WO2023132323A1 - Curable composition and cured product thereof - Google Patents

Curable composition and cured product thereof Download PDF

Info

Publication number
WO2023132323A1
WO2023132323A1 PCT/JP2022/048595 JP2022048595W WO2023132323A1 WO 2023132323 A1 WO2023132323 A1 WO 2023132323A1 JP 2022048595 W JP2022048595 W JP 2022048595W WO 2023132323 A1 WO2023132323 A1 WO 2023132323A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
meth
weight
agent
parts
Prior art date
Application number
PCT/JP2022/048595
Other languages
French (fr)
Japanese (ja)
Inventor
聖 宮藤
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023132323A1 publication Critical patent/WO2023132323A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to a curable composition containing a polymer having a reactive silicon group and a cured product thereof.
  • An organic polymer having a hydroxyl group or a hydrolyzable group on a silicon atom and having a silicon group capable of forming a siloxane bond by a hydrolysis/condensation reaction (hereinafter also referred to as a "reactive silicon group”) can be used even at room temperature. Reacts with moisture, etc. It is known that a rubber-like cured product can be obtained by cross-linking such an organic polymer through a siloxane condensation reaction of reactive silicon groups.
  • the polyoxyalkylene polymer having a reactive silicon group has a relatively low viscosity, so it is excellent in workability when preparing or using a blended composition.
  • the resulting cured product has a good balance of performance such as mechanical properties, weather resistance, and dynamic durability, it is widely used for applications such as sealants, adhesives, and paints (see Patent Document 1).
  • Patent Document 3 for the purpose of eliminating the drawback that the curing speed of one-component moisture-curable adhesives using modified silicone or acrylic-modified silicone is slow, a curing agent having a high curing speed and excellent adhesiveness is disclosed.
  • Group-containing graft copolymers are described.
  • an adhesive containing an organic polymer having a reactive silicon group develops the desired adhesive strength by performing a long curing and curing process for several days after bonding adherends.
  • an adhesive containing an organic polymer having a reactive silicon group develops the desired adhesive strength by performing a long curing and curing process for several days after bonding adherends.
  • it is required to develop a certain level of adhesive strength in a relatively short period of time after bonding the adherends there are cases where it is required to develop a certain level of adhesive strength in a relatively short period of time after bonding the adherends.
  • the present invention provides a curable composition containing a reactive silicon group-containing polyoxyalkylene polymer and a reactive silicon group-containing (meth)acrylic acid ester polymer, wherein a relatively high
  • An object of the present invention is to provide a curable composition capable of exhibiting adhesive strength.
  • the present inventors have made intensive studies to solve the above problems, and found that a curable composition containing a reactive silicon group-containing polyoxyalkylene polymer and a reactive silicon group-containing (meth)acrylic acid ester polymer , by adopting a specific multi-liquid structure and using a specific monomer and chain transfer agent in the reactive silicon group-containing (meth)acrylic acid ester polymer, it was found that the above problems can be solved. , completed the present invention.
  • the present invention is a multi-component curable composition containing agent A and agent B
  • Agent A contains a polyoxyalkylene polymer (A) having a reactive silicon group, and a (meth)acrylic acid ester copolymer (B) having a reactive silicon group
  • Agent B contains at least one compound selected from the group consisting of a polyoxyalkylene polymer (A) having a reactive silicon group, a plasticizer (C), and an epoxy resin (D)
  • the monomer component constituting the (meth)acrylic acid ester copolymer (B) is (meth) acrylic acid ester (b1), A polymer (b2) having more than one (meth)acryloyl group in the molecule, and containing a chain transfer agent (b3) having a mercapto group
  • the monomer component further contains a monomer (b4) having a reactive silicon group and a polymerizable unsaturated group, and/or the chain transfer agent (b3) having a mercapto group is a reactive
  • R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms
  • X represents a hydroxyl group or a hydrolyzable group
  • a is 2 or 3.
  • the present invention also relates to a cured product obtained by curing the multicomponent curable composition.
  • a curable composition comprising a reactive silicon group-containing polyoxyalkylene polymer and a reactive silicon group-containing (meth)acrylic acid ester polymer, wherein relatively high adhesive strength can be achieved in a short time.
  • a curable composition that can be developed can be provided.
  • Agent A contains at least a polyoxyalkylene polymer (A) having a reactive silicon group and a (meth)acrylate copolymer (B) having a reactive silicon group.
  • Agent B contains at least one compound selected from the group consisting of (A) a polyoxyalkylene polymer having a reactive silicon group, (C) a plasticizer, and (D) an epoxy resin.
  • a polyoxyalkylene polymer (A) having a reactive silicon group (hereinafter also simply referred to as "polyoxyalkylene polymer (A)") is blended in agent A.
  • the polyoxyalkylene-based polymer (A) may be blended only with the A agent, or may be blended with the B agent in addition to the A agent.
  • the polyoxyalkylene polymer (A) has a reactive silicon group represented by the following general formula (1). —SiR 1 3-a X a (1) (Wherein, R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms; X represents a hydroxyl group or a hydrolyzable group; a represents 2 or 3.)
  • the number of carbon atoms in the hydrocarbon group of R 1 is preferably 1-10, more preferably 1-5, even more preferably 1-3.
  • Specific examples of R 1 include methyl group, ethyl group, chloromethyl group, methoxymethyl group and N,N-diethylaminomethyl group. Preferred are methyl group, ethyl group, chloromethyl group and methoxymethyl group, and more preferred are methyl group and methoxymethyl group.
  • Examples of X include halogen, alkoxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group and alkenyloxy group.
  • an alkoxy group is more preferable, and a methoxy group and an ethoxy group are particularly preferable, since they are moderately hydrolyzable and easy to handle.
  • Specific examples of the reactive silicon group possessed by the polyoxyalkylene polymer (A) include a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, a triacetoxysilyl group, and dimethoxymethyl silyl group, diethoxymethylsilyl group, dimethoxyethylsilyl group, (chloromethyl)dimethoxysilyl group, (chloromethyl)diethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group, (N ,N-diethylaminomethyl)dimethoxysilyl group, (N,N-diethylaminomethyl)diethoxysilyl group, and the like, but are not limited thereto.
  • methyldimethoxysilyl trimethoxysilyl, triethoxysilyl, (chloromethyl)dimethoxysilyl, (methoxymethyl)dimethoxysilyl, (methoxymethyl)diethoxysilyl, (N,N- Diethylaminomethyl)dimethoxysilyl group is preferred because it exhibits high activity and gives a cured product with good mechanical properties, and a trimethoxysilyl group and a triethoxysilyl group are more preferred because a cured product with high rigidity can be obtained. A trimethoxysilyl group is more preferred.
  • the polyoxyalkylene polymer (A) may have an average of 1 or less reactive silicon groups at one terminal site, or an average of more than 1 reactive silicon group at one terminal site may have a silicon group.
  • having more than one reactive silicon group on average at one terminal site means that the polyoxyalkylene polymer (A) has two or more reactive silicon groups at one terminal site. It shows that polyoxyalkylene is included.
  • a terminal site having two or more reactive silicon groups can be represented, for example, by the following general formula (2).
  • R 2 and R 4 each independently represent a divalent C 1-6 bonding group, and the atoms bonded to the respective carbon atoms adjacent to R 2 and R 4 are carbon, oxygen, nitrogen
  • Each of R 3 and R 5 independently represents hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, n is an integer of 1 to 10.
  • R 1 , X, and a represent the above formula (1) is as described above.
  • R 2 and R 4 may be a divalent organic group having 1 to 6 carbon atoms, or may be a hydrocarbon group which may contain an oxygen atom.
  • the number of carbon atoms in the hydrocarbon group is preferably 1-4, more preferably 1-3, even more preferably 1-2.
  • Specific examples of R 2 include -CH 2 OCH 2 -, -CH 2 O- and -CH 2 -, preferably -CH 2 OCH 2 -.
  • R 4 include -CH 2 - and -CH 2 CH 2 -, preferably -CH 2 -.
  • the number of carbon atoms in the hydrocarbon groups of R 3 and R 5 is preferably 1-5, more preferably 1-3, even more preferably 1-2.
  • Specific examples of R 3 and R 5 include a hydrogen atom, a methyl group and an ethyl group, preferably a hydrogen atom and a methyl group, more preferably a hydrogen atom.
  • the terminal portion represented by the general formula (2) is such that R 2 is —CH 2 OCH 2 —, R 4 is —CH 2 —, and R 3 and R 5 are each hydrogen atoms.
  • n is preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and even more preferably 1 or 2.
  • n is not limited to one value, and may be a mixture of multiple values.
  • the polyoxyalkylene polymer (A) may have an average of 1.0 or less reactive silicon groups at one terminal site.
  • the average number is preferably 0.4 or more, more preferably 0.5 or more, even more preferably 0.6 or more.
  • the polyoxyalkylene polymer (A) may have an average of more than 1.0 reactive silicon groups at one terminal site.
  • the average number is more preferably 1.1 or more, still more preferably 1.5 or more, and even more preferably 2.0 or more.
  • the average number is preferably 5 or less, more preferably 3 or less.
  • the polyoxyalkylene-based polymer (A) may have reactive silicon groups in addition to the terminal sites, but having them only at the terminal sites yields a rubber-like cured product with high elongation and low elastic modulus. It is preferable because it becomes easy to be
  • the average number of reactive silicon groups per molecule of the polyoxyalkylene polymer (A) is preferably more than 1.0, more preferably 1.2 or more, from the viewpoint of the strength of the cured product. , is more preferably 1.3 or more, even more preferably 1.5 or more, and particularly preferably 1.7 or more.
  • the average number may be 2.0 or less, or may be more than 2.0. From the viewpoint of elongation of the cured product, the number is preferably 6.0 or less, more preferably 5.5 or less, and most preferably 5.0 or less.
  • the main chain skeleton of the polyoxyalkylene polymer (A) is not particularly limited, and examples include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, Examples include polyoxypropylene-polyoxybutylene copolymers. Among them, polyoxypropylene is preferred.
  • the main chain structure of the polyoxyalkylene polymer (A) may be linear or branched.
  • the main chain structure of the polyoxyalkylene polymer (A) is preferably branched because the initial adhesive strength is higher.
  • the branched main chain structure can be formed by polymerizing an epoxy compound in the presence of an initiator having 3 or more hydroxyl groups in one molecule.
  • the number average molecular weight of the polyoxyalkylene polymer (A) is preferably 3,000 or more and 100,000 or less, more preferably 3,000 or more and 50,000 or less, in terms of polystyrene equivalent molecular weight in GPC, and particularly preferably It is 3,000 or more and 30,000 or less.
  • the molecular weight distribution (Mw/Mn) of the polyoxyalkylene polymer (A) is not particularly limited, it is preferably narrow, specifically less than 2.0, more preferably 1.6 or less. 5 or less is more preferable, and 1.4 or less is particularly preferable. Moreover, from the viewpoint of improving various mechanical properties such as improving the durability and elongation of the cured product, it is preferably 1.2 or less.
  • the molecular weight distribution of the polyoxyalkylene polymer (A) can be obtained from the number average molecular weight and weight average molecular weight obtained by GPC measurement.
  • the method for synthesizing the polyoxyalkylene polymer (A) is not particularly limited.
  • an initiator having a hydroxyl group is polymerized with an epoxy compound to obtain a hydroxyl group-terminated polymer.
  • an alkali metal salt for example, sodium methoxide
  • a halogenated hydrocarbon compound having a carbon-carbon unsaturated bond for example, allyl chloride
  • a reactive silicon group-containing polyoxyalkylene polymer (A) can be obtained by reacting with a reactive silicon group-containing hydrosilane compound (eg, dimethoxymethylsilane, trimethoxysilane).
  • a polyoxyalkylene polymer (A) having an average of more than 1.0 reactive silicon groups at one terminal site which is a preferred embodiment, can be obtained as follows. After reacting the hydroxyl group of the hydroxyl-terminated polymer with the alkali metal salt in the same manner as described above, an epoxy compound having a carbon-carbon unsaturated bond (eg, allyl glycidyl ether) is first reacted, and then the carbon-carbon unsaturated bond is reacted. Two or more carbon-carbon unsaturated bonds are introduced at one end by reacting a halogenated hydrocarbon compound having a saturated bond (eg, allyl chloride). After that, a reactive silicon group-containing hydrosilane compound may be reacted.
  • an epoxy compound having a carbon-carbon unsaturated bond eg, allyl glycidyl ether
  • Two or more carbon-carbon unsaturated bonds are introduced at one end by reacting a halogenated hydrocarbon compound having a saturated bond (eg,
  • a cured product obtained from a curable composition containing a polyoxyalkylene polymer (A) containing an ester bond or an amide segment may have high hardness and strength due to the action of hydrogen bonds and the like.
  • the polyoxyalkylene polymer (A) containing amide segments and the like may be cleaved by heat or the like.
  • a curable composition containing a polyoxyalkylene polymer (A) containing an amide segment or the like tends to have a high viscosity.
  • polyoxyalkylene polymer (A) a polyoxyalkylene containing an amide segment or the like may be used, or a polyoxyalkylene containing no amide segment or the like may be used. You may
  • Examples of the amide segment represented by the general formula (3) include the reaction between an isocyanate group and a hydroxyl group, the reaction between an amino group and a carbonate, the reaction between an isocyanate group and an amino group, and the reaction between an isocyanate group and a mercapto group. and the like.
  • the amide segment represented by the general formula (3) also includes those formed by the reaction of the amide segment containing an active hydrogen atom with an isocyanate group.
  • a polyoxyalkylene having an active hydrogen-containing group at its terminal is reacted with a polyisocyanate compound to produce a polymer having an isocyanate group at its terminal.
  • a compound having both a functional group for example, a hydroxyl group, a carboxyl group, a mercapto group, a primary amino group or a secondary amino group
  • a method of reacting is mentioned.
  • Another example is a method of reacting a polyoxyalkylene having an active hydrogen-containing group at its end with a reactive silicon group-containing isocyanate compound.
  • the number (average value) of amide segments per molecule of the polyoxyalkylene polymer (A) is preferably 1 to 10, and 1.5 to 5. is more preferred, and 2 to 3 are particularly preferred. If this number is less than 1, the curability may not be sufficient, and conversely if it is greater than 10, the polyoxyalkylene polymer (A) may become highly viscous and difficult to handle. There is In order to lower the viscosity of the curable composition and improve workability, the polyoxyalkylene polymer (A) preferably does not contain an amide segment.
  • Agent A includes a polyoxyalkylene polymer (A) having a reactive silicon group and a (meth)acrylic acid ester copolymer (B) having a reactive silicon group (hereinafter simply referred to as "(meth)acrylic acid Also referred to as "ester-based copolymer (B)").
  • the (meth)acrylic ester-based copolymer (B) may be blended only in the A agent, or may be blended in each of the A agent and the B agent.
  • the (meth)acrylic acid ester-based copolymer (B) has a reactive silicon group represented by the above formula (1) at the molecular chain terminal and/or side chain (non-terminal site).
  • the reactive silicon group of the (meth)acrylate copolymer (B) may be the same as or different from the reactive silicon group of the polyoxyalkylene polymer (A).
  • Specific examples of the reactive silicon group possessed by the (meth)acrylate copolymer (B) include a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, and a triacetoxysilyl group.
  • dimethoxymethylsilyl group diethoxymethylsilyl group, dimethoxyethylsilyl group, (chloromethyl)dimethoxysilyl group, (chloromethyl)diethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group (N,N-diethylaminomethyl)dimethoxysilyl group, (N,N-diethylaminomethyl)diethoxysilyl group, and the like.
  • methyldimethoxysilyl, trimethoxysilyl, triethoxysilyl, (chloromethyl)dimethoxysilyl, (methoxymethyl)dimethoxysilyl, (methoxymethyl)diethoxysilyl, (N,N- Diethylaminomethyl)dimethoxysilyl group is preferred because it exhibits high activity and gives a cured product with good mechanical properties, and a trimethoxysilyl group and a triethoxysilyl group are more preferred because a cured product with a high Young's modulus is obtained. , and a trimethoxysilyl group are more preferred.
  • the reactive silicon group equivalent of the (meth)acrylate copolymer (B) is not particularly limited, but is preferably 0.2 mmol/g or more, more preferably 0.5 mmol/g or more, and 0.6 mmol/g. The above is more preferable.
  • the reactive silicon group equivalent is preferably 2.0 mmol/g or less, and more preferably 1.0 mmol/g or less from the viewpoint of suppressing a decrease in elongation of the cured product.
  • the reactive silicon group equivalent is particularly preferably 0.5 mmol/g or more and 1.0 mmol/g or less.
  • the (meth)acrylic acid ester-based copolymer (B) includes at least a (meth)acrylic acid ester (b1), a polymer (b2) having more than one (meth)acryloyl group in the molecule, and a mercapto It is a polymer formed by copolymerizing a monomer component containing a chain transfer agent (b3) having a group.
  • “(meth)acryl” means "acryl and/or methacryl”.
  • the (meth)acrylic acid ester-based copolymer (B) has reactive silicon groups by satisfying either one or both of the following two conditions.
  • Condition 1 The monomer component further contains a monomer (b4) having a reactive silicon group and a polymerizable unsaturated group.
  • Condition 2 The chain transfer agent (b3) having a mercapto group further has a reactive silicon group.
  • the number of reactive silicon groups introduced under Condition 2 is greater than the number of reactive silicon groups introduced under Condition 1.
  • the reactive silicon group equivalent introduced under Condition 1 is preferably 0.01 mmol/g or more, more preferably 0.03 mmol/g or more, and even more preferably 0.05 mmol/g or more.
  • the reactive silicon group equivalent introduced under Condition 1 is preferably 1.0 mmol/g or less, more preferably 0.5 mmol/g or less.
  • the reactive silicon group equivalent introduced under Condition 2 is preferably 0.2 mmol/g or more, more preferably 0.3 mmol/g or more, and even more preferably 0.5 mmol/g or more.
  • the reactive silicon group equivalent introduced under Condition 2 is preferably 1.5 mmol/g or less, more preferably 1.0 mmol/g or less.
  • the reactive silicon group equivalent introduced under Condition 1 is preferably 0.1 mmol/g or more, more preferably 0.2 mmol/g or more, and even more preferably 0.3 mmol/g or more. Further, the reactive silicon group equivalent introduced under Condition 1 is preferably 1.8 mmol/g or less, more preferably 1.0 mmol/g or less.
  • the reactive silicon group equivalent introduced under Condition 2 is preferably 0.1 mmol/g or more, more preferably 0.2 mmol/g or more, and even more preferably 0.3 mmol/g or more. In addition, the reactive silicon group equivalent introduced under Condition 2 is preferably 1.5 mmol/g or less, more preferably 1.0 mmol/g or less.
  • the (meth)acrylic acid ester (b1) is not particularly limited, and examples thereof include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, (meth) ) n-butyl acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) ) n-heptyl acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, (meth)acrylate,
  • the content of the (meth)acrylic acid ester (b1) is 30% relative to the total amount of the monomer components constituting the (meth)acrylic acid ester copolymer (B). It is preferably at least 40% by weight, even more preferably at least 45% by weight.
  • the upper limit is preferably 80% by weight or less, more preferably 70% by weight or less, and even more preferably 65% by weight or less.
  • the (meth)acrylic acid ester (b1) preferably contains a (meth)acrylic acid alkyl ester in which the alkyl has 1 to 4 carbon atoms, since a cured product with high strength can be obtained.
  • the (meth)acrylic acid alkyl ester in which the alkyl has 1 to 4 carbon atoms is contained in an amount of 30% by weight or more based on the total amount of the monomer components constituting the (meth)acrylic acid ester-based copolymer (B). 35% by weight or more is more preferable, and 40% by weight or more is even more preferable.
  • the upper limit is preferably 70% by weight or less, more preferably 60% by weight or less, and even more preferably 55% by weight or less.
  • (Meth)acrylic acid ester (b1) can form a hard polymer chain to obtain a cured product with high strength. It preferably contains at least one monomer selected from the group consisting of dicyclopentanyl. In particular, among the total amount of the monomer components excluding the polymer (b2), at least one selected from the group consisting of methacrylate, isobornyl acrylate, dicyclopentenyl acrylate, and dicyclopentanyl acrylate The proportion of the seed monomer is preferably 60% by weight or more, more preferably 70% by weight or more.
  • Polymer (b2) having more than one (meth)acryloyl group in the molecule is itself a polymer, it is one of the monomers constituting the (meth)acrylate copolymer (B). Since the polymer (b2) has a (meth)acryloyl group, it can be copolymerized with other monomers such as (meth)acrylic acid ester (b1). Moreover, since the polymer (b2) has more than one (meth)acryloyl group in one molecule, it can function as a so-called polyfunctional macromonomer.
  • the main chain skeleton (second molecular chain described later) of the polymer (b2) is mainly composed of the (meth)acrylic acid ester (b1) in the (meth)acrylic acid ester-based copolymer (B) 2 It can form a structure that crosslinks the molecular chains (the first molecular chain described later).
  • the polymer (b2) is also referred to as polyfunctional macromonomer (b2).
  • the (meth)acryloyl group of the polyfunctional macromonomer (b2) is preferably represented by the following formula (4).
  • CH2 C( R7 )-COO-Z (4)
  • R 7 represents hydrogen or a methyl group.
  • Z represents the main chain skeleton of the polyfunctional macromonomer (b2).
  • the polyfunctional macromonomer (b2) has an average of more than one (meth)acryloyl group in one molecule.
  • the average number of (meth)acryloyl groups per molecule of the polyfunctional macromonomer (b2) is preferably 1.1-5, more preferably 1.3-4, and 1.6-2. 5 is more preferred, and 1.8 to 2.0 is particularly preferred.
  • the polyfunctional macromonomer (b2) may have only an acryloyl group, may have only a methacryloyl group, or may have both an acryloyl group and a methacryloyl group. You may
  • the polyfunctional macromonomer (b2) can have (meth)acryloyl groups at either or both of the molecular chain terminals and side chains of the polymer. From the standpoint of excellent mechanical properties, it is preferred to have it at the end of the molecular chain. In particular, it is particularly preferred that the polyfunctional macromonomer (b2) has a linear main chain skeleton and (meth)acryloyl groups at both ends of the molecular chain.
  • the main chain skeleton of the polyfunctional macromonomer (b2) is preferably a (meth)acrylate polymer or a polyoxyalkylene polymer.
  • the polyfunctional macromonomer (b2) whose main chain skeleton is a (meth)acrylic acid ester polymer is denoted as (b2′), and the main chain skeleton is a polyoxyalkylene polymer.
  • Macromonomer (b2) is denoted as (b2′′).
  • the monomer constituting the main chain skeleton of the polyfunctional macromonomer (b2') is not particularly limited, and various (meth)acrylic monomers can be used.
  • (meth)acrylic monomers include (meth)acrylic acid, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, ( meth) n-butyl acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, ( meth)n-heptyl acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)
  • monomers that are copolymerizable with the (meth)acrylic monomer may be used in combination.
  • Other monomers include, for example, styrene-based monomers such as styrene, vinyltoluene, ⁇ -methylstyrene, chlorostyrene, and styrenesulfonic acid; fluorine-containing vinyls such as perfluoroethylene, perfluoropropylene, and vinylidene fluoride; Monomer; Maleic acid and its derivatives such as maleic acid, maleic anhydride, maleic acid monoalkyl ester, and maleic acid dialkyl ester; Fumaric acid and its derivatives such as fumaric acid, fumaric acid monoalkyl ester, and fumaric acid dialkyl ester; Maleimide-based monomers such as maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, o
  • the main chain skeleton of the polyfunctional macromonomer (b2') is preferably composed of a soft polymer.
  • the monomer component forming the main chain skeleton of the polyfunctional macromonomer (b2′) is an acrylate ester (provided that isobornyl acrylate, dicyclopentenyl acrylate, and dicyclopentaacrylate excluding nil) is preferably 60% by weight or more, more preferably 70% by weight or more. The upper limit may be 100% by weight.
  • the method for synthesizing the polyfunctional macromonomer (b2') is not particularly limited, for example, the method shown below can be used. The following methods may be used in combination.
  • a copolymer obtained by copolymerizing a monomer having a reactive functional group (V group) e.g., acrylic acid, 2-hydroxyethyl acrylate
  • V group e.g., acrylic acid, 2-hydroxyethyl acrylate
  • a compound having a functional group and (meth)acryloyl group that reacts with group V eg, 2-isocyanatoethyl (meth)acrylate.
  • (ii) A method of polymerizing a (meth)acrylic monomer by a living radical polymerization method and then introducing (meth)acryloyl groups to the ends of the molecular chain (preferably both ends of the molecular chain).
  • a living radical polymerization method uses a cobalt porphyrin complex as shown, for example, in J. Am. Chem. Soc., 1994, 116, 7943.
  • Atom Transfer Radical Polymerization using a transition metal complex as a catalyst, and the like. Atom transfer radical polymerization is most preferred because it facilitates the introduction of (meth)acryloyl groups to the ends of the molecular chains.
  • the polyoxyalkylene polymer that is the main chain skeleton of the polyfunctional macromonomer (b2′′) is not particularly limited, and examples include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, and polyoxyethylene. -polyoxypropylene copolymer, polyoxypropylene-polyoxybutylene copolymer, etc. Among them, polyoxypropylene is preferred.
  • the main chain skeleton of the polyoxyalkylene polymer may be linear or branched, but is preferably linear.
  • the method for synthesizing the polyfunctional macromonomer (b2′′) is not particularly limited, for example, a polyoxyalkylene polymer having more than one hydroxyl group in the molecule (preferably, a linear A method of preparing a polyoxyalkylene-based polymer) and introducing a (meth)acryloyl group using the hydroxyl group.
  • a polyoxyalkylene polymer having a hydroxyl group is reacted with a compound having an isocyanate group and a (meth)acryloyl group to form a urethane bond.
  • a compound having an isocyanate group and a (meth)acryloyl group can introduce a (meth)acryloyl group.
  • Specific examples of the compound having an isocyanate group and a (meth)acryloyl group include isocyanatoethyl (meth)acrylate, isocyanatopropyl (meth)acrylate, isocyanatobutyl (meth)acrylate, isocyanatohexyl (meth)acrylate, and the like. be done.
  • a polyoxyalkylene polymer having a hydroxyl group is reacted with a diisocyanate compound to introduce an isocyanate group into the polymer, and then the hydroxyl group and ( A (meth)acryloyl group can also be introduced by reacting a compound having a meth)acryloyl group.
  • the diisocyanate compound include tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-diphenylmethane diisocyanate, and the like.
  • the compound having a hydroxyl group and a (meth)acryloyl group include, for example, hydroxybutyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxyethyl (meth)acrylate, polyethylene glycol mono(meth)acryl acid esters, polypropylene glycol mono(meth)acrylic acid esters, and the like.
  • an acid anhydride is reacted with a polyoxyalkylene polymer having a hydroxyl group to introduce a carboxyl group into the polymer, followed by epoxy
  • a (meth)acryloyl group can also be introduced by reacting the group with a compound having a (meth)acryloyl group.
  • the acid anhydride include succinic anhydride, maleic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and methyl anhydride.
  • Specific examples of the compound having an epoxy group and a (meth)acryloyl group include glycidyl (meth)acrylate.
  • Still another example of the method for synthesizing the polyfunctional macromonomer (b2′′) is a method of dehydration condensation of methacrylic acid and acrylic acid on a polyoxyalkylene polymer having a hydroxyl group.
  • methacrylic acid chloride, methacrylic acid bromide, methacrylic acid iodide, acrylic acid chloride, acrylic acid bromide, acrylic acid iodide, etc. are reacted with a polyoxyalkylene polymer having a hydroxyl group. There is a way.
  • the number average molecular weight of the polyfunctional macromonomer (b2) is not particularly limited, but is preferably 500 or more from the viewpoint of achieving both the mechanical properties and adhesiveness exhibited by the cured product and the ease of handling of (b2). ,000 or more is more preferable, and 2,000 or more is even more preferable. Also, it is preferably 100,000 or less, more preferably 50,000 or less, even more preferably 40,000 or less, and particularly preferably 30,000 or less.
  • the weight average molecular weight of the polyfunctional macromonomer (b2) is not particularly limited, but is preferably 500 or more from the viewpoint of achieving both the mechanical properties and adhesiveness exhibited by the cured product and the ease of handling of (b2). ,000 or more is preferable, and 2,500 or more is more preferable. Also, it is preferably 130,000 or less, more preferably 65,000 or less, even more preferably 60,000 or less, and even more preferably 30,000 or less.
  • the molecular weight distribution (weight average molecular weight (Mw)/number average molecular weight (Mn)) of the polyfunctional macromonomer (b2) is not particularly limited, but is preferably narrow, specifically less than 2.0. 6 or less is more preferable, 1.5 or less is more preferable, 1.4 or less is even more preferable, 1.3 or less is particularly preferable, and 1.2 or less is most preferable.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of the polyfunctional macromonomer (b2) are values measured by GPC (converted to polystyrene), and detailed measurement methods are described in Examples.
  • the (meth)acrylic acid ester-based copolymer (B) is a molecular chain mainly composed of the (meth)acrylic acid ester (b1) and a molecule derived from the main chain skeleton of the polyfunctional macromonomer (b2). have chains. Since the polyfunctional macromonomer (b2) has more than one (meth)acryloyl group in one molecule, which is a polymerizable group, the (meth)acrylate copolymer (B) is a polyfunctional macro It may have a structure in which more than one molecular chain mainly composed of the (meth)acrylic acid ester (b1) is bonded to one molecular chain derived from the main chain skeleton of the monomer (b2).
  • the molecular chain derived from the main chain skeleton of the polyfunctional macromonomer (b2) is introduced into either the terminal or the side chain (non-terminal portion) of the molecular chain mainly composed of the (meth)acrylic acid ester (b1). However, from the viewpoint of adhesiveness, it is preferably introduced into the side chain.
  • an H-type structure can be formed in which molecular chains composed mainly of (meth)acrylic acid ester (b1) are bonded.
  • the molecular chain derived from the main chain skeleton of the polyfunctional macromonomer (b2) corresponds to the horizontal bar of H, and the molecular chain mainly composed of the (meth)acrylic acid ester (b1) Corresponds to the two vertical bars included.
  • the H-shaped structure will be described later.
  • the content of the polyfunctional macromonomer (b2) is preferably 1% by weight or more and 70% by weight or less with respect to the total amount of the monomer components constituting the (meth)acrylate copolymer (B). , 5 wt % or more and 60 wt % or less, more preferably 10 wt % or more and 50 wt % or less, and particularly preferably 15 wt % or more and 45 wt % or less.
  • the content of the polyfunctional macromonomer (b2) is preferably less than 35% by weight.
  • the content of the polyfunctional macromonomer (b2) is preferably 35% by weight or more.
  • the content of the polyfunctional macromonomer (b2) is 0.05 mol% or more and 6.0 mol% or less in the monomer components constituting the (meth)acrylate copolymer (B). It preferably accounts for 0.1 mol % or more and 2.3 mol % or less, and even more preferably 0.2 mol % or more and 1.5 mol % or less. Within the above range, the effects of using the polyfunctional macromonomer (b2) can be achieved while suppressing gelation during the synthesis of the (meth)acrylate copolymer (B).
  • the average number of polyfunctional macromonomers (b2) per molecule of the (meth)acrylate copolymer (B) is 0.05 or more and 2.0 or less from the viewpoint of the strength of the resulting cured product. is preferred.
  • the lower limit is more preferably 0.07 or more, and even more preferably 0.08 or more.
  • the upper limit is more preferably 1.5 or less, even more preferably 1.0 or less.
  • the average number can be calculated by the following formula.
  • a polyfunctional macromonomer (b2) is used by including a chain transfer agent (b3) having a mercapto group in the monomer component constituting the (meth)acrylate copolymer (B). Nevertheless, the molecular weight distribution of the (meth)acrylic acid ester copolymer (B) is relatively narrowed, and gelation is suppressed when synthesizing the (meth)acrylic acid ester copolymer (B). can do. In addition, it becomes possible to preferentially synthesize a polymer molecule in which one molecule of the polyfunctional macromonomer (b2) is introduced into one molecule of the (meth)acrylate copolymer (B).
  • the chain transfer agent (b3) having a mercapto group may not have a reactive silicon group, but preferably has a reactive silicon group.
  • the reactive silicon group is a reactive silicon group represented by formula (1) described above.
  • a reactive silicon group can be introduced at the end of the molecular chain mainly composed of the (meth)acrylic acid ester (b1). .
  • chain transfer agent (b3) having a mercapto group is not particularly limited, examples thereof include 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyltrimethoxysilane, (mercaptomethyl)dimethoxymethylsilane, (mercaptomethyl)trimethoxysilane. , n-dodecylmercaptan, tert-dodecylmercaptan, laurylmercaptan and the like.
  • the content of the chain transfer agent (b3) having a mercapto group is 1% by weight or more and 15% by weight or less with respect to the total amount of the monomer components constituting the (meth)acrylate copolymer (B). is preferred, more preferably 2 wt % or more and 10 wt % or less, and more preferably 3 wt % or more and 8 wt % or less.
  • the content of the chain transfer agent (b3) having a mercapto group accounts for 0.1 mol% or more and 20 mol% or less of the monomer components constituting the (meth)acrylate copolymer (B). preferably 0.4 mol% or more and 15 mol% or less, more preferably 0.5 mol% or more and 10 mol% or less, and 0.6 mol% or more and 8 mol% or less is particularly preferred. Within the above range, the effect of using the chain transfer agent (b3) having a mercapto group can be achieved.
  • the content of the polyfunctional macromonomer (b2) and the content of the chain transfer agent (b3) having a mercapto group improve the strength of the resulting cured product, so the polyfunctional macromonomer (b2)/mercapto group
  • the molar ratio of the chain transfer agent (b3) to have is preferably 0.03 or more, more preferably 0.05 or more, still more preferably 0.09 or more, and particularly preferably 0.1 or more.
  • the upper limit of the molar ratio is not particularly limited, it is preferably 1 or less, more preferably 0.5 or less, and even more preferably 0.3 or less.
  • the (meth)acrylic ester-based copolymer (B) may have a substituent derived from the chain transfer agent (b3) having a mercapto group (structure represented by —S—R 8 described later). Therefore, it may contain sulfur atoms.
  • the sulfur atom concentration in the (meth)acrylate copolymer (B) is preferably 700 ppm or more and 20,000 ppm or less, more preferably 1,000 ppm or more and 15,000 ppm or less.
  • the method for measuring the sulfur atom concentration is not particularly limited. It can be measured by known elemental analysis methods such as organic elemental analysis and fluorescent X-ray analysis. Further, the sulfur atom concentration is calculated from the total amount of the monomer components used in the production of the (meth)acrylate copolymer (B) and the amount (b3) of the chain transfer agent having a mercapto group. It may be a theoretical value.
  • the monomer (b4) having a reactive silicon group and a polymerizable unsaturated group is an arbitrary monomer and may not be used, but is preferably used.
  • the reactive silicon group possessed by the monomer (b4) is the reactive silicon group represented by formula (1) described above.
  • Examples of the monomer (b4) having a reactive silicon group and a polymerizable unsaturated group include 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth)acryloxypropyltriethoxysilane, 3-( Compounds having a (meth)acryloxy group and a reactive silicon group, such as meth)acryloxypropyldimethoxymethylsilane, (meth)acryloxymethyltrimethoxysilane, and (meth)acryloxymethyldimethoxymethylsilane; vinyltrimethoxysilane, vinyl Examples include compounds having a vinyl group and a reactive silicon group such as triethoxysilane. These compounds may use only 1 type and may use 2 or more types together.
  • the content of the monomer (b4) is 0.1 weight with respect to the total amount of the monomer components constituting the (meth)acrylic acid ester copolymer (B). % or more and 50 wt % or less, more preferably 0.5 wt % or more and 30 wt % or less, even more preferably 1 wt % or more and 20 wt % or less, and particularly preferably 2 wt % or more and 15 wt % or less. Moreover, the content of the monomer (b4) is preferably 10% by weight or less from the viewpoint of improving the thixotropy of the curable composition and obtaining a cured product with high elongation.
  • the monomer component constituting the (meth)acrylic acid ester copolymer (B) contains another monomer (b5) that does not correspond to any of (b1) to (b4) described in detail above. It may contain, or may not contain.
  • Other monomers (b5) include (meth)acrylic esters (b1) and monomers (b4) having a reactive silicon group and a polymerizable unsaturated group (meth)acrylic monomers and monomers other than the (meth)acrylic monomer. Specifically, other monomers described above for multifunctional macromonomer (b2') can be used.
  • the number average molecular weight of the (meth)acrylic acid ester copolymer (B) is not particularly limited, but is preferably 500 or more and 50,000 or less, preferably 500 or more and 30,000 or less, in terms of polystyrene equivalent molecular weight by GPC measurement. More preferably, 1,000 or more and 10,000 or less are particularly preferable. Among them, the number average molecular weight is preferably 7,000 or less because a (meth)acrylic acid ester copolymer (B) having a low viscosity can be obtained. In addition, the number average molecular weight is preferably 3,500 or less because good adhesiveness can be exhibited with low viscosity.
  • the weight average molecular weight of the (meth)acrylic acid ester copolymer (B) is not particularly limited, but is preferably 500 or more and 80,000 or less, preferably 3,000 or more and 70,000, in terms of polystyrene equivalent molecular weight by GPC measurement. The following are more preferable, and 5,000 or more and 65,000 or less are particularly preferable. Among them, the weight-average molecular weight is preferably 20,000 or less because a cured product having a low viscosity and a high strength can be obtained.
  • the value calculated by the following formula is 1.1 or more. is preferred.
  • the fact that the value calculated by the above formula is 1.1 or more means that the average number of introduction of the polyfunctional macromonomer (b2) in one molecule of the (meth)acrylic acid ester copolymer (B) is large. It means that the strength of the resulting cured product can be further improved.
  • the value calculated by the above formula is preferably 1.1 or more, more preferably 1.2 or more, and even more preferably 1.3 or more.
  • the upper limit is not particularly limited, it is preferably 10 or less, more preferably 5 or less.
  • the molecular weight distribution of the (meth)acrylic acid ester copolymer (B) is not particularly limited, but from the viewpoint of making the (meth)acrylic acid ester copolymer (B) low in viscosity, it ranges from 3.0 to 11.0. The following is preferable, 3.2 to 10.0 is more preferable, and 3.4 to 8.0 is even more preferable.
  • the molecular weight distribution of the (meth)acrylate copolymer (B) can be determined from the number average molecular weight and weight average molecular weight obtained by GPC measurement.
  • the (meth)acrylate copolymer (B) may contain a triblock copolymer.
  • the triblock copolymer comprises a structure in which two first molecular chains are linked via one second molecular chain.
  • the first molecular chain is mainly composed of a molecular chain obtained by polymerizing the (meth)acrylic acid ester (b1), and the second molecular chain is composed of the main chain skeleton of the polyfunctional macromonomer (b2). .
  • the first molecular chain is a molecular chain formed by copolymerization of (b1), (meth)acryloyl groups in (b2), (b3), optional (b4), and optional other monomers. .
  • a reactive silicon group is attached to this first molecular chain.
  • the chain transfer agent (b3) having a mercapto group has a reactive silicon group
  • a monomer (b4) is used, a reactive silicon group is attached to the non-terminal portion of the first molecular chain.
  • the second molecular chain corresponds to the main chain skeleton of the (meth)acrylate polymer or polyoxyalkylene polymer in the polyfunctional macromonomer (b2).
  • the bonding method of two first molecular chains and one second molecular chain is different from that of ordinary ABA-type triblock copolymers, and both ends of the second molecular chain are respectively non-terminal sites of the first molecular chain.
  • the triblock copolymer comprises an H-type structure, where two vertical bars in H correspond to two first molecular chains and one horizontal bar in H corresponds to one second molecular chain. It corresponds to a molecular chain.
  • the (meth)acrylic acid ester-based copolymer (B) is not limited to a triblock copolymer with an H-type structure, and in addition to a triblock copolymer with an H-type structure, It may contain a block copolymer having Block copolymers having such other structures include, for example, block copolymers having a structure in which three first molecular chains are bonded via two second molecular chains.
  • the first molecular chain and the second molecular chain have an ester bond derived from the (meth)acryloyl group in the polyfunctional macromonomer (b2) (that is, an ester bond corresponding to the ester bond in the formula (4)). are connected through
  • the first molecular chain is composed of a hard polymer and the second molecular chain is composed of a soft polymer, it is preferable because a cured product with high strength and high elongation can be obtained.
  • a hard polymer refers to a polymer with a high glass transition temperature.
  • a soft polymer refers to a polymer with a low glass transition temperature.
  • the monomer components constituting the first molecular chain are methacrylic acid esters, It preferably contains at least one monomer selected from the group consisting of isobornyl acrylate, dicyclopentenyl acrylate, and dicyclopentanyl acrylate.
  • the ratio of the monomers to the total amount of monomer components constituting the first molecular chain is preferably 60% by weight or more, more preferably 70% by weight or more. The upper limit may be 100% by weight.
  • the second molecular chain when the second molecular chain is composed of a soft polymer, the second molecular chain may be the main chain skeleton of a polyoxyalkylene-based polymer, or a (meth)acrylic acid ester-based polymer.
  • the monomer component constituting the second molecular chain (the monomer component forming the main chain skeleton of (b2′)) is an acrylate ester (however, isobornyl acrylate, dicycloacrylate excluding pentenyl and dicyclopentanyl acrylate).
  • the acrylic acid ester accounts for preferably 60% by weight or more, more preferably 70% by weight or more, of the monomer components constituting the second molecular chain.
  • the upper limit may be 100% by weight.
  • the first molecular chain is a molecular chain formed by reacting a chain transfer agent (b3) having a mercapto group, at either end of the first molecular chain, as a substituent derived from (b3) , —SR 8 .
  • S represents a sulfur atom
  • R8 represents a hydrocarbon group which may have a reactive silicon group.
  • the hydrocarbon group includes an alkyl group having 1 to 20 carbon atoms, an aryl group, an aralkyl group, and the like.
  • the said reactive silicon group is a reactive silicon group represented by Formula (1) mentioned above.
  • Specific examples of R 8 include reactive silicon group-containing methyl group, reactive silicon group-containing propyl group, n-dodecyl group, tert-dodecyl group, lauryl group and the like.
  • the molar ratio of the main chain skeleton of the polyfunctional macromonomer (b2) to the —SR 8 is preferably 0.03 or more, more preferably 0.05 or more, and 0.05 or more. 09 or more is more preferable, and 0.1 or more is particularly preferable.
  • the upper limit of the molar ratio is not particularly limited, it is preferably 1 or less, more preferably 0.5 or less, and even more preferably 0.3 or less.
  • the (meth)acrylate copolymer (B) can be produced by polymerizing the above monomer components.
  • the polymerization method is not particularly limited, but may be general free radical polymerization. According to the present embodiment, although it is a free radical polymerization, it is possible to control the polymerization, and it is possible to produce a (meth)acrylic acid ester copolymer (B) that is a block copolymer. , its molecular weight distribution can be relatively narrow.
  • Polymerization initiators that can be used in the free radical polymerization include, for example, 2,2′-azobis(2-methylbutyronitrile), dimethyl 2,2′-azobis(2-methylpropionate), 2,2 '-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis [N- (2-propenyl) -2- methyl propionamide], 1,1'-azobis (cyclohexane-1-carbonitrile) and other azo compounds; benzoyl peroxide, isobutyryl peroxide, isononanoyl peroxide, decanoyl peroxide, lauroyl peroxide, para diacyl peroxides such as chlorobenzoyl peroxide and di(3,5,5-trimethylhexanoyl) peroxide; diisopropyl purge carbonate, di-sec-butyl purge carbonate, di-2
  • solvents that can be used in the free radical polymerization include aromatic solvents such as toluene, xylene, styrene, ethylbenzene, paradichlorobenzene, di-2-ethylhexyl phthalate, and di-n-butyl phthalate; hexane, Aliphatic hydrocarbon solvents such as heptane, octane, cyclohexane, and methylcyclohexane; carboxylic acid ester compounds such as butyl acetate, n-propyl acetate, and isopropyl acetate; ketone compounds such as methyl isobutyl ketone and methyl ethyl ketone; dimethyl carbonate, diethyl carbonate, etc.
  • aromatic solvents such as toluene, xylene, styrene, ethylbenzene, paradichlorobenzene, di-2-eth
  • alcohol compounds such as n-propanol, 2-propanol, n-butanol, 2-butanol, isobutanol, tert-butanol, and amyl alcohol; Among them, alcohol compounds are preferable because they have a narrow molecular weight distribution.
  • Aromatic solvents are preferred because of their high dissolving power.
  • Aliphatic hydrocarbon solvents are preferred because of their low odor.
  • the molecular weight distribution of the (meth)acrylate copolymer (B) is affected by the amount of the chain transfer agent (b3) added and the solvent. When the amount of chain transfer agent (b3) added is 3% by weight or less, it is greatly affected by the type of solvent. When it is desired to obtain a (meth)acrylic acid ester copolymer (B) with a narrow molecular weight distribution, isobutanol is preferably used as the solvent.
  • the (meth)acrylic acid ester copolymer (B) uses a monomer (b4) having a reactive silicon group and a polymerizable unsaturated group, or reacts in addition to a mercapto group.
  • a chain transfer agent (b3) having a reactive silicon group it will have a reactive silicon group. Both methods may be used in combination.
  • a monomer (b4) having a reactive silicon group and a polymerizable unsaturated group reactive silicon is randomly added to the side chains of the molecular chain mainly composed of (meth)acrylic acid ester (b1) groups can be introduced.
  • a chain transfer agent (b3) having a reactive silicon group in addition to a mercapto group a reactive silicon group is added to the end of the molecular chain mainly composed of the (meth)acrylic acid ester (b1). can be introduced.
  • a method of reacting an isocyanate silane compound having a reactive silicon group, or after copolymerizing glycidyl acrylate, an aminosilane compound having a reactive silicon group is used.
  • a method of reacting can be exemplified.
  • a (meth)acrylic ester copolymer obtained by a living radical polymerization method is easy to introduce a functional group into the terminal of the polymer, and by modifying this, a reactive silicon group can be introduced into the terminal of the polymer.
  • Examples of the compound having a reactive silicon group and a functional group that reacts with group V used in method (iii) include 3-isocyanatopropyldimethoxymethylsilane, 3-isocyanatopropyltrimethoxysilane, and 3-isocyanatopropyltriethoxysilane.
  • any modification reaction can be used.
  • a method of blending a (meth)acrylic acid ester copolymer (B) and a polyoxyalkylene polymer (A) is disclosed in JP-A-59-122541, JP-A-63-112642, and JP-A-6. -172631, Japanese Patent Application Laid-Open No. 11-116763, and the like.
  • a method of polymerizing a (meth)acrylic acid ester-based monomer in the presence of a polyoxypropylene-based polymer having a reactive silicon group can be used.
  • the weight ratio (A):(B) of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B) is 95:5 to 10:90, that is, the weight ratio of (A)
  • the proportion is preferably 10% by weight or more and 95% by weight or less.
  • the ratio (A):(B) is preferably 80:20 to 20:80, more preferably 70:30 to 30:70.
  • the upper limit may be 50:50.
  • the ratio is preferably 50:50 to 20:80, more preferably 45:55 to 30:70.
  • the plasticizer (C) is an optional component, but is preferably blended with the B agent. It may be blended only in the B agent, or may be blended in each of the A agent and the B agent. Moreover, the plasticizer (C) may not be blended with the B agent and may be blended only with the A agent. Addition of the plasticizer (C) makes it possible to lower the viscosity of the curable composition and facilitate handling. In particular, by blending in the B agent, mixing of the A agent and the B agent can be easily realized.
  • the plasticizer (C) may not be blended with the B agent, and instead, the polyoxyalkylene polymer (A) and/or the epoxy resin (D) described above may be blended with the B agent. In addition, the plasticizer (C), the polyoxyalkylene polymer (A) and/or the epoxy resin (D) may be blended in the B agent. In addition, when the B agent contains the polyoxyalkylene polymer (A), the polyoxyalkylene polymer (A) contained in the A agent and the polyoxyalkylene polymer (A) contained in the B agent are the same. It may be one, or it may be different.
  • the plasticizer (C) is not particularly limited, and examples thereof include phthalates such as dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), and butylbenzyl phthalate.
  • phthalates such as dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), and butylbenzyl phthalate.
  • terephthalic acid ester compounds such as bis(2-ethylhexyl)-1,4-benzenedicarboxylate; non-phthalic acid ester compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester; dioctyl adipate, dioctyl sebacate, sebacin Aliphatic polyvalent carboxylic acid ester compounds such as dibutyl acid, diisodecyl succinate, and acetyl tributyl citrate; unsaturated fatty acid ester compounds such as butyl oleate and methyl acetylricinoleate; phosphoric acid ester compounds; trimellitic acid ester compounds chlorinated paraffin; hydrocarbon oils such as alkyldiphenyl and partially hydrogenated terphenyl; process oil; epoxidized soybean oil, epoxidized linseed oil, bis(2-ethylhexyl)-4,5-ep
  • a polymeric plasticizer can also be used as the plasticizer (C).
  • polymeric plasticizers include vinyl polymers; polyester plasticizers; polyether polyols such as polyethylene glycol and polypropylene glycol having a number average molecular weight of 500 or more; polyether plasticizers such as derivatives converted to polystyrenes; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene and the like.
  • polymer plasticizers are preferred, polyether plasticizers are more preferred, and polypropylene glycol is particularly preferred.
  • the plasticizer (C) only one type may be used, or two or more types may be used in combination.
  • the total blending amount of the plasticizer (C) is 5 to 150 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B). is preferred, 10 to 120 parts by weight is more preferred, and 20 to 100 parts by weight is particularly preferred.
  • the epoxy resin (D) is an optional component, but when blended, it is preferably blended with the B agent.
  • Commonly used epoxy resins can be used as the epoxy resin (D).
  • epichlorohydrin-bisphenol A type epoxy resin epichlorohydrin-bisphenol F type epoxy resin
  • flame retardant epoxy resin such as glycidyl ether of tetrabromobisphenol A, novolac type epoxy resin
  • hydrogenated bisphenol A type epoxy resin bisphenol A propylene oxide adduct glycidyl ether type epoxy resin
  • p-oxybenzoic acid glycidyl ether ester type epoxy resin m-aminophenol type epoxy resin, diaminodiphenylmethane type epoxy resin, urethane modified epoxy resin, various alicyclic epoxies Resin, N,N-diglycidylaniline, N,N-diglycidyl-o-toluidine,
  • an epoxy resin having at least two epoxy groups in one molecule is preferable because it has high reactivity during curing and the cured product can easily form a three-dimensional network. More preferred are bisphenol A type epoxy resins and novolac type epoxy resins.
  • the amount of the epoxy resin (D) used is the total of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B), and the weight ratio of the epoxy resin (D) [(A+B): (D)] is 90:10 to 50:50, that is, the ratio of (A+B) is preferably 50% by weight or more and 90% by weight or less. From the viewpoint of the flexibility of the cured product, it is preferably 50% by weight or more, and from the viewpoint of the strength of the cured product, it is preferably 90% by weight or less. Furthermore, 80:20 to 60:40 is more preferable in terms of balance between flexibility and strength.
  • epoxy resin curing agent (E) ⁇ epoxy resin curing agent (E)>>
  • the epoxy resin curing agent (E) is preferably blended in a different agent from the agent in which the epoxy resin (D) is blended, and more specifically, blended in the A agent.
  • epoxy resin curing agent (E) it is preferable to use an epoxy resin curing agent having a tertiary amine.
  • an epoxy resin curing agent having a tertiary amine By using an epoxy resin curing agent having a tertiary amine, a cured product with high rigidity, high strength and high elongation can be obtained.
  • any compound having a tertiary amine can be used.
  • the epoxy resin curing agent having a tertiary amine is preferably an aromatic amine, and more preferably has three or more amino groups.
  • 2,4,6-tris(dimethylaminomethyl)phenol can be exemplified.
  • the amount of the epoxy resin curing agent (E) used is preferably 0.1 parts by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the epoxy resin (D). It is more preferably 0.5 parts by weight or more and 30 parts by weight or less.
  • Water (F) is an optional component, but is preferably blended.
  • water (F) when using the curable composition according to the present embodiment, the reactive silicon of the polyoxyalkylene polymer (A) and the (meth) acrylic acid ester copolymer (B) The hydrolysis reaction of the group is promoted, and the initial development of adhesive strength is improved.
  • Water (F) may be blended with either agent A or agent B, but is preferably blended with agent B. According to this aspect, it is possible to avoid deterioration of the storage stability of the agent A containing the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester copolymer (B).
  • the amount of water (F) added is, from the viewpoint of initial adhesive strength development, with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester copolymer (B). It is preferably from 0.1 to 10 parts by weight, more preferably from 0.3 to 5 parts by weight, and even more preferably from 0.5 to 3 parts by weight.
  • the ratio of water (F) to the total amount of agent B is preferably 0.5 to 30% by weight. Within this range, mixing of the A agent and the B agent can be easily achieved. It is more preferably 1 to 20% by weight, still more preferably 2 to 15% by weight.
  • silanol condensation catalyst (G) is an optional component, but it promotes the condensation reaction of the reactive silicon groups of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B). Since it is possible, it is preferable to be blended.
  • the silanol condensation catalyst (G) may be blended with either the A agent or the B agent, or may be blended with both.
  • silanol condensation catalyst (G) examples include organic tin compounds, carboxylic acid metal salts, amine compounds, carboxylic acids, and alkoxy metals.
  • organotin compounds include dibutyltin dilaurate, dibutyltin dioctanoate, dibutyltin bis(butyl maleate), dibutyltin diacetate, dibutyltin oxide, dibutyltin bis(acetylacetonate), dibutyltin oxide and silicate compounds.
  • reaction product with dibutyltin oxide and phthalate ester dioctyltin diacetate, dioctyltin dilaurate, dioctyltin bis(ethyl maleate), dioctyltin bis(octyl maleate), dioctyltin bis(acetylacetonate) phosphate), dioctyltin distearate, dioctyltin oxide, a reaction product of dioctyltin oxide and a silicate compound, and the like.
  • carboxylate metal salts include tin carboxylate, bismuth carboxylate, titanium carboxylate, zirconium carboxylate, iron carboxylate, potassium carboxylate, and calcium carboxylate.
  • carboxylic acid metal salt the following carboxylic acid and various metals can be combined.
  • amine compounds include amines such as octylamine, 2-ethylhexylamine, laurylamine, and stearylamine; pyridine, 1,8-diazabicyclo[5,4,0]undecene-7 (DBU), 1,5 - nitrogen-containing heterocyclic compounds such as diazabicyclo[4,3,0]nonene-5(DBN); guanidines such as guanidine, phenylguanidine and diphenylguanidine; butylbiguanide, 1-o-tolylbiguanide and 1-phenylbiguanide biguanides such as; amino group-containing silane coupling agents; and ketimine compounds.
  • amines such as octylamine, 2-ethylhexylamine, laurylamine, and stearylamine
  • pyridine 1,8-diazabicyclo[5,4,0]undecene-7 (DBU), 1,5 - nitrogen-containing heterocyclic compounds
  • carboxylic acids include acetic acid, propionic acid, butyric acid, 2-ethylhexanoic acid, lauric acid, stearic acid, oleic acid, linoleic acid, neodecanoic acid, and versatic acid.
  • alkoxy metals include titanium compounds such as tetrabutyl titanate, titanium tetrakis(acetylacetonate), diisopropoxytitanium bis(ethylacetonate), aluminum tris(acetylacetonate), diisopropoxyaluminum ethylacetate.
  • titanium compounds such as tetrabutyl titanate, titanium tetrakis(acetylacetonate), diisopropoxytitanium bis(ethylacetonate), aluminum tris(acetylacetonate), diisopropoxyaluminum ethylacetate.
  • Aluminum compounds such as acetate, zirconium compounds such as zirconium tetrakis (acetylacetonate), and the like.
  • fluorine anion-containing compounds As other silanol condensation catalysts, fluorine anion-containing compounds, photoacid generators, and photobase generators can also be used.
  • the silanol condensation catalyst may be used in combination of two or more different catalysts.
  • the combined use of the amine compound and carboxylic acid, or the combined use of the amine compound and alkoxy metal has the effect of improving reactivity. may be obtained.
  • the amount of the silanol condensation catalyst (G) used is, from the viewpoint of promoting the condensation reaction of reactive silicon groups, the total weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester copolymer (B) of 100 weight. It is preferably 0.001 to 20 parts by weight, more preferably 0.01 to 15 parts by weight, and even more preferably 0.01 to 10 parts by weight.
  • the curable composition according to the present embodiment includes a polyoxyalkylene polymer (A), a (meth)acrylic acid ester copolymer (B), a plasticizer (C), an epoxy resin (D), an epoxy resin
  • a polyoxyalkylene polymer A
  • B a (meth)acrylic acid ester copolymer
  • C plasticizer
  • D an epoxy resin
  • E curing agent
  • F water
  • G silanol condensation catalyst
  • additives such as fillers, adhesion imparting agents, dehydrating agents, rheology control agents, antioxidants, light stabilizers, ultraviolet rays Absorbents, tackifying resins, and other resins may be added.
  • additives may be added to the curable composition according to the present embodiment as necessary for the purpose of adjusting various physical properties of the curable composition or cured product.
  • additives include solvents, diluents, photo-curing substances, oxygen-curing substances, surface property modifiers, silicates, curability modifiers, radical inhibitors, metal deactivators, ozone Degradation inhibitors, phosphorus-based peroxide decomposers, lubricants, pigments, antifungal agents, flame retardants, foaming agents and the like.
  • a filler can be blended into the curable composition. It may be blended with the A agent or may be blended with the B agent. It may be blended in each of the A agent and the B agent. The strength of the cured product can be improved by adding a filler.
  • Fillers include ground calcium carbonate, colloidal calcium carbonate, magnesium carbonate, diatomaceous earth, clay, talc, titanium oxide, fumed silica, precipitated silica, crystalline silica, fused silica, anhydrous silicic acid, hydrous silicic acid, Alumina, carbon black, ferric oxide, fine aluminum powder, zinc oxide, activated zinc white, PVC powder, PMMA powder, glass fiber and filament, and the like.
  • Organic balloons and inorganic balloons may be added for the purpose of weight reduction (lower specific gravity) of the composition. Only one type of filler may be used, or two or more types may be used in combination.
  • the amount of filler used is preferably 1 to 300 parts by weight, preferably 10 to 250 parts by weight, with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B). Parts by weight are more preferred.
  • the curable composition may contain an adhesive agent. It may be blended in the A agent or the B agent, but is preferably blended in the A agent. A silane coupling agent or a reactant of the silane coupling agent can be added as the adhesion imparting agent.
  • silane coupling agents include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ -aminoethyl- ⁇ -aminopropyltrimethoxysilane, N- ⁇ -aminoethyl- ⁇ - Amino group-containing silanes such as aminopropylmethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, (2-aminoethyl)aminomethyltrimethoxysilane; ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltrimethoxysilane; isocyanate group-containing silanes such as ethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatomethyltrimethoxysilane, ⁇ -isocyan
  • Condensates of various silane coupling agents such as condensation products of amino group-containing silanes, condensation products of amino group-containing silanes and other alkoxysilanes; reaction products of amino group-containing silanes and epoxy group-containing silanes; Reaction products of various silane coupling agents, such as reaction products of containing silanes and (meth)acrylic group-containing silanes, can also be used.
  • the adhesion imparting agent may be used alone or in combination of two or more.
  • the amount of adhesion-imparting agent used is preferably 0.1 to 20 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B). , more preferably 0.5 to 10 parts by weight.
  • a dehydrating agent can be added to the curable composition.
  • a dehydrating agent is preferably added to the A agent to improve the stability of the A agent.
  • the dehydrating agent is preferably a compound that can react with water, more preferably a silicon compound that can react with water (excluding compounds corresponding to adhesiveness-imparting agents), and particularly a trialkoxysilane compound. preferable.
  • dehydrating agent examples include vinyl group-containing silanes such as methyltrimethoxysilane, phenyltrimethoxysilane, n-propyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane and vinylmethyldimethoxysilane. and the like. Only one type of dehydrating agent may be used, or two or more types may be used.
  • the amount of dehydrating agent used is preferably 0.1 to 20 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester copolymer (B). .5 to 10 parts by weight is more preferred, and 1 to 5 parts by weight is even more preferred.
  • a rheology control agent may be added to the curable composition to prevent sagging and improve workability. It may be blended in the A agent or the B agent, but is preferably blended in the A agent.
  • rheology control agent is not particularly limited, examples thereof include fatty acid amide waxes, hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate; dry silica, wet silica, and the like. These rheology control agents may be used alone or in combination of two or more.
  • the amount of the rheology control agent used is preferably 0.1 to 20 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B).
  • An antioxidant can be used in the curable composition.
  • the use of an antioxidant can enhance the weather resistance of the cured product.
  • antioxidants include hindered phenols, monophenols, bisphenols, and polyphenols. Specific examples of antioxidants are also described in JP-A-4-283259 and JP-A-9-194731.
  • the amount of antioxidant used is preferably 0.1 to 10 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B). 0.2 to 5 parts by weight is more preferred.
  • a light stabilizer can be used in the curable composition.
  • the use of a light stabilizer can prevent photo-oxidative deterioration of the cured product.
  • Benzotriazole-based, hindered amine-based, and benzoate-based compounds can be exemplified as light stabilizers, and hindered amine-based compounds are particularly preferred.
  • the amount of light stabilizer used is preferably 0.1 to 10 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B). 0.2 to 5 parts by weight is more preferred.
  • a UV absorber can be used in the curable composition.
  • the use of an ultraviolet absorber can enhance the surface weather resistance of the cured product.
  • UV absorbers include benzophenone-based, benzotriazole-based, salicylate-based, substituted acrylonitrile-based, and metal chelate-based compounds.
  • Benzotriazole-based compounds are particularly preferred, and are commercially available as Tinuvin P, Tinuvin 213, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, Tinuvin 329, and Tinuvin 571 (manufactured by BASF).
  • the amount of the ultraviolet absorber used is preferably 0.1 to 10 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B). 0.2 to 5 parts by weight is more preferred.
  • a physical property modifier for adjusting the tensile properties of the resulting cured product may be added to the curable composition, if necessary.
  • the physical property modifier is not particularly limited, for example, alkylalkoxysilanes such as phenoxytrimethylsilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; diphenyldimethoxysilane, phenyltrimethoxysilane.
  • arylalkoxysilanes such as; alkylisopropenoxysilanes such as dimethyldiisopropenoxysilane, methyltriisopropenoxysilane, ⁇ -glycidoxypropylmethyldiisopropenoxysilane; silyl)borates; silicone varnishes; and polysiloxanes.
  • the physical property modifier By using the physical property modifier, the hardness of the cured curable composition according to the present embodiment can be increased, or conversely, the hardness can be decreased and elongation at break can be increased.
  • the physical property modifiers may be used alone or in combination of two or more.
  • a compound that produces a compound having a monovalent silanol group in its molecule by hydrolysis has the effect of lowering the modulus of the cured product without exacerbating the stickiness of the surface of the cured product.
  • Compounds that generate trimethylsilanol are particularly preferred.
  • examples of compounds that generate a compound having a monovalent silanol group in the molecule by hydrolysis include alcohol derivatives such as hexanol, octanol, phenol, trimethylolpropane, glycerin, pentaerythritol, and sorbitol, which are hydrolyzed into silane monovalent groups.
  • Mention may be made of silicon compounds that produce ols. Specific examples include phenoxytrimethylsilane and tris((trimethylsiloxy)methyl)propane.
  • the amount of the physical property modifier used is preferably 0.1 to 10 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester copolymer (B). 0.5 to 5 parts by weight is more preferred.
  • a tackifier resin can be added to the curable composition for the purpose of enhancing the adhesiveness or adhesion to the substrate, or for other purposes.
  • Specific examples of tackifying resins include terpene-based resins, aromatic modified terpene resins, hydrogenated terpene resins, terpene-phenol resins, phenol resins, modified phenol resins, xylene-phenol resins, cyclopentadiene-phenol resins, and coumarone-indene.
  • the amount of the tackifying resin used is preferably 2 to 100 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B), and 5 to 100 parts by weight. 50 parts by weight is more preferred, and 5 to 30 parts by weight is even more preferred.
  • the curable composition according to the present embodiment comprises an A agent containing at least a polyoxyalkylene polymer (A) and an acrylic acid ester copolymer (B), a polyoxyalkylene polymer (A) and a plasticizer It is composed of (C) and a B agent containing at least one of the epoxy resins (D), and is preferably prepared as a multi-liquid type in which the A agent and the B agent are mixed before use.
  • the curable composition according to this embodiment may be cured at room temperature or may be cured by heating.
  • the heating temperature is not particularly limited, but is preferably 40° C. or higher, more preferably 60° C. or higher, and even more preferably 80° C. or higher. However, if the temperature rises to 100°C or higher, the water in agent B evaporates and may cause voids, so the heating temperature is preferably lower than 100°C.
  • the curable composition according to this embodiment can exhibit good adhesion to various adherends such as plastics, metals and composite materials.
  • adherends such as plastics, metals and composite materials.
  • non-polar materials such as polypropylene and engineering plastics having rigid molecular chains such as polyphenylene sulfide
  • the adherend can be previously surface-treated by known methods. For example, surface treatment techniques such as sanding, flame treatment, corona discharge, arc discharge, plasma treatment, etc. can be used. Plasma treatment is preferred because it causes little damage to the adherend and provides stable adhesion. These surface treatments are also effective for removing release agents used during molding and remaining on the adherend surface.
  • the curable composition according to a preferred embodiment exhibits the desired physical properties by performing a long-term curing (curing) step after bonding the adherend, while the long-term curing step is performed before It may have the property that the initial adhesive strength is relatively high. Therefore, the curable composition can be suitably used for bonding adherends in a continuous line production system.
  • the conditions of the final curing (curing) step for the curable composition to express the final desired physical properties are not particularly limited, but for example, the temperature is 5 to 90 ° C. and the time is 24 hours to 1 week. be done.
  • the curable composition is suitable for use as an adhesive composition, sealing materials for buildings, ships, automobiles, roads, etc., adhesives for joining panels of buses, trailers, trains, etc., adhesives, waterproofing. It can be used for materials.
  • the curable compositions are also suitable for joining dissimilar materials such as aluminum-steel, steel-composites, and aluminum-composites. When dissimilar materials are joined, it is preferable to cover the joint with a sealer to prevent corrosion.
  • a sealer it is possible to use a polymer having reactive silicon groups as shown in this application.
  • Applications in which the curable composition is used include automotive parts such as vehicle panels, large vehicle parts such as trucks and buses, train vehicle parts, aircraft parts, ship parts, electrical parts, and various machine parts. It is preferably used as an adhesive.
  • a multi-component curable composition comprising agent A and agent B, Agent A contains a polyoxyalkylene polymer (A) having a reactive silicon group, and a (meth)acrylic acid ester copolymer (B) having a reactive silicon group, Agent B contains at least one compound selected from the group consisting of a polyoxyalkylene polymer (A) having a reactive silicon group, a plasticizer (C), and an epoxy resin (D),
  • the monomer component constituting the (meth)acrylic acid ester copolymer (B) is (meth) acrylic acid ester (b1), A polymer (b2) having more than one (meth)acryloyl group in the molecule, and containing a chain transfer agent (b3) having a mercapto group,
  • the monomer component further contains a monomer (b4) having a reactive silicon group and a polymerizable unsaturated group, and/or the
  • [Item 5] 5 The multi-component curable composition according to any one of items 1 to 4, wherein the polyoxyalkylene polymer (A) has a terminal structure represented by the general formula (2).
  • [Item 6] 6 The multicomponent curable composition according to any one of items 1 to 5, wherein the main chain structure of the polyoxyalkylene polymer (A) is branched.
  • the B agent further contains water (F).
  • agent B contains, as the compound, a polyoxyalkylene polymer (A) having a reactive silicon group.
  • agent B contains, as the compound, a polyoxyalkylene polymer (A) having a reactive silicon group.
  • B agent contains a plasticizer (C) as the compound.
  • C plasticizer
  • B agent contains an epoxy resin (D) as the compound.
  • D epoxy resin
  • the number average molecular weight and weight average molecular weight in the examples are GPC molecular weights measured under the following conditions.
  • Liquid delivery system Tosoh HLC-8120GPC
  • Column TSK-GEL H type manufactured by Tosoh Solvent: THF
  • Molecular weight Polystyrene equivalent Measurement temperature: 40°C
  • the terminal group equivalent molecular weights in the examples were obtained by determining the hydroxyl value by the measurement method of JIS K 1557, the iodine value by the measurement method of JIS K 0070, and the structure of the organic polymer (the degree of branching determined by the polymerization initiator used). It is the molecular weight obtained by taking into consideration.
  • the average number of carbon-carbon unsaturated bonds introduced per terminal of the polymer shown in the examples was calculated by the following formula.
  • (Average introduction number) [Unsaturated group concentration of polymer determined from iodine value (mol/g) - Unsaturated group concentration of precursor polymer determined from iodine value (mol/g)]/[Determined from hydroxyl value Hydroxyl group concentration of precursor polymer (mol/g)]
  • the average number of reactive silicon groups introduced per terminal of the polymer (A) shown in Examples was calculated by NMR measurement.
  • the sulfur atom concentration is a theoretical value calculated from the total amount of the monomer components used in the production of the (meth)acrylate copolymer (B) and the amount of the chain transfer agent (b3) having a mercapto group. be.
  • Synthesis example 1 Polyoxypropylene triol having a number average molecular weight of about 4,020 (molecular weight as converted to terminal group: 2,980) is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to obtain a number average molecular weight of 26,200 ( A polyoxypropylene triol having a terminal group-equivalent molecular weight of 17,440 was obtained. Sodium methoxide was added as a 28% methanol solution in an amount of 1.0 molar equivalent to the hydroxyl group of the obtained hydroxyl group-terminated polyoxypropylene.
  • Synthesis example 2 Polyoxypropylene triol having a number average molecular weight of about 4,020 (molecular weight as converted to terminal group: 2,980) is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to obtain a number average molecular weight of 26,200 ( A polyoxypropylene triol having a terminal group-equivalent molecular weight of 17,440 was obtained. Subsequently, a methanol solution of 1.2 equivalents of NaOMe is added to the hydroxyl group of the hydroxyl-terminated polyoxypropylene triol to distill off the methanol, and 1.5 equivalents of 3-chloro-1-propene is added.
  • a linear reactive silicon group-containing polyoxypropylene polymer (A-3) having an average number of silicon groups of 3.2 and a number average molecular weight of 14,600 was thus obtained.
  • the filtrate was concentrated under reduced pressure, and the polymer having an acryloyl group at one end (that is, having one acryloyl group in one polymer molecule) had a number average molecular weight of 10,700 (GPC molecular weight) and a molecular weight distribution (Mw/Mn) of A macromonomer (p-1), which is a (meth)acrylic acid ester-based polymer with a polymer of 1.18, was obtained.
  • the macromonomer (p-1) does not correspond to the polyfunctional macromonomer (b2).
  • the solution was added dropwise over 5 hours. Further, a mixed solution of 0.5 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 7.8 parts by weight of isobutanol was added, and polymerization was carried out at 105°C for 2 hours.
  • An isobutanol solution (solid content: 60%) of a reactive silicon group-containing (meth)acrylic acid ester copolymer (B-1) having a molecular weight of 290 (GPC) was obtained.
  • the solid content of the solution has a polyfunctional macromonomer equivalent weight of 0.069 mmol/g, a reactive silicon group equivalent weight of 0.72 mmol/g, and a sulfur atom concentration of 10,920 ppm.
  • An isobutanol solution (60% solid content) of a reactive silicon group-containing (meth)acrylic acid ester copolymer (B-2) having a molecular weight of 750 (GPC) was obtained.
  • the solid content of the solution has a polyfunctional macromonomer equivalent weight of 0.031 mmol/g, a reactive silicon group equivalent weight of 0.56 mmol/g, and a sulfur atom concentration of 9,453 ppm.
  • a mixed solution dissolved in .3 parts by weight was added dropwise over 5 hours. Further, a mixed solution of 0.4 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 5.5 parts by weight of isobutanol was added, and polymerization was carried out at 105°C for 2 hours.
  • An isobutanol solution (60% solid content) of a reactive silicon group-containing (meth)acrylic acid ester copolymer (B-3) having a molecular weight of 600 (GPC) was obtained.
  • the solid content of the solution has a polyfunctional macromonomer equivalent weight of 0.032 mmol/g, a reactive silicon group equivalent weight of 0.56 mmol/g, and a sulfur atom concentration of 9,584 ppm.
  • a mixed solution dissolved in .3 parts by weight was added dropwise over 5 hours. Further, a mixed solution of 0.4 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 5.5 parts by weight of isobutanol was added, and polymerization was carried out at 105°C for 2 hours.
  • An isobutanol solution (60% solid content) of a reactive silicon group-containing (meth)acrylic acid ester copolymer (B-4) having a molecular weight of 360 (GPC) was obtained.
  • the solid content of the solution has a polyfunctional macromonomer equivalent weight of 0.015 mmol/g, a reactive silicon group equivalent weight of 0.56 mmol/g, and a sulfur atom concentration of 9,584 ppm.
  • a mixed solution dissolved in .4 parts by weight was added dropwise over 5 hours. Further, a mixed solution of 0.3 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 4.7 parts by weight of isobutanol was added, and polymerization was carried out at 105°C for 2 hours.
  • An isobutanol solution (solid content: 60%) of a reactive silicon group-containing (meth)acrylic acid ester copolymer (B-5) having a molecular weight of 480 (GPC) was obtained.
  • the solid content of the solution has a polyfunctional macromonomer equivalent weight of 0.017 mmol/g, a reactive silicon group equivalent weight of 0.67 mmol/g, and a sulfur atom concentration of 9,584 ppm.
  • a mixed solution dissolved in .4 parts by weight was added dropwise over 5 hours. Further, a mixed solution of 0.3 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 5.2 parts by weight of isobutanol was added, and polymerization was carried out at 105°C for 2 hours.
  • An isobutanol solution (60% solid content) of a reactive silicon group-containing (meth)acrylic acid ester copolymer (B-6) having a molecular weight of 270 (GPC) was obtained.
  • the solid content of the solution has a polyfunctional macromonomer equivalent weight of 0.018 mmol/g, a reactive silicon group equivalent weight of 0.65 mmol/g, and a sulfur atom concentration of 9,584 ppm.
  • An isobutanol solution (solid content: 60%) of a reactive silicon group-containing (meth)acrylic acid ester copolymer (P-1) having a molecular weight of 630 (GPC) was obtained.
  • the solid content of the solution has a macromonomer equivalent weight of 0.033 mmol/g, a reactive silicon group equivalent weight of 0.56 mmol/g, and a sulfur atom concentration of 9,453 ppm.
  • a mixed solution of 3 parts by weight and 1.6 parts by weight of 2,2′-azobis(2-methylbutyronitrile) dissolved in 14.3 parts by weight of isobutanol was added dropwise over 5 hours. Furthermore, a mixed solution of 0.7 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 11.6 parts by weight of isobutanol was added, and polymerization was carried out at 105°C for 2 hours.
  • 000 (GPC molecular weight)
  • an isobutanol solution (60% solid content) of a reactive silicon group-containing (meth)acrylic acid ester copolymer (P-3) was obtained.
  • the solid content of the solution has a reactive silicon group equivalent of 0.64 mmol/g and a sulfur atom concentration of 12,956 ppm.
  • Example 1 42 parts by weight of the reactive silicon group-containing polyoxypropylene polymer (A-1) obtained in Synthesis Example 1, and the reactive silicon group-containing (meth) acrylic acid ester copolymer obtained in Synthesis Example 10 ( After mixing the isobutanol solution of B-1) so that the solid content was 28 parts by weight, the isobutanol was devolatilized by heating.
  • Nocrac CD antioxidant, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • ADEKA STAB AO-60 antioxidant, manufactured by ADEKA Co., Ltd.
  • DINP as a plasticizer (C) (Diisononyl phthalate, manufactured by Jplus Co., Ltd.) 4 parts by weight
  • CCR-S10 as a filler (colloidal calcium carbonate, manufactured by Shiraishi Kogyo Co., Ltd.) 12.5 parts by weight, Asahi Thermal (carbon black, Asahi Carbon Co., Ltd.) )) 0.05 parts by weight
  • AEROSIL 300 hydroophilic fumed silica, manufactured by Nippon Aerosil Co., Ltd.
  • AEROSIL R202 hydrophobic fumed silica, manufactured by Nippon Aerosil Co., Ltd.
  • jER828 bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation
  • Nanox #30 heavy calcium carbonate, manufactured by Maruo Calcium Co., Ltd.
  • NIPGEL CX-200 wet silica, manufactured by Tosoh Silica Co., Ltd.
  • R-820 titanium oxide, manufactured by Ishihara Sangyo Co., Ltd.
  • Neostan U-810 as a silanol condensation catalyst (G) (Dioctyl tin dilaurate, manufactured by Nitto Kasei Co., Ltd.) 1 part by weight and 1.5 parts by weight of water (F) were mixed using a planetary mixer to obtain a B agent.
  • a static mixer with an element diameter of 10 mm and an element number of 24, the A agent and the B agent were mixed to obtain a mixture.
  • Shear test A steel plate (SS400) used as an adherend was polished with sandpaper #400 and degreased with heptane. After applying a mixture of the A and B agents to one adherend, the other adherend was adhered so as to have a bonding area of 25 mm ⁇ 12.5 mm and a thickness of 0.5 mm. Using this lamination time as the starting time, after 1 hour under 23°C 50% RH conditions and after 7 days curing under 23°C 50% RH conditions, the shear bond strength is measured at a test speed of 10 mm / min. Together, the state of destruction was observed.
  • the state of failure was visually confirmed using CF as cohesive failure (destruction at the adhesive portion) and AF as interfacial failure (peeling at the interface between the adhesive and the adherend). When both are mixed, the ratio of each is shown. For example, when the cohesive failure rate is 50% and the interfacial failure rate is 50%, it is described as C50A50. Table 2 shows the results.
  • Example 2-3 Comparative Example 1-2
  • a mixture of agents A and B was obtained in the same manner as in Example 1, except that each formulation was mixed at the ratio shown in Table 2, and a shear test was performed in the same manner as in Example 1.
  • Table 2 shows the results.
  • the reactive silicon group-containing (meth)acrylic acid ester copolymer (B-1) or (B-2) used in Examples 1 to 3 was produced using a polyfunctional macromonomer (b2'). It is a thing.
  • the reactive silicon group-containing (meth) acrylic acid ester copolymer (P-1) used in Comparative Example 1 does not use the polyfunctional macromonomer (b2), instead (meth) It is manufactured using a macromonomer having one acryloyl group.
  • the reactive silicon group-containing (meth)acrylic acid ester copolymer (P-2) used in Comparative Example 2 uses both a polyfunctional macromonomer and a macromonomer having one (meth)acryloyl group. It was manufactured without
  • agent A contains a reactive silicon group-containing polyoxyalkylene polymer (A) and a reactive silicon group-containing (meth)acrylic acid ester copolymer (B), and agent B contains
  • the multicomponent curable compositions of Examples 1 to 3 containing the epoxy resin (D) were reactive silicon group-containing (meth)acrylic acid ester copolymers (P- Compared to the multi-component curable compositions of Comparative Examples 1 and 2 in which 1) or (P-2) was used in place of component (B), the initial (after 1 hour) adhesive strength was higher.
  • the adhesion strength after curing for 7 days at 23° C. and 50% RH is high, and the final adhesion is also good.
  • Example 4-5 Comparative Example 3
  • a mixture of agents A and B was obtained in the same manner as in Example 1, except that the silanol condensation catalyst (G) was added to agent A instead of agent B, and the respective ingredients were mixed in the proportions shown in Table 3.
  • a shear test was conducted in the same manner as in Example 1, except that the shear strength after 2 hours was measured. Table 3 shows the results.
  • the reactive silicon group-containing (meth)acrylic acid ester copolymer (B-3) or (B-4) used in Examples 4 and 5 is a polyfunctional macromonomer (b2') or (b2'')
  • the reactive silicon group-containing (meth)acrylic acid ester copolymer (P-3) used in Comparative Example 3 does not use the polyfunctional macromonomer (b2) It was manufactured in
  • agent A contains a reactive silicon group-containing polyoxyalkylene polymer (A) and a reactive silicon group-containing (meth)acrylic acid ester copolymer (B), and agent B contains The multicomponent curable compositions of Examples 4 and 5 containing the epoxy resin (D) were reactive silicon group-containing (meth)acrylic acid ester copolymers (P- It can be seen that the initial adhesive strength is higher than that of the multicomponent curable composition of Comparative Example 3 in which component 3) was used instead of component (B).
  • Example 6 60 parts by weight of the reactive silicon group-containing polyoxypropylene polymer (A-3) obtained in Synthesis Example 3, and the reactive silicon group-containing (meth) acrylic acid ester copolymer obtained in Synthesis Example 12 ( After mixing the isobutanol solution of B-3) so that the solid content was 40 parts by weight, the isobutanol was devolatilized by heating.
  • Nocrac CD antioxidant, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • ADEKA STAB AO-60 antioxidant, manufactured by ADEKA Co., Ltd.
  • C plasticizer
  • Coal P-23 polypropylene glycol, manufactured by Mitsui Chemicals Co., Ltd.
  • CCR-S10 colloidal calcium carbonate, manufactured by Shiraishi
  • a static mixer with an element diameter of 10 mm and an element number of 24, the A agent and the B agent were mixed to obtain a mixture.
  • Shear test A shear test was performed in the same manner as in Example 1, except that the shear strength after 2 hours was measured. Table 4 shows the results.
  • Example 7-9 Comparative Example 4
  • Example 7-9 A mixture of agents A and B was obtained in the same manner as in Example 6, except that each formulation was mixed at the ratio shown in Table 4, and a shear test was performed in the same manner as in Example 6. Table 4 shows the results.
  • the reactive silicon group-containing (meth)acrylic acid ester copolymer (B-3) or (B-4) used in Examples 6 to 9 is a polyfunctional macromonomer (b2′) or (b2′′)
  • the reactive silicon group-containing (meth)acrylic acid ester copolymer (P-3) used in Comparative Example 4 does not use the polyfunctional macromonomer (b2) It was manufactured in
  • agent A contains a reactive silicon group-containing polyoxyalkylene polymer (A) and a reactive silicon group-containing (meth)acrylic acid ester copolymer (B), and agent B contains
  • the multicomponent curable compositions of Examples 6 to 9 containing the plasticizer (C) are reactive silicon group-containing (meth) acrylic acid ester copolymers (P- It can be seen that the initial adhesive strength is higher than that of the multicomponent curable composition of Comparative Example 4 in which 3) was used instead of component (B).
  • Examples 10 to 12, Comparative Example 5 A mixture of agents A and B was obtained in the same manner as in Example 6, except that each formulation was mixed at the ratio shown in Table 5. Further, a shear test was conducted in the same manner as in Example 1, except that the shear strength was measured after curing for 2 hours at 23°C and 50% RH and after curing for 7 days at 23°C and 50% RH.
  • the reactive silicon group-containing (meth)acrylic acid ester copolymer (B-2) or (B-5) used in Examples 10 to 12 is a polyfunctional macromonomer (b2′) or (b2′′)
  • the reactive silicon group-containing (meth)acrylic acid ester copolymer (P-1) used in Comparative Example 5 does not use the polyfunctional macromonomer (b2) , was produced using a macromonomer having one (meth)acryloyl group instead.
  • agent A contains a reactive silicon group-containing polyoxyalkylene polymer (A) and a reactive silicon group-containing (meth)acrylic acid ester copolymer (B), and agent B contains
  • the multicomponent curable compositions of Examples 10 to 12 containing the plasticizer (C) are reactive silicon group-containing (meth) acrylic acid ester copolymers (P- Compared to the multicomponent curable composition of Comparative Example 5 in which 1) was used instead of the component (B), it was found that the adhesive strength was higher in the initial stage (after 2 hours). In addition, it can be seen that the adhesive strength after curing for 7 days at 23° C. and 50% RH is high, and the final adhesiveness is also good.
  • Example 13 60 parts by weight of the reactive silicon group-containing polyoxypropylene polymer (A-3) obtained in Synthesis Example 3, and the reactive silicon group-containing (meth) acrylic acid ester copolymer obtained in Synthesis Example 15 ( After mixing the isobutanol solution of B-6) so that the solid content was 40 parts by weight, the isobutanol was devolatilized by heating.
  • Nocrac CD antioxidant, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • ADEKA STAB AO-60 antioxidant, manufactured by ADEKA Co., Ltd.
  • DINP as a plasticizer (C) (Diisononyl phthalate, manufactured by J-Plus Co., Ltd.) 19 parts by weight
  • DAW-45 alumina, average particle size 45 ⁇ m, manufactured by DENKA Co., Ltd.
  • DAW-05 alumina, average particle Diameter 5 ⁇ m, manufactured by DENKA Co., Ltd.
  • Asahi Thermal carbon black, manufactured by Asahi Carbon Co., Ltd.
  • TS740 hydrophobic fumed silica, (manufactured by CABOT) were mixed using a planetary mixer and
  • Methoxysilane, manufactured by Momentive 3 parts by weight, KBM-603 (N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) 2 parts by weight as an adhesion imparting agent, silanol condensation As a catalyst (G), 2 parts by weight of Neostan S-1 (dioctyltin bistriethoxysilicate, manufactured by Nitto Kasei Co., Ltd.) was mixed to obtain agent A.
  • KBM-603 N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Neostan S-1 dioctyltin bistriethoxysilicate, manufactured by Nitto Kasei Co., Ltd.
  • jER828 bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation
  • D epoxy resin
  • DAW-45 alumina, average particle size 45 ⁇ m, manufactured by DENKA Corporation
  • NIPGEL CX-200 wet silica, Tosoh Silica Co., Ltd.
  • R-820 titanium oxide, manufactured by Ishihara Sangyo Co., Ltd.
  • water (F ) were mixed using a planetary mixer to obtain a B agent.
  • Agent A and agent B were filled in a two-liquid mixing cartridge (manufactured by NORDSON Co., Ltd.) so that the ratio of agent A to agent B was 10:1 (volume ratio). Using a static mixer with an element diameter of 10 mm and an element number of 24, the A agent and the B agent were mixed to obtain a mixture. A shear test was conducted in the same manner as in Example 1, except that the shear strength was measured after 2 hours at 23°C and 50% RH. Table 6 shows the results.
  • Example 14 The amount of plasticizer (C) DINP (diisononyl phthalate, manufactured by J-Plus Co., Ltd.) was changed to 25 parts by weight, and the heat-dissipating filler was replaced with DAW-45 (alumina, average particle size 45 ⁇ m, DENKA ( Co., Ltd.) 270 parts by weight, DAW-05 (alumina, average particle size 5 ⁇ m, DENKA Co., Ltd.) 178 parts by weight, ASFP-20 (alumina, average particle size 0.2 ⁇ m, DENKA Co., Ltd.) 40 Parts by weight, changed to 40 parts by weight of BE033 (aluminum hydroxide, average particle size 3 ⁇ m, manufactured by Nippon Light Metal Co., Ltd.), and the amount of other filler Asahi Thermal (carbon black, manufactured by Asahi Carbon Co., Ltd.) was changed to 0.2 parts by weight, and the rheology control agent TS740 (hydrophobic fumed silic
  • jER828 bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation
  • D epoxy resin
  • DAW-45 alumina, average particle size 45 ⁇ m, manufactured by DENKA Corporation
  • DAW-05 alumina, average particle size 5 ⁇ m, manufactured by DENKA Corporation
  • ASFP-20 alumina, average particle size 0.2 ⁇ m, manufactured by DENKA Corporation
  • A-187 (3-glycidoxypropyltrimethoxysilane, manufactured by Momentive) as a silane coupling agent 8 parts by weight
  • water 2 Parts by weight were mixed using a planetary mixer to obtain a B agent.
  • Agent A and agent B were filled in a two-liquid mixing cartridge (manufactured by NORDSON Co., Ltd.) so that the ratio of agent A to agent B was 4:1 (volume ratio). Using a static mixer with an element diameter of 10 mm and an element number of 24, the A agent and the B agent were mixed to obtain a mixture. A shear test was conducted in the same manner as in Example 1, except that the shear strength was measured after 2 hours at 23°C and 50% RH. Table 6 shows the results.
  • thermocouple (HIOKI LR5021). The thermocouple was fixed on the surface of the center of the heat dissipating material with aluminum tape.
  • the surface temperature of the hot plate set at 80°C was 80.8°C as measured by this thermocouple.
  • the surface temperature of the heat dissipating material was determined 1 minute and 3 minutes after the start of the measurement, and the surface temperature of the heat dissipating material was measured after 1 minute and 3 minutes from the start of the measurement. Table 6 shows the results.
  • a sheet having a thickness of about 2 mm was prepared from a mixture of agents A and B, and cured at 23° C. and 50% RH for 7 days and then at 50° C. for 4 days.
  • the resulting sheet was punched into a No. 3 dumbbell type (JIS K 6251) and subjected to a tensile strength test at 23° C. and 50% RH to measure the strength at break (TB) and elongation at break (EB).
  • Tensile physical properties were measured using an Autograph (AGS-X) manufactured by Shimadzu Corporation at a tensile speed of 50 mm/min. Table 6 shows the results.
  • the reactive silicon group-containing (meth)acrylate copolymer (B-6) used in Examples 13 and 14 was produced using a polyfunctional macromonomer (b2′′).
  • agent A contains a reactive silicon group-containing polyoxyalkylene polymer (A) and a reactive silicon group-containing (meth) acrylic acid ester copolymer (B), and agent B contains It can be seen that the multicomponent curable compositions of Examples 13 and 14 containing the epoxy resin (D) have high initial adhesive strength (after 2 hours). Moreover, it can be seen that the multi-component curable compositions of Examples 13 and 14 have good thermal conductivity and tensile physical properties after curing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a multi-part curable composition comprising a preparation A and a preparation B. The preparation A comprises (A) a polyoxyalkylene-based polymer having a reactive silicon group and (B) a (meth)acrylic acid ester-based copolymer having a reactive silicon group. The preparation B comprises the component (A), (C) a plasticizer, or (D) an epoxy resin. The monomer components constituting the component (B) include (b1) a (meth)acrylic acid ester, (b2) a polymer having more than one (meth)acryloyl group in the molecule thereof, and (b3) a chain transfer agent having a mercapto group. The monomer components further include (b4) a monomer having a reactive silicon group and a polymerizable unsaturated group, and/or the component (b3) further contains a reactive silicon group.

Description

硬化性組成物及びその硬化物Curable composition and cured product thereof
 本発明は、反応性ケイ素基を有する重合体を含む硬化性組成物、及びその硬化物に関する。 The present invention relates to a curable composition containing a polymer having a reactive silicon group and a cured product thereof.
 ケイ素原子上に水酸基または加水分解性基を有し、加水分解・縮合反応によってシロキサン結合を形成し得るケイ素基(以下、「反応性ケイ素基」ともいう。)を有する有機重合体は、室温でも湿分などにより反応する。かかる有機重合体が反応性ケイ素基のシロキサン縮合反応によって架橋されることで、ゴム状硬化物が得られることが知られている。 An organic polymer having a hydroxyl group or a hydrolyzable group on a silicon atom and having a silicon group capable of forming a siloxane bond by a hydrolysis/condensation reaction (hereinafter also referred to as a "reactive silicon group") can be used even at room temperature. Reacts with moisture, etc. It is known that a rubber-like cured product can be obtained by cross-linking such an organic polymer through a siloxane condensation reaction of reactive silicon groups.
 これら有機重合体の中でも、反応性ケイ素基を有するポリオキシアルキレン重合体は、比較的低粘度であることから、配合組成物を作製したり、使用する際の作業性に優れる。また、得られる硬化物の機械物性、耐候性、動的耐久性などの性能バランスがよいことから、シーリング材、接着剤、塗料などの用途に広く使用されている(特許文献1を参照)。 Among these organic polymers, the polyoxyalkylene polymer having a reactive silicon group has a relatively low viscosity, so it is excellent in workability when preparing or using a blended composition. In addition, since the resulting cured product has a good balance of performance such as mechanical properties, weather resistance, and dynamic durability, it is widely used for applications such as sealants, adhesives, and paints (see Patent Document 1).
 反応性ケイ素基を有するポリオキシアルキレン重合体の耐候性や接着性を改善するため、反応性ケイ素基含有ポリオキシアルキレン重合体と反応性ケイ素基含有(メタ)アクリル酸エステル系重合体を併用した硬化性組成物が知られている(特許文献2を参照)。該硬化性組成物は高耐候性シーラントや工業用接着剤として利用されている。 In order to improve the weather resistance and adhesiveness of polyoxyalkylene polymers having reactive silicon groups, a combination of reactive silicon group-containing polyoxyalkylene polymers and reactive silicon group-containing (meth)acrylic acid ester polymers was used. A curable composition is known (see Patent Document 2). The curable compositions are used as highly weather-resistant sealants and industrial adhesives.
 一方、特許文献3では、変成シリコーンやアクリル変性シリコーンを用いた一液湿気硬化型接着剤の硬化速度が遅いという欠点を解消することを目的に、硬化速度が速く、接着性にも優れた硬化性樹脂として、ポリエーテル骨格を有し両末端に二重結合を持つオリゴマーと、(メタ)アクリル酸エステル等のビニル単量体と、連鎖移動剤とをラジカル重合させて合成される反応性ケイ素基含有グラフト共重合体が記載されている。 On the other hand, in Patent Document 3, for the purpose of eliminating the drawback that the curing speed of one-component moisture-curable adhesives using modified silicone or acrylic-modified silicone is slow, a curing agent having a high curing speed and excellent adhesiveness is disclosed. A reactive silicon synthesized by radically polymerizing an oligomer having a polyether skeleton and double bonds at both ends, a vinyl monomer such as a (meth)acrylic acid ester, and a chain transfer agent as a reactive resin. Group-containing graft copolymers are described.
特開昭52-73998号公報JP-A-52-73998 特開昭59-122541号公報JP-A-59-122541 特許第5082851号公報Japanese Patent No. 5082851
 一般に、反応性ケイ素基を有する有機重合体を含む接着剤は、被着体を接合した後、数日に及ぶ長時間の硬化養生工程を行うことで、目的の接着強度を発現する。
 ところが、接着工程の次の工程での作業性を確保するため、被着体を接合した後、比較的短時間で、ある程度の接着強度を発現することが求められる場合がある。
In general, an adhesive containing an organic polymer having a reactive silicon group develops the desired adhesive strength by performing a long curing and curing process for several days after bonding adherends.
However, in order to ensure workability in the process subsequent to the bonding process, there are cases where it is required to develop a certain level of adhesive strength in a relatively short period of time after bonding the adherends.
 本発明は、上記現状に鑑み、反応性ケイ素基含有ポリオキシアルキレン重合体と反応性ケイ素基含有(メタ)アクリル酸エステル系重合体を含む硬化性組成物であって、短時間で比較的高い接着強度を発現し得る硬化性組成物を提供することを目的とする。 In view of the above-mentioned current situation, the present invention provides a curable composition containing a reactive silicon group-containing polyoxyalkylene polymer and a reactive silicon group-containing (meth)acrylic acid ester polymer, wherein a relatively high An object of the present invention is to provide a curable composition capable of exhibiting adhesive strength.
 本発明者らは、上記課題を解決するために鋭意検討した結果、反応性ケイ素基含有ポリオキシアルキレン重合体と反応性ケイ素基含有(メタ)アクリル酸エステル系重合体を含む硬化性組成物において、特定の多液型の構成を採用すると共に、反応性ケイ素基含有(メタ)アクリル酸エステル系重合体において特定の単量体及び連鎖移動剤を使用することで、前記課題を解決できることを見出し、本発明を完成させた。 The present inventors have made intensive studies to solve the above problems, and found that a curable composition containing a reactive silicon group-containing polyoxyalkylene polymer and a reactive silicon group-containing (meth)acrylic acid ester polymer , by adopting a specific multi-liquid structure and using a specific monomer and chain transfer agent in the reactive silicon group-containing (meth)acrylic acid ester polymer, it was found that the above problems can be solved. , completed the present invention.
 すなわち本発明は、A剤とB剤を含む多液型硬化性組成物であって、
 A剤が、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、及び、反応性ケイ素基を有する(メタ)アクリル酸エステル系共重合体(B)を含有し、
 B剤が、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、可塑剤(C)、及びエポキシ樹脂(D)からなる群より選択される少なくとも1種の化合物を含有し、
 前記(メタ)アクリル酸エステル系共重合体(B)を構成する単量体成分が、
(メタ)アクリル酸エステル(b1)、
(メタ)アクリロイル基を分子内に1つより多く有する重合体(b2)、及び、
メルカプト基を有する連鎖移動剤(b3)、を含有し、
 前記単量体成分が、反応性ケイ素基と重合性不飽和基を有する単量体(b4)をさらに含有し、及び/又は、前記メルカプト基を有する連鎖移動剤(b3)が、反応性ケイ素基をさらに有し、並びに
 前記反応性ケイ素基が下記一般式(1)で表される、多液型硬化性組成物に関する。
-SiR 3-a    (1)
(式中、Rは、置換又は非置換の炭素数1~20の炭化水素基を表す。Xは水酸基または加水分解性基を表す。aは2または3である。)
 また本発明は、前記多液型硬化性組成物を硬化させて得られる硬化物にも関する。
That is, the present invention is a multi-component curable composition containing agent A and agent B,
Agent A contains a polyoxyalkylene polymer (A) having a reactive silicon group, and a (meth)acrylic acid ester copolymer (B) having a reactive silicon group,
Agent B contains at least one compound selected from the group consisting of a polyoxyalkylene polymer (A) having a reactive silicon group, a plasticizer (C), and an epoxy resin (D),
The monomer component constituting the (meth)acrylic acid ester copolymer (B) is
(meth) acrylic acid ester (b1),
A polymer (b2) having more than one (meth)acryloyl group in the molecule, and
containing a chain transfer agent (b3) having a mercapto group,
The monomer component further contains a monomer (b4) having a reactive silicon group and a polymerizable unsaturated group, and/or the chain transfer agent (b3) having a mercapto group is a reactive silicon group, and the reactive silicon group is represented by the following general formula (1).
—SiR 1 3-a X a (1)
(Wherein, R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms; X represents a hydroxyl group or a hydrolyzable group; a is 2 or 3.)
The present invention also relates to a cured product obtained by curing the multicomponent curable composition.
 本発明によれば、反応性ケイ素基含有ポリオキシアルキレン重合体と反応性ケイ素基含有(メタ)アクリル酸エステル系重合体を含む硬化性組成物であって、短時間で比較的高い接着強度を発現し得る硬化性組成物を提供することができる。 According to the present invention, a curable composition comprising a reactive silicon group-containing polyoxyalkylene polymer and a reactive silicon group-containing (meth)acrylic acid ester polymer, wherein relatively high adhesive strength can be achieved in a short time. A curable composition that can be developed can be provided.
 以下に本発明の実施形態を具体的に説明するが、本発明はこれら実施形態に限定されるものではない。 Embodiments of the present invention will be specifically described below, but the present invention is not limited to these embodiments.
 本開示は、少なくともA剤とB剤を含む多液型硬化性組成物に関する。
 A剤は、少なくとも、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、及び、反応性ケイ素基を有する(メタ)アクリル酸エステル系共重合体(B)を含有する。B剤は、少なくとも、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、可塑剤(C)、及びエポキシ樹脂(D)からなる群より選択される少なくとも1種の化合物を含有する。
The present disclosure relates to a multi-part curable composition comprising at least Part A and Part B.
Agent A contains at least a polyoxyalkylene polymer (A) having a reactive silicon group and a (meth)acrylate copolymer (B) having a reactive silicon group. Agent B contains at least one compound selected from the group consisting of (A) a polyoxyalkylene polymer having a reactive silicon group, (C) a plasticizer, and (D) an epoxy resin.
 <<反応性ケイ素基を有するポリオキシアルキレン系重合体(A)>>
 反応性ケイ素基を有するポリオキシアルキレン系重合体(A)(以下、単に「ポリオキシアルキレン系重合体(A)」ともいう)は、A剤に配合される。ポリオキシアルキレン系重合体(A)は、A剤のみに配合されてもよいし、A剤に加えて、B剤に配合されてもよい。
<<Polyoxyalkylene polymer (A) having a reactive silicon group>>
A polyoxyalkylene polymer (A) having a reactive silicon group (hereinafter also simply referred to as "polyoxyalkylene polymer (A)") is blended in agent A. The polyoxyalkylene-based polymer (A) may be blended only with the A agent, or may be blended with the B agent in addition to the A agent.
 <反応性ケイ素基>
 ポリオキシアルキレン系重合体(A)は、下記一般式(1)で表される反応性ケイ素基を有する。
-SiR 3-a    (1)
(式中、Rは、置換又は非置換の炭素数1~20の炭化水素基を表す。Xは水酸基または加水分解性基を表す。aは2または3を示す。)
<Reactive silicon group>
The polyoxyalkylene polymer (A) has a reactive silicon group represented by the following general formula (1).
—SiR 1 3-a X a (1)
(Wherein, R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms; X represents a hydroxyl group or a hydrolyzable group; a represents 2 or 3.)
 Rの炭化水素基の炭素数は1~10が好ましく、1~5がより好ましく、1~3がさらに好ましい。Rの具体例としては、例えば、メチル基、エチル基、クロロメチル基、メトキシメチル基、N,N-ジエチルアミノメチル基が挙げられる。好ましくは、メチル基、エチル基、クロロメチル基、メトキシメチル基であり、より好ましくは、メチル基、メトキシメチル基である。 The number of carbon atoms in the hydrocarbon group of R 1 is preferably 1-10, more preferably 1-5, even more preferably 1-3. Specific examples of R 1 include methyl group, ethyl group, chloromethyl group, methoxymethyl group and N,N-diethylaminomethyl group. Preferred are methyl group, ethyl group, chloromethyl group and methoxymethyl group, and more preferred are methyl group and methoxymethyl group.
 Xとしては、例えば、ハロゲン、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基などが挙げられる。これらの中では、加水分解性が穏やかで取扱いやすいことから、アルコキシ基がより好ましく、メトキシ基、エトキシ基が特に好ましい。 Examples of X include halogen, alkoxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group and alkenyloxy group. Among these, an alkoxy group is more preferable, and a methoxy group and an ethoxy group are particularly preferable, since they are moderately hydrolyzable and easy to handle.
 ポリオキシアルキレン系重合体(A)が有する反応性ケイ素基としては、具体的には、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジメトキシエチルシリル基、(クロロメチル)ジメトキシシリル基、(クロロメチル)ジエトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基、(N,N-ジエチルアミノメチル)ジエトキシシリル基などが挙げられるが、これらに限定されない。これらの中では、メチルジメトキシシリル基、トリメトキシシリル基、トリエトキシシリル基、(クロロメチル)ジメトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基が高い活性を示し、良好な機械物性を有する硬化物が得られるため好ましく、高剛性の硬化物が得られることから、トリメトキシシリル基、トリエトキシシリル基がより好ましく、トリメトキシシリル基がさらに好ましい。 Specific examples of the reactive silicon group possessed by the polyoxyalkylene polymer (A) include a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, a triacetoxysilyl group, and dimethoxymethyl silyl group, diethoxymethylsilyl group, dimethoxyethylsilyl group, (chloromethyl)dimethoxysilyl group, (chloromethyl)diethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group, (N ,N-diethylaminomethyl)dimethoxysilyl group, (N,N-diethylaminomethyl)diethoxysilyl group, and the like, but are not limited thereto. Among these are methyldimethoxysilyl, trimethoxysilyl, triethoxysilyl, (chloromethyl)dimethoxysilyl, (methoxymethyl)dimethoxysilyl, (methoxymethyl)diethoxysilyl, (N,N- Diethylaminomethyl)dimethoxysilyl group is preferred because it exhibits high activity and gives a cured product with good mechanical properties, and a trimethoxysilyl group and a triethoxysilyl group are more preferred because a cured product with high rigidity can be obtained. A trimethoxysilyl group is more preferred.
 ポリオキシアルキレン系重合体(A)は、1つの末端部位に平均して1個以下の反応性ケイ素基を有するものであってもよいし、1つの末端部位に平均して1個より多い反応性ケイ素基を有するものであってもよい。ここで、1つの末端部位に平均して1個より多い反応性ケイ素基を有するとは、ポリオキシアルキレン系重合体(A)に、1つの末端部位に2個以上の反応性ケイ素基を有するポリオキシアルキレンが含まれていることを示している。 The polyoxyalkylene polymer (A) may have an average of 1 or less reactive silicon groups at one terminal site, or an average of more than 1 reactive silicon group at one terminal site may have a silicon group. Here, having more than one reactive silicon group on average at one terminal site means that the polyoxyalkylene polymer (A) has two or more reactive silicon groups at one terminal site. It shows that polyoxyalkylene is included.
 2個以上の反応性ケイ素基を有する末端部位は、例えば、下記一般式(2)で表すことができる。 A terminal site having two or more reactive silicon groups can be represented, for example, by the following general formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、R,Rはそれぞれ独立に2価の炭素数1~6の結合基を表し、R,Rに隣接するそれぞれの炭素原子と結合する原子は、炭素、酸素、窒素のいずれかである。R,Rはそれぞれ独立に、水素、または炭素数1~10の炭化水素基を表す。nは1~10の整数である。R、X、aは前記式(1)について上述のとおりである。) (In the formula, R 2 and R 4 each independently represent a divalent C 1-6 bonding group, and the atoms bonded to the respective carbon atoms adjacent to R 2 and R 4 are carbon, oxygen, nitrogen Each of R 3 and R 5 independently represents hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, n is an integer of 1 to 10. R 1 , X, and a represent the above formula (1) is as described above.)
 R、Rとしては、2価の炭素数1~6の有機基であってよく、酸素原子を含んでもよい炭化水素基であってもよい。該炭化水素基の炭素数は1~4が好ましく、1~3がより好ましく、1~2がさらに好ましい。Rの具体例としては、例えば、-CHOCH-、-CHO-、-CH-が挙げられるが、好ましくは、-CHOCH-である。Rの具体例としては、例えば、-CH-、-CHCH-が挙げられるが、好ましくは、-CH-である。 R 2 and R 4 may be a divalent organic group having 1 to 6 carbon atoms, or may be a hydrocarbon group which may contain an oxygen atom. The number of carbon atoms in the hydrocarbon group is preferably 1-4, more preferably 1-3, even more preferably 1-2. Specific examples of R 2 include -CH 2 OCH 2 -, -CH 2 O- and -CH 2 -, preferably -CH 2 OCH 2 -. Specific examples of R 4 include -CH 2 - and -CH 2 CH 2 -, preferably -CH 2 -.
 R、Rの炭化水素基の炭素数としては1~5が好ましく、1~3がより好ましく、1~2がさらに好ましい。R、Rの具体例としては、例えば、水素原子、メチル基、エチル基が挙げられるが、好ましくは、水素原子、メチル基であり、より好ましくは水素原子である。 The number of carbon atoms in the hydrocarbon groups of R 3 and R 5 is preferably 1-5, more preferably 1-3, even more preferably 1-2. Specific examples of R 3 and R 5 include a hydrogen atom, a methyl group and an ethyl group, preferably a hydrogen atom and a methyl group, more preferably a hydrogen atom.
 一般式(2)で表される末端部位は、特に好ましい態様によると、Rが-CHOCH-であり、Rが-CH-であり、R及びRがそれぞれ水素原子である。nは1~5の整数が好ましく、1~3の整数がより好ましく、1又は2がさらに好ましい。ただし、nは、1つの値に限定されるものではなく、複数の値が混在していてもよい。 According to a particularly preferred embodiment, the terminal portion represented by the general formula (2) is such that R 2 is —CH 2 OCH 2 —, R 4 is —CH 2 —, and R 3 and R 5 are each hydrogen atoms. is. n is preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and even more preferably 1 or 2. However, n is not limited to one value, and may be a mixture of multiple values.
 ポリオキシアルキレン系重合体(A)は、反応性ケイ素基を、1つの末端部位に平均して1.0個以下有するものであってもよい。この場合、前記平均数は、0.4個以上であることが好ましく、0.5個以上がより好ましく、0.6個以上がさらに好ましい。 The polyoxyalkylene polymer (A) may have an average of 1.0 or less reactive silicon groups at one terminal site. In this case, the average number is preferably 0.4 or more, more preferably 0.5 or more, even more preferably 0.6 or more.
 また、ポリオキシアルキレン系重合体(A)は、反応性ケイ素基を、1つの末端部位に平均して1.0個より多く有するものであってもよい。この場合、前記平均数は、1.1個以上であることがより好ましく、1.5個以上が更に好ましく、2.0個以上がより更に好ましい。また、前記平均数は、5個以下であることが好ましく、3個以下がより好ましい。 In addition, the polyoxyalkylene polymer (A) may have an average of more than 1.0 reactive silicon groups at one terminal site. In this case, the average number is more preferably 1.1 or more, still more preferably 1.5 or more, and even more preferably 2.0 or more. Moreover, the average number is preferably 5 or less, more preferably 3 or less.
 ポリオキシアルキレン系重合体(A)は、末端部位以外に反応性ケイ素基を有しても良いが、末端部位にのみ有することが、高伸びで、低弾性率を示すゴム状硬化物が得られやすくなるため好ましい。 The polyoxyalkylene-based polymer (A) may have reactive silicon groups in addition to the terminal sites, but having them only at the terminal sites yields a rubber-like cured product with high elongation and low elastic modulus. It is preferable because it becomes easy to be
 ポリオキシアルキレン系重合体(A)が有する反応性ケイ素基の1分子当たりの平均個数は、硬化物の強度の観点から、1.0個より多いことが好ましく、1.2個以上がより好ましく、1.3個以上がさらに好ましく、1.5個以上がより更に好ましく、1.7個以上が特に好ましい。前記平均個数は、2.0個以下であってもよいし、2.0個より多くてもよい。硬化物の伸びの観点から、6.0個以下が好ましく、5.5個以下がより好ましく、5.0個以下が最も好ましい。 The average number of reactive silicon groups per molecule of the polyoxyalkylene polymer (A) is preferably more than 1.0, more preferably 1.2 or more, from the viewpoint of the strength of the cured product. , is more preferably 1.3 or more, even more preferably 1.5 or more, and particularly preferably 1.7 or more. The average number may be 2.0 or less, or may be more than 2.0. From the viewpoint of elongation of the cured product, the number is preferably 6.0 or less, more preferably 5.5 or less, and most preferably 5.0 or less.
 <主鎖構造>
 ポリオキシアルキレン系重合体(A)の主鎖骨格には特に制限はなく、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、ポリオキシプロピレン-ポリオキシブチレン共重合体などが挙げられる。その中でも、ポリオキシプロピレンが好ましい。
<Main chain structure>
The main chain skeleton of the polyoxyalkylene polymer (A) is not particularly limited, and examples include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, Examples include polyoxypropylene-polyoxybutylene copolymers. Among them, polyoxypropylene is preferred.
 ポリオキシアルキレン系重合体(A)の主鎖構造は直鎖状であってもよいし、分岐鎖状であってもよい。初期の接着強度がより高くなるため、ポリオキシアルキレン系重合体(A)の主鎖構造は、分岐鎖状であることが好ましい。なお、分岐鎖状の主鎖構造は、1分子中に3個以上の水酸基を有する開始剤の存在下でエポキシ化合物を重合させることで形成できる。 The main chain structure of the polyoxyalkylene polymer (A) may be linear or branched. The main chain structure of the polyoxyalkylene polymer (A) is preferably branched because the initial adhesive strength is higher. The branched main chain structure can be formed by polymerizing an epoxy compound in the presence of an initiator having 3 or more hydroxyl groups in one molecule.
 ポリオキシアルキレン系重合体(A)の数平均分子量は、GPCにおけるポリスチレン換算分子量において、好ましくは3,000以上100,000以下、より好ましくは3,000以上50,000以下であり、特に好ましくは3,000以上30,000以下である。 The number average molecular weight of the polyoxyalkylene polymer (A) is preferably 3,000 or more and 100,000 or less, more preferably 3,000 or more and 50,000 or less, in terms of polystyrene equivalent molecular weight in GPC, and particularly preferably It is 3,000 or more and 30,000 or less.
 ポリオキシアルキレン系重合体(A)の分子量分布(Mw/Mn)は特に限定されないが、狭いことが好ましく、具体的には、2.0未満が好ましく、1.6以下がより好ましく、1.5以下がさらに好ましく、1.4以下が特に好ましい。また、硬化物の耐久性や伸びを向上させる等、各種機械的物性を向上させる観点からは、1.2以下が好ましい。ポリオキシアルキレン系重合体(A)の分子量分布は、GPC測定により得られる数平均分子量と重量平均分子量から求めることができる。 Although the molecular weight distribution (Mw/Mn) of the polyoxyalkylene polymer (A) is not particularly limited, it is preferably narrow, specifically less than 2.0, more preferably 1.6 or less. 5 or less is more preferable, and 1.4 or less is particularly preferable. Moreover, from the viewpoint of improving various mechanical properties such as improving the durability and elongation of the cured product, it is preferably 1.2 or less. The molecular weight distribution of the polyoxyalkylene polymer (A) can be obtained from the number average molecular weight and weight average molecular weight obtained by GPC measurement.
 <ポリオキシアルキレン系重合体(A)の合成方法>
 ポリオキシアルキレン系重合体(A)の合成方法は特に限定されない。一例を説明すると、まず、水酸基を有する開始剤にエポキシ化合物を重合させて水酸基末端重合体を得る。該重合体の水酸基にアルカリ金属塩(例えばナトリウムメトキシド)を作用させた後、炭素-炭素不飽和結合を有するハロゲン化炭化水素化合物(例えば塩化アリル)を反応させて、重合体末端に炭素-炭素不飽和結合を導入する。次いで、反応性ケイ素基含有ヒドロシラン化合物(例えば、ジメトキメチルシラン、トリメトキシシラン)を反応させることで、反応性ケイ素基含有ポリオキシアルキレン系重合体(A)を得ることができる。
<Method for synthesizing polyoxyalkylene polymer (A)>
The method for synthesizing the polyoxyalkylene polymer (A) is not particularly limited. To explain an example, first, an initiator having a hydroxyl group is polymerized with an epoxy compound to obtain a hydroxyl group-terminated polymer. After reacting the hydroxyl groups of the polymer with an alkali metal salt (for example, sodium methoxide), a halogenated hydrocarbon compound having a carbon-carbon unsaturated bond (for example, allyl chloride) is reacted to attach a carbon- Introduce carbon unsaturated bonds. Then, a reactive silicon group-containing polyoxyalkylene polymer (A) can be obtained by reacting with a reactive silicon group-containing hydrosilane compound (eg, dimethoxymethylsilane, trimethoxysilane).
 好適な一実施形態である1つの末端部位に平均して1.0個より多い反応性ケイ素基を有しているポリオキシアルキレン系重合体(A)は次のようにして得ることができる。上記と同様に前記水酸基末端重合体の水酸基に前記アルカリ金属塩を作用させた後、まず炭素-炭素不飽和結合を有するエポキシ化合物(例えば、アリルグリシジルエーテル)を反応させ、次いで前記炭素-炭素不飽和結合を有するハロゲン化炭化水素化合物(例えば塩化アリル)を反応させることで、1つの末端に2個以上の炭素-炭素不飽和結合を導入する。その後、反応性ケイ素基含有ヒドロシラン化合物を反応させればよい。 A polyoxyalkylene polymer (A) having an average of more than 1.0 reactive silicon groups at one terminal site, which is a preferred embodiment, can be obtained as follows. After reacting the hydroxyl group of the hydroxyl-terminated polymer with the alkali metal salt in the same manner as described above, an epoxy compound having a carbon-carbon unsaturated bond (eg, allyl glycidyl ether) is first reacted, and then the carbon-carbon unsaturated bond is reacted. Two or more carbon-carbon unsaturated bonds are introduced at one end by reacting a halogenated hydrocarbon compound having a saturated bond (eg, allyl chloride). After that, a reactive silicon group-containing hydrosilane compound may be reacted.
 また、前記反応性ケイ素基含有ヒドロシラン化合物の代わりに、反応性ケイ素基含有メルカプトシラン類を用いることで、重合体に反応性ケイ素基を導入することも可能である。 It is also possible to introduce a reactive silicon group into the polymer by using a reactive silicon group-containing mercaptosilane instead of the reactive silicon group-containing hydrosilane compound.
 ポリオキシアルキレン系重合体(A)の主鎖は、エステル結合、または、一般式(3):
-NR-C(=O)-  (3)
(式中、Rは炭素数1~10の有機基または水素原子を表す)で表されるアミドセグメントを含んでいてもよい。
The main chain of the polyoxyalkylene polymer (A) is an ester bond or the general formula (3):
-NR 6 -C(=O)- (3)
(wherein R 6 represents an organic group having 1 to 10 carbon atoms or a hydrogen atom).
 エステル結合またはアミドセグメントを含有するポリオキシアルキレン系重合体(A)を含む硬化性組成物から得られる硬化物は、水素結合の作用等により、高い硬度および強度を有する場合がある。しかし、アミドセグメント等を含有するポリオキシアルキレン系重合体(A)は、熱等により開裂する可能性がある。また、アミドセグメント等を含有するポリオキシアルキレン系重合体(A)を含む硬化性組成物は、粘度が高くなる傾向がある。以上のようなメリットおよびデメリットを考慮して、ポリオキシアルキレン系重合体(A)として、アミドセグメント等を含有するポリオキシアルキレンを使用してもよく、アミドセグメント等を含有しないポリオキシアルキレンを使用してもよい。 A cured product obtained from a curable composition containing a polyoxyalkylene polymer (A) containing an ester bond or an amide segment may have high hardness and strength due to the action of hydrogen bonds and the like. However, the polyoxyalkylene polymer (A) containing amide segments and the like may be cleaved by heat or the like. Moreover, a curable composition containing a polyoxyalkylene polymer (A) containing an amide segment or the like tends to have a high viscosity. Considering the above merits and demerits, as the polyoxyalkylene polymer (A), a polyoxyalkylene containing an amide segment or the like may be used, or a polyoxyalkylene containing no amide segment or the like may be used. You may
 前記一般式(3)で表されるアミドセグメントとしては、例えば、イソシアネート基と水酸基との反応、アミノ基とカーボネートとの反応、イソシアネート基とアミノ基との反応、イソシアネート基とメルカプト基との反応等により形成されるものが挙げられる。また、活性水素原子を含む前記アミドセグメントとイソシアネート基との反応により形成されるものも、一般式(3)で表されるアミドセグメントに含まれる。 Examples of the amide segment represented by the general formula (3) include the reaction between an isocyanate group and a hydroxyl group, the reaction between an amino group and a carbonate, the reaction between an isocyanate group and an amino group, and the reaction between an isocyanate group and a mercapto group. and the like. The amide segment represented by the general formula (3) also includes those formed by the reaction of the amide segment containing an active hydrogen atom with an isocyanate group.
 アミドセグメントを含有するポリオキシアルキレン系重合体(A)の製造方法の一例としては、末端に活性水素含有基を有するポリオキシアルキレンに、ポリイソシアネート化合物を反応させて、末端にイソシアネート基を有する重合体を合成した後、またはその合成と同時に、該イソシアネート基と反応し得る官能基(例えば、水酸基、カルボキシ基、メルカプト基、1級アミノ基または2級アミノ基)と反応性ケイ素基を併せ持つ化合物を反応させる方法が挙げられる。また、別の例として、末端に活性水素含有基を有するポリオキシアルキレンに、反応性ケイ素基含有イソシアネート化合物を反応させる方法が挙げられる。 As an example of a method for producing the polyoxyalkylene polymer (A) containing an amide segment, a polyoxyalkylene having an active hydrogen-containing group at its terminal is reacted with a polyisocyanate compound to produce a polymer having an isocyanate group at its terminal. A compound having both a functional group (for example, a hydroxyl group, a carboxyl group, a mercapto group, a primary amino group or a secondary amino group) capable of reacting with the isocyanate group and a reactive silicon group after or simultaneously with the synthesis of the coalescence. A method of reacting is mentioned. Another example is a method of reacting a polyoxyalkylene having an active hydrogen-containing group at its end with a reactive silicon group-containing isocyanate compound.
 ポリオキシアルキレン系重合体(A)がアミドセグメントを含む場合、ポリオキシアルキレン系重合体(A)1分子あたりのアミドセグメントの数(平均値)は、1~10が好ましく、1.5~5がより好ましく、2~3が特に好ましい。この数が1よりも少ない場合には、硬化性が十分ではない場合があり、逆に10よりも大きい場合には、ポリオキシアルキレン系重合体(A)が高粘度となり、取り扱い難くなる可能性がある。硬化性組成物の粘度を低くし、作業性を改善するためには、ポリオキシアルキレン系重合体(A)は、アミドセグメントを含まないことが好ましい。 When the polyoxyalkylene polymer (A) contains amide segments, the number (average value) of amide segments per molecule of the polyoxyalkylene polymer (A) is preferably 1 to 10, and 1.5 to 5. is more preferred, and 2 to 3 are particularly preferred. If this number is less than 1, the curability may not be sufficient, and conversely if it is greater than 10, the polyoxyalkylene polymer (A) may become highly viscous and difficult to handle. There is In order to lower the viscosity of the curable composition and improve workability, the polyoxyalkylene polymer (A) preferably does not contain an amide segment.
 <<反応性ケイ素基を有する(メタ)アクリル酸エステル系共重合体(B)>>
 A剤は、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)と共に、反応性ケイ素基を有する(メタ)アクリル酸エステル系共重合体(B)(以下、単に「(メタ)アクリル酸エステル系共重合体(B)」ともいう)を含有する。(メタ)アクリル酸エステル系共重合体(B)は、A剤のみに配合されてもよいし、A剤とB剤それぞれに配合されてもよい。
<<(Meth)acrylic acid ester copolymer (B) having a reactive silicon group>>
Agent A includes a polyoxyalkylene polymer (A) having a reactive silicon group and a (meth)acrylic acid ester copolymer (B) having a reactive silicon group (hereinafter simply referred to as "(meth)acrylic acid Also referred to as "ester-based copolymer (B)"). The (meth)acrylic ester-based copolymer (B) may be blended only in the A agent, or may be blended in each of the A agent and the B agent.
 <反応性ケイ素基>
 (メタ)アクリル酸エステル系共重合体(B)は、前述した式(1)で表される反応性ケイ素基を分子鎖末端及び/又は側鎖(非末端部位)に有する。(メタ)アクリル酸エステル系共重合体(B)が有する反応性ケイ素基は、ポリオキシアルキレン系重合体(A)が有する反応性ケイ素基と同一であってよいし、異なっていてもよい。
<Reactive silicon group>
The (meth)acrylic acid ester-based copolymer (B) has a reactive silicon group represented by the above formula (1) at the molecular chain terminal and/or side chain (non-terminal site). The reactive silicon group of the (meth)acrylate copolymer (B) may be the same as or different from the reactive silicon group of the polyoxyalkylene polymer (A).
 (メタ)アクリル酸エステル系共重合体(B)が有する反応性ケイ素基としては、具体的には、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジメトキシエチルシリル基、(クロロメチル)ジメトキシシリル基、(クロロメチル)ジエトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基、(N,N-ジエチルアミノメチル)ジエトキシシリル基などが挙げられるが、これらに限定されない。これらの中では、メチルジメトキシシリル基、トリメトキシシリル基、トリエトキシシリル基、(クロロメチル)ジメトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基が高い活性を示し、良好な機械物性を有する硬化物が得られるため好ましく、ヤング率の高い硬化物が得られることから、トリメトキシシリル基、トリエトキシシリル基がより好ましく、トリメトキシシリル基がさらに好ましい。 Specific examples of the reactive silicon group possessed by the (meth)acrylate copolymer (B) include a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, and a triacetoxysilyl group. dimethoxymethylsilyl group, diethoxymethylsilyl group, dimethoxyethylsilyl group, (chloromethyl)dimethoxysilyl group, (chloromethyl)diethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group (N,N-diethylaminomethyl)dimethoxysilyl group, (N,N-diethylaminomethyl)diethoxysilyl group, and the like. Among these are methyldimethoxysilyl, trimethoxysilyl, triethoxysilyl, (chloromethyl)dimethoxysilyl, (methoxymethyl)dimethoxysilyl, (methoxymethyl)diethoxysilyl, (N,N- Diethylaminomethyl)dimethoxysilyl group is preferred because it exhibits high activity and gives a cured product with good mechanical properties, and a trimethoxysilyl group and a triethoxysilyl group are more preferred because a cured product with a high Young's modulus is obtained. , and a trimethoxysilyl group are more preferred.
 (メタ)アクリル酸エステル系共重合体(B)の反応性ケイ素基当量は特に限定はないが、0.2mmol/g以上が好ましく、0.5mmol/g以上がより好ましく、0.6mmol/g以上がさらに好ましい。また、前記反応性ケイ素基当量は2.0mmol/g以下が好ましく、硬化物の伸びの低下を抑える点から、1.0mmol/g以下がより好ましい。また、高剛性でかつ柔軟性の高い硬化物を得るためには、前記反応性ケイ素基当量は0.5mmol/g以上、1.0mmol/g以下が特に好ましい。 The reactive silicon group equivalent of the (meth)acrylate copolymer (B) is not particularly limited, but is preferably 0.2 mmol/g or more, more preferably 0.5 mmol/g or more, and 0.6 mmol/g. The above is more preferable. In addition, the reactive silicon group equivalent is preferably 2.0 mmol/g or less, and more preferably 1.0 mmol/g or less from the viewpoint of suppressing a decrease in elongation of the cured product. Moreover, in order to obtain a highly rigid and highly flexible cured product, the reactive silicon group equivalent is particularly preferably 0.5 mmol/g or more and 1.0 mmol/g or less.
 <単量体成分>
 (メタ)アクリル酸エステル系共重合体(B)は、少なくとも、(メタ)アクリル酸エステル(b1)、(メタ)アクリロイル基を分子内に1つより多く有する重合体(b2)、及び、メルカプト基を有する連鎖移動剤(b3)、を含有する単量体成分を共重合して形成される重合体である。なお、本願において「(メタ)アクリル」とは「アクリルおよび/またはメタクリル」を表す。
<Monomer component>
The (meth)acrylic acid ester-based copolymer (B) includes at least a (meth)acrylic acid ester (b1), a polymer (b2) having more than one (meth)acryloyl group in the molecule, and a mercapto It is a polymer formed by copolymerizing a monomer component containing a chain transfer agent (b3) having a group. In the present application, "(meth)acryl" means "acryl and/or methacryl".
 (メタ)アクリル酸エステル系共重合体(B)は、次の2つの条件のうちいずれか一方又は双方を満足することによって、反応性ケイ素基を有することになる。
条件1:前記単量体成分は、さらに、反応性ケイ素基と重合性不飽和基を有する単量体(b4)を含有する。
条件2:前記メルカプト基を有する連鎖移動剤(b3)が、反応性ケイ素基をさらに有する。
 以上のような要件を満足する反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体を使用することで、被着体を接合してから短時間で発現される初期の接着強度が改善され得る。
The (meth)acrylic acid ester-based copolymer (B) has reactive silicon groups by satisfying either one or both of the following two conditions.
Condition 1: The monomer component further contains a monomer (b4) having a reactive silicon group and a polymerizable unsaturated group.
Condition 2: The chain transfer agent (b3) having a mercapto group further has a reactive silicon group.
By using a reactive silicon group-containing (meth)acrylic acid ester copolymer that satisfies the above requirements, the initial adhesive strength developed in a short time after joining the adherends is improved. obtain.
 高伸びの硬化物を得るためには、条件2で導入する反応性ケイ素基が条件1で導入する反応性ケイ素基よりも多いことが好ましい。具体的には、条件1で導入する反応性ケイ素基当量は、0.01mmol/g以上が好ましく、0.03mmol/g以上がより好ましく、0.05mmol/g以上がさらに好ましい。また、条件1で導入する反応性ケイ素基当量は1.0mmol/g以下が好ましく、0.5mmol/g以下がより好ましい。一方、条件2で導入する反応性ケイ素基当量は、0.2mmol/g以上が好ましく、0.3mmol/g以上がより好ましく、0.5mmol/g以上がさらに好ましい。また、条件2で導入する反応性ケイ素基当量は1.5mmol/g以下が好ましく、1.0mmol/g以下がより好ましい。 In order to obtain a cured product with high elongation, it is preferable that the number of reactive silicon groups introduced under Condition 2 is greater than the number of reactive silicon groups introduced under Condition 1. Specifically, the reactive silicon group equivalent introduced under Condition 1 is preferably 0.01 mmol/g or more, more preferably 0.03 mmol/g or more, and even more preferably 0.05 mmol/g or more. Further, the reactive silicon group equivalent introduced under Condition 1 is preferably 1.0 mmol/g or less, more preferably 0.5 mmol/g or less. On the other hand, the reactive silicon group equivalent introduced under Condition 2 is preferably 0.2 mmol/g or more, more preferably 0.3 mmol/g or more, and even more preferably 0.5 mmol/g or more. In addition, the reactive silicon group equivalent introduced under Condition 2 is preferably 1.5 mmol/g or less, more preferably 1.0 mmol/g or less.
 高い強度を有する硬化物を得るためには、条件1及び条件2の双方により反応性ケイ素基を導入することが好ましい。具体的には、条件1で導入する反応性ケイ素基当量は、0.1mmol/g以上が好ましく、0.2mmol/g以上がより好ましく、0.3mmol/g以上がさらに好ましい。また、条件1で導入する反応性ケイ素基当量は1.8mmol/g以下が好ましく、1.0mmol/g以下がより好ましい。一方、条件2で導入する反応性ケイ素基当量は、0.1mmol/g以上が好ましく、0.2mmol/g以上がより好ましく、0.3mmol/g以上がさらに好ましい。また、条件2で導入する反応性ケイ素基当量は1.5mmol/g以下が好ましく、1.0mmol/g以下がより好ましい。 In order to obtain a cured product with high strength, it is preferable to introduce reactive silicon groups under both conditions 1 and 2. Specifically, the reactive silicon group equivalent introduced under Condition 1 is preferably 0.1 mmol/g or more, more preferably 0.2 mmol/g or more, and even more preferably 0.3 mmol/g or more. Further, the reactive silicon group equivalent introduced under Condition 1 is preferably 1.8 mmol/g or less, more preferably 1.0 mmol/g or less. On the other hand, the reactive silicon group equivalent introduced under Condition 2 is preferably 0.1 mmol/g or more, more preferably 0.2 mmol/g or more, and even more preferably 0.3 mmol/g or more. In addition, the reactive silicon group equivalent introduced under Condition 2 is preferably 1.5 mmol/g or less, more preferably 1.0 mmol/g or less.
 <(メタ)アクリル酸エステル(b1)>
 (メタ)アクリル酸エステル(b1)としては特に限定されないが、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸のエチレンオキシド付加物、(メタ)アクリル酸2,2,2-トリフルオロエチル、(メタ)アクリル酸3,3,3-トリフルオロプロピル、(メタ)アクリル酸3,3,4,4,4-ペンタフルオロブチル、(メタ)アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸ビス(トリフルオロメチル)メチル、(メタ)アクリル酸2-トリフルオロメチル-2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロヘキシルエチル、(メタ)アクリル酸2-パーフルオロデシルエチル、(メタ)アクリル酸2-パーフルオロヘキサデシルエチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸クロロエチル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-アミノエチル等が挙げられる。1種類のみを使用してもよいし、2種以上を併用してもよい。
 (メタ)アクリル酸エステル(b1)としては(メタ)アクリル酸アルキルエステルが好ましい。
<(Meth) acrylic acid ester (b1)>
The (meth)acrylic acid ester (b1) is not particularly limited, and examples thereof include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, (meth) ) n-butyl acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) ) n-heptyl acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, (meth)acrylic stearyl acid, phenyl (meth)acrylate, toluyl (meth)acrylate, benzyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 3-methoxybutyl (meth)acrylate, (meth)acrylic acid 2 -hydroxyethyl, 2-hydroxypropyl (meth)acrylate, ethylene oxide adduct of (meth)acrylic acid, 2,2,2-trifluoroethyl (meth)acrylate, 3,3,3- (meth)acrylate trifluoropropyl, 3,3,4,4,4-pentafluorobutyl (meth)acrylate, 2-perfluoroethyl-2-perfluorobutylethyl (meth)acrylate, trifluoromethyl (meth)acrylate, Perfluoroethyl (meth)acrylate, bis(trifluoromethyl)methyl (meth)acrylate, 2-trifluoromethyl-2-perfluoroethylethyl (meth)acrylate, 2-perfluorohexyl (meth)acrylate Ethyl, 2-perfluorodecylethyl (meth)acrylate, 2-perfluorohexadecylethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, chloroethyl (meth)acrylate, tetrahydrofuran (meth)acrylate furyl, glycidyl (meth)acrylate, 2-aminoethyl (meth)acrylate and the like. Only one type may be used, or two or more types may be used in combination.
The (meth)acrylic acid ester (b1) is preferably a (meth)acrylic acid alkyl ester.
 (メタ)アクリル酸エステル(b1)の含有量は、柔軟性と高剛性を両立できる観点から、(メタ)アクリル酸エステル系共重合体(B)を構成する単量体成分の総量に対し30重量%以上であることが好ましく、40重量%以上がより好ましく、45重量%以上が更に好ましい。上限は、80重量%以下が好ましく、70重量%以下がより好ましく、65重量%以下が更に好ましい。 From the viewpoint of achieving both flexibility and high rigidity, the content of the (meth)acrylic acid ester (b1) is 30% relative to the total amount of the monomer components constituting the (meth)acrylic acid ester copolymer (B). It is preferably at least 40% by weight, even more preferably at least 45% by weight. The upper limit is preferably 80% by weight or less, more preferably 70% by weight or less, and even more preferably 65% by weight or less.
 強度の高い硬化物が得られることから、(メタ)アクリル酸エステル(b1)としては、アルキルの炭素数が1~4である(メタ)アクリル酸アルキルエステルを含むことが好ましい。当該アルキルの炭素数が1~4である(メタ)アクリル酸アルキルエステルを、(メタ)アクリル酸エステル系共重合体(B)を構成する単量体成分の総量に対し30重量%以上含有することが好ましく、35重量%以上がより好ましく、40重量%以上が更に好ましい。上限は、70重量%以下が好ましく、60重量%以下がより好ましく、55重量%以下が更に好ましい。 The (meth)acrylic acid ester (b1) preferably contains a (meth)acrylic acid alkyl ester in which the alkyl has 1 to 4 carbon atoms, since a cured product with high strength can be obtained. The (meth)acrylic acid alkyl ester in which the alkyl has 1 to 4 carbon atoms is contained in an amount of 30% by weight or more based on the total amount of the monomer components constituting the (meth)acrylic acid ester-based copolymer (B). 35% by weight or more is more preferable, and 40% by weight or more is even more preferable. The upper limit is preferably 70% by weight or less, more preferably 60% by weight or less, and even more preferably 55% by weight or less.
 (メタ)アクリル酸エステル(b1)は、硬質の重合体鎖を形成して強度の高い硬化物を得ることができるため、メタクリル酸エステル、アクリル酸イソボルニル、アクリル酸ジシクロペンテニル、及び、アクリル酸ジシクロペンタニルからなる群より選択される少なくとも1種の単量体を含有することが好ましい。特に、重合体(b2)を除く前記単量体成分の総量のうち、メタクリル酸エステル、アクリル酸イソボルニル、アクリル酸ジシクロペンテニル、及び、アクリル酸ジシクロペンタニルからなる群より選択される少なくとも1種の単量体が占める割合が60重量%以上であることが好ましく、70重量%以上がより好ましい。 (Meth)acrylic acid ester (b1) can form a hard polymer chain to obtain a cured product with high strength. It preferably contains at least one monomer selected from the group consisting of dicyclopentanyl. In particular, among the total amount of the monomer components excluding the polymer (b2), at least one selected from the group consisting of methacrylate, isobornyl acrylate, dicyclopentenyl acrylate, and dicyclopentanyl acrylate The proportion of the seed monomer is preferably 60% by weight or more, more preferably 70% by weight or more.
 <(メタ)アクリロイル基を分子内に1つより多く有する重合体(b2)>
 重合体(b2)はこれ自体が重合体であるが、(メタ)アクリル酸エステル系共重合体(B)を構成する単量体の1つである。重合体(b2)は(メタ)アクリロイル基を有することによって、(メタ)アクリル酸エステル(b1)など他の単量体と共重合することができる。しかも、重合体(b2)は(メタ)アクリロイル基を1分子内に1つより多く有するため、いわゆる多官能性マクロモノマーとして機能することができる。重合体(b2)の主鎖骨格(後述する第二分子鎖)は、(メタ)アクリル酸エステル系共重合体(B)において、主に(メタ)アクリル酸エステル(b1)から構成される2本の分子鎖(後述する第一分子鎖)を架橋する構造を形成し得る。以下、重合体(b2)を多官能性マクロモノマー(b2)ともいう。
<Polymer (b2) having more than one (meth)acryloyl group in the molecule>
Although the polymer (b2) is itself a polymer, it is one of the monomers constituting the (meth)acrylate copolymer (B). Since the polymer (b2) has a (meth)acryloyl group, it can be copolymerized with other monomers such as (meth)acrylic acid ester (b1). Moreover, since the polymer (b2) has more than one (meth)acryloyl group in one molecule, it can function as a so-called polyfunctional macromonomer. The main chain skeleton (second molecular chain described later) of the polymer (b2) is mainly composed of the (meth)acrylic acid ester (b1) in the (meth)acrylic acid ester-based copolymer (B) 2 It can form a structure that crosslinks the molecular chains (the first molecular chain described later). Hereinafter, the polymer (b2) is also referred to as polyfunctional macromonomer (b2).
 多官能性マクロモノマー(b2)が有する(メタ)アクリロイル基は、下記式(4)で表されることが好ましい。
CH=C(R)-COO-Z   (4)
(式中、Rは、水素またはメチル基を表す。Zは、多官能性マクロモノマー(b2)の主鎖骨格を表す。)
The (meth)acryloyl group of the polyfunctional macromonomer (b2) is preferably represented by the following formula (4).
CH2 =C( R7 )-COO-Z (4)
(In the formula, R 7 represents hydrogen or a methyl group. Z represents the main chain skeleton of the polyfunctional macromonomer (b2).)
 多官能性マクロモノマー(b2)は、(メタ)アクリロイル基を1分子内に平均して1つより多く有する。多官能性マクロモノマー(b2)1分子当たりの(メタ)アクリロイル基の平均個数は、1.1~5個であることが好ましく、1.3~4個がより好ましく、1.6~2.5個がさらに好ましく、1.8~2.0個が特に好ましい。尚、多官能性マクロモノマー(b2)は、(メタ)アクリロイル基として、アクリロイル基のみを有してもよいし、メタクリロイル基のみを有してもよいし、アクリロイル基とメタクリロイル基の双方を有してもよい。 The polyfunctional macromonomer (b2) has an average of more than one (meth)acryloyl group in one molecule. The average number of (meth)acryloyl groups per molecule of the polyfunctional macromonomer (b2) is preferably 1.1-5, more preferably 1.3-4, and 1.6-2. 5 is more preferred, and 1.8 to 2.0 is particularly preferred. As the (meth)acryloyl group, the polyfunctional macromonomer (b2) may have only an acryloyl group, may have only a methacryloyl group, or may have both an acryloyl group and a methacryloyl group. You may
 多官能性マクロモノマー(b2)は、(メタ)アクリロイル基を、重合体の分子鎖末端および側鎖のいずれか又は双方に有することができる。機械物性に優れる観点から、分子鎖末端に有することが好ましい。特に、多官能性マクロモノマー(b2)は、直鎖状の主鎖骨格を有し、その分子鎖の両末端それぞれに(メタ)アクリロイル基を有することが特に好ましい。 The polyfunctional macromonomer (b2) can have (meth)acryloyl groups at either or both of the molecular chain terminals and side chains of the polymer. From the standpoint of excellent mechanical properties, it is preferred to have it at the end of the molecular chain. In particular, it is particularly preferred that the polyfunctional macromonomer (b2) has a linear main chain skeleton and (meth)acryloyl groups at both ends of the molecular chain.
 多官能性マクロモノマー(b2)の主鎖骨格は、(メタ)アクリル酸エステル系重合体であるか、又は、ポリオキシアルキレン系重合体であることが好ましい。以下では、主鎖骨格が(メタ)アクリル酸エステル系重合体である多官能性マクロモノマー(b2)を(b2′)と表記し、主鎖骨格がポリオキシアルキレン系重合体である多官能性マクロモノマー(b2)を(b2″)と表記する。 The main chain skeleton of the polyfunctional macromonomer (b2) is preferably a (meth)acrylate polymer or a polyoxyalkylene polymer. In the following, the polyfunctional macromonomer (b2) whose main chain skeleton is a (meth)acrylic acid ester polymer is denoted as (b2′), and the main chain skeleton is a polyoxyalkylene polymer. Macromonomer (b2) is denoted as (b2″).
 まず、多官能性マクロモノマー(b2′)について説明する。
 多官能性マクロモノマー(b2′)の主鎖骨格を構成する単量体としては、特に限定されず、各種(メタ)アクリル系単量体を用いることができる。(メタ)アクリル系単量体としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸のエチレンオキシド付加物、(メタ)アクリル酸2,2,2-トリフルオロエチル、(メタ)アクリル酸3,3,3-トリフルオロプロピル、(メタ)アクリル酸3,3,4,4,4-ペンタフルオロブチル、(メタ)アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸ビス(トリフルオロメチル)メチル、(メタ)アクリル酸2-トリフルオロメチル-2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロヘキシルエチル、(メタ)アクリル酸2-パーフルオロデシルエチル、(メタ)アクリル酸2-パーフルオロヘキサデシルエチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸クロロエチル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-アミノエチル等が挙げられる。
First, the polyfunctional macromonomer (b2') will be explained.
The monomer constituting the main chain skeleton of the polyfunctional macromonomer (b2') is not particularly limited, and various (meth)acrylic monomers can be used. Examples of (meth)acrylic monomers include (meth)acrylic acid, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, ( meth) n-butyl acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, ( meth)n-heptyl acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, (meth)acrylate Stearyl acrylate, phenyl (meth)acrylate, toluyl (meth)acrylate, benzyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 3-methoxybutyl (meth)acrylate, (meth)acrylic acid 2-hydroxyethyl, 2-hydroxypropyl (meth)acrylate, ethylene oxide adduct of (meth)acrylic acid, 2,2,2-trifluoroethyl (meth)acrylate, 3,3,3 (meth)acrylic acid -trifluoropropyl, 3,3,4,4,4-pentafluorobutyl (meth)acrylate, 2-perfluoroethyl-2-perfluorobutylethyl (meth)acrylate, trifluoromethyl (meth)acrylate , (meth) perfluoroethyl acrylate, bis (trifluoromethyl) methyl (meth) acrylate, 2-trifluoromethyl-2-perfluoroethyl ethyl (meth) acrylate, 2-perfluoro (meth) acrylate Hexylethyl, 2-perfluorodecylethyl (meth)acrylate, 2-perfluorohexadecylethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, chloroethyl (meth)acrylate, tetrahydro(meth)acrylate furfuryl, glycidyl (meth)acrylate, 2-aminoethyl (meth)acrylate and the like.
 更に、上記(メタ)アクリル系単量体と共重合性を示す他の単量体を併用してもよい。他の単量体としては、例えば、スチレン、ビニルトルエン、α-メチルスチレン、クロロスチレン、スチレンスルホン酸等のスチレン系単量体;パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有ビニル単量体;マレイン酸、無水マレイン酸、マレイン酸モノアルキルエステル、マレイン酸ジアルキルエステル等のマレイン酸およびその誘導体;フマル酸、フマル酸モノアルキルエステル、フマル酸ジアルキルエステル等のフマル酸およびその誘導体;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系単量体;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル系単量体;エチレン、プロピレン等のオレフィン系単量体;ブタジエン、イソプレン等の共役ジエン系単量体;(メタ)アクリルアミド;(メタ)アクリロニトリル;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール、エチルビニルエーテル、ブチルビニルエーテル等のビニル系単量体が挙げられる。他の単量体は1種のみを使用してもよく、2種以上を併用してもよい。 Furthermore, other monomers that are copolymerizable with the (meth)acrylic monomer may be used in combination. Other monomers include, for example, styrene-based monomers such as styrene, vinyltoluene, α-methylstyrene, chlorostyrene, and styrenesulfonic acid; fluorine-containing vinyls such as perfluoroethylene, perfluoropropylene, and vinylidene fluoride; Monomer; Maleic acid and its derivatives such as maleic acid, maleic anhydride, maleic acid monoalkyl ester, and maleic acid dialkyl ester; Fumaric acid and its derivatives such as fumaric acid, fumaric acid monoalkyl ester, and fumaric acid dialkyl ester; Maleimide-based monomers such as maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenylmaleimide, and cyclohexylmaleimide; vinyl acetate, vinyl propionate, vinyl pivalate, vinyl ester monomers such as vinyl benzoate and vinyl cinnamate; olefin monomers such as ethylene and propylene; conjugated diene monomers such as butadiene and isoprene; (meth)acrylamide; (meth)acrylonitrile; Vinyl monomers such as vinyl, vinylidene chloride, allyl chloride, allyl alcohol, ethyl vinyl ether and butyl vinyl ether are included. Other monomers may be used alone or in combination of two or more.
 多官能性マクロモノマー(b2′)の主鎖骨格は、軟質の重合体から構成されることが好ましい。具体的には、多官能性マクロモノマー(b2′)の主鎖骨格を形成する単量体成分は、アクリル酸エステル(但し、アクリル酸イソボルニル、アクリル酸ジシクロペンテニル、及び、アクリル酸ジシクロペンタニルを除く)を60重量%以上含有することが好ましく、70重量%以上がより好ましい。上限は、100重量%であってもよい。 The main chain skeleton of the polyfunctional macromonomer (b2') is preferably composed of a soft polymer. Specifically, the monomer component forming the main chain skeleton of the polyfunctional macromonomer (b2′) is an acrylate ester (provided that isobornyl acrylate, dicyclopentenyl acrylate, and dicyclopentaacrylate excluding nil) is preferably 60% by weight or more, more preferably 70% by weight or more. The upper limit may be 100% by weight.
 多官能性マクロモノマー(b2′)を合成する方法は特に限定されないが、例えば、以下に示す方法を用いることができる。以下の方法は組み合わせて用いてもよい。
(i)反応性官能基(V基)を有する単量体(例えば、アクリル酸、アクリル酸2-ヒドロキシエチル)を(メタ)アクリル系単量体と共重合した後、得られた共重合体に、V基に反応する官能基及び(メタ)アクリロイル基を有する化合物(例えば、(メタ)アクリル酸2-イソシアネートエチル)を反応させる方法。
(ii)リビングラジカル重合法によって(メタ)アクリル系単量体を重合した後、分子鎖末端(好ましくは分子鎖の両末端それぞれ)に(メタ)アクリロイル基を導入する方法。
 これらの方法のうち、分子鎖末端に(メタ)アクリロイル基を導入することができるので、(ii)の方法を用いることが好ましい。「リビングラジカル重合法」は、例えば、ジャーナル・オブ・アメリカン・ケミカル・ソサエティー(J.Am.Chem.Soc.)、1994年、116巻、7943頁に示されているようなコバルトポルフィリン錯体を用いるもの、特表2003-500378号公報に示されているようなニトロオキサイドラジカルを用いるもの、特開平11-130931号公報に示されているような有機ハロゲン化物やハロゲン化スルホニル化合物などを開始剤とし、遷移金属錯体を触媒とする原子移動ラジカル重合(Atom Transfer Radical Polymerization:ATRP法)などが挙げられる。分子鎖末端に(メタ)アクリロイル基を導入しやすいことから原子移動ラジカル重合法が最も好ましい。
Although the method for synthesizing the polyfunctional macromonomer (b2') is not particularly limited, for example, the method shown below can be used. The following methods may be used in combination.
(i) a copolymer obtained by copolymerizing a monomer having a reactive functional group (V group) (e.g., acrylic acid, 2-hydroxyethyl acrylate) with a (meth)acrylic monomer; with a compound having a functional group and (meth)acryloyl group that reacts with group V (eg, 2-isocyanatoethyl (meth)acrylate).
(ii) A method of polymerizing a (meth)acrylic monomer by a living radical polymerization method and then introducing (meth)acryloyl groups to the ends of the molecular chain (preferably both ends of the molecular chain).
Among these methods, it is preferable to use the method (ii) because it is possible to introduce a (meth)acryloyl group at the molecular chain terminal. The "living radical polymerization method" uses a cobalt porphyrin complex as shown, for example, in J. Am. Chem. Soc., 1994, 116, 7943. Those using nitroxide radicals as shown in JP-A-2003-500378, organic halides and sulfonyl halide compounds as shown in JP-A-11-130931 as initiators. , Atom Transfer Radical Polymerization (ATRP method) using a transition metal complex as a catalyst, and the like. Atom transfer radical polymerization is most preferred because it facilitates the introduction of (meth)acryloyl groups to the ends of the molecular chains.
 また、特開2001-040037号公報に示されているようなメタロセン触媒と分子中に反応性ケイ素基を少なくとも1つ以上有するチオール化合物とを用いて(メタ)アクリル系重合体を得る方法を用いることも可能である。 Alternatively, a method of obtaining a (meth)acrylic polymer using a metallocene catalyst and a thiol compound having at least one reactive silicon group in the molecule as disclosed in JP-A-2001-040037 is used. is also possible.
 次に、多官能性マクロモノマー(b2″)について説明する。
 多官能性マクロモノマー(b2″)の主鎖骨格であるポリオキシアルキレン系重合体としては特に限定されず、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、ポリオキシプロピレン-ポリオキシブチレン共重合体などが挙げられる。その中でも、ポリオキシプロピレンが好ましい。
Next, the polyfunctional macromonomer (b2″) will be explained.
The polyoxyalkylene polymer that is the main chain skeleton of the polyfunctional macromonomer (b2″) is not particularly limited, and examples include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, and polyoxyethylene. -polyoxypropylene copolymer, polyoxypropylene-polyoxybutylene copolymer, etc. Among them, polyoxypropylene is preferred.
 当該ポリオキシアルキレン系重合体の主鎖骨格は直鎖状であってもよいし、分岐状であってもよいが、直鎖状であることが好ましい。 The main chain skeleton of the polyoxyalkylene polymer may be linear or branched, but is preferably linear.
 多官能性マクロモノマー(b2″)を合成する方法としては特に限定されないが、例えば、水酸基を分子内に1つより多く有するポリオキシアルキレン系重合体(好ましくは、両末端に水酸基を有する直鎖状のポリオキシアルキレン系重合体)を準備し、当該水酸基を利用して(メタ)アクリロイル基を導入する方法が挙げられる。 Although the method for synthesizing the polyfunctional macromonomer (b2″) is not particularly limited, for example, a polyoxyalkylene polymer having more than one hydroxyl group in the molecule (preferably, a linear A method of preparing a polyoxyalkylene-based polymer) and introducing a (meth)acryloyl group using the hydroxyl group.
 多官能性マクロモノマー(b2″)の合成法の一例として、水酸基を有するポリオキシアルキレン系重合体に対して、イソシアネート基と(メタ)アクリロイル基を有する化合物を反応させて、ウレタン結合を形成して、(メタ)アクリロイル基を導入することができる。
 前記イソシアネート基と(メタ)アクリロイル基を有する化合物の具体例としては、例えば、イソシアネートエチル(メタ)アクリレート、イソシアネートプロピル(メタ)アクリレート、イソシアネートブチル(メタ)アクリレート、イソシアネートヘキシル(メタ)アクリレート等が挙げられる。
As an example of the method for synthesizing the polyfunctional macromonomer (b2″), a polyoxyalkylene polymer having a hydroxyl group is reacted with a compound having an isocyanate group and a (meth)acryloyl group to form a urethane bond. can introduce a (meth)acryloyl group.
Specific examples of the compound having an isocyanate group and a (meth)acryloyl group include isocyanatoethyl (meth)acrylate, isocyanatopropyl (meth)acrylate, isocyanatobutyl (meth)acrylate, isocyanatohexyl (meth)acrylate, and the like. be done.
 多官能性マクロモノマー(b2″)の合成法の別の例として、水酸基を有するポリオキシアルキレン系重合体に対してジイソシアネート化合物を反応させて、重合体にイソシアネート基を導入した後、水酸基と(メタ)アクリロイル基を有する化合物を反応させることで、(メタ)アクリロイル基を導入することもできる。
 前記ジイソシアネート化合物の具体例としては、例えば、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート等が挙げられる。
 前記水酸基と(メタ)アクリロイル基を有する化合物の具体例としては、例えば、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシエチル、ポリエチレングリコールモノ(メタ)アクリル酸エステル、ポリプロピレングリコールモノ(メタ)アクリル酸エステル等が挙げられる。
As another example of the method for synthesizing the polyfunctional macromonomer (b2″), a polyoxyalkylene polymer having a hydroxyl group is reacted with a diisocyanate compound to introduce an isocyanate group into the polymer, and then the hydroxyl group and ( A (meth)acryloyl group can also be introduced by reacting a compound having a meth)acryloyl group.
Specific examples of the diisocyanate compound include tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-diphenylmethane diisocyanate, and the like.
Specific examples of the compound having a hydroxyl group and a (meth)acryloyl group include, for example, hydroxybutyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxyethyl (meth)acrylate, polyethylene glycol mono(meth)acryl acid esters, polypropylene glycol mono(meth)acrylic acid esters, and the like.
 多官能性マクロモノマー(b2″)の合成法の更に別の例として、水酸基を有するポリオキシアルキレン系重合体に対して酸無水物を反応させて、重合体にカルボキシル基を導入した後、エポキシ基と(メタ)アクリロイル基を有する化合物を反応させることで、(メタ)アクリロイル基を導入することもできる。
 前記酸無水物の具体例としては、例えば、無水コハク酸、無水マレイン酸、無水フタル酸、無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水メチルテトラヒドロフタル酸、無水メチルヘキサヒドロフタル酸、無水メチルハイミック酸、無水トリメリット酸、無水メチルナジック酸、ドデシル無水コハク酸等が挙げられる。
 前記エポキシ基と(メタ)アクリロイル基を有する化合物の具体例としては、例えば、(メタ)アクリル酸グリシジル等が挙げられる。
As still another example of a method for synthesizing the polyfunctional macromonomer (b2″), an acid anhydride is reacted with a polyoxyalkylene polymer having a hydroxyl group to introduce a carboxyl group into the polymer, followed by epoxy A (meth)acryloyl group can also be introduced by reacting the group with a compound having a (meth)acryloyl group.
Specific examples of the acid anhydride include succinic anhydride, maleic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and methyl anhydride. Himic acid, trimellitic anhydride, methyl nadic anhydride, dodecyl succinic anhydride and the like.
Specific examples of the compound having an epoxy group and a (meth)acryloyl group include glycidyl (meth)acrylate.
 多官能性マクロモノマー(b2″)の合成法の更に別の例として、水酸基を有するポリオキシアルキレン系重合体に対して、メタクリル酸、アクリル酸を脱水縮合させる方法がある。また、反応をより温和な条件で実施するためには、水酸基を有するポリオキシアルキレン系重合体に対して、メタクリル酸クロリド、メタクリル酸ブロミド、メタクリル酸ヨージド、アクリル酸クロリド、アクリル酸ブロミド、アクリル酸ヨージドなどを反応させる方法がある。 Still another example of the method for synthesizing the polyfunctional macromonomer (b2″) is a method of dehydration condensation of methacrylic acid and acrylic acid on a polyoxyalkylene polymer having a hydroxyl group. In order to carry out under mild conditions, methacrylic acid chloride, methacrylic acid bromide, methacrylic acid iodide, acrylic acid chloride, acrylic acid bromide, acrylic acid iodide, etc. are reacted with a polyoxyalkylene polymer having a hydroxyl group. There is a way.
 多官能性マクロモノマー(b2)の数平均分子量は特に限定されないが、硬化物が発揮する機械物性及び接着性と、(b2)の取り扱いの容易さを両立する観点から、500以上が好ましく、1,000以上がより好ましく、2,000以上がさらに好ましい。また、100,000以下が好ましく、50,000以下がより好ましく、40,000以下がさらに好ましく、30,000以下が特に好ましい。 The number average molecular weight of the polyfunctional macromonomer (b2) is not particularly limited, but is preferably 500 or more from the viewpoint of achieving both the mechanical properties and adhesiveness exhibited by the cured product and the ease of handling of (b2). ,000 or more is more preferable, and 2,000 or more is even more preferable. Also, it is preferably 100,000 or less, more preferably 50,000 or less, even more preferably 40,000 or less, and particularly preferably 30,000 or less.
 多官能性マクロモノマー(b2)の重量平均分子量は特に限定されないが、硬化物が発揮する機械物性及び接着性と、(b2)の取り扱いの容易さを両立する観点から、500以上が好ましく、1,000以上が好ましく、2,500以上がさらに好ましい。また、130,000以下が好ましく、65,000以下がより好ましく、60,000以下がさらに好ましく、30,000以下がより更に好ましい。 The weight average molecular weight of the polyfunctional macromonomer (b2) is not particularly limited, but is preferably 500 or more from the viewpoint of achieving both the mechanical properties and adhesiveness exhibited by the cured product and the ease of handling of (b2). ,000 or more is preferable, and 2,500 or more is more preferable. Also, it is preferably 130,000 or less, more preferably 65,000 or less, even more preferably 60,000 or less, and even more preferably 30,000 or less.
 多官能性マクロモノマー(b2)の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は特に限定されないが、狭いことが好ましく、具体的には2.0未満が好ましく、1.6以下がより好ましく、1.5以下がさらに好ましく、1.4以下がより更に好ましく、1.3以下が特に好ましく、1.2以下が最も好ましい。 The molecular weight distribution (weight average molecular weight (Mw)/number average molecular weight (Mn)) of the polyfunctional macromonomer (b2) is not particularly limited, but is preferably narrow, specifically less than 2.0. 6 or less is more preferable, 1.5 or less is more preferable, 1.4 or less is even more preferable, 1.3 or less is particularly preferable, and 1.2 or less is most preferable.
 多官能性マクロモノマー(b2)の数平均分子量(Mn)および重量平均分子量(Mw)は、GPC(ポリスチレン換算)により測定される値であり、その詳しい測定法は実施例で記載する。 The number average molecular weight (Mn) and weight average molecular weight (Mw) of the polyfunctional macromonomer (b2) are values measured by GPC (converted to polystyrene), and detailed measurement methods are described in Examples.
 (メタ)アクリル酸エステル系共重合体(B)は、主に(メタ)アクリル酸エステル(b1)から構成される分子鎖と、多官能性マクロモノマー(b2)の主鎖骨格に由来する分子鎖を有する。多官能性マクロモノマー(b2)は重合性基である(メタ)アクリロイル基を1分子内に1つより多く有するため、(メタ)アクリル酸エステル系共重合体(B)は、多官能性マクロモノマー(b2)の主鎖骨格に由来する分子鎖1本に対して、主に(メタ)アクリル酸エステル(b1)から構成される分子鎖が1本より多く結合した構造を有し得る。多官能性マクロモノマー(b2)の主鎖骨格に由来する分子鎖は、主に(メタ)アクリル酸エステル(b1)から構成される分子鎖の末端又は側鎖(非末端部位)のいずれに導入されていてもよいが、接着性の観点から、側鎖に導入されていることが好ましい。 The (meth)acrylic acid ester-based copolymer (B) is a molecular chain mainly composed of the (meth)acrylic acid ester (b1) and a molecule derived from the main chain skeleton of the polyfunctional macromonomer (b2). have chains. Since the polyfunctional macromonomer (b2) has more than one (meth)acryloyl group in one molecule, which is a polymerizable group, the (meth)acrylate copolymer (B) is a polyfunctional macro It may have a structure in which more than one molecular chain mainly composed of the (meth)acrylic acid ester (b1) is bonded to one molecular chain derived from the main chain skeleton of the monomer (b2). The molecular chain derived from the main chain skeleton of the polyfunctional macromonomer (b2) is introduced into either the terminal or the side chain (non-terminal portion) of the molecular chain mainly composed of the (meth)acrylic acid ester (b1). However, from the viewpoint of adhesiveness, it is preferably introduced into the side chain.
 特に、多官能性マクロモノマー(b2)が主鎖骨格の両末端それぞれに(メタ)アクリロイル基を有する場合、多官能性マクロモノマー(b2)の主鎖骨格に由来する分子鎖の両末端それぞれに、主に(メタ)アクリル酸エステル(b1)から構成される分子鎖が結合したH型構造が形成され得る。ここで、多官能性マクロモノマー(b2)の主鎖骨格に由来する分子鎖がHの横棒に相当し、主に(メタ)アクリル酸エステル(b1)から構成される分子鎖が、Hに含まれる2本の縦棒に相当する。H型構造については後述する。 In particular, when the polyfunctional macromonomer (b2) has a (meth)acryloyl group at each of both ends of the main chain skeleton, each of both ends of the molecular chain derived from the main chain skeleton of the polyfunctional macromonomer (b2) , an H-type structure can be formed in which molecular chains composed mainly of (meth)acrylic acid ester (b1) are bonded. Here, the molecular chain derived from the main chain skeleton of the polyfunctional macromonomer (b2) corresponds to the horizontal bar of H, and the molecular chain mainly composed of the (meth)acrylic acid ester (b1) Corresponds to the two vertical bars included. The H-shaped structure will be described later.
 多官能性マクロモノマー(b2)の含有量は、(メタ)アクリル酸エステル系共重合体(B)を構成する単量体成分の総量に対し1重量%以上70重量%以下であることが好ましく、5重量%以上60重量%以下がより好ましく、10重量%以上50重量%以下がさらにより好ましく、15重量%以上45重量%以下が特に好ましい。なかでも、ヤング率の高い硬化物を得る場合には、多官能性マクロモノマー(b2)の含有量は、35重量%未満が好ましい。一方、ヤング率の低い硬化物を得る場合には、多官能性マクロモノマー(b2)の含有量は、35重量%以上が好ましい。 The content of the polyfunctional macromonomer (b2) is preferably 1% by weight or more and 70% by weight or less with respect to the total amount of the monomer components constituting the (meth)acrylate copolymer (B). , 5 wt % or more and 60 wt % or less, more preferably 10 wt % or more and 50 wt % or less, and particularly preferably 15 wt % or more and 45 wt % or less. In particular, when obtaining a cured product with a high Young's modulus, the content of the polyfunctional macromonomer (b2) is preferably less than 35% by weight. On the other hand, when obtaining a cured product with a low Young's modulus, the content of the polyfunctional macromonomer (b2) is preferably 35% by weight or more.
 また、多官能性マクロモノマー(b2)の含有量は、(メタ)アクリル酸エステル系共重合体(B)を構成する単量体成分中、0.05モル%以上6.0モル%以下を占めることが好ましく、0.1モル%以上2.3モル%以下を占めることがより好ましく、0.2モル%以上1.5モル%以下を占めることがさらに好ましい。以上の範囲では、(メタ)アクリル酸エステル系共重合体(B)を合成する時のゲル化を抑制しつつ、多官能性マクロモノマー(b2)の使用による効果を達成することができる。 In addition, the content of the polyfunctional macromonomer (b2) is 0.05 mol% or more and 6.0 mol% or less in the monomer components constituting the (meth)acrylate copolymer (B). It preferably accounts for 0.1 mol % or more and 2.3 mol % or less, and even more preferably 0.2 mol % or more and 1.5 mol % or less. Within the above range, the effects of using the polyfunctional macromonomer (b2) can be achieved while suppressing gelation during the synthesis of the (meth)acrylate copolymer (B).
 (メタ)アクリル酸エステル系共重合体(B)1分子当たりの多官能性マクロモノマー(b2)の平均個数は、得られる硬化物の強度の観点から、0.05以上2.0以下であることが好ましい。下限は、0.07以上がより好ましく、0.08以上がさらに好ましい。上限は、1.5以下がより好ましく、1.0以下がさらに好ましい。前記平均個数は、次の式で算出することができる。
式:(メタ)アクリル酸エステル系共重合体(B)の数平均分子量(g/mol)/((メタ)アクリル酸エステル系共重合体(B)の重量(g)/(多官能性マクロモノマー(b2)のモル数))
The average number of polyfunctional macromonomers (b2) per molecule of the (meth)acrylate copolymer (B) is 0.05 or more and 2.0 or less from the viewpoint of the strength of the resulting cured product. is preferred. The lower limit is more preferably 0.07 or more, and even more preferably 0.08 or more. The upper limit is more preferably 1.5 or less, even more preferably 1.0 or less. The average number can be calculated by the following formula.
Formula: Number average molecular weight (g / mol) of (meth) acrylic ester copolymer (B) / ((meth) acrylic ester copolymer (B) weight (g) / (polyfunctional macro Number of moles of monomer (b2)))
 <メルカプト基を有する連鎖移動剤(b3)>
 (メタ)アクリル酸エステル系共重合体(B)を構成する単量体成分に、メルカプト基を有する連鎖移動剤(b3)を含めることによって、多官能性マクロモノマー(b2)を使用しているにも関わらず、(メタ)アクリル酸エステル系共重合体(B)の分子量分布を比較的狭くし、かつ(メタ)アクリル酸エステル系共重合体(B)を合成する時のゲル化を抑制することができる。また、(メタ)アクリル酸エステル系共重合体(B)の1分子に多官能性マクロモノマー(b2)が1分子導入された重合体分子を優先的に合成することが可能となる。
<Chain transfer agent (b3) having a mercapto group>
A polyfunctional macromonomer (b2) is used by including a chain transfer agent (b3) having a mercapto group in the monomer component constituting the (meth)acrylate copolymer (B). Nevertheless, the molecular weight distribution of the (meth)acrylic acid ester copolymer (B) is relatively narrowed, and gelation is suppressed when synthesizing the (meth)acrylic acid ester copolymer (B). can do. In addition, it becomes possible to preferentially synthesize a polymer molecule in which one molecule of the polyfunctional macromonomer (b2) is introduced into one molecule of the (meth)acrylate copolymer (B).
 メルカプト基を有する連鎖移動剤(b3)は、反応性ケイ素基を有しないものであってもよいが、反応性ケイ素基をさらに有することが好ましい。当該反応性ケイ素基は、前述した式(1)で表される反応性ケイ素基である。メルカプト基を有する連鎖移動剤(b3)が反応性ケイ素基を有することによって、主に(メタ)アクリル酸エステル(b1)から構成される分子鎖の末端に反応性ケイ素基を導入することができる。 The chain transfer agent (b3) having a mercapto group may not have a reactive silicon group, but preferably has a reactive silicon group. The reactive silicon group is a reactive silicon group represented by formula (1) described above. When the chain transfer agent (b3) having a mercapto group has a reactive silicon group, a reactive silicon group can be introduced at the end of the molecular chain mainly composed of the (meth)acrylic acid ester (b1). .
 メルカプト基を有する連鎖移動剤(b3)としては特に限定されないが、例えば、3-メルカプトプロピルジメトキシメチルシラン、3-メルカプトプロピルトリメトキシシラン、(メルカプトメチル)ジメトキシメチルシラン、(メルカプトメチル)トリメトキシシラン、n-ドデシルメルカプタン、tert-ドデシルメルカプタン、ラウリルメルカプタン等が挙げられる。 Although the chain transfer agent (b3) having a mercapto group is not particularly limited, examples thereof include 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyltrimethoxysilane, (mercaptomethyl)dimethoxymethylsilane, (mercaptomethyl)trimethoxysilane. , n-dodecylmercaptan, tert-dodecylmercaptan, laurylmercaptan and the like.
 メルカプト基を有する連鎖移動剤(b3)の含有量は、(メタ)アクリル酸エステル系共重合体(B)を構成する単量体成分の総量に対し1重量%以上15重量%以下であることが好ましく、2重量%以上10重量%以下がより好ましく、3重量%以上8重量%以下がより好ましい。 The content of the chain transfer agent (b3) having a mercapto group is 1% by weight or more and 15% by weight or less with respect to the total amount of the monomer components constituting the (meth)acrylate copolymer (B). is preferred, more preferably 2 wt % or more and 10 wt % or less, and more preferably 3 wt % or more and 8 wt % or less.
 また、メルカプト基を有する連鎖移動剤(b3)の含有量は、(メタ)アクリル酸エステル系共重合体(B)を構成する単量体成分中0.1モル%以上20モル%以下を占めることが好ましく、0.4モル%以上15モル%以下を占めることがより好ましく、0.5モル%以上10モル%以下を占めることがさらに好ましく、0.6モル%以上8モル%以下を占めることが特に好ましい。以上の範囲では、メルカプト基を有する連鎖移動剤(b3)を使用することによる効果を達成できる。 In addition, the content of the chain transfer agent (b3) having a mercapto group accounts for 0.1 mol% or more and 20 mol% or less of the monomer components constituting the (meth)acrylate copolymer (B). preferably 0.4 mol% or more and 15 mol% or less, more preferably 0.5 mol% or more and 10 mol% or less, and 0.6 mol% or more and 8 mol% or less is particularly preferred. Within the above range, the effect of using the chain transfer agent (b3) having a mercapto group can be achieved.
 多官能性マクロモノマー(b2)の含有量とメルカプト基を有する連鎖移動剤(b3)の含有量は、得られる硬化物の強度が向上するため、多官能性マクロモノマー(b2)/メルカプト基を有する連鎖移動剤(b3)のモル比は、0.03以上が好ましく、0.05以上がより好ましく、0.09以上がさらに好ましく、0.1以上が特に好ましい。前記モル比の上限は特に限定されないが、1以下が好ましく、0.5以下がより好ましく、0.3以下がさらに好ましい。 The content of the polyfunctional macromonomer (b2) and the content of the chain transfer agent (b3) having a mercapto group improve the strength of the resulting cured product, so the polyfunctional macromonomer (b2)/mercapto group The molar ratio of the chain transfer agent (b3) to have is preferably 0.03 or more, more preferably 0.05 or more, still more preferably 0.09 or more, and particularly preferably 0.1 or more. Although the upper limit of the molar ratio is not particularly limited, it is preferably 1 or less, more preferably 0.5 or less, and even more preferably 0.3 or less.
 (メタ)アクリル酸エステル系共重合体(B)は、メルカプト基を有する連鎖移動剤(b3)に由来する置換基(後述する-S-Rで表される構造)を有し得るものであるため、硫黄原子を含み得る。(メタ)アクリル酸エステル系共重合体(B)中の硫黄原子濃度は700ppm以上20,000ppm以下であることが好ましく、1,000ppm以上15,000ppm以下がより好ましい。 The (meth)acrylic ester-based copolymer (B) may have a substituent derived from the chain transfer agent (b3) having a mercapto group (structure represented by —S—R 8 described later). Therefore, it may contain sulfur atoms. The sulfur atom concentration in the (meth)acrylate copolymer (B) is preferably 700 ppm or more and 20,000 ppm or less, more preferably 1,000 ppm or more and 15,000 ppm or less.
 硫黄原子濃度の測定方法は特に限定されない。有機元素分析、蛍光X線分析など、既知の元素分析方法により測定することができる。また、硫黄原子濃度は、(メタ)アクリル酸エステル系共重合体(B)の製造に使用した単量体成分の合計量と、メルカプト基を有する連鎖移動剤の量(b3)から算出される理論値であってもよい。 The method for measuring the sulfur atom concentration is not particularly limited. It can be measured by known elemental analysis methods such as organic elemental analysis and fluorescent X-ray analysis. Further, the sulfur atom concentration is calculated from the total amount of the monomer components used in the production of the (meth)acrylate copolymer (B) and the amount (b3) of the chain transfer agent having a mercapto group. It may be a theoretical value.
 <反応性ケイ素基と重合性不飽和基を有する単量体(b4)>
 反応性ケイ素基と重合性不飽和基を有する単量体(b4)は、任意の単量体であり、使用しなくともよいが、使用することが好ましい。単量体(b4)が有する反応性ケイ素基は、前述した式(1)で表される反応性ケイ素基である。単量体(b4)を使用することによって、主に(メタ)アクリル酸エステル(b1)から構成される分子鎖の側鎖(非末端部位)に反応性ケイ素基を導入することができる。
<Monomer (b4) having a reactive silicon group and a polymerizable unsaturated group>
The monomer (b4) having a reactive silicon group and a polymerizable unsaturated group is an arbitrary monomer and may not be used, but is preferably used. The reactive silicon group possessed by the monomer (b4) is the reactive silicon group represented by formula (1) described above. By using the monomer (b4), a reactive silicon group can be introduced into the side chain (non-terminal portion) of the molecular chain mainly composed of the (meth)acrylic acid ester (b1).
 反応性ケイ素基と重合性不飽和基を有する単量体(b4)としては、例えば、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、3-(メタ)アクリロキシプロピルジメトキシメチルシラン、(メタ)アクリロキシメチルトリメトキシシラン、(メタ)アクリロキシメチルジメトキシメチルシランなどの(メタ)アクリロキシ基と反応性ケイ素基を有する化合物;ビニルトリメトキシシラン、ビニルトリエトキシシランなどのビニル基と反応性ケイ素基を有する化合物等が挙げられる。これら化合物は1種のみを使用してもよく、2種以上を併用してもよい。 Examples of the monomer (b4) having a reactive silicon group and a polymerizable unsaturated group include 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth)acryloxypropyltriethoxysilane, 3-( Compounds having a (meth)acryloxy group and a reactive silicon group, such as meth)acryloxypropyldimethoxymethylsilane, (meth)acryloxymethyltrimethoxysilane, and (meth)acryloxymethyldimethoxymethylsilane; vinyltrimethoxysilane, vinyl Examples include compounds having a vinyl group and a reactive silicon group such as triethoxysilane. These compounds may use only 1 type and may use 2 or more types together.
 単量体(b4)を使用する場合、単量体(b4)の含有量は、(メタ)アクリル酸エステル系共重合体(B)を構成する単量体成分の総量に対し0.1重量%以上50重量%以下であることが好ましく、0.5重量%以上30重量%以下がより好ましく、1重量%以上20重量%以下がさらに好ましく、2重量%以上15重量%以下が特に好ましい。また、硬化性組成物のチキソ性向上、及び、高伸びの硬化物が得られる観点から、単量体(b4)の含有量は、10重量%以下であることが好ましい。 When the monomer (b4) is used, the content of the monomer (b4) is 0.1 weight with respect to the total amount of the monomer components constituting the (meth)acrylic acid ester copolymer (B). % or more and 50 wt % or less, more preferably 0.5 wt % or more and 30 wt % or less, even more preferably 1 wt % or more and 20 wt % or less, and particularly preferably 2 wt % or more and 15 wt % or less. Moreover, the content of the monomer (b4) is preferably 10% by weight or less from the viewpoint of improving the thixotropy of the curable composition and obtaining a cured product with high elongation.
 <他の単量体(b5)>
 (メタ)アクリル酸エステル系共重合体(B)を構成する単量体成分は、以上で詳述した(b1)~(b4)のいずれにも該当しない他の単量体(b5)を含有するものであってもよいし、含有しないものであってもよい。
 他の単量体(b5)としては、(メタ)アクリル酸エステル(b1)や反応性ケイ素基と重合性不飽和基を有する単量体(b4)に該当しない(メタ)アクリル系単量体や、該(メタ)アクリル系単量体以外の単量体が挙げられる。具体的には、多官能性マクロモノマー(b2′)について上述した他の単量体を使用することができる。
<Other monomer (b5)>
The monomer component constituting the (meth)acrylic acid ester copolymer (B) contains another monomer (b5) that does not correspond to any of (b1) to (b4) described in detail above. It may contain, or may not contain.
Other monomers (b5) include (meth)acrylic esters (b1) and monomers (b4) having a reactive silicon group and a polymerizable unsaturated group (meth)acrylic monomers and monomers other than the (meth)acrylic monomer. Specifically, other monomers described above for multifunctional macromonomer (b2') can be used.
 <(メタ)アクリル酸エステル系共重合体(B)の分子量>
 (メタ)アクリル酸エステル系共重合体(B)の数平均分子量は特に限定されないが、GPC測定によるポリスチレン換算分子量で、500以上50,000以下であることが好ましく、500以上30,000以下がより好ましく、1,000以上10,000以下が特に好ましい。なかでも、低粘度の(メタ)アクリル酸エステル系共重合体(B)が得られることから、数平均分子量は7,000以下が好ましい。また、低粘度で良好な接着性が発揮され得ることから、数平均分子量は3,500以下であることが好ましい。
<Molecular weight of (meth)acrylate copolymer (B)>
The number average molecular weight of the (meth)acrylic acid ester copolymer (B) is not particularly limited, but is preferably 500 or more and 50,000 or less, preferably 500 or more and 30,000 or less, in terms of polystyrene equivalent molecular weight by GPC measurement. More preferably, 1,000 or more and 10,000 or less are particularly preferable. Among them, the number average molecular weight is preferably 7,000 or less because a (meth)acrylic acid ester copolymer (B) having a low viscosity can be obtained. In addition, the number average molecular weight is preferably 3,500 or less because good adhesiveness can be exhibited with low viscosity.
 (メタ)アクリル酸エステル系共重合体(B)の重量平均分子量は特に限定されないが、GPC測定によるポリスチレン換算分子量で、500以上80,000以下であることが好ましく、3,000以上70,000以下がより好ましく、5,000以上65,000以下が特に好ましい。なかでも、低粘度で強度の高い硬化物が得られることから、重量平均分子量は20,000以下であることが好ましい。 The weight average molecular weight of the (meth)acrylic acid ester copolymer (B) is not particularly limited, but is preferably 500 or more and 80,000 or less, preferably 3,000 or more and 70,000, in terms of polystyrene equivalent molecular weight by GPC measurement. The following are more preferable, and 5,000 or more and 65,000 or less are particularly preferable. Among them, the weight-average molecular weight is preferably 20,000 or less because a cured product having a low viscosity and a high strength can be obtained.
 (メタ)アクリル酸エステル系共重合体(B)の重量平均分子量と、多官能性マクロモノマー(b2)の重量平均分子量に関しては、次の式で算出される値が1.1以上であることが好ましい。
式:(共重合体(B)の重量平均分子量)/(多官能性マクロモノマー(b2)の重量平均分子量)
 前記式で算出される値が1.1以上であるということは、(メタ)アクリル酸エステル系共重合体(B)1分子中の多官能性マクロモノマー(b2)の平均導入個数が多いことを意味しており、得られる硬化物の強度がより向上し得る。
 硬化物の強度の観点から、前記式で算出される値は、1.1以上であることが好ましく、1.2以上がより好ましく、1.3以上がさらに好ましい。上限は特に限定されないが、10以下が好ましく、5以下がより好ましい。
Regarding the weight average molecular weight of the (meth)acrylate copolymer (B) and the weight average molecular weight of the polyfunctional macromonomer (b2), the value calculated by the following formula is 1.1 or more. is preferred.
Formula: (weight average molecular weight of copolymer (B))/(weight average molecular weight of polyfunctional macromonomer (b2))
The fact that the value calculated by the above formula is 1.1 or more means that the average number of introduction of the polyfunctional macromonomer (b2) in one molecule of the (meth)acrylic acid ester copolymer (B) is large. It means that the strength of the resulting cured product can be further improved.
From the viewpoint of the strength of the cured product, the value calculated by the above formula is preferably 1.1 or more, more preferably 1.2 or more, and even more preferably 1.3 or more. Although the upper limit is not particularly limited, it is preferably 10 or less, more preferably 5 or less.
 (メタ)アクリル酸エステル系共重合体(B)の分子量分布は特に限定されないが、(メタ)アクリル酸エステル系共重合体(B)を低粘度とする観点から、3.0以上11.0以下が好ましく、3.2以上10.0以下がより好ましく、3.4以上8.0以下がさらに好ましい。(メタ)アクリル酸エステル系共重合体(B)の分子量分布は、GPC測定により得られる数平均分子量と重量平均分子量から求めることが出来る。 The molecular weight distribution of the (meth)acrylic acid ester copolymer (B) is not particularly limited, but from the viewpoint of making the (meth)acrylic acid ester copolymer (B) low in viscosity, it ranges from 3.0 to 11.0. The following is preferable, 3.2 to 10.0 is more preferable, and 3.4 to 8.0 is even more preferable. The molecular weight distribution of the (meth)acrylate copolymer (B) can be determined from the number average molecular weight and weight average molecular weight obtained by GPC measurement.
 <(メタ)アクリル酸エステル系共重合体(B)の構造>
 好適な態様によると、(メタ)アクリル酸エステル系共重合体(B)は、トリブロック共重合体を含み得る。該トリブロック共重合体は、2つの第一分子鎖が、1つの第二分子鎖を介して結合している構造を含む。第一分子鎖は、主に(メタ)アクリル酸エステル(b1)が重合してなる分子鎖から構成され、第二分子鎖は、多官能性マクロモノマー(b2)の主鎖骨格から構成される。
<Structure of (meth)acrylate copolymer (B)>
According to a preferred embodiment, the (meth)acrylate copolymer (B) may contain a triblock copolymer. The triblock copolymer comprises a structure in which two first molecular chains are linked via one second molecular chain. The first molecular chain is mainly composed of a molecular chain obtained by polymerizing the (meth)acrylic acid ester (b1), and the second molecular chain is composed of the main chain skeleton of the polyfunctional macromonomer (b2). .
 第一分子鎖は、(b1)、(b2)中の(メタ)アクリロイル基、(b3)、任意の(b4)、及び任意の他の単量体の共重合によって形成される分子鎖である。この第一分子鎖に反応性ケイ素基が結合している。メルカプト基を有する連鎖移動剤(b3)が反応性ケイ素基を有する場合、第一分子鎖の末端に反応性ケイ素基が結合し、反応性ケイ素基と重合性不飽和基を有する単量体(b4)を使用する場合、第一分子鎖の非末端部位に反応性ケイ素基が結合している。
 一方、第二分子鎖は、多官能性マクロモノマー(b2)中の(メタ)アクリル酸エステル系重合体またはポリオキシアルキレン系重合体の主鎖骨格にあたる。
The first molecular chain is a molecular chain formed by copolymerization of (b1), (meth)acryloyl groups in (b2), (b3), optional (b4), and optional other monomers. . A reactive silicon group is attached to this first molecular chain. When the chain transfer agent (b3) having a mercapto group has a reactive silicon group, a monomer ( When b4) is used, a reactive silicon group is attached to the non-terminal portion of the first molecular chain.
On the other hand, the second molecular chain corresponds to the main chain skeleton of the (meth)acrylate polymer or polyoxyalkylene polymer in the polyfunctional macromonomer (b2).
 2つの第一分子鎖と1つの第二分子鎖の結合方式は、通常のABA型のトリブロック共重合体とは異なり、第二分子鎖の両末端がそれぞれ、第一分子鎖の非末端部位に結合している形式である。即ち、該トリブロック共重合体は、H型の構造を含み、この時、H中の2本の縦棒が2つの第一分子鎖にあたり、H中の1本の横棒が1つの第二分子鎖にあたる。 The bonding method of two first molecular chains and one second molecular chain is different from that of ordinary ABA-type triblock copolymers, and both ends of the second molecular chain are respectively non-terminal sites of the first molecular chain. is a form that is bound to That is, the triblock copolymer comprises an H-type structure, where two vertical bars in H correspond to two first molecular chains and one horizontal bar in H corresponds to one second molecular chain. It corresponds to a molecular chain.
 但し、(メタ)アクリル酸エステル系共重合体(B)は、H型構造のトリブロック共重合体に限定されるものではなく、H型構造のトリブロック共重合体に加えて、他の構造を有するブロック共重合体を含有していてもよい。そのような他の構造を有するブロック共重合体としては、例えば、3つの第一分子鎖が、2つの第二分子鎖を介して結合している構造を有するブロック共重合体などが挙げられる。 However, the (meth)acrylic acid ester-based copolymer (B) is not limited to a triblock copolymer with an H-type structure, and in addition to a triblock copolymer with an H-type structure, It may contain a block copolymer having Block copolymers having such other structures include, for example, block copolymers having a structure in which three first molecular chains are bonded via two second molecular chains.
 第一分子鎖と第二分子鎖は、多官能性マクロモノマー(b2)中の(メタ)アクリロイル基に由来するエステル結合(即ち、前記式(4)中のエステル結合に対応するエステル結合)を介して結合している。 The first molecular chain and the second molecular chain have an ester bond derived from the (meth)acryloyl group in the polyfunctional macromonomer (b2) (that is, an ester bond corresponding to the ester bond in the formula (4)). are connected through
 前記第一分子鎖が硬質の重合体から構成され、前記第二分子鎖が軟質の重合体から構成される場合、高強度で高伸びの硬化物が得られることから好ましい。ここで、硬質の重合体とは、ガラス転移温度が高い重合体を指す。軟質の重合体とは、ガラス転移温度が低い重合体を指す。 When the first molecular chain is composed of a hard polymer and the second molecular chain is composed of a soft polymer, it is preferable because a cured product with high strength and high elongation can be obtained. Here, a hard polymer refers to a polymer with a high glass transition temperature. A soft polymer refers to a polymer with a low glass transition temperature.
 第一分子鎖が硬質の重合体から構成される場合、第一分子鎖を構成する単量体成分(即ち、多官能性マクロモノマー(b2)を除く単量体成分)は、メタクリル酸エステル、アクリル酸イソボルニル、アクリル酸ジシクロペンテニル、及び、アクリル酸ジシクロペンタニルからなる群より選択される少なくとも1種の単量体を含有することが好ましい。第一分子鎖を構成する単量体成分の総量のうち前記単量体が占める割合は60重量%以上であることが好ましく、70重量%以上がより好ましい。上限は100重量%であってもよい。 When the first molecular chain is composed of a rigid polymer, the monomer components constituting the first molecular chain (that is, the monomer components excluding the polyfunctional macromonomer (b2)) are methacrylic acid esters, It preferably contains at least one monomer selected from the group consisting of isobornyl acrylate, dicyclopentenyl acrylate, and dicyclopentanyl acrylate. The ratio of the monomers to the total amount of monomer components constituting the first molecular chain is preferably 60% by weight or more, more preferably 70% by weight or more. The upper limit may be 100% by weight.
 また、第二分子鎖が軟質の重合体から構成される場合、第二分子鎖は、ポリオキシアルキレン系重合体の主鎖骨格であってもよいし、(メタ)アクリル酸エステル系重合体であってもよい。但し、後者の場合、第二分子鎖を構成する単量体成分((b2′)の主鎖骨格を形成する単量体成分)は、アクリル酸エステル(但し、アクリル酸イソボルニル、アクリル酸ジシクロペンテニル、及び、アクリル酸ジシクロペンタニルを除く)を含有することが好ましい。第二分子鎖を構成する単量体成分のうち前記アクリル酸エステルが占める割合は60重量%以上であることが好ましく、70重量%以上がより好ましい。上限は100重量%であってもよい。 In addition, when the second molecular chain is composed of a soft polymer, the second molecular chain may be the main chain skeleton of a polyoxyalkylene-based polymer, or a (meth)acrylic acid ester-based polymer. There may be. However, in the latter case, the monomer component constituting the second molecular chain (the monomer component forming the main chain skeleton of (b2′)) is an acrylate ester (however, isobornyl acrylate, dicycloacrylate excluding pentenyl and dicyclopentanyl acrylate). The acrylic acid ester accounts for preferably 60% by weight or more, more preferably 70% by weight or more, of the monomer components constituting the second molecular chain. The upper limit may be 100% by weight.
 前記第一分子鎖はメルカプト基を有する連鎖移動剤(b3)を反応させて形成される分子鎖であるため、前記第一分子鎖のいずれかの末端に、(b3)に由来する置換基として、-S-Rで表される構造を有し得る。前記式中、Sは硫黄原子を表し、Rは、反応性ケイ素基を有していてもよい炭化水素基を表す。前記炭化水素基とは、炭素数1~20のアルキル基、アリール基、又はアラルキル基等が挙げられる。前記反応性ケイ素基は、前述した式(1)で表される反応性ケイ素基である。Rの具体例としては、例えば、反応性ケイ素基含有メチル基、反応性ケイ素基含有プロピル基、n-ドデシル基、tert-ドデシル基、ラウリル基等が挙げられる。 Since the first molecular chain is a molecular chain formed by reacting a chain transfer agent (b3) having a mercapto group, at either end of the first molecular chain, as a substituent derived from (b3) , —SR 8 . In the above formula, S represents a sulfur atom and R8 represents a hydrocarbon group which may have a reactive silicon group. The hydrocarbon group includes an alkyl group having 1 to 20 carbon atoms, an aryl group, an aralkyl group, and the like. The said reactive silicon group is a reactive silicon group represented by Formula (1) mentioned above. Specific examples of R 8 include reactive silicon group-containing methyl group, reactive silicon group-containing propyl group, n-dodecyl group, tert-dodecyl group, lauryl group and the like.
 上述した多官能性マクロモノマー(b2)/メルカプト基を有する連鎖移動剤(b3)のモル比に対応して、得られる硬化物の強度向上の観点から、(メタ)アクリル酸エステル系共重合体(B)において、前記-S-Rに対する、多官能性マクロモノマー(b2)の主鎖骨格のモル比は、0.03以上であることが好ましく、0.05以上がより好ましく、0.09以上がさらに好ましく、0.1以上が特に好ましい。前記モル比の上限は特に限定されないが、1以下が好ましく、0.5以下がより好ましく、0.3以下がさらに好ましい。 Corresponding to the molar ratio of the polyfunctional macromonomer (b2) / chain transfer agent (b3) having a mercapto group, from the viewpoint of improving the strength of the resulting cured product, a (meth) acrylic acid ester copolymer In (B), the molar ratio of the main chain skeleton of the polyfunctional macromonomer (b2) to the —SR 8 is preferably 0.03 or more, more preferably 0.05 or more, and 0.05 or more. 09 or more is more preferable, and 0.1 or more is particularly preferable. Although the upper limit of the molar ratio is not particularly limited, it is preferably 1 or less, more preferably 0.5 or less, and even more preferably 0.3 or less.
 <(メタ)アクリル酸エステル系共重合体(B)の製造方法>
 (メタ)アクリル酸エステル系共重合体(B)は、前記単量体成分を重合することによって製造できる。その重合方法は特に限定されないが、一般的なフリーラジカル重合であってよい。本実施形態によると、フリーラジカル重合であるにも関わらず、重合の制御が可能で、ブロック共重合体である(メタ)アクリル酸エステル系共重合体(B)を製造することができ、しかも、その分子量分布を比較的狭くすることができる。
<Method for producing (meth)acrylate copolymer (B)>
The (meth)acrylate copolymer (B) can be produced by polymerizing the above monomer components. The polymerization method is not particularly limited, but may be general free radical polymerization. According to the present embodiment, although it is a free radical polymerization, it is possible to control the polymerization, and it is possible to produce a (meth)acrylic acid ester copolymer (B) that is a block copolymer. , its molecular weight distribution can be relatively narrow.
 前記フリーラジカル重合で使用可能な重合開始剤としては、例えば、2,2’-アゾビス(2-メチルブチロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)などのアゾ系化合物;ベンゾイルパーオキサイド、イソブチリルパーオキサイド、イソノナノイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ(3,5,5-トリメチルヘキサノイル)パーオキシドなどのジアシルパーオキサイド;ジイソプロピルパージカーボネート、ジ-sec-ブチルパージカーボネート、ジ-2-エチルヘキシルパージカーボネート、ジ-1-メチルヘプチルパージカーボネート、ジ-3-メトキシブチルパージカーボネート、ジシクロヘキシルパージカーボネートなどのパーオキシジカーボネート;tert-ブチルパーベンゾエート、tert-ブチルパーアセテート、tert-ブチルパー-2-エチルへキサノエート、tert-ブチルパーイソブチレート、tert-ブチルパーピバレート、tert-ブチルジパーアジペート、キュミルパーネオデカノエートなどのパーオキシエステル;メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイドなどのケトンパーオキサイド;ジ-tert-ブチルパーオキサイド、ジキュミルパーオキサイド、tert-ブチルキュミルパーオキサイド、1,1-ジ(tert-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサンなどのジアルキルパーオキサイド;キュメンヒドロキシパーオキサイド、tert-ブチルハイドロパーオキサイドなどのハイドロパーオキサイド;1,1-ジ(tert-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサンなどの過酸化物などが挙げられる。これら重合開始剤は1種のみで使用してもよく、2種以上を併用しても良い。 Polymerization initiators that can be used in the free radical polymerization include, for example, 2,2′-azobis(2-methylbutyronitrile), dimethyl 2,2′-azobis(2-methylpropionate), 2,2 '-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis [N- (2-propenyl) -2- methyl propionamide], 1,1'-azobis (cyclohexane-1-carbonitrile) and other azo compounds; benzoyl peroxide, isobutyryl peroxide, isononanoyl peroxide, decanoyl peroxide, lauroyl peroxide, para diacyl peroxides such as chlorobenzoyl peroxide and di(3,5,5-trimethylhexanoyl) peroxide; diisopropyl purge carbonate, di-sec-butyl purge carbonate, di-2-ethylhexyl purge carbonate, di-1-methylheptyl Peroxydicarbonates such as purged carbonate, di-3-methoxybutyl purged carbonate, dicyclohexyl purged carbonate; tert-butyl perbenzoate, tert-butyl peracetate, tert-butyl per-2-ethylhexanoate, tert-butyl perisobutyl Peroxyesters such as lactate, tert-butyl perpivalate, tert-butyl diperadipate, cumyl perneodecanoate; ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide; di-tert-butyl peroxide, dicumyl peroxide, tert-butyl cumyl peroxide, dialkyl peroxides such as 1,1-di(tert-hexylperoxy)-3,3,5-trimethylcyclohexane; cumene hydroxyl peroxide, tert-butyl hydro hydroperoxides such as peroxides; peroxides such as 1,1-di(tert-hexylperoxy)-3,3,5-trimethylcyclohexane; These polymerization initiators may be used alone or in combination of two or more.
 前記フリーラジカル重合で使用可能な溶媒としては、例えば、トルエン、キシレン、スチレン、エチルベンゼン、パラジクロルベンゼン、フタル酸ジ-2-エチルヘキシル、フタル酸ジ-n-ブチルなどの芳香族系溶剤;ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサンなどの脂肪族炭化水素系溶剤;酢酸ブチル、酢酸n-プロプル、酢酸イソプロピルなどのカルボン酸エステル化合物;メチルイソブチルケトン、メチルエチルケトンなどのケトン化合物;ジメチルカーボネート、ジエチルカーボネートなどのジアルキルカーボネート化合物;n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、イソブタノール、tert-ブタノール、アミルアルコールなどのアルコール化合物などが挙げられる。なかでも、分子量分布が狭くなることからアルコール化合物が好ましい。溶解力が高いことから芳香族系溶剤が好ましい。臭気が低いことから脂肪族炭化水素系溶剤が好ましい。(メタ)アクリル酸エステル系共重合体(B)の分子量分布は連鎖移動剤(b3)の添加量と溶媒に影響を受ける。連鎖移動剤(b3)の添加量が3重量%以下である場合には溶媒の種類に大きく影響を受ける。分子量分布の狭い(メタ)アクリル酸エステル系共重合体(B)を得たい場合には、溶媒としてイソブタノールを用いることが好ましい。 Examples of solvents that can be used in the free radical polymerization include aromatic solvents such as toluene, xylene, styrene, ethylbenzene, paradichlorobenzene, di-2-ethylhexyl phthalate, and di-n-butyl phthalate; hexane, Aliphatic hydrocarbon solvents such as heptane, octane, cyclohexane, and methylcyclohexane; carboxylic acid ester compounds such as butyl acetate, n-propyl acetate, and isopropyl acetate; ketone compounds such as methyl isobutyl ketone and methyl ethyl ketone; dimethyl carbonate, diethyl carbonate, etc. alcohol compounds such as n-propanol, 2-propanol, n-butanol, 2-butanol, isobutanol, tert-butanol, and amyl alcohol; Among them, alcohol compounds are preferable because they have a narrow molecular weight distribution. Aromatic solvents are preferred because of their high dissolving power. Aliphatic hydrocarbon solvents are preferred because of their low odor. The molecular weight distribution of the (meth)acrylate copolymer (B) is affected by the amount of the chain transfer agent (b3) added and the solvent. When the amount of chain transfer agent (b3) added is 3% by weight or less, it is greatly affected by the type of solvent. When it is desired to obtain a (meth)acrylic acid ester copolymer (B) with a narrow molecular weight distribution, isobutanol is preferably used as the solvent.
 上述の通り、(メタ)アクリル酸エステル系共重合体(B)は、反応性ケイ素基と重合性不飽和基を有する単量体(b4)を使用するか、又は、メルカプト基に加えて反応性ケイ素基を有する連鎖移動剤(b3)を使用することによって、反応性ケイ素基を有することになる。両方法は併用してもよい。反応性ケイ素基と重合性不飽和基を有する単量体(b4)を使用することによって、主に(メタ)アクリル酸エステル(b1)から構成される分子鎖の側鎖にランダムに反応性ケイ素基を導入することができる。また、メルカプト基に加えて反応性ケイ素基を有する連鎖移動剤(b3)を使用することによって、主に(メタ)アクリル酸エステル(b1)から構成される分子鎖の末端に反応性ケイ素基を導入することができる。 As described above, the (meth)acrylic acid ester copolymer (B) uses a monomer (b4) having a reactive silicon group and a polymerizable unsaturated group, or reacts in addition to a mercapto group. By using a chain transfer agent (b3) having a reactive silicon group, it will have a reactive silicon group. Both methods may be used in combination. By using a monomer (b4) having a reactive silicon group and a polymerizable unsaturated group, reactive silicon is randomly added to the side chains of the molecular chain mainly composed of (meth)acrylic acid ester (b1) groups can be introduced. In addition, by using a chain transfer agent (b3) having a reactive silicon group in addition to a mercapto group, a reactive silicon group is added to the end of the molecular chain mainly composed of the (meth)acrylic acid ester (b1). can be introduced.
 しかし、(メタ)アクリル酸エステル系共重合体(B)に反応性ケイ素基をさらに導入するため、以下の方法を併用することもできる。
(iii)反応性官能基(V基)を有する単量体を(メタ)アクリル酸エステル(b1)などと共重合した後、得られた共重合体に、V基に反応する官能基と反応性ケイ素基を有する化合物を反応させる方法。具体的には、アクリル酸2-ヒドロキシエチルを共重合した後、反応性ケイ素基を有するイソシアネートシラン化合物を反応させる方法や、アクリル酸グリシジルを共重合した後、反応性ケイ素基を有するアミノシラン化合物を反応させる方法などが例示できる。
(iv)リビングラジカル重合法によって合成した(メタ)アクリル酸エステル系共重合体の末端官能基を変性して、反応性ケイ素基を導入する方法。リビングラジカル重合法によって得られる(メタ)アクリル酸エステル系共重合体は重合体末端に官能基を導入しやすく、これを変性することで重合体末端に反応性ケイ素基を導入することができる。
However, in order to further introduce a reactive silicon group into the (meth)acrylic acid ester copolymer (B), the following methods can be used in combination.
(iii) After copolymerizing a monomer having a reactive functional group (V group) with a (meth)acrylic acid ester (b1) or the like, the resulting copolymer is reacted with a functional group that reacts with the V group. A method of reacting a compound having a silicon group. Specifically, after copolymerizing 2-hydroxyethyl acrylate, a method of reacting an isocyanate silane compound having a reactive silicon group, or after copolymerizing glycidyl acrylate, an aminosilane compound having a reactive silicon group is used. A method of reacting can be exemplified.
(iv) A method of modifying terminal functional groups of a (meth)acrylic acid ester-based copolymer synthesized by a living radical polymerization method to introduce a reactive silicon group. A (meth)acrylic ester copolymer obtained by a living radical polymerization method is easy to introduce a functional group into the terminal of the polymer, and by modifying this, a reactive silicon group can be introduced into the terminal of the polymer.
 方法(iii)で使用するV基に反応する官能基と反応性ケイ素基を有する化合物としては、例えば、3-イソシアネートプロピルジメトキシメチルシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、イソシアネートメチルジメトキシメチルシラン、イソシアネートメチルトリメトキシシラン、イソシアネートメチルトリエトキシシランなどのイソシアネートシラン化合物;3-グリシドキシプロピルジメトキシメチルシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、グリシドキシメチルジメトキシメチルシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシランなどのエポキシシラン化合物;3-アミノプロピルジメトキシメチルシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、アミノメチルジメトキシメチルシラン、アミノメチルトリメトキシシラン、アミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジメトキシメチルシラン、N-シクロヘキシルアミノメチルトリメトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシランなどのアミノシラン化合物などが挙げられる。 Examples of the compound having a reactive silicon group and a functional group that reacts with group V used in method (iii) include 3-isocyanatopropyldimethoxymethylsilane, 3-isocyanatopropyltrimethoxysilane, and 3-isocyanatopropyltriethoxysilane. , isocyanatomethyldimethoxymethylsilane, isocyanatomethyltrimethoxysilane, isocyanatomethyltriethoxysilane; 3-glycidoxypropyldimethoxymethylsilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl Epoxysilane compounds such as triethoxysilane, glycidoxymethyldimethoxymethylsilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane; 3-aminopropyldimethoxymethylsilane, 3-aminopropyltrimethoxysilane, 3 -aminopropyltriethoxysilane, aminomethyldimethoxymethylsilane, aminomethyltrimethoxysilane, aminomethyltriethoxysilane, N-cyclohexylaminomethyldimethoxymethylsilane, N-cyclohexylaminomethyltrimethoxysilane, N-cyclohexylaminomethyltriethoxysilane Examples include aminosilane compounds such as silane.
 方法(iv)では、任意の変性反応を利用できるが、例えば、リビングラジカル重合によって得られた末端官能基に反応し得る反応性基と反応性ケイ素基を有する化合物を用いる方法や、末端官能基に反応し得る反応性基と二重結合を有する化合物を用いて重合体末端に二重結合を導入した後、ヒドロシリル化反応等を利用して反応性ケイ素基を導入する方法などが挙げられる。 In method (iv), any modification reaction can be used. A method of introducing a double bond at the end of a polymer using a compound having a reactive group capable of reacting with a double bond and then introducing a reactive silicon group using a hydrosilylation reaction or the like.
 (メタ)アクリル酸エステル系共重合体(B)とポリオキシアルキレン系重合体(A)をブレンドする方法は、特開昭59-122541号公報、特開昭63-112642号公報、特開平6-172631号公報、特開平11-116763号公報等に提案されている。他にも、反応性ケイ素基を有するポリオキシプロピレン系重合体の存在下で(メタ)アクリル酸エステル系単量体の重合を行う方法が利用できる。 A method of blending a (meth)acrylic acid ester copolymer (B) and a polyoxyalkylene polymer (A) is disclosed in JP-A-59-122541, JP-A-63-112642, and JP-A-6. -172631, Japanese Patent Application Laid-Open No. 11-116763, and the like. Alternatively, a method of polymerizing a (meth)acrylic acid ester-based monomer in the presence of a polyoxypropylene-based polymer having a reactive silicon group can be used.
 ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系共重合体(B)の重量比(A):(B)は95:5~10:90であること、即ち(A)の割合が10重量%以上95重量%以下であることが好ましい。この範囲内であると、柔軟性と高いせん断接着強度を示す硬化物を得ることができる。さらに、高強度と柔軟性を両立する点で、(A):(B)は80:20~20:80であることが好ましく、70:30~30:70であることがより好ましい。上限は、50:50であってもよい。さらに、硬化物の最終的な接着強度向上を重視する観点からは、50:50~20:80であることが好ましく、45:55~30:70であることがより好ましい。 The weight ratio (A):(B) of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B) is 95:5 to 10:90, that is, the weight ratio of (A) The proportion is preferably 10% by weight or more and 95% by weight or less. Within this range, a cured product exhibiting flexibility and high shear adhesive strength can be obtained. Furthermore, from the viewpoint of achieving both high strength and flexibility, the ratio (A):(B) is preferably 80:20 to 20:80, more preferably 70:30 to 30:70. The upper limit may be 50:50. Furthermore, from the viewpoint of placing emphasis on improving the final adhesive strength of the cured product, the ratio is preferably 50:50 to 20:80, more preferably 45:55 to 30:70.
 <<可塑剤(C)>>
 可塑剤(C)は、任意の成分であるが、B剤に配合されることが好ましい。B剤のみに配合されてもよいし、A剤とB剤それぞれに配合されてもよい。また、可塑剤(C)は、B剤に配合されず、A剤のみに配合されてもよい。可塑剤(C)を配合すると硬化性組成物を低粘度化することができ取り扱いが容易になる。特に、B剤に配合することによって、A剤とB剤の混合を容易に実現できる。
<<Plasticizer (C)>>
The plasticizer (C) is an optional component, but is preferably blended with the B agent. It may be blended only in the B agent, or may be blended in each of the A agent and the B agent. Moreover, the plasticizer (C) may not be blended with the B agent and may be blended only with the A agent. Addition of the plasticizer (C) makes it possible to lower the viscosity of the curable composition and facilitate handling. In particular, by blending in the B agent, mixing of the A agent and the B agent can be easily realized.
 可塑剤(C)をB剤に配合せず、代わりに、前述したポリオキシアルキレン系重合体(A)及び/又はエポキシ樹脂(D)をB剤に配合してもよい。また、可塑剤(C)と、ポリオキシアルキレン系重合体(A)及び/又はエポキシ樹脂(D)とをB剤に配合してもよい。
 尚、B剤がポリオキシアルキレン系重合体(A)を含む場合、A剤に含まれるポリオキシアルキレン系重合体(A)と、B剤に含まれるポリオキシアルキレン系重合体(A)は同じものであってもよいし、異なるものであってもよい。
The plasticizer (C) may not be blended with the B agent, and instead, the polyoxyalkylene polymer (A) and/or the epoxy resin (D) described above may be blended with the B agent. In addition, the plasticizer (C), the polyoxyalkylene polymer (A) and/or the epoxy resin (D) may be blended in the B agent.
In addition, when the B agent contains the polyoxyalkylene polymer (A), the polyoxyalkylene polymer (A) contained in the A agent and the polyoxyalkylene polymer (A) contained in the B agent are the same. It may be one, or it may be different.
 可塑剤(C)としては特に限定されないが、例えば、ジブチルフタレート、ジイソノニルフタレート(DINP)、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート(DIDP)、およびブチルベンジルフタレートなどのフタル酸エステル化合物;ビス(2-エチルヘキシル)-1,4-ベンゼンジカルボキシレートなどのテレフタル酸エステル化合物;1,2-シクロヘキサンジカルボン酸ジイソノニルエステルなどの非フタル酸エステル化合物;アジピン酸ジオクチル、セバシン酸ジオクチル、セバシン酸ジブチル、コハク酸ジイソデシル、およびアセチルクエン酸トリブチルなどの脂肪族多価カルボン酸エステル化合物;オレイン酸ブチル、およびアセチルリシノール酸メチルなどの不飽和脂肪酸エステル化合物;リン酸エステル化合物;トリメリット酸エステル化合物;塩素化パラフィン;アルキルジフェニル、および部分水添ターフェニルなどの炭化水素系油;プロセスオイル;エポキシ化大豆油、エポキシ化アマニ油、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカーボキシレート(E-PS)、エポキシオクチルステアレート、エポキシブチルステアレートおよびエポキシステアリン酸ベンジルなどのエポキシ可塑剤;アルキルスルホン酸エステルなどが挙げられる。 The plasticizer (C) is not particularly limited, and examples thereof include phthalates such as dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), and butylbenzyl phthalate. Compounds; terephthalic acid ester compounds such as bis(2-ethylhexyl)-1,4-benzenedicarboxylate; non-phthalic acid ester compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester; dioctyl adipate, dioctyl sebacate, sebacin Aliphatic polyvalent carboxylic acid ester compounds such as dibutyl acid, diisodecyl succinate, and acetyl tributyl citrate; unsaturated fatty acid ester compounds such as butyl oleate and methyl acetylricinoleate; phosphoric acid ester compounds; trimellitic acid ester compounds chlorinated paraffin; hydrocarbon oils such as alkyldiphenyl and partially hydrogenated terphenyl; process oil; epoxidized soybean oil, epoxidized linseed oil, bis(2-ethylhexyl)-4,5-epoxycyclohexane-1, Epoxy plasticizers such as 2-dicarboxylate (E-PS), epoxyoctyl stearate, epoxybutylstearate and benzyl epoxystearate; alkyl sulfonate esters, and the like.
 可塑剤(C)として、高分子可塑剤を使用することもできる。高分子可塑剤の具体例としては、ビニル系重合体;ポリエステル系可塑剤;数平均分子量500以上のポリエチレングリコール、ポリプロピレングリコールなどのポリエーテルポリオール、これらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基などに変換した誘導体などのポリエーテル系可塑剤;ポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、ポリクロロプレン等が挙げられる。
 中でも、高分子可塑剤が好ましく、ポリエーテル系可塑剤がより好ましく、ポリプロピレングリコールが特に好ましい。
 可塑剤(C)としては1種類のみを使用してもよいし、2種類以上を併用してもよい。
A polymeric plasticizer can also be used as the plasticizer (C). Specific examples of polymeric plasticizers include vinyl polymers; polyester plasticizers; polyether polyols such as polyethylene glycol and polypropylene glycol having a number average molecular weight of 500 or more; polyether plasticizers such as derivatives converted to polystyrenes; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene and the like.
Among them, polymer plasticizers are preferred, polyether plasticizers are more preferred, and polypropylene glycol is particularly preferred.
As the plasticizer (C), only one type may be used, or two or more types may be used in combination.
 可塑剤(C)の総配合量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系共重合体(B)の合計100重量部に対して、5~150重量部であることが好ましく、10~120重量部がより好ましく、20~100重量部が特に好ましい。 The total blending amount of the plasticizer (C) is 5 to 150 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B). is preferred, 10 to 120 parts by weight is more preferred, and 20 to 100 parts by weight is particularly preferred.
 <<エポキシ樹脂(D)>>
 エポキシ樹脂(D)は、任意の成分であるが、配合される場合には、B剤に配合されることが好ましい。
 エポキシ樹脂(D)としては、一般的に使用されているエポキシ樹脂を使用することができる。特に限定されないが、例えば、エピクロルヒドリン-ビスフェノールA型エポキシ樹脂、エピクロルヒドリン-ビスフェノールF型エポキシ樹脂、テトラブロモビスフェノールAのグリシジルエーテルなどの難燃型エポキシ樹脂、ノボラック型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールAプロピレンオキシド付加物のグリシジルエーテル型エポキシ樹脂、p-オキシ安息香酸グリシジルエーテルエステル型エポキシ樹脂、m-アミノフェノール系エポキシ樹脂、ジアミノジフェニルメタン系エポキシ樹脂、ウレタン変性エポキシ樹脂、各種脂環式エポキシ樹脂、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジン、トリグリシジルイソシアヌレート、ポリアルキレングリコールジグリシジルエーテル、グリセリンなどの多価アルコールのグリシジルエーテル、ヒダントイン型エポキシ樹脂、石油樹脂などの不飽和重合体のエポキシ化物等が挙げられる。
<<epoxy resin (D)>>
The epoxy resin (D) is an optional component, but when blended, it is preferably blended with the B agent.
Commonly used epoxy resins can be used as the epoxy resin (D). Although not particularly limited, for example, epichlorohydrin-bisphenol A type epoxy resin, epichlorohydrin-bisphenol F type epoxy resin, flame retardant epoxy resin such as glycidyl ether of tetrabromobisphenol A, novolac type epoxy resin, hydrogenated bisphenol A type epoxy resin , bisphenol A propylene oxide adduct glycidyl ether type epoxy resin, p-oxybenzoic acid glycidyl ether ester type epoxy resin, m-aminophenol type epoxy resin, diaminodiphenylmethane type epoxy resin, urethane modified epoxy resin, various alicyclic epoxies Resin, N,N-diglycidylaniline, N,N-diglycidyl-o-toluidine, triglycidyl isocyanurate, polyalkylene glycol diglycidyl ether, glycidyl ether of polyhydric alcohol such as glycerin, hydantoin type epoxy resin, petroleum resin, etc. and epoxidized unsaturated polymers of.
 中でも、エポキシ基を1分子中に少なくとも2個有するエポキシ樹脂が、硬化に際し反応性が高く、また硬化物が3次元的網目をつくりやすいなどの点から好ましい。より好ましくは、ビスフェノールA型エポキシ樹脂類またはノボラック型エポキシ樹脂である。 Among them, an epoxy resin having at least two epoxy groups in one molecule is preferable because it has high reactivity during curing and the cured product can easily form a three-dimensional network. More preferred are bisphenol A type epoxy resins and novolac type epoxy resins.
 エポキシ樹脂(D)の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系共重合体(B)の合計と、エポキシ樹脂(D)の重量比[(A+B):(D)]が、90:10~50:50であること、即ち(A+B)の割合が50重量%以上90重量%以下であることが好ましい。硬化物の柔軟性の観点から50重量%以上が好ましく、硬化物の強度の観点から90重量%以下が好ましい。さらに、80:20~60:40が柔軟性と強度のバランスの点でより好ましい。 The amount of the epoxy resin (D) used is the total of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B), and the weight ratio of the epoxy resin (D) [(A+B): (D)] is 90:10 to 50:50, that is, the ratio of (A+B) is preferably 50% by weight or more and 90% by weight or less. From the viewpoint of the flexibility of the cured product, it is preferably 50% by weight or more, and from the viewpoint of the strength of the cured product, it is preferably 90% by weight or less. Furthermore, 80:20 to 60:40 is more preferable in terms of balance between flexibility and strength.
 <<エポキシ樹脂硬化剤(E)>>
 エポキシ樹脂(D)を使用する場合には、エポキシ樹脂(D)を硬化させるためのエポキシ樹脂硬化剤(E)を併用することが好ましい。エポキシ樹脂硬化剤(E)は、エポキシ樹脂(D)を配合する剤とは異なる剤に配合することが好ましく、具体的には、A剤に配合することが好ましい。
<<epoxy resin curing agent (E)>>
When using the epoxy resin (D), it is preferable to use together the epoxy resin curing agent (E) for curing the epoxy resin (D). The epoxy resin curing agent (E) is preferably blended in a different agent from the agent in which the epoxy resin (D) is blended, and more specifically, blended in the A agent.
 エポキシ樹脂硬化剤(E)としては、三級アミンを有するエポキシ樹脂硬化剤を用いることが好ましい。三級アミンを有するエポキシ樹脂硬化剤を用いることによって、高剛性、高強度、高伸びの硬化物を得ることができる。 As the epoxy resin curing agent (E), it is preferable to use an epoxy resin curing agent having a tertiary amine. By using an epoxy resin curing agent having a tertiary amine, a cured product with high rigidity, high strength and high elongation can be obtained.
 前記三級アミンを有するエポキシ樹脂硬化剤としては、三級アミンを有する化合物であれば使用できる。具体的には、例えば、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン、N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン、N,N-ジメチルベンジルアミン、N-メチル-N-(ジメチルアミノプロピル)アミノエタノール、(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール、トリプロピルアミン、DBU、DBN及び、これら三級アミン類の塩類を例示することができるが、これらに限定されるものではない。また、2種以上併用してもよい。また、三級アミンを有するエポキシ樹脂硬化剤以外の公知のエポキシ樹脂硬化剤をさらに添加しても良い。 As the epoxy resin curing agent having a tertiary amine, any compound having a tertiary amine can be used. Specifically, for example, N,N,N′,N′-tetramethyl-1,3-diaminopropane, N,N,N′,N′-tetramethyl-1,6-diaminohexane, N,N -dimethylbenzylamine, N-methyl-N-(dimethylaminopropyl)aminoethanol, (dimethylaminomethyl)phenol, 2,4,6-tris(dimethylaminomethyl)phenol, tripropylamine, DBU, DBN and these Salts of tertiary amines can be exemplified, but are not limited to these. Moreover, you may use together 2 or more types. Also, a known epoxy resin curing agent other than the epoxy resin curing agent having a tertiary amine may be further added.
 前記三級アミンを有するエポキシ樹脂硬化剤は、芳香族アミンであることが好ましく、アミノ基を3つ以上有することがさらに好ましい。具体的には、2,4,6-トリス(ジメチルアミノメチル)フェノールを例示することができる。 The epoxy resin curing agent having a tertiary amine is preferably an aromatic amine, and more preferably has three or more amino groups. Specifically, 2,4,6-tris(dimethylaminomethyl)phenol can be exemplified.
 エポキシ樹脂硬化剤(E)の使用量は、エポキシ樹脂(D)100重量部に対し、0.1重量部以上50重量部以下であることが好ましく、0.1重量部以上40重量部以下がより好ましく、0.5重量部以上30重量部以下がさらに好ましい。 The amount of the epoxy resin curing agent (E) used is preferably 0.1 parts by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the epoxy resin (D). It is more preferably 0.5 parts by weight or more and 30 parts by weight or less.
 <<水(F)>>
 水(F)は、任意の成分であるが、配合されることが好ましい。水(F)を配合することにより、本実施形態に係る硬化性組成物の使用時に、ポリオキシアルキレン系重合体(A)及び(メタ)アクリル酸エステル系共重合体(B)の反応性ケイ素基の加水分解反応が促進され、初期の接着強度の発現が良好になる。
<<Water (F)>>
Water (F) is an optional component, but is preferably blended. By blending water (F), when using the curable composition according to the present embodiment, the reactive silicon of the polyoxyalkylene polymer (A) and the (meth) acrylic acid ester copolymer (B) The hydrolysis reaction of the group is promoted, and the initial development of adhesive strength is improved.
 水(F)は、A剤とB剤のいずれに配合されてもよいが、B剤に配合されることが好ましい。この態様によると、ポリオキシアルキレン系重合体(A)及び(メタ)アクリル酸エステル系共重合体(B)を含むA剤の貯蔵安定性の悪化を回避することができる。 Water (F) may be blended with either agent A or agent B, but is preferably blended with agent B. According to this aspect, it is possible to avoid deterioration of the storage stability of the agent A containing the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester copolymer (B).
 水(F)の添加量は、初期の接着強度発現の観点から、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系共重合体(B)の合計100重量部に対して、0.1重量部以上10重量部以下であることが好ましく、0.3重量部以上5重量部以下がより好ましく、0.5重量部以上3重量部以下がさらに好ましい。 The amount of water (F) added is, from the viewpoint of initial adhesive strength development, with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester copolymer (B). It is preferably from 0.1 to 10 parts by weight, more preferably from 0.3 to 5 parts by weight, and even more preferably from 0.5 to 3 parts by weight.
 水(F)をB剤に配合した場合には、B剤の総量のうち、水(F)の占める割合は0.5~30重量%であることが好ましい。この範囲内では、A剤とB剤の混合を容易に実現することができる。より好ましくは1~20重量%であり、さらに好ましくは2~15重量%である。 When water (F) is added to agent B, the ratio of water (F) to the total amount of agent B is preferably 0.5 to 30% by weight. Within this range, mixing of the A agent and the B agent can be easily achieved. It is more preferably 1 to 20% by weight, still more preferably 2 to 15% by weight.
 <<シラノール縮合触媒(G)>>
 シラノール縮合触媒(G)は、任意の成分であるが、ポリオキシアルキレン系重合体(A)及び(メタ)アクリル酸エステル系共重合体(B)の反応性ケイ素基の縮合反応を促進することができるため、配合されることが好ましい。シラノール縮合触媒(G)は、A剤とB剤のいずれに配合されてもよく、双方に配合されてもよい。
<<Silanol condensation catalyst (G)>>
The silanol condensation catalyst (G) is an optional component, but it promotes the condensation reaction of the reactive silicon groups of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B). Since it is possible, it is preferable to be blended. The silanol condensation catalyst (G) may be blended with either the A agent or the B agent, or may be blended with both.
 シラノール縮合触媒(G)としては、例えば、有機錫化合物、カルボン酸金属塩、アミン化合物、カルボン酸、アルコキシ金属などが挙げられる。 Examples of the silanol condensation catalyst (G) include organic tin compounds, carboxylic acid metal salts, amine compounds, carboxylic acids, and alkoxy metals.
 有機錫化合物の具体例としては、ジブチル錫ジラウレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ジアセテート、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジブチル錫オキサイドとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物、ジオクチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ビス(エチルマレエート)、ジオクチル錫ビス(オクチルマレエート)、ジオクチル錫ビス(アセチルアセトナート)、ジオクチル錫ジステアレート、ジオクチル錫オキサイド、ジオクチル錫オキサイドとシリケート化合物との反応物との反応物などが挙げられる。 Specific examples of organotin compounds include dibutyltin dilaurate, dibutyltin dioctanoate, dibutyltin bis(butyl maleate), dibutyltin diacetate, dibutyltin oxide, dibutyltin bis(acetylacetonate), dibutyltin oxide and silicate compounds. reaction product with dibutyltin oxide and phthalate ester, dioctyltin diacetate, dioctyltin dilaurate, dioctyltin bis(ethyl maleate), dioctyltin bis(octyl maleate), dioctyltin bis(acetylacetonate) phosphate), dioctyltin distearate, dioctyltin oxide, a reaction product of dioctyltin oxide and a silicate compound, and the like.
 カルボン酸金属塩の具体例としては、カルボン酸錫、カルボン酸ビスマス、カルボン酸チタン、カルボン酸ジルコニウム、カルボン酸鉄、カルボン酸カリウム、カルボン酸カルシウムなどが挙げられる。カルボン酸金属塩としては下記のカルボン酸と各種金属を組み合わせることができる。 Specific examples of carboxylate metal salts include tin carboxylate, bismuth carboxylate, titanium carboxylate, zirconium carboxylate, iron carboxylate, potassium carboxylate, and calcium carboxylate. As the carboxylic acid metal salt, the following carboxylic acid and various metals can be combined.
 アミン化合物の具体例としては、オクチルアミン、2-エチルヘキシルアミン、ラウリルアミン、ステアリルアミンなどのアミン類;ピリジン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4,3,0]ノネン-5(DBN)などの含窒素複素環式化合物;グアニジン、フェニルグアニジン、ジフェニルグアニジンなどのグアニジン類;ブチルビグアニド、1-o-トリルビグアニドや1-フェニルビグアニドなどのビグアニド類;アミノ基含有シランカップリング剤;ケチミン化合物などが挙げられる。 Specific examples of amine compounds include amines such as octylamine, 2-ethylhexylamine, laurylamine, and stearylamine; pyridine, 1,8-diazabicyclo[5,4,0]undecene-7 (DBU), 1,5 - nitrogen-containing heterocyclic compounds such as diazabicyclo[4,3,0]nonene-5(DBN); guanidines such as guanidine, phenylguanidine and diphenylguanidine; butylbiguanide, 1-o-tolylbiguanide and 1-phenylbiguanide biguanides such as; amino group-containing silane coupling agents; and ketimine compounds.
 カルボン酸の具体例としては、酢酸、プロピオン酸、酪酸、2-エチルヘキサン酸、ラウリン酸、ステアリン酸、オレイン酸、リノール酸、ネオデカン酸、バーサチック酸などが挙げられる。 Specific examples of carboxylic acids include acetic acid, propionic acid, butyric acid, 2-ethylhexanoic acid, lauric acid, stearic acid, oleic acid, linoleic acid, neodecanoic acid, and versatic acid.
 アルコキシ金属の具体例としては、テトラブチルチタネート、チタンテトラキス(アセチルアセトナート)、ジイソプロポキシチタンビス(エチルアセトセテート)などのチタン化合物や、アルミニウムトリス(アセチルアセトナート)、ジイソプロポキシアルミニウムエチルアセトアセテートなどのアルミニウム化合物、ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物などが挙げられる。 Specific examples of alkoxy metals include titanium compounds such as tetrabutyl titanate, titanium tetrakis(acetylacetonate), diisopropoxytitanium bis(ethylacetonate), aluminum tris(acetylacetonate), diisopropoxyaluminum ethylacetate. Aluminum compounds such as acetate, zirconium compounds such as zirconium tetrakis (acetylacetonate), and the like.
 その他のシラノール縮合触媒として、フッ素アニオン含有化合物、光酸発生剤や光塩基発生剤も使用できる。 As other silanol condensation catalysts, fluorine anion-containing compounds, photoacid generators, and photobase generators can also be used.
 シラノール縮合触媒は、異なる2種類以上の触媒を併用して使用してもよく、例えば、前記のアミン化合物とカルボン酸や、アミン化合物とアルコキシ金属を併用することで、反応性が向上する効果が得られる可能性がある。 The silanol condensation catalyst may be used in combination of two or more different catalysts. For example, the combined use of the amine compound and carboxylic acid, or the combined use of the amine compound and alkoxy metal has the effect of improving reactivity. may be obtained.
 シラノール縮合触媒(G)の使用量は、反応性ケイ素基の縮合反応促進の観点から、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系共重合体(B)の合計100重量部に対して、0.001重量部以上20重量部以下であることが好ましく、0.01重量部以上15重量部以下がより好ましく、0.01重量部以上10重量部以下がさらに好ましい。 The amount of the silanol condensation catalyst (G) used is, from the viewpoint of promoting the condensation reaction of reactive silicon groups, the total weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester copolymer (B) of 100 weight. It is preferably 0.001 to 20 parts by weight, more preferably 0.01 to 15 parts by weight, and even more preferably 0.01 to 10 parts by weight.
 <<その他の添加剤>>
 本実施形態に係る硬化性組成物には、ポリオキシアルキレン系重合体(A)、(メタ)アクリル酸エステル系共重合体(B)、可塑剤(C)、エポキシ樹脂(D)、エポキシ樹脂硬化剤(E)、水(F)、及びシラノール縮合触媒(G)の他に、添加剤として、充填剤、接着性付与剤、脱水剤、レオロジーコントロール剤、酸化防止剤、光安定剤、紫外線吸収剤、粘着付与樹脂、その他の樹脂を添加しても良い。
<<Other Additives>>
The curable composition according to the present embodiment includes a polyoxyalkylene polymer (A), a (meth)acrylic acid ester copolymer (B), a plasticizer (C), an epoxy resin (D), an epoxy resin In addition to the curing agent (E), water (F), and silanol condensation catalyst (G), additives such as fillers, adhesion imparting agents, dehydrating agents, rheology control agents, antioxidants, light stabilizers, ultraviolet rays Absorbents, tackifying resins, and other resins may be added.
 また、本実施形態に係る硬化性組成物には、硬化性組成物又は硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、たとえば、溶剤、希釈剤、光硬化性物質、酸素硬化性物質、表面性改良剤、シリケート、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、防かび剤、難燃剤、発泡剤などが挙げられる。 In addition, various additives may be added to the curable composition according to the present embodiment as necessary for the purpose of adjusting various physical properties of the curable composition or cured product. Examples of such additives include solvents, diluents, photo-curing substances, oxygen-curing substances, surface property modifiers, silicates, curability modifiers, radical inhibitors, metal deactivators, ozone Degradation inhibitors, phosphorus-based peroxide decomposers, lubricants, pigments, antifungal agents, flame retardants, foaming agents and the like.
 <充填剤>
 硬化性組成物には、充填剤を配合することができる。A剤に配合されてもよいし、B剤に配合されてもよい。A剤とB剤それぞれに配合されてもよい。充填剤の配合によって硬化物の強度を向上させることができる。
<Filler>
A filler can be blended into the curable composition. It may be blended with the A agent or may be blended with the B agent. It may be blended in each of the A agent and the B agent. The strength of the cured product can be improved by adding a filler.
 充填剤としては、重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、クレー、タルク、酸化チタン、ヒュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、無水ケイ酸、含水ケイ酸、アルミナ、カーボンブラック、酸化第二鉄、アルミニウム微粉末、酸化亜鉛、活性亜鉛華、PVC粉末、PMMA粉末、ガラス繊維およびフィラメント等が挙げられる。組成物の軽量化(低比重化)の目的で、有機バルーン、無機バルーンを添加してもよい。充填剤としては1種類のみを使用してもよいし、2種類以上を併用してもよい。 Fillers include ground calcium carbonate, colloidal calcium carbonate, magnesium carbonate, diatomaceous earth, clay, talc, titanium oxide, fumed silica, precipitated silica, crystalline silica, fused silica, anhydrous silicic acid, hydrous silicic acid, Alumina, carbon black, ferric oxide, fine aluminum powder, zinc oxide, activated zinc white, PVC powder, PMMA powder, glass fiber and filament, and the like. Organic balloons and inorganic balloons may be added for the purpose of weight reduction (lower specific gravity) of the composition. Only one type of filler may be used, or two or more types may be used in combination.
 充填剤の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系共重合体(B)の合計100重量部に対して、1~300重量部が好ましく、10~250重量部がより好ましい。 The amount of filler used is preferably 1 to 300 parts by weight, preferably 10 to 250 parts by weight, with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B). Parts by weight are more preferred.
 <接着性付与剤>
 硬化性組成物には、接着性付与剤を配合することができる。A剤に配合されてもよいし、B剤に配合されてもよいが、A剤に配合されることが好ましい。
 接着性付与剤としては、シランカップリング剤、又は、シランカップリング剤の反応物を添加することができる。
<Adhesion imparting agent>
The curable composition may contain an adhesive agent. It may be blended in the A agent or the B agent, but is preferably blended in the A agent.
A silane coupling agent or a reactant of the silane coupling agent can be added as the adhesion imparting agent.
 シランカップリング剤の具体例としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-β-アミノエチル-γ-アミノプロピルトリメトキシシラン、N-β-アミノエチル-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、(2-アミノエチル)アミノメチルトリメトキシシランなどのアミノ基含有シラン類;γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、α-イソシアネートメチルトリメトキシシラン、α-イソシアネートメチルジメトキシメチルシラン等のイソシアネート基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等のメルカプト基含有シラン類;γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シラン類、が挙げられる。また、アミノ基含有シランの縮合物、アミノ基含有シランと他のアルコキシシランとの縮合物、等の各種シランカップリング剤の縮合物;アミノ基含有シランとエポキシ基含有シランの反応物、アミノ基含有シランと(メタ)アクリル基含有シランの反応物、等の各種シランカップリング剤の反応物も使用できる。接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。 Specific examples of silane coupling agents include γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, N-β-aminoethyl-γ-aminopropyltrimethoxysilane, N-β-aminoethyl-γ- Amino group-containing silanes such as aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, (2-aminoethyl)aminomethyltrimethoxysilane; γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltrimethoxysilane; isocyanate group-containing silanes such as ethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, α-isocyanatomethyltrimethoxysilane, α-isocyanatomethyldimethoxymethylsilane; γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, mercapto group-containing silanes such as γ-mercaptopropylmethyldimethoxysilane; epoxy group-containing silanes such as γ-glycidoxypropyltrimethoxysilane and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane; . Condensates of various silane coupling agents such as condensation products of amino group-containing silanes, condensation products of amino group-containing silanes and other alkoxysilanes; reaction products of amino group-containing silanes and epoxy group-containing silanes; Reaction products of various silane coupling agents, such as reaction products of containing silanes and (meth)acrylic group-containing silanes, can also be used. The adhesion imparting agent may be used alone or in combination of two or more.
 接着性付与剤の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系共重合体(B)の合計100重量部に対して、0.1~20重量部が好ましく、0.5~10重量部がより好ましい。 The amount of adhesion-imparting agent used is preferably 0.1 to 20 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B). , more preferably 0.5 to 10 parts by weight.
 <脱水剤>
 硬化性組成物には、脱水剤を添加することができる。A剤の安定性改善のため、脱水剤はA剤に配合されることが好ましい。
 ここで、脱水剤とは、水と反応し得る化合物であることが好ましく、水と反応し得るケイ素化合物(但し接着性付与剤に該当する化合物は除く)がより好ましく、トリアルコキシシラン化合物が特に好ましい。
<Dehydrating agent>
A dehydrating agent can be added to the curable composition. A dehydrating agent is preferably added to the A agent to improve the stability of the A agent.
Here, the dehydrating agent is preferably a compound that can react with water, more preferably a silicon compound that can react with water (excluding compounds corresponding to adhesiveness-imparting agents), and particularly a trialkoxysilane compound. preferable.
 前記脱水剤の具体例としては特に限定されないが、メチルトリメトキシシラン、フェニルトリメトキシシラン、n-プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン等のビニル基含有シラン類等が挙げられる。脱水剤は1種類のみで使用してもよいし、2種類以上使用してもよい。 Specific examples of the dehydrating agent are not particularly limited, but vinyl group-containing silanes such as methyltrimethoxysilane, phenyltrimethoxysilane, n-propyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane and vinylmethyldimethoxysilane. and the like. Only one type of dehydrating agent may be used, or two or more types may be used.
 脱水剤の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系共重合体(B)の合計100重量部に対して、0.1~20重量部が好ましく、0.5~10重量部がより好ましく、1~5重量部がさらに好ましい。 The amount of dehydrating agent used is preferably 0.1 to 20 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester copolymer (B). .5 to 10 parts by weight is more preferred, and 1 to 5 parts by weight is even more preferred.
 <レオロジーコントロール剤>
 硬化性組成物には、必要に応じてタレを防止し、作業性を良くするためにレオロジーコントロール剤を添加しても良い。A剤に配合されてもよいし、B剤に配合されてもよいが、A剤に配合されることが好ましい。
<Rheology control agent>
If necessary, a rheology control agent may be added to the curable composition to prevent sagging and improve workability. It may be blended in the A agent or the B agent, but is preferably blended in the A agent.
 レオロジーコントロール剤としては特に限定されないが、例えば、脂肪酸アミドワックス類、水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類;乾式シリカ、湿式シリカ等が挙げられる。これらレオロジーコントロール剤は単独で用いてもよく、2種以上併用してもよい。 Although the rheology control agent is not particularly limited, examples thereof include fatty acid amide waxes, hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate; dry silica, wet silica, and the like. These rheology control agents may be used alone or in combination of two or more.
 レオロジーコントロール剤の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系共重合体(B)の合計100重量部に対して、0.1~20重量部が好ましい。 The amount of the rheology control agent used is preferably 0.1 to 20 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B).
 <酸化防止剤>
 硬化性組成物には、酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐候性を高めることができる。
 酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できる。酸化防止剤の具体例は特開平4-283259号公報や特開平9-194731号公報にも記載されている。
 酸化防止剤の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系共重合体(B)の合計100重量部に対して、0.1~10重量部が好ましく、0.2~5重量部がより好ましい。
<Antioxidant>
An antioxidant (antiaging agent) can be used in the curable composition. The use of an antioxidant can enhance the weather resistance of the cured product.
Examples of antioxidants include hindered phenols, monophenols, bisphenols, and polyphenols. Specific examples of antioxidants are also described in JP-A-4-283259 and JP-A-9-194731.
The amount of antioxidant used is preferably 0.1 to 10 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B). 0.2 to 5 parts by weight is more preferred.
 <光安定剤>
 硬化性組成物には、光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。
 光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が例示できるが、特にヒンダードアミン系が好ましい。
 光安定剤の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系共重合体(B)の合計100重量部に対して、0.1~10重量部が好ましく、0.2~5重量部がより好ましい。
<Light stabilizer>
A light stabilizer can be used in the curable composition. The use of a light stabilizer can prevent photo-oxidative deterioration of the cured product.
Benzotriazole-based, hindered amine-based, and benzoate-based compounds can be exemplified as light stabilizers, and hindered amine-based compounds are particularly preferred.
The amount of light stabilizer used is preferably 0.1 to 10 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B). 0.2 to 5 parts by weight is more preferred.
 <紫外線吸収剤>
 硬化性組成物には、紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。
 紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリチレート系、置換アクリロニトリル系及び金属キレート系化合物等が例示できるが、特にベンゾトリアゾール系が好ましく、市販名チヌビンP、チヌビン213、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン329、チヌビン571(以上、BASF製)が挙げられる。
 紫外線吸収剤の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系共重合体(B)の合計100重量部に対して、0.1~10重量部が好ましく、0.2~5重量部がより好ましい。
<Ultraviolet absorber>
A UV absorber can be used in the curable composition. The use of an ultraviolet absorber can enhance the surface weather resistance of the cured product.
Examples of UV absorbers include benzophenone-based, benzotriazole-based, salicylate-based, substituted acrylonitrile-based, and metal chelate-based compounds. Benzotriazole-based compounds are particularly preferred, and are commercially available as Tinuvin P, Tinuvin 213, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, Tinuvin 329, and Tinuvin 571 (manufactured by BASF).
The amount of the ultraviolet absorber used is preferably 0.1 to 10 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B). 0.2 to 5 parts by weight is more preferred.
 <物性調整剤>
 硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加しても良い。物性調整剤としては特に限定されないが、例えば、フェノキシトリメチルシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n-プロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジフェニルジメトキシシラン、フェニルトリメトキシシランなどのアリールアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン;トリス(トリメチルシリル)ボレート、トリス(トリエチルシリル)ボレートなどのトリアルキルシリルボレート類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用いることにより、本実施形態に係る硬化性組成物を硬化させた時の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上併用してもよい。
<Physical property modifier>
A physical property modifier for adjusting the tensile properties of the resulting cured product may be added to the curable composition, if necessary. Although the physical property modifier is not particularly limited, for example, alkylalkoxysilanes such as phenoxytrimethylsilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; diphenyldimethoxysilane, phenyltrimethoxysilane. arylalkoxysilanes such as; alkylisopropenoxysilanes such as dimethyldiisopropenoxysilane, methyltriisopropenoxysilane, γ-glycidoxypropylmethyldiisopropenoxysilane; silyl)borates; silicone varnishes; and polysiloxanes. By using the physical property modifier, the hardness of the cured curable composition according to the present embodiment can be increased, or conversely, the hardness can be decreased and elongation at break can be increased. The physical property modifiers may be used alone or in combination of two or more.
 特に、加水分解により、分子内に1価のシラノール基を有する化合物を生成する化合物は、硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、ヘキサノール、オクタノール、フェノール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ソルビトールなどのアルコールの誘導体であって加水分解によりシランモノオールを生成するシリコン化合物を挙げることができる。具体的には、フェノキシトリメチルシラン、トリス((トリメチルシロキシ)メチル)プロパン等が挙げられる。 In particular, a compound that produces a compound having a monovalent silanol group in its molecule by hydrolysis has the effect of lowering the modulus of the cured product without exacerbating the stickiness of the surface of the cured product. Compounds that generate trimethylsilanol are particularly preferred. Examples of compounds that generate a compound having a monovalent silanol group in the molecule by hydrolysis include alcohol derivatives such as hexanol, octanol, phenol, trimethylolpropane, glycerin, pentaerythritol, and sorbitol, which are hydrolyzed into silane monovalent groups. Mention may be made of silicon compounds that produce ols. Specific examples include phenoxytrimethylsilane and tris((trimethylsiloxy)methyl)propane.
 物性調整剤の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系共重合体(B)の合計100重量部に対して、0.1~10重量部が好ましく、0.5~5重量部がより好ましい。 The amount of the physical property modifier used is preferably 0.1 to 10 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylic acid ester copolymer (B). 0.5 to 5 parts by weight is more preferred.
 <粘着付与樹脂>
 硬化性組成物には、基材への接着性や密着性を高める目的、あるいはその他必要に応じて粘着付与樹脂を添加できる。
 粘着付与樹脂の具体例としては、テルペン系樹脂、芳香族変性テルペン樹脂、水素添加テルペン樹脂、テルペン-フェノール樹脂、フェノール樹脂、変性フェノール樹脂、キシレン-フェノール樹脂、シクロペンタジエン-フェノール樹脂、クマロンインデン樹脂、ロジン系樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、キシレン樹脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、スチレン系ブロック共重合体及びその水素添加物、石油樹脂(例えば、C5炭化水素樹脂、C9炭化水素樹脂、C5C9炭化水素共重合樹脂等)、水添石油樹脂、DCPD樹脂等が挙げられる。これらは単独で用いても良く、2種以上を併用しても良い。
 粘着付与樹脂の使用量は、ポリオキシアルキレン系重合体(A)と(メタ)アクリル酸エステル系共重合体(B)の合計100重量部に対して、2~100重量部が好ましく、5~50重量部がより好ましく、5~30重量部がさらに好ましい。
<Tackifying resin>
A tackifier resin can be added to the curable composition for the purpose of enhancing the adhesiveness or adhesion to the substrate, or for other purposes.
Specific examples of tackifying resins include terpene-based resins, aromatic modified terpene resins, hydrogenated terpene resins, terpene-phenol resins, phenol resins, modified phenol resins, xylene-phenol resins, cyclopentadiene-phenol resins, and coumarone-indene. Resins, rosin resins, rosin ester resins, hydrogenated rosin ester resins, xylene resins, low molecular weight polystyrene resins, styrene copolymer resins, styrene block copolymers and hydrogenated products thereof, petroleum resins (e.g., carbonized C5 hydrogen resin, C9 hydrocarbon resin, C5C9 hydrocarbon copolymer resin, etc.), hydrogenated petroleum resin, DCPD resin and the like. These may be used alone or in combination of two or more.
The amount of the tackifying resin used is preferably 2 to 100 parts by weight with respect to a total of 100 parts by weight of the polyoxyalkylene polymer (A) and the (meth)acrylate copolymer (B), and 5 to 100 parts by weight. 50 parts by weight is more preferred, and 5 to 30 parts by weight is even more preferred.
 <<硬化性組成物>>
 本実施形態に係る硬化性組成物は、少なくともポリオキシアルキレン系重合体(A)及びアクリル酸エステル系共重合体(B)を含むA剤と、ポリオキシアルキレン系重合体(A)と可塑剤(C)とエポキシ樹脂(D)のうち少なくとも1つを少なくとも含むB剤とから構成され、使用前にA剤とB剤を混合する多液型として調製することが好ましい。
<<Curable Composition>>
The curable composition according to the present embodiment comprises an A agent containing at least a polyoxyalkylene polymer (A) and an acrylic acid ester copolymer (B), a polyoxyalkylene polymer (A) and a plasticizer It is composed of (C) and a B agent containing at least one of the epoxy resins (D), and is preferably prepared as a multi-liquid type in which the A agent and the B agent are mixed before use.
 本実施形態に係る硬化性組成物は、室温で硬化させてもよいし、加熱硬化させてもよい。加熱温度は特に限定されないが、40℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。しかし、100℃以上になるとB剤中の水が蒸発してボイド発生の原因となり得るため、加熱温度は100℃未満が好ましい。 The curable composition according to this embodiment may be cured at room temperature or may be cured by heating. The heating temperature is not particularly limited, but is preferably 40° C. or higher, more preferably 60° C. or higher, and even more preferably 80° C. or higher. However, if the temperature rises to 100°C or higher, the water in agent B evaporates and may cause voids, so the heating temperature is preferably lower than 100°C.
 本実施形態に係る硬化性組成物は、プラスチック、金属、複合材などの様々な被着体に対して良好な接着性を示すことができる。また、ポリプロピレンなどの非極性材料やポリフェニレンサルファイドなどの剛直な分子鎖を有するエンジニアリングプラスチックに対する接着剤として使用する場合には、これら被着体に対する接着性を高め、安定した接着強度を得るために、被着体を公知の方法で事前に表面処理することができる。例えば、サンディング処理、フレーム処理、コロナ放電、アーク放電、プラズマ処理などの表面処理技術を使うことができる。被着体へのダメージが少なく、安定した接着性が得られることから、プラズマ処理が好ましい。これらの表面処理は、成形時に使用され被着体表面に残存している離型剤を除去するためにも有効である。 The curable composition according to this embodiment can exhibit good adhesion to various adherends such as plastics, metals and composite materials. In addition, when used as an adhesive for non-polar materials such as polypropylene and engineering plastics having rigid molecular chains such as polyphenylene sulfide, in order to increase adhesion to these adherends and obtain stable adhesive strength, The adherend can be previously surface-treated by known methods. For example, surface treatment techniques such as sanding, flame treatment, corona discharge, arc discharge, plasma treatment, etc. can be used. Plasma treatment is preferred because it causes little damage to the adherend and provides stable adhesion. These surface treatments are also effective for removing release agents used during molding and remaining on the adherend surface.
 好適な態様に係る硬化性組成物は、被着体を接合した後、長時間の硬化(養生)工程を行うことで、目的の物性を発現する一方、長時間の硬化工程を実施する前の初期の接着強度が比較的高いという特性を有し得る。このため、前記硬化性組成物は、連続的に実施されるライン生産方式の中で被着体の接合を行うために好適に使用することができる。 The curable composition according to a preferred embodiment exhibits the desired physical properties by performing a long-term curing (curing) step after bonding the adherend, while the long-term curing step is performed before It may have the property that the initial adhesive strength is relatively high. Therefore, the curable composition can be suitably used for bonding adherends in a continuous line production system.
 硬化性組成物が最終目的の物性を発現するための最終的な硬化(養生)工程の条件としては特に限定されないが、例えば、温度として5~90℃、時間として24時間~1週間などが挙げられる。 The conditions of the final curing (curing) step for the curable composition to express the final desired physical properties are not particularly limited, but for example, the temperature is 5 to 90 ° C. and the time is 24 hours to 1 week. be done.
 <<用途>>
 硬化性組成物は接着剤組成物としての使用に適しており、建造物・船舶・自動車・道路などのシーリング材、バス、トレーラー、電車などのパネルを接合するための接着剤、粘着剤、防水材などに使用できる。本硬化性組成物は、アルミニウム-スチール、スチール-複合材、アルミニウム-複合材などの異種材料を接合する用途にも適している。異種材料の接合では腐食を防止するために接合部をシーラーで覆うことが好ましい。シーラーとしては、本願で示したような反応性ケイ素基を有する重合体を使用することが可能である。硬化性組成物が使用される用途としては、車両パネルなどの自動車部品、トラック、バスなど大型車両部品、列車車両用部品、航空機部品、船舶用部品、電機部品、各種機械部品などにおいて使用される接着剤として使用されることが好ましい。
<<Usage>>
The curable composition is suitable for use as an adhesive composition, sealing materials for buildings, ships, automobiles, roads, etc., adhesives for joining panels of buses, trailers, trains, etc., adhesives, waterproofing. It can be used for materials. The curable compositions are also suitable for joining dissimilar materials such as aluminum-steel, steel-composites, and aluminum-composites. When dissimilar materials are joined, it is preferable to cover the joint with a sealer to prevent corrosion. As a sealer, it is possible to use a polymer having reactive silicon groups as shown in this application. Applications in which the curable composition is used include automotive parts such as vehicle panels, large vehicle parts such as trucks and buses, train vehicle parts, aircraft parts, ship parts, electrical parts, and various machine parts. It is preferably used as an adhesive.
 以下の各項目では、本開示における好ましい態様を列挙するが、本発明は以下の項目に限定されるものではない。
[項目1]
 A剤とB剤を含む多液型硬化性組成物であって、
 A剤が、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、及び、反応性ケイ素基を有する(メタ)アクリル酸エステル系共重合体(B)を含有し、
 B剤が、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、可塑剤(C)、及びエポキシ樹脂(D)からなる群より選択される少なくとも1種の化合物を含有し、
 前記(メタ)アクリル酸エステル系共重合体(B)を構成する単量体成分が、
(メタ)アクリル酸エステル(b1)、
(メタ)アクリロイル基を分子内に1つより多く有する重合体(b2)、及び、
メルカプト基を有する連鎖移動剤(b3)、を含有し、
 前記単量体成分が、反応性ケイ素基と重合性不飽和基を有する単量体(b4)をさらに含有し、及び/又は、前記メルカプト基を有する連鎖移動剤(b3)が、反応性ケイ素基をさらに有し、並びに
 前記反応性ケイ素基が下記一般式(1)で表される、多液型硬化性組成物。
-SiR 3-a    (1)
(式中、Rは、置換又は非置換の炭素数1~20の炭化水素基を表す。Xは水酸基または加水分解性基を表す。aは2または3である。)
[項目2]
 重合体(b2)が、(メタ)アクリロイル基を分子内に1つより多く有するポリオキシアルキレン系重合体(b2″)である、項目1に記載の多液型硬化性組成物。
[項目3]
 重合体(b2)が、(メタ)アクリロイル基を分子内に1つより多く有する(メタ)アクリル酸エステル系重合体(b2′)である、項目1に記載の多液型硬化性組成物。
[項目4]
 重合体(b2)/メルカプト基を有する連鎖移動剤(b3)のモル比が0.05以上である、項目1~3のいずれか1項に記載の多液型硬化性組成物。
[項目5]
 ポリオキシアルキレン系重合体(A)が、前記一般式(2)で表される末端構造を有する、項目1~4のいずれか1項に記載の多液型硬化性組成物。
[項目6]
 ポリオキシアルキレン系重合体(A)の主鎖構造が分岐鎖状である、項目1~5のいずれか1項に記載の多液型硬化性組成物。
[項目7]
 B剤が、水(F)をさらに含有する、項目1~6のいずれか1項に記載の多液型硬化性組成物。
[項目8]
 B剤が、前記化合物として、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)を含有する、項目1~7のいずれか1項に記載の多液型硬化性組成物。
[項目9]
 B剤が、前記化合物として、可塑剤(C)を含有する、項目1~8のいずれか1項に記載の多液型硬化性組成物。
[項目10]
 B剤が、前記化合物として、エポキシ樹脂(D)を含有する、項目1~9のいずれか1項に記載の多液型硬化性組成物。
[項目11]
 A剤とB剤からなる2液型の硬化性組成物である、項目1~10のいずれか1項に記載の多液型硬化性組成物。
[項目12]
 項目1~11のいずれか1項に記載の多液型硬化性組成物を硬化させて得られる硬化物。
The following items list preferred embodiments in the present disclosure, but the present invention is not limited to the following items.
[Item 1]
A multi-component curable composition comprising agent A and agent B,
Agent A contains a polyoxyalkylene polymer (A) having a reactive silicon group, and a (meth)acrylic acid ester copolymer (B) having a reactive silicon group,
Agent B contains at least one compound selected from the group consisting of a polyoxyalkylene polymer (A) having a reactive silicon group, a plasticizer (C), and an epoxy resin (D),
The monomer component constituting the (meth)acrylic acid ester copolymer (B) is
(meth) acrylic acid ester (b1),
A polymer (b2) having more than one (meth)acryloyl group in the molecule, and
containing a chain transfer agent (b3) having a mercapto group,
The monomer component further contains a monomer (b4) having a reactive silicon group and a polymerizable unsaturated group, and/or the chain transfer agent (b3) having a mercapto group is a reactive silicon A multi-component curable composition further having a group, and wherein the reactive silicon group is represented by the following general formula (1).
—SiR 1 3-a X a (1)
(Wherein, R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms; X represents a hydroxyl group or a hydrolyzable group; a is 2 or 3.)
[Item 2]
The multi-component curable composition according to item 1, wherein the polymer (b2) is a polyoxyalkylene polymer (b2″) having more than one (meth)acryloyl group in the molecule.
[Item 3]
2. The multicomponent curable composition according to item 1, wherein the polymer (b2) is a (meth)acrylate polymer (b2') having more than one (meth)acryloyl group in the molecule.
[Item 4]
4. The multicomponent curable composition according to any one of items 1 to 3, wherein the molar ratio of polymer (b2)/chain transfer agent (b3) having a mercapto group is 0.05 or more.
[Item 5]
5. The multi-component curable composition according to any one of items 1 to 4, wherein the polyoxyalkylene polymer (A) has a terminal structure represented by the general formula (2).
[Item 6]
6. The multicomponent curable composition according to any one of items 1 to 5, wherein the main chain structure of the polyoxyalkylene polymer (A) is branched.
[Item 7]
7. The multi-component curable composition according to any one of items 1 to 6, wherein the B agent further contains water (F).
[Item 8]
8. The multicomponent curable composition according to any one of items 1 to 7, wherein agent B contains, as the compound, a polyoxyalkylene polymer (A) having a reactive silicon group.
[Item 9]
The multicomponent curable composition according to any one of items 1 to 8, wherein the B agent contains a plasticizer (C) as the compound.
[Item 10]
10. The multicomponent curable composition according to any one of items 1 to 9, wherein the B agent contains an epoxy resin (D) as the compound.
[Item 11]
11. The multi-component curable composition according to any one of items 1 to 10, which is a two-component curable composition comprising agent A and agent B.
[Item 12]
A cured product obtained by curing the multicomponent curable composition according to any one of items 1 to 11.
 以下に、実施例を掲げて本発明を具体的に説明するが、本実施例は本発明を限定するものではない。 Although the present invention will be specifically described below with reference to examples, the present examples are not intended to limit the present invention.
 実施例中の数平均分子量及び重量平均分子量は、以下の条件で測定したGPC分子量である。
  送液システム:東ソー製HLC-8120GPC
  カラム:東ソー製TSK-GEL Hタイプ
  溶媒:THF
  分子量:ポリスチレン換算
  測定温度:40℃
The number average molecular weight and weight average molecular weight in the examples are GPC molecular weights measured under the following conditions.
Liquid delivery system: Tosoh HLC-8120GPC
Column: TSK-GEL H type manufactured by Tosoh Solvent: THF
Molecular weight: Polystyrene equivalent Measurement temperature: 40°C
 実施例中の末端基換算分子量は、水酸基価をJIS K 1557の測定方法により、ヨウ素価をJIS K 0070の測定方法により求め、有機重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮して求めた分子量である。 The terminal group equivalent molecular weights in the examples were obtained by determining the hydroxyl value by the measurement method of JIS K 1557, the iodine value by the measurement method of JIS K 0070, and the structure of the organic polymer (the degree of branching determined by the polymerization initiator used). It is the molecular weight obtained by taking into consideration.
 実施例に示す重合体の末端1個あたりへの炭素-炭素不飽和結合の平均導入数は、以下の計算式により算出した。
(平均導入数)=[ヨウ素価から求めた重合体の不飽和基濃度(mol/g)-ヨウ素価から求めた前駆重合体の不飽和基濃度(mol/g)]/[水酸基価から求めた前駆重合体の水酸基濃度(mol/g)]
The average number of carbon-carbon unsaturated bonds introduced per terminal of the polymer shown in the examples was calculated by the following formula.
(Average introduction number) = [Unsaturated group concentration of polymer determined from iodine value (mol/g) - Unsaturated group concentration of precursor polymer determined from iodine value (mol/g)]/[Determined from hydroxyl value Hydroxyl group concentration of precursor polymer (mol/g)]
 実施例に示す重合体(A)の末端1個あたりへの反応性ケイ素基の平均導入数は、NMR測定により算出した。 The average number of reactive silicon groups introduced per terminal of the polymer (A) shown in Examples was calculated by NMR measurement.
 (硫黄原子濃度)
 硫黄原子濃度は、(メタ)アクリル酸エステル系共重合体(B)の製造に使用した単量体成分の合計量と、メルカプト基を有する連鎖移動剤(b3)の量から算出した理論値である。
(sulfur atom concentration)
The sulfur atom concentration is a theoretical value calculated from the total amount of the monomer components used in the production of the (meth)acrylate copolymer (B) and the amount of the chain transfer agent (b3) having a mercapto group. be.
 (合成例1)
 数平均分子量が約4,020(末端基換算分子量2,980)のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、数平均分子量26,200(末端基換算分子量17,440)のポリオキシプロピレントリオールを得た。得られた水酸基末端ポリオキシプロピレンの水酸基に対して1.0モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、水酸基末端ポリオキシプロピレンの水酸基に対して、1.0モル当量のアリルグリシジルエーテルを添加して130℃で2時間反応を行った。その後、0.28モル当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを除去し、さらに1.79モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。得られた未精製のアリル基末端ポリオキシプロピレン100重量部に対し、n-ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去した後、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、炭素-炭素不飽和結合を2個以上有する末端構造を有するポリオキシプロピレンを得た。この重合体は1つの末端部位に炭素-炭素不飽和結合が平均2.0個導入されていることがわかった。
 得られた1つの末端部位に炭素-炭素不飽和結合を平均2.0個有するポリオキシプロピレン100重量部に対し白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)72ppmを加え、撹拌しながら、トリメトキシシラン2.9重量部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去する事により、1つの末端部位にトリメトキシシリル基を平均1.6個含み、1分子当たりのケイ素基が平均4.8個、数平均分子量が26,200である分岐鎖状の反応性ケイ素基含有ポリオキシプロピレン重合体(A-1)を得た。
(Synthesis example 1)
Polyoxypropylene triol having a number average molecular weight of about 4,020 (molecular weight as converted to terminal group: 2,980) is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to obtain a number average molecular weight of 26,200 ( A polyoxypropylene triol having a terminal group-equivalent molecular weight of 17,440 was obtained. Sodium methoxide was added as a 28% methanol solution in an amount of 1.0 molar equivalent to the hydroxyl group of the obtained hydroxyl group-terminated polyoxypropylene. After methanol was distilled off by vacuum devolatilization, 1.0 molar equivalent of allyl glycidyl ether was added to the hydroxyl group of hydroxyl-terminated polyoxypropylene, and reaction was carried out at 130° C. for 2 hours. Thereafter, 0.28 molar equivalent of sodium methoxide in methanol was added to remove the methanol, and 1.79 molar equivalent of allyl chloride was added to convert the terminal hydroxyl group to an allyl group. 300 parts by weight of n-hexane and 300 parts by weight of water were mixed and stirred with 100 parts by weight of the unpurified allyl group-terminated polyoxypropylene obtained, and the water was removed by centrifugation. 300 parts by weight of water was further mixed and stirred, the water was removed by centrifugation again, and hexane was removed by vacuum devolatilization. As described above, polyoxypropylene having a terminal structure having two or more carbon-carbon unsaturated bonds was obtained. This polymer was found to have an average of 2.0 carbon-carbon unsaturated bonds introduced at one terminal site.
72 ppm of a platinum-divinyldisiloxane complex (3% by weight in terms of platinum in isopropanol solution) was added to 100 parts by weight of polyoxypropylene having an average of 2.0 carbon-carbon unsaturated bonds at one end and stirred. 2.9 parts by weight of trimethoxysilane was slowly added dropwise. After the mixed solution was reacted at 90° C. for 2 hours, unreacted trimethoxysilane was distilled off under reduced pressure. A branched reactive silicon group-containing polyoxypropylene polymer (A-1) having an average number of silicon groups of 4.8 and a number average molecular weight of 26,200 was obtained.
 (合成例2)
 数平均分子量が約4,020(末端基換算分子量2,980)のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、数平均分子量26,200(末端基換算分子量17,440)のポリオキシプロピレントリオールを得た。続いてこの水酸基末端ポリオキシプロピレントリオールの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに1.5倍当量の3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。
 次に得られたアリル基末端ポリオキシプロピレン重合体100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロピルアルコール溶液)72ppmを加え撹拌しながら、トリメトキシシラン1.26重量部をゆっくりと滴下し、90℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去する事により、末端がトリメトキシシリル基であり、1分子あたりのケイ素基が平均1.8個、数平均分子量26,200である分岐鎖状の反応性ケイ素基含有ポリオキシプロピレン重合体(A-2)を得た。
(Synthesis example 2)
Polyoxypropylene triol having a number average molecular weight of about 4,020 (molecular weight as converted to terminal group: 2,980) is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to obtain a number average molecular weight of 26,200 ( A polyoxypropylene triol having a terminal group-equivalent molecular weight of 17,440 was obtained. Subsequently, a methanol solution of 1.2 equivalents of NaOMe is added to the hydroxyl group of the hydroxyl-terminated polyoxypropylene triol to distill off the methanol, and 1.5 equivalents of 3-chloro-1-propene is added. to convert the terminal hydroxyl group to an allyl group.
Next, 72 ppm of a platinum divinyldisiloxane complex (3% by weight of isopropyl alcohol solution in terms of platinum) was added to 100 parts by weight of the obtained allyl group-terminated polyoxypropylene polymer, and while stirring, 1.26 weight of trimethoxysilane was added. was slowly added dropwise and reacted at 90° C. for 2 hours, and then unreacted trimethoxysilane was distilled off under reduced pressure to give a terminal trimethoxysilyl group and an average of 1 silicon group per molecule. A branched-chain reactive silicon group-containing polyoxypropylene polymer (A-2) having a number average molecular weight of 26,200 was obtained.
 (合成例3)
 数平均分子量が約4,020(末端基換算分子量2,980)のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、数平均分子量14,600(末端基換算分子量9,130)のポリオキシプロピレングリコールを得た。得られた水酸基末端ポリオキシプロピレンの水酸基に対して1.0モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、水酸基末端ポリオキシプロピレンの水酸基に対して、1.0モル当量のアリルグリシジルエーテルを添加して130℃で2時間反応を行った。その後、0.28モル当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを除去し、さらに1.79モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。得られた未精製のアリル基末端ポリオキシプロピレン100重量部に対し、n-ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去した後、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、炭素-炭素不飽和結合を2個以上有する末端構造を有するポリオキシプロピレンを得た。この重合体は1つの末端部位に炭素-炭素不飽和結合が平均2.0個導入されていることがわかった。
 得られた1つの末端部位に炭素-炭素不飽和結合を平均2.0個有するポリオキシプロピレン100重量部に対し白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)36ppmを加え、撹拌しながら、ジメトキシメチルシラン3.3重量部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、1つの末端部位にジメトキシメチルシリル基を平均1.6個含み、1分子当たりのケイ素基が平均3.2個、数平均分子量が14,600である直鎖状の反応性ケイ素基含有ポリオキシプロピレン重合体(A-3)を得た。
(Synthesis Example 3)
Polyoxypropylene glycol with a number average molecular weight of about 4,020 (molecular weight as converted to terminal group: 2,980) is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to obtain a number average molecular weight of 14,600 ( A polyoxypropylene glycol having a terminal group-equivalent molecular weight of 9,130) was obtained. Sodium methoxide was added as a 28% methanol solution in an amount of 1.0 molar equivalent to the hydroxyl group of the obtained hydroxyl group-terminated polyoxypropylene. After methanol was distilled off by vacuum devolatilization, 1.0 molar equivalent of allyl glycidyl ether was added to the hydroxyl group of hydroxyl-terminated polyoxypropylene, and reaction was carried out at 130° C. for 2 hours. Thereafter, 0.28 molar equivalent of sodium methoxide in methanol was added to remove the methanol, and 1.79 molar equivalent of allyl chloride was added to convert the terminal hydroxyl group to an allyl group. 300 parts by weight of n-hexane and 300 parts by weight of water were mixed and stirred with 100 parts by weight of the unpurified allyl group-terminated polyoxypropylene obtained, and the water was removed by centrifugation. 300 parts by weight of water was further mixed and stirred, the water was removed by centrifugation again, and hexane was removed by vacuum devolatilization. As described above, polyoxypropylene having a terminal structure having two or more carbon-carbon unsaturated bonds was obtained. This polymer was found to have an average of 2.0 carbon-carbon unsaturated bonds introduced at one terminal site.
36 ppm of a platinum-divinyldisiloxane complex (3% by weight in terms of platinum in isopropanol solution) was added to 100 parts by weight of the obtained polyoxypropylene having an average of 2.0 carbon-carbon unsaturated bonds at one end and stirred. 3.3 parts by weight of dimethoxymethylsilane was slowly added dropwise. After the mixed solution was reacted at 90° C. for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure. A linear reactive silicon group-containing polyoxypropylene polymer (A-3) having an average number of silicon groups of 3.2 and a number average molecular weight of 14,600 was thus obtained.
 (合成例4)
 数平均分子量が約4,020(末端基換算分子量2,980)のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、数平均分子量26,200(末端基換算分子量17,440)のポリオキシプロピレントリオールを得た。得られた水酸基末端ポリオキシプロピレンの水酸基に対して1.0モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、水酸基末端ポリオキシプロピレンの水酸基に対して、1.0モル当量のアリルグリシジルエーテルを添加して130℃で2時間反応を行った。その後、0.28モル当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを除去し、さらに1.79モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。得られた未精製のアリル基末端ポリオキシプロピレン100重量部に対し、n-ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去した後、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、炭素-炭素不飽和結合を2個以上有する末端構造を有するポリオキシプロピレンを得た。この重合体は1つの末端部位に炭素-炭素不飽和結合が平均2.0個導入されていることがわかった。
 得られた1つの末端部位に炭素-炭素不飽和結合を平均2.0個有するポリオキシプロピレン100重量部に対し白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)72ppmを加え、撹拌しながら、ジメトキシメチルシラン2.5重量部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、1つの末端部位にジメトキシメチルシリル基を平均1.6個含み、1分子当たりのケイ素基が平均4.8個、数平均分子量が26,200である分岐鎖状の反応性ケイ素基含有ポリオキシプロピレン重合体(A-4)を得た。
(Synthesis Example 4)
Polyoxypropylene triol having a number average molecular weight of about 4,020 (molecular weight as converted to terminal group: 2,980) is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to obtain a number average molecular weight of 26,200 ( A polyoxypropylene triol having a terminal group-equivalent molecular weight of 17,440 was obtained. Sodium methoxide was added as a 28% methanol solution in an amount of 1.0 molar equivalent to the hydroxyl group of the obtained hydroxyl group-terminated polyoxypropylene. After methanol was distilled off by vacuum devolatilization, 1.0 molar equivalent of allyl glycidyl ether was added to the hydroxyl group of hydroxyl-terminated polyoxypropylene, and reaction was carried out at 130° C. for 2 hours. Thereafter, 0.28 molar equivalent of sodium methoxide in methanol was added to remove the methanol, and 1.79 molar equivalent of allyl chloride was added to convert the terminal hydroxyl group to an allyl group. 300 parts by weight of n-hexane and 300 parts by weight of water were mixed and stirred with 100 parts by weight of the unpurified allyl group-terminated polyoxypropylene obtained, and the water was removed by centrifugation. 300 parts by weight of water was further mixed and stirred, the water was removed by centrifugation again, and hexane was removed by vacuum devolatilization. As described above, polyoxypropylene having a terminal structure having two or more carbon-carbon unsaturated bonds was obtained. This polymer was found to have an average of 2.0 carbon-carbon unsaturated bonds introduced at one terminal site.
72 ppm of a platinum-divinyldisiloxane complex (3% by weight in terms of platinum in isopropanol solution) was added to 100 parts by weight of polyoxypropylene having an average of 2.0 carbon-carbon unsaturated bonds at one end and stirred. 2.5 parts by weight of dimethoxymethylsilane was slowly added dropwise. After the mixed solution was reacted at 90° C. for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure. A branched reactive silicon group-containing polyoxypropylene polymer (A-4) having an average number of silicon groups of 4.8 and a number average molecular weight of 26,200 was thus obtained.
 (合成例5)
 数平均分子量が約4,020(末端基換算分子量2,980)のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、数平均分子量26,200(末端基換算分子量17,440)のポリオキシプロピレントリオールを得た。続いてこの水酸基末端ポリオキシプロピレントリオールの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに1.5倍当量の3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。
 次に得られたアリル基末端ポリオキシプロピレン重合体100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロピルアルコール溶液)72ppmを加え撹拌しながら、ジメトキシメチルシラン1.28重量部をゆっくりと滴下し、90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端がジメトキシメチルシリル基であり、1分子あたりのケイ素基が平均2.2個、数平均分子量26,200である分岐鎖状の反応性ケイ素基含有ポリオキシプロピレン重合体(A-5)を得た。
(Synthesis Example 5)
Polyoxypropylene triol having a number average molecular weight of about 4,020 (molecular weight as converted to terminal group: 2,980) is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to obtain a number average molecular weight of 26,200 ( A polyoxypropylene triol having a terminal group-equivalent molecular weight of 17,440 was obtained. Subsequently, a methanol solution of 1.2 equivalents of NaOMe is added to the hydroxyl group of the hydroxyl-terminated polyoxypropylene triol to distill off the methanol, and 1.5 equivalents of 3-chloro-1-propene is added. to convert the terminal hydroxyl group to an allyl group.
Next, 72 ppm of a platinum divinyldisiloxane complex (3% by weight of isopropyl alcohol solution in terms of platinum) was added to 100 parts by weight of the obtained allyl group-terminated polyoxypropylene polymer, and while stirring, 1.28 weight of dimethoxymethylsilane was added. was slowly added dropwise and reacted at 90° C. for 2 hours, and then unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain a dimethoxymethylsilyl group at the end and an average of 2 silicon groups per molecule. A branched chain reactive silicon group-containing polyoxypropylene polymer (A-5) having a number average molecular weight of 26,200 was obtained.
 (合成例6)
 脱酸素状態にした反応器に、臭化第一銅0.42重量部、ブチルアクリレート20.0重量部を添加し、加熱攪拌した。重合溶媒としてアセトニトリル8.8重量部、開始剤としてジエチル2,5-ジブロモアジペート9.4重量部を添加、混合し、混合液の温度を約80℃に調節した段階でペンタメチルジエチレントリアミン(以下、トリアミンと略す)を添加し、重合反応を開始した。次いで、ブチルアクリレート80.0重量部を逐次添加し、重合反応を進めた。重合途中、適宜トリアミンを追加し、重合速度を調整した。重合時に使用したトリアミンの総量は0.15重量部であった。モノマー転化率(重合反応率)が約95%以上の時点で揮発分を減圧脱揮して除去し、重合体濃縮物を得た。
 上記濃縮物をトルエンで希釈し、ろ過助剤、吸着剤(キョーワード700SEN:協和化学製)、ハイドロタルサイト(キョーワード500SH:協和化学製)を添加し、80~100℃程度に加熱攪拌した後、固形成分を濾過除去した。ろ液を減圧濃縮し、重合体粗精製物を得た。
 重合体粗精製物、アクリル酸カリウム11.2重量部、4-ヒドロキシ-TEMPO100ppm、溶剤としてジメチルアセトアミド100重量部を添加し、70℃で3時間反応させた後、溶媒を減圧留去し重合体濃縮物を得た。濃縮物をトルエンで希釈し、固形成分を濾過除去した。ろ液を減圧濃縮し、両末端にアクリロイル基を有し(即ち、重合体1分子中に2つのアクリロイル基を有し)、数平均分子量が4,030(GPC分子量)、分子量分布(Mw/Mn)が1.23である(メタ)アクリル酸エステル系重合体である多官能性マクロモノマー(b2-1)を得た。
(Synthesis Example 6)
0.42 parts by weight of cuprous bromide and 20.0 parts by weight of butyl acrylate were added to the deoxygenated reactor and heated with stirring. 8.8 parts by weight of acetonitrile as a polymerization solvent and 9.4 parts by weight of diethyl 2,5-dibromoadipate as an initiator are added and mixed, and the temperature of the mixture is adjusted to about 80 ° C. At the stage, pentamethyldiethylenetriamine (hereinafter referred to as abbreviated as triamine) was added to initiate the polymerization reaction. Then, 80.0 parts by weight of butyl acrylate was successively added to proceed with the polymerization reaction. During the polymerization, triamine was appropriately added to adjust the polymerization rate. The total amount of triamine used during polymerization was 0.15 parts by weight. When the monomer conversion rate (polymerization reaction rate) reached about 95% or more, the volatile matter was removed under reduced pressure to obtain a polymer concentrate.
The concentrate was diluted with toluene, a filter aid, an adsorbent (Kyoward 700SEN: manufactured by Kyowa Kagaku), and a hydrotalcite (Kyoward 500SH: manufactured by Kyowa Kagaku) were added, and the mixture was heated and stirred at about 80 to 100°C. After that, solid components were removed by filtration. The filtrate was concentrated under reduced pressure to obtain a crude polymer product.
Crudely purified polymer, 11.2 parts by weight of potassium acrylate, 100 ppm of 4-hydroxy-TEMPO, and 100 parts by weight of dimethylacetamide as a solvent were added and allowed to react at 70° C. for 3 hours. A concentrate was obtained. The concentrate was diluted with toluene and the solid components were filtered off. The filtrate was concentrated under reduced pressure, having acryloyl groups at both ends (that is, having two acryloyl groups in one polymer molecule), a number average molecular weight of 4,030 (GPC molecular weight), and a molecular weight distribution (Mw/ A polyfunctional macromonomer (b2-1), which is a (meth)acrylic acid ester polymer having Mn) of 1.23, was obtained.
 (合成例7)
 脱酸素状態にした反応器に、臭化第一銅0.42重量部、ブチルアクリレート20.0重量部を添加し、加熱攪拌した。重合溶媒としてアセトニトリル8.8重量部、開始剤としてジエチル2,5-ジブロモアジペート3.1重量部を添加、混合し、混合液の温度を約80℃に調節した段階でペンタメチルジエチレントリアミン(以下、トリアミンと略す)を添加し、重合反応を開始した。次いで、ブチルアクリレート80.0重量部を逐次添加し、重合反応を進めた。重合途中、適宜トリアミンを追加し、重合速度を調整した。重合時に使用したトリアミンの総量は0.15重量部であった。モノマー転化率(重合反応率)が約95%以上の時点で揮発分を減圧脱揮して除去し、重合体濃縮物を得た。
 上記濃縮物をトルエンで希釈し、ろ過助剤、吸着剤(キョーワード700SEN:協和化学製)、ハイドロタルサイト(キョーワード500SH:協和化学製)を添加し、80~100℃程度に加熱攪拌した後、固形成分を濾過除去した。ろ液を減圧濃縮し、重合体粗精製物を得た。
 重合体粗精製物、アクリル酸カリウム3.8重量部、4-ヒドロキシ-TEMPO100ppm、溶剤としてジメチルアセトアミド100重量部を添加し、70℃で3時間反応させた後、溶媒を減圧留去し重合体濃縮物を得た。濃縮物をトルエンで希釈し、固形成分を濾過除去した。ろ液を減圧濃縮し、両末端にアクリロイル基を有し(即ち、重合体1分子中に2つのアクリロイル基を有し)、数平均分子量が11,410(GPC分子量)、分子量分布(Mw/Mn)が1.27である(メタ)アクリル酸エステル系重合体である多官能性マクロモノマー(b2-2)を得た。
(Synthesis Example 7)
0.42 parts by weight of cuprous bromide and 20.0 parts by weight of butyl acrylate were added to the deoxygenated reactor and heated with stirring. 8.8 parts by weight of acetonitrile as a polymerization solvent and 3.1 parts by weight of diethyl 2,5-dibromoadipate as an initiator were added and mixed, and at the stage where the temperature of the mixture was adjusted to about 80° C., pentamethyldiethylenetriamine (hereinafter referred to as abbreviated as triamine) was added to initiate the polymerization reaction. Then, 80.0 parts by weight of butyl acrylate was successively added to proceed with the polymerization reaction. During the polymerization, triamine was appropriately added to adjust the polymerization rate. The total amount of triamine used during polymerization was 0.15 parts by weight. When the monomer conversion rate (polymerization reaction rate) reached about 95% or more, the volatile matter was removed under reduced pressure to obtain a polymer concentrate.
The above concentrate was diluted with toluene, a filter aid, an adsorbent (Kyoward 700SEN: manufactured by Kyowa Kagaku), and hydrotalcite (Kyoward 500SH: manufactured by Kyowa Kagaku) were added, and the mixture was heated and stirred at about 80 to 100°C. After that, solid components were removed by filtration. The filtrate was concentrated under reduced pressure to obtain a crude polymer product.
Add 3.8 parts by weight of crude polymer, 3.8 parts by weight of potassium acrylate, 100 ppm of 4-hydroxy-TEMPO, and 100 parts by weight of dimethylacetamide as a solvent, and react at 70° C. for 3 hours. A concentrate was obtained. The concentrate was diluted with toluene and the solid components were filtered off. The filtrate was concentrated under reduced pressure, having acryloyl groups at both ends (that is, having two acryloyl groups in one polymer molecule), a number average molecular weight of 11,410 (GPC molecular weight), and a molecular weight distribution (Mw/ A polyfunctional macromonomer (b2-2), which is a (meth)acrylic acid ester polymer having Mn) of 1.27, was obtained.
 (合成例8)
 数平均分子量が約4,020(末端基換算分子量2,980)のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、両末端に水酸基を有し、数平均分子量21,100(末端基換算分子量13,600)、分子量分布Mw/Mn=1.21のポリオキシプロピレンを得た。得られたポリオキシプロピレンにU-360(ジブチル錫ビス(イソオクチルメルカプトプロピオネート、日東化成(株))を60ppm添加し、ポリオキシプロピレンの水酸基に対してカレンズAOI(2-イソシアナートエチルアクリレート、昭和電工(株))を0.93当量滴下し、5.5%の酸素を含んだ窒素雰囲気中で、80℃で1時間反応を行い、両末端にアクリロイル基を有し(即ち、重合体1分子中に約2個のアクリロイル基を有し)、数平均分子量が21,100、重量平均分子量が24,930であるポリオキシアルキレン系重合体である多官能性マクロモノマー(b2-3)を得た。
(Synthesis Example 8)
Polyoxypropylene glycol with a number average molecular weight of about 4,020 (molecular weight as converted to terminal groups: 2,980) is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to have hydroxyl groups at both ends. , a number average molecular weight of 21,100 (termed molecular weight of terminal groups: 13,600) and a molecular weight distribution Mw/Mn of 1.21. 60 ppm of U-360 (dibutyltin bis (isooctyl mercaptopropionate, Nitto Kasei Co., Ltd.)) was added to the obtained polyoxypropylene, and Karenz AOI (2-isocyanato ethyl acrylate , Showa Denko Co., Ltd.) was dropped in an amount of 0.93 equivalents, and the mixture was reacted at 80°C for 1 hour in a nitrogen atmosphere containing 5.5% oxygen. Polyfunctional macromonomer (b2-3 ).
 (合成例9)
 脱酸素状態にした反応器に、臭化第一銅0.42重量部、ブチルアクリレート20.0重量部を添加し、加熱攪拌した。重合溶媒としてアセトニトリル8.8重量部、開始剤としてエチル2-ブロモアジペート1.9重量部を添加、混合し、混合液の温度を約80℃に調節した段階でペンタメチルジエチレントリアミン(以下、トリアミンと略す)を添加し、重合反応を開始した。次いで、ブチルアクリレート80.0重量部を逐次添加し、重合反応を進めた。重合途中、適宜トリアミンを追加し、重合速度を調整した。重合時に使用したトリアミンの総量は0.15重量部であった。モノマー転化率(重合反応率)が約95%以上の時点で揮発分を減圧脱揮して除去し、重合体濃縮物を得た。
 上記濃縮物をトルエンで希釈し、ろ過助剤、吸着剤(キョーワード700SEN:協和化学製)、ハイドロタルサイト(キョーワード500SH:協和化学製)を添加し、80~100℃程度に加熱攪拌した後、固形成分を濾過除去した。ろ液を減圧濃縮し、重合体粗精製物を得た。
 重合体粗精製物、アクリル酸カリウム1.69重量部、4-ヒドロキシ-TEMPO100ppm、溶剤としてジメチルアセトアミド100重量部を添加し、70℃で3時間反応させた後、溶媒を減圧留去し重合体濃縮物を得た。濃縮物をトルエンで希釈し、固形成分を濾過除去した。ろ液を減圧濃縮し、片末端にアクリロイル基を有する(即ち、重合体1分子中に1つのアクリロイル基を有する)数平均分子量が10,700(GPC分子量)、分子量分布(Mw/Mn)が1.18である(メタ)アクリル酸エステル系重合体であるマクロモノマー(p-1)を得た。当該マクロモノマー(p-1)は、多官能性マクロモノマー(b2)には該当しない。
(Synthesis Example 9)
0.42 parts by weight of cuprous bromide and 20.0 parts by weight of butyl acrylate were added to the deoxygenated reactor and heated with stirring. 8.8 parts by weight of acetonitrile as a polymerization solvent and 1.9 parts by weight of ethyl 2-bromoadipate as an initiator were added and mixed, and when the temperature of the mixture was adjusted to about 80 ° C., pentamethyldiethylenetriamine (hereinafter referred to as triamine) was added. abbreviated) was added to initiate the polymerization reaction. Then, 80.0 parts by weight of butyl acrylate was successively added to proceed with the polymerization reaction. During the polymerization, triamine was appropriately added to adjust the polymerization rate. The total amount of triamine used during polymerization was 0.15 parts by weight. When the monomer conversion rate (polymerization reaction rate) reached about 95% or more, the volatile matter was removed under reduced pressure to obtain a polymer concentrate.
The above concentrate was diluted with toluene, a filter aid, an adsorbent (Kyoward 700SEN: manufactured by Kyowa Kagaku), and hydrotalcite (Kyoward 500SH: manufactured by Kyowa Kagaku) were added, and the mixture was heated and stirred at about 80 to 100°C. After that, solid components were removed by filtration. The filtrate was concentrated under reduced pressure to obtain a crude polymer product.
Add 1.69 parts by weight of crude polymer, 1.69 parts by weight of potassium acrylate, 100 ppm of 4-hydroxy-TEMPO, and 100 parts by weight of dimethylacetamide as a solvent, and react at 70° C. for 3 hours. A concentrate was obtained. The concentrate was diluted with toluene and the solid components were filtered off. The filtrate was concentrated under reduced pressure, and the polymer having an acryloyl group at one end (that is, having one acryloyl group in one polymer molecule) had a number average molecular weight of 10,700 (GPC molecular weight) and a molecular weight distribution (Mw/Mn) of A macromonomer (p-1), which is a (meth)acrylic acid ester-based polymer with a polymer of 1.18, was obtained. The macromonomer (p-1) does not correspond to the polyfunctional macromonomer (b2).
 (合成例10)
 攪拌機を備えた四口フラスコにイソブタノール26.7重量部を入れ、窒素雰囲気下、105℃まで昇温した。そこに、メチルメタクリレート45.3重量部、ステアリルメタクリレート10.7重量部、3-メタクリロキシプロピルトリメトキシシラン9.3重量部、合成例6で作製した多官能性マクロモノマー(b2-1)28.0重量部、3-メルカプトプロピルトリメトキシシラン6.7重量部、及び2,2’-アゾビス(2-メチルブチロニトリル)2.0重量部をイソブタノール31.3重量部に溶解した混合溶液を5時間かけて滴下した。さらに2,2’-アゾビス(2-メチルブチロニトリル)0.5重量部をイソブタノール7.8重量部に溶解した混合溶液を加え105℃で2時間重合を行い、数平均分子量が2,290(GPC分子量)である反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B-1)のイソブタノール溶液(固形分60%)を得た。当該溶液の固形分の多官能性マクロモノマー当量は0.069mmol/g、反応性ケイ素基当量は0.72mmol/gであり、硫黄原子濃度は10,920ppmである。
(Synthesis Example 10)
26.7 parts by weight of isobutanol was put into a four-necked flask equipped with a stirrer, and the temperature was raised to 105° C. under a nitrogen atmosphere. There, 45.3 parts by weight of methyl methacrylate, 10.7 parts by weight of stearyl methacrylate, 9.3 parts by weight of 3-methacryloxypropyltrimethoxysilane, and the polyfunctional macromonomer (b2-1) prepared in Synthesis Example 6 (b2-1) 28 .0 parts by weight, 6.7 parts by weight of 3-mercaptopropyltrimethoxysilane, and 2.0 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 31.3 parts by weight of isobutanol. The solution was added dropwise over 5 hours. Further, a mixed solution of 0.5 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 7.8 parts by weight of isobutanol was added, and polymerization was carried out at 105°C for 2 hours. An isobutanol solution (solid content: 60%) of a reactive silicon group-containing (meth)acrylic acid ester copolymer (B-1) having a molecular weight of 290 (GPC) was obtained. The solid content of the solution has a polyfunctional macromonomer equivalent weight of 0.069 mmol/g, a reactive silicon group equivalent weight of 0.72 mmol/g, and a sulfur atom concentration of 10,920 ppm.
 (合成例11)
 攪拌機を備えた四口フラスコにイソブタノール26.7重量部を入れ、窒素雰囲気下、105℃まで昇温した。そこに、メチルメタクリレート37.5重量部、ブチルアクリレート0.5重量部、2-エチルへキシルアクリレート0.5重量部、ステアリルメタクリレート13.6重量部、3-メタクリロキシプロピルトリメトキシシラン6.5重量部、合成例7で作製した多官能性マクロモノマー(b2-2)35.6重量部、3-メルカプトプロピルトリメトキシシラン5.8重量部、及び2,2’-アゾビス(2-メチルブチロニトリル)2.0重量部をイソブタノール31.3重量部に溶解した混合溶液を5時間かけて滴下した。さらに2,2’-アゾビス(2-メチルブチロニトリル)0.5重量部をイソブタノール7.8重量部に溶解した混合溶液を加え105℃で2時間重合を行い、数平均分子量が2,750(GPC分子量)である反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B-2)のイソブタノール溶液(固形分60%)を得た。当該溶液の固形分の多官能性マクロモノマー当量は0.031mmol/g、反応性ケイ素基当量は0.56mmol/gであり、硫黄原子濃度は9,453ppmである。
(Synthesis Example 11)
26.7 parts by weight of isobutanol was put into a four-necked flask equipped with a stirrer, and the temperature was raised to 105° C. under a nitrogen atmosphere. 37.5 parts by weight of methyl methacrylate, 0.5 parts by weight of butyl acrylate, 0.5 parts by weight of 2-ethylhexyl acrylate, 13.6 parts by weight of stearyl methacrylate, 6.5 parts by weight of 3-methacryloxypropyltrimethoxysilane. Parts by weight, 35.6 parts by weight of the polyfunctional macromonomer (b2-2) prepared in Synthesis Example 7, 5.8 parts by weight of 3-mercaptopropyltrimethoxysilane, and 2,2′-azobis(2-methylbutyl A mixed solution of 2.0 parts by weight of lonitrile) dissolved in 31.3 parts by weight of isobutanol was added dropwise over 5 hours. Further, a mixed solution of 0.5 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 7.8 parts by weight of isobutanol was added, and polymerization was carried out at 105°C for 2 hours. An isobutanol solution (60% solid content) of a reactive silicon group-containing (meth)acrylic acid ester copolymer (B-2) having a molecular weight of 750 (GPC) was obtained. The solid content of the solution has a polyfunctional macromonomer equivalent weight of 0.031 mmol/g, a reactive silicon group equivalent weight of 0.56 mmol/g, and a sulfur atom concentration of 9,453 ppm.
 (合成例12)
 攪拌機を備えた四口フラスコにイソブタノール26.7重量部を入れ、窒素雰囲気下、105℃まで昇温した。そこに、メチルメタクリレート38.3重量部、ブチルアクリレート0.7重量部、ステアリルメタクリレート13.2重量部、3-メタクリロキシプロピルジメトキシメチルシラン6.1重量部、合成例7で作製した多官能性マクロモノマー(b2-2)36.3重量部、3-メルカプトプロピルジメトキシメチルシラン5.4重量部、及び2,2’-アゾビス(2-メチルブチロニトリル)1.4重量部をイソブタノール21.3重量部に溶解した混合溶液を5時間かけて滴下した。さらに2,2’-アゾビス(2-メチルブチロニトリル)0.4重量部をイソブタノール5.5重量部に溶解した混合溶液を加え105℃で2時間重合を行い、数平均分子量が2,600(GPC分子量)である反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B-3)のイソブタノール溶液(固形分60%)を得た。当該溶液の固形分の多官能性マクロモノマー当量は0.032mmol/g、反応性ケイ素基当量は0.56mmol/gであり、硫黄原子濃度は9,584ppmである。
(Synthesis Example 12)
26.7 parts by weight of isobutanol was put into a four-necked flask equipped with a stirrer, and the temperature was raised to 105° C. under a nitrogen atmosphere. There, 38.3 parts by weight of methyl methacrylate, 0.7 parts by weight of butyl acrylate, 13.2 parts by weight of stearyl methacrylate, 6.1 parts by weight of 3-methacryloxypropyldimethoxymethylsilane, the polyfunctional 36.3 parts by weight of the macromonomer (b2-2), 5.4 parts by weight of 3-mercaptopropyldimethoxymethylsilane, and 1.4 parts by weight of 2,2′-azobis(2-methylbutyronitrile) were mixed with 21 parts of isobutanol. A mixed solution dissolved in .3 parts by weight was added dropwise over 5 hours. Further, a mixed solution of 0.4 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 5.5 parts by weight of isobutanol was added, and polymerization was carried out at 105°C for 2 hours. An isobutanol solution (60% solid content) of a reactive silicon group-containing (meth)acrylic acid ester copolymer (B-3) having a molecular weight of 600 (GPC) was obtained. The solid content of the solution has a polyfunctional macromonomer equivalent weight of 0.032 mmol/g, a reactive silicon group equivalent weight of 0.56 mmol/g, and a sulfur atom concentration of 9,584 ppm.
 (合成例13)
 攪拌機を備えた四口フラスコにイソブタノール26.7重量部を入れ、窒素雰囲気下、105℃まで昇温した。そこに、メチルメタクリレート38.3重量部、ブチルアクリレート0.7重量部、ステアリルメタクリレート13.2重量部、3-メタクリロキシプロピルジメトキシメチルシラン6.1重量部、合成例8で作製した多官能性マクロモノマー(b2-3)36.3重量部、3-メルカプトプロピルジメトキシメチルシラン5.4重量部、及び2,2’-アゾビス(2-メチルブチロニトリル)1.4重量部をイソブタノール21.3重量部に溶解した混合溶液を5時間かけて滴下した。さらに2,2’-アゾビス(2-メチルブチロニトリル)0.4重量部をイソブタノール5.5重量部に溶解した混合溶液を加え105℃で2時間重合を行い、数平均分子量が2,360(GPC分子量)である反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B-4)のイソブタノール溶液(固形分60%)を得た。当該溶液の固形分の多官能性マクロモノマー当量は0.015mmol/g、反応性ケイ素基当量は0.56mmol/gであり、硫黄原子濃度は9,584ppmである。
(Synthesis Example 13)
26.7 parts by weight of isobutanol was put into a four-necked flask equipped with a stirrer, and the temperature was raised to 105° C. under a nitrogen atmosphere. There, 38.3 parts by weight of methyl methacrylate, 0.7 parts by weight of butyl acrylate, 13.2 parts by weight of stearyl methacrylate, 6.1 parts by weight of 3-methacryloxypropyldimethoxymethylsilane, the polyfunctional 36.3 parts by weight of the macromonomer (b2-3), 5.4 parts by weight of 3-mercaptopropyldimethoxymethylsilane, and 1.4 parts by weight of 2,2'-azobis(2-methylbutyronitrile) were mixed with 21 parts of isobutanol. A mixed solution dissolved in .3 parts by weight was added dropwise over 5 hours. Further, a mixed solution of 0.4 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 5.5 parts by weight of isobutanol was added, and polymerization was carried out at 105°C for 2 hours. An isobutanol solution (60% solid content) of a reactive silicon group-containing (meth)acrylic acid ester copolymer (B-4) having a molecular weight of 360 (GPC) was obtained. The solid content of the solution has a polyfunctional macromonomer equivalent weight of 0.015 mmol/g, a reactive silicon group equivalent weight of 0.56 mmol/g, and a sulfur atom concentration of 9,584 ppm.
 (合成例14)
 攪拌機を備えた四口フラスコにイソブタノール40.2重量部を入れ、窒素雰囲気下、105℃まで昇温した。そこに、メチルメタクリレート39.0重量部、ブチルアクリレート0.7重量部、ステアリルメタクリレート10.0重量部、3-メタクリロキシプロピルジメトキシメチルシラン8.5重量部、合成例8で作製した多官能性マクロモノマー(b2-3)36.4重量部、3-メルカプトプロピルジメトキシメチルシラン5.4重量部、及び2,2’-アゾビス(2-メチルブチロニトリル)1.3重量部をイソブタノール20.4重量部に溶解した混合溶液を5時間かけて滴下した。さらに2,2’-アゾビス(2-メチルブチロニトリル)0.3重量部をイソブタノール4.7重量部に溶解した混合溶液を加え105℃で2時間重合を行い、数平均分子量が2,480(GPC分子量)である反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B-5)のイソブタノール溶液(固形分60%)を得た。当該溶液の固形分の多官能性マクロモノマー当量は0.017mmol/g、反応性ケイ素基当量は0.67mmol/gであり、硫黄原子濃度は9,584ppmである。
(Synthesis Example 14)
40.2 parts by weight of isobutanol was put into a four-necked flask equipped with a stirrer, and the temperature was raised to 105° C. under a nitrogen atmosphere. There, 39.0 parts by weight of methyl methacrylate, 0.7 parts by weight of butyl acrylate, 10.0 parts by weight of stearyl methacrylate, 8.5 parts by weight of 3-methacryloxypropyldimethoxymethylsilane, the multifunctional 36.4 parts by weight of the macromonomer (b2-3), 5.4 parts by weight of 3-mercaptopropyldimethoxymethylsilane, and 1.3 parts by weight of 2,2'-azobis(2-methylbutyronitrile) were dissolved in 20 parts of isobutanol. A mixed solution dissolved in .4 parts by weight was added dropwise over 5 hours. Further, a mixed solution of 0.3 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 4.7 parts by weight of isobutanol was added, and polymerization was carried out at 105°C for 2 hours. An isobutanol solution (solid content: 60%) of a reactive silicon group-containing (meth)acrylic acid ester copolymer (B-5) having a molecular weight of 480 (GPC) was obtained. The solid content of the solution has a polyfunctional macromonomer equivalent weight of 0.017 mmol/g, a reactive silicon group equivalent weight of 0.67 mmol/g, and a sulfur atom concentration of 9,584 ppm.
 (合成例15)
 攪拌機を備えた四口フラスコにイソブタノール39.8重量部を入れ、窒素雰囲気下、105℃まで昇温した。そこに、メチルメタクリレート43.8重量部、ブチルアクリレート0.7重量部、ステアリルメタクリレート3.8重量部、3-メタクリロキシプロピルジメトキシメチルシラン8.2重量部、合成例8で作製した多官能性マクロモノマー(b2-3)38.1重量部、3-メルカプトプロピルジメトキシメチルシラン5.4重量部、及び2,2’-アゾビス(2-メチルブチロニトリル)1.3重量部をイソブタノール20.4重量部に溶解した混合溶液を5時間かけて滴下した。さらに2,2’-アゾビス(2-メチルブチロニトリル)0.3重量部をイソブタノール5.2重量部に溶解した混合溶液を加え105℃で2時間重合を行い、数平均分子量が2,270(GPC分子量)である反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B-6)のイソブタノール溶液(固形分60%)を得た。当該溶液の固形分の多官能性マクロモノマー当量は0.018mmol/g、反応性ケイ素基当量は0.65mmol/gであり、硫黄原子濃度は9,584ppmである。
(Synthesis Example 15)
39.8 parts by weight of isobutanol was put into a four-necked flask equipped with a stirrer, and the temperature was raised to 105° C. under a nitrogen atmosphere. There, 43.8 parts by weight of methyl methacrylate, 0.7 parts by weight of butyl acrylate, 3.8 parts by weight of stearyl methacrylate, 8.2 parts by weight of 3-methacryloxypropyldimethoxymethylsilane, the polyfunctional 38.1 parts by weight of the macromonomer (b2-3), 5.4 parts by weight of 3-mercaptopropyldimethoxymethylsilane, and 1.3 parts by weight of 2,2'-azobis(2-methylbutyronitrile) were dissolved in 20 parts by weight of isobutanol. A mixed solution dissolved in .4 parts by weight was added dropwise over 5 hours. Further, a mixed solution of 0.3 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 5.2 parts by weight of isobutanol was added, and polymerization was carried out at 105°C for 2 hours. An isobutanol solution (60% solid content) of a reactive silicon group-containing (meth)acrylic acid ester copolymer (B-6) having a molecular weight of 270 (GPC) was obtained. The solid content of the solution has a polyfunctional macromonomer equivalent weight of 0.018 mmol/g, a reactive silicon group equivalent weight of 0.65 mmol/g, and a sulfur atom concentration of 9,584 ppm.
 (合成例16)
 攪拌機を備えた四口フラスコにイソブタノール38.7重量部を入れ、窒素雰囲気下、105℃まで昇温した。そこに、メチルメタクリレート37.5重量部、ブチルアクリレート0.5重量部、2-エチルへキシルアクリレート0.5重量部、ステアリルメタクリレート13.6重量部、3-メタクリロキシプロピルトリメトキシシラン6.5重量部、合成例9で作製したマクロモノマー(p-1)35.6重量部、3-メルカプトプロピルトリメトキシシラン5.8重量部、及び2,2’-アゾビス(2-メチルブチロニトリル)1.4重量部をイソブタノール21.2重量部に溶解した混合溶液を5時間かけて滴下した。さらに2,2’-アゾビス(2-メチルブチロニトリル)0.4重量部をイソブタノール5.5重量部に溶解した混合溶液を加え105℃で2時間重合を行い、数平均分子量が2,630(GPC分子量)である反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(P-1)のイソブタノール溶液(固形分60%)を得た。当該溶液の固形分のマクロモノマー当量は0.033mmol/g、反応性ケイ素基当量は0.56mmol/gであり、硫黄原子濃度は9,453ppmである。
(Synthesis Example 16)
38.7 parts by weight of isobutanol was put into a four-necked flask equipped with a stirrer, and the temperature was raised to 105° C. under a nitrogen atmosphere. 37.5 parts by weight of methyl methacrylate, 0.5 parts by weight of butyl acrylate, 0.5 parts by weight of 2-ethylhexyl acrylate, 13.6 parts by weight of stearyl methacrylate, 6.5 parts by weight of 3-methacryloxypropyltrimethoxysilane. Parts by weight, 35.6 parts by weight of the macromonomer (p-1) prepared in Synthesis Example 9, 5.8 parts by weight of 3-mercaptopropyltrimethoxysilane, and 2,2'-azobis(2-methylbutyronitrile) A mixed solution of 1.4 parts by weight dissolved in 21.2 parts by weight of isobutanol was added dropwise over 5 hours. Further, a mixed solution of 0.4 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 5.5 parts by weight of isobutanol was added, and polymerization was carried out at 105°C for 2 hours. An isobutanol solution (solid content: 60%) of a reactive silicon group-containing (meth)acrylic acid ester copolymer (P-1) having a molecular weight of 630 (GPC) was obtained. The solid content of the solution has a macromonomer equivalent weight of 0.033 mmol/g, a reactive silicon group equivalent weight of 0.56 mmol/g, and a sulfur atom concentration of 9,453 ppm.
 (合成例17)
 攪拌機を備えた四口フラスコにイソブタノール39.5重量部を入れ、窒素雰囲気下、105℃まで昇温した。そこに、メチルメタクリレート60.2重量部、2-エチルへキシルアクリレート23.1重量部、3-メタクリロキシプロピルトリメトキシシラン9.3重量部、3-メルカプトプロピルトリメトキシシラン6.7重量部、及び2,2’-アゾビス(2-メチルブチロニトリル)1.6重量部をイソブタノール14.3重量部に溶解した混合溶液を5時間かけて滴下した。さらに2,2’-アゾビス(2-メチルブチロニトリル)0.7重量部をイソブタノール11.6重量部に溶解した混合溶液を加え105℃で2時間重合を行い、数平均分子量が2,270(GPC分子量)である反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(P-2)のイソブタノール溶液(固形分60%)を得た。当該溶液の固形分の反応性ケイ素基当量は0.72mmol/gであり、硫黄原子濃度は10,920ppmである。
(Synthesis Example 17)
39.5 parts by weight of isobutanol was put into a four-necked flask equipped with a stirrer, and the temperature was raised to 105° C. under a nitrogen atmosphere. 60.2 parts by weight of methyl methacrylate, 23.1 parts by weight of 2-ethylhexyl acrylate, 9.3 parts by weight of 3-methacryloxypropyltrimethoxysilane, 6.7 parts by weight of 3-mercaptopropyltrimethoxysilane, and 1.6 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 14.3 parts by weight of isobutanol was added dropwise over 5 hours. Furthermore, a mixed solution of 0.7 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 11.6 parts by weight of isobutanol was added, and polymerization was carried out at 105°C for 2 hours. An isobutanol solution (solid content: 60%) of a reactive silicon group-containing (meth)acrylate copolymer (P-2) having a molecular weight of 270 (GPC) was obtained. The solid content of the solution has a reactive silicon group equivalent of 0.72 mmol/g and a sulfur atom concentration of 10,920 ppm.
 (合成例18)
 攪拌機を備えた四口フラスコにイソブタノール39.5重量部を入れ、窒素雰囲気下、105℃まで昇温した。そこに、メチルメタクリレート67.7重量部、ブチルアクリレート6.0重量部、ステアリルメタクリレート13.5重量部、3-メタクリロキシプロピルジメトキシメチルシラン5.5重量部、3-メルカプトプロピルジメトキシメチルシラン7.3重量部、及び2,2’-アゾビス(2-メチルブチロニトリル)1.6重量部をイソブタノール14.3重量部に溶解した混合溶液を5時間かけて滴下した。さらに2,2’-アゾビス(2-メチルブチロニトリル)0.7重量部をイソブタノール11.6重量部に溶解した混合溶液を加え105℃で2時間重合を行い、数平均分子量が2,000(GPC分子量)である反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(P-3)のイソブタノール溶液(固形分60%)を得た。当該溶液の固形分の反応性ケイ素基当量は0.64mmol/gであり、硫黄原子濃度は12,956ppmである。
(Synthesis Example 18)
39.5 parts by weight of isobutanol was put into a four-necked flask equipped with a stirrer, and the temperature was raised to 105° C. under a nitrogen atmosphere. 67.7 parts by weight of methyl methacrylate, 6.0 parts by weight of butyl acrylate, 13.5 parts by weight of stearyl methacrylate, 5.5 parts by weight of 3-methacryloxypropyldimethoxymethylsilane, 7.5 parts by weight of 3-mercaptopropyldimethoxymethylsilane. A mixed solution of 3 parts by weight and 1.6 parts by weight of 2,2′-azobis(2-methylbutyronitrile) dissolved in 14.3 parts by weight of isobutanol was added dropwise over 5 hours. Furthermore, a mixed solution of 0.7 parts by weight of 2,2'-azobis(2-methylbutyronitrile) dissolved in 11.6 parts by weight of isobutanol was added, and polymerization was carried out at 105°C for 2 hours. 000 (GPC molecular weight), an isobutanol solution (60% solid content) of a reactive silicon group-containing (meth)acrylic acid ester copolymer (P-3) was obtained. The solid content of the solution has a reactive silicon group equivalent of 0.64 mmol/g and a sulfur atom concentration of 12,956 ppm.
 合成例10~18で、反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B-1)~(B-6)及び(P-1)~(P-3)を合成するために使用した単量体成分の種類及び量、並びに、各重合体の分子量に関する情報を表1にまとめた。 In Synthesis Examples 10 to 18, for synthesizing the reactive silicon group-containing (meth)acrylic acid ester copolymers (B-1) to (B-6) and (P-1) to (P-3) Information on the types and amounts of the monomer components used and the molecular weight of each polymer is summarized in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1中の使用原料を以下に示す。
(1):メチルメタクリレート
(2):n-ブチルアクリレート
(3):2-エチルヘキシルアクリレート
(4):ステアリルメタクリレート
(5):3-メタクリロキシプロピルジメトキシメチルシラン
(6):3-メタクリロキシプロピルトリメトキシシラン
(7):3-メルカプトプロピルジメトキシメチルシラン
(8):3-メルカプトプロピルトリメトキシシラン
The raw materials used in Table 1 are shown below.
(1): methyl methacrylate (2): n-butyl acrylate (3): 2-ethylhexyl acrylate (4): stearyl methacrylate (5): 3-methacryloxypropyldimethoxymethylsilane (6): 3-methacryloxypropyltri Methoxysilane (7): 3-mercaptopropyldimethoxymethylsilane (8): 3-mercaptopropyltrimethoxysilane
 (実施例1)
 合成例1で得られた反応性ケイ素基含有ポリオキシプロピレン重合体(A-1)42重量部と、合成例10で得られた反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B-1)のイソブタノール溶液を固形分が28重量部となるように混合した後、イソブタノールを加熱脱揮した。安定剤としてノクラックCD(酸化防止剤、大内新興化学工業(株)製)1重量部、アデカスタブAO-60(酸化防止剤、(株)ADEKA製)1重量部、可塑剤(C)としてDINP(フタル酸ジイソノニル、(株)ジェイプラス製)4重量部、充填剤としてCCR-S10(コロイド炭酸カルシウム、白石工業(株)製)12.5重量部、アサヒサーマル(カーボンブラック、旭カーボン(株)製)0.05重量部、レオロジーコントロール剤としてAEROSIL 300(親水性ヒュームドシリカ、日本アエロジル(株)製)3.5重量部、AEROSIL R202(疎水性ヒュームドシリカ、日本アエロジル(株)製)2重量部を、プラネタリーミキサーを用いて混合し、120℃で1時間減圧加熱脱水した。得られた組成物を冷却し、エポキシ樹脂硬化剤(E)としてAncamineK54(2,4,6-トリス(ジメチルアミノメチル)フェノール、EVONIK製)7重量部、接着性付与剤としてKBM-603(N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、信越化学工業(株)製)2重量部を混合してA剤を得た。
(Example 1)
42 parts by weight of the reactive silicon group-containing polyoxypropylene polymer (A-1) obtained in Synthesis Example 1, and the reactive silicon group-containing (meth) acrylic acid ester copolymer obtained in Synthesis Example 10 ( After mixing the isobutanol solution of B-1) so that the solid content was 28 parts by weight, the isobutanol was devolatilized by heating. 1 part by weight of Nocrac CD (antioxidant, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.) as a stabilizer, 1 part by weight of ADEKA STAB AO-60 (antioxidant, manufactured by ADEKA Co., Ltd.), and DINP as a plasticizer (C) (Diisononyl phthalate, manufactured by Jplus Co., Ltd.) 4 parts by weight, CCR-S10 as a filler (colloidal calcium carbonate, manufactured by Shiraishi Kogyo Co., Ltd.) 12.5 parts by weight, Asahi Thermal (carbon black, Asahi Carbon Co., Ltd.) )) 0.05 parts by weight, AEROSIL 300 (hydrophilic fumed silica, manufactured by Nippon Aerosil Co., Ltd.) 3.5 parts by weight, AEROSIL R202 (hydrophobic fumed silica, manufactured by Nippon Aerosil Co., Ltd.) as a rheology control agent ) were mixed using a planetary mixer and dehydrated by heating under reduced pressure at 120° C. for 1 hour. The resulting composition was cooled, and 7 parts by weight of Ancamine K54 (2,4,6-tris(dimethylaminomethyl)phenol, manufactured by EVONIK) was added as an epoxy resin curing agent (E), and KBM-603 (N 2 parts by weight of -(2-aminoethyl)-3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed to obtain agent A.
 エポキシ樹脂(D)としてjER828(ビスフェノールA型エポキシ樹脂、三菱化学(株)製)30重量部、充填剤としてナノックス#30(重質炭酸カルシウム、丸尾カルシウム(株)製)17.8重量部、NIPGEL CX-200(湿式シリカ、東ソーシリカ(株)製)1.5重量部、R-820(酸化チタン、石原産業(株)製)2重量部、シラノール縮合触媒(G)としてネオスタンU-810(ジオクチル錫ジラウレート、日東化成(株)製)1重量部、水(F)1.5重量部を、プラネタリーミキサーを用いて混合し、B剤を得た。 30 parts by weight of jER828 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation) as an epoxy resin (D), 17.8 parts by weight of Nanox #30 (heavy calcium carbonate, manufactured by Maruo Calcium Co., Ltd.) as a filler, NIPGEL CX-200 (wet silica, manufactured by Tosoh Silica Co., Ltd.) 1.5 parts by weight, R-820 (titanium oxide, manufactured by Ishihara Sangyo Co., Ltd.) 2 parts by weight, Neostan U-810 as a silanol condensation catalyst (G) (Dioctyl tin dilaurate, manufactured by Nitto Kasei Co., Ltd.) 1 part by weight and 1.5 parts by weight of water (F) were mixed using a planetary mixer to obtain a B agent.
 A剤とB剤を、A剤:B剤=1.9:1(重量比)、又は2.5:1(体積比)となるように2液混合用カートリッジ(NORDSON(株)製)に充填した。エレメント径10mm、エレメント数が24段のスタティックミキサーを用いて、A剤とB剤を混合して混合物を得た。 Agent A and agent B are added to a two-liquid mixing cartridge (manufactured by NORDSON Co., Ltd.) so that agent A: agent B = 1.9: 1 (weight ratio) or 2.5: 1 (volume ratio). filled. Using a static mixer with an element diameter of 10 mm and an element number of 24, the A agent and the B agent were mixed to obtain a mixture.
 (剪断試験)
 被着体として使用する鋼板(SS400)をサンドペーパー#400を用いて磨き、へプタンで脱脂した。A剤とB剤の混合物を一方の被着体に塗布した後、接着面積25mm×12.5mm、厚み0.5mmとなるようにもう一方の被着体を張り合わせた。この張り合わせた時間を開始時間として、23℃50%RH条件下で1時間後、及び、23℃50%RH条件下で7日間養生した後、試験速度を10mm/minとして剪断接着強度を測定すると共に、破壊状態を観察した。破壊状態は、凝集破壊(接着剤部分で破壊)をCF、界面破壊(接着剤と被着体との界面で剥離)をAFとし、目視で確認した。両者が混在する場合には、それぞれの割合を記した。例えば凝集破壊率が50%、界面破壊率が50%である場合にはC50A50と記載した。結果を表2に示す。
(Shear test)
A steel plate (SS400) used as an adherend was polished with sandpaper #400 and degreased with heptane. After applying a mixture of the A and B agents to one adherend, the other adherend was adhered so as to have a bonding area of 25 mm×12.5 mm and a thickness of 0.5 mm. Using this lamination time as the starting time, after 1 hour under 23°C 50% RH conditions and after 7 days curing under 23°C 50% RH conditions, the shear bond strength is measured at a test speed of 10 mm / min. Together, the state of destruction was observed. The state of failure was visually confirmed using CF as cohesive failure (destruction at the adhesive portion) and AF as interfacial failure (peeling at the interface between the adhesive and the adherend). When both are mixed, the ratio of each is shown. For example, when the cohesive failure rate is 50% and the interfacial failure rate is 50%, it is described as C50A50. Table 2 shows the results.
 (実施例2-3、比較例1-2)
 表2に示した割合で各配合物を混合した以外は実施例1と同様にしてA剤とB剤の混合物を得、実施例1と同様の方法で剪断試験を行った。結果を表2に示す。
(Example 2-3, Comparative Example 1-2)
A mixture of agents A and B was obtained in the same manner as in Example 1, except that each formulation was mixed at the ratio shown in Table 2, and a shear test was performed in the same manner as in Example 1. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~3で使用した反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B-1)又は(B-2)は、多官能性マクロモノマー(b2′)を用いて製造されたものである。
 これに対し、比較例1で使用した反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(P-1)は、多官能性マクロモノマー(b2)を使用せず、代わりに(メタ)アクリロイル基を1つ有するマクロモノマーを用いて製造されたものである。
 また、比較例2で使用した反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(P-2)は、多官能性マクロモノマーも、(メタ)アクリロイル基を1つ有するマクロモノマーも使用せずに製造されたものである。
The reactive silicon group-containing (meth)acrylic acid ester copolymer (B-1) or (B-2) used in Examples 1 to 3 was produced using a polyfunctional macromonomer (b2'). It is a thing.
On the other hand, the reactive silicon group-containing (meth) acrylic acid ester copolymer (P-1) used in Comparative Example 1 does not use the polyfunctional macromonomer (b2), instead (meth) It is manufactured using a macromonomer having one acryloyl group.
In addition, the reactive silicon group-containing (meth)acrylic acid ester copolymer (P-2) used in Comparative Example 2 uses both a polyfunctional macromonomer and a macromonomer having one (meth)acryloyl group. It was manufactured without
 表2に示すように、A剤に反応性ケイ素基含有ポリオキシアルキレン系重合体(A)及び反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B)を含有し、B剤にエポキシ樹脂(D)を含有する実施例1~3の多液型硬化性組成物は、(B)成分の要件を満足しない反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(P-1)又は(P-2)を(B)成分の代わりに使用した比較例1~2の多液型硬化性組成物と比べて、初期(1時間後)の接着強度が高いことが分かる。また、23℃50%RH条件下で7日間養生した後の接着強度も高く、最終的な接着性も良好であることが分かる。 As shown in Table 2, agent A contains a reactive silicon group-containing polyoxyalkylene polymer (A) and a reactive silicon group-containing (meth)acrylic acid ester copolymer (B), and agent B contains The multicomponent curable compositions of Examples 1 to 3 containing the epoxy resin (D) were reactive silicon group-containing (meth)acrylic acid ester copolymers (P- Compared to the multi-component curable compositions of Comparative Examples 1 and 2 in which 1) or (P-2) was used in place of component (B), the initial (after 1 hour) adhesive strength was higher. In addition, the adhesion strength after curing for 7 days at 23° C. and 50% RH is high, and the final adhesion is also good.
 (実施例4-5、比較例3)
 シラノール縮合触媒(G)をB剤ではなく、A剤に配合し、表3に示す割合で各配合物を混合した以外は実施例1と同様にしてA剤とB剤の混合物を得た。また、2時間後の剪断強度を測定した以外は実施例1と同様の方法で剪断試験を行った。結果を表3に示す。
(Example 4-5, Comparative Example 3)
A mixture of agents A and B was obtained in the same manner as in Example 1, except that the silanol condensation catalyst (G) was added to agent A instead of agent B, and the respective ingredients were mixed in the proportions shown in Table 3. Moreover, a shear test was conducted in the same manner as in Example 1, except that the shear strength after 2 hours was measured. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例4~5で使用した反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B-3)又は(B-4)は、多官能性マクロモノマー(b2′)又は(b2″)を用いて製造されたものである。比較例3で使用した反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(P-3)は、多官能性マクロモノマー(b2)を使用せずに製造されたものである。 The reactive silicon group-containing (meth)acrylic acid ester copolymer (B-3) or (B-4) used in Examples 4 and 5 is a polyfunctional macromonomer (b2') or (b2'') The reactive silicon group-containing (meth)acrylic acid ester copolymer (P-3) used in Comparative Example 3 does not use the polyfunctional macromonomer (b2) It was manufactured in
 表3に示すように、A剤に反応性ケイ素基含有ポリオキシアルキレン系重合体(A)及び反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B)を含有し、B剤にエポキシ樹脂(D)を含有する実施例4~5の多液型硬化性組成物は、(B)成分の要件を満足しない反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(P-3)を(B)成分の代わりに使用した比較例3の多液型硬化性組成物と比べて、初期の接着強度が高いことが分かる。 As shown in Table 3, agent A contains a reactive silicon group-containing polyoxyalkylene polymer (A) and a reactive silicon group-containing (meth)acrylic acid ester copolymer (B), and agent B contains The multicomponent curable compositions of Examples 4 and 5 containing the epoxy resin (D) were reactive silicon group-containing (meth)acrylic acid ester copolymers (P- It can be seen that the initial adhesive strength is higher than that of the multicomponent curable composition of Comparative Example 3 in which component 3) was used instead of component (B).
 (実施例6)
 合成例3で得られた反応性ケイ素基含有ポリオキシプロピレン重合体(A-3)60重量部と、合成例12で得られた反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B-3)のイソブタノール溶液を固形分が40重量部となるように混合した後、イソブタノールを加熱脱揮した。安定剤としてノクラックCD(酸化防止剤、大内新興化学工業(株)製)1重量部、アデカスタブAO-60(酸化防止剤、(株)ADEKA製)1重量部、可塑剤(C)としてアクトコールP-23(ポリプロピレングリコール、(株)三井化学製)11重量部、充填剤としてCCR-S10(コロイド炭酸カルシウム、白石工業(株)製)45重量部、アサヒサーマル(カーボンブラック、旭カーボン(株)製)0.05重量部、レオロジーコントロール剤としてCrayvallac SL(脂肪酸アミドワックス、ARKEMA製)3重量部を、プラネタリーミキサーを用いて混合し、120℃で1時間減圧加熱脱水した。得られた組成物を冷却し、脱水剤としてA-171(ビニルトリメトキシシラン、Momentive製)2重量部、接着性付与剤としてKBM-603(N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、信越化学工業(株)製)3重量部、シラノール縮合触媒(G)としてネオスタンS-1(ジオクチル錫ビストリエトキシシリケート、日東化成(株)製)1.5重量部を混合してA剤を得た。
(Example 6)
60 parts by weight of the reactive silicon group-containing polyoxypropylene polymer (A-3) obtained in Synthesis Example 3, and the reactive silicon group-containing (meth) acrylic acid ester copolymer obtained in Synthesis Example 12 ( After mixing the isobutanol solution of B-3) so that the solid content was 40 parts by weight, the isobutanol was devolatilized by heating. 1 part by weight of Nocrac CD (antioxidant, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.) as a stabilizer, 1 part by weight of ADEKA STAB AO-60 (antioxidant, manufactured by ADEKA Co., Ltd.), Act as a plasticizer (C) Coal P-23 (polypropylene glycol, manufactured by Mitsui Chemicals Co., Ltd.) 11 parts by weight, CCR-S10 (colloidal calcium carbonate, manufactured by Shiraishi Kogyo Co., Ltd.) 45 parts by weight as a filler, Asahi Thermal (carbon black, Asahi Carbon ( Co., Ltd.) and 3 parts by weight of Crayvallac SL (fatty acid amide wax, manufactured by ARKEMA) as a rheology control agent were mixed using a planetary mixer, and dehydrated under reduced pressure at 120° C. for 1 hour. The obtained composition was cooled, and 2 parts by weight of A-171 (vinyltrimethoxysilane, manufactured by Momentive) as a dehydrating agent and KBM-603 (N-(2-aminoethyl)-3-aminopropyl 3 parts by weight of trimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., and 1.5 parts by weight of Neostan S-1 (dioctyltin bistriethoxysilicate, manufactured by Nitto Kasei Co., Ltd.) as a silanol condensation catalyst (G). Agent A was obtained.
 次に、可塑剤(C)としてAcclaim12200(数平均分子量14,600であるポリプロピレングリコール、Covestro AG製)10.0重量部、充填剤としてCCR-S10(コロイド炭酸カルシウム、白石工業(株)製)3.1重量部、AEROSIL R-202(疎水性ヒュームドシリカ、日本アエロジル(株)製)0.6重量部、R-820(酸化チタン、石原産業(株)製)2重量部、水(F)1.5重量部を、プラネタリーミキサーを用いて混合し、B剤を得た。 Next, 10.0 parts by weight of Acclaim 12200 (polypropylene glycol having a number average molecular weight of 14,600, manufactured by Covestro AG) as a plasticizer (C), and CCR-S10 (colloidal calcium carbonate, manufactured by Shiraishi Kogyo Co., Ltd.) as a filler. 3.1 parts by weight, AEROSIL R-202 (hydrophobic fumed silica, manufactured by Nippon Aerosil Co., Ltd.) 0.6 parts by weight, R-820 (titanium oxide, manufactured by Ishihara Sangyo Co., Ltd.) 2 parts by weight, water ( F) 1.5 parts by weight were mixed using a planetary mixer to obtain a B agent.
 A剤とB剤を、A剤:B剤=9.7:1(重量比)、又は10:1(体積比)となるように2液混合用カートリッジ(NORDSON(株)製)に充填した。エレメント径10mm、エレメント数が24段のスタティックミキサーを用いて、A剤とB剤を混合して混合物を得た。 Agent A and agent B were filled in a two-liquid mixing cartridge (manufactured by NORDSON Co., Ltd.) so that agent A: agent B = 9.7: 1 (weight ratio) or 10: 1 (volume ratio). . Using a static mixer with an element diameter of 10 mm and an element number of 24, the A agent and the B agent were mixed to obtain a mixture.
 (剪断試験)
 2時間後の剪断強度を測定した以外は実施例1と同様の方法で剪断試験を行った。結果を表4に示す。
(Shear test)
A shear test was performed in the same manner as in Example 1, except that the shear strength after 2 hours was measured. Table 4 shows the results.
 (実施例7-9、比較例4)
 表4に示した割合で各配合物を混合した以外は実施例6と同様にしてA剤とB剤の混合物を得、実施例6と同様の方法で剪断試験を行った。結果を表4に示す。
(Examples 7-9, Comparative Example 4)
A mixture of agents A and B was obtained in the same manner as in Example 6, except that each formulation was mixed at the ratio shown in Table 4, and a shear test was performed in the same manner as in Example 6. Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例6~9で使用した反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B-3)又は(B-4)は、多官能性マクロモノマー(b2′)又は(b2″)を用いて製造されたものである。比較例4で使用した反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(P-3)は、多官能性マクロモノマー(b2)を使用せずに製造されたものである。 The reactive silicon group-containing (meth)acrylic acid ester copolymer (B-3) or (B-4) used in Examples 6 to 9 is a polyfunctional macromonomer (b2′) or (b2″) The reactive silicon group-containing (meth)acrylic acid ester copolymer (P-3) used in Comparative Example 4 does not use the polyfunctional macromonomer (b2) It was manufactured in
 表4に示すように、A剤に反応性ケイ素基含有ポリオキシアルキレン系重合体(A)及び反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B)を含有し、B剤に可塑剤(C)を含有する実施例6~9の多液型硬化性組成物は、(B)成分の要件を満足しない反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(P-3)を(B)成分の代わりに使用した比較例4の多液型硬化性組成物と比べて、初期の接着強度が高いことが分かる。 As shown in Table 4, agent A contains a reactive silicon group-containing polyoxyalkylene polymer (A) and a reactive silicon group-containing (meth)acrylic acid ester copolymer (B), and agent B contains The multicomponent curable compositions of Examples 6 to 9 containing the plasticizer (C) are reactive silicon group-containing (meth) acrylic acid ester copolymers (P- It can be seen that the initial adhesive strength is higher than that of the multicomponent curable composition of Comparative Example 4 in which 3) was used instead of component (B).
 (実施例10~12、比較例5)
 表5に示す割合で各配合物を混合した以外は実施例6と同様にしてA剤とB剤の混合物を得た。また、23℃50%RH条件下で2時間後、及び、23℃50%RH条件下で7日間養生後の剪断強度を測定した以外は実施例1と同様の方法で剪断試験を行った。
(Examples 10 to 12, Comparative Example 5)
A mixture of agents A and B was obtained in the same manner as in Example 6, except that each formulation was mixed at the ratio shown in Table 5. Further, a shear test was conducted in the same manner as in Example 1, except that the shear strength was measured after curing for 2 hours at 23°C and 50% RH and after curing for 7 days at 23°C and 50% RH.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例10~12で使用した反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B-2)又は(B-5)は、多官能性マクロモノマー(b2′)または(b2″)を用いて製造されたものである。比較例5で使用した反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(P-1)は、多官能性マクロモノマー(b2)を使用せず、代わりに(メタ)アクリロイル基を1つ有するマクロモノマーを用いて製造されたものである。 The reactive silicon group-containing (meth)acrylic acid ester copolymer (B-2) or (B-5) used in Examples 10 to 12 is a polyfunctional macromonomer (b2′) or (b2″) The reactive silicon group-containing (meth)acrylic acid ester copolymer (P-1) used in Comparative Example 5 does not use the polyfunctional macromonomer (b2) , was produced using a macromonomer having one (meth)acryloyl group instead.
 表5に示すように、A剤に反応性ケイ素基含有ポリオキシアルキレン系重合体(A)及び反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B)を含有し、B剤に可塑剤(C)を含有する実施例10~12の多液型硬化性組成物は、(B)成分の要件を満足しない反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(P-1)を(B)成分の代わりに使用した比較例5の多液型硬化性組成物と比べて、初期(2時間後)の接着強度が高いことが分かる。また、23℃50%RH条件下で7日間養生した後の接着強度も高く、最終的な接着性も良好であることが分かる。 As shown in Table 5, agent A contains a reactive silicon group-containing polyoxyalkylene polymer (A) and a reactive silicon group-containing (meth)acrylic acid ester copolymer (B), and agent B contains The multicomponent curable compositions of Examples 10 to 12 containing the plasticizer (C) are reactive silicon group-containing (meth) acrylic acid ester copolymers (P- Compared to the multicomponent curable composition of Comparative Example 5 in which 1) was used instead of the component (B), it was found that the adhesive strength was higher in the initial stage (after 2 hours). In addition, it can be seen that the adhesive strength after curing for 7 days at 23° C. and 50% RH is high, and the final adhesiveness is also good.
 (実施例13)
 合成例3で得られた反応性ケイ素基含有ポリオキシプロピレン重合体(A-3)60重量部と、合成例15で得られた反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B-6)のイソブタノール溶液を固形分が40重量部となるように混合した後、イソブタノールを加熱脱揮した。安定剤としてノクラックCD(酸化防止剤、大内新興化学工業(株)製)1重量部、アデカスタブAO-60(酸化防止剤、(株)ADEKA製)1重量部、可塑剤(C)としてDINP(フタル酸ジイソノニル、ジェイプラス(株)製)19重量部、放熱性充填剤としてDAW-45(アルミナ、平均粒子径45μm、DENKA(株)製)455重量部、DAW-05(アルミナ、平均粒子径5μm、DENKA(株))製)195重量部、その他の充填剤としてアサヒサーマル(カーボンブラック、旭カーボン(株)製)0.1重量部、レオロジーコントロール剤としてTS740(疎水性ヒュームドシリカ、CABOT製)3重量部を、プラネタリーミキサーを用いて混合し、120℃で1時間減圧加熱脱水した。得られた組成物を冷却し、エポキシ樹脂硬化剤(E)としてAncamine K54(2,4,6-トリス(ジメチルアミノメチル)フェノール、EVONIK製)7重量部、脱水剤としてA-171(ビニルトリメトキシシラン、Momentive製)3重量部、接着性付与剤としてKBM-603(N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、信越化学工業(株)製)2重量部、シラノール縮合触媒(G)としてネオスタンS-1(ジオクチル錫ビストリエトキシシリケート、日東化成(株)製)2重量部を混合してA剤を得た。
 次に、エポキシ樹脂(D)としてjER828(ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製)30重量部、放熱性充填剤としてDAW-45(アルミナ、平均粒子径45μm、DENKA(株)製)4.7重量部、その他の充填剤としてNIPGEL CX-200(湿式シリカ、東ソーシリカ(株))3重量部、R-820(酸化チタン、石原産業(株)製)2重量部、水(F)2重量部を、プラネタリーミキサーを用いて混合し、B剤を得た。
 A剤とB剤を、A剤:B剤=10:1(体積比)となるように2液混合用カートリッジ(NORDSON(株)製)に充填した。エレメント径10mm、エレメント数が24段のスタティックミキサーを用いて、A剤とB剤を混合して混合物を得た。
 23℃50%RH条件下で2時間後の剪断強度を測定した以外は実施例1と同様の方法で剪断試験を行った。結果を表6に示す。
(Example 13)
60 parts by weight of the reactive silicon group-containing polyoxypropylene polymer (A-3) obtained in Synthesis Example 3, and the reactive silicon group-containing (meth) acrylic acid ester copolymer obtained in Synthesis Example 15 ( After mixing the isobutanol solution of B-6) so that the solid content was 40 parts by weight, the isobutanol was devolatilized by heating. 1 part by weight of Nocrac CD (antioxidant, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.) as a stabilizer, 1 part by weight of ADEKA STAB AO-60 (antioxidant, manufactured by ADEKA Co., Ltd.), and DINP as a plasticizer (C) (Diisononyl phthalate, manufactured by J-Plus Co., Ltd.) 19 parts by weight, DAW-45 (alumina, average particle size 45 μm, manufactured by DENKA Co., Ltd.) 455 parts by weight as a heat-dissipating filler, DAW-05 (alumina, average particle Diameter 5 μm, manufactured by DENKA Co., Ltd.) 195 parts by weight, Asahi Thermal (carbon black, manufactured by Asahi Carbon Co., Ltd.) 0.1 parts by weight as other fillers, TS740 (hydrophobic fumed silica, (manufactured by CABOT) were mixed using a planetary mixer and dehydrated by heating under reduced pressure at 120° C. for 1 hour. The obtained composition was cooled, and 7 parts by weight of Ancamine K54 (2,4,6-tris(dimethylaminomethyl)phenol, manufactured by EVONIK) as an epoxy resin curing agent (E) and A-171 (vinyltriethylene) as a dehydrating agent were added. Methoxysilane, manufactured by Momentive) 3 parts by weight, KBM-603 (N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) 2 parts by weight as an adhesion imparting agent, silanol condensation As a catalyst (G), 2 parts by weight of Neostan S-1 (dioctyltin bistriethoxysilicate, manufactured by Nitto Kasei Co., Ltd.) was mixed to obtain agent A.
Next, 30 parts by weight of jER828 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation) as an epoxy resin (D), and DAW-45 (alumina, average particle size 45 μm, manufactured by DENKA Corporation) as a heat-dissipating filler. 4.7 parts by weight, as other fillers NIPGEL CX-200 (wet silica, Tosoh Silica Co., Ltd.) 3 parts by weight, R-820 (titanium oxide, manufactured by Ishihara Sangyo Co., Ltd.) 2 parts by weight, water (F ) were mixed using a planetary mixer to obtain a B agent.
Agent A and agent B were filled in a two-liquid mixing cartridge (manufactured by NORDSON Co., Ltd.) so that the ratio of agent A to agent B was 10:1 (volume ratio). Using a static mixer with an element diameter of 10 mm and an element number of 24, the A agent and the B agent were mixed to obtain a mixture.
A shear test was conducted in the same manner as in Example 1, except that the shear strength was measured after 2 hours at 23°C and 50% RH. Table 6 shows the results.
 (実施例14)
 可塑剤(C)であるDINP(フタル酸ジイソノニル、ジェイプラス(株)製)の配合量を25重量部に変更し、放熱性充填剤を、DAW-45(アルミナ、平均粒子径45μm、DENKA(株)製)270重量部、DAW-05(アルミナ、平均粒子径5μm、DENKA(株))製)178重量部、ASFP-20(アルミナ、平均粒子径0.2μm、DENKA(株)製)40重量部、BE033(水酸化アルミニウム、平均粒子径3μm、日本軽金属(株)製)40重量部に変更し、その他の充填剤であるアサヒサーマル(カーボンブラック、旭カーボン(株)製)の配合量を0.2重量部に変更し、レオロジーコントロール剤であるTS740(疎水性ヒュームドシリカ、CABOT製)を配合しなかった以外は、実施例13と同様にしてA剤を得た。
 次に、エポキシ樹脂(D)としてjER828(ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製)30重量部、放熱性充填剤としてDAW-45(アルミナ、平均粒子径45μm、DENKA(株)製)150重量部、DAW-05(アルミナ、平均粒子径5μm、DENKA(株))製)99重量部、ASFP-20(アルミナ、平均粒子径0.2μm、DENKA(株)製)51重量部、その他の充填剤としてR-820(酸化チタン、石原産業(株)製)2重量部、シランカップリング剤としてA-187(3-グリシドキシプロピルトリメトキシシラン、Momentive製)8重量部、水2重量部を、プラネタリーミキサーを用いて混合し、B剤を得た。
 A剤とB剤を、A剤:B剤=4:1(体積比)となるように2液混合用カートリッジ(NORDSON(株)製)に充填した。エレメント径10mm、エレメント数が24段のスタティックミキサーを用いて、A剤とB剤を混合して混合物を得た。
 23℃50%RH条件下で2時間後の剪断強度を測定した以外は実施例1と同様の方法で剪断試験を行った。結果を表6に示す。
(Example 14)
The amount of plasticizer (C) DINP (diisononyl phthalate, manufactured by J-Plus Co., Ltd.) was changed to 25 parts by weight, and the heat-dissipating filler was replaced with DAW-45 (alumina, average particle size 45 μm, DENKA ( Co., Ltd.) 270 parts by weight, DAW-05 (alumina, average particle size 5 μm, DENKA Co., Ltd.) 178 parts by weight, ASFP-20 (alumina, average particle size 0.2 μm, DENKA Co., Ltd.) 40 Parts by weight, changed to 40 parts by weight of BE033 (aluminum hydroxide, average particle size 3 μm, manufactured by Nippon Light Metal Co., Ltd.), and the amount of other filler Asahi Thermal (carbon black, manufactured by Asahi Carbon Co., Ltd.) was changed to 0.2 parts by weight, and the rheology control agent TS740 (hydrophobic fumed silica, manufactured by CABOT) was not blended in the same manner as in Example 13 to obtain agent A.
Next, 30 parts by weight of jER828 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation) as an epoxy resin (D), and DAW-45 (alumina, average particle size 45 μm, manufactured by DENKA Corporation) as a heat-dissipating filler. 150 parts by weight, DAW-05 (alumina, average particle size 5 μm, manufactured by DENKA Corporation) 99 parts by weight, ASFP-20 (alumina, average particle size 0.2 μm, manufactured by DENKA Corporation) 51 parts by weight, and others 2 parts by weight of R-820 (titanium oxide, manufactured by Ishihara Sangyo Co., Ltd.) as a filler, A-187 (3-glycidoxypropyltrimethoxysilane, manufactured by Momentive) as a silane coupling agent 8 parts by weight, water 2 Parts by weight were mixed using a planetary mixer to obtain a B agent.
Agent A and agent B were filled in a two-liquid mixing cartridge (manufactured by NORDSON Co., Ltd.) so that the ratio of agent A to agent B was 4:1 (volume ratio). Using a static mixer with an element diameter of 10 mm and an element number of 24, the A agent and the B agent were mixed to obtain a mixture.
A shear test was conducted in the same manner as in Example 1, except that the shear strength was measured after 2 hours at 23°C and 50% RH. Table 6 shows the results.
 (熱伝導性の評価)
 厚みが5mm、面積が50mm×50mmのアルミニウム板の周りを厚み10mmのウレタン発泡材で囲い、そこへA剤とB剤の混合物を流しこみ、23℃50%RH条件下で7日間養生することにより、アルミニウム板上に面積30mm×30mm、厚み10mmの熱伝導性硬化物を得た。ホットプレート(AS ONE製HI-1000)を80℃に設定し、その中央に、熱伝導性硬化物を有するアルミニウム板をホットプレートと接するように配置し、硬化物の表面温度を熱電対(HIOKI製LR5021)で測定した。熱電対はアルミテープで放熱材中央の表面に固定した。80℃設定のホットプレートの表面温度は、この熱電対の測定より80.8℃であった。この測定では、放熱材の表面温度が急速に上昇するものが、熱伝導性の良い材料であると判断し、測定開始後1分および3分経過後の放熱材の表面温度を測定した。結果を表6に示す。
(Evaluation of thermal conductivity)
An aluminum plate with a thickness of 5 mm and an area of 50 mm x 50 mm is surrounded by a urethane foam material with a thickness of 10 mm. Thus, a thermally conductive cured product having an area of 30 mm×30 mm and a thickness of 10 mm was obtained on an aluminum plate. A hot plate (HI-1000 manufactured by AS ONE) was set at 80°C, an aluminum plate having a thermally conductive cured product was placed in the center so as to be in contact with the hot plate, and the surface temperature of the cured product was measured using a thermocouple (HIOKI LR5021). The thermocouple was fixed on the surface of the center of the heat dissipating material with aluminum tape. The surface temperature of the hot plate set at 80°C was 80.8°C as measured by this thermocouple. In this measurement, the surface temperature of the heat dissipating material was determined 1 minute and 3 minutes after the start of the measurement, and the surface temperature of the heat dissipating material was measured after 1 minute and 3 minutes from the start of the measurement. Table 6 shows the results.
 (引張り物性の評価)
 A剤とB剤の混合物で厚さ約2mmのシートを作製し、23℃50%RH条件下で7日間、次いで50℃で4日間硬化養生を行った。得られたシートを3号ダンベル型(JIS K 6251)に打ち抜き、23℃50%RHで引っ張り強度試験を行い、破断時の強度(TB)と破断時の伸び率(EB)を測定した。引張り物性は(株)島津製オートグラフ(AGS-X)を用い50mm/minの引張り速度で測定を行った。結果を表6に示す。
(Evaluation of tensile properties)
A sheet having a thickness of about 2 mm was prepared from a mixture of agents A and B, and cured at 23° C. and 50% RH for 7 days and then at 50° C. for 4 days. The resulting sheet was punched into a No. 3 dumbbell type (JIS K 6251) and subjected to a tensile strength test at 23° C. and 50% RH to measure the strength at break (TB) and elongation at break (EB). Tensile physical properties were measured using an Autograph (AGS-X) manufactured by Shimadzu Corporation at a tensile speed of 50 mm/min. Table 6 shows the results.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例13及び14で使用した反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B-6)は、多官能性マクロモノマー(b2″)を用いて製造されたものである。
 表6に示すように、A剤に反応性ケイ素基含有ポリオキシアルキレン系重合体(A)及び反応性ケイ素基含有(メタ)アクリル酸エステル系共重合体(B)を含有し、B剤にエポキシ樹脂(D)を含有する実施例13及び14の多液型硬化性組成物は、初期(2時間後)の接着強度が高いことが分かる。また、実施例13及び14の多液型硬化性組成物は、硬化後の熱伝導性および引張り物性が良好であることが分かる。
The reactive silicon group-containing (meth)acrylate copolymer (B-6) used in Examples 13 and 14 was produced using a polyfunctional macromonomer (b2″).
As shown in Table 6, agent A contains a reactive silicon group-containing polyoxyalkylene polymer (A) and a reactive silicon group-containing (meth) acrylic acid ester copolymer (B), and agent B contains It can be seen that the multicomponent curable compositions of Examples 13 and 14 containing the epoxy resin (D) have high initial adhesive strength (after 2 hours). Moreover, it can be seen that the multi-component curable compositions of Examples 13 and 14 have good thermal conductivity and tensile physical properties after curing.

Claims (12)

  1.  A剤とB剤を含む多液型硬化性組成物であって、
     A剤が、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、及び、反応性ケイ素基を有する(メタ)アクリル酸エステル系共重合体(B)を含有し、
     B剤が、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)、可塑剤(C)、及びエポキシ樹脂(D)からなる群より選択される少なくとも1種の化合物を含有し、
     前記(メタ)アクリル酸エステル系共重合体(B)を構成する単量体成分が、
    (メタ)アクリル酸エステル(b1)、
    (メタ)アクリロイル基を分子内に1つより多く有する重合体(b2)、及び、
    メルカプト基を有する連鎖移動剤(b3)、を含有し、
     前記単量体成分が、反応性ケイ素基と重合性不飽和基を有する単量体(b4)をさらに含有し、及び/又は、前記メルカプト基を有する連鎖移動剤(b3)が、反応性ケイ素基をさらに有し、並びに
     前記反応性ケイ素基が下記一般式(1)で表される、多液型硬化性組成物。
    -SiR 3-a    (1)
    (式中、Rは、置換又は非置換の炭素数1~20の炭化水素基を表す。Xは水酸基または加水分解性基を表す。aは2または3である。)
    A multi-component curable composition comprising agent A and agent B,
    Agent A contains a polyoxyalkylene polymer (A) having a reactive silicon group, and a (meth)acrylic acid ester copolymer (B) having a reactive silicon group,
    Agent B contains at least one compound selected from the group consisting of a polyoxyalkylene polymer (A) having a reactive silicon group, a plasticizer (C), and an epoxy resin (D),
    The monomer component constituting the (meth)acrylic acid ester copolymer (B) is
    (meth) acrylic acid ester (b1),
    A polymer (b2) having more than one (meth)acryloyl group in the molecule, and
    containing a chain transfer agent (b3) having a mercapto group,
    The monomer component further contains a monomer (b4) having a reactive silicon group and a polymerizable unsaturated group, and/or the chain transfer agent (b3) having a mercapto group is a reactive silicon A multi-component curable composition further having a group, and wherein the reactive silicon group is represented by the following general formula (1).
    —SiR 1 3-a X a (1)
    (Wherein, R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms; X represents a hydroxyl group or a hydrolyzable group; a is 2 or 3.)
  2.  重合体(b2)が、(メタ)アクリロイル基を分子内に1つより多く有するポリオキシアルキレン系重合体(b2″)である、請求項1に記載の多液型硬化性組成物。 The multicomponent curable composition according to claim 1, wherein the polymer (b2) is a polyoxyalkylene polymer (b2″) having more than one (meth)acryloyl group in the molecule.
  3.  重合体(b2)が、(メタ)アクリロイル基を分子内に1つより多く有する(メタ)アクリル酸エステル系重合体(b2′)である、請求項1に記載の多液型硬化性組成物。 2. The multicomponent curable composition according to claim 1, wherein the polymer (b2) is a (meth)acrylic acid ester polymer (b2') having more than one (meth)acryloyl group in the molecule. .
  4.  重合体(b2)/メルカプト基を有する連鎖移動剤(b3)のモル比が0.05以上である、請求項1~3のいずれか1項に記載の多液型硬化性組成物。 The multicomponent curable composition according to any one of claims 1 to 3, wherein the molar ratio of polymer (b2)/chain transfer agent (b3) having a mercapto group is 0.05 or more.
  5.  ポリオキシアルキレン系重合体(A)が、一般式(2):
    Figure JPOXMLDOC01-appb-C000001

    (式中、R,Rはそれぞれ独立に2価の炭素数1~6の結合基を表し、R,Rに隣接するそれぞれの炭素原子と結合する原子は、炭素、酸素、窒素のいずれかである。R,Rはそれぞれ独立に、水素、または炭素数1~10の炭化水素基を表す。nは1~10の整数である。R、X、及びaは前記式(1)について上述のとおりである。)で表される末端構造を有する、請求項1~3のいずれか1項に記載の多液型硬化性組成物。
    The polyoxyalkylene polymer (A) has the general formula (2):
    Figure JPOXMLDOC01-appb-C000001

    (In the formula, R 2 and R 4 each independently represent a divalent C 1-6 bonding group, and the atoms bonded to the respective carbon atoms adjacent to R 2 and R 4 are carbon, oxygen, nitrogen Each of R 3 and R 5 independently represents hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, n is an integer of 1 to 10. R 1 , X, and a are the above The multicomponent curable composition according to any one of claims 1 to 3, which has a terminal structure represented by formula (1) as described above.
  6.  ポリオキシアルキレン系重合体(A)の主鎖構造が分岐鎖状である、請求項1~3のいずれか1項に記載の多液型硬化性組成物。 The multicomponent curable composition according to any one of claims 1 to 3, wherein the main chain structure of the polyoxyalkylene polymer (A) is branched.
  7.  B剤が、水(F)をさらに含有する、請求項1~3のいずれか1項に記載の多液型硬化性組成物。 The multi-component curable composition according to any one of claims 1 to 3, wherein the B agent further contains water (F).
  8.  B剤が、前記化合物として、反応性ケイ素基を有するポリオキシアルキレン系重合体(A)を含有する、請求項1~3のいずれか1項に記載の多液型硬化性組成物。 The multicomponent curable composition according to any one of claims 1 to 3, wherein the B agent contains, as the compound, a polyoxyalkylene polymer (A) having a reactive silicon group.
  9.  B剤が、前記化合物として、可塑剤(C)を含有する、請求項1~3のいずれか1項に記載の多液型硬化性組成物。 The multicomponent curable composition according to any one of claims 1 to 3, wherein the B agent contains a plasticizer (C) as the compound.
  10.  B剤が、前記化合物として、エポキシ樹脂(D)を含有する、請求項1~3のいずれか1項に記載の多液型硬化性組成物。 The multicomponent curable composition according to any one of claims 1 to 3, wherein the B agent contains an epoxy resin (D) as the compound.
  11.  A剤とB剤からなる2液型の硬化性組成物である、請求項1~3のいずれか1項に記載の多液型硬化性組成物。 The multi-component curable composition according to any one of claims 1 to 3, which is a two-component curable composition consisting of agent A and agent B.
  12.  請求項1~3のいずれか1項に記載の多液型硬化性組成物を硬化させて得られる硬化物。 A cured product obtained by curing the multi-component curable composition according to any one of claims 1 to 3.
PCT/JP2022/048595 2022-01-06 2022-12-28 Curable composition and cured product thereof WO2023132323A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022000973 2022-01-06
JP2022-000973 2022-01-06

Publications (1)

Publication Number Publication Date
WO2023132323A1 true WO2023132323A1 (en) 2023-07-13

Family

ID=87073775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048595 WO2023132323A1 (en) 2022-01-06 2022-12-28 Curable composition and cured product thereof

Country Status (1)

Country Link
WO (1) WO2023132323A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216633A (en) * 2015-05-21 2016-12-22 株式会社カネカ Curable composition and cured article of same
JP2017066349A (en) * 2015-10-02 2017-04-06 株式会社カネカ Curable composition
JP2021024958A (en) * 2019-08-06 2021-02-22 株式会社カネカ Curable composition
JP2021134276A (en) * 2020-02-27 2021-09-13 株式会社カネカ Curable composition
WO2022203065A1 (en) * 2021-03-26 2022-09-29 株式会社カネカ Curable composition and cured product thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216633A (en) * 2015-05-21 2016-12-22 株式会社カネカ Curable composition and cured article of same
JP2017066349A (en) * 2015-10-02 2017-04-06 株式会社カネカ Curable composition
JP2021024958A (en) * 2019-08-06 2021-02-22 株式会社カネカ Curable composition
JP2021134276A (en) * 2020-02-27 2021-09-13 株式会社カネカ Curable composition
WO2022203065A1 (en) * 2021-03-26 2022-09-29 株式会社カネカ Curable composition and cured product thereof

Similar Documents

Publication Publication Date Title
US10954419B2 (en) Curable composition
EP3165572B1 (en) Curable composition and cured object obtained therefrom
WO2007094275A1 (en) Curable composition
WO2010035821A1 (en) Curable composition and cured product thereof
EP3006504A1 (en) Curable composition, and cured product thereof
WO2016035718A1 (en) Curable composition
WO2021059972A1 (en) Curable composition
WO2022203065A1 (en) Curable composition and cured product thereof
US20230144994A1 (en) (meth)acrylic ester copolymer and curable composition containing the same
JP7506655B2 (en) Curable Composition
JP7224131B2 (en) Curable composition
JP7341780B2 (en) curable composition
WO2022163563A1 (en) Polyoxyalkylene-based polymer and mixture thereof
WO2022163562A1 (en) Polyoxyalkylene polymer mixture and curable composition
WO2023132323A1 (en) Curable composition and cured product thereof
WO2023132324A1 (en) Curable composition and cured product thereof
JP2021134276A (en) Curable composition
JP2023100591A (en) Curable composition and cured product thereof
JP2020164607A (en) Reactive silyl group-containing (meth) acrylate polymer and curable composition containing the same
JP2023100590A (en) Curable composition and cured product thereof
WO2022203064A1 (en) (meth)acrylic acid ester-based copolymer and curable composition
JP2023100363A (en) Curable composition and cured product thereof
JP2023010631A (en) Multiple liquid type curable composition
WO2023167011A1 (en) Curable composition
JP2023138378A (en) curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918906

Country of ref document: EP

Kind code of ref document: A1