WO2023090210A1 - Modular frame structure and unit module for use therein - Google Patents

Modular frame structure and unit module for use therein Download PDF

Info

Publication number
WO2023090210A1
WO2023090210A1 PCT/JP2022/041633 JP2022041633W WO2023090210A1 WO 2023090210 A1 WO2023090210 A1 WO 2023090210A1 JP 2022041633 W JP2022041633 W JP 2022041633W WO 2023090210 A1 WO2023090210 A1 WO 2023090210A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
regular
frames
unit modules
elongated
Prior art date
Application number
PCT/JP2022/041633
Other languages
French (fr)
Japanese (ja)
Inventor
泰司 梶川
Original Assignee
泰司 梶川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰司 梶川 filed Critical 泰司 梶川
Publication of WO2023090210A1 publication Critical patent/WO2023090210A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures

Definitions

  • the present invention relates to a modular frame structure of a structure using a space truss and a unit module used therein.
  • This patent describes an octet truss structure, which is a planar or layered vector counterbalance-like structure, and is used for the dock roof and wall of a B-36 bomber as shown in FIGS. An example of forming is shown.
  • Modularization is an important factor in forming a space truss structure by combining members of a single shape, but in Patent Document 1, a seat module as shown in FIG. 41 is constructed instead of a strut module.
  • An example of an octet truss structure is shown.
  • An octet truss structure is a truss structure that consists of a regular tetrahedral frame region and a regular octahedral frame region, one of which is a complementary spatial region.
  • the sheet module may be a thin sheet of aluminum 39 with a flange 40 extending from one edge as shown in FIG. Extends at an angle and overlies the octahedral and tetrahedral faces of the framework system.
  • the flange 41 faces upward and outward of the seat, and the flange 42 faces downward and outward.
  • One of the truss octahedrons in FIG. 42 is assembled from four aluminum sheets 39 .
  • Patent Document 4 a plurality of vector-balanced truss units composed of frame members of the same length are opposed on either side by two units, and the corresponding four nodes on the bottom and top sides of the opposed sides are respectively
  • a connecting member B having the same length as the framework member A is used to bridge and join, and the mating nodes of the triangular pairs on the opposite sides are joined to connect in the lateral direction.
  • a quadrangular pyramid truss is formed between the side surfaces of the vector-balanced trusses that are connected, so it is possible to assemble a unit of vector-balanced trusses that are unstable as a single unit into a stable truss structure.
  • the basic unit is a vector-equilibrium truss in the shape of a cube (regular hexahedron) with each vertex cut off, a relatively large cubic internal space can be secured inside each truss structure.
  • the walls are formed obliquely with respect to the roof to form the framework of the roof, walls, and floor made of trusses forming a triangle. end up
  • the unit type frame structure and frame member units of the structure of Patent Document 4 combine a plurality of units of vector balance type truss to form a three-dimensional truss structure. A combination of two types of members to be joined is required.
  • the object is to provide a type frame structure and unit modules used therein.
  • a module is constructed to construct a space truss structure by constructing unit modules that are unit frames of a space truss structure and connecting the unit modules to each other.
  • a unit module is formed by forming a ridge of a regular tetrahedron or a regular octahedron with a frame having elongated joint surfaces, and connecting the ends of the frames with these elongated joint surfaces to form a unit frame of a space truss structure.
  • a unit module is formed by forming a ridge of a regular tetrahedron or a regular octahedron with a frame having elongated joint surfaces, and connecting the ends of the frames having these elongate joint surfaces so that the elongate joint surfaces of the frame form a regular tetrahedron or octahedron.
  • the three-dimensional truss structure consists of a regular tetrahedral frame region and a regular octahedral frame region, and the gist is that it is an octet truss structure in which one of them is a complementary spatial region.
  • a space truss structure assembled with tetramodules has a complementary quadrangular pyramid inside the space truss structure as a result of joining frames having elongated joint surfaces between tetramodules by joining the elongated joint surfaces to each other.
  • the gist is that a shaped truss frame region is constructed.
  • the octamodule can be obtained by connecting two tetramodules to each other, adding a frame having a length of ⁇ 2 parallel to each other, and connecting the octamodules to each other to obtain a ⁇ 2
  • the gist is to construct complementary tetrahedral frame regions formed by a frame having a length.
  • the gist of the connection between unit modules is by mutual fixation of frames having elongated joint surfaces.
  • the gist is that the unit modules are connected to each other by fixing the joint members to each other.
  • the gist is that unit modules are connected together by both fixing frames having elongated joint surfaces to each other and joint members to each other.
  • the gist of the ninth is that unit modules are joined together by forming unevenness on the elongated joint surface and joining by intermittent bonding due to this unevenness.
  • the gist is to cover and connect the joints of the unit modules with a gusset plate to reinforce the joints between the unit modules.
  • the gist is that the gusset plate is based on the disk plate.
  • the gist of the twelfth aspect is to cover and connect the joints of the unit modules on the outer periphery with a disk plate bent at 90 degrees to reinforce the joints between the unit modules.
  • the frame that becomes the ridgeline portion of the regular tetrahedron is formed of members having elongated joint surfaces, and these members having elongated joint surfaces are The lengths are the same, and the ends of the frames are connected so that the slender joint surface of the frame is formed by shaving off the ridges of a regular tetrahedron or regular octahedron.
  • the gist is that the tetramodule is a regular tetrahedral structure in which the orientation of the elongated joint surfaces is determined so as to be perpendicular to the vertical line.
  • the frame that forms the ridge line of the regular octahedron is formed of members having elongated joint surfaces, and these members having elongate joint surfaces have the same length, and their ends are connected.
  • the elongated joint surface of the frame is a surface obtained by shaving the ridgeline of a regular tetrahedron or regular octahedron so that the direction of the elongated joint surface is orthogonal to the perpendicular line connecting the center of the module and each midpoint of the elongated joint surface.
  • the gist of this is that it is assembled into an octamodule, which is a regular octahedral frame.
  • the frame that forms the ridge line of the regular tetrahedron is formed of members having elongated joint surfaces.
  • Two tetramodules, which are tetrahedral frames assembled by connecting, are connected to each other, and a frame having a length of ⁇ 2 parallel to each other is added to assemble an octamodule, which is a regular octahedral frame. This is the gist.
  • the ends of the frame having elongated joint surfaces are connected by joint members.
  • the frames having elongated joint surfaces are made of flat plates, hollow pipes, H-shaped or other shaped steel, angle members, and channel members. The gist is to select one of them.
  • the joint member has three joint pieces that are connected to the frame having elongated joint surfaces and are spread out at an angle of 120° or 90° from each other in a plan view, and these joint pieces are connected to each other on the top plate or the side plate.
  • the gist is to be connected.
  • the edges of regular tetrahedrons or octahedrons are used. Since the slender joint surfaces of the members having slender joint surfaces can be joined to form the frames that form the parts, the three-dimensional truss structure can be constructed by combining only the unit modules without using members other than the unit modules as connecting members. can be constructed, assembly can be performed easily and quickly with a small number of man-hours, and can be formed by combining only unit modules, so prefabrication is improved.
  • the tetrahedral or octahedral ridgeline frames are overlapped with each other to form a double layer, which increases strength.
  • the structure itself becomes solid.
  • each unit module can be assembled by joining the slender joint surfaces of the frame, which is the ridgeline part, so that the modules can be stacked not only in the lateral direction but also in the vertical direction to assemble a multi-layered stable truss structure.
  • a stable truss structure with variable shape can be constructed, so it is possible to easily respond to changes in specifications and space requirements after construction.
  • the framework of the structure can be constructed by combining only the unit modules, it is easy to manufacture and manage the members, and when assembling, it is sufficient to connect modules of the same shape in the same pattern, so construction efficiency and cost reduction can be achieved. .
  • connection between the floor portion and the wall portion is the joint between the frames arranged horizontally or vertically and in the orthogonal direction
  • Space truss structures as floors and walls can be assembled at right angles, and walls can be formed that rise (or fall) at right angles to the floor.
  • the modular frame structure is an octet truss structure having a regular tetrahedral frame region and a regular octahedral frame region, and the regular tetrahedral frame region and the regular octahedral frame region are the A stable truss structure can be assembled using only the tetramodules, since one of them is a complementary spatial region.
  • the tetramodule which is a regular tetrahedral frame, is formed by joining the elongated joint surfaces of the members having the elongated joint surfaces to form the frames that form the two ridge line portions.
  • the overlapping frames are diagonals, while the other frames are aligned horizontally or vertically and orthogonally with the elongate joint faces facing outward.
  • a complementary quadrangular pyramidal truss frame region is constructed inside the space truss structure.
  • a tetratruss space is formed in which complementary regular tetrahedron frame regions are formed between the side surfaces of the unit modules.
  • a stable truss structure can be assembled using only tetramodules.
  • two tetramodules are used to form an octamodule, and octamodules formed by adding a frame having a length of ⁇ square root ⁇ 2 parallel to each other are mutually arranged.
  • tetrahedral frame regions having complementary lengths of ⁇ 2 can be constructed.
  • the unit modules are connected to each other by fixing the frames having long joint surfaces to each other, by fixing the joint members to each other, or by fixing the joint members to each other.
  • the elongated joint surfaces of the members having the elongated joint surfaces are joined to the frame, which is the ridge line portion of the regular tetrahedron or octahedron. can be done, so a robust coupling can be made.
  • unevenness is formed on the elongated joint surfaces, and by joining by intermittent bonding due to the unevenness, it is possible to join the elongated joint surfaces and connect the unit modules to each other firmly.
  • the gusset plate can reinforce the joint between the unit modules between the joint members. Further, since the gusset plate is a disk plate, it is possible to reinforce the connection of the four unit modules with a single gusset plate. Furthermore, joints of the unit modules on the outer periphery can be covered with a disc plate bent at 90 degrees to connect the joints of the unit modules, thereby reinforcing the joints between the unit modules.
  • the tetramodule which is a regular tetrahedral frame, can be formed simply by assembling members of the same length, and can be produced at low cost with a small number of members.
  • the octamodule which is a regular octahedral frame, can be formed simply by assembling members of the same length, and can be manufactured at low cost with a small number of members.
  • a unit module in which a ridge portion of a regular tetrahedron or a regular octahedron is formed by a frame having an elongated joint surface can be formed by connecting the frame ends with a joint member. It can be formed without troublesome work such as welding the ends together, and sufficient structural strength can be ensured by the joint member.
  • the frame can have various cross-sectional shapes as long as it has an elongated joint surface. It is possible to select either
  • the frame By forming a joint piece portion to the frame having an elongated joint surface in the joint member, the frame can be attached via this joint piece portion. Easy to assemble.
  • the modular frame structure of the present invention and the unit modules used therefor form a truss structure by combining the unit modules without using connecting members other than the unit modules. Moreover, it can be assembled as a stable truss structure by forming a complementary spatial area inside, and the truss structure allows vertical frameworks such as walls to be perpendicular to horizontal frameworks such as roofs and floors. It is something that can be formed through bonding.
  • FIG. 1 is a plan view showing one embodiment of a frame structure of the present invention
  • FIG. FIG. 10 is an explanatory view showing how unit modules are assembled together when the unit modules used in the frame structure of the present invention are tetrahedral frames.
  • FIG. 2 is a perspective view of FIG. 1 showing the frame structure of the present invention in a state where the whole is a disk-like body;
  • FIG. 4 is a side view showing a state in which the board-like body is orthogonal to the frame structure of the present invention;
  • FIG. 4 is a perspective view showing a state in which the board-like bodies are orthogonal to each other in the framework structure of the present invention
  • 1 is a perspective view showing an embodiment in which unit modules used in the frame structure of the present invention are tetramodules.
  • FIG. 1 is a plan view showing an embodiment in which a unit module used in the frame structure of the present invention is a tetramodule;
  • FIG. 4 is a front view showing an example of a joint member used in unit modules used in the frame structure of the present invention;
  • FIG. 4 is a perspective view showing an example of a joint member used in unit modules used in the frame structure of the present invention;
  • FIG. 4 is an explanatory view showing coupling between joint members;
  • FIG. 1 is a plan view showing an embodiment in which a unit module used in the frame structure of the present invention is a tetramodule;
  • FIG. 4 is a front view showing an example of a joint member used in unit modules used in the frame structure of the
  • FIG. 4 is an explanatory diagram showing joining of a joint member to a frame having elongated joining surfaces;
  • FIG. 4 is a perspective view showing an example of mutual joining of unit modules;
  • FIG. 4 is a plan view showing that a quadrangular pyramid-shaped truss frame region is formed inside when the unit module is a tetra-module in the frame structure of the present invention.
  • FIG. 4 is a perspective view showing a state of connection in which a quadrangular pyramid-shaped truss frame region is formed inside when the unit module is a tetra-module in the framework structure of the present invention.
  • FIG. 4 is an explanatory diagram showing joining of a joint member to a frame having elongated joining surfaces;
  • FIG. 4 is a perspective view showing an example of mutual joining of unit modules;
  • FIG. 4 is a plan view showing that a quadrangular pyramid-shaped truss frame region is formed inside when the unit module is a tetra-module in the frame
  • FIG. 10 is an explanatory view showing that in the frame structure of the present invention, when the unit modules are tetramodules, a quadrangular pyramid-shaped truss frame region is formed inside.
  • FIG. 4 is a plan view showing that, in the frame structure of the present invention, when the unit module is a tetramodule, a regular octahedral frame region is formed inside.
  • FIG. 17 is a partially enlarged view of FIG. 16;
  • FIG. 4 is a front view showing an application example of the gusset plate;
  • FIG. 4 is an explanatory view showing development of assembly of unit modules in the frame structure of the present invention; It is explanatory drawing of a regular tetrahedron.
  • FIG. 4 is an explanatory diagram showing the relationship between the center and vertices of a regular tetrahedron;
  • FIG. 2 is a perspective view showing an embodiment in which unit modules used in the frame structure of the present invention are octahedral-shaped frames.
  • FIG. 4 is a plan view showing an embodiment in which the unit modules used in the frame structure of the present invention are octahedral-shaped frames.
  • FIG. 4 is a plan view showing an example of forming a tetrahedral frame region inside a truss structure obtained by assembling unit modules in the case of an octa module in which the unit modules of the present invention are octahedral frames.
  • FIG. 24 is a plan view when the unit modules of FIG.
  • FIG. 10 is a perspective view showing that an octamodule, which is a regular octahedral frame, is created from two tetramodules.
  • FIG. 3 is a perspective view showing a combination of octamodules made from two tetramodules;
  • FIG. 4 is a perspective view showing an example in which a frame having elongated joint surfaces of unit modules is made of angle members;
  • 1 is a perspective view of an embodiment of a tetramodule in which a frame with elongated joint surfaces is formed of H-beam steel;
  • FIG. 10 is a perspective view showing a combined state of tetra modules in which a frame having elongated joint surfaces is formed of H-shaped steel;
  • FIG. 4 is a perspective view showing an example in which a frame having elongated joint surfaces of unit modules is made of a channel material;
  • FIG. 10 is a perspective view showing a combined state of tetra-modules in which a frame having elongated joint surfaces is formed of a channel material;
  • FIG. 4 is a perspective view showing formation of a regular octahedral frame by combining four tetramodules;
  • FIG. 3 is a perspective view of a frame structure by combining 64 tetramodules;
  • FIG. 3 is a perspective view of a frame structure by combining 216 tetramodules;
  • FIG. 4 is a perspective view showing an embodiment in which unit modules used in the frame structure of the present invention are integral tetramodules.
  • FIG. 4 is an explanatory diagram showing an assembled state of the integrated tetra-module;
  • FIG. 4 is a perspective view showing another embodiment in which the unit modules used in the frame structure of the present invention are integral tetramodules.
  • FIG. 10 is an explanatory diagram showing an assembled state of an integrated tetra-module according to another embodiment;
  • 1 is a perspective view showing an example of a conventional unit module proposed by Buckminster Fuller;
  • FIG. 10 is a plan view showing a conventional space truss structure composed of unit modules proposed by Buckminster Fuller.
  • 1 is a perspective view of an octahedron composed of unit modules proposed by Buckminster Fuller as a conventional example.
  • FIG. 10 is a front view showing an example of forming the roof and walls of an airplane dock with a space truss structure proposed by Buckminster Fuller as a conventional example.
  • FIG. 10 is a side view showing an example of forming the roof and walls of an aircraft dock with a space truss structure proposed by Buckminster Fuller as a conventional example.
  • FIG. 1 is a plan view showing one embodiment of the frame structure of the present invention.
  • a tetrahedral frame that is a unit frame (referred to as a unit module) of the space truss structure is constructed, and the tetramodules 1 that are the tetrahedral frame are interconnected. Join to construct a space truss structure.
  • the tetramodule 1 is a regular tetrahedron, and the regular tetrahedron consists of three equilateral triangular faces A and has four vertices B and six sides C, as shown in FIG. Furthermore, as shown in FIG. 21, the mutual angle between the line E connecting the center D of the regular tetrahedron and the vertex B of the regular tetrahedron is 109.5 degrees.
  • the elongated joint surface 2 of the frame 3 is a plane obtained by cutting off the side C (ridge line) of the regular tetrahedron, and the angle formed by the plane is It has no inclination. Also, the width of the elongated joint surface 2 depends on the degree of scraping, but is not particularly limited. That is, the orientation of the elongated joint surface 2 of the frame 3 is determined so as to be perpendicular to the perpendicular line connecting the center of the tetramodule 1 and the midpoints of the elongated joint surfaces.
  • the tetramodule 1 is a regular tetrahedron, but to be precise, it is supposed to be a regular tetrahedron, and a frame 3 having an elongated joint surface 2 is used as a ridge line portion of the regular tetrahedron.
  • the end portions of the frame 3 having these elongated joint surfaces 2 were connected by joint members 4 to assemble a regular tetrahedral frame.
  • the equilateral triangle of the regular tetrahedron becomes the opening surface. Note that all frames 3 have the same length.
  • the frame 3 having the elongated joint surface 2 serves as a shaft member of the regular tetrahedral frame, and a total of six pieces are assembled together with the joint members 4 .
  • the "shape" of the regular tetrahedral frame means that the tetramodule 1 has a total of six elongated joint surfaces 2, and the four vertices have equilateral triangular planes 7 that are the ceilings of the joint members 4, It is a tetrahedron, although it is a total of 14 faces.
  • the frame 3 having the slender joint surface 2 is shown in the figure as a rectangular slender flat plate that is a band-shaped square bar. It can be of any shape, such as a semi-cylindrical shape, a triangle or other square shape, and a hollow pipe shape.
  • the frame 3 can have various cross-sectional shapes as long as it has an elongated joint surface 2, and a flat plate, hollow tube, H-shaped or other type steel, angle material, or channel material can be selected. Is possible.
  • Fig. 28 shows an example in which the frame 3 is made from angle material 11
  • Figs. 29 and 30 show an example in which it is made from H-shaped steel 13
  • Figs. 31 and 32 show an example in which it is made from channel material 14.
  • the material of the frame 3 having the elongated joint surface 2 can also be selected from various materials depending on the application of the three-dimensional truss structure to be completed, such as steel, metal such as aluminum, wood, synthetic resin, and the like. Titanium with high anti-corrosion properties can be used for offshore structures and the like.
  • the material of the joint member 4 is also the same, and can be selected from various materials depending on the application, such as metal such as steel and aluminum, wood, synthetic resin, and the like.
  • the joint member 4 for assembling the frame 3 having the elongated joint surface 2 may have any shape as long as the frame 3 having the elongated joint surface 2 can be assembled into a regular tetrahedral structure. It is preferable that three joint pieces 5 to the frame 3 are developed with a mutual opening of 120° in a plan view, and these joint pieces 5 are connected to each other by a top plate or a side plate 6 .
  • the illustrated example is interconnected by side plates 6 .
  • the side plate 6 may be without this.
  • the end faces of the rectangular elongated flat plates 2 should not be covered with the ceiling portion 7 of the joint member 4.
  • the end portions of the joint pieces 5 and the side plates 6 are continuously connected to each (side) edge of the ceiling portion 7 .
  • An enlarged view of the joint member 4 is shown in FIGS. 8 and 9.
  • a through hole for bolt connection may be provided in the central portion thereof.
  • the joint members 4 can be formed into a large mass by joining a plurality of pieces (four pieces in the drawing) by welding or other means.
  • connection between the frame 3 having the elongated joint surface 2 and the joint member 4 at the joint portion of the joint piece 5 of the joint member 4 and the rectangular elongated flat plate 2, the two are overlapped and then fixed, or the elongated joint is applied.
  • a slit is formed in the frame 3 having the surface 2, and the joint piece 5 is inserted into the slit and sandwiched between them.
  • FIG. 6 and 7 show an example in which the joint piece 5 of the joint member 4 is joined on the outside of the frame 3 having the elongated joint surface 2, but conversely, it may be joined on the inside.
  • FIG. 11 shows examples of joining both inside (see FIG. 11a) and outside (see FIG. 11b).
  • the joint piece 5 of the joint member 4 should be flush with the elongated joint surface 2 so that the joint piece 5 does not protrude.
  • the presence of the member 4 does not interfere with overlapping joining of the frames 3 having the elongated joining surfaces 2 .
  • the tetramodules 1 are assembled as unit modules by joining together to form a three-dimensional truss structure. As shown in FIG. The elongated joint surfaces 2 are overlapped and joined.
  • the tetramodules 1 are joined and fixed to each other by fixing the frames 3 having the elongated joint surfaces 2 to each other at the portion of the frame 3, or by fixing the frames 3 having the elongated joint surfaces 2 to each other. There is a case where the joint members 4 are connected to each other without doing so, and a case where both of them are adopted.
  • frames 3 having elongated joint surfaces 2 and fix each other at the portion of the frames 3 they are joined by means such as fastening with bolts and nuts, welding, concavo-convex joining, crimping with a band or the like. Is possible.
  • examples of joints due to lack of phase due to such irregularities 8 include the case where the elongated joint surface 2 is embossed with point-like irregularities, and the case where teeth are wavy and jagged.
  • the space truss structure assembled with the tetramodules 1 has a complementary four-dimensional structure inside the space truss structure as a result of joining the frames 3 having the elongated joint surfaces 2 of the tetramodules 1 to each other by joining the elongated joint surfaces 2 to each other.
  • a pyramidal truss frame region B is constructed.
  • two tetra-modules 1 which are unit modules of a regular tetrahedral frame, are joined together at their elongated joint surfaces 2 at the portion of the frame 3 that serves as the ridgeline portion.
  • the frame 3 on which this elongate joint surface 2 overlaps serves as a diagonal member, while the other frames 3 are arranged horizontally or vertically and orthogonally with the elongate joint surface 2 facing outward.
  • a square frame A on the bottom surface of the complementary quadrangular pyramid-shaped truss frame region B is formed.
  • the volume of the complementary quadrangular pyramidal truss frame region B is the same as the volume of two tetramodules 1 combined.
  • the frames 3 that form the ridges of the regular tetrahedron are overlapped with each other, making them double, which increases the strength. becomes robust.
  • FIG. 33 is the same as the structure in FIG. 14, but a regular tetrahedral truss (shown in gray) having a ridge length twice that of the tetramodule 1 formed by four tetramodules 1 is formed. , forming a complementary regular octahedral framework region C therein.
  • a regular tetrahedral truss (shown in white) of the same size as the regular tetrahedral truss intersects at each other's midpoints to form a new dual tetrahedral truss.
  • the four outer vertices of the dual tetrahedral trusses form the eight vertices of the cube truss structure.
  • the cube-shaped truss structure consists of eight regular tetrahedral modules.
  • the left side of FIG. 15 includes the quadrangular pyramidal truss frame region B to form a regular octahedral frame region C inside
  • the left side is a square pyramidal truss frame region B facing outward with the quadrangular bottom face of the quadrangular pyramidal truss frame region B as an open face.
  • the face piece-shaped frame region C is not configured.
  • the upper side is the state after assembly, and the lower side is the state after assembly.
  • the combination of the tetramodules 1 is relatively free, and an example of its development is shown in FIG. Then, one of them is turned over (the center of FIG. 18) and the frame 3 is joined so that the four vertexes of each other are aligned to form a planar truss structure with three-fold rotational symmetry (the right end of FIG. 18).
  • the gusset plate 9 is a circular disc plate in the illustrated example, and the gusset plate 9 reinforces the joint between the unit modules between the joint members.
  • the gusset plate 9 is a disk plate, it is possible to reinforce the joints of the four unit modules with a single gusset plate.
  • joints of the unit modules on the outer periphery are covered with a gusset plate 9' made of a disc plate bent at 90° and connected to reinforce the joints between the unit modules.
  • the gusset plate 9' can reinforce the connection between the unit modules.
  • FIG. 34 shows the growth morphology of the tetramodule 1 combination.
  • FIG. 34 shows a tetrahedral truss structure four times the length of the ridgeline of the tetrahedral module (shown in gray) is formed from 24 tetrahedral modules.
  • the four outer vertices of the dual tetrahedral trusses form the eight vertices of the cube truss structure.
  • a cube-shaped truss structure is formed from 64 regular tetrahedral modules.
  • the four vertices located outside the dual tetrahedral truss form the eight vertices of the cube-shaped truss structure.
  • a cube-like truss structure consisting of all tetrahedral modules is formed from 216 tetrahedral modules.
  • the quadrangles on the base surface of the quadrangular pyramidal truss frame region B are arranged horizontally or vertically, and the construction surface should be formed.
  • FIG. 3 is a perspective view of the board-like body as a whole, in which a bonding surface a for mutually bonding the tetramodules 1 and a bonding surface b for mutually bonding the tetramodules 1 are formed horizontally. .
  • Figures 4 and 5 show the state in which the board-shaped bodies are perpendicular to each other.
  • the connection between the floor X portion and the wall Y portion or the connection between the wall Y and the roof Z portion is the connection between the frames arranged horizontally or vertically and in the orthogonal direction.
  • a space truss structure as a roof Z can be assembled at right angles, and a wall Y can be formed that rises (or falls) at right angles to the floor or roof Z.
  • c is an extension of the floor X at the junction surface of the tetramodules 1 for joining them horizontally.
  • d is an extension of the wall Y, the joining surface of the tetramodules 1 for joining them together vertically.
  • e is the joint surface of the tetramodules 1 for joining them together horizontally and is an extension of the roof Z;
  • quadrangular pyramidal truss frame area B which is a complementary quadrangular pyramidal truss with tetramodules.
  • the three-dimensional truss structure is lightweight and can form large spans, so it is often used for roof structures. Therefore, vertical loads such as snow load and wind load are dominant, and the design is examined based on strength design.
  • vertical loads such as snow load and wind load are dominant, and the design is examined based on strength design.
  • the space truss shown in Fig. 1 is viewed as a lattice structure
  • the space truss composed of complementary quadrangular pyramid-shaped regions by tetramodules has square lattices on the upper and lower surfaces, and diagonal members are connected to the lower chord members that constitute the lower surface. It can be regarded as a component structure that overlaps on the projection plane.
  • the individual members forming the complementary quadrangular pyramid-shaped truss frame regions constitute three-dimensionally oriented members.
  • the truss structure which constitutes the complementary quadrangular pyramidal truss frame area with tetra modules, is more economical than other three-dimensional truss member configurations because it is prefabricated with tetra modules, which has a minimum number of members and nodes. A space truss can be formed.
  • the tetramodule 1 is assembled into a regular tetrahedral structure by connecting the ends of the frame 3 having the elongated joint surface 2 with the joint member 4, but the joint member 4 is omitted,
  • the ends of the frame 3 may be directly connected to form an integral type.
  • FIG. 36 shows a first example of the integrated tetramodule 1.
  • the ends of the frame 3 were fixed with a connecting plate 15 . This fixation is by welding or gluing.
  • FIG. 38 shows a case where the ends of the frame 3 are directly welded or glued together as a second example of the integrated tetramodule 1 .
  • FIGS. 37 An assembly example of such an integrated tetramodule 1 is shown in FIGS. 37 is assembled with the integrated tetramodule 1 of FIG. 36, and FIG. 39 is assembled with the integrated tetramodule 1 of FIG.
  • a regular octahedron is a type of regular polyhedron, and is a three-dimensional solid whose space is surrounded by eight equilateral triangles. It is also a shape in which each vertex of a regular tetrahedron is cut down to the center of the side.
  • a regular octahedron is assumed to be precise, and the frame serving as the ridge line portion of the octahedron is formed of a frame 3 having an elongated joint surface 2, and these elongated joint surfaces are formed. 2 were connected by joint members 4 to assemble a regular octahedral structure.
  • the octa-module consists of two quadrangular pyramid-shaped frames arranged vertically with a square frame in common, and three sets of square frames cross each other to form eight triangular lattices.
  • the joint member 4 has three joint pieces that are connected to the frame having an elongated joint surface and are spread out at an angle of 90° to each other in a plan view. It becomes connected.
  • the frame 3 having the elongated joint surface 2 serves as a shaft member of the regular octahedral frame, and a total of 12 joint members 4 are assembled. There are 12 faces, and 6 vertices have regular quadrangular planes, and these are added to the 8 regular triangular truss faces that are the side faces, making a total of 26 faces.
  • the joint member 4 may have any shape as long as it can be assembled into a regular octahedral frame by the frame 3 having the elongated joint surface 2.
  • the pieces may be developed with an opening of 90° to each other in a plan view, and these joining piece portions 5 may be connected to each other by a top plate or a side plate.
  • the frame 3 having the slender joint surface 2 is shown in the figure as a rectangular slender flat plate that is a belt-shaped square bar. It can be of any shape, such as a semi-cylindrical shape, a triangular shape, a rectangular shape, or a hollow pipe shape.
  • the frame 3 having the elongated joint surface 2 can be selected from flat plates, hollow pipes, H-shaped or other shaped steels, angle materials, and channel materials.
  • the material of the frame 3 having the elongated joint surface 2 can also be selected from various materials depending on the application of the three-dimensional truss structure to be completed, such as steel, metal such as aluminum, wood, synthetic resin, and the like. Titanium with high anti-corrosion properties can be used for offshore structures and the like.
  • the material of the joint member 4 is the same, and can be selected from various materials depending on the application, such as metal such as steel and aluminum, wood, synthetic resin, and the like.
  • the elongated joint surface 2 of the frame 3 is a plane obtained by scraping off the side C (ridge line) of the regular octahedron, and the angle formed by the plane is not tilted in the width direction of the elongated joint surface 2 with respect to the center of the regular octahedron. It is a thing. Also, the width of the elongated joint surface 2 depends on the degree of scraping, but is not particularly limited (not shown). That is, the orientation of the elongated joint surface 2 of the frame 3 is determined so as to be perpendicular to the perpendicular connecting the center of the tetramodule 1 and the midpoints of the elongated joint surfaces.
  • the joint piece 5 of the joint member 4 and the rectangular elongate flat plate 2 are joined by overlapping or inserting, and fixed by fastening with bolts and nuts, welding, etc., and the joint piece 5 of the joint member 4 is the elongate joint surface. It is the same as the tetramodule 1 when joining on the inside of the frame 3 with 2, when joining on the outside, by inserting, etc.
  • the octamodules 10 are joined together to form a three-dimensional truss structure. Similar to the tetramodules 1, this joining involves overlapping and joining frames 3 having elongated joint surfaces 2 at the elongated joint surfaces 2. As shown in FIG.
  • the octamodules 10 can be joined together by either fixing the frames 3 having the elongated joint surfaces 2 to each other or by joining the joint members 4 to each other without fixing the frames 3 having the elongated joint surfaces 2 to each other. Sometimes it does and sometimes it does both.
  • frames 3 having elongated joint surfaces 2 and fix them together at this frame 3 portion they can be joined by means such as fastening with bolts and nuts, welding, concavo-convex joining, and caulking with a band or the like.
  • fastening with bolts and nuts, welding, concavo-convex joining, and caulking with a band or the like.
  • unevenness may be formed on the elongated joint surface 2 and jointing may be performed by interlacing.
  • the octamodule 10 having two quadrangular pyramidal trusses inside with a quadrangular bottom surface in common, when assembled with three-fold rotational symmetry as shown in FIG.
  • a complementary regular tetrahedral framework region D is formed in the .
  • FIG. 25 shows a case in which the combination of the octamodules 10 is further expanded to form a board. material. Formation of a complementary regular tetrahedron frame region D inside the space truss structure is the same as in FIG. 24 .
  • the strength and deformation shape of the space truss structure having the complementary regular tetrahedron frame region formed only by octamodules in this way is as described above.
  • the octamodule 10 is formed by connecting two tetramodules to each other and adding a frame 3a having a length of ⁇ 2 of the frame 3. bottom.
  • a complementary tetrahedral frame region D formed by a frame 3a having a length of ⁇ 2 can be formed.
  • the octamodule 10 may also be configured as an integrated module without using joint members, like the integrated tetramodule 1 shown in FIGS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

Provided are: a modular frame structure that, in a case of forming a truss structure by combining unit modules, enables the forming by combining the unit modules only, without using connection members other than the unit modules, further enables assembling of a stable truss structure by, for example, forming complementary quadrangular-pyramid regions thereinside, and enables formation of a vertical framework such as walls with respect to a horizontal framework such as a roof and a floor through joining at right angles, by using the truss structure; and a unit module for use in the modular frame structure. This modular frame structure is obtained by producing unit modules each serving as a unit structure frame of a space truss structure, and constructing the space truss structure by mutually joining the unit modules. The unit modules are obtained by forming ridgeline portions of regular tetrahedrons or regular octahedrons from frames 3 having long-and-thin joining surfaces 2, connecting ends of the frames 3 having the long-and-thin joining surfaces 2 to thereby assemble a tetra-module 1, which is a regular tetrahedron structure frame, or an octa-module which is a regular octahedron structure frame. The frames 3 having the long-and-thin joining surfaces 2 are joined by joining the long-and-thin joining surfaces 2, tetra-modules 1 or octa-modules which serve as the unit modules are mutually connected, and thereby the space truss structure is formed.

Description

モジュール式骨組構造およびそれに用いる単位モジュールModular frame structure and unit modules used for it
 本発明は、立体トラスを用いた構造物のモジュール式骨組構造及びそれに用いる単位モジュールに関する。 The present invention relates to a modular frame structure of a structure using a space truss and a unit module used therein.
 単一形状の部材を正四面体又は正八面体に組み合わせた立体トラスのモジュールで構造物の屋根や側壁等を構成するトラス構造体は、形状の部材のみで構成されているので部材の管理や施工手順を簡単化できると共に、部材のモジュール化により施工作業の効率化を図ることができる。 The truss structure, which consists of the roof and side walls of a structure with a three-dimensional truss module that combines single-shaped members into regular tetrahedrons or regular octahedrons, is composed only of shaped members, so management and construction of members The procedure can be simplified, and the construction work can be made more efficient by modularizing the members.
 例えば、下記特許文献は、リチャードバックミンスター・フラー(Richard Buckminster Fuller)氏によって提案されたもので、単一形状の部材を正四面体又は正八面体に組み合わせた立体トラスのモジュールで構造物の屋根や側壁等を構成するオクテットトラス構造を開示している。
米国特許第2986241号明細書
For example, the following patent document was proposed by Mr. Richard Buckminster Fuller. An octet truss structure is disclosed that comprises the sidewalls and the like.
U.S. Pat. No. 2,986,241
 この特許文献1では平面状または層状になったベクトル平衡体のような構造であるオクテットトラス構造ついて述べられており、図43、図44に示すようなB-36爆撃機のドックの屋根と壁を形成する例が示されている。 This patent describes an octet truss structure, which is a planar or layered vector counterbalance-like structure, and is used for the dock roof and wall of a B-36 bomber as shown in FIGS. An example of forming is shown.
 なお、オクテットトラス構造については従来多くの提案がなされており、フレーム(弦材)をジョイント(連結部材)で結合して立体トラス構造の単位架構となる4面体架構を造り、4面体架構を相互に接合して立体トラス構造物を構築する内容は下記特許文献にその例がある。
特許第4431805号公報 特許第4709982号公報
As for the octet truss structure, many proposals have been made in the past. Frames (strings) are connected with joints (connecting members) to create a tetrahedral frame that becomes a unit frame of the space truss structure, and the tetrahedral frames are mutually connected. The content of constructing a three-dimensional truss structure by joining to is shown in the following patent document.
Japanese Patent No. 4431805 Japanese Patent No. 4709982
 単一形状の部材を組み合わせて立体トラス構造物を形成するのにモジュール(ユニット)化が重要な要素となるが、前記特許文献1ではストラットモジュールの代わりに図41に示すようなシートモジュールを構築したオクテットトラス構造の例が示されている。オクテットトラス構造とは正四面体状架構領域と正八面体状架構領域からなり、そのどちらか一方を相補的な空間領域とするトラス構造である。 Modularization (unitization) is an important factor in forming a space truss structure by combining members of a single shape, but in Patent Document 1, a seat module as shown in FIG. 41 is constructed instead of a strut module. An example of an octet truss structure is shown. An octet truss structure is a truss structure that consists of a regular tetrahedral frame region and a regular octahedral frame region, one of which is a complementary spatial region.
 シートモジュールは図40に示すようにフランジ40が1つの縁から延びるアルミニウムの薄いシート39であってもよいが、その片方の端から延びるフランジ41と42は、その他の2つのエッジから、適切な角度で延びて、フレームワークシステムの八面体および四面体の面に横たわる。 The sheet module may be a thin sheet of aluminum 39 with a flange 40 extending from one edge as shown in FIG. Extends at an angle and overlies the octahedral and tetrahedral faces of the framework system.
 フランジ41はシートの上方および外側方向に向いて、フランジ42は下方および外側に向いている。 The flange 41 faces upward and outward of the seat, and the flange 42 faces downward and outward.
 図42のトラスの八面体の1つは4枚のアルミニウムシート39が組み立てられる。 One of the truss octahedrons in FIG. 42 is assembled from four aluminum sheets 39 .
 下記特許文献4の構造物のユニット式骨組構造及び骨組部材ユニットはベクトル平衡体形トラスを基本モジュールとすることにより、内部に広い空間を確保できるようにとの提案である。
特許4889020号公報
The unit-type frame structure and frame member units of the structure of Patent Document 4 below are proposed to secure a wide space inside by using a vector balance truss as a basic module.
Japanese Patent No. 4889020
 特許文献4は、同じ長さの骨組部材で構成された複数のベクトル平衡体形トラスのユニットを2ユニットずつ何れかの側面で対向させ、対向する側面の底辺及び頂辺の対応する4節点をそれぞれ骨組部材Aと同じ長さの連結部材Bで架渡して接合すると共に、対向する側面の三角形対の対合節点を相互に接合して側面方向に連結する。 In Patent Document 4, a plurality of vector-balanced truss units composed of frame members of the same length are opposed on either side by two units, and the corresponding four nodes on the bottom and top sides of the opposed sides are respectively A connecting member B having the same length as the framework member A is used to bridge and join, and the mating nodes of the triangular pairs on the opposite sides are joined to connect in the lateral direction.
 この特許文献4によれば、連結するベクトル平衡体形トラスの側面間に四角錐トラスが形成されるので、単一では不安定なベクトル平衡体形トラスのユニットを安定トラス構造として組み立てることができる。 According to Patent Document 4, a quadrangular pyramid truss is formed between the side surfaces of the vector-balanced trusses that are connected, so it is possible to assemble a unit of vector-balanced trusses that are unstable as a single unit into a stable truss structure.
 また、立方体(正六面体)の各頂点を切り落とした形状のベクトル平衡体形トラスを基本ユニットとするので、各トラス構造の内部に比較的大きな立方体の内部空間を確保できる。 In addition, since the basic unit is a vector-equilibrium truss in the shape of a cube (regular hexahedron) with each vertex cut off, a relatively large cubic internal space can be secured inside each truss structure.
 前記特許文献1では図40に示すモジュールでは、シートのフランジのシートの角度は統一されたものではなく、その使用箇所によって適宜変わるもので、すべて同一の部材というものではない。また、図41のトラスの八面体は4枚のアルミニウムシート39が組み立てられるが、この八面体を単一のモジュールとしてトラス構造物を構築するには難がある。 In the module shown in FIG. 40 in Patent Document 1, the angle of the seat flange of the seat is not uniform, and it changes as appropriate depending on the location of use, and is not all the same member. Also, although the octahedron of the truss of FIG. 41 is assembled from four aluminum sheets 39, it is difficult to construct a truss structure using this octahedron as a single module.
 また、特許文献1のトラス構造物では、図43、図44に示すように三角形を形成するトラスからなる屋根、壁および床の枠組を形成するのに、屋根に対して壁が斜めに形成されてしまう。 Further, in the truss structure of Patent Document 1, as shown in FIGS. 43 and 44, the walls are formed obliquely with respect to the roof to form the framework of the roof, walls, and floor made of trusses forming a triangle. end up
 前記特許文献4の構造物のユニット式骨組構造及び骨組部材ユニットはベクトル平衡体形トラスのユニットを複数組み合わせて立体トラス構造とするのに、骨組部材Aと同じ長さの連結部材Bで架渡して接合するという2種類の部材の組合せを必要としている。 The unit type frame structure and frame member units of the structure of Patent Document 4 combine a plurality of units of vector balance type truss to form a three-dimensional truss structure. A combination of two types of members to be joined is required.
 本発明の目的前記従来例の不都合を解消し、単位モジュールを組み合せてトラス構造物を形成するのに、単位モジュール以外の連結部材を用いることなく、単位モジュールだけの組み合わせで可能となり、しかも、内部に相補的な四角錐領域の形成などで安定したトラス構造として組み立てることができるとともに、トラス構造で屋根や床などの水平な枠組みに対して壁などの垂直な枠組みを直角な結合をもって形成できるモジュール式骨組構造およびそれに用いる単位モジュールを提供することにある。 OBJECTS OF THE INVENTION To solve the above-mentioned problems of the conventional example, it is possible to combine unit modules to form a truss structure by combining only the unit modules without using connecting members other than the unit modules. A module that can be assembled as a stable truss structure by forming a complementary quadrangular pyramid region, etc., and a truss structure that can form a vertical framework such as a wall with a right angle connection to a horizontal framework such as a roof or floor. The object is to provide a type frame structure and unit modules used therein.
 前記目的を達成するため本発明は、モジュール式骨組構造としては、第1に、立体トラス構造の単位架構となる単位モジュールを造り、単位モジュールを相互に接合して立体トラス構造物を構築するモジュール式骨組構造であり、
 単位モジュールは、正四面体または正八面体の稜線部分を細長接合面を有するフレームで形成し、これら細長接合面を有するフレームの端部を連結して、立体トラス構造の単位架構となる単位モジュールを造り、単位モジュールを相互に接合して立体トラス構造物を構築するモジュール式骨組構造であり、
 単位モジュールは、正四面体または正八面体の稜線部分を細長接合面を有するフレームで形成し、これら細長接合面を有するフレームの端部を連結して、フレームの細長接合面は正四面体または正八面体の稜線を平面的に削り取った面としてモジュールの中心から細長接合面の各中点とを結ぶ垂線に直交するように前記細長接合面の向きを定めた正四面体状架構であるテトラモジュール、または正八面体状架構であるオクタモジュールに組み立て、
 細長接合面を有するフレームの相互を細長接合面を接合させて単位モジュールであるテトラモジュールまたはオクタモジュール同士を相互に連結して立体トラス構造物を形成することを要旨とするものである。
In order to achieve the above object, the present invention provides a modular frame structure. Firstly, a module is constructed to construct a space truss structure by constructing unit modules that are unit frames of a space truss structure and connecting the unit modules to each other. is a framework structure,
A unit module is formed by forming a ridge of a regular tetrahedron or a regular octahedron with a frame having elongated joint surfaces, and connecting the ends of the frames with these elongated joint surfaces to form a unit frame of a space truss structure. It is a modular frame structure that constructs a three-dimensional truss structure by connecting unit modules to each other,
A unit module is formed by forming a ridge of a regular tetrahedron or a regular octahedron with a frame having elongated joint surfaces, and connecting the ends of the frames having these elongate joint surfaces so that the elongate joint surfaces of the frame form a regular tetrahedron or octahedron. A tetramodule, which is a regular tetrahedral structure in which the direction of the elongated joint surface is determined so as to be perpendicular to the perpendicular line connecting the center of the module and the midpoints of the elongated joint surfaces as a surface obtained by planarly scraping off the ridgeline of the facepiece; Or assemble it into an octamodule, which is a regular octahedral frame,
The gist of the present invention is to form a three-dimensional truss structure by joining tetra-modules or octa-modules, which are unit modules, by joining frames having elongated joint surfaces to each other.
 第2に、立体トラス構造物は正四面体状架構領域と正八面体状架構領域からなり、そのどちらか一方を相補的な空間領域とするオクテットトラス構造であることを要旨とするものである。 Second, the three-dimensional truss structure consists of a regular tetrahedral frame region and a regular octahedral frame region, and the gist is that it is an octet truss structure in which one of them is a complementary spatial region.
 第3に、テトラモジュールで組み立てる立体トラス構造物は、テトラモジュール同士の細長接合面を有するフレームの相互を細長接合面を接合させた結合の結果、立体トラス構造物の内部に相補的な四角錐状トラス架構領域が構成されることを要旨とするものである。 Third, a space truss structure assembled with tetramodules has a complementary quadrangular pyramid inside the space truss structure as a result of joining frames having elongated joint surfaces between tetramodules by joining the elongated joint surfaces to each other. The gist is that a shaped truss frame region is constructed.
 第4に、オクタモジュールで組み立てる立体トラス構造物は、オクタモジュール同士の細長接合面を有するフレームの相互を細長接合面を接合させた結合の結果、立体トラス構造物の内部に相補的な正四面体状架構領域が構成されることを要旨とするものである。 Fourthly, in the space truss structure assembled with octamodules, as a result of joining the frames having the elongated joint surfaces of the octamodules to each other by joining the elongated joint surfaces, complementary regular four-sided surfaces are provided inside the space truss structure. The gist of this is that a body frame region is configured.
 第5に、オクタモジュールは、テトラモジュール2個を相互に連結し、互いに並行な√2の長さを有するフレームを追加して形成し、このオクタモジュールを相互に連結することによって、√2の長さを有するフレームによって形成される相補的な四面体状架構領域を構成することを要旨とするものである。 Fifth, the octamodule can be obtained by connecting two tetramodules to each other, adding a frame having a length of √2 parallel to each other, and connecting the octamodules to each other to obtain a √2 The gist is to construct complementary tetrahedral frame regions formed by a frame having a length.
 第6に、単位モジュール同士の結合は、細長接合面を有するフレーム同士の相互の固定によることを要旨とするものである。 Sixth, the gist of the connection between unit modules is by mutual fixation of frames having elongated joint surfaces.
 第7に、単位モジュール同士の結合は、ジョイント部材相互の固定によることを要旨とするものである。 Seventh, the gist is that the unit modules are connected to each other by fixing the joint members to each other.
 第8に、単位モジュール同士の結合は、細長接合面を有するフレーム同士の固定およびジョイント部材相互の固定の両方によることを要旨とするものである。 Eighth, the gist is that unit modules are connected together by both fixing frames having elongated joint surfaces to each other and joint members to each other.
 第9に、単位モジュール同士の結合は、細長接合面に凹凸を形成し、この凹凸による相欠きによる接合によることを要旨とするものである。 The gist of the ninth is that unit modules are joined together by forming unevenness on the elongated joint surface and joining by intermittent bonding due to this unevenness.
 第10に、単位モジュールのジョイント同士の集合箇所をガセットプレートで覆って連結し、単位モジュール間の接合を補強することを要旨とするものである。 Tenth, the gist is to cover and connect the joints of the unit modules with a gusset plate to reinforce the joints between the unit modules.
 第11に、ガセットプレートはディスクプレートによることを要旨とするものである。 Eleventh, the gist is that the gusset plate is based on the disk plate.
 第12に、外周部の単位モジュールのジョイント同士の集合箇所を90°に折曲げたディスクプレートで覆って連結し、単位モジュール間の接合を補強することを要旨とするものである。 The gist of the twelfth aspect is to cover and connect the joints of the unit modules on the outer periphery with a disk plate bent at 90 degrees to reinforce the joints between the unit modules.
 モジュール式骨組構造に用いる単位モジュールとしては、第1に、正四面体を想定し、正四面体の稜線部分となるフレームを細長接合面を有する部材で形成し、これら細長接合面を有する部材は同一の長さであり、その端部を連結してフレームの細長接合面は正四面体または正八面体の稜線を平面的に削り取った面としてモジュールの中心から細長接合面の各中点とを結ぶ垂線に直交するように前記細長接合面の向きを定めた正四面体状架構であるテトラモジュールに組み立てたことを要旨とするものである。 As a unit module used in the modular frame structure, firstly, assuming a regular tetrahedron, the frame that becomes the ridgeline portion of the regular tetrahedron is formed of members having elongated joint surfaces, and these members having elongated joint surfaces are The lengths are the same, and the ends of the frames are connected so that the slender joint surface of the frame is formed by shaving off the ridges of a regular tetrahedron or regular octahedron. The gist is that the tetramodule is a regular tetrahedral structure in which the orientation of the elongated joint surfaces is determined so as to be perpendicular to the vertical line.
 第2に、正八面体を想定し、正八面体の稜線部分となるフレームを細長接合面を有する部材で形成し、これら細長接合面を有する部材は同一の長さであり、その端部を連結してフレームの細長接合面は正四面体または正八面体の稜線を平面的に削り取った面としてモジュールの中心から細長接合面の各中点とを結ぶ垂線に直交するように前記細長接合面の向きを定めた正八面体状架構であるオクタモジュールに組み立てたことを要旨とするものである。 Secondly, assuming a regular octahedron, the frame that forms the ridge line of the regular octahedron is formed of members having elongated joint surfaces, and these members having elongate joint surfaces have the same length, and their ends are connected. The elongated joint surface of the frame is a surface obtained by shaving the ridgeline of a regular tetrahedron or regular octahedron so that the direction of the elongated joint surface is orthogonal to the perpendicular line connecting the center of the module and each midpoint of the elongated joint surface. The gist of this is that it is assembled into an octamodule, which is a regular octahedral frame.
 第3に、正四面体を想定し、正四面体の稜線部分となるフレームを細長接合面を有する部材で形成し、これら細長接合面を有する部材は同一の長さであり、その端部を連結して組み立てた正四面体状架構であるテトラモジュール2個を相互に連結し、互いに並行な√2の長さを有するフレームを追加して正八面体状架構であるオクタモジュールに組み立てたことを要旨とするものである。 Third, assuming a regular tetrahedron, the frame that forms the ridge line of the regular tetrahedron is formed of members having elongated joint surfaces. Two tetramodules, which are tetrahedral frames assembled by connecting, are connected to each other, and a frame having a length of √2 parallel to each other is added to assemble an octamodule, which is a regular octahedral frame. This is the gist.
 第4に、細長接合面を有するフレーム端部は、ジョイント部材で連結すること、第5に、細長接合面を有するフレームは、平板、中空管材、H形その他の型鋼、アングル材、チャンネル材のいずれかを選択することを要旨とするものである。 Fourthly, the ends of the frame having elongated joint surfaces are connected by joint members. Fifth, the frames having elongated joint surfaces are made of flat plates, hollow pipes, H-shaped or other shaped steel, angle members, and channel members. The gist is to select one of them.
 第6に、ジョイント部材は、細長接合面を有するフレームへの接合片部を3つ平面視で相互に120°もしくは90°の開きで展開し、これら接合片部は天板もしくは側板で相互に連結してなることを要旨とするものである。 Sixthly, the joint member has three joint pieces that are connected to the frame having elongated joint surfaces and are spread out at an angle of 120° or 90° from each other in a plan view, and these joint pieces are connected to each other on the top plate or the side plate. The gist is to be connected.
 請求項1記載の本発明によれば、ブロック的に用いることができる単位モジュールを構築し、この単位モジュールを立体トラス構造物を構築するように組みあわせるのに、正四面体または八面体の稜線部分となるフレームを細長接合面を有する部材の細長接合面を接合させて行うことができるので、特に、単位モジュール以外の部材を連結部材として用いることなく、単位モジュールだけの組み合わせで立体トラス構造物を構築することが可能となり、組立を少ない工数で簡易かつ迅速に行うことができ、しかも単位モジュールのみの組みあわせで形成できるので、プレハブ化が向上する。 According to the present invention as set forth in claim 1, in constructing unit modules that can be used in blocks and combining the unit modules so as to construct a space truss structure, the edges of regular tetrahedrons or octahedrons are used. Since the slender joint surfaces of the members having slender joint surfaces can be joined to form the frames that form the parts, the three-dimensional truss structure can be constructed by combining only the unit modules without using members other than the unit modules as connecting members. can be constructed, assembly can be performed easily and quickly with a small number of man-hours, and can be formed by combining only unit modules, so prefabrication is improved.
 さらに、単位モジュールを組み合わせるのに、正四面体または八面体の稜線部分となるフレームは相互に重なり、2重となるので強度が増し、これが立体トラス構造物の斜材の部分であれば立体トラス構造物自体が堅牢なものとなる。 Furthermore, when unit modules are combined, the tetrahedral or octahedral ridgeline frames are overlapped with each other to form a double layer, which increases strength. The structure itself becomes solid.
 また、各単位モジュールは稜線部分となるフレームを細長接合面を接合させて行うことにより、側面方向だけでなく上下方向にもモジュールを積み重ねて多層の安定トラス構造を組み立てることができる。 In addition, each unit module can be assembled by joining the slender joint surfaces of the frame, which is the ridgeline part, so that the modules can be stacked not only in the lateral direction but also in the vertical direction to assemble a multi-layered stable truss structure.
 さらに、単位モジュールを単純に繋ぎ合わせることで形状可変の安定トラス構造を構築できるので、構築後の仕様変更やスペース変化の要求に容易に対処することができる。 Furthermore, by simply connecting the unit modules, a stable truss structure with variable shape can be constructed, so it is possible to easily respond to changes in specifications and space requirements after construction.
 必要な単位モジュール空間の数に応じてビニールハウス、ロッジ、シェルター等の小規模な組立式構造物からビルディング等の大規模構造物まで様々なモジュール空間構造物への適用が可能である。 Depending on the number of required unit module spaces, it can be applied to various modular space structures, from small prefabricated structures such as vinyl houses, lodges, and shelters to large-scale structures such as buildings.
 単位モジュールのみの組みあわせで構造物の骨組を構築できるので部材の製作や管理が容易であり、組み立てに当たっても同じ形状のモジュールを同じパターンで連結すれば足りるので施工の効率化・コストダウンが図れる。 Since the framework of the structure can be constructed by combining only the unit modules, it is easy to manufacture and manage the members, and when assembling, it is sufficient to connect modules of the same shape in the same pattern, so construction efficiency and cost reduction can be achieved. .
 また、床・壁としてテトラモジュールの組み合わせを水平または垂直展開させて立体トラス構造物とした場合に、床部分と壁部分の結合は前記水平または垂直にかつ直交方向に並ぶフレーム同士の接合となり、床・壁としての立体トラス構造物を直角に組むことができ、床に対して直角に立ち上がる(または立ち下がる)壁を形成することができる。 Also, when a combination of tetra modules as floors and walls is horizontally or vertically deployed to form a three-dimensional truss structure, the connection between the floor portion and the wall portion is the joint between the frames arranged horizontally or vertically and in the orthogonal direction, Space truss structures as floors and walls can be assembled at right angles, and walls can be formed that rise (or fall) at right angles to the floor.
 請求項2記載の本発明によれば、モジュール式骨組構造として正四面体状架構領域と正八面体状架構領域があるオクテットトラス構造であり、正四面体状架構領域と正八面体状架構領域がそのどちらか一方を相補的な空間領域とするので、テトラモジュールだけで安定したトラス構造を組み立てることができる。 According to the second aspect of the present invention, the modular frame structure is an octet truss structure having a regular tetrahedral frame region and a regular octahedral frame region, and the regular tetrahedral frame region and the regular octahedral frame region are the A stable truss structure can be assembled using only the tetramodules, since one of them is a complementary spatial region.
 請求項3記載の本発明によれば、正四面体状架構であるテトラモジュールを2個稜線部分となるフレームを細長接合面を有する部材の細長接合面を接合させて行うと、この細長接合面が重なるフレームは斜材となり、一方、他のフレームは細長接合面を外側に向けて水平または垂直にかつ直交方向に並ぶ。これがさらに組み合わさると立体トラス構造物の内部に相補的な四角錐状トラス架構領域が構成される。 According to the third aspect of the present invention, the tetramodule, which is a regular tetrahedral frame, is formed by joining the elongated joint surfaces of the members having the elongated joint surfaces to form the frames that form the two ridge line portions. The overlapping frames are diagonals, while the other frames are aligned horizontally or vertically and orthogonally with the elongate joint faces facing outward. When this is further combined, a complementary quadrangular pyramidal truss frame region is constructed inside the space truss structure.
 このように単位モジュールがテトラモジュールの場合、テトラモジュールが前後、左右に組まれると単位モジュールの側面間に相補的な四角錐状トラス架構領域が構成され、または、相補的な四角錐状トラス架構領域を合体させたオクテットトラス構造が構成されるものであり、テトラモジュールだけで安定したトラス構造を組み立てることができる。 Thus, when the unit modules are tetramodules, when the tetramodules are assembled in the front, rear, left, and right, a complementary quadrangular pyramidal truss frame region is formed between the side surfaces of the unit modules, or a complementary quadrangular pyramidal truss frame is formed. An octet truss structure is constructed by combining the regions, and a stable truss structure can be assembled only with tetramodules.
 請求項4記載の本発明によれば、単位モジュールがオクタモジュールの場合、オクタモジュールが組まれると単位モジュールの側面間に相補的な正四面体状架構領域が構成されるテトラトラス空間が構成されるものであり、テトラモジュールだけで安定したトラス構造を組み立てることができる。 According to the fourth aspect of the present invention, when the unit modules are octamodules, when the octamodules are assembled, a tetratruss space is formed in which complementary regular tetrahedron frame regions are formed between the side surfaces of the unit modules. A stable truss structure can be assembled using only tetramodules.
 請求項5および請求項15記載の本発明によれば、オクタモジュールの形成をテトラモジュール2個を用い、互いに並行な√2の長さを有するフレームを追加して形成されるオクタモジュールを相互に連結することによって、相補的な√2の長さを有する四面体状架構領域を構成することができる。 According to the present invention of claims 5 and 15, two tetramodules are used to form an octamodule, and octamodules formed by adding a frame having a length of {square root}2 parallel to each other are mutually arranged. By concatenating, tetrahedral frame regions having complementary lengths of √2 can be constructed.
 請求項6~請求項8記載の本発明によれば、単位モジュール同士の結合を長接合面を有するフレーム同士の相互の固定によるか、ジョイント部材相互の固定によるか、細長接合面を有するフレーム同士の固定およびジョイント部材相互の固定の両方によるかを選択できるものであり、いずれの場合も正四面体または八面体の稜線部分となるフレームを細長接合面を有する部材の細長接合面を接合させて行うことができるので、堅牢な結合を行うことができる。 According to the present invention of claims 6 to 8, the unit modules are connected to each other by fixing the frames having long joint surfaces to each other, by fixing the joint members to each other, or by fixing the joint members to each other. In either case, the elongated joint surfaces of the members having the elongated joint surfaces are joined to the frame, which is the ridge line portion of the regular tetrahedron or octahedron. can be done, so a robust coupling can be made.
 請求項9記載の本発明によれば、細長接合面に凹凸を形成し、この凹凸による相欠きによる接合によることで、細長接合面を接合させて単位モジュール同士を相互に連結するのに、強固な結合とすることができる。 According to the ninth aspect of the present invention, unevenness is formed on the elongated joint surfaces, and by joining by intermittent bonding due to the unevenness, it is possible to join the elongated joint surfaces and connect the unit modules to each other firmly. can be a binding.
 請求項10~12記載の本発明によれば、ガセットプレートにより単位モジュール間の接合をジョイント部材相互の間で補強することができる。また、ガセットプレートはディスクプレートによることで、一枚のガセットプレートで4つの単位モジュールの接合を補強することができる。さらに、外周部の単位モジュールのジョイント同士の集合箇所を90°に折曲げたディスクプレートで覆って連結し、単位モジュール間の接合を補強することができる。 According to the tenth to twelfth aspects of the present invention, the gusset plate can reinforce the joint between the unit modules between the joint members. Further, since the gusset plate is a disk plate, it is possible to reinforce the connection of the four unit modules with a single gusset plate. Furthermore, joints of the unit modules on the outer periphery can be covered with a disc plate bent at 90 degrees to connect the joints of the unit modules, thereby reinforcing the joints between the unit modules.
 請求項13記載の本発明によれば、正四面体状架構であるテトラモジュールは同一の長さの部材を組み立てるだけで形成でき、少ない部材点数で安価に作成することができる。 According to the thirteenth aspect of the present invention, the tetramodule, which is a regular tetrahedral frame, can be formed simply by assembling members of the same length, and can be produced at low cost with a small number of members.
 請求項14記載の本発明によれば、正八面体状架構であるオクタモジュールは同一の長さの部材を組み立てるだけで形成でき、少ない部材点数で安価に作成することができる。 According to the fourteenth aspect of the present invention, the octamodule, which is a regular octahedral frame, can be formed simply by assembling members of the same length, and can be manufactured at low cost with a small number of members.
 請求項15記載の本発明によれば、正四面体または正八面体の稜線部分を細長接合面を有するフレームで形成する単位モジュールは、フレーム端部は、ジョイント部材で連結することで形成でき、フレーム端部相互を溶接するなど面倒な作業なしに形成でき、また、構造強度もジョイント部材により十分確保できる。 According to the fifteenth aspect of the present invention, a unit module in which a ridge portion of a regular tetrahedron or a regular octahedron is formed by a frame having an elongated joint surface can be formed by connecting the frame ends with a joint member. It can be formed without troublesome work such as welding the ends together, and sufficient structural strength can be ensured by the joint member.
 請求項16記載の本発明によれば、フレームは細長接合面を有するものであれば種々の断面形状のものを用いることができ、平板、中空管材、H形その他の型鋼、アングル材、チャンネル材のいずれかを選択することが可能である。 According to the sixteenth aspect of the present invention, the frame can have various cross-sectional shapes as long as it has an elongated joint surface. It is possible to select either
 請求項17記載の本発明によれば、ジョイント部材の一例を示すものであり、ジョイント部材に細長接合面を有するフレームへの接合片部を形成することで、この接合片部を介してフレームを簡単に組み立てることができる。 According to the seventeenth aspect of the present invention, there is shown an example of a joint member. By forming a joint piece portion to the frame having an elongated joint surface in the joint member, the frame can be attached via this joint piece portion. Easy to assemble.
 以上述べたように本発明のモジュール式骨組構造およびそれに用いる単位モジュールは、単位モジュールを組み合せてトラス構造物を形成するのに、単位モジュール以外の連結部材を用いることなく、単位モジュールだけの組み合わせで可能となり、しかも、内部に相補的な空間領域の形成などで安定したトラス構造として組み立てることができるとともに、トラス構造で屋根や床などの水平な枠組みに対して壁などの垂直な枠組みを直角な結合をもって形成できるものである。 As described above, the modular frame structure of the present invention and the unit modules used therefor form a truss structure by combining the unit modules without using connecting members other than the unit modules. Moreover, it can be assembled as a stable truss structure by forming a complementary spatial area inside, and the truss structure allows vertical frameworks such as walls to be perpendicular to horizontal frameworks such as roofs and floors. It is something that can be formed through bonding.
本発明の骨組構造の1実施形態を示す平面図である。1 is a plan view showing one embodiment of a frame structure of the present invention; FIG. 本発明の骨組構造に用いる単位モジュールが正四面体状架構である場合の単位モジュール相互の組立状態を示す説明図である。FIG. 10 is an explanatory view showing how unit modules are assembled together when the unit modules used in the frame structure of the present invention are tetrahedral frames. 本発明の骨組構造で全体が盤状体である状態の図1の斜視図である。FIG. 2 is a perspective view of FIG. 1 showing the frame structure of the present invention in a state where the whole is a disk-like body; 本発明の骨組構造で盤状体を直交させた状態を示す側面図である。FIG. 4 is a side view showing a state in which the board-like body is orthogonal to the frame structure of the present invention; 本発明の骨組構造で盤状体を直交させた状態を示す斜視図である。FIG. 4 is a perspective view showing a state in which the board-like bodies are orthogonal to each other in the framework structure of the present invention; 本発明の骨組構造に用いる単位モジュールがテトラモジュールである1実施形態を示す斜視図である。1 is a perspective view showing an embodiment in which unit modules used in the frame structure of the present invention are tetramodules. FIG. 本発明の骨組構造に用いる単位モジュールがテトラモジュールである1実施形態を示す平面図である。1 is a plan view showing an embodiment in which a unit module used in the frame structure of the present invention is a tetramodule; FIG. 本発明の骨組構造に用いる単位モジュールに使用するジョイント部材の一例を示す正面図である。FIG. 4 is a front view showing an example of a joint member used in unit modules used in the frame structure of the present invention; 本発明の骨組構造に用いる単位モジュールに使用するジョイント部材の一例を示す斜視図である。FIG. 4 is a perspective view showing an example of a joint member used in unit modules used in the frame structure of the present invention; ジョイント部材相互の結合を示す説明図である。FIG. 4 is an explanatory view showing coupling between joint members; 細長接合面を有するフレームに対するジョイント部材の接合を示す説明図である。FIG. 4 is an explanatory diagram showing joining of a joint member to a frame having elongated joining surfaces; 単位モジュールの相互の接合の一例を示す斜視図である。FIG. 4 is a perspective view showing an example of mutual joining of unit modules; 本発明の骨組構造で、単位モジュールがテトラモジュールの場合に、内部に四角錐状トラス架構領域が形成されることを示す平面図である。FIG. 4 is a plan view showing that a quadrangular pyramid-shaped truss frame region is formed inside when the unit module is a tetra-module in the frame structure of the present invention. 本発明の骨組構造で、単位モジュールがテトラモジュールの場合に、内部に四角錐状トラス架構領域が構成れる結合の状態を示す斜視図である。FIG. 4 is a perspective view showing a state of connection in which a quadrangular pyramid-shaped truss frame region is formed inside when the unit module is a tetra-module in the framework structure of the present invention. 本発明の骨組構造で、単位モジュールがテトラモジュールの場合に、内部に四角錐状トラス架構領域が形成されることを示す説明図である。FIG. 10 is an explanatory view showing that in the frame structure of the present invention, when the unit modules are tetramodules, a quadrangular pyramid-shaped truss frame region is formed inside. 本発明の骨組構造で、単位モジュールがテトラモジュールの場合に、内部に正八面体状架構領域が形成されることを示す平面図である。FIG. 4 is a plan view showing that, in the frame structure of the present invention, when the unit module is a tetramodule, a regular octahedral frame region is formed inside. 図16の部分拡大図である。FIG. 17 is a partially enlarged view of FIG. 16; ガセットプレートの応用例を示す正面図である。FIG. 4 is a front view showing an application example of the gusset plate; 本発明の骨組構造で単位モジュールの組立の展開を示す説明図である。FIG. 4 is an explanatory view showing development of assembly of unit modules in the frame structure of the present invention; 正四面体の説明図である。It is explanatory drawing of a regular tetrahedron. 正四面体の中心と頂点の関係を示す説明図である。FIG. 4 is an explanatory diagram showing the relationship between the center and vertices of a regular tetrahedron; 本発明の骨組構造に用いる単位モジュールが、正八面体状架構であるオクタモジュールの場合の1実施形態示す斜視図である。FIG. 2 is a perspective view showing an embodiment in which unit modules used in the frame structure of the present invention are octahedral-shaped frames. 本発明の骨組構造に用いる単位モジュールが正八面体状架構であるオクタモジュールの場合の1実施形態示す平面図である。FIG. 4 is a plan view showing an embodiment in which the unit modules used in the frame structure of the present invention are octahedral-shaped frames. 本発明の単位モジュールが正八面体状架構であるオクタモジュールの場合の単位モジュールの組立によるトラス構造物で、内部に正四面体状架構領域が形成されることの1例を示す平面図である。FIG. 4 is a plan view showing an example of forming a tetrahedral frame region inside a truss structure obtained by assembling unit modules in the case of an octa module in which the unit modules of the present invention are octahedral frames. 図23の単位モジュールをさらに増殖させた場合の平面図である。FIG. 24 is a plan view when the unit modules of FIG. 23 are further increased; 正八面体状架構であるオクタモジュールをテトラモジュール2個で作成することを示す斜視図である。FIG. 10 is a perspective view showing that an octamodule, which is a regular octahedral frame, is created from two tetramodules. テトラモジュール2個で作成したオクタモジュールの組み合わせを示す斜視図である。FIG. 3 is a perspective view showing a combination of octamodules made from two tetramodules; 単位モジュールの細長接合面を有するフレームをアングル材で作成した例を示す斜視図である。FIG. 4 is a perspective view showing an example in which a frame having elongated joint surfaces of unit modules is made of angle members; 細長接合面を有するフレームをH形鋼で形成したテトラモジュールの実施形態示す斜視図である。1 is a perspective view of an embodiment of a tetramodule in which a frame with elongated joint surfaces is formed of H-beam steel; FIG. 細長接合面を有するフレームをH形鋼で形成したテトラモジュールの組み合わせ状態を示す斜視図である。FIG. 10 is a perspective view showing a combined state of tetra modules in which a frame having elongated joint surfaces is formed of H-shaped steel; 単位モジュールの細長接合面を有するフレームをチャンネル材で作成した例を示す斜視図である。FIG. 4 is a perspective view showing an example in which a frame having elongated joint surfaces of unit modules is made of a channel material; 細長接合面を有するフレームをチャンネル材で形成したテトラモジュールの組み合わせ状態を示す斜視図である。FIG. 10 is a perspective view showing a combined state of tetra-modules in which a frame having elongated joint surfaces is formed of a channel material; テトラモジュール4個の組合せによる正八面体状架構の形成を示す斜視図である。FIG. 4 is a perspective view showing formation of a regular octahedral frame by combining four tetramodules; テトラモジュール64個の組合せによる骨組構造の斜視図である。FIG. 3 is a perspective view of a frame structure by combining 64 tetramodules; テトラモジュール216個の組合せによる骨組構造の斜視図である。FIG. 3 is a perspective view of a frame structure by combining 216 tetramodules; 本発明の骨組構造に用いる単位モジュールが一体型テトラモジュールである実施形態示す斜視図である。FIG. 4 is a perspective view showing an embodiment in which unit modules used in the frame structure of the present invention are integral tetramodules. 一体型テトラモジュールによる組立状態を示す説明図である。FIG. 4 is an explanatory diagram showing an assembled state of the integrated tetra-module; 本発明の骨組構造に用いる単位モジュールが一体型テトラモジュールである他の実施形態を示す斜視図である。FIG. 4 is a perspective view showing another embodiment in which the unit modules used in the frame structure of the present invention are integral tetramodules. 他の実施形態による一体型テトラモジュールによる組立状態を示す説明図である。FIG. 10 is an explanatory diagram showing an assembled state of an integrated tetra-module according to another embodiment; 従来例で、バックミンスター・フラーが提案した単位モジュールの一例を示す斜視図である。1 is a perspective view showing an example of a conventional unit module proposed by Buckminster Fuller; FIG. 従来例で、バックミンスター・フラーが提案した提案の単位モジュールで組まれた立体トラス構造物を示す平面図である。FIG. 10 is a plan view showing a conventional space truss structure composed of unit modules proposed by Buckminster Fuller. 従来例で、バックミンスター・フラーが提案した提案の単位モジュールで組まれた八面体の斜視図である。1 is a perspective view of an octahedron composed of unit modules proposed by Buckminster Fuller as a conventional example. FIG. 従来例で、バックミンスター・フラーが提案した提案の立体トラス構造物で飛行機ドックの屋根と壁を形成する例を示す正面図である。FIG. 10 is a front view showing an example of forming the roof and walls of an airplane dock with a space truss structure proposed by Buckminster Fuller as a conventional example. 従来例で、バックミンスター・フラーが提案した提案の立体トラス構造物で飛行機ドックの屋根と壁を形成する例を示す側面図である。FIG. 10 is a side view showing an example of forming the roof and walls of an aircraft dock with a space truss structure proposed by Buckminster Fuller as a conventional example.
 以下、図面について本発明の実施の形態を詳細に説明する。図1は、本発明の 骨組構造の1実施形態を示す平面図で、立体トラス構造の単位架構(単位モジュールと称する)となる4面体架構を造り、4面体架構であるテトラモジュール1を相互に接合して立体トラス構造物を構築する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a plan view showing one embodiment of the frame structure of the present invention. A tetrahedral frame that is a unit frame (referred to as a unit module) of the space truss structure is constructed, and the tetramodules 1 that are the tetrahedral frame are interconnected. Join to construct a space truss structure.
 まず、テトラモジュール1について説明する。テトラモジュール1は正四面体であり、正四面体は図20に示すように、正三角形の3つの面Aからなるもので、4つの頂点Bと6つの辺Cを有する。さらに、図21に示すように、正4面体の中心Dと正4面体の頂点Bを結ぶ線Eの相互の角度が109.5度である。 First, the tetramodule 1 will be explained. The tetramodule 1 is a regular tetrahedron, and the regular tetrahedron consists of three equilateral triangular faces A and has four vertices B and six sides C, as shown in FIG. Furthermore, as shown in FIG. 21, the mutual angle between the line E connecting the center D of the regular tetrahedron and the vertex B of the regular tetrahedron is 109.5 degrees.
 フレーム3の細長接合面2は正4面体の辺C(稜線)を平面的に削り取った面であり、その平面のなす角度は正4面体の中心Dに対して細長接合面2の幅方向では傾きのないものである。また、細長接合面2の幅寸は前記削り取った程度によるが、特に限定されるものではない。すなわち、フレーム3の細長接合面2の向きはテトラモジュール1の中心から細長接合面の各中点とを結ぶ垂線に直交するように定められる。 The elongated joint surface 2 of the frame 3 is a plane obtained by cutting off the side C (ridge line) of the regular tetrahedron, and the angle formed by the plane is It has no inclination. Also, the width of the elongated joint surface 2 depends on the degree of scraping, but is not particularly limited. That is, the orientation of the elongated joint surface 2 of the frame 3 is determined so as to be perpendicular to the perpendicular line connecting the center of the tetramodule 1 and the midpoints of the elongated joint surfaces.
 図6、図7に示すようにテトラモジュール1は、正四面体であるが、正確には正四面体を想定し、正四面体の稜線部分となるフレームを細長接合面2を有するフレーム3で形成し、これら細長接合面2を有するフレーム3の端部をジョイント部材4で連結して正四面体状架構に組み立てた。正四面体の正三角形は開口面となる。なお、フレーム3はすべて同一の長さである。 As shown in FIGS. 6 and 7, the tetramodule 1 is a regular tetrahedron, but to be precise, it is supposed to be a regular tetrahedron, and a frame 3 having an elongated joint surface 2 is used as a ridge line portion of the regular tetrahedron. The end portions of the frame 3 having these elongated joint surfaces 2 were connected by joint members 4 to assemble a regular tetrahedral frame. The equilateral triangle of the regular tetrahedron becomes the opening surface. Note that all frames 3 have the same length.
 前記細長接合面2を有するフレーム3は、正四面体状架構の軸材となるものであり、計6本がジョイント部材4で相互に組まれる。前記、正四面体状架構の「状」とは、テトラモジュール1では細長接合面2が計6面あり、また4つの頂点部分にジョイント部材4の天井部である正三角形の平面7があり、全部で14面体であるが、概正四面体状であることによる。 The frame 3 having the elongated joint surface 2 serves as a shaft member of the regular tetrahedral frame, and a total of six pieces are assembled together with the joint members 4 . The "shape" of the regular tetrahedral frame means that the tetramodule 1 has a total of six elongated joint surfaces 2, and the four vertices have equilateral triangular planes 7 that are the ceilings of the joint members 4, It is a tetrahedron, although it is a total of 14 faces.
 前記細長接合面2を有するフレーム3は図示では帯状角材である長方形細長平板であるが、正四面体状架構として組んだ時に外側に向かう面が細長接合面2であれば、軸材としてその断面が蒲鉾形もしくは三角形その他の角形、もそくは中空のパイプ状など特に形状を問わない。 The frame 3 having the slender joint surface 2 is shown in the figure as a rectangular slender flat plate that is a band-shaped square bar. It can be of any shape, such as a semi-cylindrical shape, a triangle or other square shape, and a hollow pipe shape.
 このようにフレーム3は細長接合面2を有するものであれば種々の断面形状のものを用いることができ、平板、中空管材、H形その他の型鋼、アングル材、チャンネル材のいずれかを選択することが可能である。 As described above, the frame 3 can have various cross-sectional shapes as long as it has an elongated joint surface 2, and a flat plate, hollow tube, H-shaped or other type steel, angle material, or channel material can be selected. Is possible.
 図28にフレーム3をアングル材11で作成した例を、図29、図30にH形鋼13で形成した例を、図31,図32にチャンネル材14で作成した例を示す。 Fig. 28 shows an example in which the frame 3 is made from angle material 11, Figs. 29 and 30 show an example in which it is made from H-shaped steel 13, and Figs. 31 and 32 show an example in which it is made from channel material 14.
 また、細長接合面2を有するフレーム3の材質も完成する立体トラス構造物の用途によって種々選択でき、鋼、アルミニュウムなどの金属、木、合成樹脂等である。海洋構造物等を対象とする場合防食性の高いチタンを使用することも可能である。 In addition, the material of the frame 3 having the elongated joint surface 2 can also be selected from various materials depending on the application of the three-dimensional truss structure to be completed, such as steel, metal such as aluminum, wood, synthetic resin, and the like. Titanium with high anti-corrosion properties can be used for offshore structures and the like.
 ジョイント部材4の材質も同様であり、用途によって種々選択でき、鋼、アルミニュウムなどの金属、木、合成樹脂等である。 The material of the joint member 4 is also the same, and can be selected from various materials depending on the application, such as metal such as steel and aluminum, wood, synthetic resin, and the like.
 細長接合面2を有するフレーム3を組み立てるジョイント部材4はこの細長接合面2を有するフレーム3により正四面体架構に組み立てる事ができるものであれば特に形状を問わないが、細長接合面2を有するフレーム3への接合片部5を3つ平面視で相互に120°の開きで展開し、これら接合片部5は天板もしくは側板6で相互に連結するものが好適である。図示の例は側板6で相互に連結した。側板6はこれがなくてもよい。 The joint member 4 for assembling the frame 3 having the elongated joint surface 2 may have any shape as long as the frame 3 having the elongated joint surface 2 can be assembled into a regular tetrahedral structure. It is preferable that three joint pieces 5 to the frame 3 are developed with a mutual opening of 120° in a plan view, and these joint pieces 5 are connected to each other by a top plate or a side plate 6 . The illustrated example is interconnected by side plates 6 . The side plate 6 may be without this.
 なお、単位モジュールであるテトラモジュール1の相互の接合に支障をきたさないように、長方形細長平板2の端面はジョイント部材4の天井部には覆い被さらないようにし、ジョイント部材4の天井部7は正三角形の開口面とするとか、図示のように平面視略正三角形状(六角形状)の天板とする。この天井部7の各(辺)縁に接合片部5の端部や側板6が連続的に接続している。ジョイント部材4の拡大を図8、図9に示す。 In order not to interfere with the mutual joining of the tetramodules 1, which are unit modules, the end faces of the rectangular elongated flat plates 2 should not be covered with the ceiling portion 7 of the joint member 4. is an equilateral triangular opening, or a substantially equilateral triangular (hexagonal) top plate as shown in the figure. The end portions of the joint pieces 5 and the side plates 6 are continuously connected to each (side) edge of the ceiling portion 7 . An enlarged view of the joint member 4 is shown in FIGS. 8 and 9. FIG.
 図示は省略するが、ジョイント部材4の天井部7を天板で構成する場合は、その中央部にボルト接合用の貫通孔を設けてもよい。 Although illustration is omitted, when the ceiling portion 7 of the joint member 4 is composed of a top plate, a through hole for bolt connection may be provided in the central portion thereof.
 また、ジョイント部材4は図10に示すように、複数個(図示では4個)を溶接やその他の手段で結合させて全体を大きな塊とすることもできる。 Also, as shown in FIG. 10, the joint members 4 can be formed into a large mass by joining a plurality of pieces (four pieces in the drawing) by welding or other means.
 前記細長接合面2を有するフレーム3とジョイント部材4との結合に関しては、ジョイント部材4の接合片部5と長方形細長平板2の結合箇所では、双方を重ね合わせてから固定することや、細長接合面2を有するフレーム3にスリットを形成し、接合片部5をこのスリットへ差し込んで挟み込むものであり、接合片部5とフレーム3の双方の固定はボルト・ナットによる締結や溶接などによる。 Regarding the connection between the frame 3 having the elongated joint surface 2 and the joint member 4, at the joint portion of the joint piece 5 of the joint member 4 and the rectangular elongated flat plate 2, the two are overlapped and then fixed, or the elongated joint is applied. A slit is formed in the frame 3 having the surface 2, and the joint piece 5 is inserted into the slit and sandwiched between them.
 図6、図7はジョイント部材4の接合片部5が細長接合面2を有するフレーム3の外側で接合する例を示したが、これが逆に内側で接合するものでもよい。図11に内側(図11a参照)で接合する場合と、外側(図11b参照)で接合する場合の両方の接合例を示す。 6 and 7 show an example in which the joint piece 5 of the joint member 4 is joined on the outside of the frame 3 having the elongated joint surface 2, but conversely, it may be joined on the inside. FIG. 11 shows examples of joining both inside (see FIG. 11a) and outside (see FIG. 11b).
 なお、接合片部5が細長接合面2を有するフレーム3の外側で接合する場合は細長接合面2に対してジョイント部材4の接合片部5は突出しないように面一を同じくすれば、ジョイント部材4の存在が細長接合面2を有するフレーム3同士の重ね合わせ接合に邪魔になることはない。 When the joint piece 5 is joined outside the frame 3 having the elongated joint surface 2, the joint piece 5 of the joint member 4 should be flush with the elongated joint surface 2 so that the joint piece 5 does not protrude. The presence of the member 4 does not interfere with overlapping joining of the frames 3 having the elongated joining surfaces 2 .
 次にかかるテトラモジュール1により立体トラス構造物を形成することについて説明する。テトラモジュール1は単位モジュールとして相互に接合して組立てられて立体トラス構造物を形成するが、このテトラモジュール1同士の接合は図2等に示すように細長接合面2を有するフレーム3の相互を細長接合面2で重ね合せて接合する。 Next, the formation of a three-dimensional truss structure with such a tetramodule 1 will be explained. The tetramodules 1 are assembled as unit modules by joining together to form a three-dimensional truss structure. As shown in FIG. The elongated joint surfaces 2 are overlapped and joined.
 なお、このテトラモジュール1の相互を接合し、かつ固定するは、細長接合面2を有するフレーム3の相互をフレーム3の部分で固定する行う場合と、細長接合面2を有するフレーム3同士は固定せずにジョイント部材4相互を結合して行う場合と、その両方を採用する場合とがある。 The tetramodules 1 are joined and fixed to each other by fixing the frames 3 having the elongated joint surfaces 2 to each other at the portion of the frame 3, or by fixing the frames 3 having the elongated joint surfaces 2 to each other. There is a case where the joint members 4 are connected to each other without doing so, and a case where both of them are adopted.
 また、細長接合面2を有するフレーム3を重ね合わせての相互をこのフレーム3の部分で固定するには、ボルト・ナットによる締結、溶接、凹凸結合、バンド等による加締めなどの手段で結合することが可能である。 In addition, in order to stack frames 3 having elongated joint surfaces 2 and fix each other at the portion of the frames 3, they are joined by means such as fastening with bolts and nuts, welding, concavo-convex joining, crimping with a band or the like. Is possible.
 さらに、フレーム3相互に重ね合わせを強固にするため、図12に示すように細長接合面2に凹凸8を形成し、この凹凸8による相欠きによる接合としてもよい。 Furthermore, in order to strengthen the mutual superposition of the frames 3, as shown in FIG.
 かかる凹凸8による相欠きによる接合例としては、図12の図示の他に細長接合面2を点状の凹凸のエンボスにする場合、歯の波状のギザギザによる場合などが想定できる。 In addition to the illustration in FIG. 12, examples of joints due to lack of phase due to such irregularities 8 include the case where the elongated joint surface 2 is embossed with point-like irregularities, and the case where teeth are wavy and jagged.
 テトラモジュール1の相互の接合によって組み立て可能な立体トラス構造物の形態は盤状やキューブ状など種々可能であり、図1に示すように内部に相補的な四角錐状トラス架構領域Bを構成することができる。 The shape of the three-dimensional truss structure that can be assembled by joining the tetramodules 1 to each other is possible in various forms such as a board shape and a cube shape, and as shown in FIG. be able to.
 テトラモジュール1で組み立てる立体トラス構造物は、テトラモジュール1同士の細長接合面2を有するフレーム3の相互を細長接合面2を接合させた結合の結果、立体トラス構造物の内部に相補的な四角錐状トラス架構領域Bが構成される。 The space truss structure assembled with the tetramodules 1 has a complementary four-dimensional structure inside the space truss structure as a result of joining the frames 3 having the elongated joint surfaces 2 of the tetramodules 1 to each other by joining the elongated joint surfaces 2 to each other. A pyramidal truss frame region B is constructed.
 図13に示すようにテトラモジュール1を頂点を一点に集めるように4個を組み合わせた場合、テトラモジュール1の頂点が対向する面を形成する辺に該当するフレーム3の細長接合面2のうち1つは前記一点に集めるようにした頂点の集合に対してこれを囲むような正方形枠Aを構成し、ここに相補的な四角錐状トラス架構領域Bが形成される。 As shown in FIG. 13, when four tetramodules 1 are combined so that the vertexes are gathered at one point, one of the elongated joint surfaces 2 of the frame 3 corresponding to the sides forming the surfaces facing the vertexes of the tetramodules 1 First, a square frame A surrounding the set of vertices gathered at one point is formed, and a complementary quadrangular pyramid-shaped truss frame region B is formed here.
 この相補的な四角錐状トラス架構領域Bについて、さらに説明すると、正四面体状架構である単位モジュールのテトラモジュール1を2個稜線部分となるフレーム3の部分で細長接合面2を接合させると、この細長接合面2が重なるフレーム3は斜材となり、一方、他のフレーム3は細長接合面2を外側に向けて水平または垂直にかつ直交方向に並ぶ。これが組み合わさると前記相補的な四角錐状トラス架構領域Bの底辺面の正方形枠Aが形成される。 To further explain the complementary quadrangular pyramid-shaped truss frame region B, two tetra-modules 1, which are unit modules of a regular tetrahedral frame, are joined together at their elongated joint surfaces 2 at the portion of the frame 3 that serves as the ridgeline portion. , the frame 3 on which this elongate joint surface 2 overlaps serves as a diagonal member, while the other frames 3 are arranged horizontally or vertically and orthogonally with the elongate joint surface 2 facing outward. When these are combined, a square frame A on the bottom surface of the complementary quadrangular pyramid-shaped truss frame region B is formed.
 ちなみに、前記相補的な四角錐状トラス架構領域Bの体積はテトラモジュール1を2つ合わせた体積と同一である。 Incidentally, the volume of the complementary quadrangular pyramidal truss frame region B is the same as the volume of two tetramodules 1 combined.
 このように連結するテトラモジュール1が前後、左右に組まれた場合、単位モジュールの側面間に相補的な四角錐状トラス架構領域Bを形成することができ、テトラモジュールだけで安定したトラス構造を組み立てることができる。 When the tetramodules 1 that are connected in this way are assembled in the front, back, left, and right, it is possible to form a complementary quadrangular pyramid-shaped truss frame region B between the side surfaces of the unit modules, and a stable truss structure can be formed only by the tetramodules. Can be assembled.
 さらに、テトラモジュール1を組み合わせるのに、正四面体の稜線部分となるフレーム3は相互に重なり、2重となるので強度が増し、これが斜材の部分であれば立体トラス構造物の斜材が堅牢なものとなる。 Furthermore, when combining the tetramodules 1, the frames 3 that form the ridges of the regular tetrahedron are overlapped with each other, making them double, which increases the strength. becomes robust.
 また、図14、図15、図16に示す様に前記相補的な四角錐状トラス架構領域Bを合体させた正八面体状架構領域Cを内部に組むようにトラス構造物を形成することも可能である。 Further, as shown in FIGS. 14, 15, and 16, it is also possible to form a truss structure so as to incorporate a regular octahedral frame region C into which the complementary quadrangular pyramid-shaped truss frame regions B are united. be.
 図33は図14の構造体と同じものであるが、4個のテトラモジュール1から形成される稜線の長さがテトラモジュール1の2倍の正四面体状トラス(グレーで示す)が形成され、その内部に、相補的な正八面体状架構領域Cを形成する。 FIG. 33 is the same as the structure in FIG. 14, but a regular tetrahedral truss (shown in gray) having a ridge length twice that of the tetramodule 1 formed by four tetramodules 1 is formed. , forming a complementary regular octahedral framework region C therein.
 該正四面体状トラスと同じ大きさの正四面体状トラス(白で示す)が正四面体状トラスの互いの中点で交差して、新たな双対の正四面体状トラスを形成する。この場合、双対の正四面体状トラスの外側に位置する4個ずつの頂点は、キューブ状トラス構造の8個の頂点を構成している。該キューブ状トラス構造は、8個の正四面体状モジュールからなる。 A regular tetrahedral truss (shown in white) of the same size as the regular tetrahedral truss intersects at each other's midpoints to form a new dual tetrahedral truss. In this case, the four outer vertices of the dual tetrahedral trusses form the eight vertices of the cube truss structure. The cube-shaped truss structure consists of eight regular tetrahedral modules.
 図15の右側が四角錐状トラス架構領域Bをあわせて内部に正八面体状架構領域Cを構成する場合、左側は四角錐状トラス架構領域Bの底辺面四角形を開放面として外側に向けて正八面体状架構領域Cを構成しない場合である。上側が組立後の状態、下側が組立後の状態である。 In the case where the right side of FIG. 15 includes the quadrangular pyramidal truss frame region B to form a regular octahedral frame region C inside, the left side is a square pyramidal truss frame region B facing outward with the quadrangular bottom face of the quadrangular pyramidal truss frame region B as an open face. This is the case where the face piece-shaped frame region C is not configured. The upper side is the state after assembly, and the lower side is the state after assembly.
 なお、テトラモジュール1の組合せは比較的自由であり、図18にその展開の例を示すと、テトラモジュール1の4つを3回転対称で結合させたもの(図18の左端)を2つ準備し、そのうちの1つを裏返して(図18の中央)、互いの頂点4箇所が合うようにフレーム3を接合すると平面状の3回回転対称のトラス構造(図18の右端)が形成できる。 The combination of the tetramodules 1 is relatively free, and an example of its development is shown in FIG. Then, one of them is turned over (the center of FIG. 18) and the frame 3 is joined so that the four vertexes of each other are aligned to form a planar truss structure with three-fold rotational symmetry (the right end of FIG. 18).
 図16、図17に示すように前記正四面体状架構であるテトラモジュール1の頂点のジョイント4同士の集合箇所をガセットプレート9よる連結で被覆することもできる。  As shown in Figs. 16 and 17, it is also possible to cover the meeting points of the joints 4 at the vertices of the tetramodule 1, which is the regular tetrahedral frame, by connecting them with a gusset plate 9.
 ガセットプレート9は図示の例では円形のディスクプレートであり、ガセットプレート9により単位モジュール間の接合をジョイント部材相互の間で補強する。 The gusset plate 9 is a circular disc plate in the illustrated example, and the gusset plate 9 reinforces the joint between the unit modules between the joint members.
 また、ガセットプレート9はディスクプレートによることで、一枚のガセットプレートで4つの単位モジュールの接合を補強することができる。 Also, since the gusset plate 9 is a disk plate, it is possible to reinforce the joints of the four unit modules with a single gusset plate.
 さらに、図18に示すように、外周部の単位モジュールのジョイント同士の集合箇所を90°に折曲げたディスクプレートによるガセットプレート9′で覆って連結し、単位モジュール間の接合を補強する。このようにすれば、ガセットプレート9′が単位モジュール間の接合を補強することができる。 Furthermore, as shown in FIG. 18, joints of the unit modules on the outer periphery are covered with a gusset plate 9' made of a disc plate bent at 90° and connected to reinforce the joints between the unit modules. In this way, the gusset plate 9' can reinforce the connection between the unit modules.
 図34、図35にテトラモジュール1の組合せの増殖形態を示す。図34は正四面体状モジュールの稜線の長さの4倍の正四面体状トラス構造(グレーで示す)は、24個の正四面体状モジュールから形成される。  Figures 34 and 35 show the growth morphology of the tetramodule 1 combination. FIG. 34 shows a tetrahedral truss structure four times the length of the ridgeline of the tetrahedral module (shown in gray) is formed from 24 tetrahedral modules.
 該稜線の長さが4倍の正四面体状トラス構造と同じ大きさの正四面体状トラス構造(白で示す)が互いの稜線の中点で交差して、双対の正四面体状トラス構造を形成する。この場合、双対の正四面体状トラスの外側に位置する4個ずつの頂点は、キューブ状トラス構造の8個の頂点を構成している。最終的にキューブ状トラス構造は、64個の正四面体状モジュールから形成される。 A regular tetrahedral truss structure with four times the length of the ridgeline and a regular tetrahedral truss structure of the same size (shown in white) intersect at the midpoint of each other's ridgeline to form a dual regular tetrahedral truss. form a structure. In this case, the four outer vertices of the dual tetrahedral trusses form the eight vertices of the cube truss structure. Finally, a cube-shaped truss structure is formed from 64 regular tetrahedral modules.
 図35では、双対の正四面体状トラスの外側に位置する4個ずつの頂点は、キューブ状トラス構造の8個の頂点を構成している。すべて正四面体状モジュールからなるキューブ状トラス構造は、216個の正四面体状モジュールから形成される。 In FIG. 35, the four vertices located outside the dual tetrahedral truss form the eight vertices of the cube-shaped truss structure. A cube-like truss structure consisting of all tetrahedral modules is formed from 216 tetrahedral modules.
 本発明のモジュール式骨組構造で、その構築物として床X・壁Yや屋根Zのあるものを構築する場合は、前記四角錐状トラス架構領域Bの底辺面四角形が水平または垂直に並び、構築面を形成するようにすればよい。 In the modular frame structure of the present invention, when constructing a structure having a floor X, a wall Y, and a roof Z, the quadrangles on the base surface of the quadrangular pyramidal truss frame region B are arranged horizontally or vertically, and the construction surface should be formed.
 図3は全体が盤状体である状態の斜視図で、水平にテトラモジュール1が相互に結合するための接合面aとテトラモジュール1を相互に接合するための接合面bとが形成される。 FIG. 3 is a perspective view of the board-like body as a whole, in which a bonding surface a for mutually bonding the tetramodules 1 and a bonding surface b for mutually bonding the tetramodules 1 are formed horizontally. .
 前記盤状体を直交させた状態を図4、図5に示す。図4,図5に示すように床X部分と壁Y部分の結合、もしくは壁Yと屋根Z部分の接合は水平または垂直にかつ直交方向に並ぶフレーム同士の接合となり、床X・壁Yや屋根Zとしての立体トラス構造物を直角に組むことができ、床や屋根Zに対して直角に立ち上がる(または立ち下がる)壁Yを形成することができる。  Figures 4 and 5 show the state in which the board-shaped bodies are perpendicular to each other. As shown in FIGS. 4 and 5, the connection between the floor X portion and the wall Y portion or the connection between the wall Y and the roof Z portion is the connection between the frames arranged horizontally or vertically and in the orthogonal direction. A space truss structure as a roof Z can be assembled at right angles, and a wall Y can be formed that rises (or falls) at right angles to the floor or roof Z.
 図4において、cは水平にテトラモジュール1を相互に接合するための該モジュールの接合面で床Xの拡張となる。dは垂直にテトラモジュール1を相互に接合するための該モジュールの接合面で、壁Yの拡張となる。eは水平にテトラモジュール1を相互に接合するための該モジュールの接合面で、屋根Zの拡張となる。 In FIG. 4, c is an extension of the floor X at the junction surface of the tetramodules 1 for joining them horizontally. d is an extension of the wall Y, the joining surface of the tetramodules 1 for joining them together vertically. e is the joint surface of the tetramodules 1 for joining them together horizontally and is an extension of the roof Z;
 このようにして構築された立体トラス構造物の耐力・変形形状については、テトラモジュールによる相補的な四角錐トラスである四角錐状トラス架構領域Bの効用について説明する。 Regarding the strength and deformation shape of the three-dimensional truss structure constructed in this way, we will explain the effect of the quadrangular pyramidal truss frame area B, which is a complementary quadrangular pyramidal truss with tetramodules.
 立体トラス構造は軽量で大径間を形成できることから屋根構造等に用いられることが多い 。したがって、荷重は雪荷重や風荷重等の鉛直荷重が支配的であり、設計上は強度設計により検討が行われる。平面的に大径間を形成する立体トラス構造 を長期にわたり極めて大きな鉛直荷重を支持する構造物に適用することを考える 。この場合、地震による影響も考慮しなければならず、水平荷重に対する 立体トラスの保有耐力や塑性変形能力が要求される。 The three-dimensional truss structure is lightweight and can form large spans, so it is often used for roof structures. Therefore, vertical loads such as snow load and wind load are dominant, and the design is examined based on strength design. Consider applying a three-dimensional truss structure that forms a large planar span to a structure that supports an extremely large vertical load over a long period of time. In this case, the impact of earthquakes must also be taken into consideration, and the strength and plastic deformation capacity of the space truss against horizontal loads are required.
 図1に示す立体トラスをラチス形式として見れば、テトラモジュールによる相補的な四角錐状領域が構成される立体トラスは上面、下面を正方形のラチスとし,斜材を下面を構成する下弦材への投影面で重ね合わせる部材構成として見立てられる。この場合、相補的な四角錐状トラス架構領域を形成する各個材は、3次元方向の部材を構成している。 If the space truss shown in Fig. 1 is viewed as a lattice structure, the space truss composed of complementary quadrangular pyramid-shaped regions by tetramodules has square lattices on the upper and lower surfaces, and diagonal members are connected to the lower chord members that constitute the lower surface. It can be regarded as a component structure that overlaps on the projection plane. In this case, the individual members forming the complementary quadrangular pyramid-shaped truss frame regions constitute three-dimensionally oriented members.
 したがって、立体トラス構造を構成するトラス個材が座屈しても応力の再配分が考えられ、地震力に対する靱性が期待できる。また、テトラモジュールによる相補的な四角錐状トラス架構領域を構成するトラス構造は他の立体トラスの部材構成と比較すると、部材数と節点数が最小限のテトラモジュールによるプレハブ化によって経済性に富む立体トラスが形成可能である。 Therefore, even if the truss members that make up the three-dimensional truss structure buckle, stress redistribution can be expected, and toughness against seismic force can be expected. In addition, the truss structure, which constitutes the complementary quadrangular pyramidal truss frame area with tetra modules, is more economical than other three-dimensional truss member configurations because it is prefabricated with tetra modules, which has a minimum number of members and nodes. A space truss can be formed.
 前記実施形態では、テトラモジュール1は細長接合面2を有するフレーム3の端部をジョイント部材4で連結して正四面体状架構に組み立てた例を示したが、このジョイント部材4を省略し、フレーム3の端部同士を直接結合して一体型のものとしてもよい。 In the above embodiment, the tetramodule 1 is assembled into a regular tetrahedral structure by connecting the ends of the frame 3 having the elongated joint surface 2 with the joint member 4, but the joint member 4 is omitted, The ends of the frame 3 may be directly connected to form an integral type.
 図36にかかる一体型のテトラモジュール1の第1例を示す。フレーム3の端部同士は結合板15で固定した。この固定は溶接または接着による。 FIG. 36 shows a first example of the integrated tetramodule 1. The ends of the frame 3 were fixed with a connecting plate 15 . This fixation is by welding or gluing.
 また、一体型のテトラモジュール1の第2例としてフレーム3の端部同士を直接溶接または接着した場合を図38に示す。 Also, FIG. 38 shows a case where the ends of the frame 3 are directly welded or glued together as a second example of the integrated tetramodule 1 .
 このような一体型のテトラモジュール1の組立例を図37,図39に示す。図37は図36の一体型のテトラモジュール1で組立てたもの、図39は図38の一体型のテトラモジュール1で組立てたものである。 An assembly example of such an integrated tetramodule 1 is shown in FIGS. 37 is assembled with the integrated tetramodule 1 of FIG. 36, and FIG. 39 is assembled with the integrated tetramodule 1 of FIG.
 次に本発明の第2実施形態として、図22、図23に示すように立体トラス構造の単位架構となる単位モジュールを正八面体状架構であるオクタモジュール10とした場合について説明する。正八面体とは正多面体の一種であり、空間を8枚の正三角形で囲んだ立体である。正四面体の各頂点を辺の中心まで切り落とした形でもある。 Next, as a second embodiment of the present invention, as shown in FIGS. 22 and 23, a case where the unit modules that become the unit frames of the space truss structure are octahedral-shaped frames will be described. A regular octahedron is a type of regular polyhedron, and is a three-dimensional solid whose space is surrounded by eight equilateral triangles. It is also a shape in which each vertex of a regular tetrahedron is cut down to the center of the side.
 本発明のオクタモジュール10の場合も前記テトラモジュール1と同じく、正確には正八面体を想定し、八面体の稜線部分となるフレームを細長接合面2を有するフレーム3で形成し、これら細長接合面2を有するフレーム3の端部をジョイント部材4で連結して正八面体状架構に組み立てた。 In the case of the octamodule 10 of the present invention, as in the case of the tetramodule 1, a regular octahedron is assumed to be precise, and the frame serving as the ridge line portion of the octahedron is formed of a frame 3 having an elongated joint surface 2, and these elongated joint surfaces are formed. 2 were connected by joint members 4 to assemble a regular octahedral structure.
 フレーム3はすべて同一の長さである。オクタモジュールは2つの四角錐状フレームが正方形フレームを共通にして上下に構成されたもので、3組の正方形のフレームが相互に交差して8個の三角形格子を形成するものである。 All frames 3 have the same length. The octa-module consists of two quadrangular pyramid-shaped frames arranged vertically with a square frame in common, and three sets of square frames cross each other to form eight triangular lattices.
 図示は省略するが、ジョイント部材4は、細長接合面を有するフレームへの接合片部を3つ平面視で相互に90°の開きで展開し、これら接合片部は天板もしくは側板で相互に連結してなる。 Although illustration is omitted, the joint member 4 has three joint pieces that are connected to the frame having an elongated joint surface and are spread out at an angle of 90° to each other in a plan view. It becomes connected.
 細長接合面2を有するフレーム3は、正八面体状架構の軸材となるものであり、ジョイント部材4で計12本が組まれ、正八面体状架構の「略」とは、細長接合面2が12面あり、また6つの頂点部分には正四角形の平面があり、側面である正三形のトラス面の8個にこれらが加わり全部で26面体であることによる。 The frame 3 having the elongated joint surface 2 serves as a shaft member of the regular octahedral frame, and a total of 12 joint members 4 are assembled. There are 12 faces, and 6 vertices have regular quadrangular planes, and these are added to the 8 regular triangular truss faces that are the side faces, making a total of 26 faces.
 ジョイント部材4はこの細長接合面2を有するフレーム3により正八面体状架構に組み立てる事ができるものであれば特に形状を問わないが、細長接合面2を有するフレーム3への接合片部5の4個を平面視で相互に90°の開きで展開し、これら接合片部5は天板もしくは側板で相互に連結してもよい。 The joint member 4 may have any shape as long as it can be assembled into a regular octahedral frame by the frame 3 having the elongated joint surface 2. The pieces may be developed with an opening of 90° to each other in a plan view, and these joining piece portions 5 may be connected to each other by a top plate or a side plate.
 前記細長接合面2を有するフレーム3は図示では帯状角材である長方形細長平板であるが、正八面体状架構として組んだ時に外側に向かう面が細長接合面2であれば、軸材としてその断面が蒲鉾形もしくは三角形その他の角形、もそくは中空のパイプ状など特に形状を問わない。 The frame 3 having the slender joint surface 2 is shown in the figure as a rectangular slender flat plate that is a belt-shaped square bar. It can be of any shape, such as a semi-cylindrical shape, a triangular shape, a rectangular shape, or a hollow pipe shape.
 前記テトラモジュール1の場合と同じく、細長接合面2を有するフレーム3は、平板、中空管材、H形その他の型鋼、アングル材、チャンネル材のいずれかを選択することができる。 As in the case of the tetramodule 1, the frame 3 having the elongated joint surface 2 can be selected from flat plates, hollow pipes, H-shaped or other shaped steels, angle materials, and channel materials.
 また、細長接合面2を有するフレーム3の材質も完成する立体トラス構造物の用途によって種々選択でき、鋼、アルミニュウムなどの金属、木、合成樹脂等である。海洋構造物等を対象とする場合防食性の高いチタンを使用することも可能である。 In addition, the material of the frame 3 having the elongated joint surface 2 can also be selected from various materials depending on the application of the three-dimensional truss structure to be completed, such as steel, metal such as aluminum, wood, synthetic resin, and the like. Titanium with high anti-corrosion properties can be used for offshore structures and the like.
 ジョイント部材4の材質も同様であり、用途によって種々選択でき、鋼、アルミニュウムなどの金属、木、合成樹脂等である。 The material of the joint member 4 is the same, and can be selected from various materials depending on the application, such as metal such as steel and aluminum, wood, synthetic resin, and the like.
 フレーム3の細長接合面2は正八面体の辺C(稜線)を平面的に削り取った面であり、その平面のなす角度は正八面体の中心に対して細長接合面2の幅方向では傾きのないものである。また、細長接合面2の幅寸は前記削り取った程度によるが、特に限定されるものではない(図示しない)。すなわち、フレーム3の細長接合面2の向きはテトラモジュール1の中心から細長接合面の各中点とを結ぶ垂線に直交するように定められる。 The elongated joint surface 2 of the frame 3 is a plane obtained by scraping off the side C (ridge line) of the regular octahedron, and the angle formed by the plane is not tilted in the width direction of the elongated joint surface 2 with respect to the center of the regular octahedron. It is a thing. Also, the width of the elongated joint surface 2 depends on the degree of scraping, but is not particularly limited (not shown). That is, the orientation of the elongated joint surface 2 of the frame 3 is determined so as to be perpendicular to the perpendicular connecting the center of the tetramodule 1 and the midpoints of the elongated joint surfaces.
 ジョイント部材4の接合片部5と長方形細長平板2の結合は、重ね合わせ、もしくは差し込みであり、固定はボルト・ナットによる締結、溶接などであり、ジョイント部材4の接合片部5が細長接合面2を有するフレーム3の内側で接合する場合、外側で接合する場合、また、差込による場合など前記テトラモジュール1と同じである。 The joint piece 5 of the joint member 4 and the rectangular elongate flat plate 2 are joined by overlapping or inserting, and fixed by fastening with bolts and nuts, welding, etc., and the joint piece 5 of the joint member 4 is the elongate joint surface. It is the same as the tetramodule 1 when joining on the inside of the frame 3 with 2, when joining on the outside, by inserting, etc.
 次にかかるオクタモジュール10により立体トラス構造物を形成することについて説明する。オクタモジュール10は相互に接合して立体トラス構造物を形成するが、前記テトラモジュール1と同じくこの接合は細長接合面2を有するフレーム3の相互を細長接合面2で重ね合せて接合する。 Next, the formation of a three-dimensional truss structure using the octamodule 10 will be described. The octamodules 10 are joined together to form a three-dimensional truss structure. Similar to the tetramodules 1, this joining involves overlapping and joining frames 3 having elongated joint surfaces 2 at the elongated joint surfaces 2. As shown in FIG.
 なお、このオクタモジュール10の相互の接合には、細長接合面2を有するフレーム3の相互の固定を行う場合と細長接合面2を有するフレーム3同士は固定せずにジョイント部材4相互の結合で行う場合と、その両方を採用する場合がある。 The octamodules 10 can be joined together by either fixing the frames 3 having the elongated joint surfaces 2 to each other or by joining the joint members 4 to each other without fixing the frames 3 having the elongated joint surfaces 2 to each other. Sometimes it does and sometimes it does both.
 また、細長接合面2を有するフレーム3を重ね合わせての相互をこのフレーム3部分で固定するには、ボルト・ナットによる締結、溶接、凹凸結合、バンド等によるカシメなどの手段で結合することが可能であるが、細長接合面2に凹凸を形成し、相欠きによる接合としてもよい。 In addition, in order to stack frames 3 having elongated joint surfaces 2 and fix them together at this frame 3 portion, they can be joined by means such as fastening with bolts and nuts, welding, concavo-convex joining, and caulking with a band or the like. Although it is possible, unevenness may be formed on the elongated joint surface 2 and jointing may be performed by interlacing.
 前記のように、内部に四角錐トラスの2つを底辺面四角形を共通にして有するオクタモジュール10は、図24に示すように、3回回転対称性で組んだ場合に、立体トラス構造物内部に相補的正四面体状架構領域Dが形成される。 As described above, the octamodule 10 having two quadrangular pyramidal trusses inside with a quadrangular bottom surface in common, when assembled with three-fold rotational symmetry as shown in FIG. A complementary regular tetrahedral framework region D is formed in the .
 図25はさらにオクタモジュール10の組合せを展開して盤体を構成した場合であり、細長接合面2を有するフレーム3の細長接合面2を接合させると、この細長接合面2が重なるフレームは斜材となる。立体トラス構造物の内部に相補的な正四面体状架構領域Dが形成されることについては、図24と同様である。 FIG. 25 shows a case in which the combination of the octamodules 10 is further expanded to form a board. material. Formation of a complementary regular tetrahedron frame region D inside the space truss structure is the same as in FIG. 24 .
 このようにオクタモジュールのみによって形成される相補的正四面体状架構領域を有する立体トラス構造物の耐力・変形形状については、前記説明した通りである。 The strength and deformation shape of the space truss structure having the complementary regular tetrahedron frame region formed only by octamodules in this way is as described above.
 本発明の第3実施形態として、図26に示すように、前記オクタモジュール10をテトラモジュール2個を相互に連結し、かつ、フレーム3の√2の長さを有するフレーム3aを追加して形成した。 As a third embodiment of the present invention, as shown in FIG. 26, the octamodule 10 is formed by connecting two tetramodules to each other and adding a frame 3a having a length of √2 of the frame 3. bottom.
 図27に示すようにこのオクタモジュール10を相互に連結することによって、√2の長さを有するフレーム3aによって形成される相補的な四面体状架構領域Dが形成できる。 By interconnecting the octamodules 10 as shown in FIG. 27, a complementary tetrahedral frame region D formed by a frame 3a having a length of √2 can be formed.
 図示は省略するが、前記オクタモジュール10の場合も図36、図38に示す一体型のテトラモジュール1と同様にショイント部材を用いない一体型のモジュールとして構成してもよい。 Although not shown, the octamodule 10 may also be configured as an integrated module without using joint members, like the integrated tetramodule 1 shown in FIGS.
1…テトラモジュール          2…細長接合面
3,3a…フレーム           4…ジョイント部材
5…接合片部              6…側板
7…天井部               8…凹凸
9,9′…ガセットプレート
10…オクタモジュール         11…アングル材
13…H形鋼              14…チャンネル材
39…アルミニウムシート        40,41,42…フランジ
A…正方形枠              B…四角錐状トラス架構領域
C…正八面体状架構領域         D…正四面体状架構領域
X…床                 Y…壁
Z…屋根
a,b,c,d,e…正方形枠の一部
DESCRIPTION OF SYMBOLS 1... Tetra module 2... Elongated joint surface 3, 3a... Frame 4... Joint member 5... Joint piece part 6... Side plate 7... Ceiling part 8... Concave and convex portion 9, 9'... Gusset plate 10... Octa module 11... Angle member 13... H-shaped steel 14 Channel material 39 Aluminum sheet 40, 41, 42 Flange A Square frame B Quadrangular pyramid truss frame region C Octahedral frame region D Tetrahedral frame region X Floor Y Wall Z... Roof a, b, c, d, e... Part of square frame

Claims (18)

  1.  立体トラス構造の単位架構となる単位モジュールを造り、単位モジュールを相互に接合して立体トラス構造物を構築するモジュール式骨組構造であり、
     単位モジュールは、正四面体または正八面体の稜線部分を細長接合面を有するフレームで形成し、これら細長接合面を有するフレームの端部を連結して、フレームの細長接合面は正四面体または正八面体の稜線を平面的に削り取った面としてモジュールの中心から細長接合面の各中点とを結ぶ垂線に直交するように前記細長接合面の向きを定めた正四面体状架構であるテトラモジュール、または正八面体状架構であるオクタモジュールに組み立て、
     細長接合面を有するフレームの相互を細長接合面を接合させて単位モジュールであるテトラモジュールまたはオクタモジュール同士を相互に連結して立体トラス構造物を形成することを特徴としたモジュール式骨組構造。
    It is a modular frame structure that builds unit modules that become the unit frames of the space truss structure, and joins the unit modules to construct the space truss structure.
    A unit module is formed by forming a ridge of a regular tetrahedron or a regular octahedron with a frame having elongated joint surfaces, and connecting the ends of the frames having these elongate joint surfaces so that the elongate joint surfaces of the frame form a regular tetrahedron or octahedron. A tetramodule, which is a regular tetrahedral structure in which the direction of the elongated joint surface is determined so as to be perpendicular to the perpendicular line connecting the center of the module and the midpoints of the elongated joint surfaces as a surface obtained by planarly scraping off the ridgeline of the facepiece; Or assemble it into an octamodule, which is a regular octahedral frame,
    A modular frame structure characterized by forming a three-dimensional truss structure by joining tetra-modules or octa-modules, which are unit modules, to each other by joining frames having elongated joint surfaces to each other.
  2.  立体トラス構造物は正四面体状架構領域と正八面体状架構領域からなり、そのどちらか一方を相補的な空間領域とするオクテットトラス構造である請求項1記載のモジュール式骨組構造。 The modular frame structure according to claim 1, wherein the space truss structure is an octet truss structure consisting of a regular tetrahedral frame region and a regular octahedral frame region, one of which is a complementary spatial region.
  3.  テトラモジュールで組み立てる立体トラス構造物は、テトラモジュール同士の細長接合面を有するフレームの相互を細長接合面を接合させた結合の結果、立体トラス構造物の内部に相補的な四角錐状トラス架構領域が構成される請求項1記載のモジュール式骨組構造。 A space truss structure assembled with tetramodules has a complementary quadrangular pyramidal truss frame region inside the space truss structure as a result of joining frames having elongated joint surfaces between tetramodules by joining the elongated joint surfaces to each other. 2. The modular frame structure of claim 1, comprising:
  4.  オクタモジュールで組み立てる立体トラス構造物は、オクタモジュール同士の細長接合面を有するフレームの相互を細長接合面を接合させた結合の結果、立体トラス構造物の内部に相補的な正四面体状架構領域が構成される請求項1記載のモジュール式骨組構造。 A space truss structure assembled with octamodules has a complementary regular tetrahedral frame region inside the space truss structure as a result of joining frames having elongated joint surfaces between octamodules by joining the elongated joint surfaces to each other. 2. The modular frame structure of claim 1, comprising:
  5.  オクタモジュールは、テトラモジュール2個を相互に連結し、互いに並行な√2の長さを有するフレームを追加して形成し、このオクタモジュールを相互に連結することによって、√2の長さを有するフレームによって形成される相補的な四面体状架構領域を構成する請求項4記載のモジュール式骨組構造。 An octamodule has a length of √2 by connecting two tetramodules together, adding a frame with a length of √2 parallel to each other, and connecting the octamodules together. 5. A modular frame structure according to claim 4 comprising complementary tetrahedral frame regions formed by the frame.
  6.  単位モジュール同士の結合は、細長接合面を有するフレーム同士の相互の固定による請求項1記載のモジュール式骨組構造。 The modular frame structure according to claim 1, wherein the unit modules are connected to each other by mutual fixation of frames having elongated joint surfaces.
  7.  単位モジュール同士の結合は、ジョイント部材相互の固定による請求項1記載のモジュール式骨組構造。 The modular framework structure according to claim 1, wherein the unit modules are connected to each other by fixing joint members to each other.
  8.  単位モジュール同士の結合は、細長接合面を有するフレーム同士の固定およびジョイント部材相互の固定の両方による請求項1記載のモジュール式骨組構造。  The modular framework structure according to claim 1, wherein the unit modules are connected together by both fixing frames having elongated joint surfaces to each other and joint members to each other.
  9. 単位モジュール同士の結合は、細長接合面に凹凸を形成し、この凹凸による相欠きによる接合による請求項1ないし請求項8のいずれかに記載のモジュール式骨組構造。 9. The modular frame structure according to any one of claims 1 to 8, wherein the unit modules are connected to each other by forming irregularities on the elongated joining surfaces and joining by interlocking due to the irregularities.
  10.  単位モジュールのジョイント同士の集合箇所をガセットプレートで覆って連結し、単位モジュール間の接合を補強する請求項1ないし請求項9のいずれかに記載のモジュール式骨組構造。 The modular frame structure according to any one of claims 1 to 9, wherein joints of the unit modules are covered and connected with gusset plates to reinforce the joints between the unit modules.
  11.  ガセットプレートはディスクプレートによる請求項10記載のモジュール式骨組構造。 A modular frame structure according to claim 10, wherein the gusset plates are disk plates.
  12.  外周部の単位モジュールのジョイント同士の集合箇所を90°に折曲げたディスクプレートで覆って連結し、単位モジュール間の接合を補強する請求項11記載のモジュール式骨組構造。 The modular frame structure according to claim 11, wherein joints of the unit modules on the outer periphery are covered and connected by a disc plate bent at 90 degrees to reinforce the joints between the unit modules.
  13.  正四面体を想定し、正四面体の稜線部分となるフレームを細長接合面を有する部材で形成し、これら細長接合面を有する部材は同一の長さであり、その端部を連結してフレームの細長接合面は正四面体または正八面体の稜線を平面的に削り取った面としてモジュールの中心から細長接合面の各中点とを結ぶ垂線に直交するように前記細長接合面の向きを定めた正四面体状架構であるテトラモジュールに組み立てたことを特徴としたモジュール式骨組構造に用いる単位モジュール。 Assuming a regular tetrahedron, the frame that forms the ridge line of the regular tetrahedron is formed by members having elongated joint surfaces. The elongated joint surface is a surface obtained by shaving off the ridgeline of a regular tetrahedron or a regular octahedron, and the orientation of the elongated joint surface is determined so as to be orthogonal to the perpendicular line connecting the center of the module and each midpoint of the elongated joint surface. A unit module used in a modular frame structure characterized by being assembled into a tetramodule, which is a regular tetrahedral frame.
  14.  正八面体を想定し、正八面体の稜線部分となるフレームを細長接合面を有する部材で形成し、これら細長接合面を有する部材は同一の長さであり、その端部を連結してフレームの細長接合面は正四面体または正八面体の稜線を平面的に削り取った面としてモジュールの中心から細長接合面の各中点とを結ぶ垂線に直交するように前記細長接合面の向きを定めた正八面体状架構であるオクタモジュールに組み立てたことを特徴としたモジュール式骨組構造に用いる単位モジュール。 Assuming a regular octahedron, the frame that forms the ridge line of the regular octahedron is formed by members having elongated joint surfaces. The joint surface is a regular octahedron obtained by shaving the ridgeline of a regular tetrahedron or a regular octahedron, and the orientation of the elongate joint surface is determined so as to be orthogonal to the perpendicular line connecting the center of the module and each midpoint of the elongate joint surface. A unit module used in a modular frame structure characterized by being assembled into an octamodule, which is a frame structure.
  15.  正四面体を想定し、正四面体の稜線部分となるフレームを細長接合面を有する部材で形成し、これら細長接合面を有する部材は同一の長さであり、その端部を連結して組み立てた正四面体状架構であるテトラモジュール2個を相互に連結し、互いに並行な√2の長さを有するフレームを追加して正八面体状架構であるオクタモジュールに組み立てたことを特徴としたモジュール式骨組構造に用いる単位モジュール。 Assuming a regular tetrahedron, the frame that forms the ridge line of the regular tetrahedron is formed from members having elongated joint surfaces, and these members having elongate joint surfaces have the same length, and are assembled by connecting their ends. A module characterized by connecting two tetramodules, which are regular tetrahedral frames, and assembling them into octahedral frames, which are octahedral frames, by adding frames having a length of √2 parallel to each other. A unit module used for the formula frame structure.
  16.  細長接合面を有するフレーム端部は、ジョイント部材で連結する請求項13ないし請求項15に記載のモジュール式骨組構造に用いる単位モジュール。 A unit module used in a modular frame structure according to claims 13 to 15, wherein the frame ends having the elongated joint surfaces are connected by joint members.
  17.  細長接合面を有するフレームは、平板、中空管材、H形その他の型鋼、アングル材、チャンネル材のいずれかを選択する請求項13ないし請求項16のいずれかに記載のモジュール式骨組構造に用いる単位モジュール。 17. A unit used in a modular framework structure according to any one of claims 13 to 16, wherein the frame having the elongated joint surfaces is selected from flat plates, hollow pipes, H-shaped or other shaped steels, angle members, or channel members. module.
  18.  ジョイント部材は、細長接合面を有するフレームへの接合片部を3つ平面視で相互に120°もしくは90°の開きで展開し、これら接合片部は天板もしくは側板で相互に連結してなる請求項16または請求項17記載のモジュール式骨組構造に用いる単位モジュール。 The joint member has three joint pieces that are connected to the frame and have an elongated joint surface and are spread out at an angle of 120° or 90° in a plan view, and these joint pieces are connected to each other by a top plate or a side plate. A unit module used in the modular frame structure according to claim 16 or 17.
PCT/JP2022/041633 2021-11-19 2022-11-09 Modular frame structure and unit module for use therein WO2023090210A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-188771 2021-11-19
JP2021188771A JP7098038B1 (en) 2021-11-19 2021-11-19 Modular skeleton structure and unit modules used for it

Publications (1)

Publication Number Publication Date
WO2023090210A1 true WO2023090210A1 (en) 2023-05-25

Family

ID=82356932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041633 WO2023090210A1 (en) 2021-11-19 2022-11-09 Modular frame structure and unit module for use therein

Country Status (2)

Country Link
JP (3) JP7098038B1 (en)
WO (1) WO2023090210A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227034A (en) * 1988-07-16 1990-01-29 Akio Kanetani Joint of space truss
JPH0259399U (en) * 1988-10-26 1990-04-27
JPH1161707A (en) * 1997-08-18 1999-03-05 Paritei Jipangu:Kk Subgrade and other civil-engineering structure and concrete block
DE102008063292A1 (en) * 2008-12-30 2011-03-03 Christian Thomas Roof arrangement for large-area roof-light to supply light to hall of building during industrial construction, has framework structure equipped with shaded surface elements that protect incident light from non-desired directions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227034A (en) * 1988-07-16 1990-01-29 Akio Kanetani Joint of space truss
JPH0259399U (en) * 1988-10-26 1990-04-27
JPH1161707A (en) * 1997-08-18 1999-03-05 Paritei Jipangu:Kk Subgrade and other civil-engineering structure and concrete block
DE102008063292A1 (en) * 2008-12-30 2011-03-03 Christian Thomas Roof arrangement for large-area roof-light to supply light to hall of building during industrial construction, has framework structure equipped with shaded surface elements that protect incident light from non-desired directions

Also Published As

Publication number Publication date
JP7098038B1 (en) 2022-07-08
JP2023075890A (en) 2023-05-31
JP2023075704A (en) 2023-05-31
JP2023075889A (en) 2023-05-31

Similar Documents

Publication Publication Date Title
US4247218A (en) Joint for three-dimensional framed structures
EP0013285A1 (en) Framed space structure incorporating modular generally Y-shaped structural components
US3953948A (en) Homohedral construction employing icosahedron
US8429874B2 (en) Double-Y modular framing rhombicuboctahedron construction system
US5904006A (en) Construction module, panel and system
WO2023090210A1 (en) Modular frame structure and unit module for use therein
US20020166294A1 (en) Spherical and polyhedral shells with improved segmentation
US7036277B2 (en) Modular building element
JPH0543814B2 (en)
CN118265833A (en) Modular framework structure and unit module therefor
JP2023114549A (en) Method for constructing truss structure by multiplication of modules
JP2023114278A (en) Module type skeleton structure and module used for the same
JP2023126073A (en) Discal three-dimensional truss structure
JP2952567B2 (en) Joint equipment for building components
JP2023175176A (en) Space truss structure by quadrangular pyramid module and unit module used therefor
JP3256195B2 (en) Connection structure of space truss structure and space truss structure
JP2023165104A (en) Columnar/wall-shaped or high-rise truss structure by block stacking
RU2755174C9 (en) Ribbed dome made of glued wooden arch trusses
JP2024004221A (en) Truss structure having slope and tetramodule used for the same
JP2024003965A (en) Agricultural greenhouse, tetra modules used for greenhouse
JP3148304U (en) Truss muscle joint instrument
JP2024006260A (en) Truss structure stage
JPH0227034A (en) Joint of space truss
EP1473417A1 (en) Building structure
JPH0754398A (en) Steel skeleton construction of building

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895492

Country of ref document: EP

Kind code of ref document: A1