WO2023089872A1 - Method for producing modified polyarylene sulfide resin - Google Patents
Method for producing modified polyarylene sulfide resin Download PDFInfo
- Publication number
- WO2023089872A1 WO2023089872A1 PCT/JP2022/029049 JP2022029049W WO2023089872A1 WO 2023089872 A1 WO2023089872 A1 WO 2023089872A1 JP 2022029049 W JP2022029049 W JP 2022029049W WO 2023089872 A1 WO2023089872 A1 WO 2023089872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- container
- raw material
- gas
- pas resin
- reforming
- Prior art date
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 284
- 239000011347 resin Substances 0.000 title claims abstract description 284
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 39
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 229920000412 polyarylene Polymers 0.000 title claims abstract description 14
- 239000002994 raw material Substances 0.000 claims abstract description 180
- 238000010438 heat treatment Methods 0.000 claims abstract description 96
- 238000003756 stirring Methods 0.000 claims abstract description 74
- 239000012298 atmosphere Substances 0.000 claims abstract description 40
- 238000002844 melting Methods 0.000 claims abstract description 31
- 230000008018 melting Effects 0.000 claims abstract description 31
- 230000007246 mechanism Effects 0.000 claims abstract description 23
- 238000007599 discharging Methods 0.000 claims abstract description 17
- 239000007789 gas Substances 0.000 claims description 219
- 238000002407 reforming Methods 0.000 claims description 124
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 46
- 239000001301 oxygen Substances 0.000 claims description 46
- 229910052760 oxygen Inorganic materials 0.000 claims description 46
- 239000011261 inert gas Substances 0.000 claims description 35
- 238000011282 treatment Methods 0.000 claims description 32
- -1 arylene sulfide Chemical compound 0.000 claims description 18
- 230000015572 biosynthetic process Effects 0.000 abstract description 12
- 230000002776 aggregation Effects 0.000 abstract description 10
- 238000011109 contamination Methods 0.000 abstract description 10
- 238000004220 aggregation Methods 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 47
- 239000004734 Polyphenylene sulfide Substances 0.000 description 42
- 229920000069 polyphenylene sulfide Polymers 0.000 description 42
- 208000002387 Popliteal pterygium syndrome Diseases 0.000 description 41
- 238000006116 polymerization reaction Methods 0.000 description 34
- 239000012535 impurity Substances 0.000 description 33
- 150000001875 compounds Chemical class 0.000 description 21
- 150000001491 aromatic compounds Chemical class 0.000 description 19
- 238000002156 mixing Methods 0.000 description 19
- 230000004048 modification Effects 0.000 description 18
- 238000012986 modification Methods 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 17
- 239000000047 product Substances 0.000 description 17
- 230000001590 oxidative effect Effects 0.000 description 15
- 238000000746 purification Methods 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 239000000155 melt Substances 0.000 description 14
- 239000011541 reaction mixture Substances 0.000 description 14
- 239000003507 refrigerant Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000005406 washing Methods 0.000 description 13
- 239000003960 organic solvent Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 229910052977 alkali metal sulfide Inorganic materials 0.000 description 10
- 238000004132 cross linking Methods 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 239000002002 slurry Substances 0.000 description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 229910052783 alkali metal Inorganic materials 0.000 description 8
- 238000001914 filtration Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 238000001035 drying Methods 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 239000002798 polar solvent Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 238000000691 measurement method Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 230000001464 adherent effect Effects 0.000 description 4
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 238000007334 copolymerization reaction Methods 0.000 description 4
- 239000012765 fibrous filler Substances 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000012808 vapor phase Substances 0.000 description 4
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000007810 chemical reaction solvent Substances 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzenecarbonitrile Natural products N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- UTOPWMOLSKOLTQ-UHFFFAOYSA-N octacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O UTOPWMOLSKOLTQ-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000003495 polar organic solvent Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000011027 product recovery Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical class O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- 150000003457 sulfones Chemical class 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 description 1
- XKEFYDZQGKAQCN-UHFFFAOYSA-N 1,3,5-trichlorobenzene Chemical compound ClC1=CC(Cl)=CC(Cl)=C1 XKEFYDZQGKAQCN-UHFFFAOYSA-N 0.000 description 1
- RLTTZFDRZKJVKJ-UHFFFAOYSA-N 1,4,6-trichloronaphthalene Chemical compound ClC1=CC=C(Cl)C2=CC(Cl)=CC=C21 RLTTZFDRZKJVKJ-UHFFFAOYSA-N 0.000 description 1
- RZKKOBGFCAHLCZ-UHFFFAOYSA-N 1,4-dichloro-2-nitrobenzene Chemical compound [O-][N+](=O)C1=CC(Cl)=CC=C1Cl RZKKOBGFCAHLCZ-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- RRJUYQOFOMFVQS-UHFFFAOYSA-N 2,3,4-trichloroaniline Chemical compound NC1=CC=C(Cl)C(Cl)=C1Cl RRJUYQOFOMFVQS-UHFFFAOYSA-N 0.000 description 1
- MOTBXEPLFOLWHZ-UHFFFAOYSA-N 2,3,5-trichloroaniline Chemical compound NC1=CC(Cl)=CC(Cl)=C1Cl MOTBXEPLFOLWHZ-UHFFFAOYSA-N 0.000 description 1
- BRPSAOUFIJSKOT-UHFFFAOYSA-N 2,3-dichloroaniline Chemical compound NC1=CC=CC(Cl)=C1Cl BRPSAOUFIJSKOT-UHFFFAOYSA-N 0.000 description 1
- RUPDGJAVWKTTJW-UHFFFAOYSA-N 2,3-dinitropyridine Chemical compound [O-][N+](=O)C1=CC=CN=C1[N+]([O-])=O RUPDGJAVWKTTJW-UHFFFAOYSA-N 0.000 description 1
- NATVSFWWYVJTAZ-UHFFFAOYSA-N 2,4,6-trichloroaniline Chemical compound NC1=C(Cl)C=C(Cl)C=C1Cl NATVSFWWYVJTAZ-UHFFFAOYSA-N 0.000 description 1
- KQCMTOWTPBNWDB-UHFFFAOYSA-N 2,4-dichloroaniline Chemical compound NC1=CC=C(Cl)C=C1Cl KQCMTOWTPBNWDB-UHFFFAOYSA-N 0.000 description 1
- WKFQMDFSDQFAIC-UHFFFAOYSA-N 2,4-dimethylthiolane 1,1-dioxide Chemical compound CC1CC(C)S(=O)(=O)C1 WKFQMDFSDQFAIC-UHFFFAOYSA-N 0.000 description 1
- OBUGJYJQJWMOQO-UHFFFAOYSA-N 2,5-dichloro-3-nitropyridine Chemical compound [O-][N+](=O)C1=CC(Cl)=CN=C1Cl OBUGJYJQJWMOQO-UHFFFAOYSA-N 0.000 description 1
- AVYGCQXNNJPXSS-UHFFFAOYSA-N 2,5-dichloroaniline Chemical compound NC1=CC(Cl)=CC=C1Cl AVYGCQXNNJPXSS-UHFFFAOYSA-N 0.000 description 1
- JDMFXJULNGEPOI-UHFFFAOYSA-N 2,6-dichloroaniline Chemical compound NC1=C(Cl)C=CC=C1Cl JDMFXJULNGEPOI-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- XEGBVDXTOVJCSJ-UHFFFAOYSA-N 4-chloro-1-(4-chlorophenoxy)-2-nitrobenzene Chemical compound [O-][N+](=O)C1=CC(Cl)=CC=C1OC1=CC=C(Cl)C=C1 XEGBVDXTOVJCSJ-UHFFFAOYSA-N 0.000 description 1
- VZXOZSQDJJNBRC-UHFFFAOYSA-N 4-chlorobenzenethiol Chemical compound SC1=CC=C(Cl)C=C1 VZXOZSQDJJNBRC-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- BVSPBMRRJDBYLC-UHFFFAOYSA-N C[NH+]1C(N(CC1)C)C(=O)[O-] Chemical compound C[NH+]1C(N(CC1)C)C(=O)[O-] BVSPBMRRJDBYLC-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- VYZAHLCBVHPDDF-UHFFFAOYSA-N Dinitrochlorobenzene Chemical compound [O-][N+](=O)C1=CC=C(Cl)C([N+]([O-])=O)=C1 VYZAHLCBVHPDDF-UHFFFAOYSA-N 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- ZWXPDGCFMMFNRW-UHFFFAOYSA-N N-methylcaprolactam Chemical compound CN1CCCCCC1=O ZWXPDGCFMMFNRW-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 239000006085 branching agent Substances 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000005827 chlorofluoro hydrocarbons Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000001983 dialkylethers Chemical class 0.000 description 1
- QTNDMWXOEPGHBT-UHFFFAOYSA-N dicesium;sulfide Chemical compound [S-2].[Cs+].[Cs+] QTNDMWXOEPGHBT-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical compound C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010128 melt processing Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- DADSZOFTIIETSV-UHFFFAOYSA-N n,n-dichloroaniline Chemical compound ClN(Cl)C1=CC=CC=C1 DADSZOFTIIETSV-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006124 polyolefin elastomer Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- AHKSSQDILPRNLA-UHFFFAOYSA-N rubidium(1+);sulfide Chemical compound [S-2].[Rb+].[Rb+] AHKSSQDILPRNLA-UHFFFAOYSA-N 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000000326 ultraviolet stabilizing agent Substances 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/0277—Post-polymerisation treatment
- C08G75/0281—Recovery or purification
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
Definitions
- the present disclosure relates to a method for producing a modified polyarylene sulfide resin.
- Polyarylene sulfide resins (hereinafter also abbreviated as "PAS resins”) typified by polyphenylene sulfide resins (hereinafter abbreviated as “PPS resins”) are excellent in heat resistance, chemical resistance, etc. Therefore, it is widely used for electrical and electronic parts, automobile parts, plumbing parts, fibers, films, and the like.
- each type of PAS which is roughly classified into crosslinked PAS resin (also referred to as high molecular weight PAS resin), linear PAS resin or semi-crosslinked PAS resin
- Various methods for modifying the PAS resin such as increasing the molecular weight, increasing the viscosity, or increasing the purity, have been studied as methods for producing the resin.
- a method for producing a crosslinked PAS resin mainly used for injection molding crude PAS obtained by reacting a sulfidating agent with a polyhalogenoaromatic compound in the presence of an organic polar solvent is prepared. , after removing the by-produced salt by washing with water, a method of oxidative cross-linking is adopted.
- Patent Document 1 a container rotation type heating device is used, which is provided with a gas introduction section for introducing oxygen-containing gas and a gas exhaust section for discharging internal gas by heating particulate PPS resin to a temperature below its melting point.
- a method of curing PPS resin is disclosed.
- the container rotating type heating device described in Patent Document 1 does not use a stirring blade, for example, a stirring blade such as a fixed container heating and mixing device with a double spiral stirring blade is used. It is said that problems (uneven curing, decrease in yield, removal of adhesion layer) caused by agglomeration and adhesion solidification of PPS resin particles in a heating and mixing device are less likely to occur.
- Patent Document 2 discloses a method for producing a high molecular weight PAS resin using a screw mixing type heating device, a conical screw mixing type heating device, or a high-speed rotating blade mixing type heating device. Then, according to Patent Document 2, by using the fixed container heating device described in Patent Document 2 and adopting a predetermined gas flow, the conventional fixed container heating and mixing with double spiral stirring blades It is said that the problem of the device or container rotating type heating device can be avoided.
- Patent Document 1 suffers from structural problems of the container rotating type heating device used, such as heat transferability, mixability of raw material components, or product recovery (for example, recovery of high-temperature products, product recovery rate, etc.), the productivity of the oxidatively crosslinked PAS resin is inferior, and low-molecular-weight components in the obtained PAS resin (mainly low-boiling volatile oligoarylene sulfides ) (hereinafter referred to as low-molecular-weight impurities) was insufficiently removed. Therefore, in any type of PAS resin production method, if the technique of Patent Document 1 is used, the raw material components are not uniformly dispersed and mixed, making it difficult to control the molecular weight.
- the technique of Patent Document 1 if the technique of Patent Document 1 is used, the raw material components are not uniformly dispersed and mixed, making it difficult to control the molecular weight.
- Patent Document 2 is not only insufficient in removing low-molecular-weight impurities, but the technique of Patent Document 2 uses a mixing device equipped with a rotating blade for stirring. Friction between the rotating blades and the container tends to generate metal powder, which causes a problem of contamination (metal contamination, deformed resin contamination) in the next step.
- contamination metal contamination, deformed resin contamination
- the technique of Patent Document 2 is used to produce a linear PAS resin, it will not be possible to ensure the high purity that is its advantage, and as a result, There is a possibility that the low hygroscopic property of the rubber cannot be effectively exhibited.
- PAS resin solid matter the PAS resin component adhering to the inner wall of the container or the stirring blade (hereinafter referred to as PAS resin solid matter) is further aggregated, or pressed against the inner wall of the container or the lid of the container by the stirring blade or stirring shaft. If the PAS resin adheres firmly to the inner wall of the container or the bottom surface of the container, there is no chemical that dissolves in an environment of 200 ° C or less due to the characteristics of PAS resin (for example, PPS resin). It is extremely difficult to remove the PAS resin adhering to the inner wall or the bottom of the container.
- PAS resin solid matter the PAS resin component adhering to the inner wall of the container or the stirring blade
- An object of the present invention is to provide a method for producing a modified PAS resin with reduced
- the present inventors have made extensive studies to solve the various problems described above. As a result, the inventors have found that the various problems described above can be solved by using a predetermined reforming apparatus and adopting a heat treatment and a gas supply control process under predetermined conditions, and have completed the present invention.
- the present disclosure includes a tapered container portion capable of accommodating a raw material component including a PAS resin, and along the inner wall of the container portion, from the bottom portion to the upper portion of the container portion, and further from the upper portion to the center side of the container portion.
- a reforming treatment apparatus equipped with a stirring mechanism forms a circulation flow in which the raw material components circulate to the bottom through the reforming gas (g S ) atmosphere, and the raw material components are heated to the melting point T of the PAS resin.
- a method for producing a modified PAS resin by heating to a temperature of less than m comprising: The reforming gas (g s ) is supplied into the container part and the gas (g d ) inside the container part is discharged outside the container part, and the raw material component introduced into the container part is transferred to the circulating flow. a heat treatment step of heating the raw material component to below the melting point Tm by a heating means while circulating by and a gas supply control step of controlling the supply amount of the reforming gas (g S ) per minute within the range of 0.1 to 100% of the volume of the container part. It is a manufacturing method of PAS resin.
- the present disclosure while suppressing the aggregation of PAS resins that tend to fuse at high temperatures, the formation of solidified PAS resins that adhere to the inner wall of the container is suppressed and prevented, and the concentration and contamination of low-molecular-weight impurities are suppressed. It is possible to produce a modified PAS resin with reduced According to the present disclosure, a high yield of modified PAS resin can be produced.
- FIG. 1 is a schematic vertical cross-sectional view of a main part of a reforming treatment apparatus 1 according to this embodiment.
- 2 is a perspective view of the stirring member 2 of FIG. 1.
- FIG. 3 is a perspective view of the stirring member 2 of another aspect of this embodiment.
- FIG. 4 is a schematic vertical cross-sectional view of the reforming apparatus 1 of another aspect of this embodiment.
- the PAS resin contained as a raw material component is heated to a temperature lower than the melting point Tm of the PAS resin in an atmosphere of a reforming gas (g S ) used to modify the PAS resin by using a modification apparatus.
- the reforming apparatus includes a tapered container portion capable of containing the raw material component including the PAS resin, and along the inner wall of the container portion, from the bottom portion of the container portion to the upper portion, and further from the upper portion to the container portion. It has a stirring mechanism that forms a circulation flow in which the raw material components circulate to the bottom through the center side of the part.
- a stirring mechanism that forms a circulation flow in which the raw material components circulate to the bottom through the center side of the part.
- the PAS resin solid matter is an amorphous (e.g., granular or tabular) mass generated in the manufacturing process of the modified PAS resin, and the PAS resin adhering to the inner wall of the container.
- the PAS resin adhered matter can be visually observed as described in the Examples section below.
- modification refers to increasing the molecular weight of the PAS resin contained as a raw material component for the purpose of improving the properties of the PAS resin contained as a raw material component or eliminating the drawbacks of the PAS resin, Increasing the viscosity of the PAS resin contained as a raw material component, purifying the PAS resin contained as a raw material component, copolymerizing with other monomers, blending with other polymer materials, or plasticizing , Mixing with additives such as curing agents or stabilizers.
- the above-mentioned increase in molecular weight means that the amount of change (%) in the peak molecular weight (M top ) of the molecular weight distribution before and after the modification treatment is a predetermined value or more, that is, the modification treatment apparatus of the present embodiment.
- the increase in viscosity is represented by the amount of change (%) in the melt viscosity before and after performing the heat treatment step and the gas supply control step of the present embodiment using the reforming apparatus of the present embodiment.
- Formula (2): ⁇ (melt viscosity of modified PAS resin after heat treatment step and gas supply control step) - (melt viscosity of PAS resin contained as a raw material component before heat treatment step and gas supply control step ) ⁇ /(melt viscosity of PAS resin contained as raw material component before heat treatment step and gas supply control step) ⁇ 100 is 10% or more.
- the above-mentioned high purification refers to the concentration of low-molecular-weight impurities (the amount of gas generated (mass% ))
- Expression (3) represented by the amount of change (%): ⁇ (Concentration of low-molecular-weight impurities in PAS resin contained as raw material components before heat treatment step and gas supply control step (gas generation amount (mass%)))-(heat treatment step and gas supply control step Concentration of low-molecular-weight impurities in the modified PAS resin (gas generation amount (mass%))) ⁇ /(Low molecular weight impurity content of the PAS resin contained as a raw material component before the heat treatment step and the gas supply control step) It means that the concentration of molecular weight impurities (gas generation amount (mass %)) ⁇ 100 is 10% or more.
- the amount of gas generated (% by mass) calculated by the method described in the Examples column is used as an example of an indicator of the concentration of low-molecular-weight impurities.
- the PAS resin contained as a raw material component refers to the PAS resin before being subjected to the heat treatment step and the gas supply control step of the present embodiment using the reforming apparatus of the present embodiment. It is also called raw material PAS resin. Therefore , the raw material PAS resin is a PAS resin that has not yet been modified. to 150,000, or PAS resins with a low molecular weight impurity concentration of 1.0 mass % or more.
- the method for measuring the melt viscosity at 300° C. uses the measuring method described in the Examples section.
- the peak molecular weight (M top ) of the molecular weight distribution of the PAS resin of the present embodiment can be measured using gel permeation chromatography (GPC) under the following conditions using six types of monodisperse polystyrene for calibration. can.
- GPC gel permeation chromatography
- low molecular weight impurities refer to volatile oligoarylene sulfides, which are produced as by-products in the PAS polymerization reaction stage and have peak molecular weights (M top ) in the molecular weight distribution of less than 1000.
- M top peak molecular weights
- a PAS resin is mentioned.
- the volatile oligoarylene sulfide the following general formulas (1) and (2): (In the above general formulas (1) and (2), each Y 1 independently represents a halogen atom (fluorine atom, chlorine atom, bromine atom, etc.)) and / or 3 Including polymer components.
- the lower limit of the dimer component and/or trimer component is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably It can be 80% by mass or more.
- the upper limit may be preferably 100% by mass or less, more preferably 95% by mass or less, and even more preferably 90% by mass or less.
- the content of the dimer component and/or the trimer component in the volatile oligoarylene sulfide can be any combination of the above lower limit and the above upper limit.
- a raw material component containing a commercially available raw PAS resin or a raw material component containing a raw PAS resin obtained by the polymerization process described below is stirred with a stirring mechanism.
- modifying the PAS resin as a raw material component a product having desired mechanical properties or moldability can be obtained.
- the reforming treatment apparatus of the present embodiment includes a tapered container portion capable of accommodating raw material components including a raw material PAS resin, and along the inner wall of the container portion, from the bottom portion of the container portion to the upper portion, and further from the upper portion.
- a stirring mechanism is provided for forming a circulation flow in which the raw material components circulate to the bottom portion through the center side of the container portion.
- FIG. 1 is a schematic vertical cross-sectional view of the main part of the reforming apparatus in this embodiment.
- a lid portion 11 that is attached to the opening portion OP2 and that can be opened and closed to take out raw material components or contents, and a space V (or a recess) between the bottom portion that is the lid portion 11 and the top portion that is the first opening portion OP1.
- the reforming apparatus 1 is a tapered cylinder having a first opening OP1 and a second opening OP2 having an opening diameter d2 smaller than the opening diameter d1 of the first opening OP1.
- a discharge port 9 for discharging gas (g d ) in 4 an input port 10 for inputting raw material components including the raw material PAS resin, and a content (raw material) in the container part 4 attached to the second opening OP2. and an openable and closable lid 11 for taking out the component or product P).
- the stirring member 2 preferably has rotary blades. Furthermore, it is preferable that the maximum rotation diameter of the rotor blade is 50 to 99% of the diameter d1 .
- the first opening OP1 is closed by a top plate T having an inlet 10 for charging raw material components including the raw material PAS resin and a discharge port 9 for discharging the gas (g d ) in the container part 4.
- the second opening OP2 is closed by the openable/closable lid portion 11, the inside of the container portion 4, that is, the space V is sealed.
- the supply port 8, the discharge port 9 and the input port 10 can also be closed by known closing means.
- FIG. 1 shows an example of a so-called inverted truncated cone-shaped cylindrical body as an example of the container part 4 as a whole. Therefore, the first opening OP1 and the second opening OP2 of the inverted truncated cone-shaped cylindrical body are both circular, and the centers of both openings are coaxial centers (or the first opening OP1 and the second opening and the portion OP2 are coaxial circles). As a result, the symmetry of the rotating shaft 2 a within the container portion 4 can be maintained, and a uniform circulation flow can be easily formed within the container portion 4 .
- FIG. 1 shows an example of a so-called inverted truncated cone-shaped cylindrical body as an example of the container part 4 as a whole. Therefore, the first opening OP1 and the second opening OP2 of the inverted truncated cone-shaped cylindrical body are both circular, and the centers of both openings are coaxial centers (or the first opening OP1 and the second opening and the portion OP2 are coaxial circles).
- a stirring apparatus having a rotating shaft 2a is provided so that the long axis of the rotating shaft 2a is provided on the coaxial center line between the first opening OP1 and the second opening OP2.
- An example in which the member 2 is attached and the stirring member 2 is accommodated in the container portion 4 is shown.
- the top plate T that closes the first opening OP1 is also circular, and the top plate T and the first opening OP1 are coaxial circles. show.
- the ratio d 1 /d 2 between the diameter d 1 of the first opening OP1 and the diameter d 2 of the second opening OP2 is preferably 1.1 to 10.0.
- the diameter d1 of the first opening OP1 refers to the maximum length among the lengths connecting any two points on the outer circumference of the first opening OP1
- the diameter d2 of the second opening OP2 is also It means the maximum length among the lengths connecting any two points on the outer circumference of the second opening OP2.
- a double-helical rotor blade is shown as an example of the stirring member 2 , and the double-helical rotor blade also has a tapered shape following the shape of the container part 4 .
- the stirring member 2 includes a rotating shaft 2a (a rotating shaft used for the stirring member 2) extending from the top plate T side (upper side) of the container portion 4 to the lid portion 11 side (lower side) in the container portion 4.
- the strip-shaped rotor blades are blades that extend three-dimensionally and continuously in the vertical direction within the container portion 4 and reach the lower region of the container portion 4 .
- the reforming treatment apparatus 1 is provided with a stirring mechanism, and the stirring mechanism stirs the raw material component containing the PAS resin filled in the tapered container portion 4 .
- the stirring mechanism includes a tapered container portion 4 and a stirring member 2 following the shape of the tapered container portion 4 .
- the agitating member 2 having a rotating blade housed in the space V in the container portion 4 is detachably attached to the tapered container portion 4 . Therefore, by rotating the rotating shaft 2a of the stirring member 2 provided with the rotating blades at a constant speed or at a non-uniform speed, co-rotation of the container part 4 and the stirring member 2 is suppressed, and sufficient stirring performance is obtained. can be Then, when the stirring member 2 having the rotating blades rotates around the rotating shaft 2a, the stirring member 2 moves along the inner wall of the container from the bottom to the top of the container, and further from the top to the center of the container.
- a circulation flow is formed in which the raw material components circulate to the bottom.
- the raw material component containing the PAS resin filled in the lid portion 11 side (bottom portion) of the container portion 4 flows along the inner wall of the container portion 4 from the bottom portion of the container portion 4 to the upper portion, and further from the upper portion to the container portion 4. It is circulated to the bottom via the central side.
- the rotor has a single-axis double helix structure. That is, as one of the preferable forms of the stirring member 2, as shown in FIG. 1, it is preferable that the rotating blade has a double helix structure with respect to one rotating shaft 2a which is a single shaft. This makes it easier to form a circulation flow.
- the rotating shaft 2a is one single shaft. Further, the rotating shaft 2a is connected and fixed to the central portion of the top plate T. As shown in FIG. In FIG. 1, the rotating shaft 2a is composed of two rod-shaped bodies having different thicknesses, but may be rod-shaped bodies having the same thickness or tapered rod-shaped bodies. Furthermore, in FIG. 1, an example in which seven supporting members (2b 1 , 2b 2 , 2b 3 , 2b 4 , 2b 5 , 2b 6 , 2b 7 ) are attached radially outward to the rotating shaft 2a.
- the number of supporting members can be changed as appropriate depending on the radius of the start point, the radius of the end point, the number of turns, or the total length of the spiral drawn by the belt-shaped rotor.
- a preferred embodiment of the stirring member 2 will be described later with reference to FIGS. 2 and 3.
- FIG. 1 Furthermore, in FIG. 1, seven support members (2b 1 , 2b 2 , 2b 3 , 2b 4 , 2b 5 , 2b 6 , 2b 7 ) are attached perpendicular to the longitudinal direction of the rotating shaft 2a. 7 supporting members (2b 1 , 2b 2 , 2b 3 , 2b 4 , 2b 5 , 2b 6 , 2b 7 ) are separated into two supporting members (a total of 14 supporting members).
- FIG. 1 shows an example in which the rotating shaft 2a is connected and fixed to the central portion of the top plate T, but as a modified example, the rotating shaft 2a is inserted into a through hole provided in the central portion of the top plate T.
- the top plate T may be connected to the top plate T and the rotating shaft 2a may be attached so as to rotate independently.
- a rotary motor (not shown) may be attached so as to be connected and fixed to the rotary shaft 2a as power for rotating the stirring member 2 of the stirring mechanism.
- the stirring member 2 in this embodiment preferably has a rotary blade. Furthermore, the maximum rotation diameter of the rotor blade is preferably 50 to 99% of the diameter d1 of the first opening OP1, more preferably 60 to 90%. When the maximum rotation diameter of the rotor blades of the stirring member 2 is 50 to 99% of the diameter d1 of the first opening OP1, it becomes easier to form a circulation flow. In FIG.
- the maximum rotation diameter of the rotor blade represents twice the starting point radius of the spiral drawn by the belt-shaped rotor blade, so the maximum rotation diameter of the belt-shaped rotor fixed to the support member 2b1 is the diameter d1 can be 50-99% of the Further, as described above, since the rotating shaft 2a is connected and fixed to the center of the first opening OP1, the length of the supporting member 2b7 corresponds to the maximum rotating diameter of the rotating blade.
- the input port 10 formed in the top plate T communicates with the space V. Therefore, when the raw material components including the raw PAS resin are input from the input port 10, the raw material components including the raw PAS resin will flow into the container part 4 (space V).
- the supply port 8 for injecting the reforming gas (g S ) and the discharge port 9 for discharging the gas (g d ) in the container part 4 (or in the space V) communicate with the space V as well as the inlet 10 . It is Therefore , by supplying the reforming gas (g S ) to the supply port 8 , the reforming gas (g S ) can be atmosphere.
- the gas (g d ) includes gas generated by reforming (for example, oxidation reaction) of the raw material PAS resin, by exhausting the gas (g d ) in the container part 4, the inside of the container part 4 can be kept constant, the reforming gas (g S ) atmosphere (for example, gas phase oxidizing atmosphere or inert gas atmosphere).
- the reforming gas (g S ) atmosphere for example, gas phase oxidizing atmosphere or inert gas atmosphere.
- the reforming gas (g S ) is supplied into the container portion 4 through a supply port 8 provided so as to communicate with the container portion 4 .
- a supply port 8 provided so as to communicate with the container portion 4 .
- other gases hydrogen gas, carbon dioxide gas, etc.
- the reforming gas (g S ) concentration contained in the gas supplied into the container 4 through the supply port 8 is in the range of 1 to 100%.
- the reforming gas (g S ) concentration referred to here means the amount (volume %) of the reforming gas (g S ) contained in the gas supplied into the container part 4 per minute.
- the concentration range of the reforming gas (g S ) is preferably set according to the type of the reforming gas (g S ).
- the concentration of the inert gas in the gas supplied into the container part 4 per minute is preferably 93 to 100% by volume, more Preferably 95 to 100% by volume, more preferably 97 to 100% by volume, even more preferably 99 to 100% by volume.
- oxygen or a gas containing oxygen for example, air
- the oxygen concentration in the gas supplied into the container part 4 per minute should be 1% by volume or more.
- the lower limit of the oxygen concentration in the reforming gas (g S ) is preferably 1% by volume or more, 5% by volume or more, 7% by volume or more, 11% by volume or more, or 13% by volume or more.
- the upper limit of the oxygen concentration in the reforming gas (g S ) is 100% by volume or less, 80% by volume or less, 60% by volume or less, 34% by volume or less, 27% by volume or less, or 21% by volume or less. is preferred.
- the preferred range of oxygen concentration in the reforming gas (g S ) can be any combination of the above upper limit and the above lower limit.
- the reforming gas (g S ) when the reforming gas (g S ) is a gas containing oxygen, it is supplied into the container portion 4 through the supply port 8 provided so as to communicate with the container portion 4, It is preferable that the concentration of oxygen contained in the gas supplied into the container part 4 per minute at the supply port 8 is in the range of 1 to 21% by volume.
- the concentration of oxygen contained in the gas supplied into the container part 4 per minute at the supply port 8 is in the range of 1 to 21% by volume, the inside of the container part 4 (or the inside of the space V) can be easily gas-phase oxidized. It can be made sexual.
- the oxygen concentration at the supply port 8 refers to the concentration of oxygen existing between the inlet and the outlet of the supply port 8.
- An oxygen sensor for example, UEGO (Universal Exhaust Gas Oxygen ) sensor
- UEGO Universal Exhaust Gas Oxygen
- the reforming gas (g S ) is an inert gas
- it is supplied into the container portion 4 through the supply port 8 provided so as to communicate with the container portion 4
- the concentration of the inert gas contained in the gas supplied into the container portion 4 per minute at the supply port 8 is in the range of 99 to 100% by volume.
- the inert gas concentration contained in the gas supplied into the container part 4 per minute at the supply port 8 is in the range of 99 to 100% by volume, the inside of the container part 4 (or the inside of the space V) can be easily made inert. It can be under an active gas atmosphere.
- a method for supplying the reforming gas (g S ) and a method for discharging the gas (g d ) in the container portion 4 known means can be employed. For example, by fluidly connecting a compressing device (for example, a compressing pump) for compressing and supplying the reforming gas (g S ) to the supply port 8 via the compressing pipe body, the reforming gas (g S ) can be supplied. Furthermore, by fluidly connecting a suction device to the discharge port 9 via a tubular body, the gas (g d ) inside the container part 4 (or inside the space V) can be discharged.
- the position of the supply port 8 in the container part 4 is not particularly limited.
- the reforming gas (g S ) (for example, oxygen , a gas containing 1% by volume or more of oxygen or an inert gas) may be supplied.
- the reforming gas (g S ) is a gas containing oxygen
- the distance between the supply port 8 and the discharge port 9 is the container It is preferably provided on a (substantially) diagonal line that can have the maximum value in the portion 4 .
- the position of the supply port 8 in the container part 4 is on the lid part 11 side (lower part of the container part 4) in consideration of the contact probability between the raw material components including the raw material PAS resin and the reforming gas (g S ). is set in
- the inlets or outlets 6 and 7 for the heat medium or refrigerant are not communicated with the space V. As shown in FIG.
- FIG. 1 shows the openable/closable lid portion 11 in a closed state.
- the contents contained in the container portion 4 raw material components including the raw material PAS resin, products P obtained by chemical reaction of the raw material components, etc.
- the openable and closable lid portion 11 is provided at the bottom portion of the container portion 4, not only can the product P immediately after the modification treatment (for example, oxidative cross-linking reaction or volatilization of low-molecular-weight components) be recovered in a short time, For example, even contents in the middle of the reaction can be recovered in a short time.
- the modification treatment for example, oxidative cross-linking reaction or volatilization of low-molecular-weight components
- the opening/closing mechanism of the lid portion 11 is not particularly limited.
- the lid portion 11 is rotatably pivotally supported with respect to the container portion 4 by an opening/closing mechanism configured to be slidably movable in the separating and contacting direction, or by a rotating member such as a hinge that connects the lid portion 11 and the container portion 4 .
- An opening and closing mechanism, etc., which are used, are mentioned.
- the lid portion 11 and the container portion 4 may be fixed by a known locking portion.
- a drift plate 3 is provided between the stirring member 2 and the gas discharge port 9 (top surface side in FIG. 1). Due to the rotation of the stirring member 2, the drift plate 3 moves the raw material components including the raw material PAS resin that have moved from the lid portion 11 side to the drift plate 3 side along the inner wall of the container portion 4 toward the rotating shaft 2a side (first opening). It can be a plate material that is unevenly distributed in the central part of the part OP1 and dropped.
- a temperature control jacket 5 covering the outer surface of the container part 4 has a space for accommodating a heat medium or a coolant inside. , 7 by injecting and discharging a heat medium or a refrigerant.
- Either of the inlets or outlets 6, 7 may serve as an inlet for the heat medium or the refrigerant, or may serve as an outlet for the heat medium or the refrigerant.
- an inflow pipe (not shown) is attached to one of the inlets or outlets 6 or 7 of the heat medium or refrigerant communicating with the temperature control jacket 5, and an outflow pipe (not shown) is attached to the other.
- a heat medium or refrigerant circulator (not shown) is connected to the inflow pipe (not shown) and the outflow pipe (not shown), and the heat medium or refrigerant is pumped to the container part 4 can be adjusted.
- the heat medium or refrigerant inlet or outlet 6 in FIG. 7 may be used as an outlet.
- the heat medium can be appropriately selected depending on the desired temperature, and any heat medium that is liquid at a temperature of 100° C. or higher can be used.
- Glycol-based or silicone-based heat medium oil such as ethylene glycol, pressurized water (for example, water at 150° C.), and steam having a boiling point of 100° C. or higher can be used.
- Examples of the above refrigerant can be appropriately selected depending on the desired temperature, and for example, ammonia, isobutane, hydrocarbons, CFC substitutes, etc. can be used.
- a temperature control jacket 5 for example, the temperature of the raw material components in the container 4 can be controlled within a temperature range of 100 to 280.degree. Within this temperature range, the raw material PAS resin in the raw material components can be easily heated to near the melting point Tm or the entire raw material components.
- FIG. 2 is a perspective view of essential parts of the stirring member 2 shown in FIG.
- the stirring member 2 includes a rotary shaft 2a connected and fixed to the central portion of the top plate T, and a plurality of support members (2b 1 , 2b 2 , 2b 3 , 2b 4 , 2b ) attached to the rotary shaft 2a. 5 , 2b 6 , 2b 7 ) and two strip - shaped rotor blades 2c ( stirring (used in member 2).
- the support members (2b 1 , 2b 3 , 2b 5 ) and the support members (2b 2 , 2b 6 ) are perpendicular to each other in their longitudinal directions and extend outward in the radial direction of the rotating shaft 2a.
- the support member 2b7 is attached to the rotating shaft 2a such that the longitudinal direction thereof is inclined at a predetermined angle with respect to the longitudinal direction of the support members ( 2b2 , 2b6 ).
- the strip-shaped rotor blade 2c is a continuous spiral blade in which the strip draws a spiral shape around the rotation shaft 2a.
- the stirring member 2 includes a support member 3a attached to the rotating shaft 2a between the top plate T and the support member 2b1 , and a pair of deflection plates fixed to each of the support members 3a. 3.
- the stirring member 2 has the helical rotor blades 2c
- the rotation of the rotor blades 2c forms a helical vortex more effectively. It becomes easier to form a circulation flow in which the raw material components circulate from the top to the bottom through the center of the container part 4 from the top to the bottom.
- the number of turns of the spiral is not particularly limited, and is preferably 1 to 10 turns.
- the spiral of the strip-shaped rotor blade 2c shown in FIG. 2 has 1.25 turns.
- the total length of the spiral is preferably 1 to 50 m, more preferably 1.1 to 30 m, even more preferably 1.2 to 15 m.
- the starting radius of the spiral (for example, 1/2 of the length of the support 2b1 ) is 25-49.5% of the diameter d1 of the first opening.
- the end point radius of the spiral (for example, half the length of the support member 2b7 ) is preferably 25-49.5% of the diameter d1 of the second opening OP2.
- Examples of the cross-sectional shape 2d of the belt-like rotor blade 2c include a thin plate, a (substantially) circular body, a (substantially) elliptical shape, and a polygonal shape such as a triangle.
- the rotation of the strip-shaped rotor blade 2c having a three-dimensional structure agitates the raw material components in the container 4 more efficiently in the vertical direction.
- the gap between the outer end surface of the rotor blade 2c and the inner peripheral wall of the container portion 4 is preferably set to a range of 1 to 50%, preferably 1 to 10%, of the diameter d1 of the first opening OP1.
- the rotating shaft 2a is composed of two rod-shaped bodies having different thicknesses, but the rotating shaft 2a may be a rod-shaped body having the same thickness or a tapered rod-shaped body. Furthermore, in FIG.
- the support members (2b 1 , 2b 2 , 2b 3 , 2b 4 , 2b 5 , 2b 6 , 2b 7 ) are configured so that the major axis direction of the support member is outside the radial direction around the rotation axis 2a.
- the start point radius, end point radius, number of turns or total length of the spiral drawn by the belt-shaped rotor blade 2c for example, the start point radius, end point radius, number of turns of the spiral described above
- the method of attaching the supporting members (for example, 2b 1 to 2b 7 , 3b, etc.) to the rotating shaft 2a is not particularly limited as long as the supporting members are firmly fixed to the rotating shaft 2a.
- FIG. 2 shows an example in which a support member 3a and a pair of deflection plates 3 are attached radially outwardly of the rotating shaft 2a. And these mounting methods can be changed as appropriate.
- FIG. 3 is a perspective view of essential parts showing another embodiment of the stirring member 2.
- the stirring member 2 in FIG. 3 includes a rotary shaft 2a connected and fixed to the central portion of the top plate T, and a plurality of support members (2b 1 , 2b 2 , 2b 3 , 2b 4 , 2b 5 ) attached to the rotary shaft 2a. , 2b 6 , 2b 7 ) and one belt-like rotor 2c fixed to a plurality of support members (2b 1 , 2b 2 , 2b 3 , 2b 4 , 2b 5 , 2b 6 , 2b 7 ), I have.
- the single strip-shaped rotary blade 2c is a continuous spiral blade in which the strip draws a spiral shape around the rotary shaft 2a.
- the main difference between the stirring member 2 shown in FIG . 3 and the stirring member 2 shown in FIG . is the number of strip-shaped rotor blades 2c fixed to the . More specifically, in the stirring member 2 shown in FIG. 2, two belt-like bodies are spirally wound around the rotating shaft 2a so as to taper toward the second opening side as the rotor blades 2c. is. On the other hand, in the stirring member 2 shown in FIG. 3, a belt-like body as the rotor blade 2c is spirally wound around the rotating shaft 2a so as to taper toward the second opening side.
- the number of strips forming the spiral is not particularly limited, and is preferably 1 to 10, for example.
- the rotation of the rotor blades 2c forms a helical vortex more effectively. It becomes easier to form a circulation flow in which the raw material components circulate from the top to the bottom through the center of the container part 4 from the top to the bottom.
- FIG. 1 When the raw material components including the raw PAS resin are blended from the inlet 10 into the space V in the tapered container portion 4, and the stirring member 2 equipped with the double-helical rotor blades rotates around the rotating shaft 2a, As indicated by the arrow in FIG. 1, the raw material PAS resin is distributed along the inner wall of the container 4 from the bottom to the upper part of the container 4, and further from the upper part of the inner wall of the container 4 toward the center of the container 4 (rotating shaft 2a side).
- the stirring mechanism of the reforming apparatus 1 can form a circulating flow in which the raw material components containing move, and furthermore, the raw material components circulate from the upper part of the center part of the container part 4 to the bottom part of the container part 4 .
- a predetermined amount of reforming gas (g s ) is supplied into the container 4 from the gas supply port 8, and if necessary, the gas (g d ) in the container 4 is discharged through the gas discharge port 9.
- the inside of the container part 4 is controlled to have a predetermined amount of reforming gas (g S ) atmosphere, and the raw material components including the raw material PAS resin are circulated by the circulation flow.
- the modified PAS resin is produced by heating the raw material components containing the raw PAS resin for a predetermined time below the melting point Tm of the raw PAS resin (for example, 100 to 280° C.) using the temperature control jacket 5. do. Thereafter, as shown in FIG. 4, the openable and closable lid portion 11 is opened, and the modified PAS resin, which is the product P, can be recovered. Also, for example, as shown in FIG. A vacuum pump 13 fluidly connected to the gas outlet 9 may be used to reduce the pressure in the container 4 and supply the reforming gas (g S ) from the gas supply port 8 . Furthermore, the amount of the reforming gas (g S ) supplied into the container portion 4 per minute is controlled within the range of 0.1 to 100% by volume of the volume of the container portion 4 .
- a rotary motor (not shown) may be attached on the top plate T as a power for rotating the stirring member 2 of the stirring mechanism.
- the rotary motor is started, for example, rotation of the top plate T itself in FIG.
- the rotor blades attached to the shaft 2a (for example, the spiral rotor blades 2c in FIG. 2) also rotate to more effectively form a spiral vortex.
- the screw rotation speed of the rotor blade is preferably 10 to 100 rpm, more preferably 20 to 90 rpm.
- the method of introducing the raw material components including the raw material PAS resin into the container portion 4 of the reforming apparatus 1 is not particularly limited, but may be carried out by a constant feeder such as a rotary feeder or a vibrating feeder. Moreover, the raw material components including the raw material PAS resin may be supplied as they are. The above is the description of the reforming treatment apparatus 1 of the present embodiment. The raw material components including the raw material PAS resin, the reforming gas (g s ) and gas (g d ), the heat treatment step, and the gas supply control step will be described below.
- the melt viscosity at 300° C. is preferably in the range of 1 Pa s or more, more preferably 3 Pa s or more. range, more preferably 5 Pa s or more, preferably 9000 Pa s or less, more preferably 7000 Pa s or less, still more preferably 4000 Pa s or less, 1000 Pa s or less Certain PAS resins are mentioned.
- the peak molecular weight (M top ) is preferably in the range of 10,000 or more, more preferably in the range of 15,000 or more, and still more preferably in the peak molecular weight (M top ) of 15,000 or more.
- M top ) is in the range of 20000 or more and 150000 or less, more preferably the peak molecular weight (M top ) is in the range of 100000 or less, more preferably the peak molecular weight (M top ) is in the range of 90000 or less. mentioned.
- the concentration of low molecular weight impurities is preferably 1% by mass or more and 5% by mass or less, and more preferably the concentration of low molecular weight impurities is 1% by mass or more and 4% by mass or less. and more preferably a PAS resin having a low-molecular-weight impurity concentration of 1% by mass or more and 3% by mass or less.
- powder of the raw material PAS resin which is commercially available or obtained by the polymerization process described later, or agglomerated particles obtained by further compressing and pulverizing the powder can be used. .
- Pellet-like material obtained by melt-kneading powder or agglomerated particles of raw PAS resin can also be used.
- the use of raw material PAS resin powder, agglomerated particles, or a mixture thereof as a raw material in particular maintains good heat conduction to the raw material PAS resin, and improves compatibility with the reforming gas (g S ). It is preferable from the viewpoint of widening the contact area.
- the reforming gas (g S ) is oxygen or a gas containing 1% by volume or more of oxygen
- the use of a raw material PAS resin in the form of powder or agglomerated particles expands the contact area with oxygen and causes oxidation.
- the cross-linking reaction can be performed uniformly.
- agglomerated particles are used alone as the raw material PAS resin, or when the presence ratio of agglomerated particles in the mixture is high, a large amount of the raw material PAS resin can be introduced into the container portion, and a long residence time can be secured. In addition, clogging of the bag filter and reduction in yield due to scattering of powder can be prevented.
- the content of the agglomerated particles or the mixture that passes through a test sieve with an opening of 0.3 mm according to Japanese Industrial Standard Z 8801 is preferably 50% by mass or less, particularly preferably 30% by mass. % or less.
- the "raw material component containing the raw material PAS resin” means that the content of the raw material PAS resin is 50% by mass or more with respect to the total amount (100 mass) of the raw material components blended in the reforming apparatus 1. , preferably 60% by mass or more and 100% by mass or less.
- Production Methods 1 to 4 Representative examples of the polymerization process applicable to the present embodiment include, for example, Production Methods 1 to 4 below.
- Method of self-condensing by adding other copolymerization components (manufacturing method 4): A diiodo aromatic compound and elemental sulfur are combined in the presence of a polymerization inhibitor that may have a functional group such as a carboxy group or an amino group. , method of melt polymerization while reducing pressure Of the above production methods 1 to 4, the above (production method 2) method is versatile and preferred. During the reaction, an alkali metal salt of carboxylic acid or sulfonic acid, or an alkali hydroxide may be added in order to adjust the degree of polymerization.
- a hydrous sulfidation agent is introduced into a mixture containing a heated organic polar solvent and a dihalogeno aromatic compound at such a rate that water can be removed from the reaction mixture, and dihalogeno is produced in the organic polar solvent.
- a method for producing a raw material PAS resin by controlling the range of (see JP-A-07-228699), and a dihalogeno aromatic compound and necessary in the presence of a solid alkali metal sulfide and an aprotic polar organic solvent If so, a polyhalogeno aromatic compound or other copolymerization components are added, and an alkali metal hydrosulfide and an organic acid alkali metal salt are added in an amount of 0.01 to 0.9 mol of an organic acid alkali metal per 1 mol of the sulfur source.
- Particularly preferred is the one obtained by a method of reacting while controlling the amount of water in the salt and reaction system in the range of 0.02 mol or less per 1 mol of the aprotic polar organic solvent (see WO2010/058713 pamphlet). .
- a reaction mixture containing a PAS resin obtained by reacting at least one polyhalogenoaromatic compound and at least one sulfidating agent in an organic solvent under appropriate polymerization conditions (A process for obtaining a slurry) will be described as an example.
- the polyhalogenoaromatic compound in the present embodiment is a halogenated aromatic compound having two or more halogen atoms directly bonded to an aromatic ring. called a compound.
- the dihalogenoaromatic compounds include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4,4 '-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p,p' -dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4'-dihalodiphenyl sulfone, 4,4'
- dihalogeno aromatic compounds may be used alone or in combination of two or more.
- Polyhalogeno aromatic compounds other than dihalogeno aromatic compounds include 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1,2,3,5- tetrahalobenzene, 1,2,4,5-tetrahalobenzene, 1,4,6-trihalonaphthalene and the like. Moreover, you may block-copolymerize these compounds.
- dihalogenated benzenes preferred are those containing 80 mol % or more of p-dichlorobenzene.
- the polyhalogeno aromatic compounds described above may be used alone or in combination of two or more.
- the halogen atoms contained in each halogenoaromatic compound are preferably chlorine atoms and/or bromine atoms.
- a polyhalogeno aromatic compound having 3 or more halogen substituents in one molecule may be used as a branching agent, if desired.
- examples of such polyhalogenoaromatic compounds include 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, 1,4,6-trichloronaphthalene and the like.
- polyhalogeno aromatic compounds having functional groups with active hydrogen such as amino groups, thiol groups, hydroxyl groups, etc.
- 2,6-dichloroaniline and 2,5-dichloroaniline 2,4-dichloroaniline, 2,3-dichloroaniline and other dihaloanilines
- 2,3,4-trichloroaniline, 2,3,5-trichloroaniline, 2,4,6-trichloroaniline 3, trihaloanilines such as 4,5-trichloroaniline
- dihaloaminodiphenyl ethers such as 2,2'-diamino-4,4'-dichlorodiphenyl ether and 2,4'-diamino-2',4-dichlorodiphenyl ether and compounds in which an amino group is replaced with a thiol group or a hydroxyl group in a mixture thereof.
- active hydrogen-containing polyhalogens in which the hydrogen atoms bonded to the carbon atoms forming the aromatic ring in these active hydrogen-containing polyhalogeno aromatic compounds are substituted with other inert groups, for example, hydrocarbon groups such as alkyl groups.
- Aromatic compounds can also be used.
- active hydrogen-containing polyhaloaromatic compounds preferred are active hydrogen-containing dihalogenoaromatic compounds, and particularly preferred is dichloroaniline.
- polyhalogenoaromatic compounds having a nitro group examples include mono- or dihalonitrobenzenes such as 2,4-dinitrochlorobenzene and 2,5-dichloronitrobenzene; 2-nitro-4,4'-dichlorodiphenyl ether and the like. dihalonitrodiphenyl ethers; 3,3′-dinitro-4,4′-dichlorodiphenyl sulfones such as dihalonitrodiphenyl sulfones; 2,5-dichloro-3-nitropyridine, 2-chloro-3,5 - mono- or dihalonitropyridines such as dinitropyridine; or various dihalonitronaphthalenes.
- the raw PAS resin must be dissolved in an organic solvent, so the organic solvent used must be able to dissolve the PAS resin under certain conditions.
- the conditions for dissolving the starting material PAS resin may be room temperature or heating, but currently known solvents require heating to a certain temperature in order to dissolve the PAS resin having a molecular weight above a certain level.
- Organic solvents capable of dissolving the PAS resin include N-methyl-2-pyrrolidone, formamide, acetamide, N-methylformamide, N,N-dimethylacetamide, 2-pyrrolidone, N-methyl- ⁇ -caprolactam, ⁇ -caprolactam, hexamethylphosphoramide, tetramethylurea, N-dimethylpropyleneurea, amidourea of 1,3-dimethyl-2-imidazolidinoic acid and lactams; sulfolanes such as sulfolane, dimethylsulfolane; benzonitrile ketones such as methylphenylketone; other solvents such as polyethylene dialkyl ether, 1-chloronaphthalene, diphenyl sulfide and the like.
- Alkali metal sulfides used in this embodiment include lithium sulfide, sodium sulfide, rubidium sulfide, cesium sulfide, and mixtures thereof. Such alkali metal sulfides can be used as hydrates or as aqueous mixtures or as anhydrates. Alkali metal sulfides can also be derived from the reaction between alkali metal hydrosulfides and alkali metal hydroxides. A small amount of alkali metal hydroxide may be added to react with alkali metal hydrosulfide and alkali metal thiosulfate, which are usually present in trace amounts in alkali metal sulfide.
- the polymerization reaction of the PAS resin is carried out by reacting the above alkali metal sulfide or alkali metal hydrosulfide and alkali metal hydroxide, which are called so-called sulfidating agents, with the polyhalogenoaromatic compound in the presence of these organic polar solvents. .
- the polymerization temperature of the raw material PAS resin in the present embodiment should be in the range of 200 to 330° C.
- the pressure should be such that the polyhalogenoaromatic compound, which is the polymerization solvent and the polymerization monomer, is substantially kept in the liquid layer, It is generally selected from the range of 0.1 to 20 MPa, preferably from the range of 0.1 to 2 MPa.
- the reaction time varies depending on the temperature and pressure, it is generally in the range of 10 minutes to 72 hours, preferably 1 hour to 48 hours.
- the reaction mixture containing the raw material PAS resin obtained by the polymerization step is subjected to an appropriate means (a vacuum distillation method, a centrifugal separation method, a screw decanter method, a vacuum filtration method, a heating method, etc.) in the purification treatment described below.
- an appropriate means a vacuum distillation method, a centrifugal separation method, a screw decanter method, a vacuum filtration method, a heating method, etc.
- a suitable method such as pressure filtration can be selected) to separate and remove the organic solvent, after which the crude PAS resin can be recovered.
- a reaction mixture containing a raw material PAS resin obtained by reacting at least one polyhalogenoaromatic compound with at least one alkali metal sulfide as a sulfidating agent in an organic solvent It is preferable to be a step of obtaining a slurry). Therefore, in the polymerization step, the organic solvent, the polyhalogeno aromatic compound, and the alkali metal sulfide, which are added as raw materials, only need to be brought into contact to allow the polymerization reaction to proceed. At least one selected from the group consisting of group compounds and the alkali metal sulfides may not be added in an amount necessary for the polymerization reaction from the charging stage.
- At least one selected from the group consisting of the organic solvent, the polyhalogenoaromatic compound, and the alkali metal sulfide is continuously added until the polymerization reaction is completed, in order to make the amount of raw materials charged necessary for the polymerization reaction. It may be reacted while being added gradually or intermittently.
- a purification treatment for purifying the raw material PAS resin obtained from the polymerization step may be performed.
- the purification treatment in this embodiment is not particularly limited, and a known purification treatment can be applied according to the chemical structure of the raw material PAS resin, which is the target product.
- the purification treatment of the raw material PAS resin (reaction mixture containing the PAS resin) obtained by the polymerization step is not particularly limited, but examples thereof include the following purification treatments 1 to 5.
- Purification process 1 After the completion of the polymerization reaction, the reaction mixture (slurry) is used as it is, or after adding an acid or base, the solvent is distilled off under reduced pressure or normal pressure, and then the solid after solvent distillation (crude PAS resin) is washed once or twice with a washing solvent such as water, a reaction solvent (or an organic solvent having an equivalent solubility for the low-molecular-weight polymer), acetone, methyl ethyl ketone, or alcohols, and then neutralized, washed with water, a method of filtering and drying;
- Purification process 2 After the polymerization reaction is completed, the reaction mixture (slurry) is added with solvents such as water, acetone, methyl ethyl ketone, alcohols, ethers, halogenated hydrocarbons, aromatic hydrocarbons, and aliphatic hydrocarbons (organic A solvent that is soluble in the solvent and is a poor solvent for at least the PAS resin) is added as a precipitant to precipit
- Purification process 3 After completion of the polymerization reaction, the reaction mixture (slurry) was added with a reaction solvent (or an organic solvent having an equivalent solubility to the low-molecular-weight polymer) and stirred, followed by filtration to remove the low-molecular-weight polymer. a method of washing the solid (crude PAS resin) with a washing solvent such as water, acetone, methyl ethyl ketone or alcohols once or twice or more, followed by neutralization, washing with water, filtration and drying; Purification process 4: After completion of the polymerization reaction, water is added as a washing solvent to the reaction mixture (slurry) and washed with water. A method of acid-treating with an acid and drying.
- a reaction solvent or an organic solvent having an equivalent solubility to the low-molecular-weight polymer
- Purification process 5 After the completion of the polymerization reaction, the solid (crude PAS resin) obtained by filtering the reaction mixture (slurry) is washed with a solvent if necessary. washing with a reaction solvent once or twice or more, washing with water, filtering and drying, and the like.
- the raw PAS resin may be dried in a vacuum, or in air or in an atmosphere of an inert gas such as nitrogen. good.
- the purification treatment in the present embodiment involves adding a washing solution to the reaction mixture (slurry) containing the raw material PAS resin obtained in the polymerization step or the crude PAS resin, which is the solid content of the reaction mixture (slurry), and washing and filtering. and drying.
- each of the washing treatment in which the washing solvent is added, the filtration treatment and the drying treatment can be optionally performed at least once or more than once.
- the term "crude PAS resin" as used herein refers to a solid content obtained by subjecting the reaction mixture (slurry) containing the raw material PAS resin obtained in the polymerization step to solid-liquid separation one or more times.
- the reforming gas (g S ) in the present embodiment is a general term for gases used for reforming the raw material PAS resin, and the reforming gas itself does not need to directly reform the raw material PAS resin.
- the reforming gas (g S ) atmosphere in the present embodiment means that one volume of the reforming gas (g S ) is contained in the entire volume (100% by volume) of the atmosphere containing the reforming gas (g S ). % or more.
- the reforming gas (g S ) in the present embodiment is preferably at least one selected from the group consisting of oxygen, an oxygen-containing gas, and an inert gas.
- the oxygen-containing gas is preferably a gas (for example, air) containing 1% by volume or more of oxygen in the entire reforming gas (g S ) (100% by volume).
- the reforming gas (g S ) in the present embodiment is oxygen or a gas containing 1% by volume or more of oxygen (for example, air)
- the inside of the container can be easily made into a gas-phase oxidizing atmosphere.
- the atmosphere contains 1% by volume or more of oxygen with respect to the entire volume of the reforming gas (g S ) atmosphere, the oxidative cross-linking reaction of the raw material PAS resin will easily proceed as a vapor-phase oxidizing atmosphere. .
- the term "vapor-phase oxidizing atmosphere” refers to a mixed gas atmosphere containing oxygen, in which oxygen accounts for 1% by volume or more of the total volume of the mixed gas (100% by volume).
- the reforming gas (g S ) is oxygen or a gas containing oxygen
- the inert gas refers to a stable gas typified by rare gas elements or nitrogen that is unlikely to cause chemical reactions, for example, at least one selected from the group consisting of nitrogen, helium, and argon. is preferred.
- the inert gas may be a mixed inert gas in which two or more inert gases are mixed.
- the reforming gas (g S ) in the present embodiment is an inert gas
- the inside of the container can be easily made into an inert gas atmosphere.
- the concentration of low-molecular-weight impurities can be reduced by selecting an inert gas as the reforming gas (g S ). .
- the "inert gas atmosphere” in this specification is a mixed gas atmosphere containing an inert gas, and the inert gas is 99% by volume or more with respect to the total volume (100% by volume) of the mixed gas.
- the atmosphere that occupies when the reforming gas (g S ) is an inert gas, it is particularly preferable to make the inside of the container part an inert gas atmosphere. This makes it easier to reduce the concentration of low-molecular-weight impurities.
- a known method can be adopted as a method for measuring the reforming gas (g S ) concentration. For example, it can be carried out with a detector such as various sensors, gas chromatography, gas detection tube, etc., using a predetermined container or gas suction pump.
- the method for producing the modified PAS resin in this embodiment has a heat treatment step.
- a reforming gas (g S ) is supplied into a container provided in a reforming apparatus and a gas (g d ) in the container is discharged to the outside of the container,
- This is a step of heating the raw material components containing the raw material PAS resin by a heating means to a temperature lower than the melting point Tm of the PAS resin while circulating the raw material components containing the raw material PAS resin put into the container in a circulating flow.
- the inside of the container portion is placed under the reforming gas (g S ) atmosphere (for example, under a vapor-phase oxidizing atmosphere or under an inert gas atmosphere).
- the raw material is A raw material component containing a PAS resin is heated below the melting point Tm of the PAS resin.
- the raw material PAS resin While the raw material components including the raw material PAS resin are circulated by the convective circulating flow in the container, the raw material PAS resin is heated to a predetermined temperature in the reforming gas (g S ) atmosphere, thereby promoting the modification of the raw material PAS resin.
- the reforming gas (g S ) atmosphere While the raw material components including the raw material PAS resin are circulated by the convective circulating flow in the container, the raw material PAS resin is heated to a predetermined temperature in the reforming gas (g S ) atmosphere, thereby promoting the modification of the raw material PAS resin.
- the reforming gas (g S ) when oxygen or a gas containing 1% by volume or more of oxygen is used as the reforming gas (g S ), it is heated to a predetermined temperature in a gas-phase oxidizing atmosphere, so that oxidation and cross-linking can be performed uniformly. The reaction proceeds more easily, and the reaction time of the raw material components including the raw material PAS resin is shortened.
- an inert gas when used as the reforming gas (g S ), it is heated to a predetermined temperature in an inert gas atmosphere, so low-molecular-weight impurities can be reduced.
- the reforming gas (g S ) can be appropriately selected according to the intended use of the resulting modified PAS resin.
- the time for heating the raw material components including the raw material PAS resin to below the melting point Tm of the PAS resin by the heating means is preferably 1 to 100 hours, more preferably 1 to 50 hours. , more preferably 1 to 10 hours.
- the temperature of the raw material components introduced into the container is preferably controlled within the range of 100 to 280°C, more preferably within the range of 150 to 280°C. Heating the raw material components including the raw material PAS resin to the above range is preferable from the viewpoint of shortening the treatment time.
- a temperature control jacket is used to supply the heat medium or refrigerant into the inlet or outlet of the heat medium or refrigerant. Temperature control is performed by injecting and discharging and circulating the heat medium or refrigerant in the temperature control jacket.
- the method for producing a modified PAS resin in this embodiment has a gas supply control step.
- the gas supply control step the amount of reforming gas (g S ) supplied per minute is controlled within a range of 0.1 to 100% of the volume of the container provided in the reforming apparatus. It is a process to do.
- the gas supply control step supplies the reforming gas (g S ) into the container provided in the reforming apparatus and supplies the gas in the container to the outside of the container in the heat treatment step.
- g d is a step of maintaining the inside of the container under the reforming gas (g S ) atmosphere in conjunction with the operation of discharging g d ).
- the range of 0.1 to 100% of the volume of the container part is 0.1 with respect to the total volume (100% by volume) of the space V described above in the column of “reforming treatment device” and FIG. Refers to the range of up to 100%.
- the gas supply control step may be performed at any timing or period between before the heat treatment step and after the heat treatment step, and the gas supply control step is continued during the heat treatment step. preferably. Thereby, the inside of the container can be kept under the atmosphere of the reforming gas (g S ).
- the amount of reforming gas (g S ) supplied per minute is It is preferable to control within the range of 1 to 50% of the volume of the container provided.
- oxygen or a gas containing oxygen is supplied into the container portion through a supply port provided in the container portion provided in the reforming apparatus, and It is preferable that the oxygen concentration is in the range of 1 to 21%.
- an inert gas is supplied into the container portion through a supply port provided in the container portion provided in the reforming apparatus, and the inert gas concentration at the supply port is 99 to 100%.
- a method for supplying/discharging the reforming gas (g S ) known means can be adopted. For example, by fluidly connecting a pumping device for compressing and supplying the reforming gas (g S ) to the supply port via a pumping tube, the reforming gas (g S ) is fed into the container section. can supply to Further, if a discharge port for discharging the gas (g d ) in the container is provided so as to communicate the inside of the container with the outside, the gas (g d ) is discharged to the outside. Furthermore, if necessary, the gas (g d ) inside the container part 4 (or inside the space V) may be discharged by fluidly connecting a suction device to the discharge port via a tubular body.
- the raw material PAS resin is heated to a temperature below the melting point Tm of the raw material PAS resin in a vapor-phase oxidizing atmosphere using a modification apparatus.
- a method for producing a modified PAS resin by heating a raw material component containing the a heat treatment step of discharging the gas (g d ) in the container portion, and heating the raw material component with a heating means to a temperature lower than the melting point T m while circulating the raw material component introduced into the container portion by a circulating flow; and a gas supply control step of controlling the amount of the oxygen-containing gas supplied per minute within a range of 1 to 50% of the volume of the container.
- the reforming apparatus includes a tapered container portion capable of accommodating raw material components including the raw material PAS resin, and along the inner wall of the container portion, from the bottom portion of the container portion to the top, and further from the top to the above.
- the raw material component containing the raw material PAS resin is obtained by a polymerization step of polymerizing the raw material PAS resin.
- the aggregation of the PAS resins which tend to fuse at high temperatures, is further suppressed, the formation of PAS resin adherents adhered to the inner wall of the container is suppressed and prevented, and contamination is further reduced.
- a modified PAS resin is produced by heating a raw material component including a raw PAS resin to a temperature below the melting point Tm of the PAS resin in an inert gas atmosphere using a modification apparatus.
- an inert gas is supplied into the container mounted in the reforming apparatus, the gas (g d ) in the container is discharged to the outside of the container, and the gas (g d ) is introduced into the container.
- a heat treatment step of heating the raw material components to less than the melting point Tm by a heating means while circulating the raw material components with a circulating flow, and the supply amount of the inert gas per minute is the volume of the container part.
- the reforming apparatus includes a tapered container portion capable of containing the raw material component including the PAS resin, and along the inner wall of the container portion, from the bottom portion of the container portion to the upper portion, and further from the upper portion to the container portion. It has a stirring mechanism that forms a circulation flow in which the raw material components circulate to the bottom through the center side of the part. Furthermore, it is preferable that the raw material component containing the raw material PAS resin is obtained by a polymerization step of polymerizing the raw material PAS resin.
- Modified PAS Resin The modified PAS resin obtained by the production method of the present embodiment can be appropriately blended with various fillers in order to impart properties such as strength, heat resistance, and dimensional stability depending on the application.
- the filler is not particularly limited, but includes fibrous fillers, non-fibrous fillers, and the like.
- fibrous fillers include fibers such as glass fiber, carbon fiber, silane glass fiber, ceramic fiber, aramid fiber, metal fiber, potassium titanate, silicon carbide, calcium sulfate, calcium silicate, and natural fibers such as wollastonite. Fiber etc. can be used.
- non-fibrous fillers examples include barium sulfate, calcium sulfate, clay, pyroferrite, bentonite, sericite, zeolite, mica, mica, talc, attalpalgite, ferrite, calcium silicate, calcium carbonate, and magnesium carbonate. , glass beads, etc. can be used.
- additives during molding processing a small amount of coloring agents, antistatic agents, antioxidants, heat stabilizers, ultraviolet stabilizers, ultraviolet absorbers, foaming agents, flame retardant Retardants, flame retardant aids, rust inhibitors, and mold release agents (metal salts and esters of fatty acids having 18 to 30 carbon atoms including stearic acid and montanic acid, polyolefin waxes such as polyethylene, etc.)
- additives may be included in the modified PAS resin.
- synthetic resins and elastomers such as those described below can also be mixed and used in the same manner.
- These synthetic resins include polyester, polyamide, polyimide, polyetherimide, polycarbonate, polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone, polyetherketone, polyarylate, polyethylene, polypropylene, polytetrafluoroethylene, Polyethylene difluoride, polystyrene, ABS resins, epoxy resins, silicone resins, phenol resins, urethane resins, liquid crystal polymers and the like can be mentioned, and elastomers can include polyolefin rubbers, fluororubbers, silicone rubbers and the like.
- the modified PAS resin obtained by the production method of the present embodiment has heat resistance, moldability, and dimensional stability by various melt processing methods such as injection molding, extrusion molding, compression molding, and blow molding. etc.
- various melt processing methods such as injection molding, extrusion molding, compression molding, and blow molding. etc.
- electrical and electronic parts such as connectors, printed circuit boards, and sealed molded products
- automotive parts such as lamp reflectors and various electrical parts, interior materials for various buildings, aircraft, automobiles, etc.
- OA equipment parts It can be widely used as injection molding/compression molding products such as precision parts such as camera parts and watch parts, or extrusion molding/pultrusion molding such as fibers, films, sheets and pipes.
- the melt viscosity (Pa s) of the modified PAS resin in the present embodiment is preferably 2 or more, more preferably 3 or more, still more preferably 5 or more, preferably 10000 or less, and more preferably 8000 or less. , 5000 or less.
- the modified PAS resin in the present embodiment has a peak molecular weight (M top ) of preferably 15,000 or more, more preferably 20,000 or more, even more preferably 30,000 or more, and preferably 170,000 or less, more preferably 150,000 or less, 100,000 or less is more preferable.
- the content of low molecular weight impurities in the modified PAS resin in the present embodiment is preferably 0.9% by mass or less with respect to the total amount (100% by mass) of the modified PAS resin, It is more preferably 0.7% by mass or less, and even more preferably 0.5% by mass or less.
- a preferred range for each physical property of the modified PAS resin can be any combination of the above upper limit and the above lower limit.
- Example 1 30 kg of a raw material PPS resin having a melt viscosity (V6) of 22 Pa ⁇ s was passed through a reforming apparatus 1 ( (Also referred to as apparatus A.). Next, air is introduced from the gas supply port 8 attached to the bottom of the reforming device 1 at a flow rate of 2 L/min (4%/min of the effective capacity of the reforming device 1), and the gas at the top is While performing a gas supply control step of exhausting air from the discharge port 9, the inside temperature of the container part 4 is raised to 250 ° C. in 3 hours using the temperature control jacket 5 that can be filled with a heat medium. Stirring was continued at temperature for an additional 7 hours.
- the rotational speed of the rotary blade which is the stirring member 2
- the lid portion 11 was opened without lowering the internal temperature from 250° C., and the modified PPS resin after the heat treatment was recovered.
- the yield of the modified PPS resin after heat treatment was 29.5 kg (yield: 98.3%), and adherence of PPS resin deposits between the inner wall of the container part 4 and the rotor blade was observed. I didn't.
- the modified PPS resin after heat treatment had a yellowish brown color, a melt viscosity (V6) of 152 Pa s, and a concentration of low-molecular-weight impurities (amount of gas generated during melting) of 0.28% by mass. .
- the modified PPS resin has a peak molecular weight (M top ) of 33,000, which is 10% or more higher than the peak molecular weight (M top ) of the raw material PPS resin before modification (M top ) of 25,000. confirmed.
- the concentration of low-molecular-weight impurities in the raw material PPS resin (the amount of gas generated during melting) before the gas supply control step and the heat treatment was performed was 1.0% by mass.
- the formation of PPS resin deposits in the container portion 4 could not be confirmed.
- Example 2 It was carried out in the same manner as in Example 1, except that the internal temperature of the container part 4 was raised to 230° C. over 2 hours, and the stirring was continued at that temperature for 21 hours.
- the yield was 29.7 kg (yield 99.0%), and adhesion of PPS resin deposits between the inner wall of the container part 4 and the rotor blades was not observed.
- the melt viscosity (V6) of the modified PPS resin after heat treatment was 155 Pa ⁇ s, and the concentration of low-molecular-weight impurities (the amount of gas generated during melting) was 0.29% by mass.
- Example 2 the concentration of low-molecular-weight impurities (the amount of gas generated during melting) in the raw PPS resin before the gas supply control step and the heat treatment was 1.0% by mass.
- the modified PPS resin had a peak molecular weight (M top ) of 33,000, and compared with the peak molecular weight (M top ) of the raw material PPS resin before modification of 25,000, the amount of change in the peak molecular weight (M top ) was was confirmed to increase by 10% or more.
- the formation of the PPS resin adhered matter could not be confirmed in the container portion 4 after the modification treatment.
- Example 3 Air is introduced from the gas supply port 8 formed at the bottom of the reforming apparatus 1 at a flow rate of 20 L/min (40%/min of the internal volume of the container), and the internal temperature reaches 250°C using a heat medium. The procedure was carried out in the same manner as in Example 1, except that the temperature was raised in 3 hours to 3 hours, and the stirring was continued at this temperature for 5 hours. The yield was 29.7 kg (yield 98.9%), and adhesion of PPS resin deposits between the inner wall of the container part 4 and the rotor blades was not observed.
- the melt viscosity (V6) of the modified PPS resin after heat treatment was 170 Pa ⁇ s, and the concentration of low-molecular-weight impurities (the amount of gas generated during melting) was 0.26% by mass.
- the concentration of low-molecular-weight impurities (the amount of gas generated during melting) in the raw material PPS resin before the gas supply control step and the heat treatment was 1.0% by mass.
- the modified PPS resin had a peak molecular weight (M top ) of 34,000, and compared to the peak molecular weight (M top ) of the raw material PPS resin before modification of 25,000, the amount of change in the peak molecular weight (M top ) was was confirmed to increase by 10% or more.
- the formation of the PPS resin adhered matter could not be confirmed in the container portion 4 after the modification treatment.
- Example 4 Nitrogen as an inert gas is introduced at a flow rate of 2 L/min (4%/min of the internal volume of the container) from the gas supply port 8 formed at the bottom of the reforming apparatus 1, and the internal temperature is increased using a heat medium. The procedure was carried out in the same manner as in Example 1, except that the temperature was raised to 250° C. over 3 hours, and stirring was continued at that temperature for 7 hours. The yield was 29.55 kg (yield 98.5%), and adhesion of PPS resin deposits between the inner wall of the container part 4 and the rotor was not observed.
- the modified PPS resin after heat treatment was grayish white, had a melt viscosity (V6) of 41 Pa ⁇ s, and had a concentration of low-molecular-weight impurities (amount of gas generated during melting) of 0.27% by mass.
- the concentration of low-molecular-weight impurities in the raw material PPS resin (the amount of gas generated during melting) before the gas supply control step and the heat treatment was performed was 1.0% by mass.
- the modified PPS resin has a peak molecular weight (M top ) of 28,000 , which is the peak molecular weight (M top ) of the raw material PPS resin before modification, which is 25,000. was confirmed to increase by 10% or more.
- the formation of the PPS resin adhered matter could not be confirmed in the container portion 4 after the modification treatment.
- Example 1 60 kg of the same PPS resin (melt viscosity (V6) 22 Pa s) as in Example 1 was placed in the apparatus described in Japanese Patent Application Laid-Open No. 7-242746, that is, an effective capacity equipped with a gas introduction device and a heat medium circulation jacket. A 100 L conical screw mixing type heating device (described in FIG. 1 of JP-A-7-242746: also referred to as device B) was charged. Next, air is introduced into the container at a flow rate of 16 L / min (16% / min of the internal volume of the container), and the internal temperature is raised to 250 ° C. using a heat medium in 4 hours. Hold for 7 hours.
- the rotational speed of the agitator was 1 rpm for the screw revolution axis and 36 rpm for the rotation axis. Thereafter, the lid of the container was opened without lowering the internal temperature from 250° C. to obtain a PPS resin product after the reaction.
- the yield was 46.8 kg (78% yield), and adherence of PPS resin deposits to the inner wall of the processing vessel was observed.
- the melt viscosity (V6) of the PPS resin after heat treatment was 152 Pa ⁇ s, and the amount of gas generated during melting was 0.55% by mass.
- the conical screw mixing type heating apparatus (apparatus B) used in Comparative Example 1 was arranged along the inner wall of the container from the bottom to the top of the container, and further from the top to the center of the container. No circulation flow was formed in which raw material components circulated to the bottom.
- Example 2 15 kg of the same PPS resin (melt viscosity (V6) 22 Pa s) as in Example 1 was added to the apparatus described in JP-A-62-205127, that is, the full capacity equipped with a gas introduction device and a heat medium circulation jacket. was charged in a 50 L vessel rotating double cone heating device (described in FIG. 1 of Japanese Patent Application Laid-Open No. 205127/1987: also referred to as device C). Next, the rotation of the container is started at a rotation speed of 3 rpm, air is introduced into the container at a flow rate of 2 L/min (4%/min of the internal volume of the container), and the internal temperature reaches 250°C using a heat medium.
- a 50 L vessel rotating double cone heating device described in FIG. 1 of Japanese Patent Application Laid-Open No. 205127/1987: also referred to as device C.
- the rotation of the container is started at a rotation speed of 3 rpm, air is introduced into the container at a flow rate of 2 L/min (
- the temperature was raised to 5 hours and held at that temperature for an additional 8 hours.
- the lid of the container was opened without lowering the internal temperature from 250° C.
- the PPS resin adhered to the lid, and no PPS resin was obtained. Adherence of PPS resin deposits was also observed on the inner wall of the processing vessel.
- the melt viscosity (V6) of the PPS resin after heat treatment was 154 Pa ⁇ s, and the amount of gas generated during melting was 0.54% by mass.
- the conical screw mixing type heating apparatus (apparatus C) used in Comparative Example 1 was arranged along the inner wall of the container from the bottom to the top of the container, and further from the top to the center of the container. No circulation flow was formed in which raw material components circulated to the bottom.
- Example 3 60 kg of the same PPS resin (melt viscosity (V6) 22 Pa s) as in Example 1 was placed in the apparatus described in Japanese Patent Application Laid-Open No. 7-242746, that is, an effective capacity equipped with a gas introduction device and a heat medium circulation jacket.
- a 100 L conical screw mixing type heating device (described in FIG. 1 of JP-A-7-242746: also referred to as device B) was charged.
- nitrogen as an inert gas is introduced into the container at a flow rate of 16 L/min (16%/min of the internal volume of the container), and the internal temperature is raised to 250 ° C. using a heat medium in 4 hours, It was held at that temperature for an additional 7 hours.
- the rotational speed of the agitator was 1 rpm for the screw revolution axis and 36 rpm for the rotation axis. Thereafter, the lid of the container was opened without lowering the internal temperature from 250° C. to obtain a PPS resin product after the reaction.
- the yield was 47.4 kg (79% yield), and adherence of PPS resin deposits to the inner wall of the processing vessel was observed.
- the melt viscosity (V6) of the PPS resin after heat treatment was 41 Pa ⁇ s, and the amount of gas generated during melting was 0.54% by mass.
- the conical screw mixing type heating apparatus (apparatus B) used in Comparative Example 3 was arranged along the inner wall of the container from the bottom to the top of the container, and further from the top to the center of the container. No circulation flow was formed in which raw material components circulated to the bottom.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Provided is a method for producing a polyarylene sulfide (PAS) resin with which the formation of a PAS resin adhered substance that adheres to the inner wall of a container is suppressed and prevented while suppressing the aggregation of PAS resins, and contamination is reduced. More specifically, a method for producing a PAS resin, in which a raw material component containing a PAS resin is modified by heating the raw material component at a temperature below the melting point Tm of the PAS resin in an atmosphere of a modifying gas by means of a modifying apparatus provided with a container part capable of containing the raw material component and a stirring mechanism for forming a circulation flow, comprises: a heat-treatment step for supplying the modifying gas into the container part, discharging the gas in the container part to the outside of the container part, and heating the raw material component at a temperature below the melting point Tm by using a heating means while circulating the raw material component fed into the container part by the circulating flow; and a gas supply control step for controlling the supply amount of the modifying gas per minute within the range of 0.1-100% of the volume of the container part.
Description
本開示は、改質化されたポリアリーレンスルフィド樹脂の製造方法に関する。
The present disclosure relates to a method for producing a modified polyarylene sulfide resin.
ポリフェニレンスルフィド樹脂(以下、これを「PPS樹脂」と略記する。)に代表されるポリアリーレンスルフィド樹脂(以下、これを「PAS樹脂」とも略記する。)は、耐熱性及び耐薬品性等に優れることから、電気電子部品、自動車部品、水回り部品、繊維、フィルム用途等に幅広く利用されている。そのため、PAS樹脂を様々な用途に使用する目的で、架橋型PAS樹脂(又は高分子量化PAS樹脂とも称する。)、直鎖型PAS樹脂又は半架橋型PAS樹脂に大別される各タイプのPAS樹脂の製造方法では、高分子量化、高粘度化、あるいは高純度化といったPAS樹脂を改質する方法が種々検討されている。例えば、主に射出成形用途に使用される架橋型PAS樹脂を製造する方法としては、有機極性溶媒の存在下で、スルフィド化剤と、ポリハロゲノ芳香族化合物とを反応させて得られた粗PASを、水洗により副生した塩を除去した後、酸化架橋する方法が採用されている。
Polyarylene sulfide resins (hereinafter also abbreviated as "PAS resins") typified by polyphenylene sulfide resins (hereinafter abbreviated as "PPS resins") are excellent in heat resistance, chemical resistance, etc. Therefore, it is widely used for electrical and electronic parts, automobile parts, plumbing parts, fibers, films, and the like. Therefore, for the purpose of using PAS resin for various purposes, each type of PAS, which is roughly classified into crosslinked PAS resin (also referred to as high molecular weight PAS resin), linear PAS resin or semi-crosslinked PAS resin Various methods for modifying the PAS resin, such as increasing the molecular weight, increasing the viscosity, or increasing the purity, have been studied as methods for producing the resin. For example, as a method for producing a crosslinked PAS resin mainly used for injection molding, crude PAS obtained by reacting a sulfidating agent with a polyhalogenoaromatic compound in the presence of an organic polar solvent is prepared. , after removing the by-produced salt by washing with water, a method of oxidative cross-linking is adopted.
一般的に、PAS樹脂を高分子量化する酸化架橋反応には、従来からバッチ方式が主に用いられており、PAS樹脂の高分子量化の技術としては、例えば、特許文献1及び特許文献2の技術が挙げられる。特許文献1には、粒子状のPPS樹脂をその融点以下に加熱して、酸素含有気体を導入する気体導入部及び内部の気体を排出する気体排気部を備えた容器回転型加熱装置を用いたPPS樹脂の硬化方法が開示されている。そして、特許文献1によれば、当該特許文献1に記載の容器回転型加熱装置は撹拌翼を使用しないため、例えば、二重螺旋型撹拌翼付容器固定型加熱混合装置などの撹拌翼を使用する加熱混合装置におけるPPS樹脂粒子の凝集及び付着固化に起因した問題点(硬化むら、収率の低下、付着層の除去)が生じ難いとしている。
In general, a batch system has been mainly used for the oxidative cross-linking reaction for increasing the molecular weight of PAS resin. technology. In Patent Document 1, a container rotation type heating device is used, which is provided with a gas introduction section for introducing oxygen-containing gas and a gas exhaust section for discharging internal gas by heating particulate PPS resin to a temperature below its melting point. A method of curing PPS resin is disclosed. According to Patent Document 1, since the container rotating type heating device described in Patent Document 1 does not use a stirring blade, for example, a stirring blade such as a fixed container heating and mixing device with a double spiral stirring blade is used. It is said that problems (uneven curing, decrease in yield, removal of adhesion layer) caused by agglomeration and adhesion solidification of PPS resin particles in a heating and mixing device are less likely to occur.
一方、特許文献2には、スクリュ混合型加熱装置、円錐形スクリュ混合型加熱装置又は高速回転羽根混合型加熱装置を用いた高分子量PAS樹脂の製造方法が開示されている。そして、特許文献2によれば、当該特許文献2に記載の容器固定型加熱装置を使用し、かつ所定の気体流通を採用することにより、従来の二重螺旋型撹拌翼付容器固定型加熱混合装置あるいは容器回転型加熱装置の問題点を回避しえるとしている。
On the other hand, Patent Document 2 discloses a method for producing a high molecular weight PAS resin using a screw mixing type heating device, a conical screw mixing type heating device, or a high-speed rotating blade mixing type heating device. Then, according to Patent Document 2, by using the fixed container heating device described in Patent Document 2 and adopting a predetermined gas flow, the conventional fixed container heating and mixing with double spiral stirring blades It is said that the problem of the device or container rotating type heating device can be avoided.
しかし、特許文献1の技術は、使用する容器回転型加熱装置の構造的な問題から、伝熱性、原料成分の混合性、又は生成物の回収性(例えば、高温状態の生成物の回収性、生成物の回収速度など)について改善の余地があるだけでなく、酸化架橋されたPAS樹脂の生産性に劣る他、得られるPAS樹脂中の低分子量成分(主に低沸点の揮発性オリゴアリーレンスルフィド)から構成される不純物(以下、低分子量不純物と称する。)の除去が不十分となるものであった。そのため、いずれのタイプのPAS樹脂の製造方法であっても、特許文献1の技術を使用すると、原料成分が均一に分散混合されないため、分子量を制御することが難しくなる。
そして、特許文献2の技術も低分子量不純物の除去が不十分であるだけでなく、特許文献2の技術はいずれも撹拌用の回転羽根を搭載した混合装置を使用するものであるため、撹拌用の回転羽根と容器との摩擦によって金属粉が生じやすく、次工程においてコンタミネーション(金属コンタミネーション、異形樹脂のコンタミネーション)となる問題が発生する。これにより、例えば、直鎖型PAS樹脂の製造に特許文献2の技術を使用すると、その長所である高純度性を担保できなくなり、その結果、直鎖型PAS樹脂の特徴である高温多湿下での低吸湿性の特性が効果的に発揮できなくなる虞が生じる。
また、特許文献2のスクリュ混合型加熱装置のような、スクリュ等の撹拌翼が容器の外周部に沿って公転運動して混合する機構又はすり鉢方式の混合機構を備える装置の場合も、その混合機構の構造上の理由から、容器と撹拌翼との接触によって金属粉が生じやすくなる。
さらには、上記特許文献1又は2のような混合機構を用いてPAS樹脂を製造する場合、混合機構の構造上の理由から、容器の内壁、例えば容器の底面部又は撹拌翼に対して目視可能な大きさのPAS樹脂を含有するPAS樹脂成分が固着(又は付着)しやすくなる。特に、容器の内壁又は撹拌翼に付着したPAS樹脂成分(以下、PAS樹脂固着物と称する。)がさらに凝集したり、あるいは撹拌翼又は撹拌軸等により容器の内壁や容器の蓋に押し付けられたPAS樹脂固着物が強固に当該容器の内壁又は当該容器の底面部に付着すると、PAS樹脂(例えば、PPS樹脂)の特性上、200℃以下の環境で溶解する薬品が存在しないことから、容器の内壁又は容器の底面部に付着したPAS樹脂固着物の除去は困難を極める。
また、形成したPAS樹脂固着物が容器の内壁から剥離して原料又は反応物等の含む内容物に混入すると、得られる生成物又は当該生成物から形成された成形品に黒点が生じ、その結果、製品又は成形品外観の観点から品質上の問題が生じるだけでなく、当該黒点を起点とする欠陥の発生による機械的強度の低下にも影響を及ぼす虞がある。
そこで、本開示は、高温下で融着しやすいPAS樹脂同士の凝集を抑制しつつ、容器の内壁に密着したPAS樹脂固着物の形成を抑制・防止し、かつ低分子量不純物の濃度及びコンタミネーションを低減した、改質化されたPAS樹脂の製造方法を提供することを目的とする。 However, the technique ofPatent Document 1 suffers from structural problems of the container rotating type heating device used, such as heat transferability, mixability of raw material components, or product recovery (for example, recovery of high-temperature products, product recovery rate, etc.), the productivity of the oxidatively crosslinked PAS resin is inferior, and low-molecular-weight components in the obtained PAS resin (mainly low-boiling volatile oligoarylene sulfides ) (hereinafter referred to as low-molecular-weight impurities) was insufficiently removed. Therefore, in any type of PAS resin production method, if the technique of Patent Document 1 is used, the raw material components are not uniformly dispersed and mixed, making it difficult to control the molecular weight.
In addition, the technique ofPatent Document 2 is not only insufficient in removing low-molecular-weight impurities, but the technique of Patent Document 2 uses a mixing device equipped with a rotating blade for stirring. Friction between the rotating blades and the container tends to generate metal powder, which causes a problem of contamination (metal contamination, deformed resin contamination) in the next step. As a result, for example, if the technique of Patent Document 2 is used to produce a linear PAS resin, it will not be possible to ensure the high purity that is its advantage, and as a result, There is a possibility that the low hygroscopic property of the rubber cannot be effectively exhibited.
In addition, in the case of a device equipped with a mechanism or a mortar-type mixing mechanism in which a stirring blade such as a screw revolves along the outer periphery of the container to mix, such as the screw mixing type heating device ofPatent Document 2, the mixing Due to the structure of the mechanism, contact between the container and the impeller tends to produce metal powder.
Furthermore, when a PAS resin is produced using a mixing mechanism as in Patent Document 1 or 2, due to the structure of the mixing mechanism, the inner wall of the container, for example, the bottom part of the container or the stirring blade can be visually observed. A PAS resin component containing a PAS resin of an appropriate size is likely to adhere (or adhere). In particular, the PAS resin component adhering to the inner wall of the container or the stirring blade (hereinafter referred to as PAS resin solid matter) is further aggregated, or pressed against the inner wall of the container or the lid of the container by the stirring blade or stirring shaft. If the PAS resin adheres firmly to the inner wall of the container or the bottom surface of the container, there is no chemical that dissolves in an environment of 200 ° C or less due to the characteristics of PAS resin (for example, PPS resin). It is extremely difficult to remove the PAS resin adhering to the inner wall or the bottom of the container.
In addition, when the formed PAS resin solidified substance peels off from the inner wall of the container and mixes with the contents including the raw materials or reactants, black spots are generated in the obtained product or the molded article formed from the product. In addition, there is a possibility that not only quality problems will occur from the viewpoint of product or molded product appearance, but also mechanical strength will be reduced due to the occurrence of defects originating from the black spots.
Therefore, the present disclosure suppresses the aggregation of PAS resins that tend to fuse at high temperatures, suppresses and prevents the formation of PAS resin adherents that adhere to the inner wall of the container, and reduces the concentration and contamination of low-molecular-weight impurities. An object of the present invention is to provide a method for producing a modified PAS resin with reduced
そして、特許文献2の技術も低分子量不純物の除去が不十分であるだけでなく、特許文献2の技術はいずれも撹拌用の回転羽根を搭載した混合装置を使用するものであるため、撹拌用の回転羽根と容器との摩擦によって金属粉が生じやすく、次工程においてコンタミネーション(金属コンタミネーション、異形樹脂のコンタミネーション)となる問題が発生する。これにより、例えば、直鎖型PAS樹脂の製造に特許文献2の技術を使用すると、その長所である高純度性を担保できなくなり、その結果、直鎖型PAS樹脂の特徴である高温多湿下での低吸湿性の特性が効果的に発揮できなくなる虞が生じる。
また、特許文献2のスクリュ混合型加熱装置のような、スクリュ等の撹拌翼が容器の外周部に沿って公転運動して混合する機構又はすり鉢方式の混合機構を備える装置の場合も、その混合機構の構造上の理由から、容器と撹拌翼との接触によって金属粉が生じやすくなる。
さらには、上記特許文献1又は2のような混合機構を用いてPAS樹脂を製造する場合、混合機構の構造上の理由から、容器の内壁、例えば容器の底面部又は撹拌翼に対して目視可能な大きさのPAS樹脂を含有するPAS樹脂成分が固着(又は付着)しやすくなる。特に、容器の内壁又は撹拌翼に付着したPAS樹脂成分(以下、PAS樹脂固着物と称する。)がさらに凝集したり、あるいは撹拌翼又は撹拌軸等により容器の内壁や容器の蓋に押し付けられたPAS樹脂固着物が強固に当該容器の内壁又は当該容器の底面部に付着すると、PAS樹脂(例えば、PPS樹脂)の特性上、200℃以下の環境で溶解する薬品が存在しないことから、容器の内壁又は容器の底面部に付着したPAS樹脂固着物の除去は困難を極める。
また、形成したPAS樹脂固着物が容器の内壁から剥離して原料又は反応物等の含む内容物に混入すると、得られる生成物又は当該生成物から形成された成形品に黒点が生じ、その結果、製品又は成形品外観の観点から品質上の問題が生じるだけでなく、当該黒点を起点とする欠陥の発生による機械的強度の低下にも影響を及ぼす虞がある。
そこで、本開示は、高温下で融着しやすいPAS樹脂同士の凝集を抑制しつつ、容器の内壁に密着したPAS樹脂固着物の形成を抑制・防止し、かつ低分子量不純物の濃度及びコンタミネーションを低減した、改質化されたPAS樹脂の製造方法を提供することを目的とする。 However, the technique of
In addition, the technique of
In addition, in the case of a device equipped with a mechanism or a mortar-type mixing mechanism in which a stirring blade such as a screw revolves along the outer periphery of the container to mix, such as the screw mixing type heating device of
Furthermore, when a PAS resin is produced using a mixing mechanism as in
In addition, when the formed PAS resin solidified substance peels off from the inner wall of the container and mixes with the contents including the raw materials or reactants, black spots are generated in the obtained product or the molded article formed from the product. In addition, there is a possibility that not only quality problems will occur from the viewpoint of product or molded product appearance, but also mechanical strength will be reduced due to the occurrence of defects originating from the black spots.
Therefore, the present disclosure suppresses the aggregation of PAS resins that tend to fuse at high temperatures, suppresses and prevents the formation of PAS resin adherents that adhere to the inner wall of the container, and reduces the concentration and contamination of low-molecular-weight impurities. An object of the present invention is to provide a method for producing a modified PAS resin with reduced
本発明者らは、上記種々の課題を解決すべく鋭意検討を重ねた。その結果、所定の改質処理装置を使用し、かつ所定条件における加熱処理及び気体供給制御工程を採用することにより、上記種々の課題を解決することを見出し、本発明を完成するに至った。
本開示は、PAS樹脂を含む原料成分を収容可能なテーパー状の容器部を備え、かつ前記容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと前記原料成分が循環する循環流を形成する、撹拌機構を備えた改質処理装置により、改質用ガス(gS)雰囲気下で前記原料成分を前記PAS樹脂の融点Tm未満の温度に加熱して改質化されたPAS樹脂を製造する方法であって、
前記容器部内への前記改質用ガス(gS)の供給及び前記容器部外への前記容器部内のガス(gd)の排出を行い、前記容器部内に投入した前記原料成分を前記循環流により循環させながら、加熱手段により前記原料成分を前記融点Tm未満に加熱する加熱処理工程と、
前記改質用ガス(gS)の毎分当たりの供給量は、前記容器部の容積の0.1~100%の範囲内に制御する気体供給制御工程と、を有する、改質化されたPAS樹脂の製造方法である。 The present inventors have made extensive studies to solve the various problems described above. As a result, the inventors have found that the various problems described above can be solved by using a predetermined reforming apparatus and adopting a heat treatment and a gas supply control process under predetermined conditions, and have completed the present invention.
The present disclosure includes a tapered container portion capable of accommodating a raw material component including a PAS resin, and along the inner wall of the container portion, from the bottom portion to the upper portion of the container portion, and further from the upper portion to the center side of the container portion. A reforming treatment apparatus equipped with a stirring mechanism forms a circulation flow in which the raw material components circulate to the bottom through the reforming gas (g S ) atmosphere, and the raw material components are heated to the melting point T of the PAS resin. A method for producing a modified PAS resin by heating to a temperature of less than m , comprising:
The reforming gas (g s ) is supplied into the container part and the gas (g d ) inside the container part is discharged outside the container part, and the raw material component introduced into the container part is transferred to the circulating flow. a heat treatment step of heating the raw material component to below the melting point Tm by a heating means while circulating by
and a gas supply control step of controlling the supply amount of the reforming gas (g S ) per minute within the range of 0.1 to 100% of the volume of the container part. It is a manufacturing method of PAS resin.
本開示は、PAS樹脂を含む原料成分を収容可能なテーパー状の容器部を備え、かつ前記容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと前記原料成分が循環する循環流を形成する、撹拌機構を備えた改質処理装置により、改質用ガス(gS)雰囲気下で前記原料成分を前記PAS樹脂の融点Tm未満の温度に加熱して改質化されたPAS樹脂を製造する方法であって、
前記容器部内への前記改質用ガス(gS)の供給及び前記容器部外への前記容器部内のガス(gd)の排出を行い、前記容器部内に投入した前記原料成分を前記循環流により循環させながら、加熱手段により前記原料成分を前記融点Tm未満に加熱する加熱処理工程と、
前記改質用ガス(gS)の毎分当たりの供給量は、前記容器部の容積の0.1~100%の範囲内に制御する気体供給制御工程と、を有する、改質化されたPAS樹脂の製造方法である。 The present inventors have made extensive studies to solve the various problems described above. As a result, the inventors have found that the various problems described above can be solved by using a predetermined reforming apparatus and adopting a heat treatment and a gas supply control process under predetermined conditions, and have completed the present invention.
The present disclosure includes a tapered container portion capable of accommodating a raw material component including a PAS resin, and along the inner wall of the container portion, from the bottom portion to the upper portion of the container portion, and further from the upper portion to the center side of the container portion. A reforming treatment apparatus equipped with a stirring mechanism forms a circulation flow in which the raw material components circulate to the bottom through the reforming gas (g S ) atmosphere, and the raw material components are heated to the melting point T of the PAS resin. A method for producing a modified PAS resin by heating to a temperature of less than m , comprising:
The reforming gas (g s ) is supplied into the container part and the gas (g d ) inside the container part is discharged outside the container part, and the raw material component introduced into the container part is transferred to the circulating flow. a heat treatment step of heating the raw material component to below the melting point Tm by a heating means while circulating by
and a gas supply control step of controlling the supply amount of the reforming gas (g S ) per minute within the range of 0.1 to 100% of the volume of the container part. It is a manufacturing method of PAS resin.
本開示によれば、高温下で融着しやすいPAS樹脂同士の凝集を抑制しつつ、容器の内壁に密着したPAS樹脂固化物の形成を抑制・防止し、かつ低分子量不純物の濃度及びコンタミネーションを低減した、改質化されたPAS樹脂を製造できる。
本開示によれば、改質化されたPAS樹脂の高い収率で製造することができる。 According to the present disclosure, while suppressing the aggregation of PAS resins that tend to fuse at high temperatures, the formation of solidified PAS resins that adhere to the inner wall of the container is suppressed and prevented, and the concentration and contamination of low-molecular-weight impurities are suppressed. It is possible to produce a modified PAS resin with reduced
According to the present disclosure, a high yield of modified PAS resin can be produced.
本開示によれば、改質化されたPAS樹脂の高い収率で製造することができる。 According to the present disclosure, while suppressing the aggregation of PAS resins that tend to fuse at high temperatures, the formation of solidified PAS resins that adhere to the inner wall of the container is suppressed and prevented, and the concentration and contamination of low-molecular-weight impurities are suppressed. It is possible to produce a modified PAS resin with reduced
According to the present disclosure, a high yield of modified PAS resin can be produced.
以下、本発明の実施の形態(以下、「本実施形態」と言う。)について詳細に説明するが、本発明は以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
Hereinafter, embodiments of the present invention (hereinafter referred to as "present embodiments") will be described in detail. can be implemented.
本実施形態は、改質処理装置を用いて、原料成分として含有されるPAS樹脂の改質に使用する改質用ガス(gS)雰囲気下で前記PAS樹脂の融点Tm未満の温度に加熱して改質されたPAS樹脂を製造する方法であって、前記改質処理装置に搭載された容器部内への改質用ガス(gS)の供給及び前記容器部外への前記容器部内の気体(gd)の排出を行い、前記容器部内に投入した前記原料成分を循環流により循環させながら、加熱手段により前記原料成分を前記融点Tm未満に加熱する加熱処理工程と、前記改質用ガス(gS)の毎分当たりの供給量は、前記容器部の容積の0.1~100%の範囲内に制御する気体供給制御工程と、を有する。また、前記改質処理装置は、PAS樹脂を含む原料成分を収容可能なテーパー状の容器部を備え、かつ前記容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと前記原料成分が循環する循環流を形成する撹拌機構を有する。
これにより、高温下で融着しやすいPAS樹脂同士の凝集を抑制しつつ、容器の内壁に密着したPAS樹脂固着物の形成を抑制・防止し、かつ低分子量不純物の濃度及びコンタミネーションが低減された改質化されたPAS樹脂を製造できる。その結果、得られる改質化されたPAS樹脂の収率も向上する。 In this embodiment, the PAS resin contained as a raw material component is heated to a temperature lower than the melting point Tm of the PAS resin in an atmosphere of a reforming gas (g S ) used to modify the PAS resin by using a modification apparatus. A method for producing a PAS resin modified by a heat treatment step of discharging the gas (g d ) and heating the raw material components to a temperature lower than the melting point T m by a heating means while circulating the raw material components introduced into the container portion by a circulating flow; and a gas supply control step of controlling the amount of supply gas (g S ) per minute to be within a range of 0.1 to 100% of the volume of the container. In addition, the reforming apparatus includes a tapered container portion capable of containing the raw material component including the PAS resin, and along the inner wall of the container portion, from the bottom portion of the container portion to the upper portion, and further from the upper portion to the container portion. It has a stirring mechanism that forms a circulation flow in which the raw material components circulate to the bottom through the center side of the part.
As a result, the aggregation of PAS resins, which tend to fuse together at high temperatures, is suppressed, the formation of PAS resin adherents adhered to the inner wall of the container is suppressed and prevented, and the concentration and contamination of low-molecular-weight impurities are reduced. modified PAS resins can be produced. As a result, the yield of the resulting modified PAS resin is also improved.
これにより、高温下で融着しやすいPAS樹脂同士の凝集を抑制しつつ、容器の内壁に密着したPAS樹脂固着物の形成を抑制・防止し、かつ低分子量不純物の濃度及びコンタミネーションが低減された改質化されたPAS樹脂を製造できる。その結果、得られる改質化されたPAS樹脂の収率も向上する。 In this embodiment, the PAS resin contained as a raw material component is heated to a temperature lower than the melting point Tm of the PAS resin in an atmosphere of a reforming gas (g S ) used to modify the PAS resin by using a modification apparatus. A method for producing a PAS resin modified by a heat treatment step of discharging the gas (g d ) and heating the raw material components to a temperature lower than the melting point T m by a heating means while circulating the raw material components introduced into the container portion by a circulating flow; and a gas supply control step of controlling the amount of supply gas (g S ) per minute to be within a range of 0.1 to 100% of the volume of the container. In addition, the reforming apparatus includes a tapered container portion capable of containing the raw material component including the PAS resin, and along the inner wall of the container portion, from the bottom portion of the container portion to the upper portion, and further from the upper portion to the container portion. It has a stirring mechanism that forms a circulation flow in which the raw material components circulate to the bottom through the center side of the part.
As a result, the aggregation of PAS resins, which tend to fuse together at high temperatures, is suppressed, the formation of PAS resin adherents adhered to the inner wall of the container is suppressed and prevented, and the concentration and contamination of low-molecular-weight impurities are reduced. modified PAS resins can be produced. As a result, the yield of the resulting modified PAS resin is also improved.
尚、本明細書におけるPAS樹脂固着物とは、改質されたPAS樹脂の製造過程において生成される不定形(例えば、粒状又は平板状)の塊であって、容器の内壁に付着したPAS樹脂を含み、最大長さが10mm以上の塊をいう。PAS樹脂固着物は、後述の実施例の欄に記載の通り、目視で観測することができる。
In this specification, the PAS resin solid matter is an amorphous (e.g., granular or tabular) mass generated in the manufacturing process of the modified PAS resin, and the PAS resin adhering to the inner wall of the container. A lump with a maximum length of 10 mm or more. The PAS resin adhered matter can be visually observed as described in the Examples section below.
本明細書における「改質」とは、原料成分として含有されるPAS樹脂の特性を向上させる、或いは当該PAS樹脂の欠点を解消する目的で、原料成分として含有されるPAS樹脂の高分子量化、原料成分として含有されるPAS樹脂の高粘度化、原料成分として含有されるPAS樹脂の高純度化、他の単量体との共重合化、他の高分子材料とのブレンド化、又は可塑剤、硬化剤若しくは安定剤等の添加剤との混合化を行うことをいう。
The term "modification" as used herein refers to increasing the molecular weight of the PAS resin contained as a raw material component for the purpose of improving the properties of the PAS resin contained as a raw material component or eliminating the drawbacks of the PAS resin, Increasing the viscosity of the PAS resin contained as a raw material component, purifying the PAS resin contained as a raw material component, copolymerizing with other monomers, blending with other polymer materials, or plasticizing , Mixing with additives such as curing agents or stabilizers.
また、上記高分子量化とは、改質処理を施す前後の分子量分布のピーク分子量(Mtop)の変化量(%)が所定の値以上であること、すなわち、本実施形態の改質処理装置を用いて、本実施形態の加熱処理工程及び気体供給制御工程を施す前後の分子量分布のピーク分子量(Mtop)の変化量(%)で表される式(1):
{(加熱処理工程及び気体供給制御工程を施した後の改質されたPAS樹脂のピーク分子量(Mtop))-(加熱処理工程及び気体供給制御工程を施す前の原料成分として含有されるPAS樹脂のピーク分子量(Mtop))}/(加熱処理工程及び気体供給制御工程を施す前の原料成分として含有されるPAS樹脂のピーク分子量(Mtop))×100が、10%以上であることをいう。
同様に、上記高粘度化とは、本実施形態の改質処理装置を用いて、本実施形態の加熱処理工程及び気体供給制御工程を施す前後の溶融粘度の変化量(%)で表される式(2):
{(加熱処理工程及び気体供給制御工程を施した後の改質されたPAS樹脂の溶融粘度)-(加熱処理工程及び気体供給制御工程を施す前の原料成分として含有されるPAS樹脂の溶融粘度)}/(加熱処理工程及び気体供給制御工程を施す前の原料成分として含有されるPAS樹脂の溶融粘度)×100が10%以上であることをいう。
さらには、上記高純度化とは、本実施形態の改質処理装置を用いて、本実施形態の加熱処理工程及び気体供給制御工程を施す前後の低分子量不純物の濃度(ガス発生量(質量%))の変化量(%)で表される式(3):
{(加熱処理工程及び気体供給制御工程を施す前の原料成分として含有されるPAS樹脂の低分子量不純物の濃度(ガス発生量(質量%)))-(加熱処理工程及び気体供給制御工程を施した後の改質されたPAS樹脂の低分子量不純物の濃度(ガス発生量(質量%)))}/(加熱処理工程及び気体供給制御工程を施す前の原料成分として含有されるPAS樹脂の低分子量不純物の濃度(ガス発生量(質量%)))×100が10%以上であることをいう。
本開示では低分子量不純物の濃度の指標の一例として、実施例の欄に記載の方法で算出したガス発生量(質量%)を用いている。 Further, the above-mentioned increase in molecular weight means that the amount of change (%) in the peak molecular weight (M top ) of the molecular weight distribution before and after the modification treatment is a predetermined value or more, that is, the modification treatment apparatus of the present embodiment. Using the formula (1) represented by the amount of change (%) in the peak molecular weight (M top ) of the molecular weight distribution before and after the heat treatment step and the gas supply control step of the present embodiment:
{(Peak molecular weight (M top ) of modified PAS resin after heat treatment step and gas supply control step) - (PAS contained as a raw material component before heat treatment step and gas supply control step (Peak molecular weight of resin (M top ))}/(Peak molecular weight (M top ) of PAS resin contained as raw material component before heat treatment step and gas supply control step) × 100 is 10% or more. Say.
Similarly, the increase in viscosity is represented by the amount of change (%) in the melt viscosity before and after performing the heat treatment step and the gas supply control step of the present embodiment using the reforming apparatus of the present embodiment. Formula (2):
{(melt viscosity of modified PAS resin after heat treatment step and gas supply control step) - (melt viscosity of PAS resin contained as a raw material component before heat treatment step and gas supply control step )}/(melt viscosity of PAS resin contained as raw material component before heat treatment step and gas supply control step)×100 is 10% or more.
Furthermore, the above-mentioned high purification refers to the concentration of low-molecular-weight impurities (the amount of gas generated (mass% )) Expression (3) represented by the amount of change (%):
{(Concentration of low-molecular-weight impurities in PAS resin contained as raw material components before heat treatment step and gas supply control step (gas generation amount (mass%)))-(heat treatment step and gas supply control step Concentration of low-molecular-weight impurities in the modified PAS resin (gas generation amount (mass%)))}/(Low molecular weight impurity content of the PAS resin contained as a raw material component before the heat treatment step and the gas supply control step) It means that the concentration of molecular weight impurities (gas generation amount (mass %))×100 is 10% or more.
In the present disclosure, the amount of gas generated (% by mass) calculated by the method described in the Examples column is used as an example of an indicator of the concentration of low-molecular-weight impurities.
{(加熱処理工程及び気体供給制御工程を施した後の改質されたPAS樹脂のピーク分子量(Mtop))-(加熱処理工程及び気体供給制御工程を施す前の原料成分として含有されるPAS樹脂のピーク分子量(Mtop))}/(加熱処理工程及び気体供給制御工程を施す前の原料成分として含有されるPAS樹脂のピーク分子量(Mtop))×100が、10%以上であることをいう。
同様に、上記高粘度化とは、本実施形態の改質処理装置を用いて、本実施形態の加熱処理工程及び気体供給制御工程を施す前後の溶融粘度の変化量(%)で表される式(2):
{(加熱処理工程及び気体供給制御工程を施した後の改質されたPAS樹脂の溶融粘度)-(加熱処理工程及び気体供給制御工程を施す前の原料成分として含有されるPAS樹脂の溶融粘度)}/(加熱処理工程及び気体供給制御工程を施す前の原料成分として含有されるPAS樹脂の溶融粘度)×100が10%以上であることをいう。
さらには、上記高純度化とは、本実施形態の改質処理装置を用いて、本実施形態の加熱処理工程及び気体供給制御工程を施す前後の低分子量不純物の濃度(ガス発生量(質量%))の変化量(%)で表される式(3):
{(加熱処理工程及び気体供給制御工程を施す前の原料成分として含有されるPAS樹脂の低分子量不純物の濃度(ガス発生量(質量%)))-(加熱処理工程及び気体供給制御工程を施した後の改質されたPAS樹脂の低分子量不純物の濃度(ガス発生量(質量%)))}/(加熱処理工程及び気体供給制御工程を施す前の原料成分として含有されるPAS樹脂の低分子量不純物の濃度(ガス発生量(質量%)))×100が10%以上であることをいう。
本開示では低分子量不純物の濃度の指標の一例として、実施例の欄に記載の方法で算出したガス発生量(質量%)を用いている。 Further, the above-mentioned increase in molecular weight means that the amount of change (%) in the peak molecular weight (M top ) of the molecular weight distribution before and after the modification treatment is a predetermined value or more, that is, the modification treatment apparatus of the present embodiment. Using the formula (1) represented by the amount of change (%) in the peak molecular weight (M top ) of the molecular weight distribution before and after the heat treatment step and the gas supply control step of the present embodiment:
{(Peak molecular weight (M top ) of modified PAS resin after heat treatment step and gas supply control step) - (PAS contained as a raw material component before heat treatment step and gas supply control step (Peak molecular weight of resin (M top ))}/(Peak molecular weight (M top ) of PAS resin contained as raw material component before heat treatment step and gas supply control step) × 100 is 10% or more. Say.
Similarly, the increase in viscosity is represented by the amount of change (%) in the melt viscosity before and after performing the heat treatment step and the gas supply control step of the present embodiment using the reforming apparatus of the present embodiment. Formula (2):
{(melt viscosity of modified PAS resin after heat treatment step and gas supply control step) - (melt viscosity of PAS resin contained as a raw material component before heat treatment step and gas supply control step )}/(melt viscosity of PAS resin contained as raw material component before heat treatment step and gas supply control step)×100 is 10% or more.
Furthermore, the above-mentioned high purification refers to the concentration of low-molecular-weight impurities (the amount of gas generated (mass% )) Expression (3) represented by the amount of change (%):
{(Concentration of low-molecular-weight impurities in PAS resin contained as raw material components before heat treatment step and gas supply control step (gas generation amount (mass%)))-(heat treatment step and gas supply control step Concentration of low-molecular-weight impurities in the modified PAS resin (gas generation amount (mass%)))}/(Low molecular weight impurity content of the PAS resin contained as a raw material component before the heat treatment step and the gas supply control step) It means that the concentration of molecular weight impurities (gas generation amount (mass %))×100 is 10% or more.
In the present disclosure, the amount of gas generated (% by mass) calculated by the method described in the Examples column is used as an example of an indicator of the concentration of low-molecular-weight impurities.
本明細書において、原料成分として含有されるPAS樹脂は、本実施形態の改質処理装置を用いて、本実施形態の加熱処理工程及び気体供給制御工程を施す前のPAS樹脂をいい、以下、原料PAS樹脂とも称する。そのため、原料PAS樹脂は、改質が未だなされていないPAS樹脂であり、例えば、300℃における溶融粘度が1~1000Pa・sの範囲であるPAS樹脂、分子量分布のピーク分子量(Mtop)が10000~150000の範囲であるPAS樹脂、又は低分子量不純物の濃度が1.0質量%以上のPAS樹脂が挙げられる。
尚、300℃における溶融粘度の測定方法は、実施例の欄に記載の測定方法を用いている。 In this specification, the PAS resin contained as a raw material component refers to the PAS resin before being subjected to the heat treatment step and the gas supply control step of the present embodiment using the reforming apparatus of the present embodiment. It is also called raw material PAS resin. Therefore , the raw material PAS resin is a PAS resin that has not yet been modified. to 150,000, or PAS resins with a low molecular weight impurity concentration of 1.0 mass % or more.
The method for measuring the melt viscosity at 300° C. uses the measuring method described in the Examples section.
尚、300℃における溶融粘度の測定方法は、実施例の欄に記載の測定方法を用いている。 In this specification, the PAS resin contained as a raw material component refers to the PAS resin before being subjected to the heat treatment step and the gas supply control step of the present embodiment using the reforming apparatus of the present embodiment. It is also called raw material PAS resin. Therefore , the raw material PAS resin is a PAS resin that has not yet been modified. to 150,000, or PAS resins with a low molecular weight impurity concentration of 1.0 mass % or more.
The method for measuring the melt viscosity at 300° C. uses the measuring method described in the Examples section.
本実施形態のPAS樹脂の分子量分布のピーク分子量(Mtop)は、ゲル浸透クロマトグラフィー(GPC)を用いて、次の条件で、6種類の単分散ポリスチレンを校正に用いて、測定することができる。
[ゲル浸透クロマトグラフィーによる測定条件]
装置:超高温ポリマー分子量分布測定装置(株式会社センシュー科学製「SSC-7000」)
カラム:UT-805L(昭和電工株式会社製)
カラム温度:210℃
溶媒:1-クロロナフタレン
測定方法:UV検出器(360nm)
また、上記低分子量不純物の濃度は、揮発性オリゴアリーレンスルフィドの濃度であり、その測定方法は、実施例の欄に記載の測定方法を用いている。 The peak molecular weight (M top ) of the molecular weight distribution of the PAS resin of the present embodiment can be measured using gel permeation chromatography (GPC) under the following conditions using six types of monodisperse polystyrene for calibration. can.
[Measurement conditions by gel permeation chromatography]
Apparatus: Ultra-high temperature polymer molecular weight distribution measuring apparatus ("SSC-7000" manufactured by Senshu Science Co., Ltd.)
Column: UT-805L (manufactured by Showa Denko K.K.)
Column temperature: 210°C
Solvent: 1-chloronaphthalene Measurement method: UV detector (360 nm)
The concentration of the low-molecular-weight impurities is the concentration of the volatile oligoarylene sulfide, and the measurement method used is the measurement method described in Examples.
[ゲル浸透クロマトグラフィーによる測定条件]
装置:超高温ポリマー分子量分布測定装置(株式会社センシュー科学製「SSC-7000」)
カラム:UT-805L(昭和電工株式会社製)
カラム温度:210℃
溶媒:1-クロロナフタレン
測定方法:UV検出器(360nm)
また、上記低分子量不純物の濃度は、揮発性オリゴアリーレンスルフィドの濃度であり、その測定方法は、実施例の欄に記載の測定方法を用いている。 The peak molecular weight (M top ) of the molecular weight distribution of the PAS resin of the present embodiment can be measured using gel permeation chromatography (GPC) under the following conditions using six types of monodisperse polystyrene for calibration. can.
[Measurement conditions by gel permeation chromatography]
Apparatus: Ultra-high temperature polymer molecular weight distribution measuring apparatus ("SSC-7000" manufactured by Senshu Science Co., Ltd.)
Column: UT-805L (manufactured by Showa Denko K.K.)
Column temperature: 210°C
Solvent: 1-chloronaphthalene Measurement method: UV detector (360 nm)
The concentration of the low-molecular-weight impurities is the concentration of the volatile oligoarylene sulfide, and the measurement method used is the measurement method described in Examples.
本明細書において、低分子量不純物は揮発性オリゴアリーレンスルフィドをいい、当該揮発性オリゴアリーレンスルフィドとは、PAS重合反応段階において副生物として生成され、分子量分布のピーク分子量(Mtop)が1000未満のPAS樹脂が挙げられる。
また、当該揮発性オリゴアリーレンスルフィド中には、下記一般式(1)及び(2):
(上記一般式(1)及び(2)中、Y1はそれぞれ独立して、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)を表す。)で表される2量体成分及び/又は3量体成分などが含まれる。当該2量体成分及び/又は3量体成分の下限は、揮発性オリゴアリーレンスルフィドの総量(100質量%)に対して、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上でありうる。また、上限は、好ましくは100質量%以下、より好ましくは95質量%以下、さらに好ましくは90質量%以下でありうる。本実施形態において、揮発性オリゴアリーレンスルフィド中の2量体成分及び/又は3量体成分の含有量は前記下限及び前記上限を任意に組み合わせられる。
As used herein, low molecular weight impurities refer to volatile oligoarylene sulfides, which are produced as by-products in the PAS polymerization reaction stage and have peak molecular weights (M top ) in the molecular weight distribution of less than 1000. A PAS resin is mentioned.
Further, in the volatile oligoarylene sulfide, the following general formulas (1) and (2):
(In the above general formulas (1) and (2), each Y 1 independently represents a halogen atom (fluorine atom, chlorine atom, bromine atom, etc.)) and / or 3 Including polymer components. The lower limit of the dimer component and/or trimer component is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably It can be 80% by mass or more. Also, the upper limit may be preferably 100% by mass or less, more preferably 95% by mass or less, and even more preferably 90% by mass or less. In this embodiment, the content of the dimer component and/or the trimer component in the volatile oligoarylene sulfide can be any combination of the above lower limit and the above upper limit.
また、当該揮発性オリゴアリーレンスルフィド中には、下記一般式(1)及び(2):
Further, in the volatile oligoarylene sulfide, the following general formulas (1) and (2):
改質化されたPAS樹脂の製造方法の一連の工程としては、例えば、市販の原料PAS樹脂を含む原料成分或いは後述の重合工程により得られた原料PAS樹脂を含む原料成分を、撹拌機構を備えた改質処理装置を用いて対流させながら、改質用ガス(gS)雰囲気下で前記原料PAS樹脂の融点Tm未満の温度に前記原料成分を加熱する加熱工程と、前記改質処理装置の容器内に供給する改質用ガス(gS)の毎分当たりの供給量を、前記容器部の容積の0.1~100%の範囲内に制御する気体供給制御工程と、有することにより、原料PAS樹脂を酸化架橋反応させる、原料PAS樹脂の重合反応を促進させる、或いは低分子量不純物の濃度又はコンタミネーションを低減させることにより原料PAS樹脂を改質(例えば、高分子量化、高粘度化又は高純度化)することが好ましい。
原料成分のPAS樹脂を改質することにより、所望の機械的特性又は成形加工性を具備する製品となりうる。 As a series of steps of the method for producing the modified PAS resin, for example, a raw material component containing a commercially available raw PAS resin or a raw material component containing a raw PAS resin obtained by the polymerization process described below is stirred with a stirring mechanism. a heating step of heating the raw material components to a temperature below the melting point Tm of the raw material PAS resin in a reforming gas (g S ) atmosphere while causing convection using a reforming treatment apparatus; a gas supply control step of controlling the supply amount per minute of the reforming gas (g S ) supplied into the container within the range of 0.1 to 100% of the volume of the container part; , oxidizing and cross-linking the raw material PAS resin, promoting the polymerization reaction of the raw material PAS resin, or modifying the raw material PAS resin by reducing the concentration or contamination of low molecular weight impurities (for example, increasing the molecular weight, increasing the viscosity or highly purified).
By modifying the PAS resin as a raw material component, a product having desired mechanical properties or moldability can be obtained.
原料成分のPAS樹脂を改質することにより、所望の機械的特性又は成形加工性を具備する製品となりうる。 As a series of steps of the method for producing the modified PAS resin, for example, a raw material component containing a commercially available raw PAS resin or a raw material component containing a raw PAS resin obtained by the polymerization process described below is stirred with a stirring mechanism. a heating step of heating the raw material components to a temperature below the melting point Tm of the raw material PAS resin in a reforming gas (g S ) atmosphere while causing convection using a reforming treatment apparatus; a gas supply control step of controlling the supply amount per minute of the reforming gas (g S ) supplied into the container within the range of 0.1 to 100% of the volume of the container part; , oxidizing and cross-linking the raw material PAS resin, promoting the polymerization reaction of the raw material PAS resin, or modifying the raw material PAS resin by reducing the concentration or contamination of low molecular weight impurities (for example, increasing the molecular weight, increasing the viscosity or highly purified).
By modifying the PAS resin as a raw material component, a product having desired mechanical properties or moldability can be obtained.
以下、本実施形態における改質処理装置について説明した後、改質化されたPAS樹脂の製造方法の各工程について説明する。
「改質処理装置」
本実施形態の改質処理装置は、原料PAS樹脂を含む原料成分を収容可能なテーパー状の容器部を備え、かつ前記容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと前記原料成分が循環する循環流を形成する撹拌機構を備える。
原料成分を循環させる循環流が容器内に形成されることにより、高温下で融着しやすい(原料)PAS樹脂同士の凝集を抑制しうる。その結果、PAS樹脂固着物の発生を低減することができるため、当該PAS樹脂固着物に起因した黒点の混入による製品又は成形品外観の低下、又は当該黒点を起点とする欠陥の発生を抑制しうる。 Hereinafter, after explaining the modification processing apparatus in this embodiment, each step of the method for producing the modified PAS resin will be described.
"Modifying equipment"
The reforming treatment apparatus of the present embodiment includes a tapered container portion capable of accommodating raw material components including a raw material PAS resin, and along the inner wall of the container portion, from the bottom portion of the container portion to the upper portion, and further from the upper portion. A stirring mechanism is provided for forming a circulation flow in which the raw material components circulate to the bottom portion through the center side of the container portion.
By forming a circulation flow for circulating the raw material components in the container, it is possible to suppress the aggregation of the (raw material) PAS resins that tend to fuse at high temperatures. As a result, it is possible to reduce the occurrence of PAS resin deposits, thereby suppressing the deterioration of the appearance of the product or molded product due to the inclusion of black spots caused by the PAS resin deposits, or the occurrence of defects originating from the black spots. sell.
「改質処理装置」
本実施形態の改質処理装置は、原料PAS樹脂を含む原料成分を収容可能なテーパー状の容器部を備え、かつ前記容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと前記原料成分が循環する循環流を形成する撹拌機構を備える。
原料成分を循環させる循環流が容器内に形成されることにより、高温下で融着しやすい(原料)PAS樹脂同士の凝集を抑制しうる。その結果、PAS樹脂固着物の発生を低減することができるため、当該PAS樹脂固着物に起因した黒点の混入による製品又は成形品外観の低下、又は当該黒点を起点とする欠陥の発生を抑制しうる。 Hereinafter, after explaining the modification processing apparatus in this embodiment, each step of the method for producing the modified PAS resin will be described.
"Modifying equipment"
The reforming treatment apparatus of the present embodiment includes a tapered container portion capable of accommodating raw material components including a raw material PAS resin, and along the inner wall of the container portion, from the bottom portion of the container portion to the upper portion, and further from the upper portion. A stirring mechanism is provided for forming a circulation flow in which the raw material components circulate to the bottom portion through the center side of the container portion.
By forming a circulation flow for circulating the raw material components in the container, it is possible to suppress the aggregation of the (raw material) PAS resins that tend to fuse at high temperatures. As a result, it is possible to reduce the occurrence of PAS resin deposits, thereby suppressing the deterioration of the appearance of the product or molded product due to the inclusion of black spots caused by the PAS resin deposits, or the occurrence of defects originating from the black spots. sell.
以下、本実施形態における改質処理装置の一例について図を用いて説明する。
図1は、本実施形態における改質処理装置の要部縦断面概略図である。図1に示す通り、改質処理装置1は、第1開口部OP1と、前記第1開口部OP1の直径(=開口径)d1より小さい直径d2を有する第2開口部OP2と、第2開口部OP2に取り付けられ、かつ原料成分又は内容物を取り出す開閉自在な蓋部11と、蓋部11である底部と第1開口部OP1である上部との間の空間V(又は凹部)を包摂する容器部4と、容器部4の外表面を覆う温度調節ジャケット5と、容器部4内の空間V内に収容される回転翼を有する撹拌部材2と、改質用ガス(gS)を注入する供給口8と、容器部4内(又は空間V内)の気体(gd)を排出する排出口9と、を有する。
換言すると、改質処理装置1は、第1開口部OP1及び前記第1開口部OP1の開口径d1より小さい開口径d2を有する第2開口部OP2を備えたテーパー状の円筒体である容器部4と、容器部4内に収容される撹拌部材2と、容器部4の外表面を覆う温度調節ジャケット5と、改質用ガス(gS)を注入する供給口8と、容器部4内の気体(gd)を排出する排出口9と、原料PAS樹脂を含む原料成分を投入する投入口10と、第2開口部OP2に取り付けられ、かつ容器部4内の内容物(原料成分又は生成物Pなど)を取り出す開閉自在な蓋部11と、有する。そして、撹拌部材2は、回転翼を有することが好ましい。さらには、前記回転翼の最大回転径が前記直径d1の50~99%であることが好ましい。
また、原料PAS樹脂を含む原料成分を投入する投入口10及び容器部4内の気体(gd)を排出する排出口9が形成された天面板Tにより第1開口部OP1が塞がれて、かつ開閉自在な蓋部11により第2開口部OP2が塞がれると、容器部4内、すなわち空間Vが密閉される。この際、供給口8、排出口9及び投入口10も公知の閉塞手段により閉塞することができる。 An example of the reforming apparatus according to the present embodiment will be described below with reference to the drawings.
FIG. 1 is a schematic vertical cross-sectional view of the main part of the reforming apparatus in this embodiment. As shown in FIG. 1, the reformingapparatus 1 includes a first opening OP1, a second opening OP2 having a diameter d2 smaller than the diameter (=opening diameter) d1 of the first opening OP1, 2. A lid portion 11 that is attached to the opening portion OP2 and that can be opened and closed to take out raw material components or contents, and a space V (or a recess) between the bottom portion that is the lid portion 11 and the top portion that is the first opening portion OP1. The enclosing container portion 4, the temperature control jacket 5 covering the outer surface of the container portion 4, the stirring member 2 having the rotary blades accommodated in the space V inside the container portion 4, and the reforming gas (g S ) and a discharge port 9 for discharging the gas (g d ) in the container part 4 (or in the space V).
In other words, the reformingapparatus 1 is a tapered cylinder having a first opening OP1 and a second opening OP2 having an opening diameter d2 smaller than the opening diameter d1 of the first opening OP1. A container portion 4, a stirring member 2 accommodated in the container portion 4, a temperature control jacket 5 covering the outer surface of the container portion 4, a supply port 8 for injecting a reforming gas (g S ), and a container portion. A discharge port 9 for discharging gas (g d ) in 4, an input port 10 for inputting raw material components including the raw material PAS resin, and a content (raw material) in the container part 4 attached to the second opening OP2. and an openable and closable lid 11 for taking out the component or product P). The stirring member 2 preferably has rotary blades. Furthermore, it is preferable that the maximum rotation diameter of the rotor blade is 50 to 99% of the diameter d1 .
In addition, the first opening OP1 is closed by a top plate T having aninlet 10 for charging raw material components including the raw material PAS resin and a discharge port 9 for discharging the gas (g d ) in the container part 4. Moreover, when the second opening OP2 is closed by the openable/closable lid portion 11, the inside of the container portion 4, that is, the space V is sealed. At this time, the supply port 8, the discharge port 9 and the input port 10 can also be closed by known closing means.
図1は、本実施形態における改質処理装置の要部縦断面概略図である。図1に示す通り、改質処理装置1は、第1開口部OP1と、前記第1開口部OP1の直径(=開口径)d1より小さい直径d2を有する第2開口部OP2と、第2開口部OP2に取り付けられ、かつ原料成分又は内容物を取り出す開閉自在な蓋部11と、蓋部11である底部と第1開口部OP1である上部との間の空間V(又は凹部)を包摂する容器部4と、容器部4の外表面を覆う温度調節ジャケット5と、容器部4内の空間V内に収容される回転翼を有する撹拌部材2と、改質用ガス(gS)を注入する供給口8と、容器部4内(又は空間V内)の気体(gd)を排出する排出口9と、を有する。
換言すると、改質処理装置1は、第1開口部OP1及び前記第1開口部OP1の開口径d1より小さい開口径d2を有する第2開口部OP2を備えたテーパー状の円筒体である容器部4と、容器部4内に収容される撹拌部材2と、容器部4の外表面を覆う温度調節ジャケット5と、改質用ガス(gS)を注入する供給口8と、容器部4内の気体(gd)を排出する排出口9と、原料PAS樹脂を含む原料成分を投入する投入口10と、第2開口部OP2に取り付けられ、かつ容器部4内の内容物(原料成分又は生成物Pなど)を取り出す開閉自在な蓋部11と、有する。そして、撹拌部材2は、回転翼を有することが好ましい。さらには、前記回転翼の最大回転径が前記直径d1の50~99%であることが好ましい。
また、原料PAS樹脂を含む原料成分を投入する投入口10及び容器部4内の気体(gd)を排出する排出口9が形成された天面板Tにより第1開口部OP1が塞がれて、かつ開閉自在な蓋部11により第2開口部OP2が塞がれると、容器部4内、すなわち空間Vが密閉される。この際、供給口8、排出口9及び投入口10も公知の閉塞手段により閉塞することができる。 An example of the reforming apparatus according to the present embodiment will be described below with reference to the drawings.
FIG. 1 is a schematic vertical cross-sectional view of the main part of the reforming apparatus in this embodiment. As shown in FIG. 1, the reforming
In other words, the reforming
In addition, the first opening OP1 is closed by a top plate T having an
図1では、容器部4の一例として全体がいわゆる逆円錐台型の円筒体の例を示している。そのため、当該逆円錐台型の円筒体の第1開口部OP1と第2開口部OP2とはともに円形であり、両開口部の中心は同軸中心である(あるいは第1開口部OP1と第2開口部OP2とは同軸円である)ことが好ましい。これにより、容器部4内における回転軸2aの対称性を維持できるため、容器部4内に均一な循環流を形成しやすくなる。図1では、改質処理装置1の好ましい形態の一例として、第1開口部OP1と第2開口部OP2との同軸中心線上に回転軸2aの長軸が設けられるよう回転軸2aを備えた撹拌部材2を取り付けて、撹拌部材2を容器部4内に収容した例を示す。また、図1では、改質処理装置1の好ましい形態の一例として、第1開口部OP1を塞ぐ天面板Tも円形であり、天面板Tと第1開口部OP1とは同軸円である例を示す。
FIG. 1 shows an example of a so-called inverted truncated cone-shaped cylindrical body as an example of the container part 4 as a whole. Therefore, the first opening OP1 and the second opening OP2 of the inverted truncated cone-shaped cylindrical body are both circular, and the centers of both openings are coaxial centers (or the first opening OP1 and the second opening and the portion OP2 are coaxial circles). As a result, the symmetry of the rotating shaft 2 a within the container portion 4 can be maintained, and a uniform circulation flow can be easily formed within the container portion 4 . In FIG. 1, as an example of a preferred form of the reforming apparatus 1, a stirring apparatus having a rotating shaft 2a is provided so that the long axis of the rotating shaft 2a is provided on the coaxial center line between the first opening OP1 and the second opening OP2. An example in which the member 2 is attached and the stirring member 2 is accommodated in the container portion 4 is shown. In addition, in FIG. 1, as an example of a preferred form of the reforming apparatus 1, the top plate T that closes the first opening OP1 is also circular, and the top plate T and the first opening OP1 are coaxial circles. show.
本実施形態において、第1開口部OP1の直径d1と、第2開口部OP2の直径d2との比率であるd1/d2が、1.1~10.0であることが好ましい。
第1開口部OP1の直径d1と、第2開口部OP2の直径d2との比率が上記範囲であると、容器4内の原料成分をより効率よく循環することができる。
第1開口部OP1の直径d1とは、第1開口部OP1の外周上の任意の2点を結ぶ長さのうち最大長さをいい、第2開口部OP2の直径d2も同様に、第2開口部OP2の外周上の任意の2点を結ぶ長さのうち最大長さをいう。 In this embodiment, the ratio d 1 /d 2 between the diameter d 1 of the first opening OP1 and the diameter d 2 of the second opening OP2 is preferably 1.1 to 10.0.
When the ratio between the diameter d1 of the first opening OP1 and the diameter d2 of the second opening OP2 is within the above range, the raw material components in the container 4 can be circulated more efficiently.
The diameter d1 of the first opening OP1 refers to the maximum length among the lengths connecting any two points on the outer circumference of the first opening OP1, and the diameter d2 of the second opening OP2 is also It means the maximum length among the lengths connecting any two points on the outer circumference of the second opening OP2.
第1開口部OP1の直径d1と、第2開口部OP2の直径d2との比率が上記範囲であると、容器4内の原料成分をより効率よく循環することができる。
第1開口部OP1の直径d1とは、第1開口部OP1の外周上の任意の2点を結ぶ長さのうち最大長さをいい、第2開口部OP2の直径d2も同様に、第2開口部OP2の外周上の任意の2点を結ぶ長さのうち最大長さをいう。 In this embodiment, the ratio d 1 /d 2 between the diameter d 1 of the first opening OP1 and the diameter d 2 of the second opening OP2 is preferably 1.1 to 10.0.
When the ratio between the diameter d1 of the first opening OP1 and the diameter d2 of the second opening OP2 is within the above range, the raw material components in the container 4 can be circulated more efficiently.
The diameter d1 of the first opening OP1 refers to the maximum length among the lengths connecting any two points on the outer circumference of the first opening OP1, and the diameter d2 of the second opening OP2 is also It means the maximum length among the lengths connecting any two points on the outer circumference of the second opening OP2.
図1では、撹拌部材2の一例として二重螺旋型の回転翼を示しており、当該二重螺旋型の回転翼も容器部4の形状に倣ってテーパー状である。そして、撹拌部材2は、容器部4の天面板T側(上部側)から蓋部11側(下部側)に容器部4内に延在された回転軸2a(撹拌部材2に用いられる回転軸)と、当該回転軸2aに取付けられた複数の支持材(2b1,2b2,2b3,2b4,2b5,2b6,2b7)と、当該複数の支持材(2b1,2b2,2b3,2b4,2b5,2b6,2b7)に固定された2枚の帯状の回転翼と、を備えている。そして、帯状の回転翼は、容器部4内で上下方向に立体的かつ連続的に延びて容器部4の下部域まで達する羽根である。
改質処理装置1は撹拌機構を備えており、当該撹拌機構はテーパー状の容器部4内に充填されたPAS樹脂を含む原料成分を撹拌する。また、前記撹拌機構は、テーパー状の容器部4と、当該テーパー状容器部4の形状に倣った撹拌部材2と、を備えている。そして、容器部4内の空間V内に収容される回転翼を有する撹拌部材2は、テーパー状の容器部4に対して着脱自在に取り付けられている。そのため、上記回転翼を備えた撹拌部材2の回転軸2aを等速回転又は不等速回転することにより、容器部4と撹拌部材2との共回り等が抑制され、十分な撹拌性能が得られ得る。
そして、前記回転翼を備えた撹拌部材2が回転軸2aを中心に回転すると、容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと前記原料成分が循環する循環流が形成される。これにより、容器部4の蓋部11側(底部)に充填されたPAS樹脂を含む原料成分が、容器部4の内壁に沿って容器部4の底部から上部、更に前記上部から容器部4の中心側を介して前記底部へと循環される。その結果、PAS樹脂を含む原料成分が均一に混合された状態を熱処理工程中維持できる。
また、本実施形態において、回転翼が単軸の二重螺旋構造であることが好ましい。すなわち、撹拌部材2の好ましい形態の一つとしては、図1において示すように、単軸である1本の回転軸2aに対して、回転翼が二重螺旋構造であることが好ましい。これにより、循環流を形成しやすくなる。 In FIG. 1 , a double-helical rotor blade is shown as an example of the stirringmember 2 , and the double-helical rotor blade also has a tapered shape following the shape of the container part 4 . The stirring member 2 includes a rotating shaft 2a (a rotating shaft used for the stirring member 2) extending from the top plate T side (upper side) of the container portion 4 to the lid portion 11 side (lower side) in the container portion 4. ), a plurality of supporting members (2b 1 , 2b 2 , 2b 3 , 2b 4 , 2b 5 , 2b 6 , 2b 7 ) attached to the rotating shaft 2a, and the plurality of supporting members (2b 1 , 2b 2 , 2b 3 , 2b 4 , 2b 5 , 2b 6 , 2b 7 ). The strip-shaped rotor blades are blades that extend three-dimensionally and continuously in the vertical direction within the container portion 4 and reach the lower region of the container portion 4 .
The reformingtreatment apparatus 1 is provided with a stirring mechanism, and the stirring mechanism stirs the raw material component containing the PAS resin filled in the tapered container portion 4 . Further, the stirring mechanism includes a tapered container portion 4 and a stirring member 2 following the shape of the tapered container portion 4 . The agitating member 2 having a rotating blade housed in the space V in the container portion 4 is detachably attached to the tapered container portion 4 . Therefore, by rotating the rotating shaft 2a of the stirring member 2 provided with the rotating blades at a constant speed or at a non-uniform speed, co-rotation of the container part 4 and the stirring member 2 is suppressed, and sufficient stirring performance is obtained. can be
Then, when the stirringmember 2 having the rotating blades rotates around the rotating shaft 2a, the stirring member 2 moves along the inner wall of the container from the bottom to the top of the container, and further from the top to the center of the container. A circulation flow is formed in which the raw material components circulate to the bottom. As a result, the raw material component containing the PAS resin filled in the lid portion 11 side (bottom portion) of the container portion 4 flows along the inner wall of the container portion 4 from the bottom portion of the container portion 4 to the upper portion, and further from the upper portion to the container portion 4. It is circulated to the bottom via the central side. As a result, the state in which the raw material components including the PAS resin are uniformly mixed can be maintained during the heat treatment process.
Further, in the present embodiment, it is preferable that the rotor has a single-axis double helix structure. That is, as one of the preferable forms of the stirringmember 2, as shown in FIG. 1, it is preferable that the rotating blade has a double helix structure with respect to one rotating shaft 2a which is a single shaft. This makes it easier to form a circulation flow.
改質処理装置1は撹拌機構を備えており、当該撹拌機構はテーパー状の容器部4内に充填されたPAS樹脂を含む原料成分を撹拌する。また、前記撹拌機構は、テーパー状の容器部4と、当該テーパー状容器部4の形状に倣った撹拌部材2と、を備えている。そして、容器部4内の空間V内に収容される回転翼を有する撹拌部材2は、テーパー状の容器部4に対して着脱自在に取り付けられている。そのため、上記回転翼を備えた撹拌部材2の回転軸2aを等速回転又は不等速回転することにより、容器部4と撹拌部材2との共回り等が抑制され、十分な撹拌性能が得られ得る。
そして、前記回転翼を備えた撹拌部材2が回転軸2aを中心に回転すると、容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと前記原料成分が循環する循環流が形成される。これにより、容器部4の蓋部11側(底部)に充填されたPAS樹脂を含む原料成分が、容器部4の内壁に沿って容器部4の底部から上部、更に前記上部から容器部4の中心側を介して前記底部へと循環される。その結果、PAS樹脂を含む原料成分が均一に混合された状態を熱処理工程中維持できる。
また、本実施形態において、回転翼が単軸の二重螺旋構造であることが好ましい。すなわち、撹拌部材2の好ましい形態の一つとしては、図1において示すように、単軸である1本の回転軸2aに対して、回転翼が二重螺旋構造であることが好ましい。これにより、循環流を形成しやすくなる。 In FIG. 1 , a double-helical rotor blade is shown as an example of the stirring
The reforming
Then, when the stirring
Further, in the present embodiment, it is preferable that the rotor has a single-axis double helix structure. That is, as one of the preferable forms of the stirring
図1において、回転軸2aは1本の単軸である。また、回転軸2aは、天面板Tの中心部に接続固定されている。そして、図1では、回転軸2aは、太さが異なる2本の棒状体から構成されているが、同一の太さの棒状体でも、あるいはテーパー状の棒状体でもよい。さらには、図1において、支持材(2b1,2b2,2b3,2b4,2b5,2b6,2b7)が、回転軸2aに対して径方向外方に7本取り付けられた例を示しているが、帯状の回転翼が描く螺旋の始点半径、終点半径、巻き数又は全長などによって、前記支持材の本数を適宜変更することができる。尚、撹拌部材2の好ましい態様については、図2及び図3を用いて後述する。さらに、図1では、7本の支持材(2b1,2b2,2b3,2b4,2b5,2b6,2b7)がそれぞれ、回転軸2aの長手方向に対して直交するよう取り付けている例を示しているが、7本の支持材(2b1,2b2,2b3,2b4,2b5,2b6,2b7)をそれぞれ2つの支持材に分離し(支持材を合計14本とし)、かつ前記2つの支持材の長手方向が一致するよう回転軸2aに取り付けてもよい。
また、図1では、天面板Tの中心部に回転軸2aを接続固定している例を示しているが、変形例として、天面板Tの中心部に設けられた貫通孔に回転軸2aが相通されており、かつ回転軸2aが天面板Tとは別個に自転するように取り付けられてもよい。これにより、例えば、撹拌機構の撹拌部材2を回転させる動力として、回転軸2aと接続固定するよう回転モーター(図示せず)を取り付けてもよい。 In FIG. 1, therotating shaft 2a is one single shaft. Further, the rotating shaft 2a is connected and fixed to the central portion of the top plate T. As shown in FIG. In FIG. 1, the rotating shaft 2a is composed of two rod-shaped bodies having different thicknesses, but may be rod-shaped bodies having the same thickness or tapered rod-shaped bodies. Furthermore, in FIG. 1, an example in which seven supporting members (2b 1 , 2b 2 , 2b 3 , 2b 4 , 2b 5 , 2b 6 , 2b 7 ) are attached radially outward to the rotating shaft 2a. , the number of supporting members can be changed as appropriate depending on the radius of the start point, the radius of the end point, the number of turns, or the total length of the spiral drawn by the belt-shaped rotor. A preferred embodiment of the stirring member 2 will be described later with reference to FIGS. 2 and 3. FIG. Furthermore, in FIG. 1, seven support members (2b 1 , 2b 2 , 2b 3 , 2b 4 , 2b 5 , 2b 6 , 2b 7 ) are attached perpendicular to the longitudinal direction of the rotating shaft 2a. 7 supporting members (2b 1 , 2b 2 , 2b 3 , 2b 4 , 2b 5 , 2b 6 , 2b 7 ) are separated into two supporting members (a total of 14 supporting members). book), and the two supporting members may be attached to the rotating shaft 2a so that the longitudinal directions of the two supporting members are aligned.
Further, FIG. 1 shows an example in which therotating shaft 2a is connected and fixed to the central portion of the top plate T, but as a modified example, the rotating shaft 2a is inserted into a through hole provided in the central portion of the top plate T. The top plate T may be connected to the top plate T and the rotating shaft 2a may be attached so as to rotate independently. Accordingly, for example, a rotary motor (not shown) may be attached so as to be connected and fixed to the rotary shaft 2a as power for rotating the stirring member 2 of the stirring mechanism.
また、図1では、天面板Tの中心部に回転軸2aを接続固定している例を示しているが、変形例として、天面板Tの中心部に設けられた貫通孔に回転軸2aが相通されており、かつ回転軸2aが天面板Tとは別個に自転するように取り付けられてもよい。これにより、例えば、撹拌機構の撹拌部材2を回転させる動力として、回転軸2aと接続固定するよう回転モーター(図示せず)を取り付けてもよい。 In FIG. 1, the
Further, FIG. 1 shows an example in which the
本実施形態における撹拌部材2は、回転翼を有することが好ましい。さらには、前記回転翼の最大回転径が第1開口部OP1の直径d1の50~99%であることが好ましく、60~90%であることがより好ましい。
撹拌部材2の回転翼の最大回転径が第1開口部OP1の直径d1の50~99%であると、循環流を形成しやすくなる。
図1において、回転翼の最大回転径は、帯状の回転翼が描く螺旋の始点半径の2倍を表すため、支持材2b1に固定された帯状の回転翼の最大回転径が前記直径d1の50~99%でありうる。また、上記したように、回転軸2aが第1開口部OP1の中心上に接続固定されているため、支持材2b7の長さが回転翼の最大回転径に相当する。 The stirringmember 2 in this embodiment preferably has a rotary blade. Furthermore, the maximum rotation diameter of the rotor blade is preferably 50 to 99% of the diameter d1 of the first opening OP1, more preferably 60 to 90%.
When the maximum rotation diameter of the rotor blades of the stirringmember 2 is 50 to 99% of the diameter d1 of the first opening OP1, it becomes easier to form a circulation flow.
In FIG. 1, the maximum rotation diameter of the rotor blade represents twice the starting point radius of the spiral drawn by the belt-shaped rotor blade, so the maximum rotation diameter of the belt-shaped rotor fixed to the support member 2b1 is the diameter d1 can be 50-99% of the Further, as described above, since therotating shaft 2a is connected and fixed to the center of the first opening OP1, the length of the supporting member 2b7 corresponds to the maximum rotating diameter of the rotating blade.
撹拌部材2の回転翼の最大回転径が第1開口部OP1の直径d1の50~99%であると、循環流を形成しやすくなる。
図1において、回転翼の最大回転径は、帯状の回転翼が描く螺旋の始点半径の2倍を表すため、支持材2b1に固定された帯状の回転翼の最大回転径が前記直径d1の50~99%でありうる。また、上記したように、回転軸2aが第1開口部OP1の中心上に接続固定されているため、支持材2b7の長さが回転翼の最大回転径に相当する。 The stirring
When the maximum rotation diameter of the rotor blades of the stirring
In FIG. 1, the maximum rotation diameter of the rotor blade represents twice the starting point radius of the spiral drawn by the belt-shaped rotor blade, so the maximum rotation diameter of the belt-shaped rotor fixed to the support member 2b1 is the diameter d1 can be 50-99% of the Further, as described above, since the
天面板Tに形成された投入口10は、空間Vと連通されているため、原料PAS樹脂を含む原料成分を投入口10から投入すると、原料PAS樹脂を含む原料成分が容器部4内(空間V)に収容されうる。
また、改質用ガス(gS)を注入する供給口8及び容器部4内(又は空間V内)の気体(gd)を排出する排出口9も投入口10と同様に空間Vと連通されている。そのため、改質用ガス(gS)を供給口8に供給することにより、容器部4内(又は空間V内)を所定の改質用ガス(gS)濃度を有する改質用ガス(gS)雰囲気にすることができる。
一方、気体(gd)は原料PAS樹脂の改質(例えば、酸化反応など)により生じたガスを含むことから、容器部4内の気体(gd)を排気することにより、容器部4内の改質用ガス(gS)濃度を一定に保つことができるため、容器部4内(又は空間V内)を改質用ガス(gS)雰囲気(例えば、気相酸化性雰囲気又は不活性ガス雰囲気)に保持しうる。 Theinput port 10 formed in the top plate T communicates with the space V. Therefore, when the raw material components including the raw PAS resin are input from the input port 10, the raw material components including the raw PAS resin will flow into the container part 4 (space V).
In addition, the supply port 8 for injecting the reforming gas (g S ) and the discharge port 9 for discharging the gas (g d ) in the container part 4 (or in the space V) communicate with the space V as well as theinlet 10 . It is Therefore , by supplying the reforming gas (g S ) to the supply port 8 , the reforming gas (g S ) can be atmosphere.
On the other hand, since the gas (g d ) includes gas generated by reforming (for example, oxidation reaction) of the raw material PAS resin, by exhausting the gas (g d ) in the container part 4, the inside of the container part 4 can be kept constant, the reforming gas (g S ) atmosphere (for example, gas phase oxidizing atmosphere or inert gas atmosphere).
また、改質用ガス(gS)を注入する供給口8及び容器部4内(又は空間V内)の気体(gd)を排出する排出口9も投入口10と同様に空間Vと連通されている。そのため、改質用ガス(gS)を供給口8に供給することにより、容器部4内(又は空間V内)を所定の改質用ガス(gS)濃度を有する改質用ガス(gS)雰囲気にすることができる。
一方、気体(gd)は原料PAS樹脂の改質(例えば、酸化反応など)により生じたガスを含むことから、容器部4内の気体(gd)を排気することにより、容器部4内の改質用ガス(gS)濃度を一定に保つことができるため、容器部4内(又は空間V内)を改質用ガス(gS)雰囲気(例えば、気相酸化性雰囲気又は不活性ガス雰囲気)に保持しうる。 The
In addition, the supply port 8 for injecting the reforming gas (g S ) and the discharge port 9 for discharging the gas (g d ) in the container part 4 (or in the space V) communicate with the space V as well as the
On the other hand, since the gas (g d ) includes gas generated by reforming (for example, oxidation reaction) of the raw material PAS resin, by exhausting the gas (g d ) in the container part 4, the inside of the container part 4 can be kept constant, the reforming gas (g S ) atmosphere (for example, gas phase oxidizing atmosphere or inert gas atmosphere).
本実施形態において、改質用ガス(gS)は、容器部4内に連通するように設けられた供給口8を介して容器部4内へ供給される。また、容器部4内の改質用ガス(gS)濃度を一定にするため等の理由で、必要により、改質用ガス(gS)以外のその他ガス(水素ガス、二酸化炭素ガス等)と改質用ガス(gS)との混合ガスを容器部4内へ供給される気体としてもよい。供給口8において容器部4内へ供給される気体中に含まれる改質用ガス(gS)濃度が1~100%の範囲であることが好ましい。
ここでいう改質用ガス(gS)濃度とは、毎分当たり容器部4内へ供給される気体中に含まれる改質用ガス(gS)の量(体積%)をいう。
供給口8における改質用ガス(gS)濃度が1~100体積%の範囲であると、容器部4内(又は空間V内)を容易に改質用ガス(gS)雰囲気下にすることができる。改質用ガス(gS)濃度は、当該改質用ガス(gS)の種類に応じて濃度範囲を設定することが好ましい。改質用ガス(gS)として不活性ガスを使用する場合、毎分当たり容器部4内へ供給される気体中の不活性ガスの濃度の態様としては、好ましくは93~100体積%、より好ましくは95~100体積%、さらに好ましくは97~100体積%、よりさらに好ましくは99~100体積%でありうる。
改質用ガス(gS)として酸素又は酸素を含む気体(例えば、空気)を使用する場合、毎分当たり容器部4内へ供給される気体中の酸素濃度は1体積%以上であることが好ましい。改質用ガス(gS)中の酸素濃度の下限は、1体積%以上、5体積%以上、7体積%以上、11体積%以上又は13体積%以上であることが好ましい。一方、改質用ガス(gS)中の酸素濃度の上限は、100体積%以下、80体積%以下、60体積%以下、34体積%以下、27体積%以下又は21体積%以下であることが好ましい。改質用ガス(gS)中の酸素濃度の好ましい範囲は、上記上限と上記下限とを任意に組み合わせできる。 In this embodiment, the reforming gas (g S ) is supplied into the container portion 4 through a supply port 8 provided so as to communicate with the container portion 4 . In order to keep the reforming gas (g S ) concentration in the container part 4 constant, if necessary, other gases (hydrogen gas, carbon dioxide gas, etc.) other than the reforming gas (g S ) and the reforming gas (g S ) may be used as the gas supplied into the container part 4 . It is preferable that the reforming gas (g S ) concentration contained in the gas supplied into the container 4 through the supply port 8 is in the range of 1 to 100%.
The reforming gas (g S ) concentration referred to here means the amount (volume %) of the reforming gas (g S ) contained in the gas supplied into the container part 4 per minute.
When the reforming gas (g S ) concentration at the supply port 8 is in the range of 1 to 100% by volume, the inside of the container part 4 (or the inside of the space V) can be easily brought into the reforming gas (g S ) atmosphere. be able to. The concentration range of the reforming gas (g S ) is preferably set according to the type of the reforming gas (g S ). When an inert gas is used as the reforming gas (g S ), the concentration of the inert gas in the gas supplied into the container part 4 per minute is preferably 93 to 100% by volume, more Preferably 95 to 100% by volume, more preferably 97 to 100% by volume, even more preferably 99 to 100% by volume.
When oxygen or a gas containing oxygen (for example, air) is used as the reforming gas (g S ), the oxygen concentration in the gas supplied into the container part 4 per minute should be 1% by volume or more. preferable. The lower limit of the oxygen concentration in the reforming gas (g S ) is preferably 1% by volume or more, 5% by volume or more, 7% by volume or more, 11% by volume or more, or 13% by volume or more. On the other hand, the upper limit of the oxygen concentration in the reforming gas (g S ) is 100% by volume or less, 80% by volume or less, 60% by volume or less, 34% by volume or less, 27% by volume or less, or 21% by volume or less. is preferred. The preferred range of oxygen concentration in the reforming gas (g S ) can be any combination of the above upper limit and the above lower limit.
ここでいう改質用ガス(gS)濃度とは、毎分当たり容器部4内へ供給される気体中に含まれる改質用ガス(gS)の量(体積%)をいう。
供給口8における改質用ガス(gS)濃度が1~100体積%の範囲であると、容器部4内(又は空間V内)を容易に改質用ガス(gS)雰囲気下にすることができる。改質用ガス(gS)濃度は、当該改質用ガス(gS)の種類に応じて濃度範囲を設定することが好ましい。改質用ガス(gS)として不活性ガスを使用する場合、毎分当たり容器部4内へ供給される気体中の不活性ガスの濃度の態様としては、好ましくは93~100体積%、より好ましくは95~100体積%、さらに好ましくは97~100体積%、よりさらに好ましくは99~100体積%でありうる。
改質用ガス(gS)として酸素又は酸素を含む気体(例えば、空気)を使用する場合、毎分当たり容器部4内へ供給される気体中の酸素濃度は1体積%以上であることが好ましい。改質用ガス(gS)中の酸素濃度の下限は、1体積%以上、5体積%以上、7体積%以上、11体積%以上又は13体積%以上であることが好ましい。一方、改質用ガス(gS)中の酸素濃度の上限は、100体積%以下、80体積%以下、60体積%以下、34体積%以下、27体積%以下又は21体積%以下であることが好ましい。改質用ガス(gS)中の酸素濃度の好ましい範囲は、上記上限と上記下限とを任意に組み合わせできる。 In this embodiment, the reforming gas (g S ) is supplied into the container portion 4 through a supply port 8 provided so as to communicate with the container portion 4 . In order to keep the reforming gas (g S ) concentration in the container part 4 constant, if necessary, other gases (hydrogen gas, carbon dioxide gas, etc.) other than the reforming gas (g S ) and the reforming gas (g S ) may be used as the gas supplied into the container part 4 . It is preferable that the reforming gas (g S ) concentration contained in the gas supplied into the container 4 through the supply port 8 is in the range of 1 to 100%.
The reforming gas (g S ) concentration referred to here means the amount (volume %) of the reforming gas (g S ) contained in the gas supplied into the container part 4 per minute.
When the reforming gas (g S ) concentration at the supply port 8 is in the range of 1 to 100% by volume, the inside of the container part 4 (or the inside of the space V) can be easily brought into the reforming gas (g S ) atmosphere. be able to. The concentration range of the reforming gas (g S ) is preferably set according to the type of the reforming gas (g S ). When an inert gas is used as the reforming gas (g S ), the concentration of the inert gas in the gas supplied into the container part 4 per minute is preferably 93 to 100% by volume, more Preferably 95 to 100% by volume, more preferably 97 to 100% by volume, even more preferably 99 to 100% by volume.
When oxygen or a gas containing oxygen (for example, air) is used as the reforming gas (g S ), the oxygen concentration in the gas supplied into the container part 4 per minute should be 1% by volume or more. preferable. The lower limit of the oxygen concentration in the reforming gas (g S ) is preferably 1% by volume or more, 5% by volume or more, 7% by volume or more, 11% by volume or more, or 13% by volume or more. On the other hand, the upper limit of the oxygen concentration in the reforming gas (g S ) is 100% by volume or less, 80% by volume or less, 60% by volume or less, 34% by volume or less, 27% by volume or less, or 21% by volume or less. is preferred. The preferred range of oxygen concentration in the reforming gas (g S ) can be any combination of the above upper limit and the above lower limit.
また、本実施形態において、改質用ガス(gS)が酸素を含む気体である場合、容器部4内に連通するように設けられた供給口8を介して容器部4内へ供給され、供給口8における毎分当たり容器部4内へ供給される気体中に含まれる酸素濃度が1~21体積%の範囲であることが好ましい。
供給口8における毎分当たり容器部4内へ供給される気体中に含まれる酸素濃度が1~21体積%の範囲であると、容器部4内(又は空間V内)を容易に気相酸化性雰囲気下にすることができる。
尚、供給口8における酸素濃度とは、供給口8の入り口から出口の間に存在する酸素濃度をいい、供給口8の近傍に酸素濃度を測定する酸素センサ(例えば、UEGO(Universal Exhaust Gas Oxygen)センサ)を取り付けてもよい。
さらには、本実施形態において、改質用ガス(gS)が不活性ガスである場合、容器部4内に連通するように設けられた供給口8を介して容器部4内へ供給され、供給口8における毎分当たり容器部4内へ供給される気体中に含まれる不活性ガス濃度が99~100体積%の範囲であることが好ましい。
供給口8における毎分当たり容器部4内へ供給される気体中に含まれる不活性ガス濃度が99~100体積%の範囲であると、容器部4内(又は空間V内)を容易に不活性ガス雰囲気下にすることができる。 Further, in the present embodiment, when the reforming gas (g S ) is a gas containing oxygen, it is supplied into the container portion 4 through the supply port 8 provided so as to communicate with the container portion 4, It is preferable that the concentration of oxygen contained in the gas supplied into the container part 4 per minute at the supply port 8 is in the range of 1 to 21% by volume.
When the concentration of oxygen contained in the gas supplied into the container part 4 per minute at the supply port 8 is in the range of 1 to 21% by volume, the inside of the container part 4 (or the inside of the space V) can be easily gas-phase oxidized. It can be made sexual.
The oxygen concentration at the supply port 8 refers to the concentration of oxygen existing between the inlet and the outlet of the supply port 8. An oxygen sensor (for example, UEGO (Universal Exhaust Gas Oxygen ) sensor) may be attached.
Furthermore, in the present embodiment, when the reforming gas (g S ) is an inert gas, it is supplied into the container portion 4 through the supply port 8 provided so as to communicate with the container portion 4, It is preferable that the concentration of the inert gas contained in the gas supplied into the container portion 4 per minute at the supply port 8 is in the range of 99 to 100% by volume.
When the inert gas concentration contained in the gas supplied into the container part 4 per minute at the supply port 8 is in the range of 99 to 100% by volume, the inside of the container part 4 (or the inside of the space V) can be easily made inert. It can be under an active gas atmosphere.
供給口8における毎分当たり容器部4内へ供給される気体中に含まれる酸素濃度が1~21体積%の範囲であると、容器部4内(又は空間V内)を容易に気相酸化性雰囲気下にすることができる。
尚、供給口8における酸素濃度とは、供給口8の入り口から出口の間に存在する酸素濃度をいい、供給口8の近傍に酸素濃度を測定する酸素センサ(例えば、UEGO(Universal Exhaust Gas Oxygen)センサ)を取り付けてもよい。
さらには、本実施形態において、改質用ガス(gS)が不活性ガスである場合、容器部4内に連通するように設けられた供給口8を介して容器部4内へ供給され、供給口8における毎分当たり容器部4内へ供給される気体中に含まれる不活性ガス濃度が99~100体積%の範囲であることが好ましい。
供給口8における毎分当たり容器部4内へ供給される気体中に含まれる不活性ガス濃度が99~100体積%の範囲であると、容器部4内(又は空間V内)を容易に不活性ガス雰囲気下にすることができる。 Further, in the present embodiment, when the reforming gas (g S ) is a gas containing oxygen, it is supplied into the container portion 4 through the supply port 8 provided so as to communicate with the container portion 4, It is preferable that the concentration of oxygen contained in the gas supplied into the container part 4 per minute at the supply port 8 is in the range of 1 to 21% by volume.
When the concentration of oxygen contained in the gas supplied into the container part 4 per minute at the supply port 8 is in the range of 1 to 21% by volume, the inside of the container part 4 (or the inside of the space V) can be easily gas-phase oxidized. It can be made sexual.
The oxygen concentration at the supply port 8 refers to the concentration of oxygen existing between the inlet and the outlet of the supply port 8. An oxygen sensor (for example, UEGO (Universal Exhaust Gas Oxygen ) sensor) may be attached.
Furthermore, in the present embodiment, when the reforming gas (g S ) is an inert gas, it is supplied into the container portion 4 through the supply port 8 provided so as to communicate with the container portion 4, It is preferable that the concentration of the inert gas contained in the gas supplied into the container portion 4 per minute at the supply port 8 is in the range of 99 to 100% by volume.
When the inert gas concentration contained in the gas supplied into the container part 4 per minute at the supply port 8 is in the range of 99 to 100% by volume, the inside of the container part 4 (or the inside of the space V) can be easily made inert. It can be under an active gas atmosphere.
また、改質用ガス(gS)の供給方法及び容器部4内の気体(gd)の排出方法としては、公知の手段を採用できる。例えば、改質用ガス(gS)を圧縮して供給する圧送装置(例えば、圧送ポンプ)を、圧送管体を介して供給口8に流体的に接続することにより、改質用ガス(gS)を供給できる。さらには、排出口9に管体を介して、吸引装置を流体的に接続することにより、容器部4内(又は空間V内)の気体(gd)を排出できる。
尚、容器部4における供給口8の位置は特に制限されることなく、例えば、投入口10の近傍のように、改質処理装置1の上部から改質用ガス(gS)(例えば、酸素、酸素を全体の1体積%以上含む気体又は不活性ガス)を供給してもよい。例えば、改質用ガス(gS)が酸素を含む気体である場合、原料PAS樹脂を含む原料成分と酸素との接触確率を考慮すると、供給口8及び排出口9は、両者の距離が容器部4内で最大値となりうる(略)対角線上に設けられることが好ましい。図1では、原料PAS樹脂を含む原料成分と改質用ガス(gS)との接触確率を考慮して、容器部4における供給口8の位置は蓋部11側(容器部4の下部)に設けている。
尚、熱媒又は冷媒の注入口あるいは排出口6,7は、空間Vと連通されていないことが好ましい。 Further, as a method for supplying the reforming gas (g S ) and a method for discharging the gas (g d ) in the container portion 4, known means can be employed. For example, by fluidly connecting a compressing device (for example, a compressing pump) for compressing and supplying the reforming gas (g S ) to the supply port 8 via the compressing pipe body, the reforming gas (g S ) can be supplied. Furthermore, by fluidly connecting a suction device to the discharge port 9 via a tubular body, the gas (g d ) inside the container part 4 (or inside the space V) can be discharged.
The position of the supply port 8 in the container part 4 is not particularly limited. For example, the reforming gas (g S ) (for example, oxygen , a gas containing 1% by volume or more of oxygen or an inert gas) may be supplied. For example, when the reforming gas (g S ) is a gas containing oxygen, considering the probability of contact between the raw material components including the raw material PAS resin and oxygen, the distance between the supply port 8 and the discharge port 9 is the container It is preferably provided on a (substantially) diagonal line that can have the maximum value in the portion 4 . In FIG. 1, the position of the supply port 8 in the container part 4 is on thelid part 11 side (lower part of the container part 4) in consideration of the contact probability between the raw material components including the raw material PAS resin and the reforming gas (g S ). is set in
In addition, it is preferable that the inlets or outlets 6 and 7 for the heat medium or refrigerant are not communicated with the space V. As shown in FIG.
尚、容器部4における供給口8の位置は特に制限されることなく、例えば、投入口10の近傍のように、改質処理装置1の上部から改質用ガス(gS)(例えば、酸素、酸素を全体の1体積%以上含む気体又は不活性ガス)を供給してもよい。例えば、改質用ガス(gS)が酸素を含む気体である場合、原料PAS樹脂を含む原料成分と酸素との接触確率を考慮すると、供給口8及び排出口9は、両者の距離が容器部4内で最大値となりうる(略)対角線上に設けられることが好ましい。図1では、原料PAS樹脂を含む原料成分と改質用ガス(gS)との接触確率を考慮して、容器部4における供給口8の位置は蓋部11側(容器部4の下部)に設けている。
尚、熱媒又は冷媒の注入口あるいは排出口6,7は、空間Vと連通されていないことが好ましい。 Further, as a method for supplying the reforming gas (g S ) and a method for discharging the gas (g d ) in the container portion 4, known means can be employed. For example, by fluidly connecting a compressing device (for example, a compressing pump) for compressing and supplying the reforming gas (g S ) to the supply port 8 via the compressing pipe body, the reforming gas (g S ) can be supplied. Furthermore, by fluidly connecting a suction device to the discharge port 9 via a tubular body, the gas (g d ) inside the container part 4 (or inside the space V) can be discharged.
The position of the supply port 8 in the container part 4 is not particularly limited. For example, the reforming gas (g S ) (for example, oxygen , a gas containing 1% by volume or more of oxygen or an inert gas) may be supplied. For example, when the reforming gas (g S ) is a gas containing oxygen, considering the probability of contact between the raw material components including the raw material PAS resin and oxygen, the distance between the supply port 8 and the discharge port 9 is the container It is preferably provided on a (substantially) diagonal line that can have the maximum value in the portion 4 . In FIG. 1, the position of the supply port 8 in the container part 4 is on the
In addition, it is preferable that the inlets or outlets 6 and 7 for the heat medium or refrigerant are not communicated with the space V. As shown in FIG.
図1では、説明の便宜上、開閉自在な蓋部11は閉じた状態を示している。容器部4の底部に設けられた蓋部11を開けることにより、容器部4内に収容されている内容物(原料PAS樹脂を含む原料成分、又は前記原料成分が化学反応した生成物Pなど)を簡便に短時間で回収することができる。また、開閉自在な蓋部11を容器部4の底部に設けているため、改質処理(例えば、酸化架橋反応又は低分子量成分の揮発)直後の生成物Pを短時間で回収できるだけでなく、例えば、反応途中の内容物であっても短時間で回収できる。これにより、改質処理(例えば、架橋反応)を自在に停止させることができることにより、分子量を制御しやすくなる。その結果、最終製品の粘度調整も容易になりうる。また、改質化されたPAS樹脂の高い収率で製造することができる。特に、第1開口部OP1の直径d1と第2開口部OP2の直径d2との比率であるd1/d2が、1.1~10.0の範囲であると、内容物をより短時間で回収できる。
本実施形態において、原料成分を循環させる循環流が容器内に形成されることにより、原料PAS樹脂同士の凝集を抑制しながら、当該原料PAS樹脂を改質するため、特に、容器部4の底部の蓋部11を被覆するようなPAS樹脂固着物の発生を低減することができる。
蓋部11の開閉機構としては特に制限されず、例えば、容器部4の第2開口部OP2に接続される接続位置と容器部4の第2開口部OP2から離間した所定の離間位置との間で離接方向にスライド移動自在に構成する開閉機構、又は蓋部11と容器部4とを連結する蝶番等の回動部材によって、蓋部11は容器部4に対して回動自在に軸支される開閉機構等が挙げられる。また、蓋部11と容器部4とは公知の係止部によって固定してもよい。 For convenience of explanation, FIG. 1 shows the openable/closable lid portion 11 in a closed state. By opening the lid portion 11 provided on the bottom portion of the container portion 4, the contents contained in the container portion 4 (raw material components including the raw material PAS resin, products P obtained by chemical reaction of the raw material components, etc.) can be easily collected in a short time. In addition, since the openable and closable lid portion 11 is provided at the bottom portion of the container portion 4, not only can the product P immediately after the modification treatment (for example, oxidative cross-linking reaction or volatilization of low-molecular-weight components) be recovered in a short time, For example, even contents in the middle of the reaction can be recovered in a short time. This makes it easier to control the molecular weight by freely stopping the modification treatment (for example, the cross-linking reaction). As a result, viscosity control of the final product can also be facilitated. Also, a high yield of modified PAS resin can be produced. In particular, when the ratio d 1 /d 2 of the diameter d 1 of the first opening OP 1 and the diameter d 2 of the second opening OP 2 is in the range of 1.1 to 10.0, the contents can be more easily dissipated. It can be collected in a short time.
In the present embodiment, a circulation flow for circulating the raw material components is formed in the container, thereby suppressing aggregation of the raw material PAS resin and modifying the raw material PAS resin. It is possible to reduce the occurrence of PAS resin sticking matter that covers thelid portion 11 of the.
The opening/closing mechanism of thelid portion 11 is not particularly limited. The lid portion 11 is rotatably pivotally supported with respect to the container portion 4 by an opening/closing mechanism configured to be slidably movable in the separating and contacting direction, or by a rotating member such as a hinge that connects the lid portion 11 and the container portion 4 . An opening and closing mechanism, etc., which are used, are mentioned. Also, the lid portion 11 and the container portion 4 may be fixed by a known locking portion.
本実施形態において、原料成分を循環させる循環流が容器内に形成されることにより、原料PAS樹脂同士の凝集を抑制しながら、当該原料PAS樹脂を改質するため、特に、容器部4の底部の蓋部11を被覆するようなPAS樹脂固着物の発生を低減することができる。
蓋部11の開閉機構としては特に制限されず、例えば、容器部4の第2開口部OP2に接続される接続位置と容器部4の第2開口部OP2から離間した所定の離間位置との間で離接方向にスライド移動自在に構成する開閉機構、又は蓋部11と容器部4とを連結する蝶番等の回動部材によって、蓋部11は容器部4に対して回動自在に軸支される開閉機構等が挙げられる。また、蓋部11と容器部4とは公知の係止部によって固定してもよい。 For convenience of explanation, FIG. 1 shows the openable/
In the present embodiment, a circulation flow for circulating the raw material components is formed in the container, thereby suppressing aggregation of the raw material PAS resin and modifying the raw material PAS resin. It is possible to reduce the occurrence of PAS resin sticking matter that covers the
The opening/closing mechanism of the
図1に示す改質処理装置1では、好ましい形態の一例として、撹拌部材2と気体の排出口9との間(図1の天面側)に偏流板3を設けている。偏流板3は、撹拌部材2の回転により、容器部4の内壁に沿って、蓋部11側から偏流板3側に移動してきた原料PAS樹脂を含む原料成分を回転軸2a側(第1開口部OP1の中央部)に偏在させて落下させる板材でありうる。
これにより、原料成分が循環する循環流を容器部4内により形成しやすくなるため、高温下で融着しやすいPAS樹脂同士の凝集を効果的に抑制しつつ、容器の内壁に密着したPAS樹脂固着物の形成をより抑制・防止しうる。 In the reformingtreatment apparatus 1 shown in FIG. 1, as an example of a preferred embodiment, a drift plate 3 is provided between the stirring member 2 and the gas discharge port 9 (top surface side in FIG. 1). Due to the rotation of the stirring member 2, the drift plate 3 moves the raw material components including the raw material PAS resin that have moved from the lid portion 11 side to the drift plate 3 side along the inner wall of the container portion 4 toward the rotating shaft 2a side (first opening). It can be a plate material that is unevenly distributed in the central part of the part OP1 and dropped.
As a result, it becomes easier to form a circulation flow in which the raw material components circulate in the container part 4, so that the PAS resin that is in close contact with the inner wall of the container while effectively suppressing the aggregation of the PAS resins that tend to fuse at high temperatures. Formation of sticking matter can be suppressed and prevented.
これにより、原料成分が循環する循環流を容器部4内により形成しやすくなるため、高温下で融着しやすいPAS樹脂同士の凝集を効果的に抑制しつつ、容器の内壁に密着したPAS樹脂固着物の形成をより抑制・防止しうる。 In the reforming
As a result, it becomes easier to form a circulation flow in which the raw material components circulate in the container part 4, so that the PAS resin that is in close contact with the inner wall of the container while effectively suppressing the aggregation of the PAS resins that tend to fuse at high temperatures. Formation of sticking matter can be suppressed and prevented.
容器部4の外表面を覆う温度調節ジャケット5は、内部に熱媒又は冷媒を収容する空間を有しており、温度調節ジャケット5による温度調節は、熱媒又は冷媒の注入口あるいは排出口6,7内へ、熱媒又は冷媒を注入・排出することにより行われる。当該注入口あるいは排出口6,7は、いずれを熱媒又は冷媒の注入口としてもよく、又はいずれを熱媒又は冷媒の排出口としてもよい。より具体的には、温度調節ジャケット5内に連通された熱媒又は冷媒の注入口あるいは排出口6又は7の一方に流入管(図示せず)を取り付け、他方に流出管(図示せず)を取り付けるとともに、流入管(図示せず)及び流出管(図示せず)に対して熱媒又は冷媒循環機(図示せず)を接続して、熱媒又は冷媒を圧送することにより、容器部4内の温度を調節することができる。
例えば、本実施形態の一例としては、図1の熱媒又は冷媒の注入口あるいは排出口6を注入口し、当該注入口6の下部側の図1の熱媒又は冷媒の注入口あるいは排出口7を排出口とすることが挙げられる。
上記熱媒の例としては、所望の温度によって適宜選択ことができ、100℃以上の温度で液体であるものであれば使用することができる。エチレングリコール等のグリコール系又はシリコーン系の熱媒体油、加圧水(例えば150℃の水)、沸点が100℃以上である蒸気を使用することができる。
上記冷媒の例としては、所望の温度によって適宜選択ことができ、例えば、アンモニア、イソブタン、炭化水素、代替フロン等を使用することができる。
このような温度調節ジャケット5により、例えば、容器4内の原料成分の温度を100~280℃の温度範囲に調節することができる。この温度範囲であれば、原料成分中の原料PAS樹脂の融点Tm又は原料成分全体の融点近傍まで容易に加熱することができる。 Atemperature control jacket 5 covering the outer surface of the container part 4 has a space for accommodating a heat medium or a coolant inside. , 7 by injecting and discharging a heat medium or a refrigerant. Either of the inlets or outlets 6, 7 may serve as an inlet for the heat medium or the refrigerant, or may serve as an outlet for the heat medium or the refrigerant. More specifically, an inflow pipe (not shown) is attached to one of the inlets or outlets 6 or 7 of the heat medium or refrigerant communicating with the temperature control jacket 5, and an outflow pipe (not shown) is attached to the other. is attached, a heat medium or refrigerant circulator (not shown) is connected to the inflow pipe (not shown) and the outflow pipe (not shown), and the heat medium or refrigerant is pumped to the container part 4 can be adjusted.
For example, as an example of this embodiment, the heat medium or refrigerant inlet or outlet 6 in FIG. 7 may be used as an outlet.
Examples of the heat medium can be appropriately selected depending on the desired temperature, and any heat medium that is liquid at a temperature of 100° C. or higher can be used. Glycol-based or silicone-based heat medium oil such as ethylene glycol, pressurized water (for example, water at 150° C.), and steam having a boiling point of 100° C. or higher can be used.
Examples of the above refrigerant can be appropriately selected depending on the desired temperature, and for example, ammonia, isobutane, hydrocarbons, CFC substitutes, etc. can be used.
With such atemperature control jacket 5, for example, the temperature of the raw material components in the container 4 can be controlled within a temperature range of 100 to 280.degree. Within this temperature range, the raw material PAS resin in the raw material components can be easily heated to near the melting point Tm or the entire raw material components.
例えば、本実施形態の一例としては、図1の熱媒又は冷媒の注入口あるいは排出口6を注入口し、当該注入口6の下部側の図1の熱媒又は冷媒の注入口あるいは排出口7を排出口とすることが挙げられる。
上記熱媒の例としては、所望の温度によって適宜選択ことができ、100℃以上の温度で液体であるものであれば使用することができる。エチレングリコール等のグリコール系又はシリコーン系の熱媒体油、加圧水(例えば150℃の水)、沸点が100℃以上である蒸気を使用することができる。
上記冷媒の例としては、所望の温度によって適宜選択ことができ、例えば、アンモニア、イソブタン、炭化水素、代替フロン等を使用することができる。
このような温度調節ジャケット5により、例えば、容器4内の原料成分の温度を100~280℃の温度範囲に調節することができる。この温度範囲であれば、原料成分中の原料PAS樹脂の融点Tm又は原料成分全体の融点近傍まで容易に加熱することができる。 A
For example, as an example of this embodiment, the heat medium or refrigerant inlet or outlet 6 in FIG. 7 may be used as an outlet.
Examples of the heat medium can be appropriately selected depending on the desired temperature, and any heat medium that is liquid at a temperature of 100° C. or higher can be used. Glycol-based or silicone-based heat medium oil such as ethylene glycol, pressurized water (for example, water at 150° C.), and steam having a boiling point of 100° C. or higher can be used.
Examples of the above refrigerant can be appropriately selected depending on the desired temperature, and for example, ammonia, isobutane, hydrocarbons, CFC substitutes, etc. can be used.
With such a
次に、図2及び図3を参照しながら、撹拌部材2の好ましい形態について説明する。
図2は、図1に示す撹拌部材2の要部斜視図である。図2において、撹拌部材2は、天面板Tの中心部分に接続固定された回転軸2aと、回転軸2aに取付けられた複数の支持材(2b1,2b2,2b3,2b4,2b5,2b6,2b7)と、複数の支持材(2b1,2b2,2b3,2b4,2b5,2b6,2b7)に固定された2枚の帯状の回転翼2c(撹拌部材2に使用される)と、を備えている。また、支持材(2b1,2b3,2b5)と、支持材(2b2,2b6)とは、互いの長手方向が直交して回転軸2aの径方向外方に延在している。さらには、支持材2b7の長手方向が、支持材(2b2,2b6)の長手方向に対して所定角傾くように回転軸2aに取付けられている。
そして、帯状の回転翼2cは、回転軸2aを中心に帯体が螺旋形状を描く連続した螺旋状の羽根である。さらに図2において、撹拌部材2は、天面板Tと支持材2b1との間に、回転軸2aに取り付けられた支持材3aと、当該支持材3aのそれぞれに固定された1対の偏流板3とを有する。 Next, a preferred form of the stirringmember 2 will be described with reference to FIGS. 2 and 3. FIG.
FIG. 2 is a perspective view of essential parts of the stirringmember 2 shown in FIG. In FIG. 2, the stirring member 2 includes a rotary shaft 2a connected and fixed to the central portion of the top plate T, and a plurality of support members (2b 1 , 2b 2 , 2b 3 , 2b 4 , 2b ) attached to the rotary shaft 2a. 5 , 2b 6 , 2b 7 ) and two strip - shaped rotor blades 2c ( stirring (used in member 2). Further, the support members (2b 1 , 2b 3 , 2b 5 ) and the support members (2b 2 , 2b 6 ) are perpendicular to each other in their longitudinal directions and extend outward in the radial direction of the rotating shaft 2a. . Furthermore, the support member 2b7 is attached to the rotating shaft 2a such that the longitudinal direction thereof is inclined at a predetermined angle with respect to the longitudinal direction of the support members ( 2b2 , 2b6 ).
The strip-shapedrotor blade 2c is a continuous spiral blade in which the strip draws a spiral shape around the rotation shaft 2a. Further, in FIG. 2, the stirring member 2 includes a support member 3a attached to the rotating shaft 2a between the top plate T and the support member 2b1 , and a pair of deflection plates fixed to each of the support members 3a. 3.
図2は、図1に示す撹拌部材2の要部斜視図である。図2において、撹拌部材2は、天面板Tの中心部分に接続固定された回転軸2aと、回転軸2aに取付けられた複数の支持材(2b1,2b2,2b3,2b4,2b5,2b6,2b7)と、複数の支持材(2b1,2b2,2b3,2b4,2b5,2b6,2b7)に固定された2枚の帯状の回転翼2c(撹拌部材2に使用される)と、を備えている。また、支持材(2b1,2b3,2b5)と、支持材(2b2,2b6)とは、互いの長手方向が直交して回転軸2aの径方向外方に延在している。さらには、支持材2b7の長手方向が、支持材(2b2,2b6)の長手方向に対して所定角傾くように回転軸2aに取付けられている。
そして、帯状の回転翼2cは、回転軸2aを中心に帯体が螺旋形状を描く連続した螺旋状の羽根である。さらに図2において、撹拌部材2は、天面板Tと支持材2b1との間に、回転軸2aに取り付けられた支持材3aと、当該支持材3aのそれぞれに固定された1対の偏流板3とを有する。 Next, a preferred form of the stirring
FIG. 2 is a perspective view of essential parts of the stirring
The strip-shaped
撹拌部材2が螺旋形状の回転翼2cを有すると、当該回転翼2cが回転することによって、螺旋状の渦をより効果的に形成するため、容器部4の内壁に沿って容器部4の底部から上部、更に前記上部から容器部4の中心部を介して前記底部へと原料成分が循環する循環流をより形成しやすくなる。
本実施形態において、撹拌部材2が螺旋状の回転翼2cを有する場合、その螺旋の巻き数は特に制限されず、1~10回が好ましい。例えば、図2に示す帯状の回転翼2cの螺旋は、巻き数が1.25回である。また、前記螺旋の全長は、好ましくは1~50m、より好ましくは1.1~30m、さらに好ましくは1.2~15mであることが好ましい。前記螺旋の始点半径(例えば、支持材2b1の長さの1/2)は、第1開口部の直径d1の25~49.5%であることが好ましい。前記螺旋の終点半径(例えば、支持材2b7の長さの1/2)は、第2開口部OP2の直径d1の25~49.5%であることが好ましい。 When the stirringmember 2 has the helical rotor blades 2c, the rotation of the rotor blades 2c forms a helical vortex more effectively. It becomes easier to form a circulation flow in which the raw material components circulate from the top to the bottom through the center of the container part 4 from the top to the bottom.
In the present embodiment, when the stirringmember 2 has a helical rotor blade 2c, the number of turns of the spiral is not particularly limited, and is preferably 1 to 10 turns. For example, the spiral of the strip-shaped rotor blade 2c shown in FIG. 2 has 1.25 turns. Also, the total length of the spiral is preferably 1 to 50 m, more preferably 1.1 to 30 m, even more preferably 1.2 to 15 m. It is preferable that the starting radius of the spiral (for example, 1/2 of the length of the support 2b1 ) is 25-49.5% of the diameter d1 of the first opening. The end point radius of the spiral (for example, half the length of the support member 2b7 ) is preferably 25-49.5% of the diameter d1 of the second opening OP2.
本実施形態において、撹拌部材2が螺旋状の回転翼2cを有する場合、その螺旋の巻き数は特に制限されず、1~10回が好ましい。例えば、図2に示す帯状の回転翼2cの螺旋は、巻き数が1.25回である。また、前記螺旋の全長は、好ましくは1~50m、より好ましくは1.1~30m、さらに好ましくは1.2~15mであることが好ましい。前記螺旋の始点半径(例えば、支持材2b1の長さの1/2)は、第1開口部の直径d1の25~49.5%であることが好ましい。前記螺旋の終点半径(例えば、支持材2b7の長さの1/2)は、第2開口部OP2の直径d1の25~49.5%であることが好ましい。 When the stirring
In the present embodiment, when the stirring
帯状の回転翼2cの断面形状2dとしては、薄い板形体、(略)円形体、(略)楕円形、又は三角形等の多角形等が例示できる。三次元的構造を備えた帯状の回転翼2cが回転することによって容器部4内の原料成分はより効率よく上下方向に撹拌される。
回転翼2cの外側端面と容器部4の内周壁との隙間は第1開口部OP1の直径d1の1~50%の範囲、好ましくは1~10%に設定することが好ましい。当該回転翼2cの外側端面と容器部4の内周壁との離間距離が上記範囲であると、撹拌部材2と容器部4との摩擦による金属粉の生成又はPAS樹脂固着物の形成を抑制・防止することができる。
尚、図2においても、回転軸2aは太さが異なる2本の棒状体から構成されているが、回転軸2aは同一の太さの棒状体でも、あるいはテーパー状の棒状体でもよい。さらには、図2において、支持材(2b1,2b2,2b3,2b4,2b5,2b6,2b7)は、当該支持材の長軸方向が回転軸2aを中心として径方向外方に向くよう7本取り付けられた例を示しているが、帯状の回転翼2cが描く螺旋の始点半径、終点半径、巻き数又は全長、例えば、上述した螺旋の始点半径、終点半径、巻き数又は全長の各範囲を採用して、支持材(2b1,2b2,2b3,2b4,2b5,2b6,2b7)の長さ、取り付け方向、又は本数は適宜変更することができる。また、回転軸2aに対する支持材(例えば、2b1~2b7,3bなど)の取り付け方法は、回転軸2aに対して前記支持材が強固に固定されていれば特に制限されることはなく、例えば、溶接による固定、又は回転軸2aに貫通孔を形成し、当該貫通孔内に前記支持材を挿通して固定部材又は溶接等で固定する方法が挙げられる。
そして、図2において、回転軸2aに対して径方向外方に支持材3a及び1対の偏流板3が取り付けられた例を示しているが、支持材3aの本数、偏流板3の枚数、及びこれらの取り付け方法などは適宜変更することができる。 Examples of thecross-sectional shape 2d of the belt-like rotor blade 2c include a thin plate, a (substantially) circular body, a (substantially) elliptical shape, and a polygonal shape such as a triangle. The rotation of the strip-shaped rotor blade 2c having a three-dimensional structure agitates the raw material components in the container 4 more efficiently in the vertical direction.
The gap between the outer end surface of therotor blade 2c and the inner peripheral wall of the container portion 4 is preferably set to a range of 1 to 50%, preferably 1 to 10%, of the diameter d1 of the first opening OP1. When the distance between the outer end surface of the rotor blade 2c and the inner peripheral wall of the container portion 4 is within the above range, the generation of metal powder or the formation of PAS resin deposits due to friction between the stirring member 2 and the container portion 4 is suppressed. can be prevented.
Also in FIG. 2, therotating shaft 2a is composed of two rod-shaped bodies having different thicknesses, but the rotating shaft 2a may be a rod-shaped body having the same thickness or a tapered rod-shaped body. Furthermore, in FIG. 2, the support members (2b 1 , 2b 2 , 2b 3 , 2b 4 , 2b 5 , 2b 6 , 2b 7 ) are configured so that the major axis direction of the support member is outside the radial direction around the rotation axis 2a. Although an example in which seven are attached facing the direction is shown, the start point radius, end point radius, number of turns or total length of the spiral drawn by the belt-shaped rotor blade 2c, for example, the start point radius, end point radius, number of turns of the spiral described above Alternatively, by adopting each range of the total length, the length, mounting direction, or number of the support members (2b 1 , 2b 2 , 2b 3 , 2b 4 , 2b 5 , 2b 6 , 2b 7 ) can be changed as appropriate. . In addition, the method of attaching the supporting members (for example, 2b 1 to 2b 7 , 3b, etc.) to the rotating shaft 2a is not particularly limited as long as the supporting members are firmly fixed to the rotating shaft 2a. For example, there is a method of fixing by welding, or a method of forming a through hole in the rotating shaft 2a, inserting the support material into the through hole, and fixing with a fixing member or welding.
FIG. 2 shows an example in which asupport member 3a and a pair of deflection plates 3 are attached radially outwardly of the rotating shaft 2a. And these mounting methods can be changed as appropriate.
回転翼2cの外側端面と容器部4の内周壁との隙間は第1開口部OP1の直径d1の1~50%の範囲、好ましくは1~10%に設定することが好ましい。当該回転翼2cの外側端面と容器部4の内周壁との離間距離が上記範囲であると、撹拌部材2と容器部4との摩擦による金属粉の生成又はPAS樹脂固着物の形成を抑制・防止することができる。
尚、図2においても、回転軸2aは太さが異なる2本の棒状体から構成されているが、回転軸2aは同一の太さの棒状体でも、あるいはテーパー状の棒状体でもよい。さらには、図2において、支持材(2b1,2b2,2b3,2b4,2b5,2b6,2b7)は、当該支持材の長軸方向が回転軸2aを中心として径方向外方に向くよう7本取り付けられた例を示しているが、帯状の回転翼2cが描く螺旋の始点半径、終点半径、巻き数又は全長、例えば、上述した螺旋の始点半径、終点半径、巻き数又は全長の各範囲を採用して、支持材(2b1,2b2,2b3,2b4,2b5,2b6,2b7)の長さ、取り付け方向、又は本数は適宜変更することができる。また、回転軸2aに対する支持材(例えば、2b1~2b7,3bなど)の取り付け方法は、回転軸2aに対して前記支持材が強固に固定されていれば特に制限されることはなく、例えば、溶接による固定、又は回転軸2aに貫通孔を形成し、当該貫通孔内に前記支持材を挿通して固定部材又は溶接等で固定する方法が挙げられる。
そして、図2において、回転軸2aに対して径方向外方に支持材3a及び1対の偏流板3が取り付けられた例を示しているが、支持材3aの本数、偏流板3の枚数、及びこれらの取り付け方法などは適宜変更することができる。 Examples of the
The gap between the outer end surface of the
Also in FIG. 2, the
FIG. 2 shows an example in which a
図3は、撹拌部材2の別の実施形態を示す要部斜視図である。図3における撹拌部材2は、天面板Tの中心部分に接続固定された回転軸2aと、回転軸2aに取付けられた複数の支持材(2b1,2b2,2b3,2b4,2b5,2b6,2b7)と、複数の支持材(2b1,2b2,2b3,2b4,2b5,2b6,2b7)に固定された1枚の帯状の回転翼2cと、を備えている。そして、当該1枚の帯状の回転翼2cは、回転軸2aを中心に帯体が螺旋形状を描く連続した螺旋状の羽根である。尚、図3に示す撹拌部材2と図2に示す撹拌部材2との主要な違いは、複数の支持材(2b1,2b2,2b3,2b4,2b5,2b6,2b7)に固定された帯状の回転翼2cの枚数である。より詳細には、図2に示す撹拌部材2では、回転翼2cとして2枚の帯状体を、第2開口部側に向かって先細状になるよう、回転軸2aを中心に螺旋状に巻き付ける形態である。一方、図3に示す撹拌部材2では、回転翼2cとして1枚の帯状体を、第2開口部側に向かって先細状になるよう、回転軸2aを中心に螺旋状に巻き付ける形態である。
本実施形態における撹拌部材2が螺旋状の回転翼2cを有する場合、その螺旋を形成する帯体の本数は特に制限されることはなく、例えば、1~10本であることが好ましい。
撹拌部材2が螺旋形状の回転翼2cを有すると、当該回転翼2cが回転することによって、螺旋状の渦をより効果的に形成するため、容器部4の内壁に沿って容器部4の底部から上部、更に前記上部から容器部4の中心部を介して前記底部へと原料成分が循環する循環流をより形成しやすくなる。 FIG. 3 is a perspective view of essential parts showing another embodiment of the stirringmember 2. As shown in FIG. The stirring member 2 in FIG. 3 includes a rotary shaft 2a connected and fixed to the central portion of the top plate T, and a plurality of support members (2b 1 , 2b 2 , 2b 3 , 2b 4 , 2b 5 ) attached to the rotary shaft 2a. , 2b 6 , 2b 7 ) and one belt-like rotor 2c fixed to a plurality of support members (2b 1 , 2b 2 , 2b 3 , 2b 4 , 2b 5 , 2b 6 , 2b 7 ), I have. The single strip-shaped rotary blade 2c is a continuous spiral blade in which the strip draws a spiral shape around the rotary shaft 2a. The main difference between the stirring member 2 shown in FIG . 3 and the stirring member 2 shown in FIG . is the number of strip-shaped rotor blades 2c fixed to the . More specifically, in the stirring member 2 shown in FIG. 2, two belt-like bodies are spirally wound around the rotating shaft 2a so as to taper toward the second opening side as the rotor blades 2c. is. On the other hand, in the stirring member 2 shown in FIG. 3, a belt-like body as the rotor blade 2c is spirally wound around the rotating shaft 2a so as to taper toward the second opening side.
When the stirringmember 2 in the present embodiment has the helical rotor blades 2c, the number of strips forming the spiral is not particularly limited, and is preferably 1 to 10, for example.
When the stirringmember 2 has the helical rotor blades 2c, the rotation of the rotor blades 2c forms a helical vortex more effectively. It becomes easier to form a circulation flow in which the raw material components circulate from the top to the bottom through the center of the container part 4 from the top to the bottom.
本実施形態における撹拌部材2が螺旋状の回転翼2cを有する場合、その螺旋を形成する帯体の本数は特に制限されることはなく、例えば、1~10本であることが好ましい。
撹拌部材2が螺旋形状の回転翼2cを有すると、当該回転翼2cが回転することによって、螺旋状の渦をより効果的に形成するため、容器部4の内壁に沿って容器部4の底部から上部、更に前記上部から容器部4の中心部を介して前記底部へと原料成分が循環する循環流をより形成しやすくなる。 FIG. 3 is a perspective view of essential parts showing another embodiment of the stirring
When the stirring
When the stirring
次に、改質処理装置1を用いた好ましい改質化されたPAS樹脂の製造例について図1及び図4を用いて説明する。
原料PAS樹脂を含む原料成分が投入口10からテーパー状の容器部4内の空間Vに配合されて、二重螺旋型の回転翼を備えた撹拌部材2が回転軸2aを中心に回転すると、図1の矢印に示すように、容器部4の内壁に沿って容器部4の底部から上部、更に容器部4の内壁の上部から容器部4の中心側(回転軸2a側)に原料PAS樹脂を含む原料成分が移動し、そしてさらに、容器部4の中心部の上部から容器部4の底部へと当該原料成分が循環する循環流を改質処理装置1の撹拌機構が形成しうる。この際、容器部4内への改質用ガス(gS)が気体の供給口8から所定量供給され、必要により容器部4内の気体(gd)が気体の排出口9を介して排出されることにより、容器部4内を所定量の改質用ガス(gS)雰囲気下に制御して、原料PAS樹脂を含む原料成分を前記循環流により循環させる。そして、温度調節ジャケット5を用いて原料PAS樹脂の融点Tm未満(例えば、100~280℃)に原料PAS樹脂を含む原料成分を所定時間加熱することにより、改質化されたPAS樹脂を製造する。その後、図4に示すように、開閉自在な蓋部11を開けて、生成物Pである改質化されたPAS樹脂を回収することができる。また、例えば、図4に示すように、必要により、気体の排出口9にコンデンサ12と真空ポンプ13を接続して、容器部4内の気体(gd)を排出する、あるいはコンデンサ12を介して気体の排出口9と流体的に接続した真空ポンプ13を用いて、容器部4内を減圧下にして改質用ガス(gS)を気体の供給口8から供給してもよい。
さらに、前記改質用ガス(gS)の毎分当たりの容器部4内への供給量は、前記容器部4の容積の0.1~100体積%の範囲内に制御する。 Next, an example of producing a preferable modified PAS resin using themodification processing apparatus 1 will be described with reference to FIGS. 1 and 4. FIG.
When the raw material components including the raw PAS resin are blended from theinlet 10 into the space V in the tapered container portion 4, and the stirring member 2 equipped with the double-helical rotor blades rotates around the rotating shaft 2a, As indicated by the arrow in FIG. 1, the raw material PAS resin is distributed along the inner wall of the container 4 from the bottom to the upper part of the container 4, and further from the upper part of the inner wall of the container 4 toward the center of the container 4 (rotating shaft 2a side). The stirring mechanism of the reforming apparatus 1 can form a circulating flow in which the raw material components containing move, and furthermore, the raw material components circulate from the upper part of the center part of the container part 4 to the bottom part of the container part 4 . At this time, a predetermined amount of reforming gas (g s ) is supplied into the container 4 from the gas supply port 8, and if necessary, the gas (g d ) in the container 4 is discharged through the gas discharge port 9. By discharging, the inside of the container part 4 is controlled to have a predetermined amount of reforming gas (g S ) atmosphere, and the raw material components including the raw material PAS resin are circulated by the circulation flow. Then, the modified PAS resin is produced by heating the raw material components containing the raw PAS resin for a predetermined time below the melting point Tm of the raw PAS resin (for example, 100 to 280° C.) using the temperature control jacket 5. do. Thereafter, as shown in FIG. 4, the openable and closable lid portion 11 is opened, and the modified PAS resin, which is the product P, can be recovered. Also, for example, as shown in FIG. A vacuum pump 13 fluidly connected to the gas outlet 9 may be used to reduce the pressure in the container 4 and supply the reforming gas (g S ) from the gas supply port 8 .
Furthermore, the amount of the reforming gas (g S ) supplied into the container portion 4 per minute is controlled within the range of 0.1 to 100% by volume of the volume of the container portion 4 .
原料PAS樹脂を含む原料成分が投入口10からテーパー状の容器部4内の空間Vに配合されて、二重螺旋型の回転翼を備えた撹拌部材2が回転軸2aを中心に回転すると、図1の矢印に示すように、容器部4の内壁に沿って容器部4の底部から上部、更に容器部4の内壁の上部から容器部4の中心側(回転軸2a側)に原料PAS樹脂を含む原料成分が移動し、そしてさらに、容器部4の中心部の上部から容器部4の底部へと当該原料成分が循環する循環流を改質処理装置1の撹拌機構が形成しうる。この際、容器部4内への改質用ガス(gS)が気体の供給口8から所定量供給され、必要により容器部4内の気体(gd)が気体の排出口9を介して排出されることにより、容器部4内を所定量の改質用ガス(gS)雰囲気下に制御して、原料PAS樹脂を含む原料成分を前記循環流により循環させる。そして、温度調節ジャケット5を用いて原料PAS樹脂の融点Tm未満(例えば、100~280℃)に原料PAS樹脂を含む原料成分を所定時間加熱することにより、改質化されたPAS樹脂を製造する。その後、図4に示すように、開閉自在な蓋部11を開けて、生成物Pである改質化されたPAS樹脂を回収することができる。また、例えば、図4に示すように、必要により、気体の排出口9にコンデンサ12と真空ポンプ13を接続して、容器部4内の気体(gd)を排出する、あるいはコンデンサ12を介して気体の排出口9と流体的に接続した真空ポンプ13を用いて、容器部4内を減圧下にして改質用ガス(gS)を気体の供給口8から供給してもよい。
さらに、前記改質用ガス(gS)の毎分当たりの容器部4内への供給量は、前記容器部4の容積の0.1~100体積%の範囲内に制御する。 Next, an example of producing a preferable modified PAS resin using the
When the raw material components including the raw PAS resin are blended from the
Furthermore, the amount of the reforming gas (g S ) supplied into the container portion 4 per minute is controlled within the range of 0.1 to 100% by volume of the volume of the container portion 4 .
尚、撹拌機構の撹拌部材2を回転させる動力として、天面板T上に回転モーター(図示せず)を取り付けてもよい。これにより、回転モーターを起動させると、例えば、図1の天面板T自体の回転又は天面板Tの中心部を相通する回転軸2aの回転により、天面板Tの中心部に接続固定された回転軸2aが回転するため、回転軸2aに取り付けた回転翼(例えば、図2の螺旋状の回転翼2c)も同様に回転して、螺旋状の渦をより効果的に形成する。その結果、容器部4の内壁に沿って容器部4の底部から上部、更に前記上部から容器部4の中心部を介して前記底部へと原料成分が循環する循環流を容易に形成しうる。
また、本実施形態において、回転翼のスクリュ回転数が10~100rpmであることが好ましく、20~90rpmであることがより好ましい。
改質処理装置1の容器部4内に原料PAS樹脂を含む原料成分を導入する方法は、特に制限されないが、ロータリーフィーダー、振動式フィーダーなどの定量フィーダーにより行ってもよい。また、原料PAS樹脂を含む原料成分はそのまま供給してもよい。
以上が、本実施形態の改質処理装置1の説明である。以下、原料PAS樹脂を含む原料成分、改質用ガス(gS)及び気体(gd)、加熱処理工程及び気体供給制御工程について説明する。 A rotary motor (not shown) may be attached on the top plate T as a power for rotating the stirringmember 2 of the stirring mechanism. As a result, when the rotary motor is started, for example, rotation of the top plate T itself in FIG. As the shaft 2a rotates, the rotor blades attached to the shaft 2a (for example, the spiral rotor blades 2c in FIG. 2) also rotate to more effectively form a spiral vortex. As a result, it is possible to easily form a circulation flow in which the raw material components circulate from the bottom to the top of the container 4 along the inner wall of the container 4 and then from the top to the bottom through the center of the container 4 .
Further, in this embodiment, the screw rotation speed of the rotor blade is preferably 10 to 100 rpm, more preferably 20 to 90 rpm.
The method of introducing the raw material components including the raw material PAS resin into the container portion 4 of the reformingapparatus 1 is not particularly limited, but may be carried out by a constant feeder such as a rotary feeder or a vibrating feeder. Moreover, the raw material components including the raw material PAS resin may be supplied as they are.
The above is the description of the reformingtreatment apparatus 1 of the present embodiment. The raw material components including the raw material PAS resin, the reforming gas (g s ) and gas (g d ), the heat treatment step, and the gas supply control step will be described below.
また、本実施形態において、回転翼のスクリュ回転数が10~100rpmであることが好ましく、20~90rpmであることがより好ましい。
改質処理装置1の容器部4内に原料PAS樹脂を含む原料成分を導入する方法は、特に制限されないが、ロータリーフィーダー、振動式フィーダーなどの定量フィーダーにより行ってもよい。また、原料PAS樹脂を含む原料成分はそのまま供給してもよい。
以上が、本実施形態の改質処理装置1の説明である。以下、原料PAS樹脂を含む原料成分、改質用ガス(gS)及び気体(gd)、加熱処理工程及び気体供給制御工程について説明する。 A rotary motor (not shown) may be attached on the top plate T as a power for rotating the stirring
Further, in this embodiment, the screw rotation speed of the rotor blade is preferably 10 to 100 rpm, more preferably 20 to 90 rpm.
The method of introducing the raw material components including the raw material PAS resin into the container portion 4 of the reforming
The above is the description of the reforming
「原料成分に含有される原料PAS樹脂」
本実施形態における原料PAS樹脂は、市販のものを購入してもよく、あるいは重合工程により得られた原料PAS樹脂を使用してもよい。
本実施形態の改質されたPAS樹脂の製造方法において使用可能な原料PAS樹脂の一態様としては、300℃における溶融粘度が、好ましくは1Pa・s以上の範囲、より好ましくは3Pa・s以上の範囲、さらに好ましくは5Pa・s以上の範囲であり、好ましくは9000Pa・s以下の範囲、より好ましくは7000Pa・s以下の範囲、さらに好ましくは4000Pa・s以下の範囲、1000Pa・s以下の範囲であるPAS樹脂が挙げられる。
また、使用可能な原料PAS樹脂の別の態様としては、好ましくはピーク分子量(Mtop)が10000以上の範囲、より好ましくはピーク分子量(Mtop)が15000以上の範囲、さらに好ましくはピーク分子量(Mtop)が20000以上の範囲であり、150000以下の範囲、より好ましくはピーク分子量(Mtop)が100000以下の範囲、さらに好ましくはピーク分子量(Mtop)が90000以下の範囲であるPAS樹脂が挙げられる。
さらには、使用可能な原料PAS樹脂の他の態様としては、好ましくは低分子量不純物の濃度が1質量%以上5質量%以下、より好ましくは低分子量不純物の濃度が1質量%以上4質量%以下、さらに好ましくは低分子量不純物の濃度が1質量%以上3質量%以下のPAS樹脂が挙げられる。
本実施形態の原料PAS樹脂として、市販又は後述の重合工程により得られた乾燥した原料PAS樹脂の粉体、又は、前記粉体を更に圧縮、粉砕して得られる凝集粒子を使用することができる。また、原料PAS樹脂の粉体又は凝集粒子を溶融混練したペレット状物を使用することもできる。上記のうち、特に原料PAS樹脂の粉体、凝集粒子、或いは、これらの混合物を原料として用いることが、原料PAS樹脂への熱伝導を良好に維持し、改質用ガス(gS)との接触面積が広がる観点から好ましい。特に、改質用ガス(gS)が酸素又は酸素を全体の1体積%以上含む気体である場合、粉体又は凝集粒子状の原料PAS樹脂を使用すると、酸素との接触面積が広がって酸化架橋反応を均一に行うことできる観点から好ましい。また、特に原料PAS樹脂として、凝集粒子を単独で使用した場合、或いは、前記混合物において凝集粒子の存在割合が多いときは、容器部内により多くの原料PAS樹脂を導入できて滞留時間を多く確保できる他、粉体の飛散によるバグフィルターの目詰まりや収率の低下を防止できる。
このような観点から、前記凝集粒子又は前記混合物は、日本工業規格 Z 8801の目開き0.3mmの試験用ふるいを通過する部分の含有量が、好ましくは50質量%以下、特に好ましくは30質量%以下となるものであることが好ましい。
尚、本明細書における「原料PAS樹脂を含む原料成分」とは、改質処理装置1に配合する原料成分の総量(100質量)に対して、原料PAS樹脂の占める含有量が50質量%以上、好ましくは60質量%以上100質量%以下である。 "Raw material PAS resin contained in raw material components"
The raw material PAS resin in this embodiment may be purchased commercially, or the raw material PAS resin obtained by the polymerization process may be used.
As one aspect of the raw material PAS resin that can be used in the method for producing the modified PAS resin of the present embodiment, the melt viscosity at 300° C. is preferably in the range of 1 Pa s or more, more preferably 3 Pa s or more. range, more preferably 5 Pa s or more, preferably 9000 Pa s or less, more preferably 7000 Pa s or less, still more preferably 4000 Pa s or less, 1000 Pa s or less Certain PAS resins are mentioned.
In another aspect of the raw PAS resin that can be used, the peak molecular weight (M top ) is preferably in the range of 10,000 or more, more preferably in the range of 15,000 or more, and still more preferably in the peak molecular weight (M top ) of 15,000 or more. M top ) is in the range of 20000 or more and 150000 or less, more preferably the peak molecular weight (M top ) is in the range of 100000 or less, more preferably the peak molecular weight (M top ) is in the range of 90000 or less. mentioned.
Furthermore, as another aspect of the raw material PAS resin that can be used, the concentration of low molecular weight impurities is preferably 1% by mass or more and 5% by mass or less, and more preferably the concentration of low molecular weight impurities is 1% by mass or more and 4% by mass or less. and more preferably a PAS resin having a low-molecular-weight impurity concentration of 1% by mass or more and 3% by mass or less.
As the raw material PAS resin of the present embodiment, powder of the raw material PAS resin which is commercially available or obtained by the polymerization process described later, or agglomerated particles obtained by further compressing and pulverizing the powder can be used. . Pellet-like material obtained by melt-kneading powder or agglomerated particles of raw PAS resin can also be used. Among the above, the use of raw material PAS resin powder, agglomerated particles, or a mixture thereof as a raw material in particular maintains good heat conduction to the raw material PAS resin, and improves compatibility with the reforming gas (g S ). It is preferable from the viewpoint of widening the contact area. In particular, when the reforming gas (g S ) is oxygen or a gas containing 1% by volume or more of oxygen, the use of a raw material PAS resin in the form of powder or agglomerated particles expands the contact area with oxygen and causes oxidation. It is preferable from the viewpoint that the cross-linking reaction can be performed uniformly. In addition, particularly when agglomerated particles are used alone as the raw material PAS resin, or when the presence ratio of agglomerated particles in the mixture is high, a large amount of the raw material PAS resin can be introduced into the container portion, and a long residence time can be secured. In addition, clogging of the bag filter and reduction in yield due to scattering of powder can be prevented.
From this point of view, the content of the agglomerated particles or the mixture that passes through a test sieve with an opening of 0.3 mm according to Japanese Industrial Standard Z 8801 is preferably 50% by mass or less, particularly preferably 30% by mass. % or less.
In this specification, the "raw material component containing the raw material PAS resin" means that the content of the raw material PAS resin is 50% by mass or more with respect to the total amount (100 mass) of the raw material components blended in the reformingapparatus 1. , preferably 60% by mass or more and 100% by mass or less.
本実施形態における原料PAS樹脂は、市販のものを購入してもよく、あるいは重合工程により得られた原料PAS樹脂を使用してもよい。
本実施形態の改質されたPAS樹脂の製造方法において使用可能な原料PAS樹脂の一態様としては、300℃における溶融粘度が、好ましくは1Pa・s以上の範囲、より好ましくは3Pa・s以上の範囲、さらに好ましくは5Pa・s以上の範囲であり、好ましくは9000Pa・s以下の範囲、より好ましくは7000Pa・s以下の範囲、さらに好ましくは4000Pa・s以下の範囲、1000Pa・s以下の範囲であるPAS樹脂が挙げられる。
また、使用可能な原料PAS樹脂の別の態様としては、好ましくはピーク分子量(Mtop)が10000以上の範囲、より好ましくはピーク分子量(Mtop)が15000以上の範囲、さらに好ましくはピーク分子量(Mtop)が20000以上の範囲であり、150000以下の範囲、より好ましくはピーク分子量(Mtop)が100000以下の範囲、さらに好ましくはピーク分子量(Mtop)が90000以下の範囲であるPAS樹脂が挙げられる。
さらには、使用可能な原料PAS樹脂の他の態様としては、好ましくは低分子量不純物の濃度が1質量%以上5質量%以下、より好ましくは低分子量不純物の濃度が1質量%以上4質量%以下、さらに好ましくは低分子量不純物の濃度が1質量%以上3質量%以下のPAS樹脂が挙げられる。
本実施形態の原料PAS樹脂として、市販又は後述の重合工程により得られた乾燥した原料PAS樹脂の粉体、又は、前記粉体を更に圧縮、粉砕して得られる凝集粒子を使用することができる。また、原料PAS樹脂の粉体又は凝集粒子を溶融混練したペレット状物を使用することもできる。上記のうち、特に原料PAS樹脂の粉体、凝集粒子、或いは、これらの混合物を原料として用いることが、原料PAS樹脂への熱伝導を良好に維持し、改質用ガス(gS)との接触面積が広がる観点から好ましい。特に、改質用ガス(gS)が酸素又は酸素を全体の1体積%以上含む気体である場合、粉体又は凝集粒子状の原料PAS樹脂を使用すると、酸素との接触面積が広がって酸化架橋反応を均一に行うことできる観点から好ましい。また、特に原料PAS樹脂として、凝集粒子を単独で使用した場合、或いは、前記混合物において凝集粒子の存在割合が多いときは、容器部内により多くの原料PAS樹脂を導入できて滞留時間を多く確保できる他、粉体の飛散によるバグフィルターの目詰まりや収率の低下を防止できる。
このような観点から、前記凝集粒子又は前記混合物は、日本工業規格 Z 8801の目開き0.3mmの試験用ふるいを通過する部分の含有量が、好ましくは50質量%以下、特に好ましくは30質量%以下となるものであることが好ましい。
尚、本明細書における「原料PAS樹脂を含む原料成分」とは、改質処理装置1に配合する原料成分の総量(100質量)に対して、原料PAS樹脂の占める含有量が50質量%以上、好ましくは60質量%以上100質量%以下である。 "Raw material PAS resin contained in raw material components"
The raw material PAS resin in this embodiment may be purchased commercially, or the raw material PAS resin obtained by the polymerization process may be used.
As one aspect of the raw material PAS resin that can be used in the method for producing the modified PAS resin of the present embodiment, the melt viscosity at 300° C. is preferably in the range of 1 Pa s or more, more preferably 3 Pa s or more. range, more preferably 5 Pa s or more, preferably 9000 Pa s or less, more preferably 7000 Pa s or less, still more preferably 4000 Pa s or less, 1000 Pa s or less Certain PAS resins are mentioned.
In another aspect of the raw PAS resin that can be used, the peak molecular weight (M top ) is preferably in the range of 10,000 or more, more preferably in the range of 15,000 or more, and still more preferably in the peak molecular weight (M top ) of 15,000 or more. M top ) is in the range of 20000 or more and 150000 or less, more preferably the peak molecular weight (M top ) is in the range of 100000 or less, more preferably the peak molecular weight (M top ) is in the range of 90000 or less. mentioned.
Furthermore, as another aspect of the raw material PAS resin that can be used, the concentration of low molecular weight impurities is preferably 1% by mass or more and 5% by mass or less, and more preferably the concentration of low molecular weight impurities is 1% by mass or more and 4% by mass or less. and more preferably a PAS resin having a low-molecular-weight impurity concentration of 1% by mass or more and 3% by mass or less.
As the raw material PAS resin of the present embodiment, powder of the raw material PAS resin which is commercially available or obtained by the polymerization process described later, or agglomerated particles obtained by further compressing and pulverizing the powder can be used. . Pellet-like material obtained by melt-kneading powder or agglomerated particles of raw PAS resin can also be used. Among the above, the use of raw material PAS resin powder, agglomerated particles, or a mixture thereof as a raw material in particular maintains good heat conduction to the raw material PAS resin, and improves compatibility with the reforming gas (g S ). It is preferable from the viewpoint of widening the contact area. In particular, when the reforming gas (g S ) is oxygen or a gas containing 1% by volume or more of oxygen, the use of a raw material PAS resin in the form of powder or agglomerated particles expands the contact area with oxygen and causes oxidation. It is preferable from the viewpoint that the cross-linking reaction can be performed uniformly. In addition, particularly when agglomerated particles are used alone as the raw material PAS resin, or when the presence ratio of agglomerated particles in the mixture is high, a large amount of the raw material PAS resin can be introduced into the container portion, and a long residence time can be secured. In addition, clogging of the bag filter and reduction in yield due to scattering of powder can be prevented.
From this point of view, the content of the agglomerated particles or the mixture that passes through a test sieve with an opening of 0.3 mm according to Japanese Industrial Standard Z 8801 is preferably 50% by mass or less, particularly preferably 30% by mass. % or less.
In this specification, the "raw material component containing the raw material PAS resin" means that the content of the raw material PAS resin is 50% by mass or more with respect to the total amount (100 mass) of the raw material components blended in the reforming
本実施形態に適用できる重合工程の代表例としては、例えば、以下の製造法1~製造法4が挙げられる。
(製造法1):硫黄と炭酸ソーダの存在下でジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法
(製造法2):極性溶媒中でスルフィド化剤等の存在下にジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法
(製造法3):p-クロルチオフェノールを、必要ならばその他の共重合成分を加えて、自己縮合させる方法
(製造法4):ジヨード芳香族化合物と単体硫黄を、カルボキシ基やアミノ基等の官能基を有していてもよい重合禁止剤の存在下、減圧させながら溶融重合させる方法
上記製造法1~4のうち、上記(製造法2)の方法が汎用的であり好ましい。反応の際に、重合度を調節するためにカルボン酸やスルホン酸のアルカリ金属塩や、水酸化アルカリを添加しても良い。上記(製造法2)方法のなかでも、加熱した有機極性溶媒とジハロゲノ芳香族化合物とを含む混合物に含水スルフィド化剤を水が反応混合物から除去され得る速度で導入し、有機極性溶媒中でジハロゲノ芳香族化合物とスルフィド化剤とを、必要に応じてポリハロゲノ芳香族化合物と加え、反応させること、及び反応系内の水分量を該有機極性溶媒1モルに対して0.02~0.5モルの範囲にコントロールすることにより原料PAS樹脂を製造する方法(特開平07-228699号公報参照。)や、固形のアルカリ金属硫化物及び非プロトン性極性有機溶媒の存在下でジハロゲノ芳香族化合物と必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加え、アルカリ金属水硫化物及び有機酸アルカリ金属塩を、硫黄源1モルに対して0.01~0.9モルの範囲の有機酸アルカリ金属塩及び反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モル以下の範囲にコントロールしながら反応させる方法(WO2010/058713号パンフレット参照。)で得られるものが特に好ましい。 Representative examples of the polymerization process applicable to the present embodiment include, for example,Production Methods 1 to 4 below.
(Manufacturing method 1): A method in which a dihalogeno aromatic compound is polymerized in the presence of sulfur and sodium carbonate, and if necessary, a polyhalogeno aromatic compound or other copolymerization components are added (Manufacturing method 2): In a polar solvent A method of polymerizing a dihalogeno aromatic compound in the presence of a sulfidating agent or the like, and if necessary, adding a polyhalogeno aromatic compound or other copolymerization components (manufacturing method 3): p-chlorothiophenol, if necessary. Method of self-condensing by adding other copolymerization components (manufacturing method 4): A diiodo aromatic compound and elemental sulfur are combined in the presence of a polymerization inhibitor that may have a functional group such as a carboxy group or an amino group. , method of melt polymerization while reducing pressure Of theabove production methods 1 to 4, the above (production method 2) method is versatile and preferred. During the reaction, an alkali metal salt of carboxylic acid or sulfonic acid, or an alkali hydroxide may be added in order to adjust the degree of polymerization. Among the above-described methods (manufacturing method 2), a hydrous sulfidation agent is introduced into a mixture containing a heated organic polar solvent and a dihalogeno aromatic compound at such a rate that water can be removed from the reaction mixture, and dihalogeno is produced in the organic polar solvent. adding an aromatic compound and a sulfidating agent to a polyhalogenoaromatic compound, if necessary, and reacting them, and adjusting the amount of water in the reaction system to 0.02 to 0.5 mol per 1 mol of the organic polar solvent; A method for producing a raw material PAS resin by controlling the range of (see JP-A-07-228699), and a dihalogeno aromatic compound and necessary in the presence of a solid alkali metal sulfide and an aprotic polar organic solvent If so, a polyhalogeno aromatic compound or other copolymerization components are added, and an alkali metal hydrosulfide and an organic acid alkali metal salt are added in an amount of 0.01 to 0.9 mol of an organic acid alkali metal per 1 mol of the sulfur source. Particularly preferred is the one obtained by a method of reacting while controlling the amount of water in the salt and reaction system in the range of 0.02 mol or less per 1 mol of the aprotic polar organic solvent (see WO2010/058713 pamphlet). .
(製造法1):硫黄と炭酸ソーダの存在下でジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法
(製造法2):極性溶媒中でスルフィド化剤等の存在下にジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法
(製造法3):p-クロルチオフェノールを、必要ならばその他の共重合成分を加えて、自己縮合させる方法
(製造法4):ジヨード芳香族化合物と単体硫黄を、カルボキシ基やアミノ基等の官能基を有していてもよい重合禁止剤の存在下、減圧させながら溶融重合させる方法
上記製造法1~4のうち、上記(製造法2)の方法が汎用的であり好ましい。反応の際に、重合度を調節するためにカルボン酸やスルホン酸のアルカリ金属塩や、水酸化アルカリを添加しても良い。上記(製造法2)方法のなかでも、加熱した有機極性溶媒とジハロゲノ芳香族化合物とを含む混合物に含水スルフィド化剤を水が反応混合物から除去され得る速度で導入し、有機極性溶媒中でジハロゲノ芳香族化合物とスルフィド化剤とを、必要に応じてポリハロゲノ芳香族化合物と加え、反応させること、及び反応系内の水分量を該有機極性溶媒1モルに対して0.02~0.5モルの範囲にコントロールすることにより原料PAS樹脂を製造する方法(特開平07-228699号公報参照。)や、固形のアルカリ金属硫化物及び非プロトン性極性有機溶媒の存在下でジハロゲノ芳香族化合物と必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加え、アルカリ金属水硫化物及び有機酸アルカリ金属塩を、硫黄源1モルに対して0.01~0.9モルの範囲の有機酸アルカリ金属塩及び反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モル以下の範囲にコントロールしながら反応させる方法(WO2010/058713号パンフレット参照。)で得られるものが特に好ましい。 Representative examples of the polymerization process applicable to the present embodiment include, for example,
(Manufacturing method 1): A method in which a dihalogeno aromatic compound is polymerized in the presence of sulfur and sodium carbonate, and if necessary, a polyhalogeno aromatic compound or other copolymerization components are added (Manufacturing method 2): In a polar solvent A method of polymerizing a dihalogeno aromatic compound in the presence of a sulfidating agent or the like, and if necessary, adding a polyhalogeno aromatic compound or other copolymerization components (manufacturing method 3): p-chlorothiophenol, if necessary. Method of self-condensing by adding other copolymerization components (manufacturing method 4): A diiodo aromatic compound and elemental sulfur are combined in the presence of a polymerization inhibitor that may have a functional group such as a carboxy group or an amino group. , method of melt polymerization while reducing pressure Of the
本実施形態の重合工程としては、有機溶媒中、少なくとも1種のポリハロゲノ芳香族化合物と少なくとも1種のスルフィド化剤とを適当な重合条件下で反応して得られるPAS樹脂を含有する反応混合物(スラリー)を得る工程を一例に挙げて説明する。
また、本実施形態においては、反応混合物がスルフィド化剤及び有機溶媒の存在下に、ポリハロゲノ芳香族化合物及び/又は有機溶媒を連続的、乃至、断続的に加えながら反応させることにより得られる形態も包含する。 As the polymerization step of the present embodiment, a reaction mixture containing a PAS resin obtained by reacting at least one polyhalogenoaromatic compound and at least one sulfidating agent in an organic solvent under appropriate polymerization conditions ( A process for obtaining a slurry) will be described as an example.
In the present embodiment, there is also a form obtained by reacting a reaction mixture in the presence of a sulfidating agent and an organic solvent while continuously or intermittently adding a polyhalogenoaromatic compound and/or an organic solvent. contain.
また、本実施形態においては、反応混合物がスルフィド化剤及び有機溶媒の存在下に、ポリハロゲノ芳香族化合物及び/又は有機溶媒を連続的、乃至、断続的に加えながら反応させることにより得られる形態も包含する。 As the polymerization step of the present embodiment, a reaction mixture containing a PAS resin obtained by reacting at least one polyhalogenoaromatic compound and at least one sulfidating agent in an organic solvent under appropriate polymerization conditions ( A process for obtaining a slurry) will be described as an example.
In the present embodiment, there is also a form obtained by reacting a reaction mixture in the presence of a sulfidating agent and an organic solvent while continuously or intermittently adding a polyhalogenoaromatic compound and/or an organic solvent. contain.
本実施形態におけるポリハロゲノ芳香族化合物は、芳香族環に直接結合した2個以上のハロゲン原子を有するハロゲン化芳香族化合物であり、そのうち2個のハロゲン原子を有するハロゲン化芳香族化合物をジハロゲノ芳香族化合物と称している。当該ジハロゲノ芳香族化合物の具体例としては、p-ジハロベンゼン、m-ジハロベンゼン、o-ジハロベンゼン、2,5-ジハロトルエン、1,4-ジハロナフタレン、1-メトキシ-2,5-ジハロベンゼン、4,4’-ジハロビフェニル、3,5-ジハロ安息香酸、2,4-ジハロ安息香酸、2,5-ジハロニトロベンゼン、2,4-ジハロニトロベンゼン、2,4-ジハロアニソール、p,p’-ジハロジフェニルエーテル、4,4’-ジハロベンゾフェノン、4,4’-ジハロジフェニルスルホン、4,4’-ジハロジフェニルスルホキシド、4,4’-ジハロジフェニルスルフィド、及び、上記各化合物の芳香環に炭素原子数1~18の範囲のアルキル基を有する化合物が挙げられる。上述のジハロゲノ芳香族化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。また、ジハロゲノ芳香族化合物以外のポリハロゲノ芳香族化合物としては、1,2,3-トリハロベンゼン、1,2,4-トリハロベンゼン、1,3,5-トリハロベンゼン、1,2,3,5-テトラハロベンゼン、1,2,4,5-テトラハロベンゼン、1,4,6-トリハロナフタレンなどが挙げられる。また、これらの化合物をブロック共重合してもよい。上記具体例の中でも好ましいのはジハロゲン化ベンゼン類であり、特に好ましいのはp-ジクロルベンゼンを80モル%以上含むものである。尚、上述のポリハロゲノ芳香族化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。また、上記各ハロゲノ芳香族化合物中に含まれるハロゲン原子は、塩素原子及び/又は臭素原子であることが好ましい。
The polyhalogenoaromatic compound in the present embodiment is a halogenated aromatic compound having two or more halogen atoms directly bonded to an aromatic ring. called a compound. Specific examples of the dihalogenoaromatic compounds include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4,4 '-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p,p' -dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4'-dihalodiphenyl sulfone, 4,4'-dihalodiphenyl sulfoxide, 4,4'-dihalodiphenyl sulfide, and each of the above compounds Examples thereof include compounds having an alkyl group having 1 to 18 carbon atoms on the aromatic ring. The above dihalogeno aromatic compounds may be used alone or in combination of two or more. Polyhalogeno aromatic compounds other than dihalogeno aromatic compounds include 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1,2,3,5- tetrahalobenzene, 1,2,4,5-tetrahalobenzene, 1,4,6-trihalonaphthalene and the like. Moreover, you may block-copolymerize these compounds. Among the above specific examples, preferred are dihalogenated benzenes, and particularly preferred are those containing 80 mol % or more of p-dichlorobenzene. The polyhalogeno aromatic compounds described above may be used alone or in combination of two or more. Further, the halogen atoms contained in each halogenoaromatic compound are preferably chlorine atoms and/or bromine atoms.
また、枝分かれ構造とすることによってPASの粘度増大を図る目的で、1分子中に3個以上のハロゲン置換基を有するポリハロゲノ芳香族化合物を分岐剤として所望に応じて用いてもよい。このようなポリハロゲノ芳香族化合物としては、例えば、1,2,4-トリクロルベンゼン、1,3,5-トリクロルベンゼン、1,4,6-トリクロルナフタレン等が挙げられる。
For the purpose of increasing the viscosity of PAS by forming a branched structure, a polyhalogeno aromatic compound having 3 or more halogen substituents in one molecule may be used as a branching agent, if desired. Examples of such polyhalogenoaromatic compounds include 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, 1,4,6-trichloronaphthalene and the like.
更に、アミノ基、チオール基、ヒドロキシル基等の活性水素を持つ官能基を有するポリハロゲノ芳香族化合物を挙げることができ、具体的には、2,6-ジクロルアニリン、2,5-ジクロルアニリン、2,4-ジクロルアニリン、2,3-ジクロルアニリン等のジハロアニリン類;2,3,4-トリクロルアニリン、2,3,5-トリクロルアニリン、2,4,6-トリクロルアニリン、3,4,5-トリクロルアニリン等のトリハロアニリン類;2,2’-ジアミノ-4,4’-ジクロルジフェニルエーテル、2,4’-ジアミノ-2’,4-ジクロルジフェニルエーテル等のジハロアミノジフェニルエーテル類及びこれらの混合物においてアミノ基がチオール基やヒドロキシル基に置き換えられた化合物などが例示される。
Furthermore, polyhalogeno aromatic compounds having functional groups with active hydrogen such as amino groups, thiol groups, hydroxyl groups, etc. can be mentioned, and specifically, 2,6-dichloroaniline and 2,5-dichloroaniline. , 2,4-dichloroaniline, 2,3-dichloroaniline and other dihaloanilines; 2,3,4-trichloroaniline, 2,3,5-trichloroaniline, 2,4,6-trichloroaniline, 3, trihaloanilines such as 4,5-trichloroaniline; dihaloaminodiphenyl ethers such as 2,2'-diamino-4,4'-dichlorodiphenyl ether and 2,4'-diamino-2',4-dichlorodiphenyl ether and compounds in which an amino group is replaced with a thiol group or a hydroxyl group in a mixture thereof.
また、これらの活性水素含有ポリハロゲノ芳香族化合物中の芳香族環を形成する炭素原子に結合した水素原子が他の不活性基、例えばアルキル基などの炭化水素基に置換している活性水素含有ポリハロゲノ芳香族化合物も使用できる。これらの各種活性水素含有ポリハロ芳香族化合物の中でも、好ましいのは活性水素含有ジハロゲノ芳香族化合物であり、特に好ましいのはジクロルアニリンである。
In addition, active hydrogen-containing polyhalogens in which the hydrogen atoms bonded to the carbon atoms forming the aromatic ring in these active hydrogen-containing polyhalogeno aromatic compounds are substituted with other inert groups, for example, hydrocarbon groups such as alkyl groups. Aromatic compounds can also be used. Among these various active hydrogen-containing polyhaloaromatic compounds, preferred are active hydrogen-containing dihalogenoaromatic compounds, and particularly preferred is dichloroaniline.
ニトロ基を有するポリハロゲノ芳香族化合物としては、例えば、2,4-ジニトロクロルベンゼン、2,5-ジクロルニトロベンゼン等のモノ又はジハロニトロベンゼン類;2-ニトロ-4,4’-ジクロルジフェニルエーテル等のジハロニトロジフェニルエーテル類;3,3’-ジニトロ-4,4’-ジクロルジフェニルスルホン等のジハロニトロジフェニルスルホン類;2,5-ジクロル-3-ニトロピリジン、2-クロル-3,5-ジニトロピリジン等のモノ又はジハロニトロピリジン類;あるいは各種ジハロニトロナフタレン類などが挙げられる。
Examples of polyhalogenoaromatic compounds having a nitro group include mono- or dihalonitrobenzenes such as 2,4-dinitrochlorobenzene and 2,5-dichloronitrobenzene; 2-nitro-4,4'-dichlorodiphenyl ether and the like. dihalonitrodiphenyl ethers; 3,3′-dinitro-4,4′-dichlorodiphenyl sulfones such as dihalonitrodiphenyl sulfones; 2,5-dichloro-3-nitropyridine, 2-chloro-3,5 - mono- or dihalonitropyridines such as dinitropyridine; or various dihalonitronaphthalenes.
本実施形態において、原料PAS樹脂は有機溶媒に溶解することが必須であるため、使用する有機溶媒はPAS樹脂を一定条件下で溶解できる必要がある。原料PAS樹脂を溶解させる条件は常温でも加温下でも良いが、現在知られている溶媒では一定以上の分子量のPAS樹脂を溶解させるためには一定温度への加温が必要である。PAS樹脂を溶解させることができる有機溶媒としては、N-メチル-2-ピロリドン、ホルムアミド、アセトアミド、N-メチルホルムアミド、N,N-ジメチルアセトアミド、2-ピロリドン、N-メチル-ε-カプロラクタム、ε-カプロラクタム、ヘキサメチルホスホルアミド、テトラメチル尿素、N-ジメチルプロピレン尿素、1,3-ジメチル-2-イミダゾリジノン酸のアミド尿素、及びラクタム類;スルホラン、ジメチルスルホラン等のスルホラン類;ベンゾニトリル等のニトリル類;メチルフェニルケトン等のケトン類;ポリエチレンジアルキルエーテル、1-クロロナフタレン、ジフェニルスルフィド等のその他の溶媒類が例示できる。
In this embodiment, the raw PAS resin must be dissolved in an organic solvent, so the organic solvent used must be able to dissolve the PAS resin under certain conditions. The conditions for dissolving the starting material PAS resin may be room temperature or heating, but currently known solvents require heating to a certain temperature in order to dissolve the PAS resin having a molecular weight above a certain level. Organic solvents capable of dissolving the PAS resin include N-methyl-2-pyrrolidone, formamide, acetamide, N-methylformamide, N,N-dimethylacetamide, 2-pyrrolidone, N-methyl-ε-caprolactam, ε -caprolactam, hexamethylphosphoramide, tetramethylurea, N-dimethylpropyleneurea, amidourea of 1,3-dimethyl-2-imidazolidinoic acid and lactams; sulfolanes such as sulfolane, dimethylsulfolane; benzonitrile ketones such as methylphenylketone; other solvents such as polyethylene dialkyl ether, 1-chloronaphthalene, diphenyl sulfide and the like.
本実施形態で用いられるアルカリ金属硫化物としては、硫化リチウム、硫化ナトリウム、硫化ルビジウム、硫化セシウム及びこれらの混合物が含まれる。かかるアルカリ金属硫化物は、水和物あるいは水性混合物あるいは無水物として使用することができる。また、アルカリ金属硫化物はアルカリ金属水硫化物とアルカリ金属水酸化物との反応によっても導くことができる。尚、通常、アルカリ金属硫化物中に微量存在するアルカリ金属水硫化物、チオ硫酸アルカリ金属と反応させるために、少量のアルカリ金属水酸化物を加えても差し支えない。PAS樹脂の重合反応は、これらの有機極性溶媒の存在下、いわゆるスルフィド化剤と呼ばれる上記のアルカリ金属硫化物又はアルカリ金属水硫化物及びアルカリ金属水酸化物と、ポリハロゲノ芳香族化合物とを反応させる。
Alkali metal sulfides used in this embodiment include lithium sulfide, sodium sulfide, rubidium sulfide, cesium sulfide, and mixtures thereof. Such alkali metal sulfides can be used as hydrates or as aqueous mixtures or as anhydrates. Alkali metal sulfides can also be derived from the reaction between alkali metal hydrosulfides and alkali metal hydroxides. A small amount of alkali metal hydroxide may be added to react with alkali metal hydrosulfide and alkali metal thiosulfate, which are usually present in trace amounts in alkali metal sulfide. The polymerization reaction of the PAS resin is carried out by reacting the above alkali metal sulfide or alkali metal hydrosulfide and alkali metal hydroxide, which are called so-called sulfidating agents, with the polyhalogenoaromatic compound in the presence of these organic polar solvents. .
本実施形態における原料PAS樹脂の重合温度200~330℃の範囲であり、圧力は重合溶媒及び重合モノマーであるポリハロゲノ芳香族化合物を実質的に液層に保持するような範囲であるべきであり、一般には0.1~20MPaの範囲、好ましくは0.1~2MPaの範囲より選択される。反応時間は温度と圧力により異なるが、一般に10分~72時間の範囲であり、好ましくは1時間~48時間の範囲である。また、本実施形態において、重合工程により得られた原料PAS樹脂を含有する反応混合物を、後述の精製処理における適当な手段(減圧留去法、遠心分離法、スクリュデカンター法、減圧濾過法、加圧濾過法など適当な方法が選択可能である)により「脱溶媒」させて、有機溶媒を分離除去した後、粗PAS樹脂を回収できる。
The polymerization temperature of the raw material PAS resin in the present embodiment should be in the range of 200 to 330° C., and the pressure should be such that the polyhalogenoaromatic compound, which is the polymerization solvent and the polymerization monomer, is substantially kept in the liquid layer, It is generally selected from the range of 0.1 to 20 MPa, preferably from the range of 0.1 to 2 MPa. Although the reaction time varies depending on the temperature and pressure, it is generally in the range of 10 minutes to 72 hours, preferably 1 hour to 48 hours. Further, in the present embodiment, the reaction mixture containing the raw material PAS resin obtained by the polymerization step is subjected to an appropriate means (a vacuum distillation method, a centrifugal separation method, a screw decanter method, a vacuum filtration method, a heating method, etc.) in the purification treatment described below. A suitable method such as pressure filtration can be selected) to separate and remove the organic solvent, after which the crude PAS resin can be recovered.
本実施形態における重合工程は、有機溶媒中、少なくとも1種のポリハロゲノ芳香族化合物と少なくとも1種のスルフィド化剤であるアルカリ金属硫化物とを反応して得られる原料PAS樹脂を含有する反応混合物(スラリー)を得る工程であることが好ましい。したがって、前記重合工程は、原料として添加する、前記有機溶媒と、前記ポリハロゲノ芳香族化合物と、前記アルカリ金属硫化物とが接触されて重合反応が進行さえすればよく、前記有機溶媒、前記ポリハロゲノ芳香族化合物及び前記アルカリ金属硫化物からなる群から選択される少なくとも1種が重合反応に必要な量を仕込み段階から全量配合しなくてもよい。換言すると、重合反応に必要な原料の仕込み量にするために、前記有機溶媒、前記ポリハロゲノ芳香族化合物及び前記アルカリ金属硫化物からなる群から選択される少なくとも1種を重合反応が終了するまで連続的、乃至、断続的に加えながら反応させてもよい。
In the polymerization step of the present embodiment, a reaction mixture containing a raw material PAS resin obtained by reacting at least one polyhalogenoaromatic compound with at least one alkali metal sulfide as a sulfidating agent in an organic solvent ( It is preferable to be a step of obtaining a slurry). Therefore, in the polymerization step, the organic solvent, the polyhalogeno aromatic compound, and the alkali metal sulfide, which are added as raw materials, only need to be brought into contact to allow the polymerization reaction to proceed. At least one selected from the group consisting of group compounds and the alkali metal sulfides may not be added in an amount necessary for the polymerization reaction from the charging stage. In other words, at least one selected from the group consisting of the organic solvent, the polyhalogenoaromatic compound, and the alkali metal sulfide is continuously added until the polymerization reaction is completed, in order to make the amount of raw materials charged necessary for the polymerization reaction. It may be reacted while being added gradually or intermittently.
(精製処理)
本実施形態における重合工程において、必要により重合工程より得られた原料PAS樹脂を精製する精製処理を行ってもよい。本実施形態における精製処理は、特に制限されることはなく、目的物である原料PAS樹脂の化学構造などに応じて公知の精製処理を適用することができる。本実施形態において、重合工程により得られた原料PAS樹脂(PAS樹脂を含む反応混合物)の精製処理としては、特に制限されるものではないが、例えば、以下の精製処理1~5が挙げられる。 (refinement treatment)
In the polymerization step of the present embodiment, if necessary, a purification treatment for purifying the raw material PAS resin obtained from the polymerization step may be performed. The purification treatment in this embodiment is not particularly limited, and a known purification treatment can be applied according to the chemical structure of the raw material PAS resin, which is the target product. In the present embodiment, the purification treatment of the raw material PAS resin (reaction mixture containing the PAS resin) obtained by the polymerization step is not particularly limited, but examples thereof include the followingpurification treatments 1 to 5.
本実施形態における重合工程において、必要により重合工程より得られた原料PAS樹脂を精製する精製処理を行ってもよい。本実施形態における精製処理は、特に制限されることはなく、目的物である原料PAS樹脂の化学構造などに応じて公知の精製処理を適用することができる。本実施形態において、重合工程により得られた原料PAS樹脂(PAS樹脂を含む反応混合物)の精製処理としては、特に制限されるものではないが、例えば、以下の精製処理1~5が挙げられる。 (refinement treatment)
In the polymerization step of the present embodiment, if necessary, a purification treatment for purifying the raw material PAS resin obtained from the polymerization step may be performed. The purification treatment in this embodiment is not particularly limited, and a known purification treatment can be applied according to the chemical structure of the raw material PAS resin, which is the target product. In the present embodiment, the purification treatment of the raw material PAS resin (reaction mixture containing the PAS resin) obtained by the polymerization step is not particularly limited, but examples thereof include the following
精製処理1:重合反応終了後、先ず反応混合物(スラリー)をそのまま、あるいは酸又は塩基を加えた後、減圧下又は常圧下で溶媒を留去し、次いで溶媒留去後の固形物(粗PAS樹脂)を水、反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン、アルコール類などの洗浄溶媒で1回又は2回以上洗浄し、更に中和、水洗、濾過及び乾燥する方法、
精製処理2:重合反応終了後、反応混合物(スラリー)に水、アセトン、メチルエチルケトン、アルコール類、エーテル類、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素などの溶媒(重合に使用した有機溶媒に可溶であり、かつ少なくともPAS樹脂に対しては貧溶媒である溶媒)を沈降剤として添加して、PAS樹脂及び無機塩等を含む固形物(粗PAS樹脂)を沈降させ、これらを濾別、洗浄、乾燥する方法、
精製処理3:重合反応終了後、反応混合物(スラリー)に反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた固形物(粗PAS樹脂)に対して、水、アセトン、メチルエチルケトン、アルコール類などの洗浄溶媒で1回又は2回以上洗浄し、その後中和、水洗、濾過及び乾燥をする方法、
精製処理4:重合反応終了後、反応混合物(スラリー)に洗浄溶媒として水を加えて水洗浄、濾過して得られた固形物(粗PAS樹脂)に対して、必要に応じて水洗浄の時に酸を加えて酸処理し、乾燥をする方法
精製処理5:重合反応終了後、反応混合物(スラリー)を濾過して得られた固形物(粗PAS樹脂)に対して、必要に応じ、洗浄溶媒として反応溶媒で1回又は2回以上洗浄し、更に水洗浄、濾過及び乾燥する方法、等が挙げられる。 Purification process 1: After the completion of the polymerization reaction, the reaction mixture (slurry) is used as it is, or after adding an acid or base, the solvent is distilled off under reduced pressure or normal pressure, and then the solid after solvent distillation (crude PAS resin) is washed once or twice with a washing solvent such as water, a reaction solvent (or an organic solvent having an equivalent solubility for the low-molecular-weight polymer), acetone, methyl ethyl ketone, or alcohols, and then neutralized, washed with water, a method of filtering and drying;
Purification process 2: After the polymerization reaction is completed, the reaction mixture (slurry) is added with solvents such as water, acetone, methyl ethyl ketone, alcohols, ethers, halogenated hydrocarbons, aromatic hydrocarbons, and aliphatic hydrocarbons (organic A solvent that is soluble in the solvent and is a poor solvent for at least the PAS resin) is added as a precipitant to precipitate the solid matter (crude PAS resin) containing the PAS resin and inorganic salts. filtering, washing, drying methods,
Purification process 3: After completion of the polymerization reaction, the reaction mixture (slurry) was added with a reaction solvent (or an organic solvent having an equivalent solubility to the low-molecular-weight polymer) and stirred, followed by filtration to remove the low-molecular-weight polymer. a method of washing the solid (crude PAS resin) with a washing solvent such as water, acetone, methyl ethyl ketone or alcohols once or twice or more, followed by neutralization, washing with water, filtration and drying;
Purification process 4: After completion of the polymerization reaction, water is added as a washing solvent to the reaction mixture (slurry) and washed with water. A method of acid-treating with an acid and drying. Purification process 5: After the completion of the polymerization reaction, the solid (crude PAS resin) obtained by filtering the reaction mixture (slurry) is washed with a solvent if necessary. washing with a reaction solvent once or twice or more, washing with water, filtering and drying, and the like.
精製処理2:重合反応終了後、反応混合物(スラリー)に水、アセトン、メチルエチルケトン、アルコール類、エーテル類、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素などの溶媒(重合に使用した有機溶媒に可溶であり、かつ少なくともPAS樹脂に対しては貧溶媒である溶媒)を沈降剤として添加して、PAS樹脂及び無機塩等を含む固形物(粗PAS樹脂)を沈降させ、これらを濾別、洗浄、乾燥する方法、
精製処理3:重合反応終了後、反応混合物(スラリー)に反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた固形物(粗PAS樹脂)に対して、水、アセトン、メチルエチルケトン、アルコール類などの洗浄溶媒で1回又は2回以上洗浄し、その後中和、水洗、濾過及び乾燥をする方法、
精製処理4:重合反応終了後、反応混合物(スラリー)に洗浄溶媒として水を加えて水洗浄、濾過して得られた固形物(粗PAS樹脂)に対して、必要に応じて水洗浄の時に酸を加えて酸処理し、乾燥をする方法
精製処理5:重合反応終了後、反応混合物(スラリー)を濾過して得られた固形物(粗PAS樹脂)に対して、必要に応じ、洗浄溶媒として反応溶媒で1回又は2回以上洗浄し、更に水洗浄、濾過及び乾燥する方法、等が挙げられる。 Purification process 1: After the completion of the polymerization reaction, the reaction mixture (slurry) is used as it is, or after adding an acid or base, the solvent is distilled off under reduced pressure or normal pressure, and then the solid after solvent distillation (crude PAS resin) is washed once or twice with a washing solvent such as water, a reaction solvent (or an organic solvent having an equivalent solubility for the low-molecular-weight polymer), acetone, methyl ethyl ketone, or alcohols, and then neutralized, washed with water, a method of filtering and drying;
Purification process 2: After the polymerization reaction is completed, the reaction mixture (slurry) is added with solvents such as water, acetone, methyl ethyl ketone, alcohols, ethers, halogenated hydrocarbons, aromatic hydrocarbons, and aliphatic hydrocarbons (organic A solvent that is soluble in the solvent and is a poor solvent for at least the PAS resin) is added as a precipitant to precipitate the solid matter (crude PAS resin) containing the PAS resin and inorganic salts. filtering, washing, drying methods,
Purification process 3: After completion of the polymerization reaction, the reaction mixture (slurry) was added with a reaction solvent (or an organic solvent having an equivalent solubility to the low-molecular-weight polymer) and stirred, followed by filtration to remove the low-molecular-weight polymer. a method of washing the solid (crude PAS resin) with a washing solvent such as water, acetone, methyl ethyl ketone or alcohols once or twice or more, followed by neutralization, washing with water, filtration and drying;
Purification process 4: After completion of the polymerization reaction, water is added as a washing solvent to the reaction mixture (slurry) and washed with water. A method of acid-treating with an acid and drying. Purification process 5: After the completion of the polymerization reaction, the solid (crude PAS resin) obtained by filtering the reaction mixture (slurry) is washed with a solvent if necessary. washing with a reaction solvent once or twice or more, washing with water, filtering and drying, and the like.
尚、上記精製処理1~精製処理5に例示したような精製処理において、原料PAS樹脂の乾燥は真空中で行なってもよいし、空気中あるいは窒素のような不活性ガス雰囲気中で行なってもよい。本実施形態における精製処理は、重合工程で得られた原料PAS樹脂を含有する反応混合物(スラリー)又は前記反応混合物(スラリー)の固形分である粗PAS樹脂に洗浄溶液を添加して洗浄、濾過及び乾燥を行う工程であることが好ましい。また、前記洗浄溶媒を添加する洗浄処理、濾過処理及び乾燥処理は、それぞれ任意前記処理を少なくとも1回又は複数回行うことができる。尚、上記粗PAS樹脂とは、重合工程で得られた原料PAS樹脂を含有する反応混合物(スラリー)を1回以上固液分離した固形分をいう。
In the purification treatments exemplified in the purification treatments 1 to 5 above, the raw PAS resin may be dried in a vacuum, or in air or in an atmosphere of an inert gas such as nitrogen. good. The purification treatment in the present embodiment involves adding a washing solution to the reaction mixture (slurry) containing the raw material PAS resin obtained in the polymerization step or the crude PAS resin, which is the solid content of the reaction mixture (slurry), and washing and filtering. and drying. In addition, each of the washing treatment in which the washing solvent is added, the filtration treatment and the drying treatment can be optionally performed at least once or more than once. The term "crude PAS resin" as used herein refers to a solid content obtained by subjecting the reaction mixture (slurry) containing the raw material PAS resin obtained in the polymerization step to solid-liquid separation one or more times.
「改質用ガス(gS)及び気体(gd)」
本実施形態における改質用ガス(gS)は、原料PAS樹脂が改質するために使用されるガスの総称をいい、当該改質用ガス自体が原料PAS樹脂を直接改質させる必要は無い。本実施形態における改質用ガス(gS)雰囲気とは、改質用ガス(gS)を含む雰囲気全体の体積(100体積%)に対して、改質用ガス(gS)が1体積%以上占めることが好ましい。本実施形態における改質用ガス(gS)は、酸素、酸素を含む気体及び不活性ガスからなる群から選択される少なくとも1種であることが好ましい。前記酸素を含む気体としては、改質用ガス(gS)全体(100体積%)の1体積%以上酸素を含む気体(例えば、空気)が好ましい。本実施形態における改質用ガス(gS)が、酸素又は酸素を全体の1体積%以上含む気体(例えば、空気)であると、容器内を容易に気相酸化性雰囲気にすることができる。特に、改質用ガス(gS)雰囲気全体の体積に対して、酸素が1体積%以上含まれる雰囲気であると、気相酸化性雰囲気として、原料PAS樹脂の酸化架橋反応が進行しやすくなる。そのため、改質されるPAS樹脂の高分子量化又は高粘度化を重視する場合、改質用ガス(gS)として、酸素又は酸素を全体の1体積%以上含む気体を選択することにより、酸化架橋反応が進行しやすくなる。尚、本明細書における「気相酸化性雰囲気」とは、酸素を含む混合気体雰囲気であって、当該混合気体全体の体積(100体積%)に対して、酸素が1体積%以上を占める雰囲気をいう。本実施形態において、改質用ガス(gS)が酸素又は酸素を含む気体である場合、容器部内を気相酸化性雰囲気下にすることが特に好ましい。これにより酸化架橋反応が進行しやすくなる。 "Reforming gas (g S ) and gas (g d )"
The reforming gas (g S ) in the present embodiment is a general term for gases used for reforming the raw material PAS resin, and the reforming gas itself does not need to directly reform the raw material PAS resin. . The reforming gas (g S ) atmosphere in the present embodiment means that one volume of the reforming gas (g S ) is contained in the entire volume (100% by volume) of the atmosphere containing the reforming gas (g S ). % or more. The reforming gas (g S ) in the present embodiment is preferably at least one selected from the group consisting of oxygen, an oxygen-containing gas, and an inert gas. The oxygen-containing gas is preferably a gas (for example, air) containing 1% by volume or more of oxygen in the entire reforming gas (g S ) (100% by volume). When the reforming gas (g S ) in the present embodiment is oxygen or a gas containing 1% by volume or more of oxygen (for example, air), the inside of the container can be easily made into a gas-phase oxidizing atmosphere. . In particular, if the atmosphere contains 1% by volume or more of oxygen with respect to the entire volume of the reforming gas (g S ) atmosphere, the oxidative cross-linking reaction of the raw material PAS resin will easily proceed as a vapor-phase oxidizing atmosphere. . Therefore, when emphasis is placed on increasing the molecular weight or viscosity of the PAS resin to be modified, oxygen or a gas containing 1% by volume or more of the total oxygen is selected as the modifying gas (g S ), whereby oxidation The cross-linking reaction proceeds easily. As used herein, the term "vapor-phase oxidizing atmosphere" refers to a mixed gas atmosphere containing oxygen, in which oxygen accounts for 1% by volume or more of the total volume of the mixed gas (100% by volume). Say. In this embodiment, when the reforming gas (g S ) is oxygen or a gas containing oxygen, it is particularly preferable to make the inside of the container part a gas-phase oxidizing atmosphere. This facilitates the progress of the oxidative cross-linking reaction.
本実施形態における改質用ガス(gS)は、原料PAS樹脂が改質するために使用されるガスの総称をいい、当該改質用ガス自体が原料PAS樹脂を直接改質させる必要は無い。本実施形態における改質用ガス(gS)雰囲気とは、改質用ガス(gS)を含む雰囲気全体の体積(100体積%)に対して、改質用ガス(gS)が1体積%以上占めることが好ましい。本実施形態における改質用ガス(gS)は、酸素、酸素を含む気体及び不活性ガスからなる群から選択される少なくとも1種であることが好ましい。前記酸素を含む気体としては、改質用ガス(gS)全体(100体積%)の1体積%以上酸素を含む気体(例えば、空気)が好ましい。本実施形態における改質用ガス(gS)が、酸素又は酸素を全体の1体積%以上含む気体(例えば、空気)であると、容器内を容易に気相酸化性雰囲気にすることができる。特に、改質用ガス(gS)雰囲気全体の体積に対して、酸素が1体積%以上含まれる雰囲気であると、気相酸化性雰囲気として、原料PAS樹脂の酸化架橋反応が進行しやすくなる。そのため、改質されるPAS樹脂の高分子量化又は高粘度化を重視する場合、改質用ガス(gS)として、酸素又は酸素を全体の1体積%以上含む気体を選択することにより、酸化架橋反応が進行しやすくなる。尚、本明細書における「気相酸化性雰囲気」とは、酸素を含む混合気体雰囲気であって、当該混合気体全体の体積(100体積%)に対して、酸素が1体積%以上を占める雰囲気をいう。本実施形態において、改質用ガス(gS)が酸素又は酸素を含む気体である場合、容器部内を気相酸化性雰囲気下にすることが特に好ましい。これにより酸化架橋反応が進行しやすくなる。 "Reforming gas (g S ) and gas (g d )"
The reforming gas (g S ) in the present embodiment is a general term for gases used for reforming the raw material PAS resin, and the reforming gas itself does not need to directly reform the raw material PAS resin. . The reforming gas (g S ) atmosphere in the present embodiment means that one volume of the reforming gas (g S ) is contained in the entire volume (100% by volume) of the atmosphere containing the reforming gas (g S ). % or more. The reforming gas (g S ) in the present embodiment is preferably at least one selected from the group consisting of oxygen, an oxygen-containing gas, and an inert gas. The oxygen-containing gas is preferably a gas (for example, air) containing 1% by volume or more of oxygen in the entire reforming gas (g S ) (100% by volume). When the reforming gas (g S ) in the present embodiment is oxygen or a gas containing 1% by volume or more of oxygen (for example, air), the inside of the container can be easily made into a gas-phase oxidizing atmosphere. . In particular, if the atmosphere contains 1% by volume or more of oxygen with respect to the entire volume of the reforming gas (g S ) atmosphere, the oxidative cross-linking reaction of the raw material PAS resin will easily proceed as a vapor-phase oxidizing atmosphere. . Therefore, when emphasis is placed on increasing the molecular weight or viscosity of the PAS resin to be modified, oxygen or a gas containing 1% by volume or more of the total oxygen is selected as the modifying gas (g S ), whereby oxidation The cross-linking reaction proceeds easily. As used herein, the term "vapor-phase oxidizing atmosphere" refers to a mixed gas atmosphere containing oxygen, in which oxygen accounts for 1% by volume or more of the total volume of the mixed gas (100% by volume). Say. In this embodiment, when the reforming gas (g S ) is oxygen or a gas containing oxygen, it is particularly preferable to make the inside of the container part a gas-phase oxidizing atmosphere. This facilitates the progress of the oxidative cross-linking reaction.
本実施形態において、不活性ガスは、希ガス類元素又は窒素などに代表される化学反応を起こし難い安定した気体をいい、例えば、窒素、ヘリウム又はアルゴンからなる群から選択される少なくとも1種であることが好ましい。また、不活性ガスは、2種以上の不活性ガスを混合した混合不活性ガスであってもよい。本実施形態における改質用ガス(gS)が、不活性ガスであると、容器内を容易に不活性ガス雰囲気にすることができる。改質されるPAS樹脂中に含まれる低分子量不純物の濃度を重視する場合、改質用ガス(gS)として、不活性ガスを選択することにより、低分子量不純物の濃度を低下させることができる。尚、本明細書における「不活性ガス雰囲気」とは、不活性ガスを含む混合気体雰囲気であって、当該混合気体全体の体積(100体積%)に対して、不活性ガスが99体積%以上を占める雰囲気をいう。本実施形態において、改質用ガス(gS)が不活性ガスである場合、容器部内を不活性ガス雰囲気下にすることが特に好ましい。これにより低分子量不純物の濃度を低減しやすくなる。本明細書において、改質用ガス(gS)濃度の測定方法は、公知の方法を採用することができる。例えば、所定の容器又はガス吸引ポンプなどを使用して、各種センサ、ガスクロマトグラフィー、ガス検知管等の検出計にて行うことができる。
In the present embodiment, the inert gas refers to a stable gas typified by rare gas elements or nitrogen that is unlikely to cause chemical reactions, for example, at least one selected from the group consisting of nitrogen, helium, and argon. is preferred. Also, the inert gas may be a mixed inert gas in which two or more inert gases are mixed. When the reforming gas (g S ) in the present embodiment is an inert gas, the inside of the container can be easily made into an inert gas atmosphere. When focusing on the concentration of low-molecular-weight impurities contained in the PAS resin to be modified, the concentration of low-molecular-weight impurities can be reduced by selecting an inert gas as the reforming gas (g S ). . In addition, the "inert gas atmosphere" in this specification is a mixed gas atmosphere containing an inert gas, and the inert gas is 99% by volume or more with respect to the total volume (100% by volume) of the mixed gas. The atmosphere that occupies In the present embodiment, when the reforming gas (g S ) is an inert gas, it is particularly preferable to make the inside of the container part an inert gas atmosphere. This makes it easier to reduce the concentration of low-molecular-weight impurities. In this specification, a known method can be adopted as a method for measuring the reforming gas (g S ) concentration. For example, it can be carried out with a detector such as various sensors, gas chromatography, gas detection tube, etc., using a predetermined container or gas suction pump.
「加熱処理工程」
本実施形態における改質化されたPAS樹脂の製造方法は、加熱処理工程を有する。そして、前記加熱処理工程は、改質処理装置に備えられた容器部内への改質用ガス(gS)の供給及び容器部外への前記容器部内の気体(gd)の排出を行い、容器部内に投入した原料PAS樹脂を含む原料成分を循環流により容器部内で循環させながら、加熱手段により前記原料PAS樹脂を含む原料成分を前記PAS樹脂の融点Tm未満に加熱する工程である。容器部内への改質用ガス(gS)の供給及び容器部外への前記容器部内の気体(gd)の排出を行うことにより、容器部内を改質用ガス(gS)雰囲気下(例えば、気相酸化性雰囲気下又は不活性ガス雰囲気下)にすることができる。容器部内を前記改質用ガス(gS)雰囲気下にした後、加熱手段(公知の加熱手段、例えば、マントルヒーター、あるいは、上記の容器部の外表面を覆う温度調節ジャケット等)により、原料PAS樹脂を含む原料成分をPAS樹脂の融点Tm未満に加熱する。容器部内で対流する循環流により原料PAS樹脂を含む原料成分を循環させながら、改質用ガス(gS)雰囲気下で所定温度に加熱されるため、原料PAS樹脂の改質が促進される。 "Heat treatment process"
The method for producing the modified PAS resin in this embodiment has a heat treatment step. In the heat treatment step, a reforming gas (g S ) is supplied into a container provided in a reforming apparatus and a gas (g d ) in the container is discharged to the outside of the container, This is a step of heating the raw material components containing the raw material PAS resin by a heating means to a temperature lower than the melting point Tm of the PAS resin while circulating the raw material components containing the raw material PAS resin put into the container in a circulating flow. By supplying the reforming gas (g S ) into the container portion and discharging the gas (g d ) in the container portion to the outside of the container portion, the inside of the container portion is placed under the reforming gas (g S ) atmosphere ( For example, under a vapor-phase oxidizing atmosphere or under an inert gas atmosphere). After making the inside of the container part an atmosphere of the reforming gas (g S ), the raw material is A raw material component containing a PAS resin is heated below the melting point Tm of the PAS resin. While the raw material components including the raw material PAS resin are circulated by the convective circulating flow in the container, the raw material PAS resin is heated to a predetermined temperature in the reforming gas (g S ) atmosphere, thereby promoting the modification of the raw material PAS resin.
本実施形態における改質化されたPAS樹脂の製造方法は、加熱処理工程を有する。そして、前記加熱処理工程は、改質処理装置に備えられた容器部内への改質用ガス(gS)の供給及び容器部外への前記容器部内の気体(gd)の排出を行い、容器部内に投入した原料PAS樹脂を含む原料成分を循環流により容器部内で循環させながら、加熱手段により前記原料PAS樹脂を含む原料成分を前記PAS樹脂の融点Tm未満に加熱する工程である。容器部内への改質用ガス(gS)の供給及び容器部外への前記容器部内の気体(gd)の排出を行うことにより、容器部内を改質用ガス(gS)雰囲気下(例えば、気相酸化性雰囲気下又は不活性ガス雰囲気下)にすることができる。容器部内を前記改質用ガス(gS)雰囲気下にした後、加熱手段(公知の加熱手段、例えば、マントルヒーター、あるいは、上記の容器部の外表面を覆う温度調節ジャケット等)により、原料PAS樹脂を含む原料成分をPAS樹脂の融点Tm未満に加熱する。容器部内で対流する循環流により原料PAS樹脂を含む原料成分を循環させながら、改質用ガス(gS)雰囲気下で所定温度に加熱されるため、原料PAS樹脂の改質が促進される。 "Heat treatment process"
The method for producing the modified PAS resin in this embodiment has a heat treatment step. In the heat treatment step, a reforming gas (g S ) is supplied into a container provided in a reforming apparatus and a gas (g d ) in the container is discharged to the outside of the container, This is a step of heating the raw material components containing the raw material PAS resin by a heating means to a temperature lower than the melting point Tm of the PAS resin while circulating the raw material components containing the raw material PAS resin put into the container in a circulating flow. By supplying the reforming gas (g S ) into the container portion and discharging the gas (g d ) in the container portion to the outside of the container portion, the inside of the container portion is placed under the reforming gas (g S ) atmosphere ( For example, under a vapor-phase oxidizing atmosphere or under an inert gas atmosphere). After making the inside of the container part an atmosphere of the reforming gas (g S ), the raw material is A raw material component containing a PAS resin is heated below the melting point Tm of the PAS resin. While the raw material components including the raw material PAS resin are circulated by the convective circulating flow in the container, the raw material PAS resin is heated to a predetermined temperature in the reforming gas (g S ) atmosphere, thereby promoting the modification of the raw material PAS resin.
本実施形態において、改質用ガス(gS)として酸素又は酸素を全体の1体積%以上含む気体を使用する場合、気相酸化性雰囲気下で所定温度に加熱されるため、均一に酸化架橋反応が進行しやすくなり、原料PAS樹脂を含む原料成分の反応時間が短くなる。一方、本実施形態において、改質用ガス(gS)として不活性ガスを使用する場合、不活性ガス雰囲気下で所定温度に加熱されるため、低分子量不純物を低減することができる。改質用ガス(gS)の選択は上記した通り、得られる改質されたPAS樹脂の使用目的に応じて適宜選択しうる。そのため、得られる改質されたPAS樹脂の分子量又は溶融粘度の増加を重視する場合は、改質用ガス(gS)として酸素又は酸素を全体の1体積%以上含む気体を選択する。一方、得られる改質されたPAS樹脂の不純物濃度を重視する場合は、改質用ガス(gS)として不活性ガスを選択する。本実施形態において、加熱手段により、原料PAS樹脂を含む原料成分をPAS樹脂の融点Tm未満に加熱する時間は、1~100時間であることが好ましく、1~50時間であることがより好ましく、1~10時間であることがさらに好ましい。前記加熱処理工程は、前記容器部内に投入した前記原料成分の温度を100~280℃の範囲内に制御することが好ましく、150~280℃の範囲内に制御することがより好ましい。原料PAS樹脂を含む原料成分の温度を上記範囲に加熱すると、処理時間の短縮の観点で好ましい。尚、加熱処理工程における好適な加熱手段としては、「改質処理装置」の欄にて上述した通り、温度調節ジャケットを用いて、熱媒又は冷媒の注入口あるいは排出口内へ熱媒又は冷媒を注入・排出して、温度調節ジャケット内で当該熱媒又は冷媒を循環することにより温度調節が行われる。
In the present embodiment, when oxygen or a gas containing 1% by volume or more of oxygen is used as the reforming gas (g S ), it is heated to a predetermined temperature in a gas-phase oxidizing atmosphere, so that oxidation and cross-linking can be performed uniformly. The reaction proceeds more easily, and the reaction time of the raw material components including the raw material PAS resin is shortened. On the other hand, in the present embodiment, when an inert gas is used as the reforming gas (g S ), it is heated to a predetermined temperature in an inert gas atmosphere, so low-molecular-weight impurities can be reduced. As described above, the reforming gas (g S ) can be appropriately selected according to the intended use of the resulting modified PAS resin. Therefore, when importance is placed on increasing the molecular weight or melt viscosity of the resulting modified PAS resin, oxygen or a gas containing 1% by volume or more of oxygen is selected as the modifying gas (g S ). On the other hand, when the concentration of impurities in the resulting modified PAS resin is important, an inert gas is selected as the reforming gas (g S ). In the present embodiment, the time for heating the raw material components including the raw material PAS resin to below the melting point Tm of the PAS resin by the heating means is preferably 1 to 100 hours, more preferably 1 to 50 hours. , more preferably 1 to 10 hours. In the heat treatment step, the temperature of the raw material components introduced into the container is preferably controlled within the range of 100 to 280°C, more preferably within the range of 150 to 280°C. Heating the raw material components including the raw material PAS resin to the above range is preferable from the viewpoint of shortening the treatment time. In addition, as a suitable heating means in the heat treatment step, as described above in the "reforming treatment apparatus" section, a temperature control jacket is used to supply the heat medium or refrigerant into the inlet or outlet of the heat medium or refrigerant. Temperature control is performed by injecting and discharging and circulating the heat medium or refrigerant in the temperature control jacket.
「気体供給制御工程」
本実施形態における改質化されたPAS樹脂の製造方法は、気体供給制御工程を有する。そして、前記気体供給制御工程は、改質用ガス(gS)の毎分当たりの供給量を、改質処理装置に備えられた容器部の容積の0.1~100%の範囲内に制御する工程である。換言すると、当該気体供給制御工程は、上記加熱処理工程における、改質処理装置に備えられた容器部内への改質用ガス(gS)の供給及び容器部外への前記容器部内の気体(gd)の排出操作と併せて、容器部内を改質用ガス(gS)雰囲気下に保持する工程である。また、容器部の容積の0.1~100%の範囲内とは、「改質処理装置」の欄及び図1にて上述した空間Vの総体積(100体積%)に対して0.1~100%の範囲内をいう。また、気体供給制御工程は、上述した加熱処理工程の前から加熱処理工程の後の間のいずれのタイミング又は期間帯で行ってもよく、加熱処理工程の間、気体供給制御工程を継続して行うことが好ましい。これにより、容器部内を改質用ガス(gS)雰囲気下に保つことができる。本実施形態において、改質用ガス(gS)が酸素又は酸素を1体積%以上含む気体である場合、毎分当たりの改質用ガス(gS)の供給量を、改質処理装置に備えられた容器部の容積の1~50%の範囲内に制御することが好ましい。本実施形態における気体供給制御工程の一例としては、改質処理装置に備えられた容器部に設けられた供給口を介して前記容器部内へ酸素又は酸素を含む気体を供給し、前記供給口における酸素濃度が1~21%の範囲であることが好ましい。 "Gas supply control process"
The method for producing a modified PAS resin in this embodiment has a gas supply control step. In the gas supply control step, the amount of reforming gas (g S ) supplied per minute is controlled within a range of 0.1 to 100% of the volume of the container provided in the reforming apparatus. It is a process to do. In other words, the gas supply control step supplies the reforming gas (g S ) into the container provided in the reforming apparatus and supplies the gas in the container to the outside of the container in the heat treatment step. g d ) is a step of maintaining the inside of the container under the reforming gas (g S ) atmosphere in conjunction with the operation of discharging g d ). In addition, the range of 0.1 to 100% of the volume of the container part is 0.1 with respect to the total volume (100% by volume) of the space V described above in the column of “reforming treatment device” and FIG. Refers to the range of up to 100%. Further, the gas supply control step may be performed at any timing or period between before the heat treatment step and after the heat treatment step, and the gas supply control step is continued during the heat treatment step. preferably. Thereby, the inside of the container can be kept under the atmosphere of the reforming gas (g S ). In the present embodiment, when the reforming gas (g S ) is oxygen or a gas containing 1% by volume or more of oxygen, the amount of reforming gas (g S ) supplied per minute is It is preferable to control within the range of 1 to 50% of the volume of the container provided. As an example of the gas supply control step in the present embodiment, oxygen or a gas containing oxygen is supplied into the container portion through a supply port provided in the container portion provided in the reforming apparatus, and It is preferable that the oxygen concentration is in the range of 1 to 21%.
本実施形態における改質化されたPAS樹脂の製造方法は、気体供給制御工程を有する。そして、前記気体供給制御工程は、改質用ガス(gS)の毎分当たりの供給量を、改質処理装置に備えられた容器部の容積の0.1~100%の範囲内に制御する工程である。換言すると、当該気体供給制御工程は、上記加熱処理工程における、改質処理装置に備えられた容器部内への改質用ガス(gS)の供給及び容器部外への前記容器部内の気体(gd)の排出操作と併せて、容器部内を改質用ガス(gS)雰囲気下に保持する工程である。また、容器部の容積の0.1~100%の範囲内とは、「改質処理装置」の欄及び図1にて上述した空間Vの総体積(100体積%)に対して0.1~100%の範囲内をいう。また、気体供給制御工程は、上述した加熱処理工程の前から加熱処理工程の後の間のいずれのタイミング又は期間帯で行ってもよく、加熱処理工程の間、気体供給制御工程を継続して行うことが好ましい。これにより、容器部内を改質用ガス(gS)雰囲気下に保つことができる。本実施形態において、改質用ガス(gS)が酸素又は酸素を1体積%以上含む気体である場合、毎分当たりの改質用ガス(gS)の供給量を、改質処理装置に備えられた容器部の容積の1~50%の範囲内に制御することが好ましい。本実施形態における気体供給制御工程の一例としては、改質処理装置に備えられた容器部に設けられた供給口を介して前記容器部内へ酸素又は酸素を含む気体を供給し、前記供給口における酸素濃度が1~21%の範囲であることが好ましい。 "Gas supply control process"
The method for producing a modified PAS resin in this embodiment has a gas supply control step. In the gas supply control step, the amount of reforming gas (g S ) supplied per minute is controlled within a range of 0.1 to 100% of the volume of the container provided in the reforming apparatus. It is a process to do. In other words, the gas supply control step supplies the reforming gas (g S ) into the container provided in the reforming apparatus and supplies the gas in the container to the outside of the container in the heat treatment step. g d ) is a step of maintaining the inside of the container under the reforming gas (g S ) atmosphere in conjunction with the operation of discharging g d ). In addition, the range of 0.1 to 100% of the volume of the container part is 0.1 with respect to the total volume (100% by volume) of the space V described above in the column of “reforming treatment device” and FIG. Refers to the range of up to 100%. Further, the gas supply control step may be performed at any timing or period between before the heat treatment step and after the heat treatment step, and the gas supply control step is continued during the heat treatment step. preferably. Thereby, the inside of the container can be kept under the atmosphere of the reforming gas (g S ). In the present embodiment, when the reforming gas (g S ) is oxygen or a gas containing 1% by volume or more of oxygen, the amount of reforming gas (g S ) supplied per minute is It is preferable to control within the range of 1 to 50% of the volume of the container provided. As an example of the gas supply control step in the present embodiment, oxygen or a gas containing oxygen is supplied into the container portion through a supply port provided in the container portion provided in the reforming apparatus, and It is preferable that the oxygen concentration is in the range of 1 to 21%.
また別の形態としては、改質処理装置に備えられた容器部に設けられた供給口を介して前記容器部内へ不活性ガスを供給し、前記供給口における不活性ガス濃度が99~100%の範囲であることが好ましい。尚、改質用ガス(gS)の供給・排出方法としては、公知の手段を採用できる。例えば、改質用ガス(gS)を圧縮して供給する圧送装置を、圧送管体を介して前記供給口に流体的に接続することにより、改質用ガス(gS)を前記容器部内へ供給できる。また、容器部内の気体(gd)を排出する排出口を容器部内と外部とが連通されるように設けていれば、容器部内の圧力が高くなれば大気圧で自ずと容器部内の気体(gd)が外部に排出される。さらには、必要により、排出口に管体を介して、吸引装置を流体的に接続することにより、容器部4内(又は空間V内)の気体(gd)を排出してもよい。
As another form, an inert gas is supplied into the container portion through a supply port provided in the container portion provided in the reforming apparatus, and the inert gas concentration at the supply port is 99 to 100%. is preferably in the range of As a method for supplying/discharging the reforming gas (g S ), known means can be adopted. For example, by fluidly connecting a pumping device for compressing and supplying the reforming gas (g S ) to the supply port via a pumping tube, the reforming gas (g S ) is fed into the container section. can supply to Further, if a discharge port for discharging the gas (g d ) in the container is provided so as to communicate the inside of the container with the outside, the gas (g d ) is discharged to the outside. Furthermore, if necessary, the gas (g d ) inside the container part 4 (or inside the space V) may be discharged by fluidly connecting a suction device to the discharge port via a tubular body.
「ベストモード(気相酸化性雰囲気下)」
本実施形態の改質化されたPAS樹脂の製造方法の好ましい形態の一例は、改質処理装置を用いて、気相酸化性雰囲気下で原料PAS樹脂の融点Tm未満の温度に原料PAS樹脂を含む原料成分を加熱して改質化されたPAS樹脂を製造する方法であって、前記改質処理装置に搭載された容器部内への酸素を含む気体の供給及び前記容器部外への前記容器部内の気体(gd)の排出を行い、前記容器部内に投入した前記原料成分を循環流により循環させながら、加熱手段により前記原料成分を前記融点Tm未満に加熱する加熱処理工程と、前記酸素を含む気体の毎分当たりの供給量は、前記容器部の容積の1~50%の範囲内に制御する気体供給制御工程と、を有する。また、前記改質処理装置は、原料PAS樹脂を含む原料成分を収容可能なテーパー状の容器部を備え、かつ前記容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと前記原料成分が循環する循環流を形成する撹拌機構を有する。さらには、前記原料PAS樹脂を含む原料成分は、前記原料PAS樹脂を重合する重合工程により得られることが好ましい。これにより、高温下で融着しやすいPAS樹脂同士の凝集をより抑制しつつ、容器の内壁に密着したPAS樹脂固着物の形成を抑制・防止し、かつコンタミネーションがより低減された、高分子量化したPAS樹脂を製造できる。その結果、高分子量化されたPAS樹脂の高い収率で製造することができる。 "Best mode (under gas-phase oxidizing atmosphere)"
In one preferred embodiment of the method for producing a modified PAS resin according to the present embodiment, the raw material PAS resin is heated to a temperature below the melting point Tm of the raw material PAS resin in a vapor-phase oxidizing atmosphere using a modification apparatus. A method for producing a modified PAS resin by heating a raw material component containing the a heat treatment step of discharging the gas (g d ) in the container portion, and heating the raw material component with a heating means to a temperature lower than the melting point T m while circulating the raw material component introduced into the container portion by a circulating flow; and a gas supply control step of controlling the amount of the oxygen-containing gas supplied per minute within a range of 1 to 50% of the volume of the container. Further, the reforming apparatus includes a tapered container portion capable of accommodating raw material components including the raw material PAS resin, and along the inner wall of the container portion, from the bottom portion of the container portion to the top, and further from the top to the above. It has a stirring mechanism that forms a circulation flow in which the raw material components circulate through the center side of the container to the bottom. Furthermore, it is preferable that the raw material component containing the raw material PAS resin is obtained by a polymerization step of polymerizing the raw material PAS resin. As a result, the aggregation of the PAS resins, which tend to fuse at high temperatures, is further suppressed, the formation of PAS resin adherents adhered to the inner wall of the container is suppressed and prevented, and contamination is further reduced. It is possible to produce a modified PAS resin. As a result, a PAS resin having a high molecular weight can be produced with a high yield.
本実施形態の改質化されたPAS樹脂の製造方法の好ましい形態の一例は、改質処理装置を用いて、気相酸化性雰囲気下で原料PAS樹脂の融点Tm未満の温度に原料PAS樹脂を含む原料成分を加熱して改質化されたPAS樹脂を製造する方法であって、前記改質処理装置に搭載された容器部内への酸素を含む気体の供給及び前記容器部外への前記容器部内の気体(gd)の排出を行い、前記容器部内に投入した前記原料成分を循環流により循環させながら、加熱手段により前記原料成分を前記融点Tm未満に加熱する加熱処理工程と、前記酸素を含む気体の毎分当たりの供給量は、前記容器部の容積の1~50%の範囲内に制御する気体供給制御工程と、を有する。また、前記改質処理装置は、原料PAS樹脂を含む原料成分を収容可能なテーパー状の容器部を備え、かつ前記容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと前記原料成分が循環する循環流を形成する撹拌機構を有する。さらには、前記原料PAS樹脂を含む原料成分は、前記原料PAS樹脂を重合する重合工程により得られることが好ましい。これにより、高温下で融着しやすいPAS樹脂同士の凝集をより抑制しつつ、容器の内壁に密着したPAS樹脂固着物の形成を抑制・防止し、かつコンタミネーションがより低減された、高分子量化したPAS樹脂を製造できる。その結果、高分子量化されたPAS樹脂の高い収率で製造することができる。 "Best mode (under gas-phase oxidizing atmosphere)"
In one preferred embodiment of the method for producing a modified PAS resin according to the present embodiment, the raw material PAS resin is heated to a temperature below the melting point Tm of the raw material PAS resin in a vapor-phase oxidizing atmosphere using a modification apparatus. A method for producing a modified PAS resin by heating a raw material component containing the a heat treatment step of discharging the gas (g d ) in the container portion, and heating the raw material component with a heating means to a temperature lower than the melting point T m while circulating the raw material component introduced into the container portion by a circulating flow; and a gas supply control step of controlling the amount of the oxygen-containing gas supplied per minute within a range of 1 to 50% of the volume of the container. Further, the reforming apparatus includes a tapered container portion capable of accommodating raw material components including the raw material PAS resin, and along the inner wall of the container portion, from the bottom portion of the container portion to the top, and further from the top to the above. It has a stirring mechanism that forms a circulation flow in which the raw material components circulate through the center side of the container to the bottom. Furthermore, it is preferable that the raw material component containing the raw material PAS resin is obtained by a polymerization step of polymerizing the raw material PAS resin. As a result, the aggregation of the PAS resins, which tend to fuse at high temperatures, is further suppressed, the formation of PAS resin adherents adhered to the inner wall of the container is suppressed and prevented, and contamination is further reduced. It is possible to produce a modified PAS resin. As a result, a PAS resin having a high molecular weight can be produced with a high yield.
「ベストモード(不活性ガス雰囲気)」
本実施形態は、改質処理装置を用いて、不活性ガス雰囲気下でPAS樹脂の融点Tm未満の温度に原料PAS樹脂を含む原料成分を加熱して改質化されたPAS樹脂を製造する方法であって、前記改質処理装置に搭載された容器部内への不活性ガスの供給及び前記容器部外への前記容器部内の気体(gd)の排出を行い、前記容器部内に投入した前記原料成分を循環流により循環させながら、加熱手段により前記原料成分を前記融点Tm未満に加熱する加熱処理工程と、前記不活性ガスの毎分当たりの供給量は、前記容器部の容積の1~50%の範囲内に制御する気体供給制御工程と、を有する。また、前記改質処理装置は、PAS樹脂を含む原料成分を収容可能なテーパー状の容器部を備え、かつ前記容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと前記原料成分が循環する循環流を形成する撹拌機構を有する。さらには、前記原料PAS樹脂を含む原料成分は、前記原料PAS樹脂を重合する重合工程により得られることが好ましい。これにより、高温下で融着しやすいPAS樹脂同士の凝集をより抑制しつつ、容器の内壁に密着したPAS樹脂固着物の形成を抑制・防止し、かつコンタミネーションがより低減された改質化されたPAS樹脂を製造できる。その結果、改質化されたPAS樹脂の高い収率で製造することができる。 "Best mode (inert gas atmosphere)"
In this embodiment, a modified PAS resin is produced by heating a raw material component including a raw PAS resin to a temperature below the melting point Tm of the PAS resin in an inert gas atmosphere using a modification apparatus. In the method, an inert gas is supplied into the container mounted in the reforming apparatus, the gas (g d ) in the container is discharged to the outside of the container, and the gas (g d ) is introduced into the container. A heat treatment step of heating the raw material components to less than the melting point Tm by a heating means while circulating the raw material components with a circulating flow, and the supply amount of the inert gas per minute is the volume of the container part. and a gas supply control step for controlling within the range of 1 to 50%. In addition, the reforming apparatus includes a tapered container portion capable of containing the raw material component including the PAS resin, and along the inner wall of the container portion, from the bottom portion of the container portion to the upper portion, and further from the upper portion to the container portion. It has a stirring mechanism that forms a circulation flow in which the raw material components circulate to the bottom through the center side of the part. Furthermore, it is preferable that the raw material component containing the raw material PAS resin is obtained by a polymerization step of polymerizing the raw material PAS resin. As a result, the aggregation of PAS resins that tend to fuse together at high temperatures is further suppressed, while the formation of PAS resin adherents adhered to the inner wall of the container is suppressed and prevented, and contamination is further reduced. It is possible to produce a PAS resin with a As a result, a high yield of modified PAS resin can be produced.
本実施形態は、改質処理装置を用いて、不活性ガス雰囲気下でPAS樹脂の融点Tm未満の温度に原料PAS樹脂を含む原料成分を加熱して改質化されたPAS樹脂を製造する方法であって、前記改質処理装置に搭載された容器部内への不活性ガスの供給及び前記容器部外への前記容器部内の気体(gd)の排出を行い、前記容器部内に投入した前記原料成分を循環流により循環させながら、加熱手段により前記原料成分を前記融点Tm未満に加熱する加熱処理工程と、前記不活性ガスの毎分当たりの供給量は、前記容器部の容積の1~50%の範囲内に制御する気体供給制御工程と、を有する。また、前記改質処理装置は、PAS樹脂を含む原料成分を収容可能なテーパー状の容器部を備え、かつ前記容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと前記原料成分が循環する循環流を形成する撹拌機構を有する。さらには、前記原料PAS樹脂を含む原料成分は、前記原料PAS樹脂を重合する重合工程により得られることが好ましい。これにより、高温下で融着しやすいPAS樹脂同士の凝集をより抑制しつつ、容器の内壁に密着したPAS樹脂固着物の形成を抑制・防止し、かつコンタミネーションがより低減された改質化されたPAS樹脂を製造できる。その結果、改質化されたPAS樹脂の高い収率で製造することができる。 "Best mode (inert gas atmosphere)"
In this embodiment, a modified PAS resin is produced by heating a raw material component including a raw PAS resin to a temperature below the melting point Tm of the PAS resin in an inert gas atmosphere using a modification apparatus. In the method, an inert gas is supplied into the container mounted in the reforming apparatus, the gas (g d ) in the container is discharged to the outside of the container, and the gas (g d ) is introduced into the container. A heat treatment step of heating the raw material components to less than the melting point Tm by a heating means while circulating the raw material components with a circulating flow, and the supply amount of the inert gas per minute is the volume of the container part. and a gas supply control step for controlling within the range of 1 to 50%. In addition, the reforming apparatus includes a tapered container portion capable of containing the raw material component including the PAS resin, and along the inner wall of the container portion, from the bottom portion of the container portion to the upper portion, and further from the upper portion to the container portion. It has a stirring mechanism that forms a circulation flow in which the raw material components circulate to the bottom through the center side of the part. Furthermore, it is preferable that the raw material component containing the raw material PAS resin is obtained by a polymerization step of polymerizing the raw material PAS resin. As a result, the aggregation of PAS resins that tend to fuse together at high temperatures is further suppressed, while the formation of PAS resin adherents adhered to the inner wall of the container is suppressed and prevented, and contamination is further reduced. It is possible to produce a PAS resin with a As a result, a high yield of modified PAS resin can be produced.
「改質化されたPAS樹脂」
本実施形態における製造方法により得られた改質化されたPAS樹脂は、用途に応じて強度や耐熱性、寸法安定性等の性能を付与するために各種充填材を適宜配合することができる。充填材としては、特に制限されるものではないが、繊維状充填材、非繊維状充填材等が挙げられる。繊維状充填材としては、例えば、ガラス繊維、炭素繊維、シランガラス繊維、セラミック繊維、アラミド繊維、金属繊維、チタン酸カリウム、炭化珪素、硫酸カルシウム、珪酸カルシウム等の繊維、ウォラストナイト等の天然繊維等が使用出来る。又、非繊維状充填剤としては、例えば、硫酸バリウム、硫酸カルシウム、クレー、パイロフェライト、ベントナイト、セリサイト、ゼオライト、マイカ、雲母、タルク、アタルパルジャイト、フェライト、珪酸カルシウム、炭酸カルシウム、炭酸マグネシウム、ガラスビーズ等が使用できる。また、成形加工の際に添加剤として、本発明の目的を逸脱しない範囲で少量の、着色剤、帯電防止剤、酸化防止剤、耐熱安定剤、紫外線安定剤、紫外線吸収剤、発泡剤、難燃剤、難燃助剤、防錆剤、及び離型剤(ステアリン酸やモンタン酸を含む炭素原子数18~30の脂肪酸の金属塩やエステル、ポリエチレン等のポリオレフィン系ワックスなど)等の公知慣用の添加剤を改質化されたPAS樹脂に含有させてもよい。更に、同様に下記のごとき合成樹脂及びエラストマーを混合して使用することもできる。これら合成樹脂としては、ポリエステル、ポリアミド、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリフェニレンエーテル、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリアリレート、ポリエチレン、ポリプロピレン、ポリ四弗化エチレン、ポリ二弗化エチレン、ポリスチレン、ABS樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等が挙げられ、エラストマーとしては、ポリオレフィン系ゴム、フッ素ゴム、シリコーンゴム等が挙げられる。 "Modified PAS Resin"
The modified PAS resin obtained by the production method of the present embodiment can be appropriately blended with various fillers in order to impart properties such as strength, heat resistance, and dimensional stability depending on the application. The filler is not particularly limited, but includes fibrous fillers, non-fibrous fillers, and the like. Examples of fibrous fillers include fibers such as glass fiber, carbon fiber, silane glass fiber, ceramic fiber, aramid fiber, metal fiber, potassium titanate, silicon carbide, calcium sulfate, calcium silicate, and natural fibers such as wollastonite. Fiber etc. can be used. Examples of non-fibrous fillers include barium sulfate, calcium sulfate, clay, pyroferrite, bentonite, sericite, zeolite, mica, mica, talc, attalpalgite, ferrite, calcium silicate, calcium carbonate, and magnesium carbonate. , glass beads, etc. can be used. In addition, as additives during molding processing, a small amount of coloring agents, antistatic agents, antioxidants, heat stabilizers, ultraviolet stabilizers, ultraviolet absorbers, foaming agents, flame retardant Retardants, flame retardant aids, rust inhibitors, and mold release agents (metal salts and esters of fatty acids having 18 to 30 carbon atoms including stearic acid and montanic acid, polyolefin waxes such as polyethylene, etc.) Additives may be included in the modified PAS resin. Furthermore, synthetic resins and elastomers such as those described below can also be mixed and used in the same manner. These synthetic resins include polyester, polyamide, polyimide, polyetherimide, polycarbonate, polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone, polyetherketone, polyarylate, polyethylene, polypropylene, polytetrafluoroethylene, Polyethylene difluoride, polystyrene, ABS resins, epoxy resins, silicone resins, phenol resins, urethane resins, liquid crystal polymers and the like can be mentioned, and elastomers can include polyolefin rubbers, fluororubbers, silicone rubbers and the like.
本実施形態における製造方法により得られた改質化されたPAS樹脂は、用途に応じて強度や耐熱性、寸法安定性等の性能を付与するために各種充填材を適宜配合することができる。充填材としては、特に制限されるものではないが、繊維状充填材、非繊維状充填材等が挙げられる。繊維状充填材としては、例えば、ガラス繊維、炭素繊維、シランガラス繊維、セラミック繊維、アラミド繊維、金属繊維、チタン酸カリウム、炭化珪素、硫酸カルシウム、珪酸カルシウム等の繊維、ウォラストナイト等の天然繊維等が使用出来る。又、非繊維状充填剤としては、例えば、硫酸バリウム、硫酸カルシウム、クレー、パイロフェライト、ベントナイト、セリサイト、ゼオライト、マイカ、雲母、タルク、アタルパルジャイト、フェライト、珪酸カルシウム、炭酸カルシウム、炭酸マグネシウム、ガラスビーズ等が使用できる。また、成形加工の際に添加剤として、本発明の目的を逸脱しない範囲で少量の、着色剤、帯電防止剤、酸化防止剤、耐熱安定剤、紫外線安定剤、紫外線吸収剤、発泡剤、難燃剤、難燃助剤、防錆剤、及び離型剤(ステアリン酸やモンタン酸を含む炭素原子数18~30の脂肪酸の金属塩やエステル、ポリエチレン等のポリオレフィン系ワックスなど)等の公知慣用の添加剤を改質化されたPAS樹脂に含有させてもよい。更に、同様に下記のごとき合成樹脂及びエラストマーを混合して使用することもできる。これら合成樹脂としては、ポリエステル、ポリアミド、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリフェニレンエーテル、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリアリレート、ポリエチレン、ポリプロピレン、ポリ四弗化エチレン、ポリ二弗化エチレン、ポリスチレン、ABS樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等が挙げられ、エラストマーとしては、ポリオレフィン系ゴム、フッ素ゴム、シリコーンゴム等が挙げられる。 "Modified PAS Resin"
The modified PAS resin obtained by the production method of the present embodiment can be appropriately blended with various fillers in order to impart properties such as strength, heat resistance, and dimensional stability depending on the application. The filler is not particularly limited, but includes fibrous fillers, non-fibrous fillers, and the like. Examples of fibrous fillers include fibers such as glass fiber, carbon fiber, silane glass fiber, ceramic fiber, aramid fiber, metal fiber, potassium titanate, silicon carbide, calcium sulfate, calcium silicate, and natural fibers such as wollastonite. Fiber etc. can be used. Examples of non-fibrous fillers include barium sulfate, calcium sulfate, clay, pyroferrite, bentonite, sericite, zeolite, mica, mica, talc, attalpalgite, ferrite, calcium silicate, calcium carbonate, and magnesium carbonate. , glass beads, etc. can be used. In addition, as additives during molding processing, a small amount of coloring agents, antistatic agents, antioxidants, heat stabilizers, ultraviolet stabilizers, ultraviolet absorbers, foaming agents, flame retardant Retardants, flame retardant aids, rust inhibitors, and mold release agents (metal salts and esters of fatty acids having 18 to 30 carbon atoms including stearic acid and montanic acid, polyolefin waxes such as polyethylene, etc.) Additives may be included in the modified PAS resin. Furthermore, synthetic resins and elastomers such as those described below can also be mixed and used in the same manner. These synthetic resins include polyester, polyamide, polyimide, polyetherimide, polycarbonate, polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone, polyetherketone, polyarylate, polyethylene, polypropylene, polytetrafluoroethylene, Polyethylene difluoride, polystyrene, ABS resins, epoxy resins, silicone resins, phenol resins, urethane resins, liquid crystal polymers and the like can be mentioned, and elastomers can include polyolefin rubbers, fluororubbers, silicone rubbers and the like.
さらに、本実施形態における製造方法により得られた改質化されたPAS樹脂は、射出成形、押出成形、圧縮成形、ブロー成形等の各種溶融加工法により、耐熱性、成形加工性、寸法安定性等に優れる。このため、例えば、コネクタ・プリント基板・封止成形品などの電気・電子部品、ランプリフレクター・各種電装部品などの自動車部品、各種建築物や航空機・自動車などの内装用材料、あるいはOA機器部品・カメラ部品・時計部品などの精密部品等の射出成形・圧縮成形品、あるいは繊維・フィルム・シート・パイプなどの押出成形・引抜成形品等として幅広く利用可能である。
Furthermore, the modified PAS resin obtained by the production method of the present embodiment has heat resistance, moldability, and dimensional stability by various melt processing methods such as injection molding, extrusion molding, compression molding, and blow molding. etc. For this reason, for example, electrical and electronic parts such as connectors, printed circuit boards, and sealed molded products, automotive parts such as lamp reflectors and various electrical parts, interior materials for various buildings, aircraft, automobiles, etc., OA equipment parts, It can be widely used as injection molding/compression molding products such as precision parts such as camera parts and watch parts, or extrusion molding/pultrusion molding such as fibers, films, sheets and pipes.
本実施形態における改質化されたPAS樹脂の溶融粘度(Pa・s)が、2以上が好ましく、3以上がより好ましく、5以上がさらに好ましく、また、10000以下が好ましく、8000以下がより好ましく、5000以下がさらに好ましい。本実施形態における改質化されたPAS樹脂のピーク分子量(Mtop)が、15000以上が好ましく、20000以上がより好ましく、30000以上がさらに好ましく、また、170000以下が好ましく、150000以下がより好ましく、100000以下がさらに好ましい。本実施形態における改質化されたPAS樹脂の低分子量不純物の含有量が、改質化されたPAS樹脂の総量(100質量%)に対して、0.9質量%以下であることが好ましく、0.7質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましい。改質化されたPAS樹脂の各物性における好ましい範囲は、上記上限と上記下限とを任意に組み合わせできる。
The melt viscosity (Pa s) of the modified PAS resin in the present embodiment is preferably 2 or more, more preferably 3 or more, still more preferably 5 or more, preferably 10000 or less, and more preferably 8000 or less. , 5000 or less. The modified PAS resin in the present embodiment has a peak molecular weight (M top ) of preferably 15,000 or more, more preferably 20,000 or more, even more preferably 30,000 or more, and preferably 170,000 or less, more preferably 150,000 or less, 100,000 or less is more preferable. The content of low molecular weight impurities in the modified PAS resin in the present embodiment is preferably 0.9% by mass or less with respect to the total amount (100% by mass) of the modified PAS resin, It is more preferably 0.7% by mass or less, and even more preferably 0.5% by mass or less. A preferred range for each physical property of the modified PAS resin can be any combination of the above upper limit and the above lower limit.
以下、実施例及び比較例に基づいて本発明の実施形態を更に具体的に説明するが、本発明はこれらの実施例により何ら制限されるものではない。
1.「評価方法」
実施例及び比較例に用いた評価方法を以下に示す。 EXAMPLES The embodiments of the present invention will be described in more detail below based on Examples and Comparative Examples, but the present invention is not limited to these Examples.
1. "Evaluation method"
Evaluation methods used in Examples and Comparative Examples are shown below.
1.「評価方法」
実施例及び比較例に用いた評価方法を以下に示す。 EXAMPLES The embodiments of the present invention will be described in more detail below based on Examples and Comparative Examples, but the present invention is not limited to these Examples.
1. "Evaluation method"
Evaluation methods used in Examples and Comparative Examples are shown below.
(1)溶融粘度(V6)の測定法
実施例及び比較例で使用又は製造したPPS樹脂の溶融粘度(V6)は、島津製作所製フローテスター「CFT-500C」を用い、300℃、荷重:1.96×106Pa、L/D=10(mm)/1(mm)にて、6分間保持した後の溶融粘度を測定した。 (1) Melt viscosity (V6) measurement method The melt viscosity (V6) of the PPS resins used or produced in Examples and Comparative Examples was measured using a flow tester "CFT-500C" manufactured by Shimadzu Corporation at 300 ° C. and a load of 1. The melt viscosity was measured after holding for 6 minutes at 96×10 6 Pa and L/D=10 (mm)/1 (mm).
実施例及び比較例で使用又は製造したPPS樹脂の溶融粘度(V6)は、島津製作所製フローテスター「CFT-500C」を用い、300℃、荷重:1.96×106Pa、L/D=10(mm)/1(mm)にて、6分間保持した後の溶融粘度を測定した。 (1) Melt viscosity (V6) measurement method The melt viscosity (V6) of the PPS resins used or produced in Examples and Comparative Examples was measured using a flow tester "CFT-500C" manufactured by Shimadzu Corporation at 300 ° C. and a load of 1. The melt viscosity was measured after holding for 6 minutes at 96×10 6 Pa and L/D=10 (mm)/1 (mm).
(2)ガス発生量の測定法
PPSの粉体試料5.0gを精密天秤にてアルミ製シャーレに秤量した。150℃に設定された乾燥機内に試料を1時間静置した後、シャーレを取出して、室温まで放冷してから秤量した。次いで、同シャーレを、370℃に設定された乾燥機内に1時間静置した後、シャーレを取出して、室温まで放冷してから秤量した。次式よりガス発生量(質量%)を算出した。
{(150℃加熱後の秤量値)-(370℃加熱後の秤量値)}÷(150℃加熱後の秤量値)×100 (2) Measurement method of gas generation amount 5.0 g of a PPS powder sample was weighed in an aluminum petri dish using a precision balance. After the sample was allowed to stand in a dryer set at 150° C. for 1 hour, the petri dish was taken out, allowed to cool to room temperature, and then weighed. Then, the same petri dish was placed in a dryer set at 370° C. for 1 hour, then taken out, allowed to cool to room temperature, and then weighed. The gas generation amount (% by mass) was calculated from the following formula.
{(Weighed value after heating at 150° C.)−(Weighed value after heating at 370° C.)}/(Weighed value after heating at 150° C.)×100
PPSの粉体試料5.0gを精密天秤にてアルミ製シャーレに秤量した。150℃に設定された乾燥機内に試料を1時間静置した後、シャーレを取出して、室温まで放冷してから秤量した。次いで、同シャーレを、370℃に設定された乾燥機内に1時間静置した後、シャーレを取出して、室温まで放冷してから秤量した。次式よりガス発生量(質量%)を算出した。
{(150℃加熱後の秤量値)-(370℃加熱後の秤量値)}÷(150℃加熱後の秤量値)×100 (2) Measurement method of gas generation amount 5.0 g of a PPS powder sample was weighed in an aluminum petri dish using a precision balance. After the sample was allowed to stand in a dryer set at 150° C. for 1 hour, the petri dish was taken out, allowed to cool to room temperature, and then weighed. Then, the same petri dish was placed in a dryer set at 370° C. for 1 hour, then taken out, allowed to cool to room temperature, and then weighed. The gas generation amount (% by mass) was calculated from the following formula.
{(Weighed value after heating at 150° C.)−(Weighed value after heating at 370° C.)}/(Weighed value after heating at 150° C.)×100
(3)PPS樹脂固着物の観察
実施例において使用した改質処理装置の容器又は比較例において使用した装置B,Cの容器内において、PPS樹脂固着物が付着しているか否か目視で確認した。そして、容器内にPPS樹脂固着物が付着している場合、それを採取して、ノギスを用いて最大長さを測定した。 (3) Observation of PPS resin adhered matter It was visually confirmed whether or not PPS resin adhered matter adhered in the container of the reforming apparatus used in the examples or in the containers of the apparatuses B and C used in the comparative examples. . Then, when the PPS resin adhered to the inside of the container, it was collected and the maximum length was measured using a vernier caliper.
実施例において使用した改質処理装置の容器又は比較例において使用した装置B,Cの容器内において、PPS樹脂固着物が付着しているか否か目視で確認した。そして、容器内にPPS樹脂固着物が付着している場合、それを採取して、ノギスを用いて最大長さを測定した。 (3) Observation of PPS resin adhered matter It was visually confirmed whether or not PPS resin adhered matter adhered in the container of the reforming apparatus used in the examples or in the containers of the apparatuses B and C used in the comparative examples. . Then, when the PPS resin adhered to the inside of the container, it was collected and the maximum length was measured using a vernier caliper.
(実施例1)
溶融粘度(V6)が22Pa・sである原料PPS樹脂30kgを、図1に示す、気体の供給口8及び排出口9と、回転翼を有する撹拌部材2とを備えた改質処理装置1(装置Aとも称する。)の円錐型の容器部4内(空間Vの有効容量が50L)に仕込んだ。次いで、改質処理装置1の底部に取り付けられた気体の供給口8から、2L/分(改質処理装置1の有効容量の4%/分)の流量で空気を導入し、上部の気体の排出口9から排気を行う気体供給制御工程を施しながら、内部に熱媒が充填可能な温度調節ジャケット5を用いて容器部4の内温が250℃となるまで3時間で昇温し、該温度で更に7時間撹拌を継続した。撹拌部材2である回転翼の回転数は、74rpmとした。
その後、前記回転翼を動かしたまま、内温を250℃から下げずに蓋部11を開き、加熱処理後の改質されたPPS樹脂を回収した。加熱処理後の改質されたPPS樹脂の収量は29.5kg(収率は98.3%)であり、容器部4の内壁と、回転翼との間にPPS樹脂固着物の付着は認められなかった。加熱処理後の改質されたPPS樹脂は黄褐色であり、溶融粘度(V6)は152Pa・sであり、低分子量不純物の濃度(溶融時のガス発生量)は0.28質量%であった。また、改質されたPPS樹脂のピーク分子量(Mtop)は33000であり、改質前の原料PPS樹脂のピーク分子量(Mtop)である25000と比べて、10%以上増大していることが確認された。
尚、上記気体供給制御工程及び上記加熱処理を行う前の原料PPS樹脂中の低分子量不純物の濃度(溶融時のガス発生量)は、1.0質量%であった。
また、容器部4内において、PPS樹脂固着物の形成は、確認できなかった。 (Example 1)
30 kg of a raw material PPS resin having a melt viscosity (V6) of 22 Pa·s was passed through a reforming apparatus 1 ( (Also referred to as apparatus A.). Next, air is introduced from the gas supply port 8 attached to the bottom of the reformingdevice 1 at a flow rate of 2 L/min (4%/min of the effective capacity of the reforming device 1), and the gas at the top is While performing a gas supply control step of exhausting air from the discharge port 9, the inside temperature of the container part 4 is raised to 250 ° C. in 3 hours using the temperature control jacket 5 that can be filled with a heat medium. Stirring was continued at temperature for an additional 7 hours. The rotational speed of the rotary blade, which is the stirring member 2, was set to 74 rpm.
Thereafter, while the rotor blades were kept moving, thelid portion 11 was opened without lowering the internal temperature from 250° C., and the modified PPS resin after the heat treatment was recovered. The yield of the modified PPS resin after heat treatment was 29.5 kg (yield: 98.3%), and adherence of PPS resin deposits between the inner wall of the container part 4 and the rotor blade was observed. I didn't. The modified PPS resin after heat treatment had a yellowish brown color, a melt viscosity (V6) of 152 Pa s, and a concentration of low-molecular-weight impurities (amount of gas generated during melting) of 0.28% by mass. . In addition, the modified PPS resin has a peak molecular weight (M top ) of 33,000, which is 10% or more higher than the peak molecular weight (M top ) of the raw material PPS resin before modification (M top ) of 25,000. confirmed.
The concentration of low-molecular-weight impurities in the raw material PPS resin (the amount of gas generated during melting) before the gas supply control step and the heat treatment was performed was 1.0% by mass.
In addition, the formation of PPS resin deposits in the container portion 4 could not be confirmed.
溶融粘度(V6)が22Pa・sである原料PPS樹脂30kgを、図1に示す、気体の供給口8及び排出口9と、回転翼を有する撹拌部材2とを備えた改質処理装置1(装置Aとも称する。)の円錐型の容器部4内(空間Vの有効容量が50L)に仕込んだ。次いで、改質処理装置1の底部に取り付けられた気体の供給口8から、2L/分(改質処理装置1の有効容量の4%/分)の流量で空気を導入し、上部の気体の排出口9から排気を行う気体供給制御工程を施しながら、内部に熱媒が充填可能な温度調節ジャケット5を用いて容器部4の内温が250℃となるまで3時間で昇温し、該温度で更に7時間撹拌を継続した。撹拌部材2である回転翼の回転数は、74rpmとした。
その後、前記回転翼を動かしたまま、内温を250℃から下げずに蓋部11を開き、加熱処理後の改質されたPPS樹脂を回収した。加熱処理後の改質されたPPS樹脂の収量は29.5kg(収率は98.3%)であり、容器部4の内壁と、回転翼との間にPPS樹脂固着物の付着は認められなかった。加熱処理後の改質されたPPS樹脂は黄褐色であり、溶融粘度(V6)は152Pa・sであり、低分子量不純物の濃度(溶融時のガス発生量)は0.28質量%であった。また、改質されたPPS樹脂のピーク分子量(Mtop)は33000であり、改質前の原料PPS樹脂のピーク分子量(Mtop)である25000と比べて、10%以上増大していることが確認された。
尚、上記気体供給制御工程及び上記加熱処理を行う前の原料PPS樹脂中の低分子量不純物の濃度(溶融時のガス発生量)は、1.0質量%であった。
また、容器部4内において、PPS樹脂固着物の形成は、確認できなかった。 (Example 1)
30 kg of a raw material PPS resin having a melt viscosity (V6) of 22 Pa·s was passed through a reforming apparatus 1 ( (Also referred to as apparatus A.). Next, air is introduced from the gas supply port 8 attached to the bottom of the reforming
Thereafter, while the rotor blades were kept moving, the
The concentration of low-molecular-weight impurities in the raw material PPS resin (the amount of gas generated during melting) before the gas supply control step and the heat treatment was performed was 1.0% by mass.
In addition, the formation of PPS resin deposits in the container portion 4 could not be confirmed.
(実施例2)
容器部4の内温が230℃となるまで2時間で昇温し、該温度で更に21時間撹拌を継続した以外は、実施例1と同様に実施した。収量は29.7kg(収率は99.0%)であり、容器部4の内壁と、回転翼との間にPPS樹脂固着物の付着は認められなかった。加熱処理後の改質されたPPS樹脂の溶融粘度(V6)は155Pa・sであり、低分子量不純物の濃度(溶融時のガス発生量)は0.29質量%であった。
尚、実施例2において、気体供給制御工程及び加熱処理を行う前の原料PPS樹脂中の低分子量不純物の濃度(溶融時のガス発生量)は、1.0質量%であった。また、改質されたPPS樹脂のピーク分子量(Mtop)は33000であり、改質前の原料PPS樹脂のピーク分子量(Mtop)である25000と比べて、ピーク分子量(Mtop)の変化量が10%以上増大していることが確認された。
尚、改質処理後の容器部4内において、PPS樹脂固着物の形成は、確認できなかった。 (Example 2)
It was carried out in the same manner as in Example 1, except that the internal temperature of the container part 4 was raised to 230° C. over 2 hours, and the stirring was continued at that temperature for 21 hours. The yield was 29.7 kg (yield 99.0%), and adhesion of PPS resin deposits between the inner wall of the container part 4 and the rotor blades was not observed. The melt viscosity (V6) of the modified PPS resin after heat treatment was 155 Pa·s, and the concentration of low-molecular-weight impurities (the amount of gas generated during melting) was 0.29% by mass.
In Example 2, the concentration of low-molecular-weight impurities (the amount of gas generated during melting) in the raw PPS resin before the gas supply control step and the heat treatment was 1.0% by mass. In addition, the modified PPS resin had a peak molecular weight (M top ) of 33,000, and compared with the peak molecular weight (M top ) of the raw material PPS resin before modification of 25,000, the amount of change in the peak molecular weight (M top ) was was confirmed to increase by 10% or more.
In addition, the formation of the PPS resin adhered matter could not be confirmed in the container portion 4 after the modification treatment.
容器部4の内温が230℃となるまで2時間で昇温し、該温度で更に21時間撹拌を継続した以外は、実施例1と同様に実施した。収量は29.7kg(収率は99.0%)であり、容器部4の内壁と、回転翼との間にPPS樹脂固着物の付着は認められなかった。加熱処理後の改質されたPPS樹脂の溶融粘度(V6)は155Pa・sであり、低分子量不純物の濃度(溶融時のガス発生量)は0.29質量%であった。
尚、実施例2において、気体供給制御工程及び加熱処理を行う前の原料PPS樹脂中の低分子量不純物の濃度(溶融時のガス発生量)は、1.0質量%であった。また、改質されたPPS樹脂のピーク分子量(Mtop)は33000であり、改質前の原料PPS樹脂のピーク分子量(Mtop)である25000と比べて、ピーク分子量(Mtop)の変化量が10%以上増大していることが確認された。
尚、改質処理後の容器部4内において、PPS樹脂固着物の形成は、確認できなかった。 (Example 2)
It was carried out in the same manner as in Example 1, except that the internal temperature of the container part 4 was raised to 230° C. over 2 hours, and the stirring was continued at that temperature for 21 hours. The yield was 29.7 kg (yield 99.0%), and adhesion of PPS resin deposits between the inner wall of the container part 4 and the rotor blades was not observed. The melt viscosity (V6) of the modified PPS resin after heat treatment was 155 Pa·s, and the concentration of low-molecular-weight impurities (the amount of gas generated during melting) was 0.29% by mass.
In Example 2, the concentration of low-molecular-weight impurities (the amount of gas generated during melting) in the raw PPS resin before the gas supply control step and the heat treatment was 1.0% by mass. In addition, the modified PPS resin had a peak molecular weight (M top ) of 33,000, and compared with the peak molecular weight (M top ) of the raw material PPS resin before modification of 25,000, the amount of change in the peak molecular weight (M top ) was was confirmed to increase by 10% or more.
In addition, the formation of the PPS resin adhered matter could not be confirmed in the container portion 4 after the modification treatment.
(実施例3)
空気を20L/分(容器内容積の40%/分)の流量で改質処理装置1の底部に形成された気体の供給口8より導入し、熱媒体を用いて内温が250℃となるまで3時間で昇温し、該温度で更に5時間撹拌を継続した以外は、実施例1と同様に実施した。収量は29.7kg(収率は98.9%)であり、容器部4の内壁と、回転翼との間にPPS樹脂固着物の付着は認められなかった。加熱処理後の改質されたPPS樹脂の溶融粘度(V6)は170Pa・sであり、低分子量不純物の濃度(溶融時のガス発生量)は0.26質量%であった。
尚、実施例3において、気体供給制御工程及び加熱処理を行う前の原料PPS樹脂中の低分子量不純物の濃度(溶融時のガス発生量)は、1.0質量%であった。また、改質されたPPS樹脂のピーク分子量(Mtop)は34000であり、改質前の原料PPS樹脂のピーク分子量(Mtop)である25000と比べて、ピーク分子量(Mtop)の変化量が10%以上増大していることが確認された。
尚、改質処理後の容器部4内において、PPS樹脂固着物の形成は、確認できなかった。 (Example 3)
Air is introduced from the gas supply port 8 formed at the bottom of the reformingapparatus 1 at a flow rate of 20 L/min (40%/min of the internal volume of the container), and the internal temperature reaches 250°C using a heat medium. The procedure was carried out in the same manner as in Example 1, except that the temperature was raised in 3 hours to 3 hours, and the stirring was continued at this temperature for 5 hours. The yield was 29.7 kg (yield 98.9%), and adhesion of PPS resin deposits between the inner wall of the container part 4 and the rotor blades was not observed. The melt viscosity (V6) of the modified PPS resin after heat treatment was 170 Pa·s, and the concentration of low-molecular-weight impurities (the amount of gas generated during melting) was 0.26% by mass.
In Example 3, the concentration of low-molecular-weight impurities (the amount of gas generated during melting) in the raw material PPS resin before the gas supply control step and the heat treatment was 1.0% by mass. In addition, the modified PPS resin had a peak molecular weight (M top ) of 34,000, and compared to the peak molecular weight (M top ) of the raw material PPS resin before modification of 25,000, the amount of change in the peak molecular weight (M top ) was was confirmed to increase by 10% or more.
In addition, the formation of the PPS resin adhered matter could not be confirmed in the container portion 4 after the modification treatment.
空気を20L/分(容器内容積の40%/分)の流量で改質処理装置1の底部に形成された気体の供給口8より導入し、熱媒体を用いて内温が250℃となるまで3時間で昇温し、該温度で更に5時間撹拌を継続した以外は、実施例1と同様に実施した。収量は29.7kg(収率は98.9%)であり、容器部4の内壁と、回転翼との間にPPS樹脂固着物の付着は認められなかった。加熱処理後の改質されたPPS樹脂の溶融粘度(V6)は170Pa・sであり、低分子量不純物の濃度(溶融時のガス発生量)は0.26質量%であった。
尚、実施例3において、気体供給制御工程及び加熱処理を行う前の原料PPS樹脂中の低分子量不純物の濃度(溶融時のガス発生量)は、1.0質量%であった。また、改質されたPPS樹脂のピーク分子量(Mtop)は34000であり、改質前の原料PPS樹脂のピーク分子量(Mtop)である25000と比べて、ピーク分子量(Mtop)の変化量が10%以上増大していることが確認された。
尚、改質処理後の容器部4内において、PPS樹脂固着物の形成は、確認できなかった。 (Example 3)
Air is introduced from the gas supply port 8 formed at the bottom of the reforming
In Example 3, the concentration of low-molecular-weight impurities (the amount of gas generated during melting) in the raw material PPS resin before the gas supply control step and the heat treatment was 1.0% by mass. In addition, the modified PPS resin had a peak molecular weight (M top ) of 34,000, and compared to the peak molecular weight (M top ) of the raw material PPS resin before modification of 25,000, the amount of change in the peak molecular weight (M top ) was was confirmed to increase by 10% or more.
In addition, the formation of the PPS resin adhered matter could not be confirmed in the container portion 4 after the modification treatment.
(実施例4)
不活性ガスとして窒素を2L/分(容器内容積の4%/分)の流量で改質処理装置1の底部に形成された気体の供給口8より導入し、熱媒体を用いて内温が250℃となるまで3時間で昇温し、該温度で更に7時間撹拌を継続した以外は、実施例1と同様に実施した。収量は29.55kg(収率は98.5%)であり、容器部4の内壁と、回転翼との間にPPS樹脂固着物の付着は認められなかった。加熱処理後の改質されたPPS樹脂は灰白色であり、溶融粘度(V6)は41Pa・sであり、低分子量不純物の濃度(溶融時のガス発生量)は0.27質量%であった。
尚、実施例4において、気体供給制御工程及び加熱処理を行う前の原料PPS樹脂中の低分子量不純物の濃度(溶融時のガス発生量)は、1.0質量%であった。また、改質されたPPS樹脂のピーク分子量(Mtop)は28000であり、改質前の原料PPS樹脂のピーク分子量(Mtop)である25000と比べて、ピーク分子量(Mtop)の変化量が10%以上増大していることが確認された。
尚、改質処理後の容器部4内において、PPS樹脂固着物の形成は、確認できなかった。 (Example 4)
Nitrogen as an inert gas is introduced at a flow rate of 2 L/min (4%/min of the internal volume of the container) from the gas supply port 8 formed at the bottom of the reformingapparatus 1, and the internal temperature is increased using a heat medium. The procedure was carried out in the same manner as in Example 1, except that the temperature was raised to 250° C. over 3 hours, and stirring was continued at that temperature for 7 hours. The yield was 29.55 kg (yield 98.5%), and adhesion of PPS resin deposits between the inner wall of the container part 4 and the rotor was not observed. The modified PPS resin after heat treatment was grayish white, had a melt viscosity (V6) of 41 Pa·s, and had a concentration of low-molecular-weight impurities (amount of gas generated during melting) of 0.27% by mass.
In Example 4, the concentration of low-molecular-weight impurities in the raw material PPS resin (the amount of gas generated during melting) before the gas supply control step and the heat treatment was performed was 1.0% by mass. In addition, the modified PPS resin has a peak molecular weight (M top ) of 28,000 , which is the peak molecular weight (M top ) of the raw material PPS resin before modification, which is 25,000. was confirmed to increase by 10% or more.
In addition, the formation of the PPS resin adhered matter could not be confirmed in the container portion 4 after the modification treatment.
不活性ガスとして窒素を2L/分(容器内容積の4%/分)の流量で改質処理装置1の底部に形成された気体の供給口8より導入し、熱媒体を用いて内温が250℃となるまで3時間で昇温し、該温度で更に7時間撹拌を継続した以外は、実施例1と同様に実施した。収量は29.55kg(収率は98.5%)であり、容器部4の内壁と、回転翼との間にPPS樹脂固着物の付着は認められなかった。加熱処理後の改質されたPPS樹脂は灰白色であり、溶融粘度(V6)は41Pa・sであり、低分子量不純物の濃度(溶融時のガス発生量)は0.27質量%であった。
尚、実施例4において、気体供給制御工程及び加熱処理を行う前の原料PPS樹脂中の低分子量不純物の濃度(溶融時のガス発生量)は、1.0質量%であった。また、改質されたPPS樹脂のピーク分子量(Mtop)は28000であり、改質前の原料PPS樹脂のピーク分子量(Mtop)である25000と比べて、ピーク分子量(Mtop)の変化量が10%以上増大していることが確認された。
尚、改質処理後の容器部4内において、PPS樹脂固着物の形成は、確認できなかった。 (Example 4)
Nitrogen as an inert gas is introduced at a flow rate of 2 L/min (4%/min of the internal volume of the container) from the gas supply port 8 formed at the bottom of the reforming
In Example 4, the concentration of low-molecular-weight impurities in the raw material PPS resin (the amount of gas generated during melting) before the gas supply control step and the heat treatment was performed was 1.0% by mass. In addition, the modified PPS resin has a peak molecular weight (M top ) of 28,000 , which is the peak molecular weight (M top ) of the raw material PPS resin before modification, which is 25,000. was confirmed to increase by 10% or more.
In addition, the formation of the PPS resin adhered matter could not be confirmed in the container portion 4 after the modification treatment.
(比較例1)
実施例1と同様のPPS樹脂(溶融粘度(V6)22Pa・s)60kgを、特開平7-242746号公報に記載の装置、即ち、気体導入装置及び熱媒循環式ジャケットを備えた有効容量が100Lの円錐形スクリュ混合型加熱装置(特開平7-242746号公報の図1に記載:装置Bとも称する。)に仕込んだ。次いで、空気を16L/分(容器内容積の16%/分)の流量で容器内に導入し、熱媒体を用いて内温が250℃となるまで4時間で昇温し、該温度で更に7時間保持した。撹拌機の回転数は、スクリュの公転軸を1rpm、自転軸を36rpmとした。その後、内温を250℃から下げずに容器の蓋を開き、製品である反応後のPPS樹脂を得た。収量は46.8kg(収率は78%)であり、処理容器内壁にPPS樹脂固着物の付着が認められた。加熱処理後のPPS樹脂の溶融粘度(V6)は152Pa・sであり、溶融時のガス発生量は0.55質量%であった。
尚、比較例1で使用した円錐形スクリュ混合型加熱装置(装置B)は、容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと原料成分が循環する循環流は形成しなかった。 (Comparative example 1)
60 kg of the same PPS resin (melt viscosity (V6) 22 Pa s) as in Example 1 was placed in the apparatus described in Japanese Patent Application Laid-Open No. 7-242746, that is, an effective capacity equipped with a gas introduction device and a heat medium circulation jacket. A 100 L conical screw mixing type heating device (described in FIG. 1 of JP-A-7-242746: also referred to as device B) was charged. Next, air is introduced into the container at a flow rate of 16 L / min (16% / min of the internal volume of the container), and the internal temperature is raised to 250 ° C. using a heat medium in 4 hours. Hold for 7 hours. The rotational speed of the agitator was 1 rpm for the screw revolution axis and 36 rpm for the rotation axis. Thereafter, the lid of the container was opened without lowering the internal temperature from 250° C. to obtain a PPS resin product after the reaction. The yield was 46.8 kg (78% yield), and adherence of PPS resin deposits to the inner wall of the processing vessel was observed. The melt viscosity (V6) of the PPS resin after heat treatment was 152 Pa·s, and the amount of gas generated during melting was 0.55% by mass.
In addition, the conical screw mixing type heating apparatus (apparatus B) used in Comparative Example 1 was arranged along the inner wall of the container from the bottom to the top of the container, and further from the top to the center of the container. No circulation flow was formed in which raw material components circulated to the bottom.
実施例1と同様のPPS樹脂(溶融粘度(V6)22Pa・s)60kgを、特開平7-242746号公報に記載の装置、即ち、気体導入装置及び熱媒循環式ジャケットを備えた有効容量が100Lの円錐形スクリュ混合型加熱装置(特開平7-242746号公報の図1に記載:装置Bとも称する。)に仕込んだ。次いで、空気を16L/分(容器内容積の16%/分)の流量で容器内に導入し、熱媒体を用いて内温が250℃となるまで4時間で昇温し、該温度で更に7時間保持した。撹拌機の回転数は、スクリュの公転軸を1rpm、自転軸を36rpmとした。その後、内温を250℃から下げずに容器の蓋を開き、製品である反応後のPPS樹脂を得た。収量は46.8kg(収率は78%)であり、処理容器内壁にPPS樹脂固着物の付着が認められた。加熱処理後のPPS樹脂の溶融粘度(V6)は152Pa・sであり、溶融時のガス発生量は0.55質量%であった。
尚、比較例1で使用した円錐形スクリュ混合型加熱装置(装置B)は、容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと原料成分が循環する循環流は形成しなかった。 (Comparative example 1)
60 kg of the same PPS resin (melt viscosity (V6) 22 Pa s) as in Example 1 was placed in the apparatus described in Japanese Patent Application Laid-Open No. 7-242746, that is, an effective capacity equipped with a gas introduction device and a heat medium circulation jacket. A 100 L conical screw mixing type heating device (described in FIG. 1 of JP-A-7-242746: also referred to as device B) was charged. Next, air is introduced into the container at a flow rate of 16 L / min (16% / min of the internal volume of the container), and the internal temperature is raised to 250 ° C. using a heat medium in 4 hours. Hold for 7 hours. The rotational speed of the agitator was 1 rpm for the screw revolution axis and 36 rpm for the rotation axis. Thereafter, the lid of the container was opened without lowering the internal temperature from 250° C. to obtain a PPS resin product after the reaction. The yield was 46.8 kg (78% yield), and adherence of PPS resin deposits to the inner wall of the processing vessel was observed. The melt viscosity (V6) of the PPS resin after heat treatment was 152 Pa·s, and the amount of gas generated during melting was 0.55% by mass.
In addition, the conical screw mixing type heating apparatus (apparatus B) used in Comparative Example 1 was arranged along the inner wall of the container from the bottom to the top of the container, and further from the top to the center of the container. No circulation flow was formed in which raw material components circulated to the bottom.
(比較例2)
実施例1と同様のPPS樹脂(溶融粘度(V6)22Pa・s)15kgを、特開昭62-205127号公報に記載の装置、即ち、気体導入装置及び熱媒循環式ジャケットを備えた全容量が50Lの容器回転型の二重円錐型加熱装置(特開昭62-205127号公報の図1に記載:装置Cとも称する。)に仕込んだ。次いで、回転数3rpmで容器の回転を開始して、空気を2L/分(容器内容積の4%/分)の流量で容器内に導入し、熱媒体を用いて内温が250℃となるまで5時間で昇温し、該温度で更に8時間保持した。内温を250℃から下げずに容器の蓋を開いたものの、蓋部でPPS樹脂固着物が固着しPPS樹脂が得られなかった。また、処理容器内壁にPPS樹脂固着物の付着が認められた。加熱処理後のPPS樹脂の溶融粘度(V6)は154Pa・sであり、溶融時のガス発生量は0.54質量%であった。
尚、比較例1で使用した円錐形スクリュ混合型加熱装置(装置C)は、容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと原料成分が循環する循環流は形成しなかった。 (Comparative example 2)
15 kg of the same PPS resin (melt viscosity (V6) 22 Pa s) as in Example 1 was added to the apparatus described in JP-A-62-205127, that is, the full capacity equipped with a gas introduction device and a heat medium circulation jacket. was charged in a 50 L vessel rotating double cone heating device (described in FIG. 1 of Japanese Patent Application Laid-Open No. 205127/1987: also referred to as device C). Next, the rotation of the container is started at a rotation speed of 3 rpm, air is introduced into the container at a flow rate of 2 L/min (4%/min of the internal volume of the container), and the internal temperature reaches 250°C using a heat medium. The temperature was raised to 5 hours and held at that temperature for an additional 8 hours. Although the lid of the container was opened without lowering the internal temperature from 250° C., the PPS resin adhered to the lid, and no PPS resin was obtained. Adherence of PPS resin deposits was also observed on the inner wall of the processing vessel. The melt viscosity (V6) of the PPS resin after heat treatment was 154 Pa·s, and the amount of gas generated during melting was 0.54% by mass.
In addition, the conical screw mixing type heating apparatus (apparatus C) used in Comparative Example 1 was arranged along the inner wall of the container from the bottom to the top of the container, and further from the top to the center of the container. No circulation flow was formed in which raw material components circulated to the bottom.
実施例1と同様のPPS樹脂(溶融粘度(V6)22Pa・s)15kgを、特開昭62-205127号公報に記載の装置、即ち、気体導入装置及び熱媒循環式ジャケットを備えた全容量が50Lの容器回転型の二重円錐型加熱装置(特開昭62-205127号公報の図1に記載:装置Cとも称する。)に仕込んだ。次いで、回転数3rpmで容器の回転を開始して、空気を2L/分(容器内容積の4%/分)の流量で容器内に導入し、熱媒体を用いて内温が250℃となるまで5時間で昇温し、該温度で更に8時間保持した。内温を250℃から下げずに容器の蓋を開いたものの、蓋部でPPS樹脂固着物が固着しPPS樹脂が得られなかった。また、処理容器内壁にPPS樹脂固着物の付着が認められた。加熱処理後のPPS樹脂の溶融粘度(V6)は154Pa・sであり、溶融時のガス発生量は0.54質量%であった。
尚、比較例1で使用した円錐形スクリュ混合型加熱装置(装置C)は、容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと原料成分が循環する循環流は形成しなかった。 (Comparative example 2)
15 kg of the same PPS resin (melt viscosity (V6) 22 Pa s) as in Example 1 was added to the apparatus described in JP-A-62-205127, that is, the full capacity equipped with a gas introduction device and a heat medium circulation jacket. was charged in a 50 L vessel rotating double cone heating device (described in FIG. 1 of Japanese Patent Application Laid-Open No. 205127/1987: also referred to as device C). Next, the rotation of the container is started at a rotation speed of 3 rpm, air is introduced into the container at a flow rate of 2 L/min (4%/min of the internal volume of the container), and the internal temperature reaches 250°C using a heat medium. The temperature was raised to 5 hours and held at that temperature for an additional 8 hours. Although the lid of the container was opened without lowering the internal temperature from 250° C., the PPS resin adhered to the lid, and no PPS resin was obtained. Adherence of PPS resin deposits was also observed on the inner wall of the processing vessel. The melt viscosity (V6) of the PPS resin after heat treatment was 154 Pa·s, and the amount of gas generated during melting was 0.54% by mass.
In addition, the conical screw mixing type heating apparatus (apparatus C) used in Comparative Example 1 was arranged along the inner wall of the container from the bottom to the top of the container, and further from the top to the center of the container. No circulation flow was formed in which raw material components circulated to the bottom.
(比較例3)
実施例1と同様のPPS樹脂(溶融粘度(V6)22Pa・s)60kgを、特開平7-242746号公報に記載の装置、即ち、気体導入装置及び熱媒循環式ジャケットを備えた有効容量が100Lの円錐形スクリュ混合型加熱装置(特開平7-242746号公報の図1に記載:装置Bとも称する。)に仕込んだ。次いで、不活性ガスとして窒素を16L/分(容器内容積の16%/分)の流量で容器内に導入し、熱媒体を用いて内温が250℃となるまで4時間で昇温し、該温度で更に7時間保持した。撹拌機の回転数は、スクリュの公転軸を1rpm、自転軸を36rpmとした。その後、内温を250℃から下げずに容器の蓋を開き、製品である反応後のPPS樹脂を得た。収量は47.4kg(収率は79%)であり、処理容器内壁にPPS樹脂固着物の付着が認められた。加熱処理後のPPS樹脂の溶融粘度(V6)は41Pa・sであり、溶融時のガス発生量は0.54質量%であった。
尚、比較例3で使用した円錐形スクリュ混合型加熱装置(装置B)は、容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと原料成分が循環する循環流は形成しなかった。 (Comparative Example 3)
60 kg of the same PPS resin (melt viscosity (V6) 22 Pa s) as in Example 1 was placed in the apparatus described in Japanese Patent Application Laid-Open No. 7-242746, that is, an effective capacity equipped with a gas introduction device and a heat medium circulation jacket. A 100 L conical screw mixing type heating device (described in FIG. 1 of JP-A-7-242746: also referred to as device B) was charged. Next, nitrogen as an inert gas is introduced into the container at a flow rate of 16 L/min (16%/min of the internal volume of the container), and the internal temperature is raised to 250 ° C. using a heat medium in 4 hours, It was held at that temperature for an additional 7 hours. The rotational speed of the agitator was 1 rpm for the screw revolution axis and 36 rpm for the rotation axis. Thereafter, the lid of the container was opened without lowering the internal temperature from 250° C. to obtain a PPS resin product after the reaction. The yield was 47.4 kg (79% yield), and adherence of PPS resin deposits to the inner wall of the processing vessel was observed. The melt viscosity (V6) of the PPS resin after heat treatment was 41 Pa·s, and the amount of gas generated during melting was 0.54% by mass.
In addition, the conical screw mixing type heating apparatus (apparatus B) used in Comparative Example 3 was arranged along the inner wall of the container from the bottom to the top of the container, and further from the top to the center of the container. No circulation flow was formed in which raw material components circulated to the bottom.
実施例1と同様のPPS樹脂(溶融粘度(V6)22Pa・s)60kgを、特開平7-242746号公報に記載の装置、即ち、気体導入装置及び熱媒循環式ジャケットを備えた有効容量が100Lの円錐形スクリュ混合型加熱装置(特開平7-242746号公報の図1に記載:装置Bとも称する。)に仕込んだ。次いで、不活性ガスとして窒素を16L/分(容器内容積の16%/分)の流量で容器内に導入し、熱媒体を用いて内温が250℃となるまで4時間で昇温し、該温度で更に7時間保持した。撹拌機の回転数は、スクリュの公転軸を1rpm、自転軸を36rpmとした。その後、内温を250℃から下げずに容器の蓋を開き、製品である反応後のPPS樹脂を得た。収量は47.4kg(収率は79%)であり、処理容器内壁にPPS樹脂固着物の付着が認められた。加熱処理後のPPS樹脂の溶融粘度(V6)は41Pa・sであり、溶融時のガス発生量は0.54質量%であった。
尚、比較例3で使用した円錐形スクリュ混合型加熱装置(装置B)は、容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと原料成分が循環する循環流は形成しなかった。 (Comparative Example 3)
60 kg of the same PPS resin (melt viscosity (V6) 22 Pa s) as in Example 1 was placed in the apparatus described in Japanese Patent Application Laid-Open No. 7-242746, that is, an effective capacity equipped with a gas introduction device and a heat medium circulation jacket. A 100 L conical screw mixing type heating device (described in FIG. 1 of JP-A-7-242746: also referred to as device B) was charged. Next, nitrogen as an inert gas is introduced into the container at a flow rate of 16 L/min (16%/min of the internal volume of the container), and the internal temperature is raised to 250 ° C. using a heat medium in 4 hours, It was held at that temperature for an additional 7 hours. The rotational speed of the agitator was 1 rpm for the screw revolution axis and 36 rpm for the rotation axis. Thereafter, the lid of the container was opened without lowering the internal temperature from 250° C. to obtain a PPS resin product after the reaction. The yield was 47.4 kg (79% yield), and adherence of PPS resin deposits to the inner wall of the processing vessel was observed. The melt viscosity (V6) of the PPS resin after heat treatment was 41 Pa·s, and the amount of gas generated during melting was 0.54% by mass.
In addition, the conical screw mixing type heating apparatus (apparatus B) used in Comparative Example 3 was arranged along the inner wall of the container from the bottom to the top of the container, and further from the top to the center of the container. No circulation flow was formed in which raw material components circulated to the bottom.
以上の結果から、実施例1~4では比較例1~3と対比して、容器部の内温が高い場合においても容器部の内壁への付着を低減できることが認められ、改質化されたPPS樹脂を容易に回収できることが明らかとなった。また、実施例1~4で加熱処理した改質化されたPPS樹脂は、溶融時の低分子量不純物の濃度(ガス発生量)が低減されることが明らかとなった。
From the above results, in Examples 1 to 4, it was found that adhesion to the inner wall of the container part can be reduced even when the internal temperature of the container part is high, compared to Comparative Examples 1 to 3. It was found that the PPS resin can be easily recovered. It was also found that the modified PPS resins heat-treated in Examples 1 to 4 had a reduced concentration of low-molecular-weight impurities (amount of gas generated) during melting.
1:改質処理装置
2:撹拌部材
3:偏流板
4:容器部(の壁)
5:温度調節ジャケット
6:熱媒又は冷媒の注入口あるいは排出口
7:熱媒又は冷媒の注入口あるいは排出口
8:気体の供給口
9:気体の排出口
10:原料成分の投入口
11:蓋部(開閉自在)
12:コンデンサ
13:真空ポンプ
OP1:第1開口部
OP2:第2開口部
T:天面板 1: reforming treatment device 2: stirring member 3: drift plate 4: vessel part (wall)
5: Temperature control jacket 6: Heat medium or refrigerant inlet or outlet 7: Heat medium or refrigerant inlet or outlet 8: Gas supply port 9: Gas outlet 10: Raw material component inlet 11: Lid (openable and closable)
12: Capacitor 13: Vacuum pump OP1: First opening OP2: Second opening T: Top plate
2:撹拌部材
3:偏流板
4:容器部(の壁)
5:温度調節ジャケット
6:熱媒又は冷媒の注入口あるいは排出口
7:熱媒又は冷媒の注入口あるいは排出口
8:気体の供給口
9:気体の排出口
10:原料成分の投入口
11:蓋部(開閉自在)
12:コンデンサ
13:真空ポンプ
OP1:第1開口部
OP2:第2開口部
T:天面板 1: reforming treatment device 2: stirring member 3: drift plate 4: vessel part (wall)
5: Temperature control jacket 6: Heat medium or refrigerant inlet or outlet 7: Heat medium or refrigerant inlet or outlet 8: Gas supply port 9: Gas outlet 10: Raw material component inlet 11: Lid (openable and closable)
12: Capacitor 13: Vacuum pump OP1: First opening OP2: Second opening T: Top plate
Claims (8)
- 原料ポリアリーレンスルフィド樹脂を含む原料成分を収容可能なテーパー状の容器部を備え、かつ前記容器部の内壁に沿って前記容器部の底部から上部、更に前記上部から前記容器部の中心側を介して前記底部へと前記原料成分が循環する循環流を形成する、撹拌機構を備えた改質処理装置により、改質用ガス(gS)雰囲気下で前記原料成分を前記ポリアリーレンスルフィド樹脂の融点Tm未満の温度に加熱して改質化されたポリアリーレンスルフィド樹脂の製造方法であって、
前記容器部内への前記改質用ガス(gS)の供給及び前記容器部外への前記容器部内のガス(gd)の排出を行い、前記容器部内に投入した前記原料成分を前記循環流により循環させながら、加熱手段により前記原料成分を前記融点Tm未満に加熱する加熱処理工程と、
前記改質用ガス(gS)の毎分当たりの供給量を、前記容器部の容積の0.1~100%の範囲内に制御する気体供給制御工程と、を有する改質化されたポリアリーレンスルフィド樹脂の製造方法。 A tapered container capable of accommodating raw material components including a raw material polyarylene sulfide resin is provided, and along the inner wall of the container, from the bottom to the top of the container, and from the top to the center of the container. The raw material component is heated to the melting point of the polyarylene sulfide resin under a reforming gas (g S ) atmosphere by a reforming treatment apparatus equipped with a stirring mechanism that forms a circulation flow in which the raw material component circulates to the bottom. A method for producing a modified polyarylene sulfide resin by heating to a temperature below Tm , comprising:
The reforming gas (g s ) is supplied into the container part and the gas (g d ) inside the container part is discharged outside the container part, and the raw material component introduced into the container part is transferred to the circulating flow. a heat treatment step of heating the raw material component to below the melting point Tm by a heating means while circulating by
and a gas supply control step of controlling the supply amount per minute of the reforming gas (g S ) within the range of 0.1 to 100% of the volume of the container part. A method for producing an arylene sulfide resin. - 前記加熱処理工程は、前記容器部内に投入した前記原料成分の温度を100~280℃の範囲内に制御する、請求項1に記載の改質化されたポリアリーレンスルフィド樹脂の製造方法。 The method for producing a modified polyarylene sulfide resin according to claim 1, wherein the heat treatment step controls the temperature of the raw material components put into the container within the range of 100 to 280°C.
- 前記加熱手段は、前記容器部の外表面を覆う温度調節ジャケットである、請求項1又は2のいずれか1項に記載の改質化されたポリアリーレンスルフィド樹脂の製造方法。 The method for producing a modified polyarylene sulfide resin according to claim 1 or 2, wherein the heating means is a temperature control jacket that covers the outer surface of the container.
- 前記改質用ガス(gS)は酸素を含み、前記容器部に設けられた供給口を介して前記容器部内へ供給され、前記供給口における酸素濃度が1~21%の範囲である、請求項1~3のいずれか1項に記載の改質化されたポリアリーレンスルフィド樹脂の製造方法。 The reforming gas (g S ) contains oxygen, is supplied into the container through a supply port provided in the container, and the oxygen concentration at the supply port is in the range of 1 to 21%. A method for producing the modified polyarylene sulfide resin according to any one of Items 1 to 3.
- 前記改質用ガス(gS)は不活性ガスを含み、前記容器部に設けられた供給口を介して前記容器部内へ供給され、前記供給口における不活性ガス濃度が99~100%の範囲である、請求項1~3のいずれか1項に記載の改質化されたポリアリーレンスルフィド樹脂の製造方法。 The reforming gas (g S ) contains an inert gas, is supplied into the container through a supply port provided in the container, and the inert gas concentration at the supply port is in the range of 99 to 100%. The method for producing a modified polyarylene sulfide resin according to any one of claims 1 to 3, wherein
- 前記撹拌機構を備えた改質処理装置は、
第1開口部と、
前記第1開口部の直径d1より小さい直径d2を有する第2開口部と、
前記第2開口部に取り付けられ、かつ前記原料成分又は内容物を取り出す開閉自在な蓋部と、
前記蓋部である前記底部と前記第1開口部である前記上部との間の空間を包摂する前記容器部と、
前記容器部の外周を覆う温度調節ジャケットと、
前記容器部内の前記空間に収容され、かつ最大回転径が前記直径d1の50~99%の回転翼を有する撹拌部材と、
前記前記改質用ガス(gs)を注入する供給口と、
前記容器部内のガス(gd)を排出する排出口と、
を有する、請求項1~5のいずれか1項に記載の改質化されたポリアリーレンスルフィド樹脂の製造方法。 The reforming apparatus equipped with the stirring mechanism is
a first opening;
a second opening having a diameter d2 smaller than the diameter d1 of the first opening;
a lid that is attached to the second opening and that can be opened and closed to take out the raw material component or contents;
the container part that encompasses a space between the bottom part that is the lid part and the top part that is the first opening;
a temperature control jacket that covers the outer periphery of the container;
a stirring member accommodated in the space in the container portion and having a rotor blade with a maximum rotation diameter of 50 to 99% of the diameter d1 ;
a supply port for injecting the reforming gas (g s );
a discharge port for discharging the gas (g d ) in the container;
The method for producing the modified polyarylene sulfide resin according to any one of claims 1 to 5, having - 前記回転翼が単軸の二重螺旋構造である、請求項6に記載の改質化されたポリアリーレンスルフィド樹脂の製造方法。 The method for producing a modified polyarylene sulfide resin according to claim 6, wherein the rotor has a uniaxial double helix structure.
- 前記回転翼のスクリュ回転数が10~100rpmである、請求項6又は7に記載の改質化されたポリアリーレンスルフィド樹脂の製造方法。 The method for producing a modified polyarylene sulfide resin according to claim 6 or 7, wherein the screw rotation speed of the rotor blade is 10 to 100 rpm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023504050A JP7302759B1 (en) | 2021-11-16 | 2022-07-28 | Method for producing modified polyarylene sulfide resin |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-186616 | 2021-11-16 | ||
JP2021186616 | 2021-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023089872A1 true WO2023089872A1 (en) | 2023-05-25 |
Family
ID=86396594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/029049 WO2023089872A1 (en) | 2021-11-16 | 2022-07-28 | Method for producing modified polyarylene sulfide resin |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7302759B1 (en) |
WO (1) | WO2023089872A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4245399A (en) * | 1978-04-26 | 1981-01-20 | Schering Aktiengesellschaft | Material dryer with air and screw agitator |
-
2022
- 2022-07-28 WO PCT/JP2022/029049 patent/WO2023089872A1/en active Application Filing
- 2022-07-28 JP JP2023504050A patent/JP7302759B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4245399A (en) * | 1978-04-26 | 1981-01-20 | Schering Aktiengesellschaft | Material dryer with air and screw agitator |
Also Published As
Publication number | Publication date |
---|---|
JP7302759B1 (en) | 2023-07-04 |
JPWO2023089872A1 (en) | 2023-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6452890B2 (en) | Continuous production apparatus for polyarylene sulfide and continuous production method for polyarylene sulfide | |
JP4994997B2 (en) | Process for producing polyarylene sulfide | |
JP4256506B2 (en) | Process for producing polyarylene sulfide | |
JP6517337B2 (en) | Process for producing particulate polyarylene sulfide, and particulate polyarylene sulfide | |
JP3989785B2 (en) | Process for producing polyarylene sulfide | |
JP5189293B2 (en) | Branched polyarylene sulfide resin, process for producing the same, and use thereof as a polymer modifier | |
JP2008239767A (en) | Method for producing polyarylene sulfide resin | |
CN110799574B (en) | Method for producing polyarylene sulfide resin | |
JP6836705B2 (en) | Manufacturing method of polyarylene sulfide resin | |
CN110088171B (en) | Continuous polymerization apparatus and method for continuously producing polymer | |
JP2004107567A (en) | Method for manufacturing polyarylene sulfide | |
JP4340960B2 (en) | Method for producing polyarylene sulfide resin | |
KR100788855B1 (en) | Process for producing oxidative cross-linked polyarylene sulfide | |
CN105493310A (en) | Resin composition for gasket, production method therefor, and gasket for secondary battery | |
JPWO2021117795A1 (en) | Polyarylene sulfide, its purification method and manufacturing method | |
JP2017071752A (en) | Method for producing polyarylene sulfide resin | |
JP7302759B1 (en) | Method for producing modified polyarylene sulfide resin | |
JP2018154692A (en) | Method for producing polyarylene sulfide resin | |
JP2018154691A (en) | Method for producing polyarylene sulfide resin | |
JP6003347B2 (en) | Method for producing polyarylene sulfide resin | |
JP6003346B2 (en) | Method for producing polyarylene sulfide resin | |
JP6337971B2 (en) | Polyphenylene sulfide resin composition and method for producing the same | |
JP6390083B2 (en) | Process for producing polyarylene sulfide | |
JP6390079B2 (en) | Process for producing branched polyarylene sulfide resin | |
JP3867902B2 (en) | Process for producing oxidatively crosslinked polyarylene sulfide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023504050 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22895161 Country of ref document: EP Kind code of ref document: A1 |