JP2004107567A - Method for manufacturing polyarylene sulfide - Google Patents

Method for manufacturing polyarylene sulfide Download PDF

Info

Publication number
JP2004107567A
JP2004107567A JP2002275037A JP2002275037A JP2004107567A JP 2004107567 A JP2004107567 A JP 2004107567A JP 2002275037 A JP2002275037 A JP 2002275037A JP 2002275037 A JP2002275037 A JP 2002275037A JP 2004107567 A JP2004107567 A JP 2004107567A
Authority
JP
Japan
Prior art keywords
mol
water
sulfide
reaction
sulfidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002275037A
Other languages
Japanese (ja)
Other versions
JP4055058B2 (en
Inventor
Takahiro Kawabata
川端 隆広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2002275037A priority Critical patent/JP4055058B2/en
Publication of JP2004107567A publication Critical patent/JP2004107567A/en
Application granted granted Critical
Publication of JP4055058B2 publication Critical patent/JP4055058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a high molecular-weight polyarylene sulfide efficiently, without cumbersome work of water control. <P>SOLUTION: A dihaloaromatic compound and a sulfidation agent are reacted in an organic polar solvent to form a polyarylene sulfide, wherein (1) the sulfidation agent is a mixture of an alkali metal sulfide and an alkali metal hydrosulfide, (2) the molar ratio of water in the reaction system at the end of the polymerization to the total amount of the sulfidation agent used for the polymerization (water/sulfidation agent) is controlled to be less than 1, and (3) the molar ratio of the dihaloaromatic compound to the sulfidation agent remaining at the end of the polymerization (dihaloaromatic compound/sulfidation agent) is controlled to be less than 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、スルフィド化剤とジハロ芳香族化合物との反応によるポリフェニレンスルフィドに代表されるポリアリーレンスルフィドの製造方法に関するものである。(以下、ポリアリーレンスルフィドはPAS、ポリフェニレンスルフィドをPPSと、それぞれ記す。)さらに具体的には、本発明は、高分子量で安定性に優れるPASを効率よく製造する方法に関するものである。
【0002】
【従来の技術】
前記PPS等のPASの製造方法としては、例えば、アルカリ金属硫化物、特に結晶水を有する硫化ナトリウム(以下、含水硫化ナトリウムと略称する)を極性溶媒中で加熱して該含水硫化ナトリウムが含有する水を除去し、そこへジクロロベンゼンを加えて加熱重合させる方法がある。しかし、この方法では、原料の一つである含水硫化ナトリウム(含水水硫化ナトリウムと水酸化ナトリウムとの反応生成物を含む)に含有する水分を除くのに、重合溶媒中で物理的に加熱留去する方法によっているので、十分な脱水が困難、すなわち硫化ナトリウム1モルに対して1モル以上の水が系内に残存し、高分子量化が難しいといった問題があった。
【0003】
上記の問題点を解決する技術として、例えば、「有機極性溶媒中でジハロ芳香族化合物とスルフィド化剤とを加熱下で反応させるポリアリーレンスルフィドポリマーの製造方法において、反応系内の水分量を、溶媒1モルに対して0.05〜0.5モルの範囲にコントロールされた状態に保ちつつ、加熱下でジハロ芳香族化合物溶液に含水スルフィド化剤を導入してその含水分を除去し、その間に反応を行うか導入後に反応を行う第1工程と、その後、系内の水分量を溶媒1モルに対して0.05モル以下の範囲に変更して反応を継続する第2工程とより成る2段重合法で、第1工程の転化率を60〜90%とし、第2工程の転化率を90%以上とすることにより高分子量のPPSが製造できることが記載されている。(例えば、特許文献1参照)」
【0004】
【特許文献1】
特開平8−100064号公報(第2−7頁)
【0005】
【発明が解決しようとする課題】
しかし、前記の方法では、比較的高分子量のポリマーを得ることは可能であるが、重合系内の水分量及び反応率等を厳密に制御する必要であった。本発明の課題は、前記の問題点の解決して高分子量のPASを効率よく製造する方法を提供することである。
【課題を解決するための手段】
本発明者らは上記目的を達成すべく鋭意検討した結果、下記▲1▼、▲2▼、▲3▼、▲4▼の知見を得た。
▲1▼重合系内の水分量のみを単純に制御するだけでは高分子量のPASを効率よく製造することは困難である。▲2▼スルフィド化剤としてアルカリ金属硫化物とアルカリ金属水硫化物の混合物を用いると副反応が抑制できる。▲3▼反応終了時の残存するスルフィド化剤と反応終了時の残存する反応系内の水分量との含有率を特定の範囲に制御することで、反応速度を制御できる。▲4▼反応終了時の残存するジハロ芳香族化合物とスルフィド化剤との割合を特定範囲にすることによって、効率よく高分子量のPASが得られる。
【0006】
本発明は、これらの技術的知見に基づきなされたものである。すなわち、本発明は、有機極性溶媒中で、ジハロ芳香族化合物とスルフィド化剤とを反応させるポリアリーレンスルフィドの製造方法であって、
1)スルフィド化剤がアルカリ金属硫化物とアルカリ金属水硫化物の混合物であり、
2)重合反応終了時の反応系内の水と重合に使用した全スルフィド化剤とのモル比(水/スルフィド化剤)が1未満となるように制御し、
3)重合反応終了時の残存するジハロ芳香族化合物とスルフィド化剤とのモル比(ジハロ芳香族化合物/スルフィド化剤)が1未満となるように制御することを特徴とするポリアリーレンスルフィドの製造方法を提供する。
【0007】
【発明の実施の形態】
以下、本発明について具体的に説明する。
本発明で使用するスルフィド化剤は、アルカリ金属硫化物とアルカリ金属水硫化物の混合物である。前記アルカリ金属硫化物としては、例えば、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウム等が挙げられる。これらの中でも、硫化ナトリウム、硫化カリウムが好ましく、特に硫化ナトリウムが好ましい。これらのアルカリ金属硫化物はそれぞれ単独で用いても良いし、2種以上を混合して用いても良い。また、上記硫化アルカリ金属は無水物、水和物、水溶液のいずれを用いても良い。また、これら硫化アルカリ金属は、アルカリ金属水硫化物とアルカリ金属水酸化物とを反応させる、或いは、硫化水素とアルカリ金属水酸化物とを反応させることによっても得られるが、もちろんこのような反応させて得られる物を用いても良い。
【0008】
本発明で使用するアルカリ金属水硫化物としては、例えば水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化ルビジウム、水硫化セシウム等が挙げられるが、これらはそれぞれ単独で用いても良いし、2種以上を混合して用いても良い。また、上記アルカリ金属水硫化物は無水物、水和物、水溶液のいずれを用いても良い。これらの中でも、水硫化ナトリウム、水硫化カリウムが好ましく、特に水硫化ナトリウムが好ましい。また、これらアルカリ金属水硫化物は、アルカリ金属水硫化物そのものでも、予め硫化水素とアルカリ金属水酸化物とを反応させて得たものであっても、反応系内で硫化水素とアルカリ金属水酸化物とを反応させることによっても得られるものを用いても良い。前記アルカリ金属硫化物及びアルカリ金属水硫化物は、硫黄原子1モルに対して1モル以上の結晶水を有するものが入手の容易さの面から好ましい。以下に、アルカリ金属硫化物及びアルカリ金属水硫化物中の、硫黄原子1モルに対して、それぞれ、1モル以上の結晶水を有するものを用いた場合は、含水スルフィド化剤と記す。
【0009】
前記上記アルカリ金属水酸化物としては、例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等が挙げられるが、これらはそれぞれ単独で用いても良いし、2種以上を混合して用いても良い。また、上記アルカリ金属水酸化物の中では水酸化リチウム、水酸化ナトリウムおよび水酸化カリウムが好ましく、特に水酸化ナトリウムが好ましい。
【0010】
本発明で使用するスルフィド化剤は、アルカリ金属硫化物とアルカリ金属水硫化物の混合物であるが、上述したようにアルカリ金属水酸化物と過剰のアルカリ金属水硫化物を反応させることにより得ても良いし、アルカリ金属水酸化物と過剰の硫化水素を反応させることにより得ても良い。またアルカリ金属硫化物と硫化水素を反応させて得ても良い。
【0011】
アルカリ金属硫化物とアルカリ金属水硫化物の混合物において、アルカリ金属硫化物とアルカリ金属水硫化物の割合については特に制限はないが、アルカリ金属硫化物1モルに対してアルカリ金属水硫化物が0.02〜2モルの範囲が好ましく、0.04〜1モルの範囲がより好ましい。このような範囲にするとより高分子量のポリマーが得られる。
【0012】
本発明で使用するジハロ芳香族化合物としては、芳香族核と該核上の2ケのハロ置換基とを有するものであり、且つアルカリ金属硫化物とアルカリ金属水硫化物との混合物であるスルフィド化剤による脱ハロゲン化/硫化反応を介して重合体化できれば、特に限定されない。従って、芳香族核は芳香族炭化水素のみからなる場合の外に、この脱ハロゲン化/硫化反応を阻害しない各種の置換基を有していてもよい。
【0013】
前記ジハロ芳香族化合物の例には下記一般式(1)〜(4)で示される化合物が挙げられる。
【化1】

Figure 2004107567
【0014】
前記一般式(1)〜(4)中、Xはハロゲン原子を、またYは水素原子、水酸基、炭素数1〜18のアルキル基、炭素数3〜18のシクロアルキル基、炭素数6〜18のアリール基、カルボキシル基、炭素数1〜18のアルコキシカルボニル基、ナトリウムカルボキシレート基、シアノ基、アミノ基若しくはニトロ基を表す。また、前記Xは塩素または臭素が好ましい。
【0015】
また、一般式(4)中のVは、下記構造式(5)〜(10)で表わされる2価の連結基を表す。
【化2】
Figure 2004107567
(式中、R’及びR”は、それぞれ独立に、水素原子、炭素数1〜18のアルキル基、炭素数3〜18のシクロアルキル基、炭素数6〜18のアリール基を表す。)
【0016】
一般式(1)中のmは2を、nは、0〜4の整数を表す。また、一般式(2)中のaは2を、bは0〜6の整数を表す。一般式(3)中でcは0〜2、dは0〜2、eは0〜3、fは0〜2の整数をそれぞれ表わし、且つcとdはc+d=2を満足する。また、一般式(4)中でgは0〜2、hは0〜2で且つi及びjは、0≦i、及びj≦2を満足する整数を表す。
【0017】
前記、一般式(1)〜(4)のジハロ芳香族化合物の具体例としては、p−ジハロベンゼン、m−ジハロベンゼン、o−ジハロベンゼン、2,5−ジハロトルエン、1,4−ジハロナフタリン、1−メトキシ−2,5−ジハロベンゼン、4,4’−ジハロビフェニル、3,5−ジハロ安息香酸、2,4−ジハロ安息香酸、2,5−ジハロニトロベンゼン、2,4−ジハロニトロベンゼン、2,4−ジハロアニソール、2,5−ジハロアニリン、3,5−ジハロアニリン、p,p’−ジハロジフェニルエーテル、4,4’−ジハロベンゾフェノン、4,4’−ジハロジフェニルスルホン、4,4’−ジハロジフェニルスルホキシド、4,4’−ジハロジフェニルスルフィド等であり、なかでも、p−ジハロベンゼン、m−ジハロベンゼン、4,4’−ジハロベンゾフェノンおよび4,4’−ジハロジフェニルスルホンが好ましく、その中でもp−ジクロロベンゼン、m−ジクロロベンゼン、4,4’−ジクロロベンゾフェノンおよび4,4’−ジクロロジフェニルスルホンは特に好適に使用される。
【0018】
ジハロ芳香族化合物の適当な選択組み合わせによって2種以上の異なる反応単位を含む共重合体を得ることもでき、その組み合わせには特に制限はない。p−ジクロロベンゼンと4,4’−ジクロロベンゾフェノンもしくは4,4’−ジクロロフェニルスルホンとを組み合わせて使用すれば、種々の物性に優れたPASを得ることができるので、好ましい。また、p−ジハロベンゼンをジハロ芳香族化合物中70モル%以上、好ましくは90モル%以上、更に好ましくは95モル%以上用いて重合すると種々の物性に優れたPASが得られるのでとくに好ましい。また、ジハロベンゼンのみの重合体であるPPSは種々の物性に優れており、中でもジクロロベンゼンの使用は生産性等の点でより好ましい。
【0019】
なお、本発明によるPASは上記ジハロ芳香族化合物の重合体であるが、生成重合体の末端を形成させるため、あるいは重合反応ないし分子量を調節するためにモノハロ化合物を併用することも、分岐または架橋重合体を形成させるためにトリハロ以上のポリハロ化合物を併用することも可能である。これらのモノハロまたはポリハロ化合物を併用する場合は、例えばジハロベンゼンに若干量のトリクロロベンゼンを組み合わせて使用すれば、分岐を持ったフェニレンスルフィド重合体を得ることができ、トリクロロベンゼン等の3個以上のハロゲン原子を置換基として有するポリハロ化合物の使用は得られるポリマーの高粘度化の点で有用である。また、モノハロ化合物または3個以上のハロゲン原子を置換基として有するポリハロ化合物の使用量は目的あるいは反応条件によっても異なるので一概に規定できないが、ジハロ芳香族化合物1モルに対して好ましくは0.1モル%以下、更に好ましくは0.06モル%以下である。トリクロロベンゼンに代表される3個以上のハロゲン原子を置換基として有するポリハロ化合物の使用量が上記範囲の場合には、得られるポリマーのリニアリティーをほとんど損なうことなく、高粘度化できるので好ましい。なお、モノハロ化合物及び3個以上のハロゲン原子を置換基として有するポリハロ化合物は共に必ずしも芳香族化合物でなくとも良い。
【0020】
本発明の重合反応に使用する有機極性溶媒は、活性水素を有しない有機極性溶媒、すなわちアプロチックタイプの有機極性溶媒である。
【0021】
前記有機極性溶媒は、前記重合反応を阻害せず、原料であるジハロ芳香族化合物及びS2−を与えるスルフィド化剤を反応に必要な濃度に溶解することができる程度の溶解能を持つものであれば、とくに限定されない。これらの中でも、この溶媒は、窒素原子、酸素原子、硫黄原子を有する極性溶媒であることが普通である。更に、この溶媒は原料ジハロ芳香族化合物と同様な脱ハロゲン化/硫化反応に関与しうるものでないことが望ましい。従って例えばハロ芳香族炭化水素ではないことが望ましい。
【0022】
前記有機極性溶媒は、制御された少量の水を重合反応に提供するためのものであるから、溶質としてのこの水が溶媒和しうるものであることが望ましい。
【0023】
また、本発明の製造方法から明らかなように、前記有機極性溶媒の沸点は水の沸点より高いことが望ましい。前述の条件を満足するものとしては、例えば、(1)アミド類、例えば、ヘキサメチルリン酸トリアミド(HMPA)、N−メチルピロリドン(NMP)、N−シクロヘキシルピロリドン(NCP)、N−メチルカプロラクタム、テトラメチル尿素(TMU)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)等、(2)エーテル化ポリエチレングリコール類、例えばポリエチレングリコールジアルキルエーテル(重合度は2000程度まで、アルキル基はC〜C20程度)等、(3)スルホキシド類、例えば、テトラメチレンスルホキシド、ジメチルスルホキシド(DMSO)等が挙げられる。前記溶媒の中でも、N−メチルカプロラクタムおよびNMPは、化学的安定性が高いので、特に好ましい。
【0024】
前記有機極性溶媒の使用量は、使用する溶媒の種類及び系内の溶媒に対する水分量によっても異なるが均一な重合反応が可能な反応系の粘度を保持すること、また、ある程度の生産性を維持するためには、重合に用いるスルフィド化剤中の硫黄原子1モル当り1.0〜8.0モルの範囲が好ましい。また、生産性を更に考慮すると、重合に用いるスルフィド化剤中の硫黄原子1モル当り1.0〜6.0モルの範囲が好ましく、また、更に好ましい使用溶媒量は重合に用いるスルフィド化剤中の硫黄原子1モル当り1.2〜5.0モルである。
【0025】
重合系内の水分量、あるいは含水スルフィド化剤の水分量を調整するための水は、反応を阻害するものが含まれなければ良く、そのため蒸留水、イオン交換水等、反応を阻害するアニオンやカチオン等を除いた水が好ましい。
【0026】
本発明の重合反応に存在させる水分は、加水分解反応などの併発を回避させるために、なるべく少ない方が良い。他方、重合反応が全く無水の状態である場合は、反応速度が著しく遅くなるといった問題がある。従って、本発明の重合反応において反応系内に存在すべき水分量は、重合に使用した該スルフィド化剤1モルに対して、重合反応終了時1モル未満でなければならない。また、反応が円滑に進行する点からは、重合に使用した該スルフィド化剤1モルに対して、0.02モル以上存在させることが好ましい。これらの中でも重合に使用した該スルフィド化剤1モルに対して0.03〜0.60の範囲が好ましく、0.05〜0.40の範囲が特に好ましい。上記範囲を満たす場合には、反応速度の制御の制御性、及び高分子量化の両立がより容易に行える。
【0027】
本発明においては、有機極性溶媒中で、ジハロ芳香族化合物とスルフィド化剤とを反応させるポリアリーレンスルフィドの製造において、スルフィド化剤がアルカリ金属硫化物とアルカリ金属水硫化物の混合物であり、重合反応終了時の反応系内の水と重合に使用した全該スルフィド化剤とのモル比(水/スルフィド化剤)が1未満で、重合反応終了時の残存するジハロ芳香族化合物とスルフィド化剤とのモル比(ジハロ芳香族化合物/スルフィド化剤)が1より小さいことを特徴とするが、上記特徴を満たす限り、重合方法に特に制限はない。すなわち、ジハロ芳香族化合物、スルフィド化剤、有機極性溶媒、水等の原料の仕込み順序仕込み方法には特に制限は無い。
【0028】
前記スルフィド化剤が、含水スルフィド化剤の場合は、本発明の製造方法の特徴を満たすためには脱水が必要となるが、本発明としては脱水と重合を同時に行っても良いし、あるいは脱水と重合を別々に行っても良いし、あるいは重合を行いながら適宜脱水を行っても良い。
【0029】
脱水と重合を同時に行う方法としては、例えば重合反応が実質的に進行し得る温度、200〜300℃、好ましくは210〜280℃、更に好ましくは215〜260℃の温度に有機極性溶媒(有機極性溶媒に対して0.5モル以下の水を含んでいて良い)及びジハロ芳香族化合物の混合物を加熱して、反応系内の水分量が上記範囲内にコントロールされ得る速度で含水スルフィド化剤を混合物に導入して余分の水を系外に除去し、反応系内の水分量を上記範囲内にコントロールした後、さらに200〜300℃、好ましくは210〜280℃の温度に加熱して40時間以下、好ましくは0.5〜20時間、更に好ましくは1〜10時間加熱して重合反応を行う方法でも良い。
【0030】
また、脱水と重合を別々に行う方法としては、例えば重合反応が、ほとんど進行しない温度、即ち120〜200℃、好ましくは150〜190℃に有機極性溶媒(有機極性溶媒に対して0.5モル以下の水を含んでいて良い)及びジハロ芳香族化合物の混合物を保ち、反応系内の水分量をスルフィド化剤1モルに対して1モル未満にコントロールされ得る速度でスルフィド化剤を混合物に導入して余分の水を系外に除去し、反応系内の水分量をスルフィド化剤1モルに対して1モル未満にコントロールした後、調製した有機極性溶媒、ジハロ芳香族化合物及び含水スルフィド化剤の混合物を重合反応が実質的に進行する温度、即ち、200〜300℃、好ましくは210〜280℃の温度に加熱して40時間以下、好ましくは0.5〜20時間、更に好ましくは1〜10時間加熱して重合反応を行う方法でも良い。
【0031】
また、重合を行いながら適宜脱水を行う方法としては、例えば、下記の方法が挙げられる。▲1▼好ましくは不活性ガス雰囲気下、有機極性溶媒中にスルフィド化剤を加え、常圧あるいは減圧下、あるいは加圧下、150℃以上、好ましくは180〜250℃まで昇温し、水分をスルフィド化剤1モル当たり、1〜1.5モルに調整し、更にジハロ芳香族化合物を加え、重合反応が進行する温度、即ち、200〜300℃、好ましくは210〜280℃の温度に加熱して0.1〜40時間、好ましくは0.5〜20時間、更に好ましくは1〜10時間加熱して重合反応を行い、重合反応を行っている間に、連続的にあるいは一時的にあるいは断続的に系内の水分を除去し、反応系内の水分量を反応系内のスルフィド化剤1モルに対して1モル未満にコントロールする方法。
【0032】
▲2▼重合反応がほとんど進行しない温度、即ち120〜200℃、好ましくは150〜190℃に有機極性溶媒(有機極性溶媒に対して0.5モル以下の水を含んでいて良い)及びジハロ芳香族化合物の混合物を保ち、反応系内の水分量がコントロールできる速度でスルフィド化剤を混合物に導入して余分の水を系外に除去し、反応系内の水分量を反応系内のスルフィド化剤1モルに対して1モル未満にコントロールした後、調製した有機極性溶媒、ジハロ芳香族化合物及び含水スルフィド化剤の混合物を重合反応が実質的に進行する温度、即ち、200〜300℃、好ましくは210〜280℃の温度に加熱して0.1〜40時間、好ましくは0.5〜20時間、更に好ましくは1〜10時間加熱して重合反応を行い、重合反応を行っている間に、必要に応じて更に連続的にあるいは一時的にあるいは断続的に系内の水分を除去して更に水分量を低減する重合方法。
【0033】
▲3▼重合反応が進行し得る温度、200〜300℃、好ましくは210〜280℃、更に好ましくは215〜260℃の温度に有機極性溶媒(有機極性溶媒に対して0.5モル以下の水を含んでいて良い)及びジハロ芳香族化合物の混合物を加熱して、反応系内の水分量がコントロールされ得る速度で含水スルフィド化剤を混合物に導入して余分の水を系外に除去し、反応系内の水分量を反応系内のスルフィド化剤1モルに対して1モル未満になるようにコントロールした後、さらに200〜300℃、好ましくは210〜280℃の温度に加熱して40時間以下、好ましくは0.5〜20時間、更に好ましくは1〜10時間加熱して重合反応を行い、重合反応を行っている間に、連続的にあるいは一時的にあるいは断続的に系内の水分を除去して更に水分量を低減する重合方法。
【0034】
上記重合方法の中でも、生産性等の点から、重合を行いながら適宜脱水をする方法が好ましい。これらの中でも重合反応が実質的に進行し得る温度に有機極性溶媒及びジハロ芳香族化合物の混合物を加熱して、反応系内の水分量がコントロールされ得る速度で含水スルフィド化剤を混合物に導入して余分の水を系外に除去し、反応系内の水分量をコントロールした後、さらに重合反応を行い、重合反応を行っている間に、必要に応じて連続的にあるいは一時的にあるいは断続的に系内の水分を除去して更に水分量を低減する重合方法が好ましく、特に重合工程全般を通じて反応系内の水分量が、反応系内のスルフィド化剤1モルに対して1モル未満になっている重合方法(前記▲3▼)が最も好ましい。
【0035】
上記の含水スルフィド化剤を導入する速度は反応系内の水分量を該有機極性溶媒1モルに対して目的の範囲にコントロールできるように余分の水を系外に除去できる速度であれば特に制限はない。導入時間はコントロールする水分量、導入する際の温度、含水スルフィド化剤の含水率等によっても異なるので一概には規定できないが、含水スルフィド化剤を0.1〜20時間、好ましくは0.5〜10時間かけて導入することが好ましい。この時間内であると、反応系の水分量あるいは温度等を制御しやすく、また生産性も良い。
【0036】
また、含水スルフィド化剤を導入する温度もコントロールする水分量、導入する際の速度、含水スルフィド化剤の含水率あるいは反応の形式によっても異なるので一概には規定できないが、脱水と重合を別々に行うのであれば、120〜200℃、好ましくは150〜190℃で導入すると良い。また、脱水と重合を同時に行うのであれば、200〜300℃、好ましくは210〜280℃、更に好ましくは215〜260℃の温度で導入すれば良い。
【0037】
重合反応は、200〜300℃、好ましくは210〜280℃の温度に加熱して0.1〜40時間、好ましくは0.5〜20時間、更に好ましくは1〜10時間加熱して行うことが好ましい。この範囲内であると反応の進行がスムーズである。
【0038】
なお、重合時の水の除去方法としては、反応系の温度・圧力をコントロールすることによって容易に行える。即ち、水、溶媒、ジハロ芳香族化合物の各蒸気圧曲線によりコントロールすべき温度・圧力が容易に推定でき、その温度・圧力でコントロールすれば所望の系内水分量にすることができる。
【0039】
本発明の製造方法において使用するジハロ芳香族化合物及びスルフィド化剤の使用量には、重合反応終了時の残存するジハロ芳香族化合物と残存するスルフィド化剤とのモル比(ジハロ芳香族化合物/スルフィド化剤)が1未満であれば、特に制限はない。例えば、ジハロ芳香族化合物とスルフィド化剤とを添加する方法としては、下記の(a)、(b)の方法が挙げられる
(a)予め、重合反応終了時の残存するジハロ芳香族化合物と残存するスルフィド化剤とのモル比(ジハロ芳香族化合物/スルフィド化剤)が1未満となるように、ジハロ芳香族化合物とスルフィド化剤とを仕込んで、反応してもよい。また、(b)重合反応終了時の残存するジハロ芳香族化合物と残存するスルフィド化剤とのモル比(ジハロ芳香族化合物/スルフィド化剤)が1以上になるように、ジハロ芳香族化合物とスルフィド化剤とを仕込んだ後、重合途中でジハロ芳香族化合物を系外に除去して、重合反応終了時の残存するジハロ芳香族化合物と残存するスルフィド化剤とのモル比(ジハロ芳香族化合物/スルフィド化剤)が1未満となるように調整してもよい。これらの中でも、前記(a)が好ましい。
【0040】
前記(a)または(b)の方法の何れの場合でも、重合反応終了時の残存するジハロ芳香族化合物と残存するスルフィド化剤とのモル比(ジハロ芳香族化合物/スルフィド化剤)が1未満であることが必須であり、1以上の場合には本発明の目的であるポリマーの高分子量化が達成できず、好ましくない。但し、あまり小さすぎるとポリマーの分解反応により、分子量低下が起こりえるため、0.05以上であることが好ましい。これらの中でも、重合反応終了時の残存するジハロ芳香族化合物と残存するスルフィド化剤とのモル比(ジハロ芳香族化合物/スルフィド化剤)が0.1〜0.5の範囲が特に好ましい。この範囲を満たす場合には分解反応を併発することなく、より高分子量化を達成し得る。
【0041】
従って前記(a)または(b)の方法の何れの場合でも、〔(全使用ジハロ芳香族化合物(モル))−(系外に除去したジハロ芳香族化合物(モル))〕と〔(全使用スルフィド化剤(モル))−(系外に除去した硫黄分(モル))〕との比が0.90より大きく1より小さい範囲が物性の優れたポリマー、即ちより高分子量のポリマーを得るのに好ましい。上記範囲を満たす場合には、前記の残存するモノマー比の好ましい範囲を満足しやすいので好ましい。また、上記範囲が0.92〜0.99の場合には高分子量化の点で更に好ましい。
【0042】
なおジハロ芳香族化合物の残存量については通常ガスクロマトグラフ法によって求められる。また、アルカリ金属硫化物及びアルカリ金属水硫化物等のスルフィド化剤の残存量は、例えば硝酸銀滴定法によって求めることができる。
【0043】
本発明の重合反応においては、接液部がチタンあるいはクロムあるいはジルコニウム等でできた重合缶を用い、通常、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気下で行うことが好ましく、特に、経済性及び取扱いの容易さの面から窒素が好ましい。
【0044】
反応圧力については、使用した原料及び溶媒の種類や量、あるいは反応温度等に依存するので一概に規定できないので、特に制限はない。また、反応液の調整及び重合体の生成反応は一定温度で行う1段反応でも良いし、段階的に温度を上げていく多段階反応でも良いし、あるいは連続的に温度を変化させていく形式の反応でもかまわない。
【0045】
本発明では、有機極性溶媒中で、ジハロ芳香族化合物とスルフィド化剤とを反応させるポリアリーレンスルフィドポリマーの製造において、スルフィド化剤がアルカリ金属硫化物とアルカリ金属水硫化物の混合物であり、重合反応終了時の反応系内の水と重合に使用した全該スルフィド化剤とのモル比(水/スルフィド化剤)が1未満で、重合反応終了時の残存するジハロ芳香族化合物とスルフィド化剤とのモル比(ジハロ芳香族化合物/スルフィド化剤)が1より小さいことを特徴とするが、前処理工程あるいは後処理工程などの付加的な工程があっても良い。
【0046】
本発明においては、重合反応終了後の後処理を、常法によって行うことができる。例えば、重合反応終了後、反応混合物をそのまま、あるいは水で、あるいは反応溶媒等の有機溶媒で希釈して、必要に応じて酸あるいは塩基を加えた後、濾別し、更に必要に応じて中和を行い、水洗、濾別および乾燥をすることによって行うことができる。また、別法としては、反応混合物をそのまま、あるいは酸または塩基を加えた後、減圧下または常圧下で加熱して溶媒だけを留去し、ついで缶残固形物に必要に応じて酸あるいは塩基を加え、水あるいはアセトン等のケトン類あるいはメタノール等のアルコール類あるいは反応溶媒等の有機溶媒で1回または2回以上洗浄し、それから必要に応じて中和し、水洗、濾別および乾燥をすることによって行うことができる。なお、上記の洗浄及び濾別操作を行う温度には特に制限はない。また、酸、塩基の代わりに、塩化アンモニウム等の塩などで処理してももちろんかまわない。
【0047】
単離した重合体は実質的に水等の溶媒が蒸発する温度に加熱して乾燥を行う。乾燥は真空下で行っても良いし、空気中あるいは窒素のような不活性ガス雰囲気下で行っても良い。
【0048】
本発明により得られる重合体は従来のPASに比べて高分子量であるので、そのまま各種成形材料等に利用できるが、空気あるいは酸素富化空気中あるいは減圧下で熱処理することにより増粘することが可能であり、必要に応じてこのような増粘操作を行った後、各種成形材料等に利用しても良い。この熱処理温度は処理時間によっても異なるし処理する雰囲気によっても異なるので一概に規定できないが、通常は180℃以上で行うことが好ましい。熱処理温度が180℃未満では増粘速度が非常に遅く生産性が悪く好ましくない。熱処理は押出機等を用いて重合体の融点以上で、溶融状態で行っても良い。但し、重合体の劣化の可能性あるいは作業性等から、融点プラス100℃以下で行うことが好ましい。
【0049】
本発明により得られた重合体は、従来のPAS同様そのまま射出成形、押出成形、圧縮成形、ブロー成形のごとき各種溶融加工法により、耐熱性、成形加工性、寸法安定性等に優れた成形物にすることができる。しかしながら強度、耐熱性、寸法安定性等の性能をさらに改善するために、本発明の目的を損なわない範囲で各種充填材と組み合わせて使用することも可能である。充填材としては、繊維状充填材、無機充填材等が挙げられる。
【0050】
また、成形加工の際に添加剤として本発明の目的を逸脱しない範囲で少量の、離型剤、着色剤、耐熱安定剤、紫外線安定剤、発泡剤、防錆剤、難燃剤、滑剤、カップリング剤を含有せしめることができる。更に、同様に下記のごとき合成樹脂及びエラストマーを混合して使用できる。これら合成樹脂としては、ポリエステル、ポリアミド、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリフェニレンエーテル、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリアリーレン、ポリエチレン、ポリプロピレン、ポリ四弗化エチレン、ポリ二弗化エチレン、ポリスチレン、ABS樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等が挙げられ、エラストマーとしては、ポリオレフィン系ゴム、弗素ゴム、シリコーンゴム、等が挙げられる。
【0051】
本発明の重合体及びその組成物は、従来の方法で得られるPPS同様耐熱性、寸法安定性等が優れるので、例えば、コネクタ・プリント基板・封止成形品などの電気・電子部品、ランプリフレクター・各種電装部品などの自動車部品、各種建築物や航空機・自動車などの内装用材料、あるいはOA機器部品・カメラ部品・時計部品などの精密部品等の射出成形・圧縮成形品、あるいは繊維・フィルム・シート・パイプなどの押出成形・引抜成形品等として幅広く利用可能である。
【0052】
【実施例】
以下に本発明を実施例により具体的に説明するが、本発明はこれら実施例にのみ限定されるものではない。
【0053】
使用原料
1.スルフィド化剤
含水フレーク状硫化ナトリウム(以下、NaS・xHOと略称する。純度−NaS:58.9重量%、NaSH:1.3重量%)はナガオ(株)製品を使用した。また、含水フレーク状水硫化ナトリウム(以下、NaSH・yHOと略称する。純度−NaSH:71.2重量%、NaS:2.7重量%)はナガオ(株)製品を使用した。
【0054】
2.溶媒
N−メチルピロリドン(以下、NMPと略称する)はBASFジャパン(株)製品を使用した。
【0055】
3.ジハロ芳香族化合物
p−ジクロロベンゼン(以下、p−DCBと略称する)は保土谷化学(株)製品を使用した。
【0056】
4.水
水道水を蒸留した後イオン交換を施したものを使用した。
【0057】
5.水酸化ナトリウム(以下、NaOHと略称する)
和光純薬工業(株)試薬を使用した。
【0058】
6.1,3,5−トリクロロベンゼン(以下、TCBと略称する)
東京化成(株)試薬を使用した。
【0059】
物性評価
得られた重合体の溶融粘度(η)は、東洋精機(株)製キャピログラフ1Bを用いて測定した(300℃、剪断速度100/秒、ノズル孔径1mm、長さ10mm)。
【0060】
分子量は、(株)センシュー科学製高温ゲルパーミエーションクロマトグラフ(高温GPC)SSC−7000を用いて測定した(溶媒:1−クロロナフタレン、温度:210℃、検出器:UV検出器(360nm)、サンプル注入量:200μl(濃度:0.2重量%)。流速1ml/分)。なお、分子量はポリスチレン換算で算出し、分子量分布のピークトップの値Mpで比較を行った。
【0061】
実施例1
温度センサー、冷却塔、滴下槽、滴下ポンプ、留出物分離槽を連結した攪拌翼付ステンレス製(チタンライニング)4リットルオートクレーブにp−DCB 735.0g(5.0モル)、NMP 1983g(20モル)、水 36.0g(2.0モル)を室温で仕込み、攪拌しながら窒素雰囲気下で100℃まで20分かけて昇温し、系を閉じ、更に220℃まで40分かけて昇温し、その温度で内圧を0.22MPaにコントロールして、NaS・xHO 600g、NaSH・yHO 90g、水170gの混合液(NaS:4.56モル、NaSH:1.28モル、水分50.3wt%)を3時間かけて滴下した。滴下中は同時に脱水操作を行い、水は系外に除去し、水と共に留出するp−DCBは連続的にオートクレーブに戻した。なお、脱水操作とp−DCBを戻す操作は240℃昇温完了まで行い、昇温完了時に系を密閉した。
【0062】
その後、そのままの温度圧力で1時間保持した後、1時間かけて、内圧を0.17MPaに下げながら、内温を240℃まで昇温し、その温度で1時間保持して反応を終了し、室温まで冷却した。留出液の分析結果は、水が450g、NMP18gであった。結果的に、反応終了時の反応系内の水分量は全使用スルフィド化剤に対して0.18(モル/モル)であった。なお、p−DCBについては、留出した全量をオートクレーブ内に戻したので、系外に除去したp−DCBは実質的に0であった。また系外に飛散した硫化水素量は19gであった。従って反応の実質的なモル比〔(仕込みp−DCB(モル))−(系外に除去したp−DCB(モル))〕/〔(全使用スルフィド化剤(モル))−(系外に除去したHS(モル))〕は0.95であった。得られた反応スラリーを一部サンプリングし、ガスクロマトグラフにより残存DCB量を測定し、自動滴定装置を用いた硝酸銀滴定により残存スルフィド化剤量を測定した。その結果は、仕込みのDCB1モルに対して残存DCB:1.5モル%、残存NaS:3.5モル%、残存NaSH:4.4モル%であった。得られた反応スラリー200gを1リットルの水に注いで80℃で1時間攪拌した後、濾過した。このケーキを再び500ミリリットルの湯で1時間攪拌、洗浄した後、濾過した。この操作を4回繰り返し、濾過後、熱風乾燥機で120℃−10時間乾燥して白色粉末状のポリマーを得た。得られたポリマーの溶融粘度は1900ポイズであり、分子量(Mp)は42400であった(精製法−1)。また、また、得られた反応スラリー200gを減圧下(−0.08MPa)、120℃に加熱することにより反応溶媒を留去し、残査に1リットルの水を注いで80℃で1時間攪拌した後、濾過した。このケーキを再び500ミリリットルの湯で1時間攪拌、洗浄した後、濾過した。この操作を3回繰り返し、更に500ミリリットルの水を加え、200℃で1時間攪拌後、濾過し、熱風乾燥機で120℃−10時間乾燥して白色粉末状のポリマーを得た。得られたポリマーの溶融粘度は1940ポイズであった(精製法−2)。得られた反応スラリー200gにNMPを100g加え、80℃で1時間攪拌した後、濾過した。このケーキを再び500ミリリットルの湯で1時間攪拌、洗浄した後、濾過した。この操作を4回繰り返し、濾過後、熱風乾燥機で120℃−10時間乾燥して白色粉末状のポリマーを得た。得られたポリマーの溶融粘度は2360ポイズであった(精製法−3)。結果を表1に示す。
【0063】
実施例2、3
表1に示すような条件で、実施例1と同様に実施した。結果は表1に示すとおりである。
【0064】
実施例4
滴下時間を5時間にする以外は実施例1と同様に実施した。結果を表2に示す。
【0065】
実施例5
昇温前にTCB0.45g(0.0025モル)を追加で仕込む以外は実施例1と同様に実施した。結果を表2に示す。
【0066】
実施例6
p−DCBの仕込量を750g(5.1モル)として実施例1と同様に反応を行った。ただし、滴下中は留出したp−DCBを連続的に全量オートクレーブに戻し、昇温工程では留出したp−DCBのオートクレーブに戻す量を制御して、オートクレーブ内より15g系外に抜き出した。結果を表2に示す
【0067】
比較例1
NaS・xHOの使用量を668g、NaSH・yHOを使用せずその代わりにNaOHを10g使用し、水を140g使用して実施例1と同様に実施した。滴下した混合液の組成はNaS:5.20モル、NaOH:0.10モル、水分50.3wt%であった。得られたポリマーは精製法−1で210ポイズと実施例に比較して低粘度であった。
【0068】
比較例2
220℃滴下時のコントロールする圧力を0.55MPa、240℃昇温時のコントロールする圧力を0.90MPaとする以外は実施例4と同様に実施した。反応終了時の水の量は全使用スルフィド化剤に対して1.13(モル/モル)であった。得られたポリマーは精製法−1で120ポイズと実施例に比較して低粘度であった。
【0069】
比較例3
使用するDCBの量を793.8g(5.4モル)とする以外は実施例1と同様に実施した。残存したモノマーは、仕込みのDCB1モルに対して残存DCB:8.9モル%、残存NaS:3.2モル%、残存NaSH:3.9モル%であった。得られたポリマーは精製法−1で150ポイズと実施例に比較して低粘度であった。
【0070】
【表1】
Figure 2004107567
【0071】
【表2】
Figure 2004107567
【0072】
なお、表1及び2中の「反応実質モル比」とは、次式で算出される値を表す。反応実質モル比=〔(仕込みp−DCB(モル))−(系外に除去したp−DCB(モル))〕/〔(全使用スルフィド化剤(モル))−(系外に除去したHS(モル))〕
【0073】
【発明の効果】
本発明の製造方法によれば、有機極性溶媒中で、ジハロ芳香族化合物とスルフィド化剤とを反応させるポリアリーレンスルフィドポリマーの製造において、スルフィド化剤としてアルカリ金属硫化物とアルカリ金属水硫化物の混合物を用い、かつ水分量及びモノマー比を特定範囲にコントロールすることにより、PASの高分子量化が達成できる。従って靱性等の力学的強度が向上した製品を、高い生産性で提供できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a polyarylene sulfide represented by a polyphenylene sulfide by reacting a sulfidizing agent with a dihalo aromatic compound. (Hereinafter, polyarylene sulfide is referred to as PAS, and polyphenylene sulfide is referred to as PPS.) More specifically, the present invention relates to a method for efficiently producing PAS having a high molecular weight and excellent stability.
[0002]
[Prior art]
As a method for producing PAS such as PPS, for example, an alkali metal sulfide, particularly sodium sulfide having crystal water (hereinafter abbreviated as hydrous sodium sulfide) is heated in a polar solvent to contain the hydrous sodium sulfide. There is a method in which water is removed, dichlorobenzene is added thereto, and heat polymerization is performed. However, this method physically removes the water contained in one of the raw materials, hydrous sodium sulfide (including the reaction product of hydrous sodium hydrosulfide and sodium hydroxide), by physically heating and distilling it in a polymerization solvent. However, there is a problem that sufficient dehydration is difficult, that is, 1 mol or more of water per mole of sodium sulfide remains in the system, and it is difficult to increase the molecular weight.
[0003]
As a technique for solving the above problems, for example, `` in a method for producing a polyarylene sulfide polymer in which a dihalo aromatic compound and a sulfidizing agent are reacted under heating in an organic polar solvent, the amount of water in the reaction system is While maintaining a controlled state in the range of 0.05 to 0.5 mol with respect to 1 mol of the solvent, a water-containing sulfidizing agent is introduced into the dihalo-aromatic compound solution under heating to remove the water-containing sulfide agent. A first step in which the reaction is carried out after the introduction or a second step in which the reaction is continued after changing the amount of water in the system to a range of 0.05 mol or less per 1 mol of the solvent. It is described that high-molecular-weight PPS can be produced by setting the conversion in the first step to 60 to 90% and the conversion in the second step to 90% or more by a two-stage polymerization method (for example, a patent). Reference 1 Irradiation) "
[0004]
[Patent Document 1]
JP-A-8-100604 (pages 2-7)
[0005]
[Problems to be solved by the invention]
However, in the above method, it is possible to obtain a polymer having a relatively high molecular weight, but it is necessary to strictly control the amount of water and the reaction rate in the polymerization system. An object of the present invention is to provide a method for efficiently producing a high molecular weight PAS by solving the above problems.
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and have obtained the following findings (1), (2), (3), and (4).
(1) It is difficult to efficiently produce a high molecular weight PAS simply by controlling only the amount of water in the polymerization system. {Circle around (2)} When a mixture of an alkali metal sulfide and an alkali metal hydrosulfide is used as the sulfidizing agent, side reactions can be suppressed. (3) The reaction rate can be controlled by controlling the content ratio of the remaining sulfidizing agent at the end of the reaction and the amount of water remaining in the reaction system at the end of the reaction to a specific range. {Circle around (4)} By setting the ratio of the remaining dihalo aromatic compound and the sulfidizing agent at the end of the reaction to a specific range, a high molecular weight PAS can be obtained efficiently.
[0006]
The present invention has been made based on these technical findings. That is, the present invention provides a method for producing a polyarylene sulfide, which comprises reacting a dihalo aromatic compound with a sulfidizing agent in an organic polar solvent,
1) The sulfidizing agent is a mixture of an alkali metal sulfide and an alkali metal hydrosulfide,
2) controlling the molar ratio of water in the reaction system at the end of the polymerization reaction to all the sulfidizing agents used in the polymerization (water / sulfide agent) to be less than 1;
3) Production of polyarylene sulfide, wherein the molar ratio of the remaining dihaloaromatic compound to the sulfidizing agent at the end of the polymerization reaction (dihaloaromatic compound / sulfidizing agent) is controlled to be less than 1. Provide a method.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described specifically.
The sulfidizing agent used in the present invention is a mixture of an alkali metal sulfide and an alkali metal hydrosulfide. Examples of the alkali metal sulfide include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, and cesium sulfide. Among these, sodium sulfide and potassium sulfide are preferable, and sodium sulfide is particularly preferable. These alkali metal sulfides may be used alone or in combination of two or more. The alkali metal sulfide may be any of an anhydride, a hydrate, and an aqueous solution. These alkali metal sulfides can also be obtained by reacting an alkali metal hydrosulfide with an alkali metal hydroxide, or by reacting hydrogen sulfide with an alkali metal hydroxide. You may use the thing obtained by making it.
[0008]
Examples of the alkali metal hydrosulfide used in the present invention include, for example, lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and the like. Two or more kinds may be used as a mixture. The alkali metal hydrosulfide may be any of an anhydride, a hydrate, and an aqueous solution. Among these, sodium bisulfide and potassium bisulfide are preferred, and sodium bisulfide is particularly preferred. In addition, these alkali metal hydrosulfides may be alkali metal hydrosulfides themselves or those obtained by previously reacting hydrogen sulfide with alkali metal hydroxides. A material obtained by reacting with an oxide may be used. As the alkali metal sulfide and the alkali metal hydrosulfide, those having 1 mol or more of crystallization water per 1 mol of a sulfur atom are preferable in terms of availability. Hereinafter, in the case where a compound having 1 mol or more of water of crystallization with respect to 1 mol of a sulfur atom in an alkali metal sulfide and an alkali metal hydrosulfide is used, it is referred to as a hydrosulfide agent.
[0009]
Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide. These may be used alone or in combination of two or more. May be used in combination. Further, among the above alkali metal hydroxides, lithium hydroxide, sodium hydroxide and potassium hydroxide are preferable, and sodium hydroxide is particularly preferable.
[0010]
The sulfidizing agent used in the present invention is a mixture of an alkali metal sulfide and an alkali metal hydrosulfide, and is obtained by reacting an alkali metal hydroxide with an excess of an alkali metal hydrosulfide as described above. Alternatively, it may be obtained by reacting an alkali metal hydroxide with excess hydrogen sulfide. Alternatively, it may be obtained by reacting an alkali metal sulfide with hydrogen sulfide.
[0011]
In the mixture of the alkali metal sulfide and the alkali metal hydrosulfide, the ratio of the alkali metal sulfide to the alkali metal hydrosulfide is not particularly limited. The range is preferably from 0.02 to 2 mol, more preferably from 0.04 to 1 mol. Within such a range, a polymer having a higher molecular weight can be obtained.
[0012]
The dihaloaromatic compound used in the present invention is a sulfide having an aromatic nucleus and two halo substituents on the nucleus, and a mixture of an alkali metal sulfide and an alkali metal hydrosulfide. There is no particular limitation as long as it can be polymerized through a dehalogenation / sulfurization reaction with an agent. Therefore, the aromatic nucleus may have various substituents which do not inhibit the dehalogenation / sulfidation reaction, in addition to the case where the aromatic nucleus is composed of only the aromatic hydrocarbon.
[0013]
Examples of the dihalo-aromatic compound include compounds represented by the following general formulas (1) to (4).
[Chemical 1]
Figure 2004107567
[0014]
In the general formulas (1) to (4), X represents a halogen atom, Y represents a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 18 carbon atoms, and 6 to 18 carbon atoms. Represents an aryl group, a carboxyl group, an alkoxycarbonyl group having 1 to 18 carbon atoms, a sodium carboxylate group, a cyano group, an amino group or a nitro group. X is preferably chlorine or bromine.
[0015]
V in the general formula (4) represents a divalent linking group represented by the following structural formulas (5) to (10).
[Chemical formula 2]
Figure 2004107567
(In the formula, R ′ and R ″ each independently represent a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 18 carbon atoms, or an aryl group having 6 to 18 carbon atoms.)
[0016]
In the general formula (1), m represents 2 and n represents an integer of 0 to 4. In the general formula (2), a represents 2 and b represents an integer of 0 to 6. In the general formula (3), c represents an integer of 0 to 2, d represents 0 to 2, e represents an integer of 0 to 3, and f represents an integer of 0 to 2, and c and d satisfy c + d = 2. In the general formula (4), g is 0 to 2, h is 0 to 2, and i and j are integers satisfying 0 ≦ i and j ≦ 2.
[0017]
Specific examples of the dihaloaromatic compounds of the general formulas (1) to (4) include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1- Methoxy-2,5-dihalobenzene, 4,4′-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2, , 4-Dihaloanisole, 2,5-dihaloaniline, 3,5-dihaloaniline, p, p'-dihalodiphenylether, 4,4'-dihalobenzophenone, 4,4'-dihalodiphenylsulfone, 4,4 '-Dihalodiphenyl sulphoxide, 4,4'-dihalodiphenyl sulfide, etc., among which p-dihalobenzene, m-dihalobenzene, 4,4'-diha Robenzophenone and 4,4'-dihalodiphenylsulfone are preferred, of which p-dichlorobenzene, m-dichlorobenzene, 4,4'-dichlorobenzophenone and 4,4'-dichlorodiphenylsulfone are particularly preferably used. .
[0018]
A copolymer containing two or more different reaction units can be obtained by an appropriate combination of dihaloaromatic compounds, and the combination is not particularly limited. It is preferable to use p-dichlorobenzene in combination with 4,4'-dichlorobenzophenone or 4,4'-dichlorophenylsulfone, since a PAS excellent in various physical properties can be obtained. Polymerization using p-dihalobenzene in an amount of 70 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more of the dihaloaromatic compound is particularly preferable because PAS having various excellent physical properties can be obtained. PPS, which is a polymer composed of only dihalobenzene, is excellent in various physical properties. Among them, the use of dichlorobenzene is more preferable in terms of productivity and the like.
[0019]
The PAS according to the present invention is a polymer of the above-mentioned dihalo-aromatic compound, and may be used in combination with a monohalo compound to form a terminal of the formed polymer or to control a polymerization reaction or a molecular weight. In order to form a polymer, a polyhalo compound of trihalo or higher can be used in combination. When these monohalo or polyhalo compounds are used in combination, for example, if a small amount of trichlorobenzene is used in combination with dihalobenzene, a branched phenylene sulfide polymer can be obtained, and three or more halogens such as trichlorobenzene can be obtained. Use of a polyhalo compound having an atom as a substituent is useful in increasing the viscosity of the obtained polymer. Further, the amount of the monohalo compound or the polyhalo compound having three or more halogen atoms as a substituent cannot be specified unconditionally because it varies depending on the purpose or reaction conditions, but is preferably 0.1 to 1 mol of the dihalo aromatic compound. Mol% or less, more preferably 0.06 mol% or less. When the amount of the polyhalo compound having three or more halogen atoms as a substituent represented by trichlorobenzene is in the above range, it is preferable because the viscosity can be increased without substantially impairing the linearity of the obtained polymer. Note that both the monohalo compound and the polyhalo compound having three or more halogen atoms as substituents are not necessarily aromatic compounds.
[0020]
The organic polar solvent used in the polymerization reaction of the present invention is an organic polar solvent having no active hydrogen, that is, an aprotic organic polar solvent.
[0021]
The organic polar solvent does not inhibit the polymerization reaction, and the raw material dihalo aromatic compound and S 2- It is not particularly limited as long as it has a dissolving ability enough to dissolve the sulfidizing agent giving the above to a concentration required for the reaction. Among these, this solvent is usually a polar solvent having a nitrogen atom, an oxygen atom, and a sulfur atom. Further, it is desirable that this solvent does not participate in the dehalogenation / sulfurization reaction similar to the starting dihaloaromatic compound. Thus, for example, it is desirable not to be a haloaromatic hydrocarbon.
[0022]
Since the organic polar solvent is for providing a controlled small amount of water to the polymerization reaction, it is desirable that this water as a solute can be solvated.
[0023]
Further, as is apparent from the production method of the present invention, it is desirable that the boiling point of the organic polar solvent is higher than the boiling point of water. Those satisfying the above conditions include, for example, (1) amides such as hexamethylphosphoric triamide (HMPA), N-methylpyrrolidone (NMP), N-cyclohexylpyrrolidone (NCP), N-methylcaprolactam, (2) etherified polyethylene glycols such as tetramethylurea (TMU), dimethylformamide (DMF), dimethylacetamide (DMA), etc., for example, polyethylene glycol dialkyl ether (polymerization degree up to about 2,000, alkyl group is C 1 ~ C 20 (3) sulfoxides, for example, tetramethylene sulfoxide, dimethyl sulfoxide (DMSO) and the like. Among the above solvents, N-methylcaprolactam and NMP are particularly preferred because of their high chemical stability.
[0024]
The amount of the organic polar solvent used depends on the type of the solvent used and the amount of water with respect to the solvent in the system, but maintains the viscosity of the reaction system capable of a uniform polymerization reaction, and also maintains a certain level of productivity. In order to do so, the range is preferably 1.0 to 8.0 mol per 1 mol of sulfur atom in the sulfidizing agent used for the polymerization. Further, when productivity is further considered, the range of 1.0 to 6.0 mol per 1 mol of sulfur atom in the sulfidizing agent used in the polymerization is preferable, and the more preferable amount of the solvent used is in the sulfidizing agent used in the polymerization. Is 1.2 to 5.0 mol per 1 mol of sulfur atom.
[0025]
The water for adjusting the water content in the polymerization system or the water content of the water-containing sulfidizing agent only needs to contain one that inhibits the reaction.Therefore, distilled water, ion-exchanged water, etc. Water excluding cations is preferred.
[0026]
The amount of water present in the polymerization reaction of the present invention is preferably as small as possible in order to avoid simultaneous reactions such as hydrolysis reaction. On the other hand, when the polymerization reaction is in a completely anhydrous state, there is a problem that the reaction rate becomes extremely slow. Therefore, the amount of water to be present in the reaction system in the polymerization reaction of the present invention must be less than 1 mol at the end of the polymerization reaction per 1 mol of the sulfidizing agent used in the polymerization. In addition, from the viewpoint that the reaction proceeds smoothly, it is preferable that 0.02 mol or more is present per 1 mol of the sulfidizing agent used in the polymerization. Among these, the range of 0.03 to 0.60 is preferable, and the range of 0.05 to 0.40 is particularly preferable for 1 mol of the sulfidizing agent used for the polymerization. When the above range is satisfied, the controllability of the control of the reaction rate and the increase in the molecular weight can both be more easily achieved.
[0027]
In the present invention, in the production of polyarylene sulfide by reacting a dihalo aromatic compound with a sulfide agent in an organic polar solvent, the sulfide agent is a mixture of an alkali metal sulfide and an alkali metal hydrosulfide, When the molar ratio of water in the reaction system at the end of the reaction to all of the sulfidizing agents used in the polymerization (water / sulfidizing agent) is less than 1, the remaining dihalo-aromatic compound at the end of the polymerization reaction and the sulfidizing agent (Dihalo aromatic compound / sulfidizing agent) is smaller than 1, but the polymerization method is not particularly limited as long as the above characteristics are satisfied. That is, there is no particular limitation on the method of charging the raw materials such as the dihalo aromatic compound, the sulfidizing agent, the organic polar solvent, and water.
[0028]
When the sulfidizing agent is a hydrous sulfidizing agent, dehydration is required to satisfy the characteristics of the production method of the present invention. And the polymerization may be performed separately, or dehydration may be appropriately performed while performing the polymerization.
[0029]
As a method of simultaneously performing dehydration and polymerization, for example, a temperature at which the polymerization reaction can substantially proceed, that is, a temperature of 200 to 300 ° C., preferably 210 to 280 ° C., and more preferably 215 to 260 ° C. The mixture may contain 0.5 mol or less of water with respect to the solvent) and the dihalo-aromatic compound, and the hydrous sulfidizing agent is added at such a rate that the amount of water in the reaction system can be controlled within the above range. After introducing excess water into the mixture to remove excess water outside the system and controlling the amount of water in the reaction system within the above range, the mixture is further heated to a temperature of 200 to 300 ° C, preferably 210 to 280 ° C, for 40 hours. Hereinafter, a method of performing a polymerization reaction by heating preferably for 0.5 to 20 hours, more preferably 1 to 10 hours may be used.
[0030]
As a method of separately performing dehydration and polymerization, for example, the temperature at which the polymerization reaction hardly proceeds, that is, 120 to 200 ° C., preferably 150 to 190 ° C., at an organic polar solvent (0.5 mole to the organic polar solvent) The mixture may contain the following water) and a dihaloaromatic compound, and the sulfidizing agent is introduced into the mixture at such a rate that the amount of water in the reaction system can be controlled to less than 1 mol per 1 mol of the sulfidizing agent. To remove excess water to the outside of the system to control the amount of water in the reaction system to less than 1 mol per 1 mol of the sulfidizing agent, and then to prepare the prepared organic polar solvent, dihalo-aromatic compound and hydrous sulfidizing agent. Is heated to a temperature at which the polymerization reaction substantially proceeds, ie, a temperature of 200 to 300 ° C., preferably 210 to 280 ° C., for 40 hours or less, preferably 0.5 to 20 hours. During, and more preferably it may be a method of performing polymerization reaction by heating for 1 to 10 hours.
[0031]
In addition, as a method of appropriately performing dehydration while performing polymerization, for example, the following method may be mentioned. {Circle around (1)} A sulfide agent is added to an organic polar solvent, preferably in an inert gas atmosphere, and the temperature is raised to 150 ° C. or more, preferably 180 to 250 ° C., at normal pressure, reduced pressure, or increased pressure, to reduce water sulfide. Adjust to 1 to 1.5 mol per 1 mol of the agent, further add a dihalo aromatic compound, and heat to a temperature at which the polymerization reaction proceeds, that is, 200 to 300 ° C, preferably 210 to 280 ° C. The polymerization reaction is performed by heating for 0.1 to 40 hours, preferably 0.5 to 20 hours, more preferably 1 to 10 hours, and continuously, temporarily or intermittently during the polymerization reaction. And controlling the amount of water in the reaction system to less than 1 mol per 1 mol of the sulfidizing agent in the reaction system.
[0032]
{Circle around (2)} An organic polar solvent (which may contain 0.5 mol or less of water with respect to the organic polar solvent) and a dihalo aromatic at a temperature at which the polymerization reaction hardly proceeds, ie, 120 to 200 ° C., preferably 150 to 190 ° C. A mixture of group III compounds is maintained, and a sulfidizing agent is introduced into the mixture at a rate at which the amount of water in the reaction system can be controlled, excess water is removed outside the system, and the amount of water in the reaction system is converted into sulfide in the reaction system. After controlling to less than 1 mol per 1 mol of the agent, a temperature at which the polymerization reaction of the mixture of the prepared organic polar solvent, dihaloaromatic compound and hydrous sulfidizing agent substantially proceeds, that is, 200 to 300 ° C., preferably Is heated to a temperature of 210 to 280 ° C., and is heated for 0.1 to 40 hours, preferably 0.5 to 20 hours, more preferably 1 to 10 hours to perform a polymerization reaction. Polymerization process between the to reduce further more moisture content to remove moisture in continuously or temporarily or intermittently system according to need.
[0033]
{Circle around (3)} An organic polar solvent (0.5 mol or less of water relative to the organic polar solvent) at a temperature at which the polymerization reaction can proceed, at a temperature of 200 to 300 ° C., preferably 210 to 280 ° C., more preferably 215 to 260 ° C. And a mixture of dihaloaromatic compounds is heated, and a water-containing sulfidizing agent is introduced into the mixture at such a rate that the amount of water in the reaction system can be controlled to remove excess water from the system. After controlling the amount of water in the reaction system to be less than 1 mol per 1 mol of the sulfidizing agent in the reaction system, the mixture is further heated to a temperature of 200 to 300 ° C., preferably 210 to 280 ° C. for 40 hours. Hereinafter, the polymerization reaction is preferably performed by heating for 0.5 to 20 hours, more preferably 1 to 10 hours, and while the polymerization reaction is being performed, the water content in the system is continuously, temporarily, or intermittently. To The polymerization method for reducing the water content was removed by.
[0034]
Among the above polymerization methods, a method of appropriately dehydrating while performing polymerization is preferable from the viewpoint of productivity and the like. Among these, the mixture of the organic polar solvent and the dihalo-aromatic compound is heated to a temperature at which the polymerization reaction can substantially proceed, and the water-containing sulfidizing agent is introduced into the mixture at such a rate that the amount of water in the reaction system can be controlled. After removing excess water to the outside of the system and controlling the amount of water in the reaction system, perform the polymerization reaction further.Continuously, temporarily or intermittently as necessary during the polymerization reaction. Preferably, a polymerization method in which the water content in the reaction system is removed to further reduce the water content is preferable. In particular, the water content in the reaction system is reduced to less than 1 mol per 1 mol of the sulfidizing agent in the reaction system throughout the polymerization process. Most preferred is the polymerization method described in (3) above.
[0035]
The rate at which the above-mentioned hydrous sulfidizing agent is introduced is not particularly limited as long as excess water can be removed outside the system so that the amount of water in the reaction system can be controlled within a desired range with respect to 1 mol of the organic polar solvent. There is no. The introduction time varies depending on the amount of water to be controlled, the temperature at the time of introduction, the water content of the hydrated sulfidizing agent and the like, and cannot be unconditionally specified, but the hydrated sulfidizing agent is used for 0.1 to 20 hours, preferably 0.5 to 20 hours. It is preferable to introduce it over 10 hours. Within this time, it is easy to control the amount of water or the temperature of the reaction system, and the productivity is good.
[0036]
In addition, the temperature at which the hydrated sulfidizing agent is introduced also controls the amount of water to be controlled, the rate at which the sulfidedating agent is introduced, the water content of the hydrated sulfidizing agent, or the type of the reaction. If performed, it is recommended to introduce at 120 to 200 ° C, preferably 150 to 190 ° C. In addition, if dehydration and polymerization are carried out simultaneously, the introduction may be carried out at a temperature of 200 to 300 ° C, preferably 210 to 280 ° C, more preferably 215 to 260 ° C.
[0037]
The polymerization reaction is carried out by heating to a temperature of 200 to 300 ° C, preferably 210 to 280 ° C, for 0.1 to 40 hours, preferably 0.5 to 20 hours, more preferably 1 to 10 hours. preferable. Within this range, the reaction proceeds smoothly.
[0038]
The method of removing water during polymerization can be easily performed by controlling the temperature and pressure of the reaction system. That is, the temperature and pressure to be controlled can be easily estimated from the vapor pressure curves of water, the solvent and the dihaloaromatic compound, and a desired amount of water in the system can be obtained by controlling the temperature and pressure.
[0039]
The amount of the dihalo-aromatic compound and the sulfidizing agent used in the production method of the present invention is determined by the molar ratio of the remaining dihalo-aromatic compound and the remaining sulfidizing agent at the end of the polymerization reaction (dihalo-aromatic compound / sulfide). As long as the (agent) is less than 1, there is no particular limitation. For example, as a method for adding a dihalo aromatic compound and a sulfidizing agent, the following methods (a) and (b) are mentioned.
(A) a dihalo-aromatic compound and a sulfide such that the molar ratio of the remaining dihalo-aromatic compound and the remaining sulfide agent at the end of the polymerization reaction (dihalo-aromatic compound / sulfide agent) is less than 1 in advance; The reaction may be carried out by charging with an agent. (B) the dihalo-aromatic compound and the sulfide so that the molar ratio of the remaining dihalo-aromatic compound and the remaining sulfidizing agent at the end of the polymerization reaction (dihalo-aromatic compound / sulfidizing agent) is 1 or more; After the polymerization, the dihalo-aromatic compound is removed out of the system during the polymerization, and the molar ratio of the remaining dihalo-aromatic compound and the remaining sulfidizing agent at the end of the polymerization reaction (dihalo-aromatic compound / (A sulfidizing agent) may be adjusted to be less than 1. Among these, the above (a) is preferable.
[0040]
In any of the above methods (a) and (b), the molar ratio of the remaining dihalo-aromatic compound and the remaining sulfidizing agent at the end of the polymerization reaction (dihalo-aromatic compound / sulfidizing agent) is less than 1. Is essential, and when it is 1 or more, it is not preferable because the high molecular weight of the polymer which is the object of the present invention cannot be achieved. However, if the molecular weight is too small, the molecular weight may decrease due to the decomposition reaction of the polymer. Therefore, it is preferably 0.05 or more. Among them, the molar ratio of the remaining dihalo-aromatic compound and the remaining sulfidizing agent at the end of the polymerization reaction (dihalo-aromatic compound / sulfidizing agent) is particularly preferably in the range of 0.1 to 0.5. When this range is satisfied, a higher molecular weight can be achieved without causing a decomposition reaction.
[0041]
Therefore, in either case of the above method (a) or (b), [(total use of dihalo-aromatic compound (mol))-(dihalo-aromatic compound (mol) removed out of the system)] and [(total use of dihalo-aromatic compound (mol)) The ratio of (sulfidizing agent (mol))-(sulfur content (mol) removed outside the system)] of greater than 0.90 and less than 1 can provide a polymer having excellent physical properties, that is, a polymer having a higher molecular weight. Preferred. When the above range is satisfied, the preferable range of the remaining monomer ratio is easily satisfied, which is preferable. Further, when the above range is 0.92 to 0.99, it is more preferable from the viewpoint of increasing the molecular weight.
[0042]
The residual amount of the dihalo-aromatic compound is usually determined by gas chromatography. The remaining amount of the sulfidizing agent such as alkali metal sulfide and alkali metal hydrosulfide can be determined by, for example, a silver nitrate titration method.
[0043]
In the polymerization reaction of the present invention, a polymerization vessel made of titanium, chromium, zirconium, or the like is used as a liquid contact part, and is usually preferably performed in an atmosphere of an inert gas such as nitrogen, helium, or argon. Nitrogen is preferred from the viewpoint of ease of handling and ease of handling.
[0044]
The reaction pressure is not particularly limited because it depends on the type and amount of the raw materials and the solvent used, the reaction temperature, and the like, and cannot be specified unconditionally. The reaction liquid preparation and polymer formation reaction may be a one-step reaction performed at a constant temperature, a multi-step reaction in which the temperature is increased stepwise, or a method in which the temperature is continuously changed. May be the reaction.
[0045]
In the present invention, in the production of a polyarylene sulfide polymer in which a dihalo aromatic compound is reacted with a sulfide agent in an organic polar solvent, the sulfide agent is a mixture of an alkali metal sulfide and an alkali metal hydrosulfide, When the molar ratio of water in the reaction system at the end of the reaction to all of the sulfidizing agents used in the polymerization (water / sulfidizing agent) is less than 1, the remaining dihalo-aromatic compound at the end of the polymerization reaction and the sulfidizing agent (Dihalo aromatic compound / sulfidizing agent) is smaller than 1, but additional steps such as a pre-treatment step or a post-treatment step may be provided.
[0046]
In the present invention, post-treatment after the completion of the polymerization reaction can be performed by a conventional method. For example, after the completion of the polymerization reaction, the reaction mixture may be used as it is, or may be diluted with water or an organic solvent such as a reaction solvent, an acid or a base may be added if necessary, and the mixture may be filtered off. It can be performed by summing, washing with water, filtering and drying. Alternatively, as an alternative, the reaction mixture as it is, or after adding an acid or a base, is heated under reduced pressure or normal pressure to distill off only the solvent. , And washed once or twice with water or ketones such as acetone or alcohols such as methanol, or an organic solvent such as a reaction solvent, and then, if necessary, neutralized, washed with water, filtered and dried. This can be done by: The temperature at which the above-described washing and filtering operations are performed is not particularly limited. Alternatively, a treatment with a salt such as ammonium chloride may be used instead of the acid or the base.
[0047]
The isolated polymer is dried by heating to a temperature at which a solvent such as water substantially evaporates. Drying may be performed under vacuum, or may be performed in air or in an atmosphere of an inert gas such as nitrogen.
[0048]
Since the polymer obtained by the present invention has a higher molecular weight than conventional PAS, it can be used as it is for various molding materials, but it can be thickened by heat treatment in air or oxygen-enriched air or under reduced pressure. It is possible, and after performing such a thickening operation as necessary, it may be used for various molding materials. Since the heat treatment temperature varies depending on the treatment time and the atmosphere in which the treatment is performed, it cannot be unconditionally specified. If the heat treatment temperature is lower than 180 ° C., the rate of thickening is extremely slow, and the productivity is poor, which is not preferable. The heat treatment may be performed in a molten state at a temperature higher than the melting point of the polymer using an extruder or the like. However, from the viewpoint of the possibility of deterioration of the polymer or workability, it is preferable to carry out the reaction at a temperature higher than the melting point plus 100 ° C.
[0049]
The polymer obtained by the present invention is a molded product excellent in heat resistance, molding processability, dimensional stability, etc. by various melt processing methods such as injection molding, extrusion molding, compression molding, and blow molding as in the conventional PAS. Can be However, in order to further improve the performance such as strength, heat resistance and dimensional stability, it is also possible to use in combination with various fillers as long as the object of the present invention is not impaired. Examples of the filler include a fibrous filler and an inorganic filler.
[0050]
In addition, a small amount of a mold release agent, a colorant, a heat stabilizer, an ultraviolet stabilizer, a foaming agent, a rust inhibitor, a flame retardant, a lubricant, a cup as an additive during the molding process without departing from the object of the present invention. A ring agent can be included. Further, similarly, the following synthetic resins and elastomers can be mixed and used. As these synthetic resins, polyester, polyamide, polyimide, polyetherimide, polycarbonate, polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone, polyetherketone, polyarylene, polyethylene, polypropylene, polytetrafluoroethylene, Examples include polydifluoroethylene, polystyrene, ABS resin, epoxy resin, silicone resin, phenolic resin, urethane resin, and liquid crystal polymer. Examples of the elastomer include polyolefin-based rubber, fluorine rubber, and silicone rubber.
[0051]
The polymer and its composition of the present invention are excellent in heat resistance, dimensional stability and the like like PPS obtained by a conventional method, and therefore, for example, electric / electronic parts such as connectors, printed boards, sealing molded articles, lamp reflectors・ Automotive parts such as various electrical parts, interior materials such as various buildings, aircrafts and automobiles, or injection molded and compression molded products such as precision parts such as OA equipment parts, camera parts and clock parts, or fibers and films. It can be widely used as extruded and drawn products such as sheets and pipes.
[0052]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited only to these examples.
[0053]
Raw materials used
1. Sulfidizing agent
Hydrous flake sodium sulfide (hereinafter referred to as Na 2 S xH 2 Abbreviated as O. Purity-Na 2 (S: 58.9% by weight, NaSH: 1.3% by weight) produced by Nagao Corporation. Further, hydrated flake sodium bisulfide (hereinafter, NaSH.yH) 2 Abbreviated as O. Purity-NaSH: 71.2% by weight, Na 2 S: 2.7% by weight) used Nagao Corporation product.
[0054]
2. solvent
As N-methylpyrrolidone (hereinafter abbreviated as NMP), BASF Japan Ltd. product was used.
[0055]
3. Dihalo aromatic compounds
As the p-dichlorobenzene (hereinafter abbreviated as p-DCB), Hodogaya Chemical Co., Ltd. product was used.
[0056]
4. water
Tap water was distilled and then subjected to ion exchange.
[0057]
5. Sodium hydroxide (hereinafter abbreviated as NaOH)
Wako Pure Chemical Industries, Ltd. reagent was used.
[0058]
6. 1,3,5-trichlorobenzene (hereinafter abbreviated as TCB)
Tokyo Chemical Co., Ltd. reagent was used.
[0059]
Evaluation of the physical properties
The melt viscosity (η) of the obtained polymer was measured using a Capillograph 1B manufactured by Toyo Seiki Co., Ltd. (300 ° C., shear rate 100 / sec, nozzle hole diameter 1 mm, length 10 mm).
[0060]
The molecular weight was measured using a high-temperature gel permeation chromatograph (high-temperature GPC) SSC-7000 manufactured by Senshu Scientific Co., Ltd. (solvent: 1-chloronaphthalene, temperature: 210 ° C., detector: UV detector (360 nm), Sample injection volume: 200 μl (concentration: 0.2% by weight, flow rate 1 ml / min). The molecular weight was calculated in terms of polystyrene, and the comparison was performed using the peak value Mp of the molecular weight distribution.
[0061]
Example 1
735.0 g (5.0 mol) of p-DCB and 1983 g of NMP (20 mol) were placed in a stainless steel (titanium lining) 4-liter autoclave with stirring blades connected to a temperature sensor, a cooling tower, a dropping tank, a dropping pump, and a distillate separation tank. Mol) and water (36.0 g, 2.0 mol) were charged at room temperature, the temperature was raised to 100 ° C. over 20 minutes with stirring under a nitrogen atmosphere, the system was closed, and the temperature was further raised to 220 ° C. over 40 minutes. At that temperature, the internal pressure was controlled to 0.22 MPa and Na 2 S xH 2 O 600g, NaSH ・ yH 2 A mixture of 90 g of O and 170 g of water (Na 2 S: 4.56 mol, NaSH: 1.28 mol, water content: 50.3 wt%) was added dropwise over 3 hours. During the dropping, a dehydration operation was performed at the same time, water was removed from the system, and p-DCB distilled out together with the water was continuously returned to the autoclave. The dehydration operation and the operation of returning p-DCB were performed until the temperature was raised to 240 ° C, and the system was sealed when the temperature was completed.
[0062]
Thereafter, the temperature was maintained at the same temperature and pressure for 1 hour, and then the internal temperature was raised to 240 ° C. while reducing the internal pressure to 0.17 MPa over 1 hour, and the temperature was maintained for 1 hour to complete the reaction. Cooled to room temperature. The analysis result of the distillate was 450 g of water and 18 g of NMP. As a result, the amount of water in the reaction system at the end of the reaction was 0.18 (mol / mol) with respect to all the sulfidizing agents used. In addition, about the p-DCB, since the whole amount distilled out was returned into the autoclave, the p-DCB removed outside the system was substantially 0. The amount of hydrogen sulfide scattered outside the system was 19 g. Therefore, a substantial molar ratio of the reaction [(p-DCB (mol) charged)-(p-DCB (mol) removed outside the system)] / [(total used sulfidizing agent (mol))-( H removed 2 S (mol)) was 0.95. A part of the obtained reaction slurry was sampled, the amount of residual DCB was measured by gas chromatography, and the amount of residual sulfidizing agent was measured by silver nitrate titration using an automatic titrator. As a result, the residual DCB: 1.5 mol%, the residual Na 2 S: 3.5 mol%, remaining NaSH: 4.4 mol%. 200 g of the obtained reaction slurry was poured into 1 liter of water, stirred at 80 ° C. for 1 hour, and then filtered. The cake was again stirred and washed with 500 ml of hot water for 1 hour, and then filtered. This operation was repeated four times, followed by filtration and drying with a hot air drier at 120 ° C. for 10 hours to obtain a white powdery polymer. The melt viscosity of the obtained polymer was 1900 poise, and the molecular weight (Mp) was 42400 (purification method-1). The reaction solvent was distilled off by heating 200 g of the obtained reaction slurry under reduced pressure (-0.08 MPa) to 120 ° C., and 1 liter of water was poured into the residue, followed by stirring at 80 ° C. for 1 hour. After that, the mixture was filtered. The cake was again stirred and washed with 500 ml of hot water for 1 hour, and then filtered. This operation was repeated three times, and 500 ml of water was further added. The mixture was stirred at 200 ° C. for 1 hour, filtered, and dried with a hot air drier at 120 ° C. for 10 hours to obtain a white powdery polymer. The melt viscosity of the obtained polymer was 1940 poise (purification method-2). 100 g of NMP was added to 200 g of the obtained reaction slurry, stirred at 80 ° C. for 1 hour, and then filtered. The cake was again stirred and washed with 500 ml of hot water for 1 hour, and then filtered. This operation was repeated four times, followed by filtration and drying with a hot air drier at 120 ° C. for 10 hours to obtain a white powdery polymer. The melt viscosity of the obtained polymer was 2,360 poise (purification method-3). The results are shown in Table 1.
[0063]
Examples 2 and 3
It carried out similarly to Example 1 on conditions as shown in Table 1. The results are as shown in Table 1.
[0064]
Example 4
The operation was performed in the same manner as in Example 1 except that the dropping time was changed to 5 hours. The results are shown in Table 2.
[0065]
Example 5
The operation was performed in the same manner as in Example 1 except that 0.45 g (0.0025 mol) of TCB was additionally charged before the temperature was raised. The results are shown in Table 2.
[0066]
Example 6
The reaction was carried out in the same manner as in Example 1 except that the charged amount of p-DCB was 750 g (5.1 mol). However, during the dropping, the entire amount of the distilled p-DCB was continuously returned to the autoclave, and in the temperature raising step, the amount of the distilled p-DCB returned to the autoclave was controlled, and 15 g was extracted from the autoclave to the outside of the autoclave. The results are shown in Table 2.
[0067]
Comparative Example 1
Na 2 S xH 2 O 668 g, NaSH.yH 2 The same procedure as in Example 1 was carried out without using O but using 10 g of NaOH and 140 g of water. The composition of the dropped mixture is Na 2 S: 5.20 mol, NaOH: 0.10 mol, water content: 50.3 wt%. The obtained polymer had a viscosity of 210 poise by the purification method-1, which was lower than that of the examples.
[0068]
Comparative Example 2
Example 4 was carried out in the same manner as in Example 4 except that the controlling pressure at the time of dropping at 220 ° C was 0.55 MPa and the controlling pressure at the time of raising the temperature of 240 ° C was 0.90 MPa. The amount of water at the end of the reaction was 1.13 (mol / mol) with respect to all the sulfidizing agents used. The obtained polymer had a viscosity of 120 poise by the purification method-1 and was lower than that of the examples.
[0069]
Comparative Example 3
The operation was carried out in the same manner as in Example 1 except that the amount of DCB used was 793.8 g (5.4 mol). The remaining monomer was composed of 8.9 mol% of residual DCB and 1 mol of residual Na with respect to 1 mol of charged DCB. 2 S: 3.2 mol%, residual NaSH: 3.9 mol%. The obtained polymer had a viscosity of 150 poise by the purification method-1, which was lower than that of the examples.
[0070]
[Table 1]
Figure 2004107567
[0071]
[Table 2]
Figure 2004107567
[0072]
In addition, "reaction substantial molar ratio" in Tables 1 and 2 represents a value calculated by the following equation. Reaction substantial molar ratio = [(p-DCB (mol) charged)-(p-DCB (mol) removed outside the system)] / [(total used sulfidizing agent (mol))-(H removed outside the system) 2 S (mol))
[0073]
【The invention's effect】
According to the production method of the present invention, in an organic polar solvent, in the production of a polyarylene sulfide polymer in which a dihalo aromatic compound is reacted with a sulfidizing agent, an alkali metal sulfide and an alkali metal hydrosulfide are used as the sulfidizing agent. By using a mixture and controlling the water content and the monomer ratio to specific ranges, it is possible to achieve a high molecular weight PAS. Therefore, a product with improved mechanical strength such as toughness can be provided with high productivity.

Claims (7)

有機極性溶媒中で、ジハロ芳香族化合物とスルフィド化剤とを反応させるポリアリーレンスルフィドの製造方法であって、
1)スルフィド化剤がアルカリ金属硫化物とアルカリ金属水硫化物の混合物であり、
2)重合反応終了時の反応系内の水と重合に使用した全スルフィド化剤とのモル比(水/スルフィド化剤)が1未満となるように制御し、
3)重合反応終了時の残存するジハロ芳香族化合物とスルフィド化剤とのモル比(ジハロ芳香族化合物/スルフィド化剤)が1未満となるように制御することを特徴とするポリアリーレンスルフィドの製造方法。
In an organic polar solvent, a method for producing a polyarylene sulfide by reacting a dihalo aromatic compound and a sulfide agent,
1) The sulfidizing agent is a mixture of an alkali metal sulfide and an alkali metal hydrosulfide,
2) controlling the molar ratio of water in the reaction system at the end of the polymerization reaction to all the sulfidizing agents used in the polymerization (water / sulfide agent) to be less than 1;
3) Production of polyarylene sulfide, wherein the molar ratio of the remaining dihaloaromatic compound to the sulfidizing agent at the end of the polymerization reaction (dihaloaromatic compound / sulfidizing agent) is controlled to be less than 1 Method.
前記スルフィド化剤が、結晶水を有する含水スルフィド化剤である請求項1記載のポリアリーレンスルフィドの製造方法。The method for producing a polyarylene sulfide according to claim 1, wherein the sulfidizing agent is a hydrous sulfidizing agent having water of crystallization. 重合反応終了時の反応系内の水と該スルフィド化剤とのモル比(水/スルフィド化剤)を1未満になるように制御する方法が、
加熱した有機極性溶媒とジハロ芳香族化合物を含む混合物に含水スルフィド化剤を導入しながら反応する方法であって、
且つ、重合に使用する全スルフィド化剤1モルに対して、反応系内中の水が1モル未満となるように、含水スルフィド化剤の導入速度を反応系内中の水が反応混合物から除去されるように調整し制御する方法である請求項2記載のポリアリーレンスルフィドの製造方法。
A method of controlling the molar ratio of water in the reaction system and the sulfidizing agent at the end of the polymerization reaction (water / sulfidizing agent) to be less than 1
A method of reacting while introducing a hydrous sulfidizing agent into a mixture containing a heated organic polar solvent and a dihaloaromatic compound,
In addition, the introduction rate of the water-containing sulfidizing agent is adjusted so that the water in the reaction system is removed from the reaction mixture so that the amount of water in the reaction system is less than 1 mol with respect to 1 mol of the entire sulfidizing agent used in the polymerization. 3. The method for producing a polyarylene sulfide according to claim 2, wherein the method is a method of adjusting and controlling the temperature.
スルフィド化剤中のアルカリ金属硫化物とアルカリ金属水硫化物との混合比が、アルカリ金属硫化物1モルに対してアルカリ金属水硫化物が0.04〜1モルの範囲である請求項2または3記載のポリアリーレンスルフィドの製造方法。The mixing ratio of the alkali metal sulfide and the alkali metal hydrosulfide in the sulfidizing agent is in the range of 0.04 to 1 mol of the alkali metal hydrosulfide to 1 mol of the alkali metal sulfide. 4. The method for producing a polyarylene sulfide according to 3. 〔(全使用ジハロ芳香族化合物(モル))−(系外に除去したジハロ芳香族化合物(モル))〕と〔(全使用スルフィド化剤(モル))−(系外に除去した硫黄分(モル))〕との比が0.92〜0.99の範囲である請求項2または3記載のポリアリーレンスルフィドの製造方法。[(Total used dihalo aromatic compound (mol)]-(dihalo aromatic compound (mol) removed outside system)] and [(total used sulfidizing agent (mol))-(sulfur component removed outside system (mol The method for producing a polyarylene sulfide according to claim 2 or 3, wherein the ratio of (mol))) is in the range of 0.92 to 0.99. 該ポリアリーレンスルフィドがポリフェニレンスルフィドであることを特徴とする請求項1〜5の何れか一つに記載のポリアリーレンスルフィドの製造方法。The method for producing a polyarylene sulfide according to any one of claims 1 to 5, wherein the polyarylene sulfide is polyphenylene sulfide. 該ポリアリーレンスルフィドが0.1モル%以下の分岐構造を含むポリフェニレンスルフィドである請求項1〜6の何れか一つに記載のポリアリーレンスルフィドの製造方法。The method for producing a polyarylene sulfide according to any one of claims 1 to 6, wherein the polyarylene sulfide is a polyphenylene sulfide having a branched structure of 0.1 mol% or less.
JP2002275037A 2002-09-20 2002-09-20 Process for producing polyarylene sulfide Expired - Fee Related JP4055058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275037A JP4055058B2 (en) 2002-09-20 2002-09-20 Process for producing polyarylene sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002275037A JP4055058B2 (en) 2002-09-20 2002-09-20 Process for producing polyarylene sulfide

Publications (2)

Publication Number Publication Date
JP2004107567A true JP2004107567A (en) 2004-04-08
JP4055058B2 JP4055058B2 (en) 2008-03-05

Family

ID=32271346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275037A Expired - Fee Related JP4055058B2 (en) 2002-09-20 2002-09-20 Process for producing polyarylene sulfide

Country Status (1)

Country Link
JP (1) JP4055058B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244619A (en) * 2003-01-21 2004-09-02 Kureha Chem Ind Co Ltd Polyarylene sulfide and process for producing the same
JP2008248154A (en) * 2007-03-30 2008-10-16 Dic Corp Method for producing polyarylene sulfide resin
JP2008248153A (en) * 2007-03-30 2008-10-16 Dic Corp Method for producing polyarylene sulfide resin
CN102964599A (en) * 2012-11-20 2013-03-13 四川得阳化学有限公司 Dehydration process for polyphenyl thioether resin synthesis solvent system
JP2014189638A (en) * 2013-03-27 2014-10-06 Dic Corp Method for producing polyarylene sulfide resin
CN104817697A (en) * 2015-03-04 2015-08-05 常州大学 Branched polyphenylene sulfide copolymer containing polycyclic aromatic hydrocarbon, and preparation method thereof
US9388283B2 (en) 2013-09-25 2016-07-12 Ticona Llc Method of polyarylene sulfide crystallization
US9403948B2 (en) 2013-09-25 2016-08-02 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
US9562139B2 (en) 2013-09-25 2017-02-07 Ticona Llc Process for forming low halogen content polyarylene sulfides
US9587074B2 (en) 2013-09-25 2017-03-07 Ticona Llc Multi-stage process for forming polyarylene sulfides
US9604156B2 (en) 2013-09-25 2017-03-28 Ticona Llc Method and system for separation of a polymer from multiple compounds
US9617387B2 (en) 2013-09-25 2017-04-11 Ticona Llc Scrubbing process for polyarylene sulfide formation
US9809681B2 (en) 2015-02-19 2017-11-07 Ticona Llc Method for forming a low viscosity polyarylene sulfide
US9815942B2 (en) 2015-03-25 2017-11-14 Ticona Llc Technique for forming a high melt viscosity polyarylene sulfide
US9988494B2 (en) 2015-02-19 2018-06-05 Ticona Llc Method for forming a high molecular weight polyarylene sulfide
US10106654B2 (en) 2015-02-19 2018-10-23 Ticona Llc Method of polyarylene sulfide precipitation
CN110799574A (en) * 2017-06-29 2020-02-14 Dic株式会社 Method for producing polyarylene sulfide resin
US11319441B2 (en) 2019-12-20 2022-05-03 Ticona Llc Method for forming a polyarylene sulfide
US11407861B2 (en) 2019-06-28 2022-08-09 Ticona Llc Method for forming a polyarylene sulfide
US12018129B2 (en) 2021-09-08 2024-06-25 Ticona Llc Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge
US12024596B2 (en) 2021-09-08 2024-07-02 Ticona Llc Anti-solvent technique for recovering an organic solvent from a polyarylene sulfide waste sludge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102094448B1 (en) 2017-05-15 2020-03-27 주식회사 엘지화학 Method for preparing polyarylene sulfide

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244619A (en) * 2003-01-21 2004-09-02 Kureha Chem Ind Co Ltd Polyarylene sulfide and process for producing the same
JP4700277B2 (en) * 2003-01-21 2011-06-15 株式会社クレハ Polyarylene sulfide and method for producing the same
JP2008248154A (en) * 2007-03-30 2008-10-16 Dic Corp Method for producing polyarylene sulfide resin
JP2008248153A (en) * 2007-03-30 2008-10-16 Dic Corp Method for producing polyarylene sulfide resin
CN102964599A (en) * 2012-11-20 2013-03-13 四川得阳化学有限公司 Dehydration process for polyphenyl thioether resin synthesis solvent system
CN102964599B (en) * 2012-11-20 2014-05-07 四川得阳化学有限公司 Dehydration process for polyphenyl thioether resin synthesis solvent system
JP2014189638A (en) * 2013-03-27 2014-10-06 Dic Corp Method for producing polyarylene sulfide resin
US9388283B2 (en) 2013-09-25 2016-07-12 Ticona Llc Method of polyarylene sulfide crystallization
US9403948B2 (en) 2013-09-25 2016-08-02 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
US9562139B2 (en) 2013-09-25 2017-02-07 Ticona Llc Process for forming low halogen content polyarylene sulfides
US9587074B2 (en) 2013-09-25 2017-03-07 Ticona Llc Multi-stage process for forming polyarylene sulfides
US9604156B2 (en) 2013-09-25 2017-03-28 Ticona Llc Method and system for separation of a polymer from multiple compounds
US9617387B2 (en) 2013-09-25 2017-04-11 Ticona Llc Scrubbing process for polyarylene sulfide formation
US9868824B2 (en) 2013-09-25 2018-01-16 Ticona Llc Method of polyarylene sulfide crystallization
US9938379B2 (en) 2013-09-25 2018-04-10 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
US10106654B2 (en) 2015-02-19 2018-10-23 Ticona Llc Method of polyarylene sulfide precipitation
US9809681B2 (en) 2015-02-19 2017-11-07 Ticona Llc Method for forming a low viscosity polyarylene sulfide
US10882959B2 (en) 2015-02-19 2021-01-05 Ticona Llc Method of polyarylene sulfide precipitation
US9988494B2 (en) 2015-02-19 2018-06-05 Ticona Llc Method for forming a high molecular weight polyarylene sulfide
CN104817697A (en) * 2015-03-04 2015-08-05 常州大学 Branched polyphenylene sulfide copolymer containing polycyclic aromatic hydrocarbon, and preparation method thereof
US9815942B2 (en) 2015-03-25 2017-11-14 Ticona Llc Technique for forming a high melt viscosity polyarylene sulfide
CN110799574A (en) * 2017-06-29 2020-02-14 Dic株式会社 Method for producing polyarylene sulfide resin
EP3647340A4 (en) * 2017-06-29 2020-12-16 DIC Corporation Method for producing polyarylene sulphide resin
CN110799574B (en) * 2017-06-29 2022-04-12 Dic株式会社 Method for producing polyarylene sulfide resin
US11312823B2 (en) 2017-06-29 2022-04-26 Dic Corporation Method for producing polyarylene sulphide resin
US11407861B2 (en) 2019-06-28 2022-08-09 Ticona Llc Method for forming a polyarylene sulfide
US11319441B2 (en) 2019-12-20 2022-05-03 Ticona Llc Method for forming a polyarylene sulfide
US12018129B2 (en) 2021-09-08 2024-06-25 Ticona Llc Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge
US12024596B2 (en) 2021-09-08 2024-07-02 Ticona Llc Anti-solvent technique for recovering an organic solvent from a polyarylene sulfide waste sludge

Also Published As

Publication number Publication date
JP4055058B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
JP4055058B2 (en) Process for producing polyarylene sulfide
JP3868011B2 (en) Method for producing polyarylene sulfide polymer
JP5221877B2 (en) Process for producing polyarylene sulfide
JP5012131B2 (en) Method for producing polyarylene sulfide resin
JP4777610B2 (en) Polyarylene sulfide and method for producing the same
JP4608715B2 (en) Process for producing polyarylene sulfide
JP3564754B2 (en) Method for producing polyarylene sulfide polymer
JP4635344B2 (en) Method for producing polyarylene sulfide resin
WO2016111146A1 (en) Polyarylene sulfide production method, and polyarylene sulfide
JP3879196B2 (en) Method for purifying polyarylene sulfide
JP4340960B2 (en) Method for producing polyarylene sulfide resin
JP2005047953A (en) Production method for branched polyarylene sulfide
JP4639665B2 (en) Method for producing polyarylene sulfide resin
JP5221837B2 (en) Method for purifying polyarylene sulfide
JP2004352923A (en) Method for producing polyarylene sulfide resin
CN110709446A (en) Process for producing polyarylene sulfide
JP2005344045A (en) Production method of polyarylene sulfide
JPH09296042A (en) Production of polyarylene sulfide
CN110637046B (en) Process for producing polyarylene sulfide
JP7214997B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JP7214998B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JPH0741560A (en) Production of aminated arylene sulfide copolymer
JP4820486B2 (en) Method for producing polyarylene sulfide resin
JPH0532780A (en) Production of aromatic sulfide/ketone polymer
JP6296272B2 (en) Method for producing polyarylene sulfide resin

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

R150 Certificate of patent or registration of utility model

Ref document number: 4055058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees