkylene-based polymer and a (meth)acrylic acid ester-based polymer are used in combination as the organic polymer having a reactive silicon group in the main agent. The above problems are solved by blending a specific compound and blending an inorganic filler together with a polyoxyalkylene polymer having a reactive silicon group and / or a plasticizer in an auxiliary agent containing water. I found that it can be done, and completed the present invention.
 すなわち本発明は、A剤とB剤を含む多液型硬化性組成物であって、A剤が、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体(B)、並びに、ジアルコキシジアルキルシラン、ジアルコキシジアリールシラン、及びアルキルスルホン酸エステルからなる群より選択される少なくとも1種の化合物(C)を含有し、B剤が、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体(B)、及び可塑剤(D)からなる群より選択される少なくとも1種の化合物と、無機充填剤(E)と、水(F)とを含有し、A剤またはB剤のいずれか又は双方が、シラノール縮合触媒(G)を含有し、前記反応性ケイ素基が下記一般式(1)で表される、多液型硬化性組成物に関する。
-SiR 3-a    (1)
(式中、Rは、置換又は非置換の炭素数1~20の炭化水素基を表す。Xは水酸基または加水分解性基を表す。aは2または3である。)
 好ましくは、A剤が、化合物(C)としてジアルコキシジアリールシランを含有する。
 好ましくは、A剤が、化合物(C)として、ジアルコキシジアリールシラン及びアルキルスルホン酸エステルを含有する。
 好ましくは、(メタ)アクリル酸エステル系重合体(B)が、アルキルの炭素数が1~3である(メタ)アクリル酸アルキルを全単量体中40重量%以上含有する。
 好ましくは、A剤が、アミノ基含有シランカップリング剤(H)をさらに含有する。
 好ましくは、前記多液型硬化性組成物が、A剤とB剤からなる2液型の硬化性組成物である。
 また本発明は、前記多液型硬化性組成物を硬化させて得られる硬化物にも関する。
That is, the present invention is a multi-component curable composition containing agent A and agent B, wherein agent A is a polyoxyalkylene polymer (A) having a reactive silicon group and a reactive silicon group ( A meth)acrylic acid ester-based polymer (B) and at least one compound (C) selected from the group consisting of dialkoxydialkylsilanes, dialkoxydiarylsilanes, and alkylsulfonic acid esters, and agent B Is selected from the group consisting of a polyoxyalkylene polymer (A) having a reactive silicon group, a (meth)acrylic acid ester polymer (B) having a reactive silicon group, and a plasticizer (D) containing at least one compound, an inorganic filler (E), and water (F); either or both of agent A and agent B contain a silanol condensation catalyst (G); The present invention relates to a multi-component curable composition in which the group is represented by the following general formula (1).
—SiR 1 3-a X a (1)
(Wherein, R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms; X represents a hydroxyl group or a hydrolyzable group; a is 2 or 3.)
Preferably, agent A contains a dialkoxydiarylsilane as compound (C).
Preferably, agent A contains a dialkoxydiarylsilane and an alkylsulfonate as compound (C).
Preferably, the (meth)acrylic acid ester polymer (B) contains 40% by weight or more of the total monomers of alkyl (meth)acrylates having 1 to 3 carbon atoms.
Preferably, the A agent further contains an amino group-containing silane coupling agent (H).
Preferably, the multi-component curable composition is a two-component curable composition comprising an A agent and a B agent.
The present invention also relates to a cured product obtained by curing the multicomponent curable composition.
 本発明によれば、反応性ケイ素基を有する有機重合体を含む主剤と、水を含む助剤とを含む多液型硬化性組成物であって、プラスチック基材に対する接着性が改善可能な多液型硬化性組成物を提供することができる。
 本発明の好適な態様によれば、主剤と助剤を混合してなる混合物の吐出性と、該混合物を基材に塗布してなる塗膜の形状維持性を両立することができる。
According to the present invention, there is provided a multicomponent curable composition comprising a main component containing an organic polymer having a reactive silicon group and an auxiliary agent containing water, wherein the multicomponent curable composition is capable of improving adhesion to plastic substrates. A liquid curable composition can be provided.
According to a preferred aspect of the present invention, it is possible to achieve both the dischargeability of a mixture obtained by mixing a main agent and an auxiliary agent and the shape retention property of a coating film obtained by coating the mixture on a substrate.
 以下に本発明の実施形態を具体的に説明するが、本発明はこれら実施形態に限定されるものではない。 Embodiments of the present invention will be specifically described below, but the present invention is not limited to these embodiments.
 本実施形態は、少なくともA剤とB剤を含む多液型硬化性組成物である。
 A剤は、少なくとも、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体(B)、並びに、ジアルコキシジアルキルシラン、ジアルコキシジアリールシラン、及びアルキルスルホン酸エステルからなる群より選択される少なくとも1種の化合物(C)を含有する。
 B剤は、少なくとも、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体(B)、及び/可塑剤(D)からなる群より選択される少なくとも1種の化合物と、無機充填剤(E)と、水(F)とを含有する。
 そして、A剤またはB剤のいずれか又は双方が、シラノール縮合触媒(G)を含有する。
 尚、本実施形態に係る硬化性組成物は、エポキシ樹脂を含有するものではない。
This embodiment is a multicomponent curable composition containing at least an A agent and a B agent.
Agent A includes at least a polyoxyalkylene polymer (A) having a reactive silicon group, a (meth)acrylic acid ester polymer (B) having a reactive silicon group, a dialkoxydialkylsilane, a dialkoxy It contains at least one compound (C) selected from the group consisting of diarylsilanes and alkylsulfonic acid esters.
Agent B comprises at least a polyoxyalkylene polymer (A) having a reactive silicon group, a (meth)acrylate polymer (B) having a reactive silicon group, and/or a plasticizer (D). It contains at least one compound selected from the group, an inorganic filler (E), and water (F).
Either or both of the A agent and the B agent contain a silanol condensation catalyst (G).
In addition, the curable composition according to the present embodiment does not contain an epoxy resin.
 <<反応性ケイ素基を有するポリオキシアルキレン系重合体(A)>>
 <反応性ケイ素基>
 ポリオキシアルキレン系重合体(A)は、下記一般式(1)で表される反応性ケイ素基を有する。
-SiR 3-a    (1)
(式中、Rは、置換又は非置換の炭素数1~20の炭化水素基を表す。Xは水酸基または加水分解性基を表す。aは2または3を示す。)
<<Polyoxyalkylene Polymer (A) Having Reactive Silicon Group>>
<Reactive silicon group>
The polyoxyalkylene polymer (A) has a reactive silicon group represented by the following general formula (1).
—SiR 1 3-a X a (1)
(Wherein, R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms; X represents a hydroxyl group or a hydrolyzable group; a represents 2 or 3.)
 Rの炭化水素基の炭素数は1~10が好ましく、1~5がより好ましく、1~3がさらに好ましい。Rの具体例としては、例えば、メチル基、エチル基、クロロメチル基、メトキシメチル基、N,N-ジエチルアミノメチル基を挙げることができる。好ましくは、メチル基、エチル基、クロロメチル基、メトキシメチル基であり、より好ましくは、メチル基、メトキシメチル基である。 The number of carbon atoms in the hydrocarbon group of R 1 is preferably 1-10, more preferably 1-5, even more preferably 1-3. Specific examples of R 1 include methyl group, ethyl group, chloromethyl group, methoxymethyl group and N,N-diethylaminomethyl group. Preferred are methyl group, ethyl group, chloromethyl group and methoxymethyl group, and more preferred are methyl group and methoxymethyl group.
 Xとしては、例えば、ハロゲン、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基などが挙げられる。これらの中では、加水分解性が穏やかで取扱いやすいことから、アルコキシ基がより好ましく、メトキシ基、エトキシ基が特に好ましい。 Examples of X include halogen, alkoxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group and alkenyloxy group. Among these, an alkoxy group is more preferable, and a methoxy group and an ethoxy group are particularly preferable, since they are moderately hydrolyzable and easy to handle.
 ポリオキシアルキレン系重合体(A)が有する反応性ケイ素基としては、具体的には、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジメトキシエチルシリル基、(クロロメチル)ジメトキシシリル基、(クロロメチル)ジエトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基、(N,N-ジエチルアミノメチル)ジエトキシシリル基などが挙げられるが、これらに限定されない。これらの中では、メチルジメトキシシリル基、トリメトキシシリル基、トリエトキシシリル基、(クロロメチル)ジメトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基が高い活性を示し、良好な機械物性を有する硬化物が得られるため好ましく、高剛性の硬化物が得られることから、トリメトキシシリル基、トリエトキシシリル基がより好ましく、トリメトキシシリル基がさらに好ましい。 Specific examples of the reactive silicon group possessed by the polyoxyalkylene polymer (A) include a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, a triacetoxysilyl group, and dimethoxymethyl silyl group, diethoxymethylsilyl group, dimethoxyethylsilyl group, (chloromethyl)dimethoxysilyl group, (chloromethyl)diethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group, (N ,N-diethylaminomethyl)dimethoxysilyl group, (N,N-diethylaminomethyl)diethoxysilyl group, and the like, but are not limited thereto. Among these are methyldimethoxysilyl, trimethoxysilyl, triethoxysilyl, (chloromethyl)dimethoxysilyl, (methoxymethyl)dimethoxysilyl, (methoxymethyl)diethoxysilyl, (N,N- Diethylaminomethyl)dimethoxysilyl group is preferred because it exhibits high activity and gives a cured product with good mechanical properties, and a trimethoxysilyl group and a triethoxysilyl group are more preferred because a cured product with high rigidity can be obtained. A trimethoxysilyl group is more preferred.
 ポリオキシアルキレン系重合体(A)は、1つの末端部位に平均して1個以下の反応性ケイ素基を有するものであってもよいし、1つの末端部位に平均して1個より多い反応性ケイ素基を有するものであってもよい。ここで、1つの末端部位に平均して1個より多い反応性ケイ素基を有するとは、ポリオキシアルキレン系重合体(A)に、1つの末端部位に2個以上の反応性ケイ素基を有するポリオキシアルキレンが含まれていることを示している。 The polyoxyalkylene polymer (A) may have an average of 1 or less reactive silicon groups at one terminal site, or an average of more than 1 reactive silicon group at one terminal site may have a silicon group. Here, having more than one reactive silicon group on average at one terminal site means that the polyoxyalkylene polymer (A) has two or more reactive silicon groups at one terminal site. It shows that polyoxyalkylene is included.
 2個以上の反応性ケイ素基を有する末端部位は、例えば、下記一般式(2)で表すことができる。 A terminal site having two or more reactive silicon groups can be represented, for example, by the following general formula (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、R,Rはそれぞれ独立に2価の炭素数1~6の結合基を表し、R,Rに隣接するそれぞれの炭素原子と結合する原子は、炭素、酸素、窒素のいずれかである。R,Rはそれぞれ独立に、水素、または炭素数1~10の炭化水素基を表す。nは1~10の整数である。R、X、aは式(1)について上述のとおりである。) (In the formula, R 2 and R 4 each independently represent a divalent C 1-6 bonding group, and the atoms bonded to the respective carbon atoms adjacent to R 2 and R 4 are carbon, oxygen, nitrogen R 3 and R 5 each independently represent hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, n is an integer of 1 to 10, and R 1 , X, and a represent the formula ( 1) is as described above.)
 R、Rとしては、2価の炭素数1~6の有機基であってよく、酸素原子を含んでもよい炭化水素基であってもよい。該炭化水素基の炭素数は1~4が好ましく、1~3がより好ましく、1~2がさらに好ましい。Rの具体例としては、例えば、-CHOCH-、-CHO-、-CH-を挙げることができるが、好ましくは、-CHOCH-である。Rの具体例としては、例えば、-CH-、-CHCH-を挙げることができるが、好ましくは、-CH-である。 R 2 and R 4 may be a divalent organic group having 1 to 6 carbon atoms, or may be a hydrocarbon group which may contain an oxygen atom. The number of carbon atoms in the hydrocarbon group is preferably 1-4, more preferably 1-3, even more preferably 1-2. Specific examples of R 2 include -CH 2 OCH 2 -, -CH 2 O- and -CH 2 -, but -CH 2 OCH 2 - is preferred. Specific examples of R 4 include -CH 2 - and -CH 2 CH 2 -, preferably -CH 2 -.
 R、Rの炭化水素基の炭素数としては1~5が好ましく、1~3がより好ましく、1~2がさらに好ましい。R、Rの具体例としては、例えば、水素原子、メチル基、エチル基を挙げることができるが、好ましくは、水素原子、メチル基であり、より好ましくは水素原子である。 The number of carbon atoms in the hydrocarbon groups of R 3 and R 5 is preferably 1-5, more preferably 1-3, even more preferably 1-2. Specific examples of R 3 and R 5 include a hydrogen atom, a methyl group and an ethyl group, preferably a hydrogen atom and a methyl group, more preferably a hydrogen atom.
 一般式(2)で表される末端部位は、特に好ましい態様によると、Rが-CHOCH-であり、Rが-CH-であり、R及びRがそれぞれ水素原子である。nは1~5の整数が好ましく、1~3の整数がより好ましく、1又は2がさらに好ましい。ただし、nは、1つの値に限定されるものではなく、複数の値が混在していてもよい。 According to a particularly preferred embodiment, the terminal portion represented by the general formula (2) is such that R 2 is —CH 2 OCH 2 —, R 4 is —CH 2 —, and R 3 and R 5 are each hydrogen atoms. is. n is preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and even more preferably 1 or 2. However, n is not limited to one value, and may be a mixture of multiple values.
 ポリオキシアルキレン系重合体(A)は、反応性ケイ素基を、1つの末端部位に平均して1.0個以下有するものであってもよい。この場合、前記平均数は、0.4個以上であることが好ましく、0.5個以上がより好ましく、0.6個以上がさらに好ましい。 The polyoxyalkylene polymer (A) may have an average of 1.0 or less reactive silicon groups at one terminal site. In this case, the average number is preferably 0.4 or more, more preferably 0.5 or more, even more preferably 0.6 or more.
 また、ポリオキシアルキレン系重合体(A)は、反応性ケイ素基を、1つの末端部位に平均して1.0個より多く有するものであってもよい。この場合、前記平均数は、1.1個以上であることがより好ましく、1.5個以上が更に好ましく、2.0個以上がより更に好ましい。また、前記平均数は、5個以下であることが好ましく、3個以下がより好ましい。 In addition, the polyoxyalkylene polymer (A) may have an average of more than 1.0 reactive silicon groups at one terminal site. In this case, the average number is more preferably 1.1 or more, still more preferably 1.5 or more, and even more preferably 2.0 or more. Moreover, the average number is preferably 5 or less, more preferably 3 or less.
 ポリオキシアルキレン系重合体(A)は、末端部位以外に反応性ケイ素基を有しても良いが、末端部位にのみ有することが、高伸びで、低弾性率を示すゴム状硬化物が得られやすくなるため好ましい。 The polyoxyalkylene-based polymer (A) may have reactive silicon groups in addition to the terminal sites, but having them only at the terminal sites yields a rubber-like cured product with high elongation and low elastic modulus. It is preferable because it becomes easy to be
 ポリオキシアルキレン系重合体(A)が有する反応性ケイ素基の1分子当たりの平均個数は、硬化物の強度の観点から、1.0個より多いことが好ましく、1.2個以上がより好ましく、1.3個以上がさらに好ましく、1.5個以上がより更に好ましく、1.7個以上が特に好ましい。前記平均個数は、2.0個以下であってもよいし、2.0個より多くてもよい。硬化物の伸びの観点から、6.0個以下が好ましく、5.5個以下がより好ましく、5.0個以下が最も好ましい。 The average number of reactive silicon groups per molecule of the polyoxyalkylene polymer (A) is preferably more than 1.0, more preferably 1.2 or more, from the viewpoint of the strength of the cured product. , is more preferably 1.3 or more, even more preferably 1.5 or more, and particularly preferably 1.7 or more. The average number may be 2.0 or less, or may be more than 2.0. From the viewpoint of elongation of the cured product, the number is preferably 6.0 or less, more preferably 5.5 or less, and most preferably 5.0 or less.
 <主鎖構造>
 ポリオキシアルキレン系重合体(A)の主鎖骨格には特に制限はなく、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、ポリオキシプロピレン-ポリオキシブチレン共重合体などが挙げられる。その中でも、ポリオキシプロピレンが好ましい。
<Main chain structure>
The main chain skeleton of the polyoxyalkylene polymer (A) is not particularly limited, and examples include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, Examples include polyoxypropylene-polyoxybutylene copolymers. Among them, polyoxypropylene is preferred.
 ポリオキシアルキレン系重合体(A)の数平均分子量は、GPCにおけるポリスチレン換算分子量において、好ましくは3,000以上100,000以下、より好ましくは3,000以上50,000以下であり、特に好ましくは3,000以上30,000以下である。 The number average molecular weight of the polyoxyalkylene polymer (A) is preferably 3,000 or more and 100,000 or less, more preferably 3,000 or more and 50,000 or less, in terms of polystyrene equivalent molecular weight in GPC, and particularly preferably It is 3,000 or more and 30,000 or less.
 ポリオキシアルキレン系重合体(A)の分子量としては、反応性ケイ素基導入前の有機重合体前駆体を、JIS K 1557の水酸基価の測定方法と、JIS K 0070に規定されたよう素価の測定方法の原理に基づいた滴定分析により、直接的に末端基濃度を測定し、有機重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮して求めた末端基換算分子量で示すこともできる。ポリオキシアルキレン系重合体(A)の末端基換算分子量は、有機重合体前駆体の一般的なGPC測定により求めた数平均分子量と上記末端基換算分子量の検量線を作成し、ポリオキシアルキレン系重合体(A)のGPCにより求めた数平均分子量を末端基換算分子量に換算して求めることも可能である。 As the molecular weight of the polyoxyalkylene polymer (A), the organic polymer precursor before the introduction of the reactive silicon group was subjected to the hydroxyl value measurement method of JIS K 1557 and the iodine value of JIS K 0070. Directly measure the terminal group concentration by titration analysis based on the principle of the measurement method, and indicate the terminal group equivalent molecular weight obtained by considering the structure of the organic polymer (degree of branching determined by the polymerization initiator used). can also The terminal group-equivalent molecular weight of the polyoxyalkylene-based polymer (A) is determined by preparing a calibration curve of the number average molecular weight obtained by general GPC measurement of the organic polymer precursor and the above-mentioned terminal-group-equivalent molecular weight. It is also possible to convert the number-average molecular weight of the polymer (A) obtained by GPC into a terminal group-equivalent molecular weight.
 ポリオキシアルキレン系重合体(A)の分子量分布(Mw/Mn)は特に限定されないが、狭いことが好ましく、具体的には、2.0未満が好ましく、1.6以下がより好ましく、1.5以下がさらに好ましく、1.4以下が特に好ましい。また、硬化物の耐久性や伸びを向上させる等、各種機械的物性を向上させる観点からは、1.2以下が好ましい。ポリオキシアルキレン系重合体(A)の分子量分布は、GPC測定により得られる数平均分子量と重量平均分子量から求めることができる。 Although the molecular weight distribution (Mw/Mn) of the polyoxyalkylene polymer (A) is not particularly limited, it is preferably narrow, specifically less than 2.0, more preferably 1.6 or less. 5 or less is more preferable, and 1.4 or less is particularly preferable. Moreover, from the viewpoint of improving various mechanical properties such as improving the durability and elongation of the cured product, it is preferably 1.2 or less. The molecular weight distribution of the polyoxyalkylene polymer (A) can be obtained from the number average molecular weight and weight average molecular weight obtained by GPC measurement.
 また、ポリオキシアルキレン系重合体(A)の主鎖構造は直鎖状であっても分岐状であってもよい。 Also, the main chain structure of the polyoxyalkylene polymer (A) may be linear or branched.
 <ポリオキシアルキレン系重合体(A)の合成方法>
 ポリオキシアルキレン系重合体(A)の合成方法は特に限定されない。一例を説明すると、まず、水酸基を有する開始剤にエポキシ化合物を重合させて水酸基末端重合体を得る。該重合体の水酸基にアルカリ金属塩(例えばナトリウムメトキシド)を作用させた後、炭素-炭素不飽和結合を有するハロゲン化炭化水素化合物(例えば塩化アリル)を反応させて、重合体末端に炭素-炭素不飽和結合を導入する。次いで、反応性ケイ素基含有ヒドロシラン化合物(例えば、ジメトキシメチルシラン、トリメトキシシラン)を反応させることで、反応性ケイ素基含有ポリオキシアルキレン系重合体(A)を得ることができる。
<Method for synthesizing polyoxyalkylene polymer (A)>
The method for synthesizing the polyoxyalkylene polymer (A) is not particularly limited. To explain an example, first, an initiator having a hydroxyl group is polymerized with an epoxy compound to obtain a hydroxyl group-terminated polymer. After reacting the hydroxyl groups of the polymer with an alkali metal salt (for example, sodium methoxide), a halogenated hydrocarbon compound having a carbon-carbon unsaturated bond (for example, allyl chloride) is reacted to attach a carbon- Introduce carbon unsaturated bonds. Then, a reactive silicon group-containing polyoxyalkylene polymer (A) can be obtained by reacting a reactive silicon group-containing hydrosilane compound (eg, dimethoxymethylsilane, trimethoxysilane).
 好適な一実施形態である1つの末端部位に平均して1.0個より多い反応性ケイ素基を有しているポリオキシアルキレン系重合体(A)は次のようにして得ることができる。上記と同様に前記水酸基末端重合体の水酸基に前記アルカリ金属塩を作用させた後、まず炭素-炭素不飽和結合を有するエポキシ化合物(例えば、アリルグリシジルエーテル)を反応させ、次いで前記炭素-炭素不飽和結合を有するハロゲン化炭化水素化合物(例えば塩化アリル)を反応させることで、1つの末端に2個以上の炭素-炭素不飽和結合を導入する。その後、反応性ケイ素基含有ヒドロシラン化合物を反応させればよい。 A polyoxyalkylene polymer (A) having an average of more than 1.0 reactive silicon groups at one terminal site, which is a preferred embodiment, can be obtained as follows. After reacting the hydroxyl group of the hydroxyl-terminated polymer with the alkali metal salt in the same manner as described above, an epoxy compound having a carbon-carbon unsaturated bond (eg, allyl glycidyl ether) is first reacted, and then the carbon-carbon unsaturated bond is reacted. Two or more carbon-carbon unsaturated bonds are introduced at one end by reacting a halogenated hydrocarbon compound having a saturated bond (eg, allyl chloride). After that, a reactive silicon group-containing hydrosilane compound may be reacted.
 また、前記反応性ケイ素基含有ヒドロシラン化合物の代わりに、反応性ケイ素基含有メルカプトシラン類を用いることで、重合体に反応性ケイ素基を導入することも可能である。 It is also possible to introduce a reactive silicon group into the polymer by using a reactive silicon group-containing mercaptosilane instead of the reactive silicon group-containing hydrosilane compound.
 ポリオキシアルキレン系重合体(A)の主鎖は、エステル結合、または、一般式(3):
-NR-C(=O)-  (3)
(式中、Rは炭素数1~10の有機基または水素原子を表す)で表されるアミドセグメントを含んでいてもよい。
The main chain of the polyoxyalkylene polymer (A) is an ester bond or the general formula (3):
-NR 6 -C(=O)- (3)
(wherein R 6 represents an organic group having 1 to 10 carbon atoms or a hydrogen atom).
 エステル結合またはアミドセグメントを含有するポリオキシアルキレン系重合体(A)を含む硬化性組成物から得られる硬化物は、水素結合の作用等により、高い硬度および強度を有する場合がある。しかし、アミドセグメント等を含有するポリオキシアルキレン系重合体(A)は、熱等により開裂する可能性がある。また、アミドセグメント等を含有するポリオキシアルキレン系重合体(A)を含む硬化性組成物は、粘度が高くなる傾向がある。以上のようなメリットおよびデメリットを考慮して、ポリオキシアルキレン系重合体(A)として、アミドセグメント等を含有するポリオキシアルキレンを使用してもよく、アミドセグメント等を含有しないポリオキシアルキレンを使用してもよい。 A cured product obtained from a curable composition containing a polyoxyalkylene polymer (A) containing an ester bond or an amide segment may have high hardness and strength due to the action of hydrogen bonds and the like. However, the polyoxyalkylene polymer (A) containing amide segments and the like may be cleaved by heat or the like. Moreover, a curable composition containing a polyoxyalkylene polymer (A) containing an amide segment or the like tends to have a high viscosity. Considering the above merits and demerits, as the polyoxyalkylene polymer (A), a polyoxyalkylene containing an amide segment or the like may be used, or a polyoxyalkylene containing no amide segment or the like may be used. You may
 前記一般式(3)で表されるアミドセグメントとしては、例えば、イソシアネート基と水酸基との反応、アミノ基とカーボネートとの反応、イソシアネート基とアミノ基との反応、イソシアネート基とメルカプト基との反応等により形成されるものを挙げることができる。また、活性水素原子を含む前記アミドセグメントとイソシアネート基との反応により形成されるものも、一般式(3)で表されるアミドセグメントに含まれる。 Examples of the amide segment represented by the general formula (3) include the reaction between an isocyanate group and a hydroxyl group, the reaction between an amino group and a carbonate, the reaction between an isocyanate group and an amino group, and the reaction between an isocyanate group and a mercapto group. etc. can be mentioned. The amide segment represented by the general formula (3) also includes those formed by the reaction of the amide segment containing an active hydrogen atom with an isocyanate group.
 アミドセグメントを含有するポリオキシアルキレン系重合体(A)の製造方法の一例としては、末端に活性水素含有基を有するポリオキシアルキレンに、ポリイソシアネート化合物を反応させて、末端にイソシアネート基を有する重合体を合成した後、またはその合成と同時に、該イソシアネート基と反応し得る官能基(例えば、水酸基、カルボキシ基、メルカプト基、1級アミノ基または2級アミノ基)と反応性ケイ素基を併せ持つ化合物を反応させる方法を挙げることができる。また、別の例として、末端に活性水素含有基を有するポリオキシアルキレンに、反応性ケイ素基含有イソシアネート化合物を反応させる方法を挙げることができる。 As an example of a method for producing the polyoxyalkylene polymer (A) containing an amide segment, a polyoxyalkylene having an active hydrogen-containing group at its terminal is reacted with a polyisocyanate compound to produce a polymer having an isocyanate group at its terminal. A compound having both a functional group (for example, a hydroxyl group, a carboxyl group, a mercapto group, a primary amino group or a secondary amino group) capable of reacting with the isocyanate group and a reactive silicon group after or simultaneously with the synthesis of the coalescence. can be mentioned. Another example is a method of reacting a polyoxyalkylene having an active hydrogen-containing group at its end with a reactive silicon group-containing isocyanate compound.
 ポリオキシアルキレン系重合体(A)がアミドセグメントを含む場合、ポリオキシアルキレン系重合体(A)1分子あたりのアミドセグメントの数(平均値)は、1~10が好ましく、1.5~5がより好ましく、2~3が特に好ましい。この数が1よりも少ない場合には、硬化性が十分ではない場合があり、逆に10よりも大きい場合には、ポリオキシアルキレン系重合体(A)が高粘度となり、取り扱い難くなる可能性がある。硬化性組成物の粘度を低くし、作業性を改善するためには、ポリオキシアルキレン系重合体(A)は、アミドセグメントを含まないことが好ましい。 When the polyoxyalkylene polymer (A) contains amide segments, the number (average value) of amide segments per molecule of the polyoxyalkylene polymer (A) is preferably 1 to 10, and 1.5 to 5. is more preferred, and 2 to 3 are particularly preferred. If this number is less than 1, the curability may not be sufficient, and conversely if it is greater than 10, the polyoxyalkylene polymer (A) may become highly viscous and difficult to handle. There is In order to lower the viscosity of the curable composition and improve workability, the polyoxyalkylene polymer (A) preferably does not contain an amide segment.
 <<反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体(B)>>
 A剤は、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)と共に、反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体(B)(以下、「(メタ)アクリル酸エステル系重合体(B)」ともいう)を含有する。これにより、プラスチック基材に対する接着性を改善することができる。
 また、(メタ)アクリル酸エステル系重合体(B)は、A剤またはB剤のいずれかまたは双方に含有されていることが好ましい。また、(メタ)アクリル酸エステル系重合体(B)は、A剤に配合されていることが好ましい。
 (メタ)アクリル酸エステル系重合体(B)の主鎖を構成する(メタ)アクリル酸エステル系モノマーとしては特に限定されず、各種のものを用いることができる。具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸(3-トリメトキシシリル)プロピル、(メタ)アクリル酸(3-ジメトキシメチルシリル)プロピル、(メタ)アクリル酸(2-トリメトキシシリル)エチル、(メタ)アクリル酸(2-ジメトキシメチルシリル)エチル、(メタ)アクリル酸トリメトキシシリルメチル、(メタ)アクリル酸(ジメトキシメチルシリル)メチル、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2-トリフルオロメチルエチル、(メタ)アクリル酸2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸ビス(トリフルオロメチル)メチル、(メタ)アクリル酸2-トリフルオロメチル-2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロヘキシルエチル、(メタ)アクリル酸2-パーフルオロデシルエチル、(メタ)アクリル酸2-パーフルオロヘキサデシルエチル等の(メタ)アクリル酸エステル系モノマーが挙げられる。
<<(Meth)acrylic acid ester polymer (B) having a reactive silicon group>>
Agent A includes a polyoxyalkylene polymer (A) having a reactive silicon group and a (meth)acrylic acid ester polymer (B) having a reactive silicon group (hereinafter referred to as "(meth)acrylic acid ester (also referred to as "polymer (B)"). This can improve adhesion to plastic substrates.
In addition, the (meth)acrylate polymer (B) is preferably contained in either or both of the A agent and the B agent. Moreover, it is preferable that the (meth)acrylic acid ester-based polymer (B) is blended with the A agent.
The (meth)acrylate monomer constituting the main chain of the (meth)acrylate polymer (B) is not particularly limited, and various types can be used. Specifically, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate. , tert-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, n-heptyl (meth)acrylate, n-(meth)acrylate -octyl, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, phenyl (meth)acrylate, toluyl (meth)acrylate, (meth)acrylate Benzyl acrylate, 2-methoxyethyl (meth)acrylate, 3-methoxybutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, stearyl (meth)acrylate , glycidyl (meth)acrylate, (3-trimethoxysilyl)propyl (meth)acrylate, (3-dimethoxymethylsilyl)propyl (meth)acrylate, (2-trimethoxysilyl)ethyl (meth)acrylate, (2-dimethoxymethylsilyl)ethyl (meth)acrylate, trimethoxysilylmethyl (meth)acrylate, (dimethoxymethylsilyl)methyl (meth)acrylate, ethylene oxide adduct of (meth)acrylic acid, (meth)acrylate Trifluoromethylmethyl acrylate, 2-trifluoromethylethyl (meth)acrylate, 2-perfluoroethylethyl (meth)acrylate, 2-perfluoroethyl-2-perfluorobutylethyl (meth)acrylate, ( Meth) perfluoroethyl acrylate, trifluoromethyl (meth) acrylate, bis (trifluoromethyl) methyl (meth) acrylate, 2-trifluoromethyl-2-perfluoroethyl ethyl (meth) acrylate, (meth) ) (meth)acrylate monomers such as 2-perfluorohexylethyl acrylate, 2-perfluorodecylethyl (meth)acrylate, and 2-perfluorohexadecylethyl (meth)acrylate.
 (メタ)アクリル酸エステル系重合体(B)は、上記で示した一般式(1)で表される反応性ケイ素基を有する。(メタ)アクリル酸エステル系重合体(B)が有する反応性ケイ素基は、ポリオキシアルキレン系重合体(A)が有する反応性ケイ素基と同一であってよいし、異なっていてもよい。 The (meth)acrylate polymer (B) has a reactive silicon group represented by the general formula (1) shown above. The reactive silicon group of the (meth)acrylate polymer (B) may be the same as or different from the reactive silicon group of the polyoxyalkylene polymer (A).
 (メタ)アクリル酸エステル系重合体(B)が有する反応性ケイ素基としては、具体的には、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基などが挙げられるが、これらに限定されない。これらの中では、ヤング率の高い硬化物が得られることから、トリメトキシシリル基、トリエトキシシリル基がより好ましく、トリメトキシシリル基がさらに好ましい。 Specific examples of the reactive silicon group possessed by the (meth)acrylate polymer (B) include a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, and a triacetoxysilyl group. etc., but not limited to these. Among these, a trimethoxysilyl group and a triethoxysilyl group are more preferable, and a trimethoxysilyl group is even more preferable, since a cured product having a high Young's modulus can be obtained.
 (メタ)アクリル酸エステル系重合体(B)に反応性ケイ素基を導入する方法は特に限定されないが、例えば、反応性ケイ素基を有する(メタ)アクリル酸エステル系モノマーを共重合する方法や、連鎖移動剤として、反応性ケイ素基を有するメルカプトシラン化合物の存在下で重合を行う方法などが挙げられる。
 反応性ケイ素基を有するメルカプトシラン化合物としては、例えば、3-メルカプトプロピルジメトキシメチルシラン、3-メルカプトプロピルトリメトキシシラン、(メルカプトメチル)ジメトキシメチルシラン、(メルカプトメチル)トリメトキシシラン等が挙げられる。
The method of introducing a reactive silicon group into the (meth)acrylate polymer (B) is not particularly limited, but for example, a method of copolymerizing a (meth)acrylate monomer having a reactive silicon group, Examples of the chain transfer agent include a method of performing polymerization in the presence of a mercaptosilane compound having a reactive silicon group.
Examples of mercaptosilane compounds having a reactive silicon group include 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyltrimethoxysilane, (mercaptomethyl)dimethoxymethylsilane, (mercaptomethyl)trimethoxysilane and the like.
 (メタ)アクリル酸エステル系重合体(B)の反応性ケイ素基当量は特に限定はないが、0.1mmol/g以上が好ましく、0.5mmol/g以上がより好ましく、0.6mmol/g以上がさらに好ましい。前記反応性ケイ素基当量は2.0mmol/g以下が好ましく、硬化物の伸びの低下を抑える点から、1.0mmol/g以下がより好ましい。 The reactive silicon group equivalent of the (meth)acrylate polymer (B) is not particularly limited, but is preferably 0.1 mmol/g or more, more preferably 0.5 mmol/g or more, and 0.6 mmol/g or more. is more preferred. The reactive silicon group equivalent is preferably 2.0 mmol/g or less, and more preferably 1.0 mmol/g or less from the viewpoint of suppressing a decrease in elongation of the cured product.
 (メタ)アクリル酸エステル系重合体(B)は、アルキルの炭素数が1~3である(メタ)アクリル酸アルキルを全単量体中40重量%以上含有することが、高強度となるため好ましい。 The (meth)acrylic acid ester-based polymer (B) contains 40% by weight or more of alkyl (meth)acrylate having 1 to 3 carbon atoms in the total monomer, so that the strength becomes high. preferable.
 (メタ)アクリル酸エステル系重合体(B)の数平均分子量は特に限定されないが、GPC測定によるポリスチレン換算分子量で、500以上50,000以下が好ましく、500以上30,000以下がより好ましく、1,000以上10,000以下が特に好ましい。 Although the number average molecular weight of the (meth)acrylic acid ester polymer (B) is not particularly limited, it is preferably 500 or more and 50,000 or less, more preferably 500 or more and 30,000 or less, in terms of polystyrene equivalent molecular weight by GPC measurement. ,000 or more and 10,000 or less is particularly preferable.
 (メタ)アクリル酸エステル系重合体(B)とポリオキシアルキレン系重合体(A)をブレンドする方法は、特開昭59-122541号公報、特開昭63-112642号公報、特開平6-172631号公報、特開平11-116763号公報等に提案されている。他にも、反応性ケイ素基を有するポリオキシプロピレン系重合体の存在下で(メタ)アクリル酸エステル系単量体の重合を行う方法が利用できる。 (Meth) A method of blending the acrylic acid ester polymer (B) and the polyoxyalkylene polymer (A) is disclosed in JP-A-59-122541, JP-A-63-112642, JP-A-6- No. 172631, Japanese Patent Application Laid-Open No. 11-116763, and the like. Alternatively, a method of polymerizing a (meth)acrylic acid ester-based monomer in the presence of a polyoxypropylene-based polymer having a reactive silicon group can be used.
 ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系重合体(B)の重量比(A):(B)は95:5~50:50であること、即ち(A)の割合が50重量%以上95重量%以下であることが好ましい。この範囲内であると、柔軟性と高いせん断接着強度を示す硬化物を得ることができる。さらに、高強度と柔軟性を両立する点で、(A):(B)は80:20~50:50であることが好ましく、70:30~50:50であることがより好ましい。 The weight ratio (A):(B) of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B) is 95:5 to 50:50, that is, the ratio of (A) is preferably 50% by weight or more and 95% by weight or less. Within this range, a cured product exhibiting flexibility and high shear adhesive strength can be obtained. Further, from the viewpoint of achieving both high strength and flexibility, (A):(B) is preferably 80:20 to 50:50, more preferably 70:30 to 50:50.
 <<化合物(C)>>
 化合物(C)は、ジアルコキシジアルキルシラン、ジアルコキシジアリールシラン、及びアルキルスルホン酸エステルからなる群より選択される少なくとも1種の化合物である。化合物(C)は、A剤に含まれる。これによって、本実施形態に係る多液型硬化性組成物のプラスチック基材に対する接着性を改善することができる。
<<Compound (C)>>
Compound (C) is at least one compound selected from the group consisting of dialkoxydialkylsilanes, dialkoxydiarylsilanes, and alkylsulfonic acid esters. Compound (C) is included in the A agent. This can improve the adhesiveness of the multi-component curable composition according to the present embodiment to the plastic substrate.
 前記ジアルコキシジアルキルシランは、ケイ素原子に、アルコキシ基2個とアルキル基2個が結合した加水分解性の化合物である。
 前記アルコキシ基の炭素数は特に限定されないが、例えば、1~5が好ましく、1~3がより好ましい。特に、メトキシ基、エトキシ基が好ましい。
 前記アルキル基の炭素数も特に限定されないが、例えば、1~10が好ましく、1~5がより好ましく、1~3がさらに好ましい。該アルキル基は、ハロゲン基、アルコキシ基等の置換基を有するものであってもよいし、有しないものであってもよい。但し、アミノ基、イソシアネート基、メルカプト基、エポキシ基、ビニル基、(メタ)アクリロイル基等の反応性置換基を有しないことが好ましい。
 前記アルキル基の具体例としては、メチル基、エチル基、クロロメチル基、メトキシメチル基等が挙げられる。好ましくはメチル基である。
 前記ジアルコキシジアルキルシランの具体例としては、ジメトキシジメチルシラン、ジエトキシジメチルシラン、ジイソプロピルジメトキシシラン、ジ-n-ブチルジメトキシシラン、t-ブチルイソプロピルジメトキシシラン、n-オクチルメチルジメトキシシラン等が挙げられる。このうち、ジメトキシジメチルシランが特に好ましい。
The dialkoxydialkylsilane is a hydrolyzable compound in which two alkoxy groups and two alkyl groups are bonded to a silicon atom.
Although the number of carbon atoms in the alkoxy group is not particularly limited, it is preferably 1 to 5, more preferably 1 to 3, for example. A methoxy group and an ethoxy group are particularly preferred.
The number of carbon atoms in the alkyl group is also not particularly limited, but is preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3, for example. The alkyl group may or may not have a substituent such as a halogen group or an alkoxy group. However, it preferably does not have reactive substituents such as amino groups, isocyanate groups, mercapto groups, epoxy groups, vinyl groups, (meth)acryloyl groups, and the like.
Specific examples of the alkyl group include methyl group, ethyl group, chloromethyl group, methoxymethyl group and the like. A methyl group is preferred.
Specific examples of the dialkoxydialkylsilane include dimethoxydimethylsilane, diethoxydimethylsilane, diisopropyldimethoxysilane, di-n-butyldimethoxysilane, t-butylisopropyldimethoxysilane, n-octylmethyldimethoxysilane, and the like. Among these, dimethoxydimethylsilane is particularly preferred.
 前記ジアルコキシジアリールシランは、ケイ素原子に、アルコキシ基2個とアリール基2個が結合した加水分解性の化合物である。
 前記アルコキシ基の炭素数は特に限定されないが、例えば、1~5が好ましく、1~3がより好ましい。特に、メトキシ基、エトキシ基が好ましい。
 前記アリール基の炭素数は特に限定されないが、例えば、6~10が好ましく、6~8がより好ましく、6がさらに好ましい。該アリール基は、アルキル基、ハロゲン基、アルコキシ基等の置換基を有するものであってもよいし、有しないものであってもよい。但し、アミノ基、イソシアネート基、メルカプト基、エポキシ基、ビニル基、(メタ)アクリロイル基等の反応性置換基を有しないことが好ましい。
 該アリール基の具体例としては、フェニル基、ナフチル基、メチルフェニル基、ドデシルフェニル基、クロロフェニル基、メトキシフェニル基等が挙げられる。好ましくはフェニル基である。
 前記ジアルコキシジアリールシランの具体例としては、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン等が挙げられる。特に、ジメトキシジフェニルシランが好ましい。
The dialkoxydiarylsilane is a hydrolyzable compound in which two alkoxy groups and two aryl groups are bonded to a silicon atom.
Although the number of carbon atoms in the alkoxy group is not particularly limited, it is preferably 1 to 5, more preferably 1 to 3, for example. A methoxy group and an ethoxy group are particularly preferred.
Although the number of carbon atoms in the aryl group is not particularly limited, it is preferably 6 to 10, more preferably 6 to 8, and even more preferably 6, for example. The aryl group may or may not have a substituent such as an alkyl group, a halogen group, or an alkoxy group. However, it preferably does not have reactive substituents such as amino groups, isocyanate groups, mercapto groups, epoxy groups, vinyl groups, (meth)acryloyl groups, and the like.
Specific examples of the aryl group include phenyl group, naphthyl group, methylphenyl group, dodecylphenyl group, chlorophenyl group, methoxyphenyl group and the like. A phenyl group is preferred.
Specific examples of the dialkoxydiarylsilane include dimethoxydiphenylsilane and diethoxydiphenylsilane. Dimethoxydiphenylsilane is particularly preferred.
 前記アルキルスルホン酸エステルは、可塑剤として知られている化合物である。具体的には、アルキルスルホン酸フェニルエステルが挙げられる。該化合物の市販品としては、LANXESS社製のMesamoll(登録商標)が挙げられる。 The alkyl sulfonate ester is a compound known as a plasticizer. Specific examples include alkylsulfonic acid phenyl esters. Commercially available products of the compound include Mesamoll® manufactured by LANXESS.
 プラスチック基材に対する接着性改善効果の観点から、化合物(C)としては、少なくとも、ジアルコキシジアリールシランを使用することが好ましい。この時、少なくとも1種のジアルコキシジアリールシランのみを使用してもよいし、ジアルコキシジアリールシランと、ジアルコキシジアルキルシラン及び/又はアルキルスルホン酸エステルとを併用してもよい。 From the viewpoint of the effect of improving adhesion to plastic substrates, it is preferable to use at least dialkoxydiarylsilane as compound (C). At this time, at least one kind of dialkoxydiarylsilane may be used alone, or a combination of dialkoxydiarylsilane, dialkoxydialkylsilane and/or alkylsulfonic acid ester may be used.
 特に、化合物(C)として、ジアルコキシジアリールシランとアルキルスルホン酸エステルを併用することが好ましい。該併用系によると、プラスチック基材に対する接着性改善効果が良好であることに加えて、主剤と助剤を混合してなる混合物の吐出性と、該混合物を基材に塗布してなる塗膜の形状維持性を両立できるという利点がある。 In particular, it is preferable to use a dialkoxydiarylsilane and an alkylsulfonic acid ester together as the compound (C). According to the combined system, in addition to the good effect of improving the adhesion to plastic substrates, the mixture obtained by mixing the main agent and the auxiliary agent can be discharged and the coating film obtained by applying the mixture to the substrate can be obtained. There is an advantage that it is possible to achieve both shape retention.
 化合物(C)としてジアルコキジアリールシラン及び/又はジアルコキシジアルキルシランを使用する場合、その使用量は、プラスチック基材に対する接着性改善効果の観点から、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系重合体(B)の合計100重量部に対して、0.1重量部以上20重量部以下であることが好ましく、0.3重量部以上15重量部以下がより好ましく、0.5重量部以上10重量部以下がさらに好ましく、1重量部以上5重量部以下が特に好ましい。 When a dialkoxydiarylsilane and/or a dialkoxydialkylsilane is used as the compound (C), the amount used is the same as the polyoxyalkylene polymer (A) and (meth ) with respect to a total of 100 parts by weight of the acrylic ester polymer (B), it is preferably 0.1 parts by weight or more and 20 parts by weight or less, more preferably 0.3 parts by weight or more and 15 parts by weight or less, and 0 .5 parts by weight or more and 10 parts by weight or less is more preferable, and 1 part by weight or more and 5 parts by weight or less is particularly preferable.
 化合物(C)としてアルキルスルホン酸エステルを使用する場合、その使用量は、プラスチック基材に対する接着性改善効果の観点から、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系重合体(B)の合計100重量部に対して、1重量部以上120重量部以下であることが好ましく、5重量部以上100重量部以下がより好ましく、10重量部以上50重量部以下がさらに好ましく、1重量部以上30重量部以下が特に好ましい。 When an alkylsulfonate ester is used as the compound (C), the amount used is the same as the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer, from the viewpoint of the effect of improving the adhesion to plastic substrates. With respect to the total 100 parts by weight of (B), it is preferably 1 part by weight or more and 120 parts by weight or less, more preferably 5 parts by weight or more and 100 parts by weight or less, and further preferably 10 parts by weight or more and 50 parts by weight or less. 1 part by weight or more and 30 parts by weight or less is particularly preferable.
 <<可塑剤(D)>>
 可塑剤(D)は、B剤に配合されることが好ましい。B剤のみに配合されてもよいし、A剤とB剤それぞれに配合されてもよい。可塑剤(D)を配合すると硬化性組成物を低粘度化することができ取り扱いが容易になる。特に、B剤に配合することによって、A剤とB剤の混合を容易に実現できる。但し、化合物(C)として上述したアルキルスルホン酸エステルは、この可塑剤(D)には包含されないものとする。
 しかし、可塑剤(D)をB剤に配合せず、代わりにポリオキシアルキレン系重合体(A)及び/又は(メタ)アクリル酸エステル系重合体(B)をB剤に配合してもよい。この態様によってもA剤とB剤の混合を容易に実現できる。また、可塑剤(D)とポリオキシアルキレン系重合体(A)及び/又は(メタ)アクリル酸エステル系重合体(B)とをB剤に配合してもよい。
 (メタ)アクリル酸エステル系重合体(B)と、ポリオキシアルキレン系重合体(A)及び/又は可塑剤(D)とをB剤に配合することが好ましい。
<<Plasticizer (D)>>
The plasticizer (D) is preferably blended with the B agent. It may be blended only in the B agent, or may be blended in each of the A agent and the B agent. When the plasticizer (D) is blended, the viscosity of the curable composition can be lowered and handling becomes easier. In particular, by blending in the B agent, mixing of the A agent and the B agent can be easily achieved. However, the alkylsulfonic acid ester described above as the compound (C) is not included in this plasticizer (D).
However, instead of blending the plasticizer (D) into the B agent, the polyoxyalkylene polymer (A) and/or the (meth)acrylate polymer (B) may be blended into the B agent. . Mixing of A agent and B agent can be easily realized also by this aspect. Further, the plasticizer (D) and the polyoxyalkylene polymer (A) and/or the (meth)acrylic acid ester polymer (B) may be blended in the B agent.
It is preferable to blend the (meth)acrylate polymer (B), the polyoxyalkylene polymer (A) and/or the plasticizer (D) into the B agent.
 可塑剤(D)としては特に限定されないが、例えば、ジブチルフタレート、ジイソノニルフタレート(DINP)、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート(DIDP)、およびブチルベンジルフタレートなどのフタル酸エステル化合物;ビス(2-エチルヘキシル)-1,4-ベンゼンジカルボキシレートなどのテレフタル酸エステル化合物;1,2-シクロヘキサンジカルボン酸ジイソノニルエステルなどの非フタル酸エステル化合物;アジピン酸ジオクチル、セバシン酸ジオクチル、セバシン酸ジブチル、コハク酸ジイソデシル、およびアセチルクエン酸トリブチルなどの脂肪族多価カルボン酸エステル化合物;オレイン酸ブチル、およびアセチルリシノール酸メチルなどの不飽和脂肪酸エステル化合物;リン酸エステル化合物;トリメリット酸エステル化合物;塩素化パラフィン;アルキルジフェニル、および部分水添ターフェニルなどの炭化水素系油;プロセスオイル;エポキシ化大豆油、エポキシ化アマニ油、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカーボキシレート(E-PS)、エポキシオクチルステアレート、エポキシブチルステアレートおよびエポキシステアリン酸ベンジルなどのエポキシ可塑剤などを挙げることができる。
 可塑剤(D)として、高分子可塑剤を使用することもできる。高分子可塑剤の具体例としては、ビニル系重合体;ポリエステル系可塑剤;数平均分子量500以上のポリエチレングリコール、ポリプロピレングリコールなどのポリエーテルポリオール、これらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基などに変換した誘導体などのポリエーテル系可塑剤;ポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、ポリクロロプレン等が挙げられる。
 中でも、高分子可塑剤が好ましく、ポリエーテル系可塑剤がより好ましく、ポリプロピレングリコールが特に好ましい。
 可塑剤(D)としては1種類のみを使用してもよいし、2種類以上を併用してもよい。
The plasticizer (D) is not particularly limited, and examples thereof include phthalates such as dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), and butylbenzyl phthalate. Compounds; terephthalic acid ester compounds such as bis(2-ethylhexyl)-1,4-benzenedicarboxylate; non-phthalic acid ester compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester; dioctyl adipate, dioctyl sebacate, sebacin Aliphatic polyvalent carboxylic acid ester compounds such as dibutyl acid, diisodecyl succinate, and acetyl tributyl citrate; unsaturated fatty acid ester compounds such as butyl oleate and methyl acetylricinoleate; phosphoric acid ester compounds; trimellitic acid ester compounds chlorinated paraffin; hydrocarbon oils such as alkyldiphenyl and partially hydrogenated terphenyl; process oil; epoxidized soybean oil, epoxidized linseed oil, bis(2-ethylhexyl)-4,5-epoxycyclohexane-1, Epoxy plasticizers such as 2-dicarboxylate (E-PS), epoxyoctyl stearate, epoxybutylstearate and benzyl epoxystearate, and the like can be mentioned.
A polymeric plasticizer can also be used as the plasticizer (D). Specific examples of polymeric plasticizers include vinyl polymers; polyester plasticizers; polyether polyols such as polyethylene glycol and polypropylene glycol having a number average molecular weight of 500 or more; polyether plasticizers such as derivatives converted to polystyrenes; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene and the like.
Among them, polymer plasticizers are preferred, polyether plasticizers are more preferred, and polypropylene glycol is particularly preferred.
As the plasticizer (D), only one type may be used, or two or more types may be used in combination.
 可塑剤(D)の総配合量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系重合体(B)の合計100重量部に対して、5~150重量部であることが好ましく、10~120重量部がより好ましく、20~100重量部が特に好ましい。 The total blending amount of the plasticizer (D) is 5 to 150 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). is preferred, 10 to 120 parts by weight is more preferred, and 20 to 100 parts by weight is particularly preferred.
 <<無機充填剤(E)>>
 無機充填剤(E)は、少なくとも、B剤に配合される。B剤のみに配合されてもよいし、A剤とB剤それぞれに配合されてもよい。無機充填剤(E)の配合によって硬化物の強度を向上させることができるが、B剤に配合されることによって、B剤の安定性の向上にも寄与する。
<<Inorganic filler (E)>>
The inorganic filler (E) is blended at least with the B agent. It may be blended only in the B agent, or may be blended in each of the A agent and the B agent. The addition of the inorganic filler (E) can improve the strength of the cured product, and the addition of the inorganic filler (E) to the B agent also contributes to the improvement of the stability of the B agent.
 無機充填剤(E)としては特に限定されないが、重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、クレー、タルク、酸化チタン、ヒュームドシリカ、湿式シリカ、結晶性シリカ、溶融シリカ、無水ケイ酸、含水ケイ酸、アルミナ、カーボンブラック、酸化第二鉄、アルミニウム微粉末、酸化亜鉛、活性亜鉛華、ガラス繊維およびフィラメントが挙げられる。このうち、炭酸カルシウム、ヒュームドシリカ、湿式シリカ、酸化チタンが好ましい。
 無機充填剤(E)としては1種類のみを使用してもよいし、2種類以上を併用してもよい。
The inorganic filler (E) is not particularly limited, but heavy calcium carbonate, colloidal calcium carbonate, magnesium carbonate, diatomaceous earth, clay, talc, titanium oxide, fumed silica, wet silica, crystalline silica, fused silica, anhydrous Silicic acid, hydrous silicic acid, alumina, carbon black, ferric oxide, fine aluminum powder, zinc oxide, activated zinc white, glass fibers and filaments. Among these, calcium carbonate, fumed silica, wet silica, and titanium oxide are preferred.
As the inorganic filler (E), only one type may be used, or two or more types may be used in combination.
 無機充填剤(E)の総配合量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系重合体(B)の合計100重量部に対して、1~300重量部であることが好ましく、10~250重量部がより好ましい。 The total blending amount of the inorganic filler (E) is 1 to 300 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). is preferred, and 10 to 250 parts by weight is more preferred.
 B剤の安定性を向上する観点から、B剤の総量のうち、B剤に含まれる無機充填剤(E)の占める割合は、10重量%以上であることが好ましい。前記割合は、より好ましくは15重量%以上であり、さらに好ましくは20重量%以上である。前記割合の上限は60重量%以下であることが好ましく、50重量%以下がより好ましく、40重量%以下がさらに好ましい。 From the viewpoint of improving the stability of agent B, the proportion of the inorganic filler (E) contained in agent B to the total amount of agent B is preferably 10% by weight or more. The proportion is more preferably 15% by weight or more, and even more preferably 20% by weight or more. The upper limit of the ratio is preferably 60% by weight or less, more preferably 50% by weight or less, and even more preferably 40% by weight or less.
 <<水(F)>>
 水(F)は、B剤に配合される。水(F)を配合することにより、A剤とB剤を混合した時にポリオキシアルキレン系重合体(A)及び(メタ)アクリル酸エステル系重合体(B)の反応性ケイ素基の加水分解反応が促進され、初期強度の発現が良好になる。また、水(F)はB剤に配合されているので、ポリオキシアルキレン系重合体(A)及び(メタ)アクリル酸エステル系重合体(B)を含むA剤の貯蔵安定性の悪化を回避することができる。
<<Water (F)>>
Water (F) is blended with the B agent. By blending water (F), the hydrolysis reaction of the reactive silicon groups of the polyoxyalkylene-based polymer (A) and the (meth)acrylic acid ester-based polymer (B) when the agents A and B are mixed. is promoted, and the expression of initial strength is improved. In addition, since water (F) is blended in the B agent, deterioration of the storage stability of the A agent containing the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B) is avoided. can do.
 水(F)の添加量は、プラスチック基材に対する接着性改善効果の観点から、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系重合体(B)の合計100重量部に対して、0.1重量部以上10重量部以下であることが好ましく、0.1重量部以上5重量部以下がより好ましく、0.1重量部以上3重量部以下がさらに好ましく、0.1重量部以上2重量部以下が特に好ましい。
 また、B剤の総量のうち、水(F)の占める割合は0.5~30重量%であることが好ましい。この範囲内では、A剤とB剤の混合を容易に実現することができる。より好ましくは1~20重量%であり、さらに好ましくは3~15重量%である。
The amount of water (F) added is, from the viewpoint of the effect of improving adhesion to plastic substrates, to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). , preferably 0.1 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, still more preferably 0.1 to 3 parts by weight, and 0.1 parts by weight Parts by weight or more and 2 parts by weight or less are particularly preferred.
Further, the proportion of water (F) in the total amount of agent B is preferably 0.5 to 30% by weight. Within this range, mixing of the A agent and the B agent can be easily realized. More preferably 1 to 20% by weight, still more preferably 3 to 15% by weight.
 <<シラノール縮合触媒(G)>>
 シラノール縮合触媒(G)は、ポリオキシアルキレン系重合体(A)及び(メタ)アクリル酸エステル系重合体(B)の反応性ケイ素基の縮合反応を促進することができる。シラノール縮合触媒(G)は、A剤またはB剤のいずれか一方、又は双方に配合されてよいが、A剤に配合されることが好ましい。シラノール縮合触媒(G)をB剤ではなくA剤に配合することで、シラノール縮合触媒(G)の加水分解を抑制することができ、A剤とB剤を混合した後の初期強度の発現が良好になるという利点を得ることができる。
<<Silanol condensation catalyst (G)>>
The silanol condensation catalyst (G) can promote the condensation reaction of the reactive silicon groups of the polyoxyalkylene polymer (A) and the (meth)acrylate polymer (B). The silanol condensation catalyst (G) may be blended with either or both of the A agent and the B agent, but is preferably blended with the A agent. By blending the silanol condensation catalyst (G) with the A agent instead of the B agent, the hydrolysis of the silanol condensation catalyst (G) can be suppressed, and the initial strength after mixing the A and B agents can be improved. You can take advantage of getting better.
 シラノール縮合触媒(G)としては、例えば、有機錫化合物、カルボン酸金属塩、アミン化合物、カルボン酸、アルコキシ金属などが挙げられる。 Examples of the silanol condensation catalyst (G) include organic tin compounds, carboxylic acid metal salts, amine compounds, carboxylic acids, and alkoxy metals.
 有機錫化合物の具体例としては、ジブチル錫ジラウレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ジアセテート、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジオクチル錫ビス(アセチルアセトナート)、ジオクチル錫ジラウレート、ジオクチル錫ジステアレート、ジオクチル錫ジアセテート、ジオクチル錫オキサイドなどが挙げられ、また、ジブチル錫オキサイドとシリケート化合物との反応物、ジオクチル錫オキサイドとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物なども挙げられる。 Specific examples of organic tin compounds include dibutyltin dilaurate, dibutyltin dioctanoate, dibutyltin bis(butyl maleate), dibutyltin diacetate, dibutyltin oxide, dibutyltin bis(acetylacetonate), dioctyltin bis(acetylacetonate), phosphate), dioctyltin dilaurate, dioctyltin distearate, dioctyltin diacetate, dioctyltin oxide, etc., reaction products of dibutyltin oxide and silicate compounds, reaction products of dioctyltin oxide and silicate compounds, dibutyltin Reaction products of oxides and phthalates are also included.
 カルボン酸金属塩の具体例としては、カルボン酸錫、カルボン酸ビスマス、カルボン酸チタン、カルボン酸ジルコニウム、カルボン酸鉄などが挙げられる。カルボン酸金属塩としては下記のカルボン酸と各種金属を組み合わせることができる。 Specific examples of carboxylate metal salts include tin carboxylate, bismuth carboxylate, titanium carboxylate, zirconium carboxylate, and iron carboxylate. As the carboxylic acid metal salt, the following carboxylic acid and various metals can be combined.
 アミン化合物の具体例としては、オクチルアミン、2-エチルヘキシルアミン、ラウリルアミン、ステアリルアミンなどのアミン類;ピリジン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4,3,0]ノネン-5(DBN)などの含窒素複素環式化合物;グアニジン、フェニルグアニジン、ジフェニルグアニジンなどのグアニジン類;ブチルビグアニド、1-o-トリルビグアニドや1-フェニルビグアニドなどのビグアニド類;アミノ基含有シランカップリング剤;ケチミン化合物などが挙げられる。 Specific examples of amine compounds include amines such as octylamine, 2-ethylhexylamine, laurylamine, and stearylamine; pyridine, 1,8-diazabicyclo[5,4,0]undecene-7 (DBU), 1,5 - nitrogen-containing heterocyclic compounds such as diazabicyclo[4,3,0]nonene-5(DBN); guanidines such as guanidine, phenylguanidine and diphenylguanidine; butylbiguanide, 1-o-tolylbiguanide and 1-phenylbiguanide biguanides such as; amino group-containing silane coupling agents; and ketimine compounds.
 カルボン酸の具体例としては、酢酸、プロピオン酸、酪酸、2-エチルヘキサン酸、ラウリン酸、ステアリン酸、オレイン酸、リノール酸、ネオデカン酸、バーサチック酸などが挙げられる。 Specific examples of carboxylic acids include acetic acid, propionic acid, butyric acid, 2-ethylhexanoic acid, lauric acid, stearic acid, oleic acid, linoleic acid, neodecanoic acid, and versatic acid.
 アルコキシ金属の具体例としては、テトラブチルチタネートチタンテトラキス(アセチルアセトナート)、ジイソプロポキシチタンビス(エチルアセトセテート)などのチタン化合物や、アルミニウムトリス(アセチルアセトナート)、ジイソプロポキシアルミニウムエチルアセトアセテートなどのアルミニウム化合物類、ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物類が挙げられる。 Specific examples of alkoxy metals include titanium compounds such as tetrabutyl titanate titanium tetrakis (acetylacetonate), diisopropoxytitanium bis (ethylacetoacetate), aluminum tris (acetylacetonate), and diisopropoxyaluminum ethylacetoacetate. and zirconium compounds such as zirconium tetrakis (acetylacetonate).
 シラノール縮合触媒(G)の使用量は、反応性ケイ素基の縮合反応促進の観点から、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系重合体(B)の合計100重量部に対して、0.001重量部以上20重量部以下であることが好ましく、0.01重量部以上15重量部以下がより好ましく、0.01重量部以上10重量部以下がさらに好ましい。 The amount of the silanol condensation catalyst (G) used is 100 parts by weight in total of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B) from the viewpoint of promoting the condensation reaction of the reactive silicon group. , preferably 0.001 to 20 parts by weight, more preferably 0.01 to 15 parts by weight, and even more preferably 0.01 to 10 parts by weight.
 <<アミノ基含有シランカップリング剤(H)>>
 A剤は、アミノ基含有シランカップリング剤(H)をさらに含有することが好ましい。アミノ基含有シランカップリング剤(H)を配合することで、プラスチック基材に対する接着性をより改善することができる。
<<amino group-containing silane coupling agent (H)>>
Agent A preferably further contains an amino group-containing silane coupling agent (H). Addition of the amino group-containing silane coupling agent (H) can further improve adhesion to plastic substrates.
 前記アミノ基含有シランカップリング剤(H)とは、1分子中にアミノ基と加水分解性シリル基の双方を有する化合物のことをいう。
 前記アミノ基は、1級アミノ基、2級アミノ基、又は3級アミノ基のいずれであってもよいが、1級アミノ基又は2級アミノ基が好ましい。
The amino group-containing silane coupling agent (H) refers to a compound having both an amino group and a hydrolyzable silyl group in one molecule.
The amino group may be a primary amino group, a secondary amino group, or a tertiary amino group, but is preferably a primary amino group or a secondary amino group.
 前記加水分解性シリル基とは、ケイ素原子上に加水分解性基を1~3個有するシリル基を指す。接着性改善の観点から、加水分解性基を2個又は3個有するシリル基が好ましく、加水分解性基を3個有するシリル基がより好ましい。加水分解性基としては、(A)成分中のXに関して上述した基を使用することができる。中でも、アルコキシ基が好ましく、メトキシ基、又はエトキシ基が特に好ましい。 The hydrolyzable silyl group refers to a silyl group having 1 to 3 hydrolyzable groups on a silicon atom. From the viewpoint of improving adhesiveness, a silyl group having two or three hydrolyzable groups is preferred, and a silyl group having three hydrolyzable groups is more preferred. As the hydrolyzable group, the groups described above for X in component (A) can be used. Among them, an alkoxy group is preferable, and a methoxy group or an ethoxy group is particularly preferable.
 アミノ基含有シランカップリング剤(H)の具体例としては特に限定されないが、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリイソプロポキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリイソプロポキシシラン、γ-(6-アミノヘキシル)アミノプロピルトリメトキシシラン、3-(N-エチルアミノ)-2-メチルプロピルトリメトキシシラン、2-アミノエチルアミノメチルトリメトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-フェニルアミノメチルトリメトキシシラン、N-ベンジル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N-フェニルアミノメチルトリメトキシシラン等が挙げられる。 Specific examples of the amino group-containing silane coupling agent (H) are not particularly limited, but γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltriisopropoxysilane, γ-aminopropylmethyl Dimethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-(2-aminoethyl)aminopropyltrimethoxysilane, γ-(2-aminoethyl)aminopropylmethyldimethoxysilane, γ-(2-aminoethyl)aminopropyl triethoxysilane, γ-(2-aminoethyl)aminopropylmethyldiethoxysilane, γ-(2-aminoethyl)aminopropyltriisopropoxysilane, γ-(6-aminohexyl)aminopropyltrimethoxysilane, 3- (N-ethylamino)-2-methylpropyltrimethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, N-cyclohexylaminomethyltriethoxysilane, N-cyclohexylaminomethyldiethoxymethylsilane, γ-ureidopropyltrimethoxysilane Silane, γ-ureidopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N-phenylaminomethyltrimethoxysilane, N-benzyl-γ-aminopropyltrimethoxysilane, N-vinylbenzyl-γ- aminopropyltriethoxysilane, N,N'-bis[3-(trimethoxysilyl)propyl]ethylenediamine, N-cyclohexylaminomethyltriethoxysilane, N-cyclohexylaminomethyldiethoxymethylsilane, N-phenylaminomethyltrimethoxy Silane etc. are mentioned.
 アミノ基含有シランカップリング剤(H)の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系重合体(B)の合計100重量部に対して、0.1重量部以上20重量部以下であることが好ましく、0.3重量部以上15重量部以下がより好ましく、0.5重量部以上10重量部以下がさらに好ましく、1重量部以上5重量部以下が特に好ましい。 The amount of the amino group-containing silane coupling agent (H) used is 0.1 weight part with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). parts by weight or more and 20 parts by weight or less, more preferably 0.3 parts by weight or more and 15 parts by weight or less, even more preferably 0.5 parts by weight or more and 10 parts by weight or less, and particularly 1 part by weight or more and 5 parts by weight or less. preferable.
 <<その他の添加剤>>
 本実施形態に係る硬化性組成物には、ポリオキシアルキレン系重合体(A)、(メタ)アクリル酸エステル系重合体(B)、化合物(C)、可塑剤(D)、無機充填剤(E)、水(F)、シラノール縮合触媒(G)、任意成分であるアミノ基含有シランカップリング剤(H)の他に、添加剤として、有機充填剤、接着性付与剤、脱水剤、レオロジーコントロール剤、酸化防止剤、光安定剤、紫外線吸収剤、粘着付与樹脂、その他の樹脂を添加しても良い。
 また、本実施形態に係る硬化性組成物には、硬化性組成物又は硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、たとえば、溶剤、希釈剤、光硬化性物質、酸素硬化性物質、表面性改良剤、シリケート、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、防かび剤、難燃剤、発泡剤などが挙げられる。
<<Other Additives>>
The curable composition according to the present embodiment includes a polyoxyalkylene polymer (A), a (meth)acrylic acid ester polymer (B), a compound (C), a plasticizer (D), an inorganic filler ( In addition to E), water (F), a silanol condensation catalyst (G), and an optional amino group-containing silane coupling agent (H), additives such as organic fillers, adhesion imparting agents, dehydrating agents, rheology Control agents, antioxidants, light stabilizers, UV absorbers, tackifying resins and other resins may be added.
In addition, various additives may be added to the curable composition according to the present embodiment as necessary for the purpose of adjusting various physical properties of the curable composition or cured product. Examples of such additives include solvents, diluents, photo-curing substances, oxygen-curing substances, surface property modifiers, silicates, curability modifiers, radical inhibitors, metal deactivators, ozone Degradation inhibitors, phosphorus-based peroxide decomposers, lubricants, pigments, antifungal agents, flame retardants, foaming agents and the like.
 <接着性付与剤>
 硬化性組成物には、接着性付与剤を添加することができる。
 接着性付与剤としては、アミノ基含有シランカップリング剤(H)以外のシランカップリング剤、シランカップリング剤の反応物を添加することができる。
<Adhesion imparting agent>
Adhesion imparting agents can be added to the curable composition.
As the adhesiveness-imparting agent, a silane coupling agent other than the amino group-containing silane coupling agent (H) and a reactant of the silane coupling agent can be added.
 シランカップリング剤の具体例としては、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、α-イソシアネートメチルトリメトキシシラン、α-イソシアネートメチルジメトキシメチルシラン等のイソシアネート基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等のメルカプト基含有シラン類;γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シラン類が挙げられる。 Specific examples of silane coupling agents include γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, α-isocyanatomethyltrimethoxysilane, α-isocyanatomethyldimethoxymethylsilane, and the like. isocyanate group-containing silanes; γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldimethoxysilane and other mercapto group-containing silanes; γ-glycidoxypropyltrimethoxysilane, β- Epoxy group-containing silanes such as (3,4-epoxycyclohexyl)ethyltrimethoxysilane can be mentioned.
 上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。また、各種シランカップリング剤の反応物も使用できる。 The adhesiveness-imparting agent may be used alone or in combination of two or more. Reaction products of various silane coupling agents can also be used.
 接着性付与剤の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系重合体(B)の合計100重量部に対して、0.1~20重量部が好ましく、0.5~10重量部がより好ましい。 The amount of adhesion-imparting agent used is preferably 0.1 to 20 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate polymer (B). 0.5 to 10 parts by weight is more preferred.
 <脱水剤>
 硬化性組成物には、脱水剤を添加することができる。A剤の安定性改善のため、脱水剤はA剤に配合されることが好ましい。
 ここで、脱水剤とは、水と反応し得る化合物であることが好ましく、水と反応し得るケイ素化合物(但し(C)成分又は(H)成分に該当する化合物は除く)がより好ましく、トリアルコキシシラン化合物が特に好ましい。
<Dehydrating agent>
A dehydrating agent can be added to the curable composition. A dehydrating agent is preferably added to the A agent to improve the stability of the A agent.
Here, the dehydrating agent is preferably a compound capable of reacting with water, more preferably a silicon compound capable of reacting with water (excluding compounds corresponding to component (C) or component (H)); Alkoxysilane compounds are particularly preferred.
 前記脱水剤の具体例としては特に限定されないが、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン等のビニル基含有シラン類等が挙げられる。脱水剤は1種類のみで使用してもよいし、2種類以上使用してもよい。 Specific examples of the dehydrating agent include, but are not particularly limited to, vinyl group-containing silanes such as vinyltrimethoxysilane, vinyltriethoxysilane, and vinylmethyldimethoxysilane. Only one type of dehydrating agent may be used, or two or more types may be used.
 脱水剤の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系重合体(B)の合計100重量部に対して、0.1~20重量部が好ましく、0.5~10重量部がより好ましく、1~5重量部がさらに好ましい。 The amount of the dehydrating agent used is preferably 0.1 to 20 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). 5 to 10 parts by weight is more preferable, and 1 to 5 parts by weight is even more preferable.
 <レオロジーコントロール剤>
 硬化性組成物には、必要に応じてタレを防止し、作業性を良くするためにレオロジーコントロール剤を添加しても良い。レオロジーコントロール剤としては特に限定されないが、例えば、脂肪酸アミドワックス類、水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。これらレオロジーコントロール剤は単独で用いてもよく、2種以上併用してもよい。
<Rheology control agent>
If necessary, a rheology control agent may be added to the curable composition to prevent sagging and improve workability. Examples of rheology control agents include, but are not limited to, fatty acid amide waxes, hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate and barium stearate. These rheology control agents may be used alone or in combination of two or more.
 レオロジーコントロール剤の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系重合体(B)の合計100重量部に対して、0.1~20重量部が好ましい。 The amount of the rheology control agent used is preferably 0.1 to 20 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate polymer (B).
 <酸化防止剤>
 硬化性組成物には、酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐候性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できる。酸化防止剤の具体例は特開平4-283259号公報や特開平9-194731号公報にも記載されている。
<Antioxidant>
An antioxidant (antiaging agent) can be used in the curable composition. The use of an antioxidant can enhance the weather resistance of the cured product. Examples of antioxidants include hindered phenols, monophenols, bisphenols, and polyphenols. Specific examples of antioxidants are also described in JP-A-4-283259 and JP-A-9-194731.
 酸化防止剤の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系重合体(B)の合計100重量部に対して、0.1~10重量部が好ましく、0.2~5重量部がより好ましい。 The amount of antioxidant used is preferably 0.1 to 10 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). .2 to 5 parts by weight is more preferred.
 <光安定剤>
 硬化性組成物には、光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が例示できるが、特にヒンダードアミン系が好ましい。
<Light stabilizer>
A light stabilizer can be used in the curable composition. The use of a light stabilizer can prevent photo-oxidative deterioration of the cured product. Benzotriazole-based, hindered amine-based, and benzoate-based compounds can be exemplified as light stabilizers, and hindered amine-based compounds are particularly preferred.
 光安定剤の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系重合体(B)の合計100重量部に対して、0.1~10重量部が好ましく、0.2~5重量部がより好ましい。 The amount of light stabilizer used is preferably 0.1 to 10 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). .2 to 5 parts by weight is more preferred.
 <紫外線吸収剤>
 硬化性組成物には、紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリチレート系、置換トリル系及び金属キレート系化合物等が例示できるが、特にベンゾトリアゾール系が好ましく、市販名チヌビンP、チヌビン213、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン329、チヌビン571(以上、BASF製)が挙げられる。
<Ultraviolet absorber>
A UV absorber can be used in the curable composition. The use of an ultraviolet absorber can enhance the surface weather resistance of the cured product. Examples of UV absorbers include benzophenone-based, benzotriazole-based, salicylate-based, substituted tolyl-based and metal chelate-based compounds, and benzotriazole-based compounds are particularly preferred. Tinuvin 327, Tinuvin 328, Tinuvin 329, and Tinuvin 571 (manufactured by BASF).
 紫外線吸収剤の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系重合体(B)の合計100重量部に対して、0.1~10重量部が好ましく、0.2~5重量部がより好ましい。 The amount of the ultraviolet absorber used is preferably 0.1 to 10 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). .2 to 5 parts by weight is more preferred.
 <粘着付与樹脂>
 硬化性組成物には、基材への接着性や密着性を高める目的、あるいはその他必要に応じて粘着付与樹脂を添加できる。粘着付与樹脂としては、特に制限はなく通常使用されているものを使うことができる。
<Tackifying resin>
A tackifying resin can be added to the curable composition for the purpose of enhancing the adhesiveness or adhesion to the substrate, or for other purposes. As the tackifier resin, there is no particular limitation and any commonly used one can be used.
 具体例としては、テルペン系樹脂、芳香族変性テルペン樹脂、水素添加テルペン樹脂、テルペン-フェノール樹脂、フェノール樹脂、変性フェノール樹脂、キシレン-フェノール樹脂、シクロペンタジエン-フェノール樹脂、クマロンインデン樹脂、ロジン系樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、キシレン樹脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、スチレン系ブロック共重合体及びその水素添加物、石油樹脂(例えば、C5炭化水素樹脂、C9炭化水素樹脂、C5C9炭化水素共重合樹脂等)、水添石油樹脂、DCPD樹脂等が挙げられる。これらは単独で用いても良く、2種以上を併用しても良い。 Specific examples include terpene-based resins, aromatic modified terpene resins, hydrogenated terpene resins, terpene-phenolic resins, phenolic resins, modified phenolic resins, xylene-phenolic resins, cyclopentadiene-phenolic resins, coumarone-indene resins, rosin-based Resins, rosin ester resins, hydrogenated rosin ester resins, xylene resins, low molecular weight polystyrene resins, styrene copolymer resins, styrene block copolymers and hydrogenated products thereof, petroleum resins (e.g., C5 hydrocarbon resins, C9 hydrocarbon resins, C5C9 hydrocarbon copolymer resins, etc.), hydrogenated petroleum resins, DCPD resins, and the like. These may be used alone or in combination of two or more.
 粘着付与樹脂の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系重合体(B)の合計100重量部に対して、2~100重量部が好ましく、5~50重量部がより好ましく、5~30重量部がさらに好ましい。 The amount of the tackifying resin used is preferably 2 to 100 parts by weight, preferably 5 to 50 parts by weight, based on a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester polymer (B). Parts by weight is more preferred, and 5 to 30 parts by weight is even more preferred.
 <<硬化性組成物>>
 本実施形態に係る硬化性組成物は、ポリオキシアルキレン系重合体(A)、アクリル酸エステル系重合体(B)、及び化合物(C)等を含むA剤と、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系重合体(B)と可塑剤(D)とのうち少なくとも1つ、無機充填剤(E)、及び水(F)等を含むB剤とから構成され、使用前にA剤とB剤を混合する多液型として調製することが好ましい。
<<Curable composition>>
The curable composition according to the present embodiment comprises a polyoxyalkylene polymer (A), an acrylic acid ester polymer (B), an A agent containing a compound (C), and the like, and a polyoxyalkylene polymer ( A), at least one of a (meth)acrylic acid ester polymer (B) and a plasticizer (D), an inorganic filler (E), and a B agent containing water (F), etc. It is preferable to prepare as a multi-liquid type in which agent A and agent B are mixed before use.
 本実施形態に係る硬化性組成物は、室温で硬化させてもよいし、加熱硬化させてもよい。加熱温度は特に限定されないが、40℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。しかし、100℃以上になるとB剤中の水が蒸発してボイド発生の原因となり得るため、加熱温度は100℃未満が好ましい。 The curable composition according to this embodiment may be cured at room temperature or may be cured by heating. The heating temperature is not particularly limited, but is preferably 40° C. or higher, more preferably 60° C. or higher, and even more preferably 80° C. or higher. However, if the temperature rises to 100°C or higher, the water in agent B evaporates and may cause voids, so the heating temperature is preferably lower than 100°C.
 本実施形態に係る硬化性組成物は、プラスチック、金属、複合材などの様々な被着体に対して良好な接着性を示すことができるが、特にプラスチックから構成される被着体に対する接着性を改善できるので、プラスチック基材接着用として好適に用いることができる。ここで、プラスチック基材の接着とは、プラスチック基材同士の接着であってもよいし、プラスチック基材と他の基材との接着であってもよい。 The curable composition according to the present embodiment can exhibit good adhesion to various adherends such as plastics, metals, and composites, and in particular adhesion to adherends made of plastic. can be improved, it can be suitably used for bonding plastic substrates. Here, the adhesion of plastic substrates may be adhesion between plastic substrates or adhesion between a plastic substrate and another substrate.
 当該プラスチックとしては特に限定されず、例えば、アクリロニトリル-ブタジエン-スチレン共重合(ABS)樹脂;ポリカーボネート(PC)樹脂;PC/ABS等のポリカーボネートアロイ樹脂;ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂等のポリエステル樹脂;ポリメチルメタクリレート(PMMA)樹脂;ポリスチレン(PS)樹脂;ポリイミド(PI)樹脂;ポリエチレン、ポリプロピレン、ポリイソプレン、ポリブタジエン、ポリメチルペンテン等のポリオレフィン(PO)樹脂;シクロオレフィン樹脂;ポリイソシアネート樹脂;エポキシ樹脂等が挙げられる。 The plastic is not particularly limited, and examples include acrylonitrile-butadiene-styrene copolymer (ABS) resin; polycarbonate (PC) resin; polycarbonate alloy resin such as PC/ABS; polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT). ) polyester resin such as resin; polymethyl methacrylate (PMMA) resin; polystyrene (PS) resin; polyimide (PI) resin; polyolefin (PO) resin such as polyethylene, polypropylene, polyisoprene, polybutadiene, polymethylpentene; ; polyisocyanate resin; epoxy resin and the like.
 また、ポリプロピレンなどの非極性材料やポリフェニレンサルファイドなどの剛直な分子鎖を有するエンジニアリングプラスチックに対する接着剤として使用する場合には、これら被着体に対する接着性を高め、安定した接着強度を得るために、被着体を公知の方法で事前に表面処理することができる。例えば、サンディング処理、フレーム処理、コロナ放電、アーク放電、プラズマ処理などの表面処理技術を使うことができる。被着体へのダメージが少なく、安定した接着性が得られることから、プラズマ処理が好ましい。これらの表面処理は、成形時に使用され被着体表面に残存している離型剤を除去するためにも有効である。 In addition, when used as an adhesive for non-polar materials such as polypropylene and engineering plastics with rigid molecular chains such as polyphenylene sulfide, in order to increase adhesion to these adherends and obtain stable adhesive strength, The adherend can be previously surface-treated by known methods. For example, surface treatment techniques such as sanding, flame treatment, corona discharge, arc discharge, plasma treatment, etc. can be used. Plasma treatment is preferred because it causes less damage to the adherend and provides stable adhesion. These surface treatments are also effective for removing release agents used during molding and remaining on the adherend surface.
 好適な態様に係る硬化性組成物は、被着体を接合した後、長時間の硬化(養生)工程を行うことで、目的の物性を発現する一方、強度の立ち上がりが速いという特性を有し得る。このため、前記硬化性組成物は、連続的に実施されるライン生産方式の中で被着体の接合を行うために好適に使用することができる。 The curable composition according to a preferred embodiment exhibits the desired physical properties by performing a long-term curing (curing) step after joining the adherends, and has a characteristic that the strength rises quickly. obtain. Therefore, the curable composition can be suitably used for bonding adherends in a continuous line production system.
 硬化性組成物が最終目的の物性を発現するための最終的な硬化(養生)工程の条件としては特に限定されないが、例えば、温度として5~90℃、時間として24時間~1週間などが挙げられる。 The conditions of the final curing (curing) step for the curable composition to express the final desired physical properties are not particularly limited, but for example, the temperature is 5 to 90 ° C. and the time is 24 hours to 1 week. be done.
 <<用途>>
 硬化性組成物は接着剤組成物としての使用に適しており、建造物・船舶・自動車・道路などのシーリング材、バス、トレーラー、電車などのパネルを接合するための接着剤、粘着剤、防水材などに使用できる。本硬化性組成物は、アルミニウム-スチール、スチール-複合材、アルミニウム-複合材などの異種材料を接合する用途にも適している。異種材料の接合では腐食を防止するために接合部をシーラーで覆うことが好ましい。シーラーとしては、本願で示したような反応性ケイ素基を有する重合体を使用することが可能である。硬化性組成物が使用される用途としては、車両パネルなどの自動車部品、トラック、バスなど大型車両部品、列車車両用部品、航空機部品、船舶用部品、電機部品、各種機械部品などにおいて使用される接着剤として使用されることが好ましい。
<<Usage>>
The curable composition is suitable for use as an adhesive composition, sealing materials for buildings, ships, automobiles, roads, etc., adhesives for joining panels of buses, trailers, trains, etc., adhesives, waterproofing. It can be used for materials. The curable compositions are also suitable for joining dissimilar materials such as aluminum-steel, steel-composites, and aluminum-composites. When dissimilar materials are joined, it is preferable to cover the joint with a sealer to prevent corrosion. As a sealer, it is possible to use a polymer having reactive silicon groups as shown in this application. Applications in which the curable composition is used include automobile parts such as vehicle panels, large vehicle parts such as trucks and buses, train vehicle parts, aircraft parts, ship parts, electrical parts, and various machine parts. It is preferably used as an adhesive.
〔開示項目〕
 以下の項目のそれぞれは、好ましい実施形態の開示である。
[Disclosure items]
Each of the following items is a disclosure of a preferred embodiment.
〔項目1〕
 A剤とB剤を含む多液型硬化性組成物であって、
 A剤が、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体(B)、並びに、ジアルコキシジアルキルシラン、ジアルコキシジアリールシラン、及びアルキルスルホン酸エステルからなる群より選択される少なくとも1種の化合物(C)を含有し、
 B剤が、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体(B)、及び可塑剤(D)からなる群より選択される少なくとも1種の化合物と、無機充填剤(E)と、水(F)とを含有し、
 A剤またはB剤のいずれか又は双方が、シラノール縮合触媒(G)を含有し、
 前記反応性ケイ素基が下記一般式(1)で表される、多液型硬化性組成物。
-SiR 3-a    (1)
(式中、Rは、置換又は非置換の炭素数1~20の炭化水素基を表す。Xは水酸基または加水分解性基を表す。aは2または3である。)
[Item 1]
A multi-component curable composition comprising agent A and agent B,
Agent A is a polyoxyalkylene polymer (A) having a reactive silicon group, a (meth)acrylate polymer (B) having a reactive silicon group, dialkoxydialkylsilane, and dialkoxydiarylsilane. , and containing at least one compound (C) selected from the group consisting of alkylsulfonic acid esters,
Agent B is selected from the group consisting of a polyoxyalkylene polymer (A) having a reactive silicon group, a (meth)acrylic acid ester polymer (B) having a reactive silicon group, and a plasticizer (D). containing at least one compound, an inorganic filler (E), and water (F),
Either or both of the A agent and the B agent contain a silanol condensation catalyst (G),
A multicomponent curable composition, wherein the reactive silicon group is represented by the following general formula (1).
—SiR 1 3-a X a (1)
(Wherein, R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms; X represents a hydroxyl group or a hydrolyzable group; a is 2 or 3.)
〔項目2〕
 A剤が、化合物(C)としてジアルコキシジアリールシランを含有する、項目1に記載の多液型硬化性組成物。
[Item 2]
2. The multicomponent curable composition according to item 1, wherein agent A contains a dialkoxydiarylsilane as compound (C).
〔項目3〕
 A剤が、化合物(C)として、ジアルコキシジアリールシラン及びアルキルスルホン酸エステルを含有する、項目1に記載の多液型硬化性組成物。
[Item 3]
2. The multi-component curable composition according to item 1, wherein the agent A contains a dialkoxydiarylsilane and an alkylsulfonic acid ester as the compound (C).
〔項目4〕
 (メタ)アクリル酸エステル系重合体(B)が、アルキルの炭素数が1~3である(メタ)アクリル酸アルキルを全単量体中40重量%以上含有する、項目1~3のいずれか1項に記載の多液型硬化性組成物。
[Item 4]
Any one of items 1 to 3, wherein the (meth)acrylic acid ester polymer (B) contains 40% by weight or more of the total monomers of an alkyl (meth)acrylate having 1 to 3 carbon atoms in the alkyl. 2. The multi-component curable composition according to item 1.
〔項目5〕
 A剤が、アミノ基含有シランカップリング剤(H)をさらに含有する、項目1~4のいずれか1項に記載の多液型硬化性組成物。
[Item 5]
5. The multi-component curable composition according to any one of items 1 to 4, wherein agent A further contains an amino group-containing silane coupling agent (H).
〔項目6〕
 A剤とB剤からなる2液型の硬化性組成物である、項目1~5のいずれか1項に記載の多液型硬化性組成物。
[Item 6]
The multi-component curable composition according to any one of items 1 to 5, which is a two-component curable composition comprising agent A and agent B.
〔項目7〕
 項目1~6のいずれか1項に記載の多液型硬化性組成物を硬化させて得られる硬化物。
[Item 7]
A cured product obtained by curing the multicomponent curable composition according to any one of items 1 to 6.
 以下に、実施例を掲げて本発明を具体的に説明するが、本実施例は本発明を限定するものではない。 Although the present invention will be specifically described below with reference to examples, the present examples are not intended to limit the present invention.
 実施例中の数平均分子量は以下の条件で測定したGPC分子量である。
  送液システム:東ソー製HLC-8120GPC
  カラム:東ソー製TSK-GEL Hタイプ
  溶媒:THF
  分子量:ポリスチレン換算
  測定温度:40℃
The number average molecular weight in the examples is the GPC molecular weight measured under the following conditions.
Liquid delivery system: Tosoh HLC-8120GPC
Column: TSK-GEL H type manufactured by Tosoh Solvent: THF
Molecular weight: Polystyrene equivalent Measurement temperature: 40°C
 実施例中の末端基換算分子量は、水酸基価をJIS K 1557の測定方法により、ヨウ素価をJIS K 0070の測定方法により求め、有機重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮して求めた分子量である。 The terminal group equivalent molecular weights in the examples were obtained by determining the hydroxyl value by the measurement method of JIS K 1557, the iodine value by the measurement method of JIS K 0070, and the structure of the organic polymer (the degree of branching determined by the polymerization initiator used). It is the molecular weight obtained by taking into consideration.
 実施例に示す重合体の末端1個あたりへの炭素-炭素不飽和結合の平均導入数は以下の計算式により算出した。
(平均導入数)=[ヨウ素価から求めた重合体の不飽和基濃度(mol/g)-ヨウ素価から求めた前駆重合体の不飽和基濃度(mol/g)]/[水酸基価から求めた前駆重合体の水酸基濃度(mol/g)]。
The average number of carbon-carbon unsaturated bonds introduced per terminal of the polymer shown in the examples was calculated by the following formula.
(Average introduction number) = [Unsaturated group concentration of polymer determined from iodine value (mol/g) - Unsaturated group concentration of precursor polymer determined from iodine value (mol/g)]/[Determined from hydroxyl value hydroxyl group concentration (mol/g) of the precursor polymer].
 実施例に示す重合体(A)の末端1個あたりへのシリル基の平均導入数はNMR測定により算出した。 The average number of silyl groups introduced per terminal of the polymer (A) shown in Examples was calculated by NMR measurement.
 (合成例1)
 数平均分子量が約2,000のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、両末端に水酸基を有する数平均分子量28,500(末端基換算分子量17,700)、分子量分布Mw/Mn=1.21のポリオキシプロピレンを得た。
 得られた水酸基末端ポリオキシプロピレンの水酸基に対して1.0モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、水酸基末端ポリオキシプロピレンの水酸基に対して、1.0モル当量のアリルグリシジルエーテルを添加して130℃で2時間反応を行った。その後、0.28モル当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを除去し、さらに1.79モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。得られた未精製のアリル基末端ポリオキシプロピレン100重量部に対し、n-ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去した後、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、炭素-炭素不飽和結合を2個以上有する末端構造を有するポリオキシプロピレンを得た。この重合体は1つの末端部位に炭素-炭素不飽和結合が平均2.0個導入されていることがわかった。
 得られた1つの末端部位に炭素-炭素不飽和結合を平均2.0個有するポリオキシプロピレン100重量部に対し白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)72ppmを加え、撹拌しながら、トリメトキシシラン2.2重量部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去する事により、1つの末端部位にトリメトキシシリル基を平均1.6個含み、1分子当たりのトリメトキシシリル基が平均3.2個、数平均分子量が28,500である直鎖状の反応性ケイ素基含有ポリオキシプロピレン重合体(A-1)を得た。
(Synthesis example 1)
Polyoxypropylene glycol with a number average molecular weight of about 2,000 is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst. A polyoxypropylene having a molecular weight of 17,700) and a molecular weight distribution of Mw/Mn=1.21 was obtained.
Sodium methoxide was added as a 28% methanol solution in an amount of 1.0 molar equivalent to the hydroxyl group of the obtained hydroxyl group-terminated polyoxypropylene. After methanol was distilled off by vacuum devolatilization, 1.0 molar equivalent of allyl glycidyl ether was added to the hydroxyl group of hydroxyl-terminated polyoxypropylene, and reaction was carried out at 130° C. for 2 hours. Thereafter, 0.28 molar equivalent of sodium methoxide in methanol was added to remove the methanol, and 1.79 molar equivalent of allyl chloride was added to convert the terminal hydroxyl group to an allyl group. 300 parts by weight of n-hexane and 300 parts by weight of water were mixed and stirred with 100 parts by weight of the unpurified allyl group-terminated polyoxypropylene obtained, and the water was removed by centrifugation. 300 parts by weight of water was further mixed and stirred, the water was removed by centrifugation again, and hexane was removed by vacuum devolatilization. As described above, polyoxypropylene having a terminal structure having two or more carbon-carbon unsaturated bonds was obtained. This polymer was found to have an average of 2.0 carbon-carbon unsaturated bonds introduced at one terminal site.
72 ppm of a platinum-divinyldisiloxane complex (3% by weight in terms of platinum in isopropanol solution) was added to 100 parts by weight of polyoxypropylene having an average of 2.0 carbon-carbon unsaturated bonds at one end and stirred. 2.2 parts by weight of trimethoxysilane was slowly added dropwise. After the mixed solution was reacted at 90° C. for 2 hours, unreacted trimethoxysilane was distilled off under reduced pressure. A linear reactive silicon group-containing polyoxypropylene polymer (A-1) having an average of 3.2 trimethoxysilyl groups and a number average molecular weight of 28,500 was thus obtained.
 (合成例2)
 数平均分子量が約3,000のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、数平均分子量26,200(末端基換算分子量17,440)のポリオキシプロピレントリオールを得た。
 続いてこの水酸基末端ポリオキシプロピレントリオールの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに1.5倍当量の3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。
 次に得られたアリル基末端ポリオキシプロピレン重合体100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロピルアルコール溶液)72ppmを加え撹拌しながら、トリメトキシシラン1.26重量部をゆっくりと滴下し、90℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去する事により、末端がトリメトキシシリル基であり、1分子あたりのケイ素基が平均1.8個、数平均分子量26,200である分岐鎖状の反応性ケイ素基含有ポリオキシプロピレン重合体(A-2)を得た。
(Synthesis example 2)
Polyoxypropylene triol with a number average molecular weight of about 3,000 is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to obtain a number average molecular weight of 26,200 (terminal group equivalent molecular weight of 17,440). A polyoxypropylene triol was obtained.
Subsequently, a methanol solution of 1.2 equivalents of NaOMe is added to the hydroxyl group of the hydroxyl-terminated polyoxypropylene triol to distill off the methanol, and 1.5 equivalents of 3-chloro-1-propene is added. to convert the terminal hydroxyl group to an allyl group.
Next, 72 ppm of a platinum divinyldisiloxane complex (3% by weight of isopropyl alcohol solution in terms of platinum) was added to 100 parts by weight of the obtained allyl group-terminated polyoxypropylene polymer, and while stirring, 1.26 weight of trimethoxysilane was added. was slowly added dropwise and reacted at 90° C. for 2 hours, and then unreacted trimethoxysilane was distilled off under reduced pressure to give a terminal trimethoxysilyl group and an average of 1 silicon group per molecule. A branched-chain reactive silicon group-containing polyoxypropylene polymer (A-2) having a number average molecular weight of 26,200 was obtained.
 (合成例3)
 攪拌機を備えた四口フラスコにイソブタノール42.9重量部を入れ、窒素雰囲気下、105℃まで昇温した。そこに、メチルメタクリレート65.0重量部、2-エチルヘキシルアクリレート25.0重量部、3-メタクリロキシプロピルトリメトキシシラン10.0重量部、3-メルカプトプロピルトリメトキシシラン7.2重量部、及び2,2’-アゾビス(2-メチルブチロニトリル)1.8重量部をイソブタノール16.4重量部に溶解した混合溶液を5時間かけて滴下した。さらに2,2’-アゾビス(2-メチルブチロニトリル)0.7重量部をイソブタノール6.3重量部に溶解した混合溶液を加え105℃で2時間重合を行い、1分子あたりのケイ素基が平均1.6個、数平均分子量が2,300である反応性ケイ素基含有(メタ)アクリル酸エステル系重合体(B-1)のイソブタノール溶液(固形分60%)を得た。固形分の反応性ケイ素基当量は0.72mmol/gである。
(Synthesis Example 3)
A four-necked flask equipped with a stirrer was charged with 42.9 parts by weight of isobutanol, and the temperature was raised to 105° C. under a nitrogen atmosphere. Thereto are 65.0 parts by weight methyl methacrylate, 25.0 parts by weight 2-ethylhexyl acrylate, 10.0 parts by weight 3-methacryloxypropyltrimethoxysilane, 7.2 parts by weight 3-mercaptopropyltrimethoxysilane, and 2 parts by weight , 2′-azobis(2-methylbutyronitrile) dissolved in 16.4 parts by weight of isobutanol was added dropwise over 5 hours. Furthermore, a mixed solution of 0.7 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 6.3 parts by weight of isobutanol was added, and polymerization was carried out at 105°C for 2 hours. was 1.6 on average and the number average molecular weight was 2,300. The reactive silicon group equivalent weight of the solid content is 0.72 mmol/g.
 (実施例1)
 合成例1で得られた反応性ケイ素基含有ポリオキシプロピレン重合体(A-1)60重量部と、合成例3で得られた(メタ)アクリル酸エステル系共重合体(B-1)のイソブタノール溶液を固形分が40重量部となるように混合した後、イソブタノールを加熱脱揮した。得られた混合物に、安定剤としてノクラックCD(酸化防止剤、大内新興化学工業(株)製)1重量部、アデカスタブAO-60(酸化防止剤、(株)ADEKA製)1重量部、化合物(C)であるMesamoll(アルキルスルホン酸フェニルエステル、(株)ADEKA製)11.6重量部、充填剤としてCCR-S10(コロイド炭酸カルシウム、白石工業(株)製)42.4重量部、アサヒサーマル(カーボンブラック、旭カーボン(株)製)0.05重量部、レオロジーコントロール剤としてCrayvallac SL(脂肪酸アミドワックス、ARKEMA製)3重量部を、プラネタリーミキサーを用いて混合し、120℃で1時間減圧加熱脱水した。得られた組成物を冷却し、脱水剤としてA-171(ビニルトリメトキシシラン、Momentive製)3重量部、接着性付与剤としてKBM-603(N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、信越化学工業(株)製)3重量部、化合物(C)であるZ6447(ジメトキシジフェニルシラン、ダウ・東レ(株)製)2重量部、シラノール縮合触媒(G)としてネオスタンU-810(ジオクチル錫ジラウレート、日東化成(株)製)0.3重量部を混合してA剤を得た。
 次に、可塑剤(D)としてAcclaim12200(数平均分子量14,600であるポリプロピレングリコール、Covestro AG製)10.3重量部、無機充填剤(E)としてCCR-S10(コロイド炭酸カルシウム、白石工業(株)製)3.2重量部、AEROSIL R-202(疎水性ヒュームドシリカ、日本アエロジル(株)製)0.6重量部、R-820(酸化チタン、石原産業(株)製)2重量部、水(F)1.5重量部を、プラネタリーミキサーを用いて混合し、B剤を得た。
(Example 1)
60 parts by weight of the reactive silicon group-containing polyoxypropylene polymer (A-1) obtained in Synthesis Example 1 and the (meth)acrylate copolymer (B-1) obtained in Synthesis Example 3 After the isobutanol solution was mixed so that the solid content was 40 parts by weight, the isobutanol was devolatilized by heating. To the resulting mixture, 1 part by weight of Nocrac CD (antioxidant, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.) and 1 part by weight of ADEKA STAB AO-60 (antioxidant, manufactured by ADEKA Co., Ltd.) were added as stabilizers. (C) Mesamoll (alkyl sulfonic acid phenyl ester, manufactured by ADEKA Co., Ltd.) 11.6 parts by weight, CCR-S10 as a filler (colloidal calcium carbonate, manufactured by Shiraishi Kogyo Co., Ltd.) 42.4 parts by weight, Asahi 0.05 parts by weight of thermal (carbon black, manufactured by Asahi Carbon Co., Ltd.) and 3 parts by weight of Crayvallac SL (fatty acid amide wax, manufactured by ARKEMA) as a rheology control agent were mixed using a planetary mixer, and then heated at 120°C for 1 hour. It was dehydrated by heating under reduced pressure for 1 hour. The obtained composition was cooled, and 3 parts by weight of A-171 (vinyltrimethoxysilane, manufactured by Momentive) as a dehydrating agent and KBM-603 (N-(2-aminoethyl)-3-aminopropyl Trimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) 3 parts by weight, compound (C) Z6447 (dimethoxydiphenylsilane, manufactured by Dow Toray Co., Ltd.) 2 parts by weight, silanol condensation catalyst (G) Neostan U- 0.3 parts by weight of 810 (dioctyltin dilaurate, manufactured by Nitto Kasei Co., Ltd.) was mixed to obtain agent A.
Next, Acclaim 12200 (polypropylene glycol having a number average molecular weight of 14,600, manufactured by Covestro AG) as a plasticizer (D) 10.3 parts by weight, CCR-S10 (colloidal calcium carbonate, Shiraishi Kogyo ( Co., Ltd.) 3.2 parts by weight, AEROSIL R-202 (hydrophobic fumed silica, manufactured by Nippon Aerosil Co., Ltd.) 0.6 parts by weight, R-820 (titanium oxide, manufactured by Ishihara Sangyo Co., Ltd.) 2 parts by weight parts and 1.5 parts by weight of water (F) were mixed using a planetary mixer to obtain a B agent.
 (混合方法)
 実施例1で作製したA剤とB剤を、A剤:B剤=9.5:1(重量比)、又は10:1(体積比)となるように2液混合用カートリッジ(NORDSON(株)製)に充填した。エレメント径10mm、エレメント数が24段のスタティックミキサーを用いて、A剤とB剤を混合して混合物を得た。
(Mixing method)
Agent A and Agent B prepared in Example 1 were added to a two-liquid mixing cartridge (NORDSON Co., Ltd. ) made). Using a static mixer with an element diameter of 10 mm and an element number of 24, the A agent and the B agent were mixed to obtain a mixture.
 (接着性)
 被着体として使用するPC/ABSアロイ(住友ベークライト(株)製、商品名:ロア)をヘプタンで脱脂した。前記混合物を一方の被着体に塗布した後、接着面積25mm×12.5mm、厚み0.5mmとなるようにもう一方の被着体を直ぐに張り合わせた。この張り合わせた時間を開始時間として、23℃50%RH条件下で7日間放置した後、試験速度を10mm/minとして剪断接着強度を測定すると共に、破壊状態を観察した。破壊状態は、凝集破壊(接着剤部分で破壊)をCF、界面破壊(接着剤と被着体との界面で剥離)をAFとし、目視で確認した。両者が混在する場合には、それぞれの割合を記した。例えば凝集破壊率が50%、界面破壊率が50%である場合にはC50A50と記載した。結果を表1に示す。
(Adhesiveness)
A PC/ABS alloy (manufactured by Sumitomo Bakelite Co., Ltd., trade name: Roa) used as an adherend was degreased with heptane. After the mixture was applied to one of the adherends, the other adherend was immediately attached so that the adhesion area was 25 mm×12.5 mm and the thickness was 0.5 mm. Using this lamination time as the start time, the laminate was allowed to stand for 7 days under conditions of 23° C. and 50% RH, and then the shear adhesive strength was measured at a test speed of 10 mm/min, and the breaking state was observed. The state of failure was visually confirmed using CF as cohesive failure (destruction at the adhesive portion) and AF as interfacial failure (peeling at the interface between the adhesive and the adherend). When both are mixed, the ratio of each is shown. For example, when the cohesive failure rate is 50% and the interfacial failure rate is 50%, it is described as C50A50. Table 1 shows the results.
 (実施例2-8、比較例1-4)
 表1に示す配合に変更した以外は実施例1と同様にA剤及びB剤を作製し、評価を行った。結果を表1に示す。
(Example 2-8, Comparative Example 1-4)
Agents A and B were prepared and evaluated in the same manner as in Example 1, except that the formulations were changed to those shown in Table 1. Table 1 shows the results.
 (参考例1)
 表1に示す割合に変更した以外は実施例1と同様にA剤を作製し、1液型硬化性組成物として評価を行った。結果を表1に示す。
(Reference example 1)
Agent A was prepared in the same manner as in Example 1, except that the proportions were changed to those shown in Table 1, and evaluated as a one-component curable composition. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1中の各成分を以下に示す。
(1):酸化防止剤(大内新興化学工業(株))
(2):酸化防止剤((株)ADEKA)
(3):アルキルスルホン酸フェニルエステル((株)ADEKA)
(4):フタル酸ジイソノニル((株)ジェイ・プラス)
(5):ポリプロピレングリコール(三井化学(株))
(6):コロイド炭酸カルシウム(白石工業(株))
(7):カーボンブラック(旭カーボン(株))
(8):脂肪酸アマイドワックス(ARKEMA)
(9):ビニルトリメトキシシラン(Momentive(株))
(10):N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン(信越化学工業(株))
(11):ジメトキシジフェニルシラン(ダウ・東レ(株))
(12):ジメトキシジメチルシラン(ダウ・東レ(株))
(13):メチルトリメトキシシラン(ダウ・東レ(株))
(14):フェニルトリメトキシシラン(ダウ・東レ(株))
(15):ジオクチル錫ジラウレート(日東化成(株))
(16):ポリプロピレングリコール(Covestro AG)
(17):疎水性ヒュームドシリカ(日本アエロジル(株))
(18):酸化チタン(石原産業(株))
Each component in Table 1 is shown below.
(1): Antioxidant (Ouchi Shinko Chemical Industry Co., Ltd.)
(2): Antioxidant (ADEKA Co., Ltd.)
(3): Alkyl sulfonic acid phenyl ester (ADEKA Corporation)
(4): Diisononyl phthalate (J-Plus Co., Ltd.)
(5): Polypropylene glycol (Mitsui Chemicals, Inc.)
(6): Colloidal calcium carbonate (Shiraishi Industry Co., Ltd.)
(7): Carbon black (Asahi Carbon Co., Ltd.)
(8): Fatty acid amide wax (ARKEMA)
(9): Vinyltrimethoxysilane (Momentive Inc.)
(10): N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd.)
(11): Dimethoxydiphenylsilane (Dow Toray Industries, Inc.)
(12): Dimethoxydimethylsilane (Dow Toray Industries, Inc.)
(13): Methyltrimethoxysilane (Dow Toray Industries, Inc.)
(14): Phenyltrimethoxysilane (Dow Toray Industries, Inc.)
(15): Dioctyl tin dilaurate (Nitto Kasei Co., Ltd.)
(16): Polypropylene glycol (Covestro AG)
(17): Hydrophobic fumed silica (Nippon Aerosil Co., Ltd.)
(18): Titanium oxide (Ishihara Sangyo Co., Ltd.)
 表1の参考例1に示したように、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、及び、反応性ケイ素基を有する(メタ)アクリル酸エステル系共重合体(B)を含むA剤を、1液型硬化性組成物としてプラスチック基材の接着に使用すると、破壊状態は凝集破壊(CF)となり接着性が良好であるのに対し、比較例1に示したように、参考例1と同じA剤に、水を含む助剤を組み合わせた2液型の硬化性組成物を同接着に使用すると、界面破壊(AF)となる。このことより、水を含む助剤を用いた2液型の硬化性組成物では、1液型の硬化性組成物と比較して、プラスチック基材に対する接着性が低下することが分かる。 As shown in Reference Example 1 in Table 1, a polyoxyalkylene polymer (A) having a reactive silicon group, and a (meth)acrylic acid ester copolymer (B) having a reactive silicon group When the agent A containing is used as a one-liquid curable composition for bonding plastic substrates, the failure state is cohesive failure (CF) and the adhesion is good, whereas as shown in Comparative Example 1, If a two-component curable composition in which the same agent A as in Reference Example 1 is combined with an auxiliary agent containing water is used for the same adhesion, interfacial failure (AF) occurs. From this, it can be seen that the two-component curable composition using a water-containing auxiliary has lower adhesiveness to plastic substrates than the one-component curable composition.
 実施例1~8に示したように、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、反応性ケイ素基を有する(メタ)アクリル酸エステル系共重合体(B)、並びに、ジアルコキシジアルキルシラン、ジアルコキシジアリールシラン、及びアルキルスルホン酸エステルからなる群より選択される少なくとも1種の化合物(C)を含有する2液型の硬化性組成物は、化合物(C)を含まない比較例1~3、及び、(メタ)アクリル酸エステル系共重合体(B)を含まない比較例4の2液型硬化性組成物よりも、プラスチック基材に対する接着性が良好であることが分かる。 As shown in Examples 1 to 8, a polyoxyalkylene polymer (A) having a reactive silicon group, a (meth)acrylic acid ester copolymer (B) having a reactive silicon group, and a di A two-component curable composition containing at least one compound (C) selected from the group consisting of alkoxydialkylsilanes, dialkoxydiarylsilanes, and alkylsulfonate esters is a comparison containing no compound (C). It can be seen that the adhesiveness to the plastic substrate is better than the two-part curable composition of Examples 1 to 3 and Comparative Example 4 that does not contain the (meth)acrylic acid ester copolymer (B). .
 (粘度評価)
 治具として直径20mmの平行円板プレートを用い、ギャップを0.3mmに設定し、23℃で、せん断速度を1×10-3(1/sec)~100(1/sec)まで7分間かけて上昇させて、フローランプ測定を実施した。装置はTAインスツルメンツ製レオメーター(DHR-2)を使用した。粘度は、せん断速度5×10-3(1/sec)、及び100(1/sec)での値を読み取った。
 粘度比は、[5×10-3(1/sec)での粘度/100(1/sec)での粘度]から算出した値である。結果を表2に示す。
(Viscosity evaluation)
A parallel disk plate with a diameter of 20 mm was used as a jig, the gap was set to 0.3 mm, and the shear rate was increased from 1 × 10 -3 (1/sec) to 100 (1/sec) for 7 minutes at 23 ° C. and the flow lamp measurement was performed. A rheometer (DHR-2) manufactured by TA Instruments was used as an apparatus. Viscosity was read at shear rates of 5×10 −3 (1/sec) and 100 (1/sec).
The viscosity ratio is a value calculated from [viscosity at 5×10 −3 (1/sec)/viscosity at 100 (1/sec)]. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2中の各成分を以下に示す。
(1):酸化防止剤(大内新興化学工業(株))
(2):酸化防止剤((株)ADEKA)
(3):アルキルスルホン酸フェニルエステル((株)ADEKA)
(4):フタル酸ジイソノニル((株)ジェイ・プラス)
(5):ポリプロピレングリコール(三井化学(株))
(6):コロイド炭酸カルシウム(白石工業(株))
(7):カーボンブラック(旭カーボン(株))
(8):脂肪酸アマイドワックス(ARKEMA)
(9):ビニルトリメトキシシラン(Momentive(株))
(10):N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン(信越化学工業(株))
(11):ジメトキシジフェニルシラン(ダウ・東レ(株))
(12):ジオクチル錫ジラウレート(日東化成(株))
Each component in Table 2 is shown below.
(1): Antioxidant (Ouchi Shinko Chemical Industry Co., Ltd.)
(2): Antioxidant (ADEKA Co., Ltd.)
(3): Alkyl sulfonic acid phenyl ester (ADEKA Corporation)
(4): Diisononyl phthalate (J-Plus Co., Ltd.)
(5): Polypropylene glycol (Mitsui Chemicals, Inc.)
(6): Colloidal calcium carbonate (Shiraishi Industry Co., Ltd.)
(7): Carbon black (Asahi Carbon Co., Ltd.)
(8): Fatty acid amide wax (ARKEMA)
(9): Vinyltrimethoxysilane (Momentive Inc.)
(10): N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd.)
(11): Dimethoxydiphenylsilane (Dow Toray Industries, Inc.)
(12): Dioctyl tin dilaurate (Nitto Kasei Co., Ltd.)
 表2に示すように、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、及び、反応性ケイ素基を有す(メタ)アクリル酸エステル系共重合体(B)に加えて、化合物(C)として、アルキルスルホン酸エステルとジアルコキシジアリールシランの双方を含有する実施例1のA剤は、実施例3、4、及び6のA剤よりも粘度比が高いことが分かる。このことより、実施例1の2液型硬化性組成物は、主剤と助剤を混合してなる混合物の吐出性と、該混合物を基材に塗布してなる塗膜の形状維持性が良好であると言える。
 
As shown in Table 2, in addition to the polyoxyalkylene polymer (A) having a reactive silicon group and the (meth) acrylic acid ester copolymer (B) having a reactive silicon group, the compound It can be seen that the A agent of Example 1 containing both an alkylsulfonic acid ester and a dialkoxydiarylsilane as (C) has a higher viscosity ratio than the A agents of Examples 3, 4, and 6. From this, the two-component curable composition of Example 1 has good dischargeability of the mixture obtained by mixing the main agent and the auxiliary agent, and good shape retention of the coating film obtained by applying the mixture to the substrate. It can be said that

Claims (7)

  1.  A剤とB剤を含む多液型硬化性組成物であって、
     A剤が、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体(B)、並びに、ジアルコキシジアルキルシラン、ジアルコキシジアリールシラン、及びアルキルスルホン酸エステルからなる群より選択される少なくとも1種の化合物(C)を含有し、
     B剤が、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体(B)、及び可塑剤(D)からなる群より選択される少なくとも1種の化合物と、無機充填剤(E)と、水(F)とを含有し、
     A剤またはB剤のいずれか又は双方が、シラノール縮合触媒(G)を含有し、
     前記反応性ケイ素基が下記一般式(1)で表される、多液型硬化性組成物。
    -SiR 3-a    (1)
    (式中、Rは、置換又は非置換の炭素数1~20の炭化水素基を表す。Xは水酸基または加水分解性基を表す。aは2または3である。)
    A multi-component curable composition comprising agent A and agent B,
    Agent A is a polyoxyalkylene polymer (A) having a reactive silicon group, a (meth)acrylate polymer (B) having a reactive silicon group, dialkoxydialkylsilane, and dialkoxydiarylsilane. , and containing at least one compound (C) selected from the group consisting of alkylsulfonic acid esters,
    Agent B is selected from the group consisting of a polyoxyalkylene polymer (A) having a reactive silicon group, a (meth)acrylic acid ester polymer (B) having a reactive silicon group, and a plasticizer (D). containing at least one compound, an inorganic filler (E), and water (F),
    Either or both of the A agent and the B agent contain a silanol condensation catalyst (G),
    A multicomponent curable composition, wherein the reactive silicon group is represented by the following general formula (1).
    —SiR 1 3-a X a (1)
    (Wherein, R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms; X represents a hydroxyl group or a hydrolyzable group; a is 2 or 3.)
  2.  A剤が、化合物(C)としてジアルコキシジアリールシランを含有する、請求項1に記載の多液型硬化性組成物。 The multicomponent curable composition according to claim 1, wherein the agent A contains a dialkoxydiarylsilane as the compound (C).
  3.  A剤が、化合物(C)として、ジアルコキシジアリールシラン及びアルキルスルホン酸エステルを含有する、請求項1に記載の多液型硬化性組成物。 The multicomponent curable composition according to claim 1, wherein the agent A contains a dialkoxydiarylsilane and an alkylsulfonic acid ester as the compound (C).
  4.  (メタ)アクリル酸エステル系重合体(B)が、アルキルの炭素数が1~3である(メタ)アクリル酸アルキルを全単量体中40重量%以上含有する、請求項1~3のいずれか1項に記載の多液型硬化性組成物。 4. Any one of claims 1 to 3, wherein the (meth)acrylic ester-based polymer (B) contains 40% by weight or more of the total monomers of an alkyl (meth)acrylate having 1 to 3 carbon atoms in the alkyl. 2. The multi-component curable composition according to item 1 or 2.
  5.  A剤が、アミノ基含有シランカップリング剤(H)をさらに含有する、請求項1~3のいずれか1項に記載の多液型硬化性組成物。 The multicomponent curable composition according to any one of claims 1 to 3, wherein agent A further contains an amino group-containing silane coupling agent (H).
  6.  A剤とB剤からなる2液型の硬化性組成物である、請求項1~3のいずれか1項に記載の多液型硬化性組成物。 The multi-component curable composition according to any one of claims 1 to 3, which is a two-component curable composition consisting of agent A and agent B.
  7.  請求項1~3のいずれか1項に記載の多液型硬化性組成物を硬化させて得られる硬化物。
     
    A cured product obtained by curing the multicomponent curable composition according to any one of claims 1 to 3.
PCT/JP2022/041972 2021-11-18 2022-11-10 Multi-part type curable composition WO2023090255A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023561564A JPWO2023090255A1 (en) 2021-11-18 2022-11-10
CN202280075425.1A CN118251461A (en) 2021-11-18 2022-11-10 Multi-agent type curable composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-187730 2021-11-18
JP2021187730 2021-11-18

Publications (1)

Publication Number Publication Date
WO2023090255A1 true WO2023090255A1 (en) 2023-05-25

Family

ID=86396930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041972 WO2023090255A1 (en) 2021-11-18 2022-11-10 Multi-part type curable composition

Country Status (3)

Country Link
JP (1) JPWO2023090255A1 (en)
CN (1) CN118251461A (en)
WO (1) WO2023090255A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214755A (en) * 2011-03-31 2012-11-08 Kaneka Corp Curing composition
JP2014234396A (en) * 2013-05-30 2014-12-15 株式会社カネカ Room temperature-curable composition and cured product thereof
JP2016098302A (en) * 2014-11-20 2016-05-30 株式会社カネカ Curable composition
JP2017066349A (en) * 2015-10-02 2017-04-06 株式会社カネカ Curable composition
WO2017057719A1 (en) * 2015-10-02 2017-04-06 株式会社カネカ Curable composition
WO2017138463A1 (en) * 2016-02-08 2017-08-17 株式会社カネカ Curable composition having improved water-resistant adhesiveness
WO2021059972A1 (en) * 2019-09-25 2021-04-01 株式会社カネカ Curable composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214755A (en) * 2011-03-31 2012-11-08 Kaneka Corp Curing composition
JP2014234396A (en) * 2013-05-30 2014-12-15 株式会社カネカ Room temperature-curable composition and cured product thereof
JP2016098302A (en) * 2014-11-20 2016-05-30 株式会社カネカ Curable composition
JP2017066349A (en) * 2015-10-02 2017-04-06 株式会社カネカ Curable composition
WO2017057719A1 (en) * 2015-10-02 2017-04-06 株式会社カネカ Curable composition
WO2017138463A1 (en) * 2016-02-08 2017-08-17 株式会社カネカ Curable composition having improved water-resistant adhesiveness
WO2021059972A1 (en) * 2019-09-25 2021-04-01 株式会社カネカ Curable composition

Also Published As

Publication number Publication date
JPWO2023090255A1 (en) 2023-05-25
CN118251461A (en) 2024-06-25

Similar Documents

Publication Publication Date Title
JP5420893B2 (en) Curable composition
JP5420840B2 (en) Curable composition with improved curability and storage stability
JP5508000B2 (en) Curable composition
JPWO2007037485A1 (en) Curable composition
JP7542548B2 (en) Curable Composition
WO2017099154A1 (en) Curable composition and cured product thereof
WO2016035718A1 (en) Curable composition
JPWO2015133564A1 (en) Curable composition
WO2009113538A1 (en) Curable composition and cured material
JP5340815B2 (en) One-part adhesive
JP7261787B2 (en) Curable composition
JP7506655B2 (en) Curable Composition
JP7224131B2 (en) Curable composition
WO2023085269A1 (en) Adhesive composition for polyester
WO2023054700A1 (en) Curable composition
WO2023090255A1 (en) Multi-part type curable composition
JP2018104488A (en) Curable composition
JP6839542B2 (en) Curable composition
WO2023282172A1 (en) Multi-component curable composition
JP2023010631A (en) Multiple liquid type curable composition
JP2024134662A (en) Multi-component curable composition
JP2007314727A (en) Curable composition
WO2023132323A1 (en) Curable composition and cured product thereof
JP2009249494A (en) Curable composition and cured product
JP2024141598A (en) Multi-component curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895537

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023561564

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280075425.1

Country of ref document: CN