WO2023090127A1 - Alloy, alloy member, device, and alloy production method - Google Patents

Alloy, alloy member, device, and alloy production method Download PDF

Info

Publication number
WO2023090127A1
WO2023090127A1 PCT/JP2022/040375 JP2022040375W WO2023090127A1 WO 2023090127 A1 WO2023090127 A1 WO 2023090127A1 JP 2022040375 W JP2022040375 W JP 2022040375W WO 2023090127 A1 WO2023090127 A1 WO 2023090127A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
mass
content
less
phase
Prior art date
Application number
PCT/JP2022/040375
Other languages
French (fr)
Japanese (ja)
Inventor
慶一 石塚
淳一 坂本
広与 田宮
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN202280075674.0A priority Critical patent/CN118234881A/en
Priority to EP22895410.3A priority patent/EP4435126A1/en
Publication of WO2023090127A1 publication Critical patent/WO2023090127A1/en
Priority to US18/652,667 priority patent/US20240279781A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present disclosure relates to Mg-Li alloys, alloy members, devices, and methods of manufacturing alloy members.
  • Patent Document 1 discloses a magnesium-lithium alloy in which the content of lithium is in the range of 8% by mass or more and 11% by mass or less.
  • a first aspect for solving the above problems is an alloy containing Mg and Li, wherein the sum of the Mg content and the Li content is 90% by mass or more, and the Li content is in the range of more than 11% by mass and 13.5% by mass or less, the alloy contains one or more elements selected from the first group consisting of Ge, Mn and Si, and the alloy contains at 25 ° C.
  • a second aspect for solving the above problems is an alloy containing Mg and Li, wherein the sum of the Mg content and the Li content is 90% by mass or more, and the Li content of the alloy is The content is in the range of 5.34% by mass or more and 11% by mass or less, the alloy contains one or more elements selected from the first group consisting of Ge, Mn and Si, and the temperature of the alloy at 25 ° C.
  • the alloy is characterized by satisfying y>0.3736x 2 ⁇ 24.053x+217.79, where y (%) is the proportion of ⁇ phase at temperature and x (mass %) is the content of Li.
  • a third aspect for solving the above problems contains Mg and Li, contains one or more elements selected from the first group consisting of Ge, Mn and Si, the Mg content and the Li
  • the present disclosure it is possible to provide a magnesium-lithium alloy that contains an ⁇ phase even if the Li content is more than 11% by mass, and that is lightweight and has excellent corrosion resistance.
  • the Li content is in the range of 5.34% by mass or more and 11% by mass or less, it is possible to provide a magnesium-lithium alloy with a higher ⁇ -phase content than conventional alloys, which is lightweight and excellent in corrosion resistance.
  • FIG. 1 is a schematic diagram of an alloy member according to a first embodiment;
  • FIG. It is a schematic diagram of the apparatus concerning a 3rd embodiment. It is a schematic diagram of the equipment concerning a 4th embodiment. It is a schematic diagram of the apparatus concerning a 5th embodiment.
  • FIG. 4 is a diagram showing the results of 2 ⁇ - ⁇ measurement in Example 1-1; It is a figure which shows the abundance ratio of the (alpha) phase of an Example.
  • FIG. 1 is a schematic diagram of the alloy member according to the first embodiment, and is a cross-sectional view cut in the lamination direction.
  • the alloy member 100 is a magnesium-lithium alloy member (Mg-Li alloy member).
  • the alloy member includes a base material 102 and a coating 101 provided on the base material 102 .
  • the film 101 is provided to protect the first surface 102A of the substrate, and can be made of, for example, a material containing magnesium phosphate or magnesium fluoride. Further, a coating film such as a primer or a topcoat layer may be provided on the film 101 according to the purpose of the user. Examples of the coating film include a heat shielding film having a heat shielding function. However, depending on the purpose of use, the film 101 may be omitted. Therefore, in the present disclosure, the aspect without the coating 101 is also referred to as the Mg—Li alloy member.
  • the shape of the base material 102 is not particularly limited as long as it has the first surface 102A.
  • the shape is not limited to the hexahedron such as the rectangular parallelepiped and the cube shown in FIG. Also, since the first surface 102A is an arbitrary surface, its location is not particularly limited.
  • the base material 102 contains a magnesium-lithium alloy (Mg-Li alloy).
  • Mg—Li alloy refers to an alloy containing Mg and Li, and the sum of the Mg content and the Li content is 90% by mass or more.
  • the specific gravity can be easily made 1.60 or less.
  • Mg—Li alloys are lightweight metal materials, and are superior in light weight, vibration damping properties, and specific strength as compared to Li-free Mg alloys. Being excellent in damping means quickly converging vibration by quickly converting vibration energy into thermal energy. Further, the specific strength is the tensile strength per density, and the higher the specific strength, the lighter the member.
  • the specific gravity exceeds 1.60, making it difficult to reduce the weight.
  • a more preferable specific gravity is 1.50 or less.
  • Mg-Li alloys have different crystal structures depending on the Li content.
  • the structure is based on the phase diagram described in the document ""Binary alloy phase diagram collection", edited by Seizo Nagasaki and Makoto Hirabayashi, publisher: Agne Technical Center, ISBN-13: 978-4900041882, release date: 2001/01"
  • the Mg—Li alloy has a single-phase region of ⁇ phase, a single-phase region of ⁇ -phase, and a eutectic region having both ⁇ -phase and ⁇ -phase.
  • the ⁇ phase is rich in Mg and is also called a hexagonal close-packed phase, and its crystal structure is a hexagonal close-packed (hcp) structure.
  • the ⁇ phase is rich in Li and is also called a body-centered cubic phase, and its crystal The structure is a bcc (Body-Centered Cubic) structure. If the Li content is lower than 5.34% by mass at 25° C., only the ⁇ phase is present.Also, at 25° C., Li is 5.34 mass%. % or more and 11% by mass or less, a mixed phase of ⁇ phase and ⁇ phase occurs, and when Li exceeds 11% by mass at 25° C., only ⁇ phase occurs.
  • the Mg-Li alloy becomes lighter as the Li content increases, it is desirable to increase the Li content.
  • the conventional Mg—Li alloy is a ⁇ -phase single phase with a Li content of 11% by mass or more, it will rapidly corrode simply by being left in an environment at room temperature (for example, 25° C.) for a long time. There was a problem. Therefore, it has been necessary to improve the corrosion resistance of Mg—Li alloys.
  • the specific element to be contained in the Mg-Li alloy is one or more elements selected from the first group consisting of Ge, Mn and Si. Although the detailed mechanism has not been completely elucidated, from the experimental results including the examples described later, it is believed that these first group elements play a role in generating the ⁇ phase.
  • the content of Ge in the Mg-Li alloy is preferably 0.3% by mass or less.
  • the corrosion resistance is particularly good.
  • the Ge content exceeds 0.3% by mass, Ge oxide may segregate at the grain boundaries of the Mg—Li alloy.
  • the Ge content is more preferably in the range of 0.01% by mass or more and 0.1% by mass or less.
  • the content of Mn in the Mg--Li alloy is preferably 2% by mass or less.
  • the toughness is good.
  • the corrosion resistance may become comparable to that when Mn is not contained.
  • a more preferable Mn content is 1.5% by mass or less.
  • a more preferable Mn content is in the range of 0.1% by mass or more and 1.1% by mass or less.
  • the content of Si in the Mg--Li alloy is preferably 0.5% by mass or less.
  • the corrosion resistance is particularly good.
  • the Si content exceeds 0.5% by mass, the corrosion resistance may be comparable to that when Si is not contained.
  • a more preferable Si content is less than 0.1% by mass.
  • a more preferable Si content is in the range of 0.01% by mass or more and 0.03% by mass or less.
  • the Mg--Li alloy of the first embodiment preferably contains two or more elements of the first group from the viewpoint of facilitating the formation of the ⁇ -phase. More preferably, all three types are contained. Also, from the same point of view, it is preferable that the content of Ge is the largest among these three types. Also, from the same point of view, it is preferable that the content of Si is the smallest among these three types.
  • the content of Li in the Mg—Li alloy is in the range of more than 11% by mass and 13.5% by mass or less.
  • one or more elements selected from the first group and the raw material of the Mg—Li-based alloy having the above Li content are melt-synthesized, and during subsequent cooling, after the molten raw material starts to solidify The cooling rate to 100°C, which is just below the recrystallization temperature, is set to 100°C/min or less. Through such a process, a Mg--Li alloy having an ⁇ phase at 25.degree. C. can be obtained.
  • the cooling rate is more preferably 50° C./min or less, and still more preferably 25° C./min or less.
  • the obtained Mg—Li-based alloy of the first embodiment has an ⁇ phase at 25° C. in spite of a relatively large composition range in which the Li content is more than 11% by mass and 13.5% by mass or less. Corrosion can be suppressed more than
  • the ratio of the ⁇ phase in the Mg—Li alloy of the first embodiment at 25°C is preferably 8% or more.
  • the corrosion resistance is particularly good.
  • a more preferable ⁇ -phase ratio is 20% or more, and a further preferable ⁇ -phase ratio is 30% or more.
  • the abundance ratio of the ⁇ phase can be measured by the X-ray diffraction method. Specifically, for example, it is possible to measure by the following procedure. First, a diffraction pattern is obtained by the 2 ⁇ - ⁇ method in the range of 20° to 100° with respect to the Mg--Li alloy, and the background is removed. Next, each peak of the diffraction pattern from which the background has been removed is divided into an ⁇ -phase-derived peak and a ⁇ -phase-derived peak.
  • the Mg--Li alloy of the first embodiment preferably further contains one or more elements selected from the second group consisting of Al, Zn, Zr, Ca and Be.
  • These elements of the second group are elements that the inventor has confirmed experimentally that even if they exist in the Mg--Li alloy, they hardly inhibit the formation of the ⁇ -phase.
  • the sum of the contents of one or more elements selected from the second group is preferably 0.01% by mass or more and 7% by mass or less. When the sum of the contents of the one or more elements selected from the second group is within the above range, at least one of corrosion resistance, fracture strength, ductility and toughness will be good.
  • the content of Al in the Mg-Li alloy is preferably 5% by mass or less.
  • the breaking strength is good.
  • the content of Al exceeds 5% by mass, the process window becomes narrow, although the mechanism is unknown, and there is a possibility that the effect of generating the ⁇ phase by the elements of the first group is inhibited.
  • a more preferable Al content is in the range of 0.1% by mass or more and 4% by mass or less.
  • the content of Zn in the Mg-Li alloy is preferably 2% by mass or less.
  • the Zn content is 2% by mass or less, good ductility is achieved.
  • the Zn content exceeds 2% by mass, the process window is narrowed, although the mechanism is unknown, and there is a risk of inhibiting the effect of the first group elements to generate the ⁇ phase.
  • a more preferable Zn content is 0.1% by mass or more and 1% by mass or less.
  • the content of Zr in the Mg-Li alloy is preferably 0.7% by mass or less.
  • the toughness is good.
  • the toughness may be approximately the same as when Zr is not contained.
  • a more preferable Zr content is in the range of 0.1% by mass and 0.5% by mass or less.
  • the content of Ca in the Mg-Li alloy is preferably 0.3% by mass or less.
  • the content of Ca in the Mg-Li alloy is preferably 0.3% by mass or less.
  • the content of Ca is 0.3% by mass or less, good corrosion resistance is achieved.
  • the content of Ca exceeds 0.3% by mass, the corrosion resistance may become comparable to that when Ca is not contained.
  • a more preferable Ca content is in the range of 0.01% by mass or more and 0.15% by mass or less.
  • the content of Be in the Mg-Li alloy is preferably 0.1% by mass or less.
  • the toughness is good.
  • the Be content exceeds 0.1% by mass, the toughness may be about the same as when Be is not included.
  • a more preferable Be content is in the range of 0.01% by mass or more and 0.05% by mass or less.
  • the Mg—Li alloy of the first embodiment may contain metal elements other than the elements exemplified above within a range in which the characteristics do not change.
  • These metal elements include unavoidable impurities that cannot be avoided during manufacturing. Examples of unavoidable impurities include Fe and Cu.
  • the content of unavoidable impurities in the Mg—Li alloy is 1% by mass or less.
  • the Mg--Li alloy of the first embodiment has an ⁇ -phase even if the Li content is more than 11% by mass at 25°C, so it is lightweight and excellent in corrosion resistance.
  • the method for producing a Mg—Li alloy according to the first embodiment includes means for melting and synthesizing raw materials, and then cooling the molten raw materials at a cooling rate of 100° C./min or less from when the molten raw materials begin to solidify to 100° C. It is not particularly limited as long as it has. An example of a preferable manufacturing method is described below.
  • the raw materials for the Mg-Li alloy are prepared (preparation process). Specifically, it contains Mg, Li, and one or more elements selected from the first group consisting of Ge, Mn and Si so as to have a desired composition, and the content of Mg and the content of Li A raw material having a sum of 90% by mass or more is prepared. At this time, the content of Li is more than 11% by mass and 13.5% by mass or less.
  • the purity of the raw material is, for example, 4N, and commercially available high-purity metals can be used.
  • the form of the metal is not particularly limited, and a desired form can be selected from, for example, ingots, chips, flakes, powders, shots and pellets.
  • the metal not only a single metal element but also an alloy composed of a plurality of metal elements may be used. At this time, if necessary, raw materials of one or more elements selected from the second group consisting of Al, Zn, Zr, Ca and Be may be prepared.
  • these raw materials are heated and melted (heating process). Specifically, these raw materials are placed in a crucible and heated to 600° C. or higher to melt.
  • the temperature should be the melting point or higher of these raw materials, preferably 700° C. or higher. More preferably, it is 800° C. or higher.
  • the means for heating is not particularly limited, for example, high-frequency induction heating and electromagnetic induction stirring can be employed.
  • the atmosphere during heating is preferably an inert atmosphere, for example, an argon gas atmosphere, in order to prevent oxidation of the alloy.
  • the heating rate to the melting temperature is not particularly limited.
  • the temperature may be held for a certain period of time during heating and melting, but the holding time can be appropriately selected depending on the desired shape.
  • the molten raw material is cooled and solidified (cooling process).
  • the cooling rate is controlled so that the cooling rate from the start of solidification of the molten raw material to 100° C. just below the recrystallization temperature is 100° C./min or less.
  • the cooling rate described above is the average cooling rate when the molten raw material is cooled to 100° C. just below the recrystallization temperature after starting to solidify.
  • a more preferable cooling rate in the cooling step is 50°C/min or less, and a further preferable cooling rate is 25°C/min or less.
  • the cooling rate at 200°C or lower is preferably slower than the cooling rate at temperatures higher than 200°C.
  • the obtained Mg-Li alloy may be machined to have a desired shape. Machining is appropriately selected from lapping, cutting, barrel polishing, etc., as required. Also, the obtained Mg—Li alloy may be washed. In the cleaning, it is possible to remove metal scraps, dust, oil stains, deteriorated layers, etc. due to machining such as cutting. Therefore, it is possible to use general cleaning methods such as cleaning with an acid or alkali, cleaning using a surfactant, brush cleaning, and ultrasonic cleaning. After washing, drying may be performed as necessary.
  • the obtained Mg--Li alloy may be used as a base material and a coating may be provided on the base material.
  • the means for providing the coating is not particularly limited, and can be appropriately selected depending on the coating to be provided. If the coating is magnesium fluoride, a known anodizing process or chemical conversion treatment using a known treatment solution can be used. Further, when the film is magnesium phosphate, chemical conversion treatment using a known treatment liquid can be used.
  • the Mg—Li alloy of the second embodiment differs from the first embodiment in the Li content.
  • the Mg—Li alloy of the second embodiment will be described below, focusing on the differences from the first embodiment.
  • the content of Li in the Mg—Li alloy is in the range of 5.34% by mass or more and 11% by mass or less.
  • one or more elements selected from the first group and the raw material of the Mg—Li-based alloy having the above Li content are melt synthesized, and during subsequent cooling, the molten raw material starts to solidify to 100 ° C.
  • the cooling rate of is set to 100°C/min or less.
  • the cooling rate is more preferably 50° C./min or less, and still more preferably 25° C./min or less.
  • the obtained Mg—Li-based alloy of the second embodiment has more ⁇ -phase than before in the composition region where the Li content is 5.34% by mass or more and 11% by mass or less, so corrosion can be further suppressed. can.
  • the Li concentration in the equilibrium state at 25° C. is 16.5 atomic % (5 .34% by mass).
  • the formation of the ⁇ phase begins.
  • the existence ratio of the ⁇ phase in the equilibrium state at 25° C. is 100%.
  • the Li concentration in the equilibrium state at 25 ° C. is 30.0 atomic % (10.9 mass %).
  • Li is added to Mg at a concentration higher than this concentration, the ⁇ -phase disappears and only the ⁇ -phase is formed. That is, the existence ratio of the ⁇ phase becomes 0% at this concentration or higher.
  • the intermediate Li concentration between the two Li concentrations read above is 7.96% by mass, and the existence ratio of the ⁇ phase in the equilibrium state at 25° C. at this concentration is 50%.
  • this curve represents the abundance ratio of the ⁇ phase in the equilibrium state of Li concentration and 25°C in the conventional Mg-Li alloy.
  • the Mg—Li-based alloy of the second embodiment is characterized by satisfying the following formula (2), where y is the abundance ratio of the ⁇ phase and x is the mass % of Li. y>0.3736x 2 ⁇ 24.053x+217.79 (2)
  • the Mg—Li-based alloy of the second embodiment has more ⁇ -phases than before in the composition region where the Li content is 5.34% by mass or more and 11% by mass or less, so corrosion can be further suppressed. .
  • the manufacturing method of the Mg—Li alloy member of the second embodiment differs from the first embodiment in the preparation process.
  • a method of manufacturing an Mg--Li alloy member according to the second embodiment will be described below, focusing on the differences from the first embodiment.
  • the preparation process for preparing the raw material for the Mg-Li alloy will be explained. Specifically, it contains Mg, Li, and one or more elements selected from the first group consisting of Ge, Mn and Si so as to have a desired composition, and the content of Mg and the content of Li A raw material having a sum of 90% by mass or more is prepared. At this time, the content of Li is 5.34% by mass or more and 11% by mass or less.
  • the purity of the raw material is, for example, 4N, and commercially available high-purity metals can be used.
  • the form of the metal is not particularly limited, and a desired form can be selected from, for example, ingots, chips, flakes, powders, shots and pellets.
  • the metal not only a single metal element but also an alloy composed of a plurality of metal elements may be used. At this time, if necessary, raw materials of one or more elements selected from the second group consisting of Al, Zn, Zr, Ca and Be may be prepared.
  • the cooling process for cooling and solidifying the molten raw material will be explained. Specifically, similarly to the first embodiment, the cooling rate is controlled so that the cooling rate from the start of solidification of the molten raw material to 100° C. is 100° C./min or less. Through the above steps, the Mg—Li alloy of the second embodiment can be obtained.
  • a more preferable cooling rate in the cooling step is 50°C/min or less, and a further preferable cooling rate is 25°C/min or less.
  • FIG. 2 shows the configuration of a single-lens reflex digital camera 600, which is an imaging device as an example of the device according to the third embodiment of the present disclosure.
  • a camera body 602 and a lens barrel 601, which is an optical device, are combined.
  • Lens 603 and 605 are examples of components arranged on the optical axis of the imaging optical system in the housing of the lens barrel 601, and is received by the imaging device. It is taken by Here, the lens 605 is supported by an inner cylinder 604 and movably supported with respect to the outer cylinder of the lens barrel 601 for focusing and zooming.
  • a main mirror 607 which is an example of a component inside a housing 621 of the camera body, and after passing through a prism 611, the photographed image is displayed to the photographer through a finder lens 612.
  • the main mirror 607 is, for example, a half mirror, and light transmitted through the main mirror is reflected by a sub-mirror 608 toward an AF (autofocus) unit 613. This reflected light is used for distance measurement, for example.
  • the main mirror 607 is attached to and supported by a main mirror holder 640 by adhesion or the like.
  • the main mirror 607 and the sub-mirror 608 are moved out of the optical path via a drive mechanism (not shown), the shutter 609 is opened, and the photographed light image incident from the lens barrel 601 is formed on the image sensor 610 .
  • the diaphragm 606 is configured to change the brightness and the depth of focus at the time of shooting by changing the aperture area.
  • the alloy member 100 can be used for at least part of the housings 620 and 621.
  • the housings 620 and 621 may be composed only of the Mg—Li alloy member, or the alloy member 100 may be provided with a coating film. Since the Mg—Li alloy of the present disclosure is lightweight and excellent in corrosion resistance, it is possible to provide an imaging device that is lighter in weight and superior in corrosion resistance than conventional imaging devices.
  • the imaging device has been described using a single-lens reflex digital camera as an example, the present disclosure is not limited to this, and may be a smartphone or a compact digital camera.
  • FIG. 3 shows the configuration of a personal computer, which is an electronic device that is an example of the device according to the fourth embodiment of the present disclosure.
  • a personal computer 800 has a display section 801 and a main body section 802 .
  • An electronic component 830 which is an example of a component provided in the housing, is provided inside the housing 820 of the main body 802.
  • the alloy member 100 can be used for at least part of the housing 820 of the main body 802 .
  • the housing 820 may be composed only of the Mg—Li alloy member, or the alloy member 100 may be provided with a coating film. Since the Mg—Li alloy of the present disclosure is lightweight and excellent in corrosion resistance, it is possible to provide a personal computer that is lighter in weight and more excellent in corrosion resistance than conventional personal computers.
  • the electronic device has been described using the personal computer 800 as an example, the present disclosure is not limited to this, and may be a smartphone or tablet.
  • FIG. 4 is a drone, which is an example of a moving object according to the fifth embodiment of the present disclosure.
  • the drone 700 includes a plurality of drive units 701 and a body unit 702 connected to the drive units 701 .
  • a driving circuit (not shown), which is an example of a component, is provided in the main body 702 .
  • the drive unit 701 has, for example, a propeller.
  • a leg portion 703 may be connected to the body portion 702, or a configuration in which a camera 704 is connected may be employed.
  • the alloy member 100 can be used for at least a portion of the housing 710 of the body portion 702 and the leg portion 703 .
  • the housing 710 may be composed only of the Mg—Li alloy member, or the alloy member 100 may be provided with a coating film. Since the Mg—Li-based alloy of the present disclosure is excellent in damping properties and corrosion resistance, it is possible to provide drones that are superior in damping properties and corrosion resistance to conventional drones.
  • the drone 700 is used as an example to describe the moving object, the present disclosure is not limited to this, and may be an automobile or an aircraft.
  • each peak of the diffraction pattern from which the background was removed was divided into an ⁇ -phase-derived peak and a ⁇ -phase-derived peak.
  • cps Counteridium Count per Second
  • a sample was used, which was obtained by cutting the manufactured cylindrical billet of ⁇ 60 mm into a plate shape of 20 mm ⁇ 50 mm ⁇ 2 mm.
  • the specific gravity was measured by the Archimedes method. Specifically, a cylinder of ⁇ 10 mm ⁇ 10 mm was produced from the produced billet, and the column was immersed in water for measurement. The same sample was measured three times, and the average value was used as the specific gravity value.
  • a plate-shaped sample was prepared by cutting the produced cylindrical billet of ⁇ 60 mm in the thickness direction of 15 mm perpendicularly to the length direction. The plate-like sample was left in the atmosphere at 25°C ⁇ 2°C for 3 months. After standing, it was visually observed to confirm whether or not the initial metallic color was maintained. A was given when the metallic color was maintained on the entire surface, B and C were given when at least part of the metallic color was maintained, and D was given when the metallic color could not be maintained.
  • Example 1-1 the composition is Mg-11.5% Li-0.25% Ge-3.4% Al-0.18% Mn-0.04% Be-0.02% Si A metal piece of each element with a purity of 4N was prepared.
  • FIG. 5 is a diagram showing the results of 2 ⁇ - ⁇ measurement in Example 1-1.
  • Example 1-2 differs from Example 1-1 in composition.
  • the composition of Example 1-2 is Mg-12.3% Li-0.29% Ge-2.9% Al-0.09% Mn-0.023% Si-0.15% Ca. Otherwise, the alloy member of Example 1-2 was obtained in the same manner as in Example 1-1.
  • the abundance ratio of the ⁇ phase in the alloy member of Example 1-2 was 22.2%. Moreover, the specific gravity was 1.43. In addition, in the corrosion resistance measurement, the evaluation was set to A because the metallic color was maintained.
  • Example 1-3 differs from Example 1-1 in composition.
  • the composition of Example 1-3 is Mg-11.0% Li-2.2% Al-1.0% Zn-1.1% Mn-0.015% Si.
  • an alloy member of Example 1-3 was obtained in the same manner as in Example 1-1.
  • the abundance ratio of the ⁇ phase in the alloy member of Example 1-3 was 30.8%. Moreover, the specific gravity was 1.42. In addition, in the corrosion resistance measurement, the evaluation was set to A because the metallic color was maintained.
  • Example 1-4 differs from Example 1-1 in composition.
  • the composition of Examples 1-4 is Mg-11.9% Li-3.9% Al-1.0% Zn-0.006% Mn-0.01% Si. Otherwise, the alloy member of Example 1-4 was obtained in the same manner as in Example 1-1.
  • the abundance ratio of the ⁇ phase in the alloy member of Example 1-4 was 2.7%. Moreover, the specific gravity was 1.45. Also, in the corrosion resistance measurement, the evaluation was set to C because a change to black was partially confirmed.
  • Example 1-5 differs from Example 1-1 in composition.
  • the composition of Examples 1-5 is Mg-12.2% Li-3.0% Zn-0.41% Zr-0.01% Si. Otherwise, an alloy member of Example 1-5 was obtained in the same manner as in Example 1-1.
  • the abundance ratio of the ⁇ phase in the alloy member of Example 1-5 was 8.1%. Moreover, the specific gravity was 1.45. Also, in the corrosion resistance measurement, a slight change to black was confirmed, so the evaluation was set to B.
  • Example 1-6 differs from Example 1-1 in composition.
  • the composition of Examples 1-6 is Mg-13.45% Li-5.54% Al-0.41% Ca-0.3% Mn. Otherwise, an alloy member of Example 1-6 was obtained in the same manner as in Example 1-1.
  • the abundance ratio of the ⁇ phase in the alloy member of Example 1-6 was 3.4%. Moreover, the specific gravity was 1.40. Also, in the corrosion resistance measurement, the evaluation was set to C because a change to black was partially confirmed.
  • each element with a purity of 4N which is a raw material, so that the composition is Mg-8.9% Li-3.9% Al-0.8% Zn-0.02% Mn-0.19% Si of metal pieces were prepared.
  • Example 2-2 differs from Example 2-1 in composition.
  • the composition of Example 2-2 is Mg-9.0% Li-4.1% Al-1.1% Zn-0.009% Mn-0.015% Si. Otherwise, an alloy member of Example 2-2 was obtained in the same manner as in Example 2-1.
  • the abundance ratio of the ⁇ phase in the alloy member of Example 2-2 was 47.0%. Moreover, the specific gravity was 1.52. In addition, in the corrosion resistance measurement, the evaluation was set to A because the metallic color was maintained.
  • Example 2-3 differs in composition from Example 2-1.
  • the composition of Example 2-3 is Mg-7.0% Li-6.9% Al-0.8% Zn-0.015% Si. Otherwise, an alloy member of Example 2-3 was obtained in the same manner as in Example 2-1.
  • the abundance ratio of the ⁇ phase in the alloy member of Example 2-3 was 98.7%. Moreover, the specific gravity was 1.60. In addition, in the corrosion resistance measurement, the evaluation was set to A because the metallic color was maintained.
  • FIG. 6 is a graph showing the Li concentration on the horizontal axis and the abundance ratio of the ⁇ phase on the vertical axis in the example.
  • the alloy members of Examples 1-1 to 1-6 in which the Li content is in the range of more than 11% by mass and 13.5% by mass or less, all have an ⁇ phase at 25 ° C. Corrosion resistance was as good as A or B.
  • Examples 1-1 to 1-3 in which the abundance ratio of the ⁇ -phase was 20% or more, had a particularly good corrosion resistance of A.
  • the specific gravities of the alloy members of Examples 1-1 to 1-6 were all less than 1.50, and they were particularly lightweight.
  • the alloy members of Examples 2-1 to 2-3 in which the Li content was in the range of 5.34% by mass or more and 11% by mass or less, had particularly good corrosion resistance of A.
  • the ratio of the ⁇ phase at 25° C. satisfied the relationship of formula (2) y>0.3736x 2 -24.053x+217.79.
  • the specific gravities of the alloy members of Examples 2-1 to 2-3 were all 1.60 or less, which were higher than those of Examples 1-1 to 1-6, but were light in weight.
  • alloy member 101 coating 102 base material 600 single-lens reflex digital camera (equipment) 601 lens barrel (equipment) 700 drone (equipment) 800 personal computer (equipment)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Continuous Casting (AREA)

Abstract

This alloy contains Mg and Li, with the sum of the Mg content and the Li content being at least 90 mass%. The Li content of the alloy is in the range larger than 11 mass% but not more than 13.5 mass%, and the alloy contains at least one element selected from a first group consisting of Ge, Mn, and Si. The alloy has an α-phase at 25°C.

Description

合金、合金部材、機器及び合金の製造方法Alloys, alloy members, equipment, and methods of manufacturing alloys
 本開示は、Mg-Li系合金、合金部材、機器及び合金部材の製造方法に関する。 The present disclosure relates to Mg-Li alloys, alloy members, devices, and methods of manufacturing alloy members.
 マグネシウム系合金よりなる合金部材は、軽量であり、かつ、制振性や比強度に優れることから様々な機器に使用されている。近年、機器の更なる軽量化が要求されており、マグネシウム合金よりも比重が小さいマグネシウム-リチウム系合金(Mg-Li系合金)が注目されている。特許文献1には、リチウムの含有量が8質量%以上11%質量以下の範囲であるマグネシウム-リチウム系合金が開示されている。  Magnesium-based alloys are used in various devices because they are lightweight and have excellent damping properties and specific strength. In recent years, there has been a demand for further weight reduction of equipment, and magnesium-lithium alloys (Mg-Li alloys), which have a lower specific gravity than magnesium alloys, have attracted attention. Patent Document 1 discloses a magnesium-lithium alloy in which the content of lithium is in the range of 8% by mass or more and 11% by mass or less.
特開2004-156089号公報JP-A-2004-156089
 マグネシウム-リチウム系合金はLiの含有量が多いほど軽量になるが、Liの含有量が多くなると耐食性が低下するという課題があった。 The higher the Li content, the lighter the magnesium-lithium alloy, but the higher the Li content, the lower the corrosion resistance.
 上記課題を解決するための第一の態様は、Mg及びLiを含有し、前記Mgの含有量及び前記Liの含有量の和が90質量%以上である合金であって、前記Liの含有量が、11質量%より多く13.5質量%以下の範囲であり、前記合金が、Ge,Mn及びSiからなる第1群から選ばれる1以上の元素を含有し、前記合金が、25℃においてα相を有する、ことを特徴とする合金である。 A first aspect for solving the above problems is an alloy containing Mg and Li, wherein the sum of the Mg content and the Li content is 90% by mass or more, and the Li content is in the range of more than 11% by mass and 13.5% by mass or less, the alloy contains one or more elements selected from the first group consisting of Ge, Mn and Si, and the alloy contains at 25 ° C. An alloy characterized by having an α phase.
 上記課題を解決するための第二の態様は、Mg及びLiを含有し、前記Mgの含有量及び前記Liの含有量の和が90質量%以上である合金であって、前記合金のLiの含有量が、5.34質量%以上11質量%以下の範囲であり、前記合金が、Ge,Mn及びSiからなる第1群から選ばれる1以上の元素を含有し、前記合金の25℃の温度におけるα相の割合をy(%)、Liの含有量をx(質量%)としたときに、y>0.3736x-24.053x+217.79を満たすことを特徴とする合金である。 A second aspect for solving the above problems is an alloy containing Mg and Li, wherein the sum of the Mg content and the Li content is 90% by mass or more, and the Li content of the alloy is The content is in the range of 5.34% by mass or more and 11% by mass or less, the alloy contains one or more elements selected from the first group consisting of Ge, Mn and Si, and the temperature of the alloy at 25 ° C. The alloy is characterized by satisfying y>0.3736x 2 −24.053x+217.79, where y (%) is the proportion of α phase at temperature and x (mass %) is the content of Li.
 上記課題を解決するための第三の態様は、Mg及びLiを含有し、Ge,Mn及びSiからなる第1群から選ばれる1以上の元素を含有し、前記Mgの含有量及び前記Liの含有量の和が90質量%以上である原料を用意する用意工程と、前記原料を600℃以上に加熱して溶融する加熱工程と、前記溶融した原料を冷却して固化する冷却工程と、を有し、前記冷却工程において、前記溶融した原料が凝固され始めてから100℃までの冷却速度が100℃/分以下であることを特徴とする合金の製造方法である。 A third aspect for solving the above problems contains Mg and Li, contains one or more elements selected from the first group consisting of Ge, Mn and Si, the Mg content and the Li A preparation step of preparing a raw material having a sum of contents of 90% by mass or more, a heating step of heating the raw material to 600 ° C. or higher to melt it, and a cooling step of cooling and solidifying the molten raw material. and in the cooling step, the cooling rate from the start of solidification of the molten raw material to 100° C. is 100° C./min or less.
 本開示によれば、Li含有量が11質量%より多くてもα相を含有する、軽量かつ耐食性に優れたマグネシウム-リチウム系合金を提供することができる。 According to the present disclosure, it is possible to provide a magnesium-lithium alloy that contains an α phase even if the Li content is more than 11% by mass, and that is lightweight and has excellent corrosion resistance.
 また、Li含有量が5.34質量%以上11質量%以下の範囲において、従来よりもα相の含有量が多い、軽量かつ耐食性に優れたマグネシウム-リチウム系合金を提供することができる。 In addition, when the Li content is in the range of 5.34% by mass or more and 11% by mass or less, it is possible to provide a magnesium-lithium alloy with a higher α-phase content than conventional alloys, which is lightweight and excellent in corrosion resistance.
第1実施形態に係る合金部材の概略図である。1 is a schematic diagram of an alloy member according to a first embodiment; FIG. 第3実施形態に係る機器の概略図である。It is a schematic diagram of the apparatus concerning a 3rd embodiment. 第4実施形態に係る機器の概略図である。It is a schematic diagram of the equipment concerning a 4th embodiment. 第5実施形態に係る機器の概略図である。It is a schematic diagram of the apparatus concerning a 5th embodiment. 実施例1-1の2θ-θ測定の結果を示す図である。FIG. 4 is a diagram showing the results of 2θ-θ measurement in Example 1-1; 実施例のα相の存在比率を示す図である。It is a figure which shows the abundance ratio of the (alpha) phase of an Example.
 以下、本開示の実施形態について説明する。 The embodiments of the present disclosure will be described below.
 (第1実施形態)
 [合金部材]
 図1は、第1実施形態に係る合金部材の概略図であり、積層方向から切断した断面図である。
(First embodiment)
[Alloy material]
FIG. 1 is a schematic diagram of the alloy member according to the first embodiment, and is a cross-sectional view cut in the lamination direction.
 合金部材100はマグネシウム-リチウム系合金部材(Mg-Li系合金部材)である。合金部材は、基材102と、基材102の上に設けられた被膜101と、を備える。被膜101は、基材の第1面102Aを保護するために設けられ、例えば、リン酸マグネシウム等やフッ化マグネシウムを含む材料を用いることができる。また、ユーザーの目的に応じて被膜101の上にプライマや上塗り層などの塗装膜を設けても良い。塗装膜としては、例えば、遮熱機能を備える遮熱膜が挙げられる。ただし、使用目的によっては、被膜101はなくても構わない。そのため、本開示では、被膜101がない態様もMg-Li系合金部材と呼ぶ。 The alloy member 100 is a magnesium-lithium alloy member (Mg-Li alloy member). The alloy member includes a base material 102 and a coating 101 provided on the base material 102 . The film 101 is provided to protect the first surface 102A of the substrate, and can be made of, for example, a material containing magnesium phosphate or magnesium fluoride. Further, a coating film such as a primer or a topcoat layer may be provided on the film 101 according to the purpose of the user. Examples of the coating film include a heat shielding film having a heat shielding function. However, depending on the purpose of use, the film 101 may be omitted. Therefore, in the present disclosure, the aspect without the coating 101 is also referred to as the Mg—Li alloy member.
 基材102は、第1面102Aを有していれば、その形状は特に限定されない。図1に示した直方体や立方体といった六面体に限らず、円柱、球体、角柱、錐体、筒状であっても構わない。また、第1面102Aは任意の面であるため、その場所は特に限定されない。 The shape of the base material 102 is not particularly limited as long as it has the first surface 102A. The shape is not limited to the hexahedron such as the rectangular parallelepiped and the cube shown in FIG. Also, since the first surface 102A is an arbitrary surface, its location is not particularly limited.
 基材102は、マグネシウム-リチウム系合金(Mg-Li系合金)を含む。本開示において、Mg-Li系合金とは、Mg及びLiを含有し、Mgの含有量及びLiの含有量の和が90質量%以上である合金のことを指す。Mgの含有量及びLiの含有量の和が90質量%以上であると、比重を1.60以下にすることが容易となる。Mg-Li系合金は、軽量金属材料であり、Liを含有しないMg合金と比べて、軽量、制振性、比強度に優れる。制振性に優れるとは、振動エネルギーを素早く熱エネルギーに変換することにより、振動を早く収束させることをいう。また、比強度は密度あたりの引っ張り強さであり、比強度が高いほど部材の軽量化が可能となる。一方、Mg及びLiの含有量の和が90質量%未満であると、比重が1.60を超えて軽量にすることが困難となる。なお、より好ましい比重は1.50以下である。 The base material 102 contains a magnesium-lithium alloy (Mg-Li alloy). In the present disclosure, an Mg—Li alloy refers to an alloy containing Mg and Li, and the sum of the Mg content and the Li content is 90% by mass or more. When the sum of the Mg content and the Li content is 90% by mass or more, the specific gravity can be easily made 1.60 or less. Mg—Li alloys are lightweight metal materials, and are superior in light weight, vibration damping properties, and specific strength as compared to Li-free Mg alloys. Being excellent in damping means quickly converging vibration by quickly converting vibration energy into thermal energy. Further, the specific strength is the tensile strength per density, and the higher the specific strength, the lighter the member. On the other hand, if the sum of the contents of Mg and Li is less than 90% by mass, the specific gravity exceeds 1.60, making it difficult to reduce the weight. In addition, a more preferable specific gravity is 1.50 or less.
 Mg-Li系合金は、Liの含有量によって結晶構造が異なることが知られている。その構造を文献“「二元合金状態図集」、長崎誠三、平林眞編著、出版社:アグネ技術センター、ISBN-13:978-4900041882、発売日:2001/01”に記載の相図に基づき説明する。この相図によると、Mg-Li系合金は、α相の単相領域と、β相の単相領域と、α相とβ相を同時に有する共晶領域と、が存在することが分かる。α相は、Mgが多く、稠密六方相とも呼ばれ、その結晶構造はhcp(Hexagonal Close-Packed)構造である。β相は、Liが多く、体心立方相とも呼ばれ、その結晶構造はbcc(Body-Centered Cubic)構造である。25℃において、Liの含有量が5.34質量%よりも低い場合、α相のみとなる。また、25℃において、Liが5.34質量%以上11質量%以下の場合、α相とβ相の混相となる。また、25℃においてLiが11質量%を超える場合、β相のみとなる。 It is known that Mg-Li alloys have different crystal structures depending on the Li content. The structure is based on the phase diagram described in the document ""Binary alloy phase diagram collection", edited by Seizo Nagasaki and Makoto Hirabayashi, publisher: Agne Technical Center, ISBN-13: 978-4900041882, release date: 2001/01" According to this phase diagram, the Mg—Li alloy has a single-phase region of α phase, a single-phase region of β-phase, and a eutectic region having both α-phase and β-phase. The α phase is rich in Mg and is also called a hexagonal close-packed phase, and its crystal structure is a hexagonal close-packed (hcp) structure.The β phase is rich in Li and is also called a body-centered cubic phase, and its crystal The structure is a bcc (Body-Centered Cubic) structure.If the Li content is lower than 5.34% by mass at 25° C., only the α phase is present.Also, at 25° C., Li is 5.34 mass%. % or more and 11% by mass or less, a mixed phase of α phase and β phase occurs, and when Li exceeds 11% by mass at 25° C., only β phase occurs.
 Mg-Li系合金はLiの含有量が多いほど軽量になるため、Liの含有量を多くすることが望ましい。しかしながら、従来のMg-Li系合金は、Liの含有量が11質量%以上のβ相単相であると、室温(例えば、25℃)の環境に長時間放置するだけで急速に腐食が進むという課題があった。そのため、Mg-Li系合金の耐食性を向上させる必要があった。 Since the Mg-Li alloy becomes lighter as the Li content increases, it is desirable to increase the Li content. However, if the conventional Mg—Li alloy is a β-phase single phase with a Li content of 11% by mass or more, it will rapidly corrode simply by being left in an environment at room temperature (for example, 25° C.) for a long time. There was a problem. Therefore, it has been necessary to improve the corrosion resistance of Mg—Li alloys.
 そこで、本願発明者が鋭意検討した結果、従来よりもα相の含有割合を多くすることができる手段を見出した。具体的には、Mg-Li系合金に特定の元素を含有させ、溶融合成後の冷却時に、溶融した原料が凝固を開始してから再結晶温度直下の100℃までの間で徐冷するという手段を見出した。 Therefore, as a result of intensive studies by the inventors of the present application, they have found a means for increasing the content of the α phase compared to conventional methods. Specifically, a specific element is added to the Mg-Li alloy, and when cooling after melt synthesis, the molten raw material starts to solidify and is slowly cooled to 100°C, which is just below the recrystallization temperature. found a way.
 Mg-Li系合金に含有させる特定の元素とは、Ge,Mn及びSiからなる第1群から選ばれる1以上の元素である。詳細なメカニズムは解明しきれていないが、後述する実施例を含む実験結果から、これらの第1群の元素はα相を生成する役割を担っていると考えている。 The specific element to be contained in the Mg-Li alloy is one or more elements selected from the first group consisting of Ge, Mn and Si. Although the detailed mechanism has not been completely elucidated, from the experimental results including the examples described later, it is believed that these first group elements play a role in generating the α phase.
 Mg-Li系合金におけるGeの含有量は、0.3質量%以下であることが好ましい。Geの含有量が0.3質量%以下であると、耐食性が特に良好なものとなる。一方、Geの含有量が0.3質量%を超えると、Ge酸化物がMg-Li系合金の粒界に偏析するおそれがある。靭性を良好にするという観点において、より好ましいGeの含有量は0.01質量%以上0.1質量%以下の範囲である。 The content of Ge in the Mg-Li alloy is preferably 0.3% by mass or less. When the Ge content is 0.3% by mass or less, the corrosion resistance is particularly good. On the other hand, if the Ge content exceeds 0.3% by mass, Ge oxide may segregate at the grain boundaries of the Mg—Li alloy. From the viewpoint of improving the toughness, the Ge content is more preferably in the range of 0.01% by mass or more and 0.1% by mass or less.
 Mg-Li系合金におけるMnの含有量は、2質量%以下であることが好ましい。Mnの含有量が2質量%以下であると、靭性が良好なものとなる。一方、Mnの含有量が2質量%を超えると、Mnを含有しない時と耐食性が同程度となることがある。より好ましいMnの含有量は1.5質量%以下である。さらに好ましいMnの含有量は0.1質量%以上1.1質量%以下の範囲である。 The content of Mn in the Mg--Li alloy is preferably 2% by mass or less. When the Mn content is 2% by mass or less, the toughness is good. On the other hand, if the Mn content exceeds 2% by mass, the corrosion resistance may become comparable to that when Mn is not contained. A more preferable Mn content is 1.5% by mass or less. A more preferable Mn content is in the range of 0.1% by mass or more and 1.1% by mass or less.
 Mg-Li系合金におけるSiの含有量は、0.5質量%以下であることが好ましい。Siの含有量が0.5質量%以下であると、耐食性が特に良好なものとなる。一方、Siの含有量が0.5質量%を超えると、Siを含有しない時と耐食性が同程度となることがある。より好ましいSiの含有量は0.1質量%未満である。さらに好ましいSiの含有量は0.01質量%以上0.03質量%以下の範囲である。 The content of Si in the Mg--Li alloy is preferably 0.5% by mass or less. When the Si content is 0.5% by mass or less, the corrosion resistance is particularly good. On the other hand, if the Si content exceeds 0.5% by mass, the corrosion resistance may be comparable to that when Si is not contained. A more preferable Si content is less than 0.1% by mass. A more preferable Si content is in the range of 0.01% by mass or more and 0.03% by mass or less.
 なお、第1実施形態のMg-Li系合金は、α相を生成し易くするという観点において、第1群の元素が2種以上含有されていることが好ましい。より好ましくは3種全て含有されていることが好ましい。また、同じ観点において、この3種の中ではGeの含有量が最も多いことが好ましい。また、同じ観点において、この3種の中ではSiの含有量が最も少ないことが好ましい。 It should be noted that the Mg--Li alloy of the first embodiment preferably contains two or more elements of the first group from the viewpoint of facilitating the formation of the α-phase. More preferably, all three types are contained. Also, from the same point of view, it is preferable that the content of Ge is the largest among these three types. Also, from the same point of view, it is preferable that the content of Si is the smallest among these three types.
 第1実施形態において、Mg-Li系合金におけるLiの含有量は11質量%より多く13.5質量%以下の範囲である。第1実施形態では、第1群から選ばれる1以上の元素と上記Li含有量のMg-Li系合金の原料を溶融合成し、その後の冷却時に、溶融された原料が凝固を開始してから再結晶温度直下である100℃までの冷却速度を100℃/分以下にする。そのようなプロセスを経ることによって、25℃においてα相を有するMg-Li系合金を得ることができる。α相を発現し易くするという観点において、より好ましい冷却速度は50℃/分以下であり、さらに好ましい冷却速度は25℃/分以下である。得られた第1実施形態のMg-Li系合金は、Li含有量が11質量%より多く13.5質量%以下という比較的多い組成領域にも関わらず25℃においてα相を有するため、従来よりも腐食を抑制することができる。 In the first embodiment, the content of Li in the Mg—Li alloy is in the range of more than 11% by mass and 13.5% by mass or less. In the first embodiment, one or more elements selected from the first group and the raw material of the Mg—Li-based alloy having the above Li content are melt-synthesized, and during subsequent cooling, after the molten raw material starts to solidify The cooling rate to 100°C, which is just below the recrystallization temperature, is set to 100°C/min or less. Through such a process, a Mg--Li alloy having an α phase at 25.degree. C. can be obtained. From the viewpoint of facilitating the expression of the α-phase, the cooling rate is more preferably 50° C./min or less, and still more preferably 25° C./min or less. The obtained Mg—Li-based alloy of the first embodiment has an α phase at 25° C. in spite of a relatively large composition range in which the Li content is more than 11% by mass and 13.5% by mass or less. Corrosion can be suppressed more than
 25℃における第1実施形態のMg-Li系合金のα相の割合は8%以上であることが好ましい。α相の割合が8%以上あることで、耐食性が特に良好なものとなる。より好ましいα相の割合は20%以上であり、さらに好ましいα相の割合は30%以上である。 The ratio of the α phase in the Mg—Li alloy of the first embodiment at 25°C is preferably 8% or more. When the ratio of the α phase is 8% or more, the corrosion resistance is particularly good. A more preferable α-phase ratio is 20% or more, and a further preferable α-phase ratio is 30% or more.
 α相の存在比率は、X線回折法によって測定することが可能である。具体的には、例えば、以下のような手順で測定することが可能である。まず、Mg-Li系合金に対して、2θが20°以上100°以下の範囲に対し、2θ-θ法によって回折パターンを取得し、バックグラウンドを除去する。次に、バックグラウンドを除去した回折パターンの各々ピークをα相由来のピークとβ相由来ピークとに分ける。各回折ピークのcps(Count per Second)値を用いて、(α相を示す全cpsの合計)/{(α相を示す全cpsの合計)+(β相を示す全cpsの合計)}の式より、α相の存在比率を算出した。回折パターンの各々ピークをα相由来のピークとβ相由来ピークと同定する際には、公知の粉末X線回折データを参照して行うことができる。  The abundance ratio of the α phase can be measured by the X-ray diffraction method. Specifically, for example, it is possible to measure by the following procedure. First, a diffraction pattern is obtained by the 2θ-θ method in the range of 20° to 100° with respect to the Mg--Li alloy, and the background is removed. Next, each peak of the diffraction pattern from which the background has been removed is divided into an α-phase-derived peak and a β-phase-derived peak. Using the cps (Count per Second) value of each diffraction peak, (sum of all cps indicating α phase) / {(sum of all cps indicating α phase) + (sum of all cps indicating β phase)} The abundance ratio of the α phase was calculated from the formula. When identifying each peak of the diffraction pattern as the α-phase-derived peak and the β-phase-derived peak, known powder X-ray diffraction data can be referred to.
 第1実施形態のMg-Li系合金は、さらに、Al,Zn,Zr,Ca及びBeからなる第2群から選ばれる1以上の元素を含有することが好ましい。これらの第2群の元素は、Mg-Li系合金中に存在してもα相の生成を阻害しにくいことを発明者が実験的に確認した元素である。ここで、第2群から選ばれる1以上の元素の含有量の和が、0.01質量%以上7質量%以下であることが好ましい。第2群から選ばれる1以上の元素の含有量の和が上述した範囲であると、耐食性、破壊強度、延性及び靭性の少なくとも1つが良好なものとなる。 The Mg--Li alloy of the first embodiment preferably further contains one or more elements selected from the second group consisting of Al, Zn, Zr, Ca and Be. These elements of the second group are elements that the inventor has confirmed experimentally that even if they exist in the Mg--Li alloy, they hardly inhibit the formation of the α-phase. Here, the sum of the contents of one or more elements selected from the second group is preferably 0.01% by mass or more and 7% by mass or less. When the sum of the contents of the one or more elements selected from the second group is within the above range, at least one of corrosion resistance, fracture strength, ductility and toughness will be good.
 Mg-Li系合金におけるAlの含有量は、5質量%以下であることが好ましい。Alの含有量が5質量%以下であると、破壊強度が良好なものとなる。一方、Alの含有量が5質量%を超えると、メカニズムは不明だがプロセスウインドウが狭くなり、第1群の元素によるα相を生成する効果を阻害するおそれがある。より好ましいAlの含有量は0.1質量%以上4質量%以下の範囲である。 The content of Al in the Mg-Li alloy is preferably 5% by mass or less. When the Al content is 5% by mass or less, the breaking strength is good. On the other hand, when the content of Al exceeds 5% by mass, the process window becomes narrow, although the mechanism is unknown, and there is a possibility that the effect of generating the α phase by the elements of the first group is inhibited. A more preferable Al content is in the range of 0.1% by mass or more and 4% by mass or less.
 Mg-Li系合金におけるZnの含有量は、2質量%以下であることが好ましい。Znの含有量が2質量%以下であると、延性が良好なものとなる。一方、Znの含有量が2質量%を超えると、メカニズムは不明だがプロセスウインドウが狭くなり、第1群の元素によるα相を生成する効果を阻害するおそれがある。より好ましいZnの含有量は0.1質量%以上1質量%以下である。  The content of Zn in the Mg-Li alloy is preferably 2% by mass or less. When the Zn content is 2% by mass or less, good ductility is achieved. On the other hand, if the Zn content exceeds 2% by mass, the process window is narrowed, although the mechanism is unknown, and there is a risk of inhibiting the effect of the first group elements to generate the α phase. A more preferable Zn content is 0.1% by mass or more and 1% by mass or less.
 Mg-Li系合金におけるZrの含有量は、0.7質量%以下であることが好ましい。Zrの含有量が0.5質量%以下であると、靭性が良好なものとなる。一方、Zrの含有量が0.5質量%を超えると、Zrを含有しない時と靭性が同程度となることがある。より好ましいZrの含有量は0.1質量%0.5質量%以下の範囲である。 The content of Zr in the Mg-Li alloy is preferably 0.7% by mass or less. When the Zr content is 0.5% by mass or less, the toughness is good. On the other hand, if the Zr content exceeds 0.5% by mass, the toughness may be approximately the same as when Zr is not contained. A more preferable Zr content is in the range of 0.1% by mass and 0.5% by mass or less.
 Mg-Li系合金におけるCaの含有量は、0.3質量%以下であることが好ましい。Caの含有量が0.3質量%以下であると、耐食性が良好なものとなる。一方、Caの含有量が0.3質量%を超えると、Caを含有しない時と耐食性が同程度となることがある。より好ましいCaの含有量は0.01質量%以上0.15質量%以下の範囲である。 The content of Ca in the Mg-Li alloy is preferably 0.3% by mass or less. When the Ca content is 0.3% by mass or less, good corrosion resistance is achieved. On the other hand, when the content of Ca exceeds 0.3% by mass, the corrosion resistance may become comparable to that when Ca is not contained. A more preferable Ca content is in the range of 0.01% by mass or more and 0.15% by mass or less.
 Mg-Li系合金におけるBeの含有量は、0.1質量%以下であることが好ましい。Beの含有量が0.1質量%以下であると、靭性が良好なものとなる。一方、Beの含有量が0.1質量%を超えると、Beを含有しない時と靭性が同程度となることがある。より好ましいBeの含有量は0.01質量%以上0.05質量%以下の範囲である。 The content of Be in the Mg-Li alloy is preferably 0.1% by mass or less. When the Be content is 0.1% by mass or less, the toughness is good. On the other hand, when the Be content exceeds 0.1% by mass, the toughness may be about the same as when Be is not included. A more preferable Be content is in the range of 0.01% by mass or more and 0.05% by mass or less.
 また、第1実施形態のMg-Li系合金は、上記に例示した元素以外の金属元素を、特性が変動しない範囲で含有させても良い。これらの金属元素には製造上、混入を回避できない不可避不純物も含まれる。不可避不純物としては、例えば、Fe,Cuがある。Mg-Li系合金における不可避不純物の含有量は1質量%以下である。 In addition, the Mg—Li alloy of the first embodiment may contain metal elements other than the elements exemplified above within a range in which the characteristics do not change. These metal elements include unavoidable impurities that cannot be avoided during manufacturing. Examples of unavoidable impurities include Fe and Cu. The content of unavoidable impurities in the Mg—Li alloy is 1% by mass or less.
 以上、第1実施形態のMg-Li合金は、25℃においてLi含有量が11質量%より多くてもα相を有するため、軽量かつ耐食性に優れる。 As described above, the Mg--Li alloy of the first embodiment has an α-phase even if the Li content is more than 11% by mass at 25°C, so it is lightweight and excellent in corrosion resistance.
 [合金部材の製造方法]
 第1実施形態のMg-Li系合金の製造方法は、原料を溶融合成し、その後の冷却時に、溶融した原料が凝固され始めてから100℃までの冷却速度を100℃/分以下にする手段を有するのであれば、特に限定されない。以下に好ましい製造方法の一例を説明する。
[Manufacturing method of alloy member]
The method for producing a Mg—Li alloy according to the first embodiment includes means for melting and synthesizing raw materials, and then cooling the molten raw materials at a cooling rate of 100° C./min or less from when the molten raw materials begin to solidify to 100° C. It is not particularly limited as long as it has. An example of a preferable manufacturing method is described below.
 まず、Mg-Li系合金の原料を用意する(用意工程)。具体的には、所望の組成となるように、MgとLiと、Ge,Mn及びSiからなる第1群から選ばれる1以上の元素と、を含有し、Mgの含有量及びLiの含有量の和が90質量%以上である原料を用意する。このとき、Liの含有量は11質量%より多く13.5質量%以下である。原料の純度は、例えば、4Nであり、市販の高純度金属を用いることができる。金属の形態は特に限定されず、例えば、インゴット、チップ、フレーク、粉末、ショット及びペレットから所望の形態を選択することができる。金属は、単体の金属元素のみならず、複数の金属元素からなる合金を用いても良い。このとき必要に応じて、Al,Zn,Zr,Ca及びBeからなる第2群から選ばれる1以上の元素の原料を用意しても良い。 First, the raw materials for the Mg-Li alloy are prepared (preparation process). Specifically, it contains Mg, Li, and one or more elements selected from the first group consisting of Ge, Mn and Si so as to have a desired composition, and the content of Mg and the content of Li A raw material having a sum of 90% by mass or more is prepared. At this time, the content of Li is more than 11% by mass and 13.5% by mass or less. The purity of the raw material is, for example, 4N, and commercially available high-purity metals can be used. The form of the metal is not particularly limited, and a desired form can be selected from, for example, ingots, chips, flakes, powders, shots and pellets. As for the metal, not only a single metal element but also an alloy composed of a plurality of metal elements may be used. At this time, if necessary, raw materials of one or more elements selected from the second group consisting of Al, Zn, Zr, Ca and Be may be prepared.
 次に、これらの原料を加熱して溶融する(加熱工程)。具体的には、これらの原料を坩堝に入れて600℃以上に加熱して溶融する。温度はこれらの原料の融点以上の温度であればよいが、好ましくは700℃以上である。より好ましくは800℃以上である。加熱する手段は特に限定されないが、例えば、高周波誘導加熱、電磁誘導撹拌を採用することができる。加熱時の雰囲気は、合金の酸化を防ぐために不活性雰囲気であることが好ましく、例えば、アルゴンガス雰囲気で行うことが好ましい。なお、溶融する温度までの昇温速度は特に限定されない。また、加熱溶融時に温度を一定時間保持しても良いが、所望の形状によって保持時間は適宜選択することができる。 Next, these raw materials are heated and melted (heating process). Specifically, these raw materials are placed in a crucible and heated to 600° C. or higher to melt. The temperature should be the melting point or higher of these raw materials, preferably 700° C. or higher. More preferably, it is 800° C. or higher. Although the means for heating is not particularly limited, for example, high-frequency induction heating and electromagnetic induction stirring can be employed. The atmosphere during heating is preferably an inert atmosphere, for example, an argon gas atmosphere, in order to prevent oxidation of the alloy. In addition, the heating rate to the melting temperature is not particularly limited. Also, the temperature may be held for a certain period of time during heating and melting, but the holding time can be appropriately selected depending on the desired shape.
 次に、溶融した原料を冷却し固化する(冷却工程)。具体的には、第1実施形態においては溶融した原料が凝固され始めてから再結晶温度直下の100℃までの冷却速度が100℃/分以下になるように冷却速度を制御する。なお、上述した冷却速度は、溶融した原料が凝固され始めてから再結晶温度直下の100℃まで冷却したときの平均の冷却速度である。以上の工程を経ることにより、第1実施形態のMg-Li系合金を得ることができる。 Next, the molten raw material is cooled and solidified (cooling process). Specifically, in the first embodiment, the cooling rate is controlled so that the cooling rate from the start of solidification of the molten raw material to 100° C. just below the recrystallization temperature is 100° C./min or less. The cooling rate described above is the average cooling rate when the molten raw material is cooled to 100° C. just below the recrystallization temperature after starting to solidify. Through the above steps, the Mg—Li alloy of the first embodiment can be obtained.
 なお、α相を発現し易くするという観点において、冷却工程におけるより好ましい冷却速度は50℃/分以下であり、さらに好ましい冷却速度は25℃/分以下である。また、溶融した原料が凝固され始めてから100℃まで冷却する冷却工程の全域において、100℃/分以下の速度で冷却するが好ましい。また、200℃以下における冷却速度は、200℃より高い温度域での冷却速度より遅いことが好ましい。冷却の際にはガス急冷や水クエンチなど急速に冷却する手段を用いて、100℃/分より速い速度で冷却すると、β相単相のMg-Li系合金が得られるようになる。 From the viewpoint of facilitating the expression of the α-phase, a more preferable cooling rate in the cooling step is 50°C/min or less, and a further preferable cooling rate is 25°C/min or less. Moreover, it is preferable to cool at a rate of 100° C./min or less throughout the cooling process from when the molten raw material starts to solidify to 100° C. Also, the cooling rate at 200°C or lower is preferably slower than the cooling rate at temperatures higher than 200°C. When cooling at a speed faster than 100° C./min using rapid cooling means such as gas quenching or water quenching, a β-phase single-phase Mg—Li alloy can be obtained.
 また、得られたMg-Li系合金を所望の形状にするために機械加工を行っても構わない。機械加工は、ラップ加工、切削加工、バレル研磨、等必要に応じて適宜選択を行う。また、得られたMg-Li系合金に対して洗浄を行っても構わない。洗浄では、切削加工等の機械加工による金属屑や塵埃、油汚れ、変質層等を落とすことができる。そのため、酸やアルカリによる洗浄や、界面活性剤を用いる洗浄、ブラシ洗浄、超音波洗浄など一般的な洗浄方法を用いることが可能である。洗浄後は、必要に応じて乾燥を行っても構わない。 In addition, the obtained Mg-Li alloy may be machined to have a desired shape. Machining is appropriately selected from lapping, cutting, barrel polishing, etc., as required. Also, the obtained Mg—Li alloy may be washed. In the cleaning, it is possible to remove metal scraps, dust, oil stains, deteriorated layers, etc. due to machining such as cutting. Therefore, it is possible to use general cleaning methods such as cleaning with an acid or alkali, cleaning using a surfactant, brush cleaning, and ultrasonic cleaning. After washing, drying may be performed as necessary.
 また、得られたMg-Li系合金を基材として、その基材の上に被膜を設けても構わない。被膜を設ける手段は特に限定されず、設ける被膜によって適宜選択することができる。被膜がフッ化マグネシウムである場合は、公知の陽極酸化プロセスや公知の処理液を用いて化成処理を用いることができる。また、被膜がリン酸マグネシウムである場合は、公知の処理液を用いた化成処理を用いることができる。 Also, the obtained Mg--Li alloy may be used as a base material and a coating may be provided on the base material. The means for providing the coating is not particularly limited, and can be appropriately selected depending on the coating to be provided. If the coating is magnesium fluoride, a known anodizing process or chemical conversion treatment using a known treatment solution can be used. Further, when the film is magnesium phosphate, chemical conversion treatment using a known treatment liquid can be used.
 (第2実施形態)
 [合金部材]
 第2実施形態のMg-Li系合金は第1実施形態とLiの含有量が異なる。以下、第2実施形態のMg-Li系合金について、第1実施形態と異なる点を中心に説明する。
(Second embodiment)
[Alloy material]
The Mg—Li alloy of the second embodiment differs from the first embodiment in the Li content. The Mg—Li alloy of the second embodiment will be described below, focusing on the differences from the first embodiment.
 第2実施形態において、Mg-Li系合金におけるLiの含有量は5.34質量%以上11質量%以下の範囲である。第2実施形態では、第1群から選ばれる1以上の元素と上記Li含有量のMg-Li系合金の原料を溶融合成し、その後の冷却時に、溶融した原料が凝固され始めてから100℃までの冷却速度を100℃/分以下にする。そのようなプロセスを経ることによって、25℃においてα相の割合が従来よりも多いMg-Li系合金を得ることができる。α相を発現し易くするという観点において、より好ましい冷却速度は50℃/分以下であり、さらに好ましい冷却速度は25℃/分以下である。得られた第2実施形態のMg-Li系合金は、Li含有量が5.34質量%以上11質量%以下という組成領域において従来よりもα相を多く有するため、腐食をより抑制することができる。 In the second embodiment, the content of Li in the Mg—Li alloy is in the range of 5.34% by mass or more and 11% by mass or less. In the second embodiment, one or more elements selected from the first group and the raw material of the Mg—Li-based alloy having the above Li content are melt synthesized, and during subsequent cooling, the molten raw material starts to solidify to 100 ° C. The cooling rate of is set to 100°C/min or less. Through such a process, it is possible to obtain a Mg--Li alloy with a higher ratio of α-phase at 25° C. than before. From the viewpoint of facilitating the expression of the α-phase, the cooling rate is more preferably 50° C./min or less, and still more preferably 25° C./min or less. The obtained Mg—Li-based alloy of the second embodiment has more α-phase than before in the composition region where the Li content is 5.34% by mass or more and 11% by mass or less, so corrosion can be further suppressed. can.
 ここで、再度、文献“「二元合金状態図集」、長崎誠三、平林眞編著、出版社:アグネ技術センター、ISBN-13:978-4900041882、発売日:2001/01”に記載の相図について説明する。 Here, again, the phase diagram described in the document ““Binary Alloy Phase Diagram”, edited by Seizo Nagasaki and Makoto Hirabayashi, Publisher: Agne Technical Center, ISBN-13: 978-4900041882, Release date: 2001/01 will be explained.
 この相図によると、α相の単相領域とα相とβ相を同時に有する共晶領域の境界(低温域では点線)において、25℃の平衡状態におけるLi濃度は16.5原子%(5.34質量%)と読み取れる。Mgに対して、この濃度以上のLiを含有すると、β相の生成が始まる。また、この濃度以下における25℃の平衡状態におけるα相の存在比率は100%となる。 According to this phase diagram, the Li concentration in the equilibrium state at 25° C. is 16.5 atomic % (5 .34% by mass). When the Li content exceeds this concentration relative to Mg, the formation of the β phase begins. In addition, below this concentration, the existence ratio of the α phase in the equilibrium state at 25° C. is 100%.
 次に、α相とβ相を同時に有する共晶領域とβ相の単相領域の境界(低温域では点線)において、25℃の平衡状態におけるLi濃度は30.0原子%(10.9質量%)と読み取れる。Mgに対して、この濃度以上のLiを含有すると、α相が消失しβ相のみとなる。すなわち、この濃度以上におけるα相の存在比率は0%となる。 Next, at the boundary between the eutectic region having both the α phase and the β phase and the single phase region of the β phase (dotted line in the low temperature region), the Li concentration in the equilibrium state at 25 ° C. is 30.0 atomic % (10.9 mass %). When Li is added to Mg at a concentration higher than this concentration, the α-phase disappears and only the β-phase is formed. That is, the existence ratio of the α phase becomes 0% at this concentration or higher.
 そして、上記で読み取った2つのLi濃度の中間のLi濃度は7.96質量%であり、この濃度での25℃の平衡状態におけるα相の存在比率は50%である。この3つのLi濃度とα相の存在比率の3点の近似曲線で結ぶとき、その曲線はyをα相の存在比率、xをLiの質量%とすると、下記式(1)で表すことができる。
  y=0.3736x-24.053x+217.79 (1)
The intermediate Li concentration between the two Li concentrations read above is 7.96% by mass, and the existence ratio of the α phase in the equilibrium state at 25° C. at this concentration is 50%. When these three Li concentrations and the abundance ratio of the α phase are connected by a three-point approximation curve, the curve can be represented by the following formula (1), where y is the abundance ratio of the α phase and x is the mass% of Li. can.
y=0.3736x 2 −24.053x+217.79 (1)
 すなわち、この曲線が従来のMg-Li系合金におけるLi濃度と25℃の平衡状態におけるα相の存在比率を表すものである。 That is, this curve represents the abundance ratio of the α phase in the equilibrium state of Li concentration and 25°C in the conventional Mg-Li alloy.
 第2実施形態のMg-Li系合金は、yをα相の存在比率、xをLiの質量%とすると、下記式(2)を満たすことを特徴とする。
  y>0.3736x-24.053x+217.79 (2)
The Mg—Li-based alloy of the second embodiment is characterized by satisfying the following formula (2), where y is the abundance ratio of the α phase and x is the mass % of Li.
y>0.3736x 2 −24.053x+217.79 (2)
 そのため、第2実施形態のMg-Li系合金は、Li含有量が5.34質量%以上11質量%以下の組成領域において従来よりもα相を多く有するため、腐食をより抑制することができる。 Therefore, the Mg—Li-based alloy of the second embodiment has more α-phases than before in the composition region where the Li content is 5.34% by mass or more and 11% by mass or less, so corrosion can be further suppressed. .
 [合金部材の製造方法]
 第2実施形態のMg-Li系合金部材の製造方法は第1実施形態と、用意工程が異なる。以下、第2実施形態のMg-Li系合金部材の製造方法について、第1実施形態と異なる点を中心に説明する。
[Manufacturing method of alloy member]
The manufacturing method of the Mg—Li alloy member of the second embodiment differs from the first embodiment in the preparation process. A method of manufacturing an Mg--Li alloy member according to the second embodiment will be described below, focusing on the differences from the first embodiment.
 Mg-Li系合金の原料を用意する用意工程について説明する。具体的には、所望の組成となるように、MgとLiと、Ge,Mn及びSiからなる第1群から選ばれる1以上の元素と、を含有し、Mgの含有量及びLiの含有量の和が90質量%以上である原料を用意する。このとき、Liの含有量は5.34質量%以上11質量%以下である。原料の純度は、例えば、4Nであり、市販の高純度金属を用いることができる。金属の形態は特に限定されず、例えば、インゴット、チップ、フレーク、粉末、ショット及びペレットから所望の形態を選択することができる。金属は、単体の金属元素のみならず、複数の金属元素からなる合金を用いても良い。このとき必要に応じて、Al,Zn,Zr,Ca及びBeからなる第2群から選ばれる1以上の元素の原料を用意しても良い。 The preparation process for preparing the raw material for the Mg-Li alloy will be explained. Specifically, it contains Mg, Li, and one or more elements selected from the first group consisting of Ge, Mn and Si so as to have a desired composition, and the content of Mg and the content of Li A raw material having a sum of 90% by mass or more is prepared. At this time, the content of Li is 5.34% by mass or more and 11% by mass or less. The purity of the raw material is, for example, 4N, and commercially available high-purity metals can be used. The form of the metal is not particularly limited, and a desired form can be selected from, for example, ingots, chips, flakes, powders, shots and pellets. As for the metal, not only a single metal element but also an alloy composed of a plurality of metal elements may be used. At this time, if necessary, raw materials of one or more elements selected from the second group consisting of Al, Zn, Zr, Ca and Be may be prepared.
 次に、溶融した原料を冷却し固化する冷却工程について説明する。具体的には、第1実施形態と同様に、溶融した原料が凝固され始めてから100℃までの冷却速度が100℃/分以下になるように冷却速度を制御する。以上の工程を経ることにより、第2実施形態のMg-Li系合金を得ることができる。 Next, the cooling process for cooling and solidifying the molten raw material will be explained. Specifically, similarly to the first embodiment, the cooling rate is controlled so that the cooling rate from the start of solidification of the molten raw material to 100° C. is 100° C./min or less. Through the above steps, the Mg—Li alloy of the second embodiment can be obtained.
 なお、α相を発現し易くするという観点において、冷却工程におけるより好ましい冷却速度は50℃/分以下であり、さらに好ましい冷却速度は25℃/分以下である。 From the viewpoint of facilitating the expression of the α-phase, a more preferable cooling rate in the cooling step is 50°C/min or less, and a further preferable cooling rate is 25°C/min or less.
 (第3実施形態)
 [光学機器・撮像装置]
 図2は、本開示の第3実施形態である機器の一例の撮像装置である、一眼レフデジタルカメラ600の構成を示している。図2において、カメラ本体602と光学機器であるレンズ鏡筒601とが結合されているが、レンズ鏡筒601はカメラ本体602に対して着脱可能ないわゆる交換レンズである。
(Third embodiment)
[Optical equipment/imaging device]
FIG. 2 shows the configuration of a single-lens reflex digital camera 600, which is an imaging device as an example of the device according to the third embodiment of the present disclosure. In FIG. 2, a camera body 602 and a lens barrel 601, which is an optical device, are combined.
 被写体からの光は、レンズ鏡筒601の筐体内の撮影光学系の光軸上に配置された部品の一例である複数のレンズ603、605などからなる光学系を通過して撮像素子が受光することにより撮影される。ここで、レンズ605は内筒604によって支持されて、フォーカシングやズーミングのためにレンズ鏡筒601の外筒に対して可動支持されている。 Light from a subject passes through an optical system including a plurality of lenses 603 and 605, which are examples of components arranged on the optical axis of the imaging optical system in the housing of the lens barrel 601, and is received by the imaging device. It is taken by Here, the lens 605 is supported by an inner cylinder 604 and movably supported with respect to the outer cylinder of the lens barrel 601 for focusing and zooming.
 撮影前の観察期間では、被写体からの光は、カメラ本体の筐体621内の部品の一例である主ミラー607により反射され、プリズム611を透過後、ファインダレンズ612を通して撮影者に撮影画像が映し出される。主ミラー607は例えばハーフミラーとなっており、主ミラーを透過した光はサブミラー608によりAF(オートフォーカス)ユニット613の方向に反射され、例えばこの反射光は測距に使用される。また、主ミラー607は主ミラーホルダ640に接着などによって装着、支持されている。不図示の駆動機構を介して、撮影時には主ミラー607とサブミラー608を光路外に移動させ、シャッタ609を開き、撮像素子610にレンズ鏡筒601から入射した撮影光像を結像させる。また、絞り606は、開口面積を変更することにより撮影時の明るさや焦点深度を変更できるよう構成される。 During an observation period before photographing, light from a subject is reflected by a main mirror 607, which is an example of a component inside a housing 621 of the camera body, and after passing through a prism 611, the photographed image is displayed to the photographer through a finder lens 612. be The main mirror 607 is, for example, a half mirror, and light transmitted through the main mirror is reflected by a sub-mirror 608 toward an AF (autofocus) unit 613. This reflected light is used for distance measurement, for example. The main mirror 607 is attached to and supported by a main mirror holder 640 by adhesion or the like. During photographing, the main mirror 607 and the sub-mirror 608 are moved out of the optical path via a drive mechanism (not shown), the shutter 609 is opened, and the photographed light image incident from the lens barrel 601 is formed on the image sensor 610 . Also, the diaphragm 606 is configured to change the brightness and the depth of focus at the time of shooting by changing the aperture area.
 合金部材100は筐体620,621の少なくとも一部に用いることができる。なお筐体620,621は、Mg-Li系合金部材のみで構成されても良いし、合金部材100に塗装膜を設けても良い。本開示のMg-Li系合金は軽量かつ耐食性に優れるため、従来の撮像装置より軽量かつ耐食性に優れた撮像装置を提供することができる。 The alloy member 100 can be used for at least part of the housings 620 and 621. The housings 620 and 621 may be composed only of the Mg—Li alloy member, or the alloy member 100 may be provided with a coating film. Since the Mg—Li alloy of the present disclosure is lightweight and excellent in corrosion resistance, it is possible to provide an imaging device that is lighter in weight and superior in corrosion resistance than conventional imaging devices.
 なお、一眼レフデジタルカメラを一例として撮像装置を説明したが、本開示はこれに限定されず、スマートフォンやコンパクトデジタルカメラであっても構わない。 Although the imaging device has been described using a single-lens reflex digital camera as an example, the present disclosure is not limited to this, and may be a smartphone or a compact digital camera.
 (第4実施形態)
 [電子機器]
 図3は、本開示の第4実施形態である機器の一例である電子機器である、パーソナルコンピュータの構成を示している。図3において、パーソナルコンピュータ800は表示部801と本体部802を備える。本体部802の筐体820の内部には筐体内に設けられた部品の一例である電子部品830が備えられている。合金部材100は本体部802の筐体820の少なくとも一部に用いることができる。筐体820はMg-Li系合金部材のみで構成されても良いし、合金部材100に塗装膜を設けても良い。本開示のMg-Li系合金は軽量かつ耐食性に優れるため、従来のパーソナルコンピュータより軽量かつ耐食性に優れたパーソナルコンピュータを提供することができる。
(Fourth embodiment)
[Electronics]
FIG. 3 shows the configuration of a personal computer, which is an electronic device that is an example of the device according to the fourth embodiment of the present disclosure. In FIG. 3, a personal computer 800 has a display section 801 and a main body section 802 . An electronic component 830, which is an example of a component provided in the housing, is provided inside the housing 820 of the main body 802. As shown in FIG. The alloy member 100 can be used for at least part of the housing 820 of the main body 802 . The housing 820 may be composed only of the Mg—Li alloy member, or the alloy member 100 may be provided with a coating film. Since the Mg—Li alloy of the present disclosure is lightweight and excellent in corrosion resistance, it is possible to provide a personal computer that is lighter in weight and more excellent in corrosion resistance than conventional personal computers.
 なお、パーソナルコンピュータ800を一例として電子機器を説明したが、本開示はこれに限定されず、スマートフォンやタブレットであっても構わない。 Although the electronic device has been described using the personal computer 800 as an example, the present disclosure is not limited to this, and may be a smartphone or tablet.
 (第5実施形態)
 [移動体]
 図4は、本開示の第5実施形態である移動体の一例であるドローンである。ドローン700は、複数の駆動部701と、駆動部701と接続される本体部702を備える。本体部702の中には、部品の一例である不図示の駆動回路がある。駆動部701は、例えば、プロペラを有する。図4のように、本体部702には脚部703を接続しても良いし、カメラ704を接続する構成にしても良い。合金部材100は、本体部702および脚部703の筐体710の少なくとも一部に用いることが可能である。筐体710はMg-Li系合金部材のみで構成されても良いし、合金部材100に塗装膜を設けても良い。本開示のMg-Li系合金は、制振性かつ耐食性に優れるため、従来のドローンより制振性かつ耐食性に優れたドローンを提供することができる。
(Fifth embodiment)
[Moving body]
FIG. 4 is a drone, which is an example of a moving object according to the fifth embodiment of the present disclosure. The drone 700 includes a plurality of drive units 701 and a body unit 702 connected to the drive units 701 . A driving circuit (not shown), which is an example of a component, is provided in the main body 702 . The drive unit 701 has, for example, a propeller. As shown in FIG. 4, a leg portion 703 may be connected to the body portion 702, or a configuration in which a camera 704 is connected may be employed. The alloy member 100 can be used for at least a portion of the housing 710 of the body portion 702 and the leg portion 703 . The housing 710 may be composed only of the Mg—Li alloy member, or the alloy member 100 may be provided with a coating film. Since the Mg—Li-based alloy of the present disclosure is excellent in damping properties and corrosion resistance, it is possible to provide drones that are superior in damping properties and corrosion resistance to conventional drones.
 なお、ドローン700を一例として移動体を説明したが、本開示はこれに限定されず、自動車や航空機であっても構わない。 Although the drone 700 is used as an example to describe the moving object, the present disclosure is not limited to this, and may be an automobile or an aircraft.
 以下、実施例を挙げて説明する。まず、合金部材の評価方法について説明する。 Examples will be described below. First, the evaluation method of the alloy member will be described.
 [合金部材の評価方法]
 (α相の存在比率測定)
 α相の存在比率は、25℃の環境下においてX線回折法を用いて測定した。使用したX線回折装置はリガク社製UltimaIVである。管球はCu管球を用い、測定波長λは1.5418Åとした。また管電圧は40kV、管電流は40mAとした。まず、2θが20°以上100°以下の範囲に対し、2θ-θ法によって回折パターンを取得した。ステップ幅は0.02°、スキャン速度は2°/分(2回積算)とした。次に、取得した回折パターンからバックグラウンドを除去した。そして、バックグラウンドを除去した回折パターンの各々ピークをα相由来のピークとβ相由来とピークに分けた。各回折ピークのcps(Count per Second)値を用いて、(α相を示す全cpsの合計)/{(α相を示す全cpsの合計)+(β相を示す全cpsの合計)}の式より、α相の存在比率を算出した。
[Evaluation method for alloy members]
(Measurement of α phase abundance ratio)
The abundance ratio of the α phase was measured using an X-ray diffraction method in an environment of 25°C. The X-ray diffractometer used was Ultima IV manufactured by Rigaku. A Cu tube was used as the tube, and the measurement wavelength λ was set to 1.5418 Å. The tube voltage was 40 kV and the tube current was 40 mA. First, a diffraction pattern was obtained by the 2θ-θ method for the range of 2θ of 20° to 100°. The step width was 0.02°, and the scan speed was 2°/min (twice integrated). The background was then removed from the acquired diffraction pattern. Then, each peak of the diffraction pattern from which the background was removed was divided into an α-phase-derived peak and a β-phase-derived peak. Using the cps (Count per Second) value of each diffraction peak, (sum of all cps indicating α phase) / {(sum of all cps indicating α phase) + (sum of all cps indicating β phase)} The abundance ratio of the α phase was calculated from the formula.
 測定には、作製したφ60mmの円柱ビレットを20mm×50mm×2mmサイズの板状に切断加工したサンプルを用いた。サンプルの測定面である20mm×50mmの面に対して、研磨機を用いて#2000の仕上げ研磨を行ったものをX線回折法によって評価した。 For the measurement, a sample was used, which was obtained by cutting the manufactured cylindrical billet of φ60 mm into a plate shape of 20 mm × 50 mm × 2 mm. A surface of 20 mm×50 mm, which is the measurement surface of the sample, was subjected to final polishing of #2000 using a polishing machine and evaluated by the X-ray diffraction method.
 (比重測定)
 比重はアルキメデス法で計測を行った。具体的には、作製したビレットからφ10mm×10mmの円柱を作製し、水中に浸漬して計測を行った。同じサンプルを3回計測し、その平均値を比重の値とした。
(Specific gravity measurement)
The specific gravity was measured by the Archimedes method. Specifically, a cylinder of φ10 mm×10 mm was produced from the produced billet, and the column was immersed in water for measurement. The same sample was measured three times, and the average value was used as the specific gravity value.
 (耐食測定)
 作製したφ60mmの円柱ビレットを長さ方向に垂直に15mmの厚み方向に切断して、板状のサンプルを作製した。その板状のサンプルを大気中、25℃±2℃の環境下に3ヶ月放置した。放置後、目視観察し、初期の金属色を維持しているか否かの確認を行った。全面が金属色を維持したものをA、少なくとも一部が金属色を維持したものをB及びCとし、金属色を維持できなかったものをDとした。
(Corrosion resistance measurement)
A plate-shaped sample was prepared by cutting the produced cylindrical billet of φ60 mm in the thickness direction of 15 mm perpendicularly to the length direction. The plate-like sample was left in the atmosphere at 25°C ± 2°C for 3 months. After standing, it was visually observed to confirm whether or not the initial metallic color was maintained. A was given when the metallic color was maintained on the entire surface, B and C were given when at least part of the metallic color was maintained, and D was given when the metallic color could not be maintained.
 [合金部材の製造・評価]
 (実施例1-1)
 まず、組成が、Mg-11.5%Li-0.25%Ge-3.4%Al-0.18%Mn-0.04%Be-0.02%Siとなるように、原料である純度4Nのそれぞれの元素の金属片を用意した。
[Manufacturing and evaluation of alloy members]
(Example 1-1)
First, the composition is Mg-11.5% Li-0.25% Ge-3.4% Al-0.18% Mn-0.04% Be-0.02% Si A metal piece of each element with a purity of 4N was prepared.
 続いて、これらの原料を鉄製の坩堝に入れた。その坩堝をアルゴンガス雰囲気中、最高温度800℃で加熱し、原料を溶融させた。800℃で1時間保持した後、冷却させた。冷却は徐冷であり、凝固が開始した594℃から100℃までの間の冷却速度は15℃/分とした。特に、200℃から100℃までの冷却速度は10℃/分とした。冷却が完了し、直径60mmの円柱ビレットである実施例1-1の合金部材を得た。 Next, these raw materials were placed in an iron crucible. The crucible was heated at a maximum temperature of 800° C. in an argon gas atmosphere to melt the raw material. After being held at 800° C. for 1 hour, it was cooled. Cooling was gradual, and the cooling rate was 15°C/min from 594°C at which solidification started to 100°C. In particular, the cooling rate from 200°C to 100°C was 10°C/min. After cooling was completed, an alloy member of Example 1-1, which was a cylindrical billet with a diameter of 60 mm, was obtained.
 続いて、得られた円柱ビレットから各測定を行うためにサンプルを作製し、各測定を行った。その結果、実施例1-1の合金部材のα相の存在比率は35.4%であった。また、比重は1.43であった。また、耐食測定では、金属色を維持していたため評価をAとした。図5は実施例1-1の2θ-θ測定の結果を示す図である。 Next, samples were prepared from the obtained cylindrical billet for each measurement, and each measurement was performed. As a result, the existence ratio of the α phase in the alloy member of Example 1-1 was 35.4%. Moreover, the specific gravity was 1.43. In addition, in the corrosion resistance measurement, the evaluation was set to A because the metallic color was maintained. FIG. 5 is a diagram showing the results of 2θ-θ measurement in Example 1-1.
 (実施例1-2)
 実施例1-2は、実施例1-1と組成が異なる。実施例1-2の組成は、Mg-12.3%Li-0.29%Ge-2.9%Al-0.09%Mn-0.023%Si-0.15%Caである。それ以外は実施例1-1と同様の方法で実施例1-2の合金部材を得た。
(Example 1-2)
Example 1-2 differs from Example 1-1 in composition. The composition of Example 1-2 is Mg-12.3% Li-0.29% Ge-2.9% Al-0.09% Mn-0.023% Si-0.15% Ca. Otherwise, the alloy member of Example 1-2 was obtained in the same manner as in Example 1-1.
 実施例1-2の合金部材のα相の存在比率は22.2%であった。また、比重は1.43であった。また、耐食測定では、金属色を維持していたため評価をAとした。 The abundance ratio of the α phase in the alloy member of Example 1-2 was 22.2%. Moreover, the specific gravity was 1.43. In addition, in the corrosion resistance measurement, the evaluation was set to A because the metallic color was maintained.
 (実施例1-3)
 実施例1-3は、実施例1-1と組成が異なる。実施例1-3の組成は、Mg-11.0%Li-2.2%Al-1.0%Zn-1.1%Mn-0.015%Siである。それ以外は実施例1-1と同様の方法で実施例1-3の合金部材を得た。
(Example 1-3)
Example 1-3 differs from Example 1-1 in composition. The composition of Example 1-3 is Mg-11.0% Li-2.2% Al-1.0% Zn-1.1% Mn-0.015% Si. Other than that, an alloy member of Example 1-3 was obtained in the same manner as in Example 1-1.
 実施例1-3の合金部材のα相の存在比率は30.8%であった。また、比重は1.42であった。また、耐食測定では、金属色を維持していたため評価をAとした。 The abundance ratio of the α phase in the alloy member of Example 1-3 was 30.8%. Moreover, the specific gravity was 1.42. In addition, in the corrosion resistance measurement, the evaluation was set to A because the metallic color was maintained.
 (実施例1-4)
 実施例1-4は、実施例1-1と組成が異なる。実施例1-4の組成は、Mg-11.9%Li-3.9%Al-1.0%Zn-0.006%Mn-0.01%Siである。それ以外は実施例1-1と同様の方法で実施例1-4の合金部材を得た。
(Example 1-4)
Example 1-4 differs from Example 1-1 in composition. The composition of Examples 1-4 is Mg-11.9% Li-3.9% Al-1.0% Zn-0.006% Mn-0.01% Si. Otherwise, the alloy member of Example 1-4 was obtained in the same manner as in Example 1-1.
 実施例1-4の合金部材のα相の存在比率は2.7%であった。また、比重は1.45であった。また、耐食測定では、一部黒色への変化を確認したため評価をCとした。 The abundance ratio of the α phase in the alloy member of Example 1-4 was 2.7%. Moreover, the specific gravity was 1.45. Also, in the corrosion resistance measurement, the evaluation was set to C because a change to black was partially confirmed.
 (実施例1-5)
 実施例1-5は、実施例1-1と組成が異なる。実施例1-5の組成は、Mg-12.2%Li-3.0%Zn-0.41%Zr-0.01%Siである。それ以外は実施例1-1と同様の方法で実施例1-5の合金部材を得た。
(Example 1-5)
Example 1-5 differs from Example 1-1 in composition. The composition of Examples 1-5 is Mg-12.2% Li-3.0% Zn-0.41% Zr-0.01% Si. Otherwise, an alloy member of Example 1-5 was obtained in the same manner as in Example 1-1.
 実施例1-5の合金部材のα相の存在比率は8.1%であった。また、比重は1.45であった。また、耐食測定では、わずかに黒色への変化を確認したため評価をBとした。 The abundance ratio of the α phase in the alloy member of Example 1-5 was 8.1%. Moreover, the specific gravity was 1.45. Also, in the corrosion resistance measurement, a slight change to black was confirmed, so the evaluation was set to B.
 (実施例1-6)
 実施例1-6は、実施例1-1と組成が異なる。実施例1-6の組成は、Mg-13.45%Li-5.54%Al-0.41%Ca-0.3%Mnである。それ以外は実施例1-1と同様の方法で実施例1-6の合金部材を得た。
(Example 1-6)
Example 1-6 differs from Example 1-1 in composition. The composition of Examples 1-6 is Mg-13.45% Li-5.54% Al-0.41% Ca-0.3% Mn. Otherwise, an alloy member of Example 1-6 was obtained in the same manner as in Example 1-1.
 実施例1-6の合金部材のα相の存在比率は3.4%であった。また、比重は1.40であった。また、耐食測定では、一部黒色への変化を確認したため評価をCとした。 The abundance ratio of the α phase in the alloy member of Example 1-6 was 3.4%. Moreover, the specific gravity was 1.40. Also, in the corrosion resistance measurement, the evaluation was set to C because a change to black was partially confirmed.
 (実施例2-1)
 まず、組成が、Mg-8.9%Li-3.9%Al-0.8%Zn-0.02%Mn-0.19%Siとなるように、原料である純度4Nのそれぞれの元素の金属片を用意した。
(Example 2-1)
First, each element with a purity of 4N, which is a raw material, so that the composition is Mg-8.9% Li-3.9% Al-0.8% Zn-0.02% Mn-0.19% Si of metal pieces were prepared.
 続いて、これらの原料を鉄製の坩堝に入れた。その坩堝をアルゴンガス雰囲気中、最高温度800℃で加熱し、原料を溶融させた。800℃で1時間保持した後、冷却させた。冷却は徐冷であり、凝固が開始した600℃から再結晶温度直下の100℃までの間の冷却速度は20℃/分とした。特に、200℃から100℃までの冷却速度は15℃/分とした。冷却が完了し、直径160mmの円柱ビレットである実施例2-1の合金部材を得た。 Next, these raw materials were placed in an iron crucible. The crucible was heated at a maximum temperature of 800° C. in an argon gas atmosphere to melt the raw material. After being held at 800° C. for 1 hour, it was cooled. The cooling was slow, and the cooling rate was 20°C/min from 600°C at which solidification started to 100°C just below the recrystallization temperature. In particular, the cooling rate from 200°C to 100°C was set at 15°C/min. After cooling was completed, an alloy member of Example 2-1, which was a cylindrical billet with a diameter of 160 mm, was obtained.
 続いて、得られた円柱ビレットから各測定を行うためにサンプルを作製し、各測定を行った。その結果、実施例2-1の合金部材のα相の存在比率は79.5%であった。また、比重は1.51であった。また、耐食測定では、金属色を維持していたため評価をAとした。 Next, samples were prepared from the obtained cylindrical billet for each measurement, and each measurement was performed. As a result, the existence ratio of the α phase in the alloy member of Example 2-1 was 79.5%. Moreover, the specific gravity was 1.51. In addition, in the corrosion resistance measurement, the evaluation was set to A because the metallic color was maintained.
 (実施例2-2)
 実施例2-2は、実施例2-1と組成が異なる。実施例2-2の組成は、Mg-9.0%Li-4.1%Al-1.1%Zn-0.009%Mn-0.015%Siである。それ以外は実施例2-1と同様の方法で実施例2-2の合金部材を得た。
(Example 2-2)
Example 2-2 differs from Example 2-1 in composition. The composition of Example 2-2 is Mg-9.0% Li-4.1% Al-1.1% Zn-0.009% Mn-0.015% Si. Otherwise, an alloy member of Example 2-2 was obtained in the same manner as in Example 2-1.
 実施例2-2の合金部材のα相の存在比率は47.0%であった。また、比重は1.52であった。また、耐食測定では、金属色を維持していたため評価をAとした。 The abundance ratio of the α phase in the alloy member of Example 2-2 was 47.0%. Moreover, the specific gravity was 1.52. In addition, in the corrosion resistance measurement, the evaluation was set to A because the metallic color was maintained.
 (実施例2-3)
 実施例2-3は、実施例2-1と組成が異なる。実施例2-3の組成は、Mg-7.0%Li-6.9%Al-0.8%Zn-0.015%Siである。それ以外は実施例2-1と同様の方法で実施例2-3の合金部材を得た。
(Example 2-3)
Example 2-3 differs in composition from Example 2-1. The composition of Example 2-3 is Mg-7.0% Li-6.9% Al-0.8% Zn-0.015% Si. Otherwise, an alloy member of Example 2-3 was obtained in the same manner as in Example 2-1.
 実施例2-3の合金部材のα相の存在比率は98.7%であった。また、比重は1.60であった。また、耐食測定では、金属色を維持していたため評価をAとした。 The abundance ratio of the α phase in the alloy member of Example 2-3 was 98.7%. Moreover, the specific gravity was 1.60. In addition, in the corrosion resistance measurement, the evaluation was set to A because the metallic color was maintained.
 以上の評価結果を表1に示す。また、図6は実施例における、横軸にLi濃度、縦軸にα相の存在比率を示したグラフである。 Table 1 shows the above evaluation results. FIG. 6 is a graph showing the Li concentration on the horizontal axis and the abundance ratio of the α phase on the vertical axis in the example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、Liの含有量が11質量%より多く13.5質量%以下の範囲である実施例1-1から1-6の合金部材はいずれも25℃でα相を有しており、耐食性はAまたはBと良好であった。特にα相の存在比率が20%以上である実施例1-1から1-3は、耐食性がAであり特に良好であった。また、実施例1-1から1-6の合金部材の比重はいずれも1.50より小さく、特に軽量であった。 From Table 1, the alloy members of Examples 1-1 to 1-6, in which the Li content is in the range of more than 11% by mass and 13.5% by mass or less, all have an α phase at 25 ° C. Corrosion resistance was as good as A or B. In particular, Examples 1-1 to 1-3, in which the abundance ratio of the α-phase was 20% or more, had a particularly good corrosion resistance of A. Moreover, the specific gravities of the alloy members of Examples 1-1 to 1-6 were all less than 1.50, and they were particularly lightweight.
 また、Liの含有量が5.34質量%以上11質量%以下の範囲である実施例2-1から2-3の合金部材は、耐食性はAと特に良好であった。実施例2-1から2-3の合金部材は、いずれも25℃でα相の割合が式(2) y>0.3736x-24.053x+217.79の関係を満たしていた。また、実施例2-1から2-3の合金部材の比重はいずれも1.60以下であり、実施例1-1から1-6と比べると高い値であるが、軽量であった。 Also, the alloy members of Examples 2-1 to 2-3, in which the Li content was in the range of 5.34% by mass or more and 11% by mass or less, had particularly good corrosion resistance of A. In all of the alloy members of Examples 2-1 to 2-3, the ratio of the α phase at 25° C. satisfied the relationship of formula (2) y>0.3736x 2 -24.053x+217.79. In addition, the specific gravities of the alloy members of Examples 2-1 to 2-3 were all 1.60 or less, which were higher than those of Examples 1-1 to 1-6, but were light in weight.
 以上、本開示によれば、腐食し難く、かつ軽量効果が得られるMg-Li系合金部材を提供することができる。 As described above, according to the present disclosure, it is possible to provide a Mg-Li alloy member that is resistant to corrosion and that is lightweight.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiments, and various changes and modifications are possible without departing from the spirit and scope of the present invention. Accordingly, the following claims are included to publicize the scope of the invention.
 本願は、2021年11月19日提出の日本国特許出願特願2021-188734を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2021-188734 filed on November 19, 2021, and the entire contents thereof are incorporated herein.
 100 合金部材
 101 被膜
 102 基材
 600 一眼レフデジタルカメラ(機器)
 601 レンズ鏡筒(機器)
 700 ドローン(機器)
 800 パソコン(機器)
100 alloy member 101 coating 102 base material 600 single-lens reflex digital camera (equipment)
601 lens barrel (equipment)
700 drone (equipment)
800 personal computer (equipment)

Claims (20)

  1.  Mg及びLiを含有し、前記Mgの含有量及び前記Liの含有量の和が90質量%以上である合金であって、
     前記Liの含有量が、11質量%より多く13.5質量%以下の範囲であり、
     前記合金が、Ge,Mn及びSiからなる第1群から選ばれる1以上の元素を含有し、
     前記合金が、25℃においてα相を有する、ことを特徴とする合金。
    An alloy containing Mg and Li, wherein the sum of the Mg content and the Li content is 90% by mass or more,
    The content of Li is in the range of more than 11% by mass and 13.5% by mass or less,
    The alloy contains one or more elements selected from the first group consisting of Ge, Mn and Si,
    An alloy characterized in that it has an α phase at 25°C.
  2.  前記Geの含有量が、0.3質量%以下である請求項1に記載の合金。 The alloy according to claim 1, wherein the Ge content is 0.3% by mass or less.
  3.  前記Mnの含有量が、2質量%以下である請求項1又は2に記載の合金。 The alloy according to claim 1 or 2, wherein the Mn content is 2% by mass or less.
  4.  前記Siの含有量が、0.5質量%以下である請求項1乃至3のいずれか1項に記載の合金。 The alloy according to any one of claims 1 to 3, wherein the Si content is 0.5% by mass or less.
  5.  25℃における前記合金のα相の割合が8%以上である請求項1乃至4のいずれか1項に記載の合金。 The alloy according to any one of claims 1 to 4, wherein the proportion of α-phase in said alloy at 25°C is 8% or more.
  6.  25℃における前記合金のα相の割合が20%以上である請求項1乃至4のいずれか1項に記載の合金。 The alloy according to any one of claims 1 to 4, wherein the proportion of α-phase in the alloy at 25°C is 20% or more.
  7.  前記合金が、さらにAl,Zn,Zr,Ca及びBeからなる第2群から選ばれる1以上の元素を含有し、
     前記第2群の元素の含有量の和が、0.01質量%以上7質量%以下である請求項1乃至6のいずれか1項に記載の合金。
    The alloy further contains one or more elements selected from the second group consisting of Al, Zn, Zr, Ca and Be,
    7. The alloy according to any one of claims 1 to 6, wherein the sum of the contents of the elements of the second group is 0.01% by mass or more and 7% by mass or less.
  8.  前記Alの含有量が、5質量%以下であり、
     前記Znの含有量が、2質量%以下であり、
     前記Zrの含有量が、0.7質量%以下であり、
     前記Caの含有量が、0.3質量%以下であり、
     前記Beの含有量が、0.1質量%以下である請求項7に記載の合金。
    The Al content is 5% by mass or less,
    The Zn content is 2% by mass or less,
    The Zr content is 0.7% by mass or less,
    The Ca content is 0.3% by mass or less,
    8. The alloy according to claim 7, wherein the Be content is 0.1 mass % or less.
  9.  Mg及びLiを含有し、前記Mgの含有量及び前記Liの含有量の和が90質量%以上である合金であって、
     前記合金のLiの含有量が、5.34質量%以上11質量%以下の範囲であり、
     前記合金が、Ge,Mn及びSiからなる第1群から選ばれる1以上の元素を含有し、
     前記合金の25℃の温度におけるα相の割合をy(%)、Liの含有量をx(質量%)としたときに、y>0.3736x-24.053x+217.79を満たすことを特徴とする合金。
    An alloy containing Mg and Li, wherein the sum of the Mg content and the Li content is 90% by mass or more,
    Li content of the alloy is in the range of 5.34% by mass or more and 11% by mass or less,
    The alloy contains one or more elements selected from the first group consisting of Ge, Mn and Si,
    Characterized by satisfying y>0.3736x 2 −24.053x+217.79, where y (%) is the ratio of the α phase of the alloy at a temperature of 25 ° C. and x (mass%) is the content of Li. alloy.
  10.  前記Geの含有量が、0.3質量%以下である請求項9に記載の合金。 The alloy according to claim 9, wherein the Ge content is 0.3% by mass or less.
  11.  前記Mnの含有量が、2質量%以下である請求項9又は10に記載の合金。 The alloy according to claim 9 or 10, wherein the Mn content is 2% by mass or less.
  12.  前記Siの含有量が、0.5質量%以下である請求項9乃至11のいずれか1項に記載の合金。 The alloy according to any one of claims 9 to 11, wherein the Si content is 0.5% by mass or less.
  13.  前記合金が、さらにAl,Zn,Zr,Ca及びBeからなる第2群から選ばれる1以上の元素を含有し、
     前記第2群の元素の含有量の和が、0.01質量%以上7質量%以下である請求項9乃至12のいずれか1項に記載の合金。
    The alloy further contains one or more elements selected from the second group consisting of Al, Zn, Zr, Ca and Be,
    13. The alloy according to any one of claims 9 to 12, wherein the sum of the contents of the elements of the second group is 0.01 wt% or more and 7 wt% or less.
  14.  前記Alの含有量が、5質量%以下であり、
     前記Znの含有量が、2質量%以下であり、
     前記Zrの含有量が、0.7質量%以下であり、
     前記Caの含有量が、0.3質量%以下であり、
     前記Beの含有量が、0.1質量%以下である請求項13に記載の合金。
    The Al content is 5% by mass or less,
    The Zn content is 2% by mass or less,
    The Zr content is 0.7% by mass or less,
    The Ca content is 0.3% by mass or less,
    14. The alloy according to claim 13, wherein the Be content is 0.1% by mass or less.
  15.  請求項1乃至14のいずれか1項に記載の合金を含むことを特徴とする合金部材。 An alloy member comprising the alloy according to any one of claims 1 to 14.
  16.  基材と、
     前記基材の上に設けられた被膜と、を有する合金部材であって、
     前記基材が請求項1乃至14のいずれか1項に記載の合金を含むことを特徴とする合金部材。
    a substrate;
    and a coating provided on the base material,
    An alloy member, wherein the base material comprises the alloy according to any one of claims 1 to 14.
  17.  前記被膜が、フッ化マグネシウム又はリン酸マグネシウムを含む請求項16に記載の合金部材。 The alloy member according to claim 16, wherein the coating contains magnesium fluoride or magnesium phosphate.
  18.  筐体と、
     前記筐体内に設けられた部品と、を備える機器であって、
     前記筐体が、請求項15乃至17のいずれか1項に記載の合金部材を含むことを特徴とする機器。
    a housing;
    and a component provided in the housing,
    18. A device, wherein the housing comprises the alloy member according to any one of claims 15-17.
  19.  Mg及びLiを含有し、Ge,Mn及びSiからなる第1群から選ばれる1以上の元素を含有し、前記Mgの含有量及び前記Liの含有量の和が90質量%以上である原料を用意する用意工程と、
     前記原料を600℃以上に加熱して溶融する加熱工程と、
     前記溶融した原料を冷却して固化する冷却工程と、を有し、
     前記冷却工程において、前記溶融した原料が凝固され始めてから100℃までの冷却速度が100℃/分以下であることを特徴とする合金の製造方法。
    A raw material containing Mg and Li, containing one or more elements selected from the first group consisting of Ge, Mn and Si, and having a sum of the Mg content and the Li content of 90% by mass or more a preparation process to prepare;
    A heating step of heating and melting the raw material to 600° C. or higher;
    a cooling step of cooling and solidifying the molten raw material,
    A method for producing an alloy, wherein in the cooling step, the cooling rate from the start of solidification of the molten raw material to 100°C is 100°C/min or less.
  20.  前記冷却工程において、前記溶融した原料が凝固され始めてから100℃までの冷却速度が50℃/分以下である請求項19に記載の合金の製造方法。 The method for producing an alloy according to claim 19, wherein in the cooling step, the cooling rate from the start of solidification of the molten raw material to 100°C is 50°C/min or less.
PCT/JP2022/040375 2021-11-19 2022-10-28 Alloy, alloy member, device, and alloy production method WO2023090127A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280075674.0A CN118234881A (en) 2021-11-19 2022-10-28 Alloy, alloy part, instrument, and method of manufacturing alloy
EP22895410.3A EP4435126A1 (en) 2021-11-19 2022-10-28 Alloy, alloy member, device, and alloy production method
US18/652,667 US20240279781A1 (en) 2021-11-19 2024-05-01 Alloy, alloy member, instrument, and method of manufacturing alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021188734A JP2023075682A (en) 2021-11-19 2021-11-19 Alloy, alloy member, device, and alloy production method
JP2021-188734 2021-11-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/652,667 Continuation US20240279781A1 (en) 2021-11-19 2024-05-01 Alloy, alloy member, instrument, and method of manufacturing alloy

Publications (1)

Publication Number Publication Date
WO2023090127A1 true WO2023090127A1 (en) 2023-05-25

Family

ID=86396761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040375 WO2023090127A1 (en) 2021-11-19 2022-10-28 Alloy, alloy member, device, and alloy production method

Country Status (5)

Country Link
US (1) US20240279781A1 (en)
EP (1) EP4435126A1 (en)
JP (1) JP2023075682A (en)
CN (1) CN118234881A (en)
WO (1) WO2023090127A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176839A (en) * 1990-11-08 1992-06-24 Aluminum Co Of America <Alcoa> Magnesium-based alloy
JPH0941066A (en) * 1995-08-01 1997-02-10 Mitsui Mining & Smelting Co Ltd Magnesium alloy capable of cold press working
JP2004156089A (en) 2002-11-06 2004-06-03 Mitsubishi Steel Mfg Co Ltd Magnesium alloy capable of being molded at room temperature and excellent in corrosion resistance
WO2018021360A1 (en) * 2016-07-26 2018-02-01 株式会社三徳 Magnesium-lithium alloy, and magnesium air battery
JP2019189941A (en) * 2018-04-23 2019-10-31 キヤノン株式会社 Magnesium-lithium-based alloy
WO2021241251A1 (en) * 2020-05-29 2021-12-02 キヤノン株式会社 Alloy member, article, and method for manufacturing alloy member
JP2021188734A (en) 2020-06-04 2021-12-13 株式会社山田製作所 Inserting tool of insertion type coupling joint, and insertion type coupling joint
JP2022133238A (en) * 2021-03-01 2022-09-13 キヤノン株式会社 Alloy member, sliding member, equipment, and method of producing alloy member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176839A (en) * 1990-11-08 1992-06-24 Aluminum Co Of America <Alcoa> Magnesium-based alloy
JPH0941066A (en) * 1995-08-01 1997-02-10 Mitsui Mining & Smelting Co Ltd Magnesium alloy capable of cold press working
JP2004156089A (en) 2002-11-06 2004-06-03 Mitsubishi Steel Mfg Co Ltd Magnesium alloy capable of being molded at room temperature and excellent in corrosion resistance
WO2018021360A1 (en) * 2016-07-26 2018-02-01 株式会社三徳 Magnesium-lithium alloy, and magnesium air battery
JP2019189941A (en) * 2018-04-23 2019-10-31 キヤノン株式会社 Magnesium-lithium-based alloy
WO2021241251A1 (en) * 2020-05-29 2021-12-02 キヤノン株式会社 Alloy member, article, and method for manufacturing alloy member
JP2021188734A (en) 2020-06-04 2021-12-13 株式会社山田製作所 Inserting tool of insertion type coupling joint, and insertion type coupling joint
JP2022133238A (en) * 2021-03-01 2022-09-13 キヤノン株式会社 Alloy member, sliding member, equipment, and method of producing alloy member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Collection of binary alloy phase diagrams", January 2001, AGNE GIJUTSU CENTER, pages: 978 - 4900041882

Also Published As

Publication number Publication date
US20240279781A1 (en) 2024-08-22
JP2023075682A (en) 2023-05-31
EP4435126A1 (en) 2024-09-25
CN118234881A (en) 2024-06-21

Similar Documents

Publication Publication Date Title
Zhou et al. Laser powder bed fusion of Al–10 wt% Ce alloys: microstructure and tensile property
US20220298609A1 (en) Magnesium-lithium-based alloy
JP6794264B2 (en) Magnesium-lithium alloy, rolled materials and molded products
JP6997860B2 (en) Copper-based alloys for the production of bulk metallic glasses
JP2008001921A (en) Magnesium alloy, and oa equipment parts
JP2006097037A (en) Magnesium alloy and its production method
CAO et al. Effects of isothermal process parameters on semisolid microstructure of Mg-8% Al-1% Si alloy
KR101581461B1 (en) Magnesium alloy having heat radiation property and its manufacturing method
CN109797328A (en) High-strength resistant to damage aluminium lithium alloy material and its preparation method and application in one kind
WO2023090127A1 (en) Alloy, alloy member, device, and alloy production method
US11840749B2 (en) Magnesium-lithium-based alloy
WO2021241251A1 (en) Alloy member, article, and method for manufacturing alloy member
JP2007291447A (en) Sliding component made of magnesium alloy
WO2004111283A1 (en) Thermally stable calcium-aluminum bulk amorphous metal with low mass density
JP2021188118A (en) Alloy member, article and production of alloy member
JP2008238183A (en) Method for producing magnesium alloy and magnesium alloy
JP2005213535A (en) High-performance magnesium alloy and its manufacturing method
JP4154480B2 (en) Heat-resistant magnesium alloy and method for producing the same
JP3387548B2 (en) Manufacturing method of magnesium alloy molded product
JP2023174228A (en) Alloy, alloy member, apparatus and manufacturing method of alloy
JP2010070839A (en) Magnesium alloy
JP2020152996A (en) Method for making alp compounds finer and aluminum alloy casting
US20230272548A1 (en) Alloy member, apparatus, and method for manufacturing alloy member
Yang et al. Processing effects on grain refinement of AZ31 magnesium alloy treated with a commercial Al-10Sr master alloy
WO2021241250A1 (en) Alloy member, article, and manufacturing method of alloy member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895410

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280075674.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022895410

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022895410

Country of ref document: EP

Effective date: 20240619