WO2023089954A1 - Glass bottle bottom inspection device - Google Patents

Glass bottle bottom inspection device Download PDF

Info

Publication number
WO2023089954A1
WO2023089954A1 PCT/JP2022/035581 JP2022035581W WO2023089954A1 WO 2023089954 A1 WO2023089954 A1 WO 2023089954A1 JP 2022035581 W JP2022035581 W JP 2022035581W WO 2023089954 A1 WO2023089954 A1 WO 2023089954A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass bottle
light
image
polarizing film
circularly polarizing
Prior art date
Application number
PCT/JP2022/035581
Other languages
French (fr)
Japanese (ja)
Inventor
怜也 松本
Original Assignee
東洋ガラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ガラス株式会社 filed Critical 東洋ガラス株式会社
Publication of WO2023089954A1 publication Critical patent/WO2023089954A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents

Definitions

  • the present invention relates to a glass bottle bottom inspection device.
  • a visual inspection device for inspecting defects in the bottom of transparent bottles such as PET bottles has been proposed (for example, Patent Document 1).
  • This visual inspection device irradiates blue (450 nm to 490 nm) diffused light and red (620 nm to 750 nm) parallel light toward the bottom outer surface of a transparent PET bottle, and uses two types of cameras placed on the mouth side. are captured and compared to determine the presence or absence of a defect.
  • the bottom of the glass bottle has many uneven engravings such as company logos and control numbers. Therefore, for example, even if the technique of Patent Document 1 is applied to a glass bottle, it is difficult to distinguish between the engraving pattern and the defect in the image, and the inspection accuracy is lowered so as not to mistakenly recognize the pattern as a defect. Different inspections will be performed on the equipment.
  • the present invention provides a glass bottle bottom inspection device that can determine the presence or absence of defects with a high degree of accuracy even in glass bottles that have uneven engravings on the bottom.
  • the present invention has been made to solve at least part of the above problems, and can be implemented as the following aspects or application examples.
  • sculpture refers to changes in shape due to unevenness on the surface of the glass bottle
  • pattern refers to the contrast density resulting from the "sculpture” that appears in the image obtained by photographing the glass bottle. Change.
  • One aspect of the glass bottle bottom inspection device is a lighting device that irradiates light toward the bottom of the glass bottle; a camera placed across the glass bottle with respect to the lighting device and capturing an image of the bottom; a first circularly polarizing film disposed between the lighting device and the bottom; a second circularly polarizing film disposed between the mouth of the glass bottle and the camera; with
  • the lighting device includes a first lighting unit that emits infrared light having directivity toward the bottom, and a diffusing property toward the bottom that is disposed between the first lighting unit and the bottom.
  • the camera includes a first light receiving unit that detects only infrared light and a second light receiving unit that detects only visible light,
  • the first circularly polarizing film and the second circularly polarizing film have the same polarization direction.
  • the camera can include a beam splitter that separates infrared light and visible light.
  • the first illumination unit includes a first light source that emits diffuse infrared light, and a louver film having a plurality of louvers that limit the angle of transmission of the infrared light incident from the first light source.
  • the plurality of louvers may extend in a grid pattern in a direction perpendicular to the central axis of the glass bottle.
  • the louver film may have a viewing angle of 15 to 45 degrees on the central axis.
  • the pattern can be detected from the image of the first light-receiving part even if the glass bottle has uneven engravings on the bottom. It is easy to determine the presence or absence of a defect in an area without a pattern.
  • FIG. 1 is a front view schematically showing one aspect of the bottom inspection device.
  • FIG. 2 is a partially enlarged view schematically showing the louver film.
  • FIG. 3 is a flow chart of an inspection method using a bottom inspection device.
  • FIG. 4 is an example of the first image.
  • FIG. 5 is an example of the second image.
  • FIG. 6 is a diagram for explaining the inspection area setting process.
  • FIG. 7 is an example of the third image.
  • FIG. 8 shows first and second images captured by the bottom inspection apparatus of Example 1.
  • FIG. 9A and 9B are first and second images captured by the bottom inspection apparatus of Comparative Example 1.
  • One aspect of the glass bottle bottom inspection apparatus includes a lighting device that irradiates light toward the bottom of the glass bottle, and a lighting device that is arranged to sandwich the glass bottle with respect to the lighting device.
  • the polarization directions of the first circularly polarizing film and the second circularly polarizing film are the same.
  • FIG. 1 is a front view schematically showing one aspect of the bottom inspection apparatus 1
  • FIG. 2 is a partially enlarged view schematically showing the louver film 24. As shown in FIG.
  • the bottom inspection device 1 for glass bottles 10 includes an illumination device 2 , a camera 4 , a first circularly polarizing film 35 and a second circularly polarizing film 36 .
  • the bottom inspection device 1 may be incorporated as part of a production line for the vials 10 or an inspection line comprising a plurality of inspection devices, in which case means may also be provided for loading and unloading the vials 10 into and out of the bottom inspection device 1. good.
  • the bottom inspection device 1 may further include a controller 50 .
  • the glass bottle 10 has a mouth portion 13 , a body portion 14 and a bottom portion 15 downward along the central axis 12 of the glass bottle 10 .
  • a glass bottle 10 to be inspected is arranged at a predetermined position on the mounting table 60 of the bottom inspection device 1 .
  • the central axis 12 is an imaginary line passing through the center of the mouth portion 13 and the center of the bottom portion 15 .
  • the mounting table 60 is a table on which the glass bottle 10 is placed, and at least the range on which the bottom part 15 is placed is composed of a flat plate that transmits visible light and infrared light, such as a distortion-free transparent acrylic resin plate or glass plate. Alternatively, the mounting table 60 may be removed and the glass bottle 10 may be imaged while floating in the air.
  • the glass bottle 10 is made of glass, is a transparent or translucent container, and may be colored. Translucency is a degree of transparency that allows the light from the lighting device 2 transmitted through the glass bottle 10 to determine defects in the bottom 15 .
  • the mouth part 13 is opened and a lid is attached after filling the contents.
  • the trunk portion 14 has a circular cross section, but may have another shape such as a substantially square shape.
  • the bottom part 15 has a grounding peripheral edge and a bottom part consisting of the inner side of the peripheral edge, and has engravings on the outer surface.
  • the engraving is an uneven character or symbol formed on the surface of the glass bottle 10. For example, the engraving is formed by the unevenness engraved on the surface of the mold during molding.
  • the engraving is, for example, a company mark representing a manufacturing company and a model number representing a management number such as a mold number. Since the engraving is formed at a predetermined position on the bottom 15 corresponding to the unevenness of the mold, the pattern derived from the engraving is used for positioning the glass bottle 10 around the central axis 12 and for positioning the image taken by the camera 4. can do.
  • the illumination device 2 irradiates light toward the bottom 15 of the glass bottle 10 .
  • the illumination device 2, the camera 4 and the glass bottle 10 are arranged so that the light emitted from the illumination device 2 passes through the bottom portion 15, passes through the body portion 14, passes through the opening of the mouth portion 13, and is received by the camera 4. placed.
  • the illumination device 2, the glass bottle 10, and the camera 4 are arranged in this order along the central axis 12, but other arrangements may be used as long as the camera 4 can receive the light transmitted through the bottom portion 15.
  • the illumination device 2 includes a first illumination section 21 that irradiates infrared light having directivity toward the bottom section 15 , and a diffusing property toward the bottom section 15 that is arranged between the first illumination section 21 and the bottom section 15 . and a second illumination unit 31 that emits visible light.
  • the first illumination unit 21, the second illumination unit 31, the first circularly polarizing film 35 described later, the mounting table 60, the glass bottle 10, the second circularly polarizing film 36, the camera 4 are arranged in order. Therefore, infrared light and visible light reach the bottom portion 15 .
  • the camera 4 can detect the two types of light with separate light receiving units.
  • visible light has a wavelength of 380 nm to 630 nm
  • infrared light has a wavelength of 800 nm to 1000 nm.
  • the first illumination unit 21 has a first light source 22 that emits diffuse infrared light, and a plurality of louvers 24a (FIG. 2) that limit the angle of transmission of the infrared light incident from the first light source 22. and a louver film 24 .
  • the infrared light transmitted through the louver film 24 has directivity.
  • the first light source 22 includes, for example, a plurality of LEDs (light emitting diodes) (not shown) and a diffusion plate 23 arranged on the bottom 15 side so as to cover the plurality of LEDs.
  • An organic EL may be used instead of the LED.
  • the first light source 22 is a planar surface light source that spreads on a plane perpendicular to the central axis 12 .
  • a plurality of LEDs are evenly arranged on the surface on the diffuser plate 23 side and face the bottom 15 of the glass bottle 10 . Irradiate diffused light from the whole. Near-infrared light having a peak wavelength of 800 nm to 1000 nm is preferable as the infrared light emitted from the first illumination unit 21 .
  • the louver film 24 can have a plurality of louvers 24a extending in a grid pattern in a direction orthogonal to the central axis 12 of the glass bottle 10.
  • the louver film 24 is arranged so as to overlap the entire first light source 22 when viewed from the bottom 15 side.
  • a cross louver film manufactured by Shin-Etsu Polymer Co., Ltd. can be used as the grid-like louver film 24 .
  • the louver film 24 consists of a plurality of plate-shaped louvers 24a with excellent light shielding properties and two louver films in which portions with excellent translucency are alternately arranged between the louvers 24a. It is configured to form a lattice when viewed from the axis 12 .
  • the louver film 24 can be made of resin, for example.
  • the louver film 24 allows the diffused light from the first light source 22 to have directivity.
  • the viewing angle of the louver film 24 at the center axis 12 is preferably set to 15 degrees to 45 degrees, more preferably 25 degrees to 35 degrees.
  • the viewing angle is an angle (visible angle) through which light can pass, and in this embodiment, it is an angle through which light passes when the louver film 24 is viewed from the bottom 15 side.
  • the narrower viewing angle increases the directivity of infrared light.
  • infrared light can reduce the influence of transmittance on various bottle colors, it becomes easier to recognize patterns in an image of the bottom portion 15 . If the viewing angle is less than 15 degrees, the image of the bottom part 15 other than the central part in the captured image becomes too dark and is not suitable for appearance inspection, and if it exceeds 45 degrees, the directivity is low and the outline of the pattern becomes unclear. .
  • the second illumination section 31 includes a second light source 32 and a light guide plate 34.
  • the second illumination unit 31 is a planar surface light source extending on a plane orthogonal to the central axis 12 and emits diffused light from substantially the entire surface toward the bottom 15 of the glass bottle 10 .
  • the second illumination unit 31 preferably has a substantially rectangular plate shape because it provides excellent uniformity of illumination, but the second illumination unit 31 is not limited to this and may have, for example, a disk shape.
  • the second illumination unit 31 can employ a known illumination such as a flat dome (Japan registered trademark) illumination (International Publication No. WO2020/045557A1) manufactured by CCS Corporation.
  • the second illumination unit 31 In order to transmit the infrared light from the first illumination unit 21 , the second illumination unit 31 has a flat light guide plate 34 arranged in the center and a second light source 32 arranged on the outer edge of the light guide plate 34 .
  • the second light source 32 is, for example, a plurality of LEDs (not shown) that emit visible light from the outer edge of the light guide plate 34 toward the center of the light guide plate 34 .
  • the LEDs are arranged side by side on the inner peripheral surface of the frame-shaped body surrounding the light guide plate 34 .
  • An organic EL may be used instead of the LED.
  • the second light source 32 is preferably visible light having a peak wavelength of 400 nm to 630 nm.
  • the second light source 32 preferably includes a red LED with a peak wavelength of, for example, around 630 nm and a blue LED with a peak wavelength of around 470 nm. preferable. This is because the transmittance of light differs depending on the color of the bottle. It is preferable to apply a blue LED with high transmittance to a blue bottle.
  • the light guide plate 34 transmits infrared light from the first light source 22 while diffusing and emitting visible light incident from the second light source 32 on the outer edge from the surface on the bottom 15 side.
  • a known plate can be used for the light guide plate 34 .
  • Visible light emitted from the second lighting unit 31 is polarized by the first circularly polarizing film 35 , passes through the bottom 15 , passes through the opening of the mouth 13 , passes through the second circularly polarizing film 36 , and reaches the camera 4 .
  • a first circular polarizing film 35 is arranged between the illumination device 2 and the bottom 15 .
  • a second circularly polarizing film 36 is placed between the mouth 13 of the vial 10 and the camera 4 .
  • the first circularly polarizing film 35 and the second circularly polarizing film 36 have basically the same shape, and are arranged in respective planes perpendicular to the center axis 12 near the mouth 13 and near the bottom 15 .
  • the first circularly polarizing film 35 is arranged with a predetermined distance D1 from the mounting table 60 .
  • a distance D1 between the first circularly polarizing film 35 and the mounting table 60 is preferably 20 mm to 40 mm, for example, 30 mm.
  • the first circularly polarizing film 35 and the second circularly polarizing film 36 have the same polarization direction.
  • the polarization direction can be either clockwise or counterclockwise with respect to the direction along the central axis 12 .
  • the first circularly polarizing film 35 and the second circularly polarizing film 36 can both employ right-handed circularly polarized waves whose polarization directions are, for example, right-handed rotation directions, or both can employ left-handed circularly polarized waves. good.
  • Both the first circularly polarizing film 35 and the second circularly polarizing film 36 can be configured by laminating a linear polarizing plate and a quarter-wave plate.
  • the diffused visible light from the second lighting unit 31 is converted into a linearly polarized wave by the first circularly polarizing film 35 and the second circularly polarizing film 36 and is received by the camera 4, defects such as foreign matter and foreign glass on the bottom 15 are eliminated. It can be recognized as a black part (a dark part with low brightness) in the captured image.
  • the first circularly polarizing film 35 and the second circularly polarizing film 36 do not polarize the infrared light, the infrared light of the first illumination section 21 is not affected.
  • the camera 4 is placed across the glass bottle 10 with respect to the illumination device 2 and captures an image of the bottom 15 .
  • the camera 4 includes a first light receiving section 41 that detects only infrared light and a second light receiving section 42 that detects only visible light.
  • the camera 4 separates the light incident from the mouth 13 side through the lens 45 into infrared light and visible light, and receives the light with the first light receiving section 41 and the second light receiving section 42 .
  • the focal length of the lens 45 can be set so that the optical axis is on the central axis 12 and the image of the bottom 15 can be photographed.
  • the camera 4 can be equipped with a beam splitter 44 that separates infrared light and visible light.
  • the beam splitter 44 is an optical component that splits incident light from the lens 45 into infrared light and visible light.
  • the beam splitter 44 a known one can be adopted, and it may be a cube type combining two prisms, or a plate type in which an optical thin film for spectroscopy is vapor-deposited on a thin plate glass.
  • the beam splitter 44 reflects the infrared light of the incident light to the first light receiving section 41 located at a position of 90 degrees with respect to the central axis 12 , and transmits the visible light to the central axis 12 .
  • the second light receiving portion 42 on the center axis 12 receives the light.
  • the outline of the pattern formed by the concave-convex engraving formed on the surface of the bottom part 15 appears in a dark color.
  • the image captured by the second light receiving unit 42 has no difference in brightness due to the pattern, and defects appear in dark colors.
  • the first light-receiving unit 41 and the second light-receiving unit 42 are separate solid-state imaging devices, and for example, a CCD image sensor or a CMOS image sensor can be used, preferably a CMOS image sensor.
  • a CCD image sensor or a CMOS image sensor can be used, preferably a CMOS image sensor.
  • By providing two light receiving units it is possible to set each sensor to an appropriate camera gain and shutter speed, and to adjust the brightness of each image.
  • the image of the bottom portion 15 using infrared light and the image of the bottom portion 15 using visible light can be obtained simultaneously by a single bottom portion inspection apparatus 1, inspection efficiency can be improved and space can be saved.
  • the first light receiving section 41 and the second light receiving section 42 have a light receiving sensitivity of 0% for a wavelength between infrared light and visible light, for example, 650 nm to 790 nm.
  • the control unit 50 is electrically connected to the lighting device 2 and the camera 4, executes, for example, processing related to turning on/off the lighting device 2 and processing related to photographing by the camera 4, and performs processing related to inspection using the photographed image. Execute.
  • the control unit 50 may further execute processing related to the operation of a loading/unloading mechanism (not shown) for the glass bottle 10 .
  • the control unit 50 includes, for example, processors such as CPU (Central Processing Unit) and GPU (Graphics Processing Unit), HDD (Hard Disk Drive), SSD (Solid State Drive), ROM (Read-Only Memory), RAM (Random Access s memory), input devices such as a keyboard, mouse, and touch pad, display devices such as a liquid crystal display and an organic EL (Electro Luminescence) display, digital input/output boards such as an I/O board, and the like.
  • the CPU, storage device, etc. of the control unit 50 may be not only one but also a plurality of physically separated devices, in which case they may be connected via a communication network.
  • the control unit 50 has a determination unit 52 , an image processing unit 53 , a reading unit 54 and a storage unit 55 .
  • a determination unit 52 determines whether or not there is a defect based on the image acquired from the camera 4 . Defects determined by the determining unit 52 include, for example, foreign matter on the inner surface of the bottom portion 15, conjugating foreign matter on the bottom portion 15, foreign glass on the bottom portion 15, and other defects during glass bottle molding.
  • the control unit 50 can output the determination result of the determination unit 52 to the outside for each glass bottle 10. For example, even if the glass bottle 10 determined to have a defect is removed by a discharge unit (not shown) of the bottom inspection device 1 good.
  • a part of the processing part of the control part 50 may execute processing by a device other than the control part 50. For example, a part of the processing of the image processing part 53 and the reading part 54 may be executed by the CPU provided in the camera 4. You may Specific processing in each section of the control section 50 will be described in "2. Bottom Inspection Method" below.
  • FIG. 3 is a flowchart of an inspection method using the bottom inspection apparatus 1
  • FIG. 4 is an example of the first image 101
  • FIG. 5 is an example of the second image 102
  • FIG. It is a figure explaining a setting process (S40).
  • the bottom inspection method is a bottom inspection method for a glass bottle 10 having an engraving on the surface of the bottom 15, and includes, for example, an imaging step (S10) and a pattern detection step (S20). ), a mask making step (S30), an inspection area setting step (S40), a detection step (S50), a determination step (S60), a non-defective product process (S70), and a defective product process. (S80) and.
  • an imaging step S10 and a pattern detection step (S20).
  • S30 a mask making step
  • S40 an inspection area setting step
  • S50 detection step
  • S60 determination step
  • S70 non-defective product process
  • S80 defective product process
  • the control unit 50 executes shooting processing.
  • the control unit 50 executes the lighting process prior to S10.
  • the controller 50 outputs a signal for lighting the first lighting unit 21 and the second lighting unit 31 to the lighting device 2 .
  • the control unit 50 outputs a signal for executing photographing to the camera 4 and causes the camera 4 to transmit the photographed image data to the control unit 50 .
  • the camera 4 shoots the first image 101 of the bottom 15 in FIG.
  • the control unit 50 can acquire each image data from the output from the camera 4 .
  • the acquired image data may be stored in the storage unit 55 .
  • the control unit 50 executes pattern detection processing.
  • the determination unit 52 detects the pattern 70 emphasized with infrared light from the first image 101 acquired in S10.
  • the determination unit 52 may detect the pattern 70 by, for example, "pattern search".
  • the image processing section 53 may perform image pre-processing on the pattern 70 before S20 in order to more reliably detect the pattern 70 in the determination section 52 .
  • the reading unit 54 can read, for example, the model number from the pattern 70 detected in the first image 101 .
  • 10 substantially elliptical codes arranged at intervals along a circular orbit correspond to model numbers as barcode-like codes called CID marks (see Japanese Patent Laid-Open No. 2001-270719). Since the code is assigned, the reading unit 54 can read the model number from the position and number of codes. Since the model number can be read with a single inspection device along with the judgment of the defect described later, efficient inspection can be performed in a small space.
  • a first image 101 shown in FIG. 4 is an image captured by the first light receiving unit 41 .
  • the plurality of patterns 70 include, for example, knurling along the outer edge of the bottom portion 15, a company mark indicating the manufacturing site of the glass bottle 10, a mold number, a CID mark, and the like. These patterns 70 are derived from engravings carved into the mold, and thus have regularity in advance. It is desirable to store the pattern of the pattern 70 based on this regularity in advance in the storage unit 55 .
  • the pattern 70 can be detected from the first image 101, for example, from the position and shape of the outer edge of the bottom portion 15, the position of the outer edge to the center position of the bottom portion 15, the distance from the center position to each pattern 70, the shape and arrangement, etc.
  • the rotation angle and the like about the center axis 12 of the bottom 15 can be estimated.
  • “blurring processing” can be performed in order to perform "pattern search” by the determination unit 52.
  • the “blurring process” can be performed, for example, by an averaging filter, which is a two-dimensional filter that replaces the pixel value of the pixel of interest with the average value of all pixel values within the filter size range and outputs the result.
  • averaging filter which is a two-dimensional filter that replaces the pixel value of the pixel of interest with the average value of all pixel values within the filter size range and outputs the result.
  • “dilation processing” that dilates black shadows may be employed.
  • the determination unit 52 performs pattern detection processing on the first image 101 on which image preprocessing has been performed, for example.
  • the determination unit 52 detects the pattern 70 by performing a pattern search on the first image 101 using a pattern registration image created in advance based on the outer shape of the engraving on the bottom 15 .
  • the pattern search the first image 101 is searched for a detection object that matches the pattern registration image, and the detection object is detected as the pattern 70 when the pattern registration image matches the outline of the pattern 70 to a certain extent.
  • detection accuracy by pattern search is high. has regularity, the position of the pattern 70 can be detected with high accuracy.
  • the control unit 50 executes the mask creation process. For example, in the mask creation step, the image processing unit 53 creates a mask based on the first image 101 (FIG. 4) from which the pattern 70 is detected in S20, and arranges the mask 80 on the second image 102 (FIG. 5). (Fig. 6). The corresponding positional relationship between the first image 101 captured by the first light receiving unit 41 and the second image 102 captured by the second light receiving unit 42 is measured and adjusted in advance. If the positional information of 70 is known, the position where pattern 70 exists in second image 102 can be known. Therefore, the mask 80 is placed at the correct position in the second image 102 .
  • the mask creation process first includes a plurality of masks 80 (see FIG. 6) is created.
  • the detected object 72 which is a defect
  • the mask 80 is placed on the second image 102 so as to cover each pattern 70 in the second image 102 in FIG. becomes a state like
  • a part of the mask 80 may be created in advance according to the engraving (or pattern registration image) of the glass bottle 10 to be inspected and stored in the storage unit 55 .
  • the size of each mask 80 may be substantially the same as that of each pattern 70, or may be a size sufficient to cover a plurality of patterns 70 in a single mask 80.
  • the control unit 50 executes an inspection area setting step.
  • the inspection area setting step may be performed at the same time as S30, and one or more inspection gates 83 having a preset shape are created in the second image 102 based on the position of the pattern 70 detected by the pattern search. 53 places. Since the pattern 70 has regularity, the positions of the inspection gates 82 and 83 can be determined by setting the relative positions of the pattern 70 and the inspection gates 83 in advance. can be automatically laid out on the second image 102 .
  • the inspection gates 82 , 83 can be set, for example, as one or more annular regions concentric with the central axis 12 at the bottom 15 . In FIG. 6, two check gates 82, 83 are set.
  • the inspection gate 82 and the inspection gate 83 can be set to have different sensitivities. You can set it to a higher sensitivity.
  • the control unit 50 executes the detection process for each inspection gate 82,83.
  • the mask 80 and the inspection gates 82 and 83 are arranged in S30 in FIG. To detect.
  • the detection object 72 is detected by, for example, executing an inspection algorithm for each inspection gate 82 stored in advance in the storage unit 55 .
  • the inspection algorithm includes, for example, a process of binarizing the illuminance data read to the inspection gates 82 and 83 and detecting the detection object 72 in comparison with the surrounding pixels, and a process of detecting a small area within the inspection gates 82 and 83.
  • Examples include a process of creating a region (segment), moving this segment in the circumference or radial direction, calculating the average density, comparing the density difference, and detecting the detection object 72 .
  • a process of creating a region segment
  • moving this segment in the circumference or radial direction calculating the average density
  • comparing the density difference comparing the density difference
  • detecting the detection object 72 detecting certain portions of mask 80 and executing the inspection algorithm on inspection gates 82 and 83.
  • the determination step (S60) may be executed at the same time.
  • the control unit 50 executes the determination process. For example, in the determination step, it is determined whether or not the detection object 72 in the second image 102 detected in S50 is defective, and based on the result, it is determined whether or not the glass bottle 10 is a non-defective product. Reference data stored in the storage unit 55 in advance is used as the criterion. The criteria for determination include, for example, the area and shape of the detection body 72 . If the result of the determination step is that the detection body 72 is not a defect, the glass bottle 10 is regarded as a "non-defective product" and the control unit 50 executes S70. ”, the control unit 50 executes S80. Of course, if the detection object 72 itself is not detected in S50, S70 is executed assuming that the determination result is "non-defective".
  • the control unit 50 executes the process of processing as a non-defective product. For example, in the process of processing as a non-defective product, the control unit 50 outputs a signal to a conveying means (not shown) to convey the glass bottle 10 to be inspected as a "non-defective product" to the next process.
  • a conveying means not shown
  • the control unit 50 executes the process of treating the product as defective. For example, in the step of treating the glass bottle 10 as a defective product, the model number is read from the pattern 70 detected in S20, and data in which the determination result and the model number are linked is stored in the storage unit 55, and the glass bottle 10 to be inspected is identified as "non-performing."
  • the control unit 50 outputs a signal to discharge the product to a disposal unit (not shown) as a non-defective product.
  • the “defective product” determination result and model number data stored in the storage unit 55 may be output from the control unit 50 to the glass bottle 10 manufacturing apparatus (not shown).
  • the pattern 70 can be detected from the first image 101. Since it can be detected, it is easy to use the second image 102 to determine the presence or absence of the detection object 72 in the area (inspection gate 82 ) where there is no pattern 70 .
  • FIG. 7 is an example of the third image 103. As shown in FIG. Since the modified example is basically the same as "2. Bottom part inspection method", redundant description will be omitted.
  • a third image 103 shown in FIG. 7 is an image of the bottom portion 15 of the glass bottle 10 whose body portion 14 has a square cross-section and is captured by the second light receiving unit 42 .
  • a plurality of masks 80 are arranged for each pattern, and an inspection gate 82 matching the outer edge (rectangular shape) of the trunk portion 14 is set outside the knurling that serves as the ground surface of the bottom portion 15 . Since the pattern of the bottom part 15 and the orientation (rotational angle) of the outer edge of the body part 14 correspond to each other, the rectangular inspection gate 82 can be provided in accordance with the orientation of the body part 14 by detecting the pattern in S20. This makes it possible to inspect areas outside the ground plane.
  • the camera 4 is a 2CMOS area sensor camera with 1.55 million pixels
  • the first circularly polarizing film 35 and the second circularly polarizing film 36 are both equal in the clockwise rotation direction
  • the distance D1 is 30 mm
  • the first illumination unit 21 is a red light. It is external light diffusion lighting
  • a cross louver film with a viewing angle of 30 degrees is arranged as the louver film 24 between the first lighting unit 21 and the second lighting unit 31, and the second lighting unit 31 has a visible light with a peak at 630 nm. It was an optical flat dome (registered trademark of Japan) illumination.
  • the upper stage of FIG. 8 is the first image captured by the first light receiving section 41 of the camera 4, and the lower stage of FIG. 8 is the second image captured by the second light receiving section 42.
  • the CID mark and the like can be clearly recognized, and in the second image, the foreign matter falling in the center can be clearly recognized as black, and the controller 50 determines that the product is "defective".
  • Comparative Example 1 the glass bottle 10 was inspected after removing the first circularly polarizing film 35 and the second circularly polarizing film 36 from the same bottom inspection device 1 of FIG.
  • the upper stage of FIG. 9 is the first image captured by the first light receiving section 41 of the camera 4, and the lower stage of FIG. 9 is the second image captured by the second light receiving section 42.
  • the foreign matter dropped in the center could not be recognized, and the control unit 50 determined that the product was "non-defective".
  • the present invention is not limited to the above-described embodiments, and various modifications are possible, including substantially the same configurations as those described in the embodiments.
  • the "same configuration” means a configuration with the same function, method, and result, or a configuration with the same purpose and effect.
  • the present invention includes configurations in which non-essential portions of the configurations described in the embodiments are replaced.
  • the present invention includes a configuration that achieves the same effects or achieves the same purpose as the configurations described in the embodiments.
  • the present invention includes configurations obtained by adding known techniques to the configurations described in the embodiments.
  • Second circular polarizing film 41 First light receiving unit 42
  • Second light receiving unit 44 Beam splitter 45
  • Lens 50 Control unit 52
  • Determination unit 53 Image processing unit 54
  • Reading unit 55 ...storage part 60
  • Document 70 ...pattern 72
  • ...detection object 80 ...mask 82

Abstract

This glass bottle bottom inspection device comprises an illumination device that radiates light toward the bottom of a glass bottle, a camera that is disposed on the other side of the glass bottle from the illumination device and that captures an image of the bottom, a first circularly polarizing film, and a second circularly polarizing film. The illumination device comprises a first illumination unit that radiates infrared light having directivity toward the bottom, and a second illumination unit that is disposed between the first illumination unit and the bottom and that radiates visible light having diffusivity toward the bottom. The camera comprises a first light receiving unit that detects only infrared light, and a second light receiving unit that detects only visible light. The first circularly polarizing film and the second circularly polarizing film have the same polarization direction.

Description

ガラスびんの底部検査装置Glass bottle bottom inspection device
 本発明は、ガラスびんの底部検査装置に関する。 The present invention relates to a glass bottle bottom inspection device.
 ペットボトルなどの透明ボトルの底部の欠点を検査する外観検査装置が提案されている(例えば特許文献1)。この外観検査装置は、透明ペットボトルの底部外面に向けて青色(450nm~490nm)の拡散光及び赤色(620nm~750nm)の平行光を照射して、口部側に配置されたカメラで2種類の画像を撮像し、これらを比較することにより、欠陥の有無を判定する。 A visual inspection device for inspecting defects in the bottom of transparent bottles such as PET bottles has been proposed (for example, Patent Document 1). This visual inspection device irradiates blue (450 nm to 490 nm) diffused light and red (620 nm to 750 nm) parallel light toward the bottom outer surface of a transparent PET bottle, and uses two types of cameras placed on the mouth side. are captured and compared to determine the presence or absence of a defect.
特開2012-242148号公報JP 2012-242148 A
 一般に、ガラスびんの底部には社標や管理番号などの凹凸の彫刻が多数設けられる。そのため、例えば、特許文献1の技術をガラスびんに適用しても、画像では彫刻による模様と欠点との区別がつきにくく、模様を欠点として誤認識しないように検査精度を下げたり、他の検査装置で異なる検査を行ったりすることになる。 In general, the bottom of the glass bottle has many uneven engravings such as company logos and control numbers. Therefore, for example, even if the technique of Patent Document 1 is applied to a glass bottle, it is difficult to distinguish between the engraving pattern and the defect in the image, and the inspection accuracy is lowered so as not to mistakenly recognize the pattern as a defect. Different inspections will be performed on the equipment.
 そこで、本発明は、底部に凹凸の彫刻があるガラスびんであっても高精度に欠点の有無を判定することができるガラスびんの底部検査装置を提供する。 Therefore, the present invention provides a glass bottle bottom inspection device that can determine the presence or absence of defects with a high degree of accuracy even in glass bottles that have uneven engravings on the bottom.
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。 The present invention has been made to solve at least part of the above problems, and can be implemented as the following aspects or application examples.
 なお、以下の説明において、「彫刻」は、ガラスびんの表面の凹凸による形状変化であり、「模様」は、ガラスびんを撮影して得られた画像に現れる「彫刻」に起因する明暗濃度の変化である。 In the following explanation, "sculpture" refers to changes in shape due to unevenness on the surface of the glass bottle, and "pattern" refers to the contrast density resulting from the "sculpture" that appears in the image obtained by photographing the glass bottle. Change.
 [1]本発明に係るガラスびんの底部検査装置の一態様は、
 ガラスびんの底部に向けて光を照射する照明装置と、
 前記照明装置に対して前記ガラスびんを挟んで配置され、かつ前記底部の画像を撮影するカメラと、
 前記照明装置と前記底部との間に配置された第1円偏光フィルムと、
 前記ガラスびんの口部と前記カメラとの間に配置された第2円偏光フィルムと、
を備え、
 前記照明装置は、前記底部に向けて指向性を有する赤外光を照射する第1照明部と、前記第1照明部と前記底部との間に配置される前記底部に向けて拡散性を有する可視光を照射する第2照明部と、を備え、
 前記カメラは、赤外光のみを検出する第1受光部と、可視光のみを検出する第2受光部と、を備え、
 前記第1円偏光フィルム及び前記第2円偏光フィルムは、偏光方向が等しいことを特徴とする。
[1] One aspect of the glass bottle bottom inspection device according to the present invention is
a lighting device that irradiates light toward the bottom of the glass bottle;
a camera placed across the glass bottle with respect to the lighting device and capturing an image of the bottom;
a first circularly polarizing film disposed between the lighting device and the bottom;
a second circularly polarizing film disposed between the mouth of the glass bottle and the camera;
with
The lighting device includes a first lighting unit that emits infrared light having directivity toward the bottom, and a diffusing property toward the bottom that is disposed between the first lighting unit and the bottom. and a second illumination unit that emits visible light,
The camera includes a first light receiving unit that detects only infrared light and a second light receiving unit that detects only visible light,
The first circularly polarizing film and the second circularly polarizing film have the same polarization direction.
 [2]前記ガラスびんの底部検査装置の一態様において、
 前記カメラは、赤外光と可視光を分光するビームスプリッタを備えることができる。
[2] In one aspect of the glass bottle bottom inspection device,
The camera can include a beam splitter that separates infrared light and visible light.
 [3]前記ガラスびんの底部検査装置の一態様において、
 前記第1照明部は、拡散性を有する赤外光を出射する第1光源と、前記第1光源から入射する赤外光が透過する角度を制限する複数のルーバーを有するルーバーフィルムと、を備え、
 前記ルーバーフィルムは、前記複数のルーバーが前記ガラスびんの中心軸線に対して直交する方向で格子状に延在することができる。
[3] In one aspect of the glass bottle bottom inspection device,
The first illumination unit includes a first light source that emits diffuse infrared light, and a louver film having a plurality of louvers that limit the angle of transmission of the infrared light incident from the first light source. ,
In the louver film, the plurality of louvers may extend in a grid pattern in a direction perpendicular to the central axis of the glass bottle.
 [4]前記ガラスびんの底部検査装置の一態様において、
 前記ルーバーフィルムは、前記中心軸線における視野角が15度~45度に設定されることができる。
[4] In one aspect of the glass bottle bottom inspection device,
The louver film may have a viewing angle of 15 to 45 degrees on the central axis.
 本発明に係るガラスびんの底部検査装置の一態様によれば、底部に凹凸の彫刻があるガラスびんであっても第1受光部の画像から模様を検出できるので、第2受光部の画像を用いて模様のない領域における欠点の有無を判定しやすい。 According to one aspect of the apparatus for inspecting the bottom of a glass bottle according to the present invention, the pattern can be detected from the image of the first light-receiving part even if the glass bottle has uneven engravings on the bottom. It is easy to determine the presence or absence of a defect in an area without a pattern.
図1は、底部検査装置の一態様を模式的に示す正面図である。FIG. 1 is a front view schematically showing one aspect of the bottom inspection device. 図2は、ルーバーフィルムを模式的に示す部分拡大図である。FIG. 2 is a partially enlarged view schematically showing the louver film. 図3は、底部検査装置を用いた検査方法のフローチャートである。FIG. 3 is a flow chart of an inspection method using a bottom inspection device. 図4は、第1画像の一例である。FIG. 4 is an example of the first image. 図5は、第2画像の一例である。FIG. 5 is an example of the second image. 図6は、検査領域設定工程を説明する図である。FIG. 6 is a diagram for explaining the inspection area setting process. 図7は、第3画像の一例である。FIG. 7 is an example of the third image. 図8は、実施例1の底部検査装置で撮影した第1画像及び第2画像である。FIG. 8 shows first and second images captured by the bottom inspection apparatus of Example 1. FIG. 図9は、比較例1の底部検査装置で撮影した第1画像及び第2画像である。9A and 9B are first and second images captured by the bottom inspection apparatus of Comparative Example 1. FIG.
 以下、本発明の好適な実施形態について、図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail using the drawings. It should be noted that the embodiments described below do not unduly limit the scope of the invention described in the claims. Moreover, not all the configurations described below are essential constituent elements of the present invention.
 本実施形態に係るガラスびんの底部検査装置の一態様は、ガラスびんの底部に向けて光を照射する照明装置と、前記照明装置に対して前記ガラスびんを挟んで配置され、かつ前記底部の画像を撮影するカメラと、前記照明装置と前記底部との間に配置された第1円偏光フィルムと、前記ガラスびんの口部と前記カメラとの間に配置された第2円偏光フィルムと、を備え、前記照明装置は、前記底部に向けて指向性を有する赤外光を照射する第1照明部と、前記第1照明部と前記底部との間に配置される前記底部に向けて拡散性を有する可視光を照射する第2照明部と、を備え、前記カメラは、赤外光のみを検出する第1受光部と、可視光のみを検出する第2受光部と、を備え、前記第1円偏光フィルム及び前記第2円偏光フィルムは、偏光方向が等しいことを特徴とする。 One aspect of the glass bottle bottom inspection apparatus according to the present embodiment includes a lighting device that irradiates light toward the bottom of the glass bottle, and a lighting device that is arranged to sandwich the glass bottle with respect to the lighting device. a camera for capturing images, a first circularly polarizing film positioned between the lighting device and the bottom, and a second circularly polarizing film positioned between the mouth of the vial and the camera; and the lighting device includes: a first lighting unit that emits infrared light having directivity toward the bottom; a second illumination unit that irradiates visible light having a property, the camera includes a first light receiving unit that detects only infrared light, and a second light receiving unit that detects only visible light; The polarization directions of the first circularly polarizing film and the second circularly polarizing film are the same.
 1.底部検査装置
 図1及び図2を用いて、本実施形態に係るガラスびん10の底部検査装置1について詳細に説明する。図1は、底部検査装置1の一態様を模式的に示す正面図であり、図2は、ルーバーフィルム24を模式的に示す部分拡大図である。
1. Bottom Inspection Apparatus A bottom inspection apparatus 1 for a glass bottle 10 according to the present embodiment will be described in detail with reference to FIGS. 1 and 2. FIG. FIG. 1 is a front view schematically showing one aspect of the bottom inspection apparatus 1, and FIG. 2 is a partially enlarged view schematically showing the louver film 24. As shown in FIG.
 図1に示すように、ガラスびん10の底部検査装置1は、照明装置2と、カメラ4と、第1円偏光フィルム35と、第2円偏光フィルム36と、を備える。底部検査装置1は、ガラスびん10の製造ラインまたは複数の検査装置を備える検査ラインの一部として組み込んでもよく、その場合、ガラスびん10を底部検査装置1に搬入出する手段をさらに備えてもよい。底部検査装置1は、さらに制御部50を備えてもよい。 As shown in FIG. 1 , the bottom inspection device 1 for glass bottles 10 includes an illumination device 2 , a camera 4 , a first circularly polarizing film 35 and a second circularly polarizing film 36 . The bottom inspection device 1 may be incorporated as part of a production line for the vials 10 or an inspection line comprising a plurality of inspection devices, in which case means may also be provided for loading and unloading the vials 10 into and out of the bottom inspection device 1. good. The bottom inspection device 1 may further include a controller 50 .
 ガラスびん10は、ガラスびん10の中心軸線12に沿って下方に向かって口部13、胴部14及び底部15を有する。検査対象であるガラスびん10は、底部検査装置1の載置台60の上の所定位置に配置される。中心軸線12は、口部13の中心と底部15の中心を通る仮想線である。載置台60は、ガラスびん10を載せる台であり、少なくとも底部15を載せる範囲は可視光及び赤外光を透過する平板、例えばひずみのない透明なアクリル樹脂板やガラス板などで構成される。なお、載置台60を撤去し、ガラスびん10を中空に浮かせながら撮像しても良い。ガラスびん10は、ガラス製であって、透明または半透明の容器であり、着色されていてもよい。半透明とは、ガラスびん10を透過した照明装置2からの光によって底部15の欠点を判定可能な程度の透明度である。口部13は、開口し、内容物を充填後に蓋が取り付けられる。胴部14は、横断面の外形が円形であるが、他の形状例えば略四角形などであってもよい。底部15は、接地する周縁部と当該周縁部の内側からなる底部とを備え、外表面に彫刻を有する。彫刻は、ガラスびん10の表面に形成された凹凸の文字や記号などであり、例えば、成形時の金型の表面に刻まれた凹凸により成形される。彫刻は、例えば、製造会社を表す社標、金型番号などの管理番号を表す型番である。彫刻は、金型の凹凸に対応して底部15の所定位置に賦形されるので、彫刻に由来する模様をガラスびん10の中心軸線12まわりの位置決めやカメラ4で撮影した画像の位置決めに利用することができる。 The glass bottle 10 has a mouth portion 13 , a body portion 14 and a bottom portion 15 downward along the central axis 12 of the glass bottle 10 . A glass bottle 10 to be inspected is arranged at a predetermined position on the mounting table 60 of the bottom inspection device 1 . The central axis 12 is an imaginary line passing through the center of the mouth portion 13 and the center of the bottom portion 15 . The mounting table 60 is a table on which the glass bottle 10 is placed, and at least the range on which the bottom part 15 is placed is composed of a flat plate that transmits visible light and infrared light, such as a distortion-free transparent acrylic resin plate or glass plate. Alternatively, the mounting table 60 may be removed and the glass bottle 10 may be imaged while floating in the air. The glass bottle 10 is made of glass, is a transparent or translucent container, and may be colored. Translucency is a degree of transparency that allows the light from the lighting device 2 transmitted through the glass bottle 10 to determine defects in the bottom 15 . The mouth part 13 is opened and a lid is attached after filling the contents. The trunk portion 14 has a circular cross section, but may have another shape such as a substantially square shape. The bottom part 15 has a grounding peripheral edge and a bottom part consisting of the inner side of the peripheral edge, and has engravings on the outer surface. The engraving is an uneven character or symbol formed on the surface of the glass bottle 10. For example, the engraving is formed by the unevenness engraved on the surface of the mold during molding. The engraving is, for example, a company mark representing a manufacturing company and a model number representing a management number such as a mold number. Since the engraving is formed at a predetermined position on the bottom 15 corresponding to the unevenness of the mold, the pattern derived from the engraving is used for positioning the glass bottle 10 around the central axis 12 and for positioning the image taken by the camera 4. can do.
 照明装置2は、ガラスびん10の底部15に向けて光を照射する。照明装置2から照射された光が底部15を透過し、胴部14の中を抜け、そして口部13の開口を通ってカメラ4が受光するように照明装置2、カメラ4及びガラスびん10が配置される。本実施形態では中心軸線12に沿って照明装置2、ガラスびん10、カメラ4が順に配置されるが、底部15を透過した光をカメラ4が受光できれば他の配置でもよい。 The illumination device 2 irradiates light toward the bottom 15 of the glass bottle 10 . The illumination device 2, the camera 4 and the glass bottle 10 are arranged so that the light emitted from the illumination device 2 passes through the bottom portion 15, passes through the body portion 14, passes through the opening of the mouth portion 13, and is received by the camera 4. placed. In this embodiment, the illumination device 2, the glass bottle 10, and the camera 4 are arranged in this order along the central axis 12, but other arrangements may be used as long as the camera 4 can receive the light transmitted through the bottom portion 15. FIG.
 照明装置2は、底部15に向けて指向性を有する赤外光を照射する第1照明部21と、第1照明部21と底部15との間に配置される底部15に向けて拡散性を有する可視光を照射する第2照明部31と、を備える。図1の例では、中心軸線12に沿って、第1照明部21、第2照明部31、後述する第1円偏光フィルム35、載置台60、ガラスびん10、第2円偏光フィルム36、カメラ4が順に配置される。よって、底部15には赤外光と可視光が到達する。そして、異なる波長の2種類の光(赤外光、可視光)を用いたことにより、カメラ4が2種類の光をそれぞれ別の受光部で検出することができる。ここで、可視光は波長が380nm~630nmであり、赤外光は波長が800nm~1000nmの光である。 The illumination device 2 includes a first illumination section 21 that irradiates infrared light having directivity toward the bottom section 15 , and a diffusing property toward the bottom section 15 that is arranged between the first illumination section 21 and the bottom section 15 . and a second illumination unit 31 that emits visible light. In the example of FIG. 1, along the central axis 12, the first illumination unit 21, the second illumination unit 31, the first circularly polarizing film 35 described later, the mounting table 60, the glass bottle 10, the second circularly polarizing film 36, the camera 4 are arranged in order. Therefore, infrared light and visible light reach the bottom portion 15 . By using two types of light having different wavelengths (infrared light and visible light), the camera 4 can detect the two types of light with separate light receiving units. Here, visible light has a wavelength of 380 nm to 630 nm, and infrared light has a wavelength of 800 nm to 1000 nm.
 第1照明部21は、拡散性を有する赤外光を出射する第1光源22と、第1光源22から入射する赤外光が透過する角度を制限する複数のルーバー24a(図2)を有するルーバーフィルム24と、を備える。ルーバーフィルム24を透過した赤外光は指向性を有することとなる。 The first illumination unit 21 has a first light source 22 that emits diffuse infrared light, and a plurality of louvers 24a (FIG. 2) that limit the angle of transmission of the infrared light incident from the first light source 22. and a louver film 24 . The infrared light transmitted through the louver film 24 has directivity.
 第1光源22は、例えば複数の図示しないLED(発光ダイオード)と、複数のLEDを覆うように底部15側に配置される拡散板23とを含む。LEDの代わりに有機ELを用いてもよい。第1光源22は、中心軸線12に直交する平面上に広がる平板状の面光源であり、複数のLEDが拡散板23側の面に均等に配置され、ガラスびん10の底部15に向けて面全体から拡散光を照射する。第1照明部21から出射される赤外光としては波長が800nm~1000nmにピークを有する近赤外光が好ましい。 The first light source 22 includes, for example, a plurality of LEDs (light emitting diodes) (not shown) and a diffusion plate 23 arranged on the bottom 15 side so as to cover the plurality of LEDs. An organic EL may be used instead of the LED. The first light source 22 is a planar surface light source that spreads on a plane perpendicular to the central axis 12 . A plurality of LEDs are evenly arranged on the surface on the diffuser plate 23 side and face the bottom 15 of the glass bottle 10 . Irradiate diffused light from the whole. Near-infrared light having a peak wavelength of 800 nm to 1000 nm is preferable as the infrared light emitted from the first illumination unit 21 .
 図2に示すように、ルーバーフィルム24は、複数のルーバー24aがガラスびん10の中心軸線12に対して直交する方向で格子状に延在することができる。ルーバーフィルム24は、底部15側から見て第1光源22の全体と重なるように配置される。格子状のルーバーフィルム24としては、例えば信越ポリマー社のクロスルーバーフィルムを採用することができる。ルーバーフィルム24は、遮光性に優れる板状の複数のルーバー24aとルーバー24aの間の透光性に優れた部分を交互に配置したルーバーフィルムを上下に2枚積層し、上下のルーバー24aが中心軸線12から見て格子状になるように構成される。ルーバーフィルム24は、例えば樹脂製であることができる。ルーバーフィルム24により第1光源22の拡散光が指向性を有するようになる。ルーバーフィルム24は、中心軸線12における視野角が15度~45度に設定されることが好ましく、視野角が25度~35度がさらに好ましい。ここで視野角は、光が透過可能な角度(可視角)であって、本実施形態では底部15側からルーバーフィルム24を見たときの光が透過する角度である。視野角が狭くなることにより、赤外光の指向性が高くなる。また、赤外光は色々なびん色に対して、透過率の影響を軽減することができるため、底部15を撮影した画像における模様を認識しやすくなる。視野角が15度未満だと撮像画像における中心部以外の底部15の画像が暗くなりすぎて外観検査に適しておらず、45度を超えると指向性が低く、模様の輪郭が不明瞭になる。 As shown in FIG. 2, the louver film 24 can have a plurality of louvers 24a extending in a grid pattern in a direction orthogonal to the central axis 12 of the glass bottle 10. The louver film 24 is arranged so as to overlap the entire first light source 22 when viewed from the bottom 15 side. As the grid-like louver film 24, for example, a cross louver film manufactured by Shin-Etsu Polymer Co., Ltd. can be used. The louver film 24 consists of a plurality of plate-shaped louvers 24a with excellent light shielding properties and two louver films in which portions with excellent translucency are alternately arranged between the louvers 24a. It is configured to form a lattice when viewed from the axis 12 . The louver film 24 can be made of resin, for example. The louver film 24 allows the diffused light from the first light source 22 to have directivity. The viewing angle of the louver film 24 at the center axis 12 is preferably set to 15 degrees to 45 degrees, more preferably 25 degrees to 35 degrees. Here, the viewing angle is an angle (visible angle) through which light can pass, and in this embodiment, it is an angle through which light passes when the louver film 24 is viewed from the bottom 15 side. The narrower viewing angle increases the directivity of infrared light. In addition, since infrared light can reduce the influence of transmittance on various bottle colors, it becomes easier to recognize patterns in an image of the bottom portion 15 . If the viewing angle is less than 15 degrees, the image of the bottom part 15 other than the central part in the captured image becomes too dark and is not suitable for appearance inspection, and if it exceeds 45 degrees, the directivity is low and the outline of the pattern becomes unclear. .
 第2照明部31は、第2光源32と、導光板34とを含む。第2照明部31は、中心軸線12に直交する平面上に広がる平板状の面光源であり、ガラスびん10の底部15に向けて略面全体から拡散光を発光する。第2照明部31は、外形が略四角形の板状であることが照明の均一度に優れるため好ましいが、これに限らず例えば円板状などであってもよい。第2照明部31は、公知の照明、例えば、シーシーエス社のフラットドーム(日本登録商標)照明(国際公開番号WO2020/045557A1号)等を採用することができる。第2照明部31は、第1照明部21からの赤外光を透過させるため、中央に平板状の導光板34が配置され、導光板34の外縁に第2光源32が配置される。 The second illumination section 31 includes a second light source 32 and a light guide plate 34. The second illumination unit 31 is a planar surface light source extending on a plane orthogonal to the central axis 12 and emits diffused light from substantially the entire surface toward the bottom 15 of the glass bottle 10 . The second illumination unit 31 preferably has a substantially rectangular plate shape because it provides excellent uniformity of illumination, but the second illumination unit 31 is not limited to this and may have, for example, a disk shape. The second illumination unit 31 can employ a known illumination such as a flat dome (Japan registered trademark) illumination (International Publication No. WO2020/045557A1) manufactured by CCS Corporation. In order to transmit the infrared light from the first illumination unit 21 , the second illumination unit 31 has a flat light guide plate 34 arranged in the center and a second light source 32 arranged on the outer edge of the light guide plate 34 .
 第2光源32は、導光板34の外縁から導光板34の中心へ向けて可視光を出射する図示しない例えば複数のLEDである。例えばLEDは、導光板34を囲む枠状体の内周面に並んで配置される。LEDの代わりに有機ELを用いてもよい。第2光源32は、波長が400nm~630nmのピークを有する可視光が好ましい。また、第2光源32は、ピーク波長が例えば、630nm付近の赤色LEDと、470nm付近の青色LEDと、を含むことが好ましく、2つの波長の可視光をガラスびん10のびん色によって切り替えることが好ましい。びん色によって光の透過率が異なるためであり、例えば、赤色LEDは比較的多様なびん色において高い透過率を有するが、水色及び青色のびんでは透過率が低くなる傾向があるため、水色及び青色のびんには透過率が高い青色LEDを適用することが好ましい。 The second light source 32 is, for example, a plurality of LEDs (not shown) that emit visible light from the outer edge of the light guide plate 34 toward the center of the light guide plate 34 . For example, the LEDs are arranged side by side on the inner peripheral surface of the frame-shaped body surrounding the light guide plate 34 . An organic EL may be used instead of the LED. The second light source 32 is preferably visible light having a peak wavelength of 400 nm to 630 nm. In addition, the second light source 32 preferably includes a red LED with a peak wavelength of, for example, around 630 nm and a blue LED with a peak wavelength of around 470 nm. preferable. This is because the transmittance of light differs depending on the color of the bottle. It is preferable to apply a blue LED with high transmittance to a blue bottle.
 導光板34は、第1光源22の赤外光を透過しつつ、外縁にある第2光源32から入射した可視光を底部15側の面から拡散して出射する。導光板34は、公知のものを採用できる。 The light guide plate 34 transmits infrared light from the first light source 22 while diffusing and emitting visible light incident from the second light source 32 on the outer edge from the surface on the bottom 15 side. A known plate can be used for the light guide plate 34 .
 第2照明部31から出射された可視光は、第1円偏光フィルム35で偏光され、底部15を透過し、口部13の開口を通過して第2円偏光フィルム36を透過してカメラ4に受光される。第1円偏光フィルム35は、照明装置2と底部15との間に配置される。第2円偏光フィルム36は、ガラスびん10の口部13とカメラ4との間に配置される。第1円偏光フィルム35と第2円偏光フィルム36は、基本的に同じ形状であり、口部13付近と底部15付近において中心軸線12に直交するそれぞれの平面内に配置される。第1円偏光フィルム35は、載置台60と所定の間隔D1を有して配置される。第1円偏光フィルム35と載置台60との間隔D1は、20mm~40mmであることが好ましく、例えば30mmである。第1円偏光フィルム35及び第2円偏光フィルム36は、偏光方向が等しい。偏光方向は、中心軸線12に沿った方向に対して右回転方向または左回転方向がある。例えば、第1円偏光フィルム35及び第2円偏光フィルム36は、偏光方向が例えば共に右回転方向の右円偏光波を共に採用することができ、また、共に左円偏光波を採用してもよい。第1円偏光フィルム35及び第2円偏光フィルム36は、共に直線偏光板と1/4波長板とを貼り合わせて構成することができる。第1円偏光フィルム35及び第2円偏光フィルム36により、第2照明部31の拡散可視光が直線偏光波となってカメラ4に受光されると、底部15の異物、異質ガラスなどの欠点が撮影した画像において黒い部分(明度が低く暗い部分)として認識できる。なお、第1円偏光フィルム35及び第2円偏光フィルム36は、赤外光を偏光しないため、第1照明部21の赤外光に影響はない。 Visible light emitted from the second lighting unit 31 is polarized by the first circularly polarizing film 35 , passes through the bottom 15 , passes through the opening of the mouth 13 , passes through the second circularly polarizing film 36 , and reaches the camera 4 . is received by A first circular polarizing film 35 is arranged between the illumination device 2 and the bottom 15 . A second circularly polarizing film 36 is placed between the mouth 13 of the vial 10 and the camera 4 . The first circularly polarizing film 35 and the second circularly polarizing film 36 have basically the same shape, and are arranged in respective planes perpendicular to the center axis 12 near the mouth 13 and near the bottom 15 . The first circularly polarizing film 35 is arranged with a predetermined distance D1 from the mounting table 60 . A distance D1 between the first circularly polarizing film 35 and the mounting table 60 is preferably 20 mm to 40 mm, for example, 30 mm. The first circularly polarizing film 35 and the second circularly polarizing film 36 have the same polarization direction. The polarization direction can be either clockwise or counterclockwise with respect to the direction along the central axis 12 . For example, the first circularly polarizing film 35 and the second circularly polarizing film 36 can both employ right-handed circularly polarized waves whose polarization directions are, for example, right-handed rotation directions, or both can employ left-handed circularly polarized waves. good. Both the first circularly polarizing film 35 and the second circularly polarizing film 36 can be configured by laminating a linear polarizing plate and a quarter-wave plate. When the diffused visible light from the second lighting unit 31 is converted into a linearly polarized wave by the first circularly polarizing film 35 and the second circularly polarizing film 36 and is received by the camera 4, defects such as foreign matter and foreign glass on the bottom 15 are eliminated. It can be recognized as a black part (a dark part with low brightness) in the captured image. In addition, since the first circularly polarizing film 35 and the second circularly polarizing film 36 do not polarize the infrared light, the infrared light of the first illumination section 21 is not affected.
 カメラ4は、照明装置2に対してガラスびん10を挟んで配置され、かつ底部15の画像を撮影する。カメラ4は、赤外光のみを検出する第1受光部41と、可視光のみを検出する第2受光部42と、を備える。カメラ4は、口部13側からレンズ45を通して入射した光を赤外光と可視光に分光して第1受光部41と第2受光部42で受光する。レンズ45は、その光軸が中心軸線12上にあって、底部15の画像を撮影できるように焦点距離等が設定できる。 The camera 4 is placed across the glass bottle 10 with respect to the illumination device 2 and captures an image of the bottom 15 . The camera 4 includes a first light receiving section 41 that detects only infrared light and a second light receiving section 42 that detects only visible light. The camera 4 separates the light incident from the mouth 13 side through the lens 45 into infrared light and visible light, and receives the light with the first light receiving section 41 and the second light receiving section 42 . The focal length of the lens 45 can be set so that the optical axis is on the central axis 12 and the image of the bottom 15 can be photographed.
 カメラ4は、赤外光と可視光を分光するビームスプリッタ44を備えることができる。ビームスプリッタ44は、レンズ45からの入射光を赤外光と可視光に分割する光学部品である。ビームスプリッタ44としては、公知のものを採用でき、2個のプリズムを組み合わせたキューブ型であってもよいし、薄い平板ガラスに分光のための光学薄膜が蒸着されたプレート型であってもよい。図1の例では、ビームスプリッタ44は、入射光の内、赤外光を反射させて中心軸線12に対し90度の位置にある第1受光部41へ受光させ、可視光を中心軸線12に沿って透過させて中心軸線12上にある第2受光部42へ受光させる。第1受光部41によって撮影された画像は、底部15の表面に形成された凹凸のある彫刻による模様の輪郭が暗い色で表れる。第2受光部42によって撮影された画像は、当該模様による明暗の差がなく、欠点が暗い色で表れる。 The camera 4 can be equipped with a beam splitter 44 that separates infrared light and visible light. The beam splitter 44 is an optical component that splits incident light from the lens 45 into infrared light and visible light. As the beam splitter 44, a known one can be adopted, and it may be a cube type combining two prisms, or a plate type in which an optical thin film for spectroscopy is vapor-deposited on a thin plate glass. . In the example of FIG. 1, the beam splitter 44 reflects the infrared light of the incident light to the first light receiving section 41 located at a position of 90 degrees with respect to the central axis 12 , and transmits the visible light to the central axis 12 . The second light receiving portion 42 on the center axis 12 receives the light. In the image captured by the first light receiving unit 41, the outline of the pattern formed by the concave-convex engraving formed on the surface of the bottom part 15 appears in a dark color. The image captured by the second light receiving unit 42 has no difference in brightness due to the pattern, and defects appear in dark colors.
 第1受光部41及び第2受光部42は、それぞれ別体の固体撮像素子であり、例えばCCDイメージセンサやCMOSイメージセンサを採用でき、CMOSイメージセンサが好ましい。2つの受光部を設けることにより、それぞれのセンサを適切なカメラゲインやシャッタスピードに設定することができ、また、それぞれの画像の明るさを調整することが可能である。また、赤外光による底部15の画像と可視光による底部15の画像を1台の底部検査装置1によって同時に取得できるので、検査効率を向上すると共に、省スペースを実現できる。第1受光部41及び第2受光部42は、赤外光と可視光の間の波長例えば650nm~790nmの受光感度が0%であることが好ましい。 The first light-receiving unit 41 and the second light-receiving unit 42 are separate solid-state imaging devices, and for example, a CCD image sensor or a CMOS image sensor can be used, preferably a CMOS image sensor. By providing two light receiving units, it is possible to set each sensor to an appropriate camera gain and shutter speed, and to adjust the brightness of each image. In addition, since the image of the bottom portion 15 using infrared light and the image of the bottom portion 15 using visible light can be obtained simultaneously by a single bottom portion inspection apparatus 1, inspection efficiency can be improved and space can be saved. It is preferable that the first light receiving section 41 and the second light receiving section 42 have a light receiving sensitivity of 0% for a wavelength between infrared light and visible light, for example, 650 nm to 790 nm.
 制御部50は、照明装置2及びカメラ4に電気的に接続され、例えば照明装置2の点灯・消灯に関する処理やカメラ4の撮影に関する処理を実行し、撮影された画像を用いて検査に関する処理を実行する。制御部50は、ガラスびん10の図示しない搬入出機構の動作に関する処理をさらに実行してもよい。制御部50は、例えば、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のプロセッサ、HDD(Hard Disk Drive)、SSD(Solid State Drive)、ROM(Read-Only Memory)、RAM(Random Access Memory)等の記憶装置、キーボード、マウス、タッチパッド等の入力装置、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等の表示装置、I/Oボード等のデジタル入出力ボード等で構成される。制御部50のCPUや記憶装置等は1つだけでなく複数の例えば物理的に分離された装置であってもよく、その場合、通信ネットワークを介して接続してもよい。 The control unit 50 is electrically connected to the lighting device 2 and the camera 4, executes, for example, processing related to turning on/off the lighting device 2 and processing related to photographing by the camera 4, and performs processing related to inspection using the photographed image. Execute. The control unit 50 may further execute processing related to the operation of a loading/unloading mechanism (not shown) for the glass bottle 10 . The control unit 50 includes, for example, processors such as CPU (Central Processing Unit) and GPU (Graphics Processing Unit), HDD (Hard Disk Drive), SSD (Solid State Drive), ROM (Read-Only Memory), RAM (Random Access s memory), input devices such as a keyboard, mouse, and touch pad, display devices such as a liquid crystal display and an organic EL (Electro Luminescence) display, digital input/output boards such as an I/O board, and the like. The CPU, storage device, etc. of the control unit 50 may be not only one but also a plurality of physically separated devices, in which case they may be connected via a communication network.
 制御部50は、判定部52と、画像処理部53と、読取部54と、記憶部55とを有する。判定部52は、カメラ4から取得した画像に基づいて欠点の有無を判定する。判定部52で判定される欠点としては、例えば、底部15の内表面にある異物、底部15の抱合異物、底部15の異質ガラス等のガラスびん成形時の欠点などがある。制御部50は、判定部52の判定結果をガラスびん10ごとに外部へ出力することができ、例えば、欠点有りと判定したガラスびん10を底部検査装置1の図示しない排出部で排除してもよい。制御部50の処理部の一部は制御部50以外の装置で処理を実行してもよく、例えば、画像処理部53や読取部54の一部の処理をカメラ4に設けられたCPUで実行してもよい。制御部50の各部における具体的な処理については、下記「2.底部検査方法」で説明する。 The control unit 50 has a determination unit 52 , an image processing unit 53 , a reading unit 54 and a storage unit 55 . A determination unit 52 determines whether or not there is a defect based on the image acquired from the camera 4 . Defects determined by the determining unit 52 include, for example, foreign matter on the inner surface of the bottom portion 15, conjugating foreign matter on the bottom portion 15, foreign glass on the bottom portion 15, and other defects during glass bottle molding. The control unit 50 can output the determination result of the determination unit 52 to the outside for each glass bottle 10. For example, even if the glass bottle 10 determined to have a defect is removed by a discharge unit (not shown) of the bottom inspection device 1 good. A part of the processing part of the control part 50 may execute processing by a device other than the control part 50. For example, a part of the processing of the image processing part 53 and the reading part 54 may be executed by the CPU provided in the camera 4. You may Specific processing in each section of the control section 50 will be described in "2. Bottom Inspection Method" below.
 2.底部検査方法
 図1~図6を用いて、本実施形態に係るガラスびん10の底部検査方法について底部検査装置1を用いた例について詳細に説明する。図3は、底部検査装置1を用いた検査方法のフローチャートであり、図4は、第1画像101の一例であり、図5は、第2画像102の一例であり、図6は、検査領域設定工程(S40)を説明する図である。
2. 1. Bottom Inspection Method An example of a bottom inspection method for glass bottles 10 according to the present embodiment using a bottom inspection apparatus 1 will be described in detail with reference to FIGS. 1 to 6. FIG. FIG. 3 is a flowchart of an inspection method using the bottom inspection apparatus 1, FIG. 4 is an example of the first image 101, FIG. 5 is an example of the second image 102, and FIG. It is a figure explaining a setting process (S40).
 図3に示すように、本実施形態に係る底部検査方法は、底部15の表面に彫刻を有するガラスびん10の底部検査方法であって、例えば、撮影工程(S10)と、模様検出工程(S20)と、マスク作成工程(S30)と、検査領域設定工程(S40)と、検出工程(S50)と、判定工程(S60)と、良品として処理する工程(S70)と、不良品として処理する工程(S80)と、を含む。各工程について図1及び図2を参照しながら以下順番に説明する。 As shown in FIG. 3, the bottom inspection method according to the present embodiment is a bottom inspection method for a glass bottle 10 having an engraving on the surface of the bottom 15, and includes, for example, an imaging step (S10) and a pattern detection step (S20). ), a mask making step (S30), an inspection area setting step (S40), a detection step (S50), a determination step (S60), a non-defective product process (S70), and a defective product process. (S80) and. Each step will be described in order below with reference to FIGS. 1 and 2. FIG.
 S10:制御部50は、撮影処理を実行する。制御部50は、S10に先立って点灯処理を実行することが好ましい。点灯処理は、照明装置2に対し第1照明部21及び第2照明部31が点灯する信号を制御部50から出力する。撮影処理は、カメラ4に対し撮影を実行する信号を制御部50から出力し、撮影された画像データをカメラ4から制御部50に送信させる。カメラ4は、第1照明部21からの指向性のある赤外光を第1受光部41が受光することで例えば図4の底部15の第1画像101を撮影し、第2照明部31からの拡散性のある可視光を第2受光部42が受光することで例えば図5の底部15の第2画像102を撮影する。制御部50は、各画像データをカメラ4からの出力により取得することができる。取得された画像データは、記憶部55に保存してもよい。 S10: The control unit 50 executes shooting processing. Preferably, the control unit 50 executes the lighting process prior to S10. In the lighting process, the controller 50 outputs a signal for lighting the first lighting unit 21 and the second lighting unit 31 to the lighting device 2 . In the photographing process, the control unit 50 outputs a signal for executing photographing to the camera 4 and causes the camera 4 to transmit the photographed image data to the control unit 50 . The camera 4 shoots the first image 101 of the bottom 15 in FIG. The second image 102 of the bottom portion 15 in FIG. The control unit 50 can acquire each image data from the output from the camera 4 . The acquired image data may be stored in the storage unit 55 .
 S20:制御部50は、模様検出処理を実行する。例えば、模様検出処理は、S10で取得した第1画像101から赤外光で強調された模様70を判定部52が検出する。判定部52は、例えば「パターンサーチ」により模様70を検出してもよい。画像処理部53は、判定部52における模様70の検出をより確実に実行するために、S20の前に模様70に対し画像前処理を実行してもよい。また、読取部54は、第1画像101で検出された模様70から例えば型番を読み取ることができる。模様70の内、円軌道に沿って間隔を空けて10個配置された略楕円形の符号は、CIDマークと呼ばれるバーコード状の符号(特開2001-270719号参照)として型番に対応して付与されるため、読取部54が符号の位置及び個数から型番を読み取ることができる。後述する欠点の判定と共に1つの検査装置で型番を読み取ることができるため、省スペースで効率の良い検査が実施できる。 S20: The control unit 50 executes pattern detection processing. For example, in the pattern detection process, the determination unit 52 detects the pattern 70 emphasized with infrared light from the first image 101 acquired in S10. The determination unit 52 may detect the pattern 70 by, for example, "pattern search". The image processing section 53 may perform image pre-processing on the pattern 70 before S20 in order to more reliably detect the pattern 70 in the determination section 52 . Further, the reading unit 54 can read, for example, the model number from the pattern 70 detected in the first image 101 . Among the patterns 70, 10 substantially elliptical codes arranged at intervals along a circular orbit correspond to model numbers as barcode-like codes called CID marks (see Japanese Patent Laid-Open No. 2001-270719). Since the code is assigned, the reading unit 54 can read the model number from the position and number of codes. Since the model number can be read with a single inspection device along with the judgment of the defect described later, efficient inspection can be performed in a small space.
 図4に示す第1画像101は、第1受光部41によって撮影された画像である。第1画像101は、底部15の彫刻に由来する複数の模様70の輪郭と、異物(検出体72)とが暗い影として表れている。複数の模様70には、例えば、底部15の外縁に沿って並ぶナーリング、ガラスびん10の製造所を示す社標、金型の番号、CIDマーク等が含まれる。これらの模様70は、金型に刻まれた彫刻に由来するので、あらかじめ規則性を有している。この規則性に基づく模様70のパターンをあらかじめ記憶部55に保存しておくことが望ましい。そして、第1画像101から模様70が検出できれば、例えば、底部15の外縁の位置及び形状、外縁の位置から底部15の中心位置、中心位置からの各模様70までの距離、形状及び配置等から底部15の中心軸線12を中心とする回転角度等を推定できる。 A first image 101 shown in FIG. 4 is an image captured by the first light receiving unit 41 . In the first image 101, the contours of the plurality of patterns 70 derived from the engraving of the bottom portion 15 and the foreign matter (detection object 72) appear as dark shadows. The plurality of patterns 70 include, for example, knurling along the outer edge of the bottom portion 15, a company mark indicating the manufacturing site of the glass bottle 10, a mold number, a CID mark, and the like. These patterns 70 are derived from engravings carved into the mold, and thus have regularity in advance. It is desirable to store the pattern of the pattern 70 based on this regularity in advance in the storage unit 55 . Then, if the pattern 70 can be detected from the first image 101, for example, from the position and shape of the outer edge of the bottom portion 15, the position of the outer edge to the center position of the bottom portion 15, the distance from the center position to each pattern 70, the shape and arrangement, etc. The rotation angle and the like about the center axis 12 of the bottom 15 can be estimated.
 画像前処理は、判定部52による「パターンサーチ」を行うために例えば「ぼかし処理」を行うことができる。「ぼかし処理」は、例えば平均化フィルタにより行うことができ、平均化フィルタは注目画素の画素値を、フィルタサイズ範囲内の全画素値の平均値で置き換えて出力する二次元フィルタである。また、他の画像前処理としては、例えば影の黒を膨張するような「膨張処理」を採用してもよい。 For image preprocessing, for example, "blurring processing" can be performed in order to perform "pattern search" by the determination unit 52. The “blurring process” can be performed, for example, by an averaging filter, which is a two-dimensional filter that replaces the pixel value of the pixel of interest with the average value of all pixel values within the filter size range and outputs the result. Further, as another image preprocessing, for example, "dilation processing" that dilates black shadows may be employed.
 判定部52は、例えば画像前処理が実行された第1画像101に対して模様検出処理を実行する。模様検出処理は、第1画像101に対しあらかじめ底部15の彫刻の外形に基づいて作成されたパターン登録画像を用いてパターンサーチして判定部52が模様70を検出する。パターンサーチは、パターン登録画像に適合する検出体を第1画像101内でサーチして、パターン登録画像が一定程度模様70の外形に一致することで検出体を模様70として検出する。第1画像101は指向性の高い赤外光により模様70の輪郭が強調されているためパターンサーチによる検知精度が高く、しかも特開2001-270719号に開示されるように底部15のCIDマークには規則性があるため、高精度に模様70の位置を検出することができる。 The determination unit 52 performs pattern detection processing on the first image 101 on which image preprocessing has been performed, for example. In the pattern detection process, the determination unit 52 detects the pattern 70 by performing a pattern search on the first image 101 using a pattern registration image created in advance based on the outer shape of the engraving on the bottom 15 . In the pattern search, the first image 101 is searched for a detection object that matches the pattern registration image, and the detection object is detected as the pattern 70 when the pattern registration image matches the outline of the pattern 70 to a certain extent. In the first image 101, since the outline of the pattern 70 is emphasized by highly directional infrared light, detection accuracy by pattern search is high. has regularity, the position of the pattern 70 can be detected with high accuracy.
 S30:制御部50は、マスク作成工程を実行する。例えば、マスク作成工程は、S20で模様70が検出された第1画像101(図4)に基づいて画像処理部53がマスクを作成し、第2画像102(図5)にマスク80を配置する(図6)。第1受光部41で撮影される第1画像101に対する第2受光部42で撮影される第2画像102の対応位置関係は、あらかじめ計測、調整されており、第1画像101において検出された模様70の位置情報がわかれば第2画像102における模様70が存在する位置がわかる。そのため、第2画像102における正確な位置にマスク80が配置される。 S30: The control unit 50 executes the mask creation process. For example, in the mask creation step, the image processing unit 53 creates a mask based on the first image 101 (FIG. 4) from which the pattern 70 is detected in S20, and arranges the mask 80 on the second image 102 (FIG. 5). (Fig. 6). The corresponding positional relationship between the first image 101 captured by the first light receiving unit 41 and the second image 102 captured by the second light receiving unit 42 is measured and adjusted in advance. If the positional information of 70 is known, the position where pattern 70 exists in second image 102 can be known. Therefore, the mask 80 is placed at the correct position in the second image 102 .
 図4~図6を用いて具体的に説明すると、マスク作成工程は、まず、図4の第1画像101の中から模様70を含む複数の領域に適合する大きさの複数のマスク80(図6)を作成する。図5のように、第2受光部42で撮影された第2画像102は、欠点である検出体72が暗い点として認識できるが、模様70がほとんど認識できない。次に、図4の第1画像101における各模様70の位置情報に基づいて、図5の第2画像102における各模様70を覆うようにマスク80が第2画像102に配置されると図6のような状態になる。マスク80の一部は、検査するガラスびん10の彫刻(またはパターン登録画像)に合わせてあらかじめ作成し、記憶部55に保存したものでもよい。各マスク80の大きさは、各模様70とほぼ同じ大きさであってもよいし、複数のまとまった模様70を一つのマスク80で覆う大きさであってもよい。 4 to 6, the mask creation process first includes a plurality of masks 80 (see FIG. 6) is created. As shown in FIG. 5, in the second image 102 captured by the second light receiving unit 42, the detected object 72, which is a defect, can be recognized as a dark spot, but the pattern 70 is hardly recognizable. Next, based on the positional information of each pattern 70 in the first image 101 in FIG. 4, the mask 80 is placed on the second image 102 so as to cover each pattern 70 in the second image 102 in FIG. becomes a state like A part of the mask 80 may be created in advance according to the engraving (or pattern registration image) of the glass bottle 10 to be inspected and stored in the storage unit 55 . The size of each mask 80 may be substantially the same as that of each pattern 70, or may be a size sufficient to cover a plurality of patterns 70 in a single mask 80. FIG.
 S40:制御部50は、検査領域設定工程を実行する。例えば、検査領域設定工程は、S30と同時に実行してもよく、パターンサーチによって検出した模様70の位置に基づいて、あらかじめ設定した形状の1以上の検査ゲート83を第2画像102に画像処理部53が配置する。模様70には規則性があるので、模様70の位置と各検査ゲート83の位置との相対位置をあらかじめ設定しておくことで、模様70の位置が定まれば、検査ゲート82,83の位置を第2画像102上に自動的にレイアウトすることができる。検査ゲート82,83は、例えば底部15における中心軸線12の同心円に1以上の円環状の範囲として設定することができる。図6では2つの検査ゲート82,83が設定される。検査ゲート82と検査ゲート83とは、異なる感度に設定することができ、例えば、ガラスびん10の種類によって欠点が発生しやすい部分がある場合にその部分が含まれる例えば検査ゲート82を検査ゲート83よりも高い感度に設定することができる。 S40: The control unit 50 executes an inspection area setting step. For example, the inspection area setting step may be performed at the same time as S30, and one or more inspection gates 83 having a preset shape are created in the second image 102 based on the position of the pattern 70 detected by the pattern search. 53 places. Since the pattern 70 has regularity, the positions of the inspection gates 82 and 83 can be determined by setting the relative positions of the pattern 70 and the inspection gates 83 in advance. can be automatically laid out on the second image 102 . The inspection gates 82 , 83 can be set, for example, as one or more annular regions concentric with the central axis 12 at the bottom 15 . In FIG. 6, two check gates 82, 83 are set. The inspection gate 82 and the inspection gate 83 can be set to have different sensitivities. You can set it to a higher sensitivity.
 S50:制御部50は、各検査ゲート82,83に対して検出工程を実行する。例えば、検出工程は、図6に示すS30でマスク80と検査ゲート82,83が配置された第2画像102について、マスク80を除いて検査ゲート82,83内における暗い部分(検出体72)を検出する。第2画像102における暗い部分は、例えば、あらかじめ記憶部55に保存された各検査ゲート82の検査アルゴリズムを実行することで検出体72を検出する。検査アルゴリズムとしては、例えば、検査ゲート82,83に読みだした照度データを2値化し、周囲の画素と対比して検出体72を検出する処理や、検査ゲート82,83内で小面積の検出領域(セグメント)を作成し、このセグメントを円周または放射方向に移動させて平均濃度を算出し、濃度差を比較して検出体72を検出する処理などが挙げられる。マスク80のある部分を除いて、検査ゲート82,83に対して検査アルゴリズムを実行することにより、高感度検査を実行することができる。検査アルゴリズムの実行に際しては、判定工程(S60)を同時に実行してもよい。 S50: The control unit 50 executes the detection process for each inspection gate 82,83. For example, in the detection step, the mask 80 and the inspection gates 82 and 83 are arranged in S30 in FIG. To detect. For dark portions in the second image 102 , the detection object 72 is detected by, for example, executing an inspection algorithm for each inspection gate 82 stored in advance in the storage unit 55 . The inspection algorithm includes, for example, a process of binarizing the illuminance data read to the inspection gates 82 and 83 and detecting the detection object 72 in comparison with the surrounding pixels, and a process of detecting a small area within the inspection gates 82 and 83. Examples include a process of creating a region (segment), moving this segment in the circumference or radial direction, calculating the average density, comparing the density difference, and detecting the detection object 72 . By excluding certain portions of mask 80 and executing the inspection algorithm on inspection gates 82 and 83, high sensitivity inspection can be performed. When executing the inspection algorithm, the determination step (S60) may be executed at the same time.
 S60:制御部50は、判定工程を実行する。例えば、判定工程は、S50で検出した第2画像102における検出体72について欠点か否かを判定し、その結果によりガラスびん10が良品か否かを判定する。判定基準は、あらかじめ記憶部55に保存された基準データを用いる。判定基準としては、例えば、検出体72の面積や形状等がある。判定工程で検出体72が欠点でないという結果であればガラスびん10を「良品」として制御部50がS70を実行し、検出体72が欠点であるという結果であればガラスびん10を「不良品」として制御部50がS80を実行する。もちろん、S50において検出体72そのものが検出されない場合には、判定結果は「良品」としてS70が実行される。 S60: The control unit 50 executes the determination process. For example, in the determination step, it is determined whether or not the detection object 72 in the second image 102 detected in S50 is defective, and based on the result, it is determined whether or not the glass bottle 10 is a non-defective product. Reference data stored in the storage unit 55 in advance is used as the criterion. The criteria for determination include, for example, the area and shape of the detection body 72 . If the result of the determination step is that the detection body 72 is not a defect, the glass bottle 10 is regarded as a "non-defective product" and the control unit 50 executes S70. ”, the control unit 50 executes S80. Of course, if the detection object 72 itself is not detected in S50, S70 is executed assuming that the determination result is "non-defective".
 S70:制御部50は、良品として処理する工程を実行する。例えば、良品として処理する工程は、検査対象のガラスびん10を「良品」として次工程へ搬送するように図示しない搬送手段に制御部50が信号を出力する。 S70: The control unit 50 executes the process of processing as a non-defective product. For example, in the process of processing as a non-defective product, the control unit 50 outputs a signal to a conveying means (not shown) to convey the glass bottle 10 to be inspected as a "non-defective product" to the next process.
 S80:制御部50は、不良品として処理する工程を実行する。例えば、不良品として処理する工程は、S20で検出された模様70から型番を読み取って判定結果と型番とを紐づけたデータを記憶部55に保存すると共に、検査対象のガラスびん10を「不良品」として図示しない廃棄部へ排出する信号を制御部50が出力する。記憶部55に保存された「不良品」の判定結果と型番のデータは、制御部50から図示しないガラスびん10の製造装置へ出力してもよい。 S80: The control unit 50 executes the process of treating the product as defective. For example, in the step of treating the glass bottle 10 as a defective product, the model number is read from the pattern 70 detected in S20, and data in which the determination result and the model number are linked is stored in the storage unit 55, and the glass bottle 10 to be inspected is identified as "non-performing." The control unit 50 outputs a signal to discharge the product to a disposal unit (not shown) as a non-defective product. The “defective product” determination result and model number data stored in the storage unit 55 may be output from the control unit 50 to the glass bottle 10 manufacturing apparatus (not shown).
 このように、従来であれば底部15の検査は、模様70と模様70以外の検出体72とを区別して判定することは難しいが、本実施形態によれば、第1画像101から模様70を検出できるので、第2画像102を用いて模様70のない領域(検査ゲート82)における検出体72の有無を判定しやすい。 As described above, in the conventional inspection of the bottom portion 15, it is difficult to distinguish between the pattern 70 and the detection object 72 other than the pattern 70, but according to the present embodiment, the pattern 70 can be detected from the first image 101. Since it can be detected, it is easy to use the second image 102 to determine the presence or absence of the detection object 72 in the area (inspection gate 82 ) where there is no pattern 70 .
 3.変形例
 図7を用いて、変形例に係るガラスびん10の底部検査方法について底部検査装置1を用いた例について詳細に説明する。図7は、第3画像103の一例である。変形例は、基本的に「2.底部検査方法」と同じであるので、重複する説明は省略する。
3. Modification An example of using the bottom inspection apparatus 1 for the bottom inspection method of the glass bottle 10 according to the modification will be described in detail with reference to FIG. 7 . FIG. 7 is an example of the third image 103. As shown in FIG. Since the modified example is basically the same as "2. Bottom part inspection method", redundant description will be omitted.
 図7に示す第3画像103は、胴部14の横断面が四角形であるガラスびん10における底部15を第2受光部42により撮影した画像である。各模様には複数のマスク80が配置され、底部15の接地面となるナーリングの外側に、胴部14の外縁(四角形)に合わせた検査ゲート82が設定される。底部15の模様と胴部14の外縁の向き(回転角度)は対応しているので、S20で模様を検出することにより胴部14の向きに合わせて四角形の検査ゲート82を設けることができる。これにより、接地面より外側にある領域の検査も可能となる。 A third image 103 shown in FIG. 7 is an image of the bottom portion 15 of the glass bottle 10 whose body portion 14 has a square cross-section and is captured by the second light receiving unit 42 . A plurality of masks 80 are arranged for each pattern, and an inspection gate 82 matching the outer edge (rectangular shape) of the trunk portion 14 is set outside the knurling that serves as the ground surface of the bottom portion 15 . Since the pattern of the bottom part 15 and the orientation (rotational angle) of the outer edge of the body part 14 correspond to each other, the rectangular inspection gate 82 can be provided in accordance with the orientation of the body part 14 by detecting the pattern in S20. This makes it possible to inspect areas outside the ground plane.
 実施例1として図1に示す底部検査装置1を用いて内部に異物を落としたガラスびん10を検査した。カメラ4は155万画素の2CMOSエリアセンサカメラであり、第1円偏光フィルム35と第2円偏光フィルム36はいずれも右回転方向で等しく、間隔D1は30mmであり、第1照明部21は赤外光拡散照明であり、第1照明部21と第2照明部31との間にはルーバーフィルム24として視野角30度のクロスルーバーフィルムを配置し、第2照明部31は630nmがピークの可視光フラットドーム(日本登録商標)照明であった。 As Example 1, the bottom inspection device 1 shown in FIG. The camera 4 is a 2CMOS area sensor camera with 1.55 million pixels, the first circularly polarizing film 35 and the second circularly polarizing film 36 are both equal in the clockwise rotation direction, the distance D1 is 30 mm, and the first illumination unit 21 is a red light. It is external light diffusion lighting, and a cross louver film with a viewing angle of 30 degrees is arranged as the louver film 24 between the first lighting unit 21 and the second lighting unit 31, and the second lighting unit 31 has a visible light with a peak at 630 nm. It was an optical flat dome (registered trademark of Japan) illumination.
 図8の上段はカメラ4の第1受光部41で撮影した第1画像であり、図8の下段は第2受光部42で撮影した第2画像である。第1画像ではCIDマーク等がくっきりと認識でき、第2画像では中心に落ちている異物がくっきりと黒く認識でき、制御部50により「不良品」と判定された。 The upper stage of FIG. 8 is the first image captured by the first light receiving section 41 of the camera 4, and the lower stage of FIG. 8 is the second image captured by the second light receiving section 42. In the first image, the CID mark and the like can be clearly recognized, and in the second image, the foreign matter falling in the center can be clearly recognized as black, and the controller 50 determines that the product is "defective".
 また、比較例1として、同じ図1の底部検査装置1から第1円偏光フィルム35と第2円偏光フィルム36を取り除いて同じ異物を落としたガラスびん10を検査した。 In addition, as Comparative Example 1, the glass bottle 10 was inspected after removing the first circularly polarizing film 35 and the second circularly polarizing film 36 from the same bottom inspection device 1 of FIG.
 図9の上段はカメラ4の第1受光部41で撮影した第1画像であり、図9の下段は第2受光部42で撮影した第2画像である。第1画像及び第2画像では中心に落ちている異物を認識できず、制御部50により「良品」と判定された。 The upper stage of FIG. 9 is the first image captured by the first light receiving section 41 of the camera 4, and the lower stage of FIG. 9 is the second image captured by the second light receiving section 42. In the first image and the second image, the foreign matter dropped in the center could not be recognized, and the control unit 50 determined that the product was "non-defective".
 本発明は、上述した実施形態に限定されるものではなく、さらに種々の変形が可能であり、実施形態で説明した構成と実質的に同一の構成を含む。ここで、「同一の構成」とは、機能、方法、及び結果が同一の構成、あるいは目的及び効果が同一の構成である。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。 The present invention is not limited to the above-described embodiments, and various modifications are possible, including substantially the same configurations as those described in the embodiments. Here, the "same configuration" means a configuration with the same function, method, and result, or a configuration with the same purpose and effect. Moreover, the present invention includes configurations in which non-essential portions of the configurations described in the embodiments are replaced. In addition, the present invention includes a configuration that achieves the same effects or achieves the same purpose as the configurations described in the embodiments. In addition, the present invention includes configurations obtained by adding known techniques to the configurations described in the embodiments.
 1…底部検査装置、2…照明装置、4…カメラ、10…ガラスびん、12…中心軸線、13…口部、14…胴部、15…底部、21…第1照明部、22…第1光源、23…拡散板、24…ルーバーフィルム、24a…ルーバー、24b…光透過部、31…第2照明部、32…第2光源、34…導光板、35…第1円偏光フィルム、36…第2円偏光フィルム、41…第1受光部、42…第2受光部、44…ビームスプリッタ、45…レンズ、50…制御部、52…判定部、53…画像処理部、54…読取部、55…記憶部、60…載置台、70…模様、72…検出体、80…マスク、82,83…検査ゲート、101…第1画像、102…第2画像、103…第3画像、D1…間隔
 
DESCRIPTION OF SYMBOLS 1... Bottom inspection apparatus, 2... Lighting apparatus, 4... Camera, 10... Glass bottle, 12... Center axis line, 13... Mouth part, 14... Body part, 15... Bottom part, 21... 1st illumination part, 22... 1st Light source 23... Diffusion plate 24... Louver film 24a... Louver 24b... Light transmitting part 31... Second illumination part 32... Second light source 34... Light guide plate 35... First circularly polarizing film 36... Second circular polarizing film 41 First light receiving unit 42 Second light receiving unit 44 Beam splitter 45 Lens 50 Control unit 52 Determination unit 53 Image processing unit 54 Reading unit 55...storage part 60...mounting table 70...pattern 72...detection object 80... mask 82, 83...inspection gate 101...first image 102...second image 103...third image D1... interval

Claims (4)

  1.  ガラスびんの底部に向けて光を照射する照明装置と、
     前記照明装置に対して前記ガラスびんを挟んで配置され、かつ前記底部の画像を撮影するカメラと、
     前記照明装置と前記底部との間に配置された第1円偏光フィルムと、
     前記ガラスびんの口部と前記カメラとの間に配置された第2円偏光フィルムと、
    を備え、
     前記照明装置は、前記底部に向けて指向性を有する赤外光を照射する第1照明部と、前記第1照明部と前記底部との間に配置される前記底部に向けて拡散性を有する可視光を照射する第2照明部と、を備え、
     前記カメラは、赤外光のみを検出する第1受光部と、可視光のみを検出する第2受光部と、を備え、
     前記第1円偏光フィルム及び前記第2円偏光フィルムは、偏光方向が等しいことを特徴とする、ガラスびんの底部検査装置。
    a lighting device that irradiates light toward the bottom of the glass bottle;
    a camera placed across the glass bottle with respect to the lighting device and capturing an image of the bottom;
    a first circularly polarizing film disposed between the lighting device and the bottom;
    a second circularly polarizing film disposed between the mouth of the glass bottle and the camera;
    with
    The lighting device includes a first lighting unit that emits infrared light having directivity toward the bottom, and a diffusing property toward the bottom that is disposed between the first lighting unit and the bottom. and a second illumination unit that emits visible light,
    The camera includes a first light receiving unit that detects only infrared light and a second light receiving unit that detects only visible light,
    The apparatus for inspecting the bottom of a glass bottle, wherein the first circularly polarizing film and the second circularly polarizing film have the same polarization direction.
  2.  請求項1において、
     前記カメラは、赤外光と可視光を分光するビームスプリッタを備えることを特徴とする、ガラスびんの底部検査装置。
    In claim 1,
    An apparatus for inspecting the bottom of a glass bottle, wherein the camera comprises a beam splitter for separating infrared light and visible light.
  3.  請求項1または請求項2において、
     前記第1照明部は、拡散性を有する赤外光を出射する第1光源と、前記第1光源から入射する赤外光が透過する角度を制限する複数のルーバーを有するルーバーフィルムと、を備え、
     前記ルーバーフィルムは、前記複数のルーバーが前記ガラスびんの中心軸線に対して直交する方向で格子状に延在することを特徴とする、ガラスびんの底部検査装置。
    In claim 1 or claim 2,
    The first illumination unit includes a first light source that emits diffuse infrared light, and a louver film having a plurality of louvers that limit the angle of transmission of the infrared light incident from the first light source. ,
    The apparatus for inspecting the bottom of a glass bottle, wherein the louver film has a plurality of louvers extending in a grid pattern in a direction orthogonal to a central axis of the glass bottle.
  4.  請求項3において、
     前記ルーバーフィルムは、前記中心軸線における視野角が15度~45度に設定されることを特徴とする、ガラスびんの底部検査装置。
     
    In claim 3,
    The apparatus for inspecting the bottom of a glass bottle, wherein the louver film has a viewing angle of 15 degrees to 45 degrees on the central axis.
PCT/JP2022/035581 2021-11-22 2022-09-26 Glass bottle bottom inspection device WO2023089954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021189115A JP2023075992A (en) 2021-11-22 2021-11-22 Device for inspecting bottom portion of glass bottle
JP2021-189115 2021-11-22

Publications (1)

Publication Number Publication Date
WO2023089954A1 true WO2023089954A1 (en) 2023-05-25

Family

ID=86396702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035581 WO2023089954A1 (en) 2021-11-22 2022-09-26 Glass bottle bottom inspection device

Country Status (2)

Country Link
JP (1) JP2023075992A (en)
WO (1) WO2023089954A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114445A (en) * 1982-12-21 1984-07-02 Yamamura Glass Kk Apparatus for detecting defect of transparent body
JPS603542A (en) * 1983-06-21 1985-01-09 Mitsubishi Electric Corp Bottle inspecting device
JPH01141342A (en) * 1987-11-27 1989-06-02 Hajime Sangyo Kk Bottle bottom inspection instrument
JPH04216445A (en) * 1990-12-17 1992-08-06 Asahi Chem Ind Co Ltd Device for inspecting bottle
JP2004219399A (en) * 2002-12-27 2004-08-05 Kirin Techno-System Corp Method of inspecting foreign substance, apparatus for inspecting foreign substance, and illumination apparatus for inspecting foreign substance
JP2014224807A (en) * 2013-04-19 2014-12-04 キリンテクノシステム株式会社 Container inspection method and container inspection device
JP2015190872A (en) * 2014-03-28 2015-11-02 日本山村硝子株式会社 Device for inspecting bottoms of bottles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114445A (en) * 1982-12-21 1984-07-02 Yamamura Glass Kk Apparatus for detecting defect of transparent body
JPS603542A (en) * 1983-06-21 1985-01-09 Mitsubishi Electric Corp Bottle inspecting device
JPH01141342A (en) * 1987-11-27 1989-06-02 Hajime Sangyo Kk Bottle bottom inspection instrument
JPH04216445A (en) * 1990-12-17 1992-08-06 Asahi Chem Ind Co Ltd Device for inspecting bottle
JP2004219399A (en) * 2002-12-27 2004-08-05 Kirin Techno-System Corp Method of inspecting foreign substance, apparatus for inspecting foreign substance, and illumination apparatus for inspecting foreign substance
JP2014224807A (en) * 2013-04-19 2014-12-04 キリンテクノシステム株式会社 Container inspection method and container inspection device
JP2015190872A (en) * 2014-03-28 2015-11-02 日本山村硝子株式会社 Device for inspecting bottoms of bottles

Also Published As

Publication number Publication date
JP2023075992A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
JP6945245B2 (en) Visual inspection equipment
KR101951576B1 (en) Inspection device and inspection method
CN100565195C (en) Irregular defect detecting method of figure and device
TWI426261B (en) End inspection device
JP6296499B2 (en) Appearance inspection apparatus and appearance inspection method for transparent substrate
JP5471477B2 (en) Thread inspection equipment
JPWO2006028077A1 (en) OVD inspection method and inspection apparatus
JP2006292419A (en) Defect inspection device and ptp packaging machine
JP5589423B2 (en) Transparent flat plate detection system
JP5608925B2 (en) Glass bottle printing inspection equipment
US8223328B2 (en) Surface inspecting apparatus and surface inspecting method
JP2020085482A (en) Remaining film detection device and detection method
CN112964635B (en) Chip detection method and system
JP2010091530A (en) Method and apparatus for inspecting foreign substance
WO2023089954A1 (en) Glass bottle bottom inspection device
US9191537B2 (en) Systems and methods for enhanced object detection
JP5959430B2 (en) Bottle cap appearance inspection device and appearance inspection method
TWI687672B (en) Optical inspection system and image processing method thereof
KR20240045311A (en) Glass bottle bottom inspection device
JP2012247343A (en) Defect inspection method of antireflection film and defect inspection apparatus
JP2012068211A (en) Distortion inspection device for sheet member and distortion inspection method for sheet member
JP6937647B2 (en) Optical display panel damage inspection method
KR20160032576A (en) System and Method for Analyzing Image Using High-Speed Camera and Infrared Optical System
JP2011196897A (en) Inspection device
JP4613090B2 (en) Inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895240

Country of ref document: EP

Kind code of ref document: A1