WO2023089811A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2023089811A1
WO2023089811A1 PCT/JP2021/042754 JP2021042754W WO2023089811A1 WO 2023089811 A1 WO2023089811 A1 WO 2023089811A1 JP 2021042754 W JP2021042754 W JP 2021042754W WO 2023089811 A1 WO2023089811 A1 WO 2023089811A1
Authority
WO
WIPO (PCT)
Prior art keywords
throttle valve
valve opening
index
opening
value
Prior art date
Application number
PCT/JP2021/042754
Other languages
English (en)
French (fr)
Inventor
隆太郎 小祝
修 向原
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2021/042754 priority Critical patent/WO2023089811A1/ja
Publication of WO2023089811A1 publication Critical patent/WO2023089811A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to a control device for an internal combustion engine.
  • Air-fuel ratio control controls the air-fuel ratio (ratio between the amount of air in the cylinder and the amount of fuel) to an appropriate state.
  • air-fuel ratio control there is a method of detecting the oxygen concentration in the exhaust gas and correcting the fuel supply amount, and determining the fuel supply amount according to the intake air flow rate detected by the intake air flow sensor provided in the intake path.
  • the intake pipe pressure is calculated, and the in-cylinder inflow gas flow rate is calculated from the pressure.
  • deposits adhere to the body of the throttle valve of an internal combustion engine (hereinafter referred to as the throttle body), part of the cross section through which air can flow between the throttle valve and the throttle body is blocked by the deposits, making the throttle valve effective.
  • the opening area (the effective cross-sectional area through which air can flow between the throttle valve and the body) is reduced.
  • deposits refer to blow-by gas introduced into the intake air and unburned fuel in the exhaust gas that adheres, solidifies, and accumulates on the throttle body.
  • the throttle valve effective opening area is calculated without reflecting the accumulated deposits in the intake measurement model, the throttle valve effective opening area calculated by the intake measurement model cannot reproduce the actual state, resulting in an error. As a result, calculation errors occur in the throttle valve passing gas flow rate and the cylinder inflow gas flow rate. Therefore, it is necessary to reflect changes in the effective opening area of the throttle valve due to deposits in the intake air measurement model.
  • the three throttle valve opening degrees are a first throttle valve opening degree that is the throttle valve opening degree in a predetermined idle state, and an arbitrary second throttle valve opening degree that is smaller than the first throttle valve opening degree.
  • a predetermined third throttle valve opening which is larger than the first throttle valve opening and is not affected by deposits deposited near the throttle valve is used.
  • An object of the present invention is to provide a control system for an internal combustion engine that can accurately calculate the effective opening area of a throttle valve reflecting the influence of deposits.
  • the control apparatus for an internal combustion engine of the present invention provides a first throttle valve opening and a second throttle valve opening in which the rate of change of an index correlated with the reduction rate of the effective opening area of the throttle valve changes. estimating the index at an arbitrary throttle valve opening from the first throttle valve opening and the second throttle valve opening, and calculating the effective opening area of the throttle valve from the estimated index. Prepare.
  • FIG. 1 is a system configuration diagram of an automobile engine system according to Embodiment 1 of the present invention.
  • FIG. 1 is a system configuration diagram showing the configuration of an ECU according to Embodiment 1 of the present invention;
  • FIG. 4 is a block diagram for calculating a decrease rate correlation index, calculating a change point of the decrease rate correlation index, and calculating a throttle valve effective opening area according to Embodiment 1 of the present invention.
  • FIG. FIG. 5 is a diagram showing the state of the flow around the throttle valve when deposits are attached.
  • FIG. 4 is a diagram showing the relationship between the throttle valve opening degree and the effective opening area of the throttle valve; It is a deposit adhesion image figure to a throttle body.
  • FIG. 10 is a diagram showing measurement results of deposit thickness distribution;
  • FIG. 10 is a diagram showing measurement results of deposit thickness distribution;
  • FIG. 10 is a diagram showing measurement results of deposit thickness distribution;
  • FIG. 10 is a diagram showing measurement results of deposit thickness distribution;
  • FIG. 1
  • FIG. 4 is an image diagram of modeling of the throttle valve opening area in consideration of deposit adhesion according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing the relationship between the deposit thickness, the effective opening area of the throttle valve, and the flow reduction rate;
  • FIG. 4 is a flow chart for learning a deposit thickness and calculating a throttle valve effective opening area according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing a change point search learning value map according to Embodiment 1 of the present invention.
  • FIG. 10 is a diagram for explaining a method of determining a low-opening-side changing point, a high-opening-side changing point, and a deposit thickness when the number of grid points is 1;
  • FIG. 10 is a diagram for explaining a method of determining a low-opening-side changing point, a high-opening-side changing point, and a deposit thickness when the number of grid points is 1;
  • FIG. 10 is a diagram for explaining a method of determining a low-opening-side changing point, a high-opening-side changing point, and a deposit thickness when the number of lattice points is 2;
  • FIG. 4 is a time chart diagram when deposit thickness learning is performed according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing time charts during acceleration when deposit thickness learning has been performed and when no learning has been performed according to Embodiment 1 of the present invention.
  • FIG. 10 is a diagram showing the relationship between the valve overlap amount and the throttle valve opening under conditions of constant rotation speed and constant output;
  • FIG. 10 is a flow chart for learning the deposit thickness and calculating the throttle valve effective opening area according to Embodiment 2 of the present invention.
  • the present embodiment relates to a control apparatus for an internal combustion engine that calculates a cylinder inflow gas flow rate of an internal combustion engine having a throttle valve in an intake path.
  • the effective opening area of the throttle valve is calculated with high accuracy in a region equal to or larger than the opening of the throttle valve in the idling state, and the calculation accuracy of the inflow gas flow rate into the cylinder is improved. It is an object of the present invention to provide a control device for an internal combustion engine that can keep the
  • FIG. 1 shows a system configuration diagram of the engine in this embodiment. This system configuration is common to all the embodiments shown below.
  • the engine 100 is a spark ignition internal combustion engine.
  • An intake flow rate sensor 3 for measuring the flow rate of intake air passing through the intake path of the engine, a supercharger compressor 4b for compressing the intake gas, an intercooler 5 for cooling the intake gas, and a throttle valve 6 for adjusting the intake flow rate. are provided at appropriate positions in each of the intake pipes 8 .
  • the intake air flow rate sensor 3 incorporates an intake air temperature sensor 15 for detecting the intake air temperature
  • the throttle valve 6 incorporates a throttle position sensor for detecting the opening of the throttle valve.
  • the engine 100 also includes a variable intake valve 9a for controlling the opening/closing phase of the intake valve, a variable exhaust valve 9b for controlling the opening/closing phase of the exhaust valve, a fuel injection device 10 for injecting fuel into the combustion chamber 13, and an ignition valve.
  • a spark plug 11 that supplies energy, a crank angle sensor 12, and an atmospheric pressure sensor 16 that measures atmospheric pressure are provided at appropriate positions on each engine 100.
  • FIG. The variable intake valve 9a and the variable exhaust valve 9b are each provided with a phase sensor for detecting the opening/closing phase.
  • the exhaust energy is used to drive the turbine 4a that drives the compressor 4b, the catalytic converter 21 that purifies the exhaust, and an air-fuel ratio detector that detects the air-fuel ratio of the exhaust on the upstream side of the catalytic converter 21.
  • An air-fuel ratio sensor 20 is provided at an appropriate position on each of the exhaust pipes 14 .
  • the air-fuel ratio sensor 20 may be an oxygen concentration sensor.
  • An EGR pipe 32 for extracting EGR from the upstream side of the turbine 4a of the exhaust pipe 14 is branched.
  • a detection signal (atmospheric pressure) Ss16 obtained from the sensor 16 and a detection signal Ss20 obtained from the air-fuel ratio sensor 20 are sent to an engine control unit (ECU) 0 .
  • a signal Ss1 obtained from an accelerator opening sensor 1 that detects the depression amount of the accelerator pedal, that is, the accelerator opening is sent to the ECU0.
  • the ECU 0 calculates the required torque based on the output signal Ss1 of the accelerator opening sensor 1 and various sensor signals. That is, the accelerator opening sensor 1 is used as a required torque detection sensor for detecting the required torque to the engine 100 .
  • the ECU 0 determines the opening of the throttle valve 6, the injection pulse period of the fuel injection device 10, the ignition timing of the spark plug 11, the variable intake valve 9a and the variable exhaust valve 9b based on the operating state of the engine 100 obtained from the outputs of the various sensors. opening/closing timing of the EGR valve 31 and the degree of opening of the EGR valve 31 are optimally calculated.
  • the fuel injection pulse period calculated by the ECU0 is converted into a fuel injection device drive signal Ds10 (open valve pulse signal) and sent to the fuel injection device 10.
  • the opening degree of the throttle valve 6 calculated by the ECU0 is sent to the throttle valve 6 as a throttle valve drive signal Ds6.
  • the spark plug drive signal Ds11 is sent to the spark plug 11.
  • FIG. The degree of opening of the EGR valve is sent to the EGR valve 31 as an EGR valve drive signal Ds31.
  • fuel is injected from a fuel tank (not shown) through a fuel tank fuel pump (not shown) and injected from the fuel injection device 10 to form an air-fuel mixture.
  • the air-fuel mixture is combusted by a spark generated from the ignition plug 11 at a predetermined ignition timing, and the combustion pressure pushes down the piston to provide driving force for the engine 100 .
  • the exhaust is sent to the catalytic converter 21 through the variable exhaust valve 9b, the exhaust pipe 14, and the turbine 4a, where NOx, CO, and HC components are purified before being discharged. Also, part of the exhaust gas is introduced into the intake pipe 8 via the EGR pipe 32 , the EGR cooler 30 and the EGR valve 31 .
  • FIG. 2 is a system block diagram showing the configuration of the ECU0 according to the embodiment of the present invention.
  • Each output signal of the accelerator opening sensor 1, the intake flow rate sensor 3, the phase sensors of the variable intake valve 9a and the variable exhaust valve 9b, the crank angle sensor 12, the intake temperature sensor 15, the atmospheric pressure sensor 16, and the air-fuel ratio sensor 20 is It is input to the input circuit 40a of the ECU0.
  • the input signals are not limited to these.
  • the input signal from each sensor is sent to the input port in the input/output port 40b.
  • the value of the input signal sent to the input/output port 40b is stored in a random access memory (RAM) 40c and processed by the CPU 40e.
  • the analog signal is converted into a digital signal by the A/D converter provided in the input circuit 40a.
  • a control program describing the contents of arithmetic processing is written in advance in a read-only memory (ROM) 40d.
  • a value indicating the actuation amount of each actuator calculated according to the control program is stored in the RAM 40c, sent to the output port of the input/output port 40b, and sent to each actuator via each drive circuit.
  • drive circuits include a throttle drive circuit 40f, an EGR valve drive circuit 40g, a variable valve mechanism drive circuit 40h, a fuel injection device drive circuit 40i, and an ignition output circuit 40j.
  • Each drive circuit controls the throttle valve 6, variable valve 9, fuel injection device 10, spark plug 11, and EGR valve 31.
  • the ECU 0 of this embodiment includes the drive circuit inside the ECU 0 , but the present invention is not limited to this, and any or all of the drive circuits may be provided outside the ECU 0 .
  • FIG. 3 shows a block diagram for correcting the throttle valve effective opening area according to this embodiment.
  • the outline of the function of each block is as follows.
  • the decrease rate correlation index calculation unit acquires the learning value of the decrease rate correlation index based on various detected values including atmospheric pressure, intake flow rate, and intake pipe pressure.
  • the thickness of deposits adhering to the throttle body will be described as the decrease rate correlation index, but the present invention is not limited to this.
  • the throttle valve effective opening area reduction rate the reduction rate of the throttle valve effective opening area after deposits are attached to the throttle valve effective opening area when new
  • the flow rate decrease rate flow rate after deposits are attached to the flow rate when new under the standard conditions
  • the change point calculation unit calculates the throttle valve opening (low opening side change point and high opening side change point) at which the deposit thickness changes, which is necessary to calculate the deposit thickness at points where the learning value has not been acquired. calculate.
  • the change point is calculated based on the differential value of the deposit thickness with respect to the throttle valve opening.
  • the throttle valve effective opening area calculation unit calculates the deposit thickness of the throttle valve opening for which the learning value of the deposit thickness has not been acquired based on the low opening side change point and the high opening side change point, and calculates the deposit thickness Then, the throttle valve effective opening area for an arbitrary throttle valve opening is calculated. Calculation of the throttle valve upstream pressure and the throttle valve downstream pressure is performed by a block (not shown).
  • intake flow rate detection value, intake temperature detection value, atmospheric pressure detection value, throttle valve opening detection value, EGR valve opening detection value, intake valve phase detection value, exhaust valve phase detection value, rotation speed detection value, Pressure and temperature are calculated from the mass and energy of each CV based on the basic equations shown below using the coolant temperature detection value, torque, and the mass flow rate and temperature calculated at the previous calculation time.
  • the throttle valve upstream gas mass m Thr is a formula (5) obtained by discretizing formula (1) based on the intake air flow rate dG AFS , the previous value of the throttle valve passage flow rate dG Thr (to be described later), and the previous value of the throttle valve upstream gas mass. Calculated by the formula.
  • the throttle valve upstream gas energy is calculated based on the previous values of the throttle valve upstream gas mass m Thr , the atmospheric temperature T atm , the throttle valve upstream temperature T Thr , the previous values of the intake flow rate dG AFS and the throttle valve passing gas flow rate dG Thr . ) is discretized using the formula (6).
  • the value of air in the standard state is used as a representative value.
  • the intercooler cooling amount dQ c /dt is obtained experimentally in advance and given as a constant.
  • the throttle valve upstream gas temperature is calculated by formula (4) based on the throttle valve upstream gas energy
  • the throttle valve upstream pressure is calculated by formula (3) based on the throttle valve upstream gas temperature and the throttle valve upstream gas mass.
  • the intake pipe gas mass m mani is a discretized formula ( 7 ) is calculated by the formula.
  • the intake pipe gas energy is based on the previous values of the intake pipe gas mass m mani , the throttle valve upstream temperature T Thr , the intake pipe temperature T mani , the previous values of the throttle valve passing gas flow rate dG Thr , and the cylinder inflow gas flow rate dG cyl . 2) is calculated by formula (8), which is a discretized formula.
  • the value of air in the standard state is used as the representative value for the specific heat ratio and the gas constant.
  • the wall heat loss amount is given as a constant by experimentally obtaining it in advance.
  • the intake pipe gas temperature is calculated by formula (4) based on the intake pipe gas energy.
  • the intake pipe pressure is calculated by equation (3) based on the intake pipe gas temperature and the intake pipe mass. If a device for detecting the intake pipe pressure is provided, the detected value can also be used.
  • the throttle is regarded as an orifice, and a fluid dynamics model around the throttle is constructed to calculate the flow rate of gas passing through the throttle valve.
  • the flow rate of the gas passing through the throttle valve is given by the following flow rate formula that considers the compressibility of the fluid, based on the opening degree of the throttle valve and the pressure before and after the throttle valve.
  • dG Thr is the throttle valve passing gas flow rate [kg/s]
  • is the throttle valve effective opening area correction coefficient [-]
  • A is the throttle valve geometric opening area amount [m 2 ]
  • Pup is the throttle valve upstream pressure [Pa ]
  • Pdn is the throttle valve downstream pressure [Pa]
  • R is the gas constant [J/(kg ⁇ K)]
  • Tup is the throttle valve upstream temperature [K]
  • is the flow coefficient [-].
  • the product of ⁇ and A is an index called throttle valve effective opening area [m 2 ].
  • the flow coefficient is selected from the above equations (9.2) and (9.3) according to the pressure ratio Pdn/Pup between the throttle valve upstream pressure Pup and the throttle valve downstream pressure Pdn.
  • the inequality (9.2.1), which is the condition of the ratio, is called the sonic condition, where the flow velocity passing through the valve becomes equal to the sound velocity, and the flow rate is saturated, so the flow coefficient is constant regardless of the pressure state is given by Note that the inequality (9.3.1), which is the condition for the pressure ratio, is a non-sonic condition, and the flow velocity through the valve is less than the sonic velocity.
  • dG cyl is the cylinder inflow gas flow rate [kg/s]
  • is the intake efficiency [-]
  • Ne is the engine speed [rpm]
  • Vs is the stroke volume [m 3 ]
  • Pmani is the intake pipe pressure downstream of the throttle valve [ Pa]
  • Tmani is the intake manifold gas temperature [K]
  • ncyl is the number of cylinders [-]. Note that the intake efficiency is adjusted in advance and set in advance so that it can be retrieved from the engine speed, the intake pipe pressure, the intake valve phase, and the exhaust valve phase.
  • the ECU 0 repeats the above-described calculations (I), (II), and (III) at predetermined calculation intervals, and uses physical formulas to accurately determine the pressure from the upstream side of the throttle valve to the downstream side of the cylinder. By calculating it, it is possible to calculate the cylinder inflow gas flow rate with high response and high accuracy under transient conditions in which the intake air flow rate sensor 3 cannot accurately measure it.
  • FIG. 4 the concept of a method for correcting the throttle valve effective opening area based on the deposit thickness, which is the point of this embodiment, will be explained using FIGS. 4 to 10.
  • FIG. 4 the concept of a method for correcting the throttle valve effective opening area based on the deposit thickness
  • Fig. 4 shows the state of the flow around the throttle valve when deposits are attached. When the deposit accumulates in the vicinity of the throttle valve, it blocks the flow path and reduces the effective opening area of the throttle valve. If the throttle valve effective opening area is calculated without reflecting this state in the model, an error occurs between the calculated value of the throttle valve effective opening area and the actual state.
  • Fig. 5 shows the effective throttle valve opening area assuming a new throttle valve with no deposits and a throttle valve with deposits after a considerable amount of travel.
  • a solid line indicates no deposit
  • a dashed line indicates a deposit.
  • FIG. 5 there is a range of throttle valve openings in which the throttle valve effective opening area becomes smaller due to the adhesion of deposits than when there is no deposit.
  • the ratio of the area occupied by the deposit thickness to the throttle valve effective opening area decreases, so the rate of change in the throttle valve effective opening area due to deposits decreases as the throttle valve opening increases.
  • Fig. 6 shows an image of deposits adhering to the throttle body.
  • the throttle valve opening be ⁇ [deg].
  • the deposit thickness at the valve tip position of the throttle valve when the throttle valve opening is set to ⁇ is defined as the deposit thickness at the throttle valve opening ⁇ .
  • Fig. 7 shows an example of deposit thickness distribution.
  • the inventors of the present application have found the characteristics of the deposit thickness distribution shown in (A) to (C) below.
  • the deposit thickness is constant in the range where the throttle valve opening is small (throttle valve opening ⁇ A or less).
  • the effects of deposit accumulation are reflected using the features (A) to (C) shown above. Specifically, it was assumed that the deposit thickness would be distributed in two stages in the flow direction. Assuming the deposit thickness distribution in the flow direction in this way, the flow Deposit thickness over a wide range of directions can be calculated.
  • FIG. 8 shows an image diagram of the modeling of the throttle valve opening area that takes deposits into account.
  • FIG. 8 is a view showing the throttle valve in the flow direction from the upstream side of the throttle valve.
  • the clearance between the throttle body and the throttle valve is the height, and a rectangle whose area is equal to the opening area of the throttle valve is considered as the equivalent opening surface, and the relationship between this equivalent opening surface and the deposit thickness is modeled.
  • Fig. 8 shows the equivalent opening surface according to the deposit adhesion state.
  • the equivalent opening surface In the state without deposits, the equivalent opening surface has the same area as the throttle valve opening area AA [m 2 ], and is a rectangle with height h [m] and length l [m].
  • deposits adhere only to the throttle body (only the lower side in the figure).
  • the equivalent opening surface In the state of deposits, the equivalent opening surface has the same area as the throttle valve opening area AA', and the height h' [m ] and length l[m] is the equivalent aperture. The following relationships are established between the throttle valve opening area and the clearance, and between the clearance and the deposit thickness.
  • Equations (11) and (12) relate the reduction rate of the throttle valve opening area to the deposit thickness. So far, we have discussed the geometrical throttle valve opening area, but we assume that equation (11) also holds true for the throttle valve effective opening area and apply it to learning. Specifically, the equation (13) is defined, and the deposit thickness can be calculated from the throttle valve effective opening area that can be obtained while the vehicle is running.
  • the flow rate reduction rate can also be used. It is generally known that under sonic conditions where the flow velocity is sonic, the intake flow rate is proportional to the effective opening area of the throttle valve. Therefore, the reduction rate of the throttle valve effective opening area and the flow rate reduction rate are equivalent. Therefore, in equation (11), it is possible to use the flow reduction rate instead of the reduction rate of the throttle valve effective opening area.
  • Fig. 9 shows the deposit thickness, throttle valve effective opening area reduction rate, and flow rate reduction rate.
  • the throttle valve effective opening area reduction rate and the flow rate reduction rate tend to take constant values at a predetermined throttle valve opening. From this trend, by defining ⁇ A and ⁇ B at the two points where the throttle valve effective opening area and the flow reduction rate are constant values, two points where the deposit thickness changes can be extracted, and the deposit thickness at the two points can be defined. This allows the definition of a wide range of deposit thicknesses in the machine direction based on limited information.
  • the throttle valve effective opening area can be calculated by equation (14) derived from equation (9) assuming that the throttle valve passing gas flow rate per unit time and the intake air flow rate detection value dG AFS are equal in a steady state.
  • the throttle valve effective opening area can be calculated by inputting the intake air flow rate detection value, throttle valve upstream pressure detection value, intake air temperature detection value, upstream temperature detection value, and intake pipe pressure. If there is no throttle valve upstream pressure sensor, the atmospheric pressure detection value can be substituted for the throttle valve upstream pressure detection value only under non-supercharging conditions.
  • the learned value is obtained under the condition that the throttle valve opening is small (the rotation speed is low and the engine load is small), so it is an engine operating range that can be substituted with the atmospheric pressure detection value.
  • the range that can be substituted with the atmospheric pressure detection value will change, so it is necessary to check the range in advance tests etc. is desirable.
  • the throttle valve effective opening area can be calculated by inputting the intake flow rate detection value, intake air temperature detection value, atmospheric pressure detection value, and intake pipe pressure into equation (14).
  • an actual throttle valve effective opening area a throttle valve effective opening area that reflects changes in the throttle valve effective opening area due to deposits.
  • the throttle valve effective opening area can be accurately calculated even when deposits are attached.
  • Fig. 10 shows a flowchart for calculating the throttle valve effective opening area according to this embodiment.
  • the entire logic including the logic for determining whether or not predetermined conditions are met when learning the deposit thickness will be described.
  • Steps s101 to s103 are blocks not shown in FIG. 3
  • steps s104 to s105 are a decrease rate correlation index calculator
  • steps s106 to s109 are a change point calculator
  • steps s110 to s112 are a throttle valve effective opening area calculator. processed by
  • step s101 the crank angle sensor, intake flow rate sensor, intake temperature sensor, atmospheric pressure sensor, and throttle valve opening sensor detect the engine speed, intake flow rate, intake air temperature, atmospheric pressure, and throttle valve opening.
  • step s102 the initial throttle valve effective opening is determined based on a throttle valve opening and a table of the throttle valve effective opening area when new (hereinafter referred to as the initial throttle valve effective opening area) centered on the throttle valve opening previously stored. Calculate the area ⁇ A 0 [m 2 ]. By creating a table of the effective opening area of the throttle valve when the engine is new, the calculation load on the ECU can be reduced.
  • step s103 it is determined whether or not the following three conditions are all satisfied, and whether or not the deposit learning activation can be performed is determined. (A1) RPM is below the threshold (A2) Engine load is below the threshold (A3) Throttle valve opening is steady
  • (A1) and (A2) employ a method of comparing the rotation speed and engine load with each threshold. Thereby, it is determined whether the non-supercharging condition exists.
  • the threshold value is set to a range in which the non-supercharging region can be determined, and it is necessary to prescribe a range in which the throttle valve upstream pressure is lower than the atmospheric pressure and smaller than a predetermined value by experiment.
  • the atmospheric pressure detection value can be used as the throttle valve upstream pressure, so that the actual throttle valve effective opening area can be calculated with high accuracy, and erroneous learning can be prevented.
  • the detected value of the throttle valve upstream pressure sensor can be used.
  • (A3) employs a method of comparing the difference value between the value of the throttle valve opening a predetermined time ago and the current value and the threshold.
  • the threshold here depends on the relationship between the amount of change in the throttle valve opening and the amount of change in the effective opening area of the throttle valve. It can be specified as a quantity. As a result, it is possible to determine whether the throttle valve opening is steady or not, so that learning can be performed under stable conditions and erroneous learning can be prevented.
  • step s104 If the learning start determination (s103) is No, proceed to step s112. If the determination is Yes, go to step s104.
  • a learning value of the deposit thickness at the detected throttle valve opening ⁇ is calculated.
  • the deposit thickness is calculated by equation (15) based on the relationship that the throttle valve effective opening area reduction rate is equal to the clearance reduction rate.
  • D is the deposit thickness [m]
  • h0 is the distance between the new throttle body and the tip of the throttle valve (hereinafter referred to as the initial clearance) [m]
  • ⁇ A is the actual throttle valve effective opening area [ m2 ].
  • the initial clearance can be determined geometrically from the throttle valve opening and the diameter of the throttle valve.
  • the initial clearance is stored in advance in the ECU as a table with the throttle valve opening as the axis. This reduces the computation load on the ECU. Further, by calculating the deposit thickness in this manner, the learned value of the deposit thickness at the throttle valve opening ⁇ can be calculated with high accuracy.
  • step s105 the learning value of the deposit thickness, the number of learning times, and the traveling distance at the time of acquisition of the learning value are updated in the learning value map for searching for changing points.
  • FIG. 11A shows a learning value map for searching for change points.
  • the throttle valve opening is used as a grid point, and the number of times of learning, the distance traveled when the learning value is acquired, the learning value acquisition completion flag, the learning value of the deposit thickness, and the learning value of the deposit thickness for searching for changing points are recorded. be.
  • the initial values of the map are set to 0 for all variables. In general, deposits have a large effect on the effective opening area of the throttle valve at low openings, and the effect decreases as the throttle valve opening increases. As a result, the storage area used by the ECU can be reduced.
  • step s105 the map is updated with a value obtained by weighted averaging the calculated deposit thickness learning value and the deposit thickness learning value held in the map as a new deposit thickness learning value.
  • the learning value of the deposit thickness of the map changes gradually, so even if the learning value changes suddenly, such as when an outlier is input momentarily, erroneous learning can be suppressed.
  • the number of times of learning is incremented by 1 to the previous value of the relevant portion of the map to update the map.
  • step s106 when the number of acquisitions of the learning value and the traveling distance at the time of acquisition of the learning value satisfy the following predetermined conditions, it is determined that the acquisition of the learning value of the throttle valve opening ⁇ is completed, and the learning value for searching for the change point is determined. Update the learning value acquisition completion flag of the map.
  • 1 indicates completion of acquisition, and 0 indicates non-acquisition.
  • B1 The number of acquisitions of the learned value is equal to or greater than the threshold.
  • B2 The difference between the distance traveled when the learned value was acquired and the current distance traveled is within the threshold.
  • (B1) a method of comparing the number of acquisitions of learning values and a threshold is used. By setting a threshold for the number of acquisitions of the learning value, it is possible to determine whether the learning value has been acquired a sufficient number of times.
  • (B2) employs a method of comparing the difference between the distance traveled when the learning value was acquired and the current distance traveled and the threshold. In general, as the travel distance increases, the deposit thickness also increases. Therefore, in order to ensure the reliability of the learned value, the timing at which the learned value is acquired is important.
  • the threshold For example, if the throttle valve effective opening area decreases by about 1% after driving 100km and you want to detect a 2% change in the throttle valve effective opening area, set the threshold to about 200km. Since (B1) and (B2) are sufficiently learned and the learned value of relatively new information can be used, the reliability of the learned value is improved and erroneous learning can be prevented.
  • step s106 deposit thickness learning value acquisition completion determination
  • step s107 it is determined whether or not it is possible to search for deposit thickness change points.
  • the throttle valve opening for confirming the presence or absence of the learned value is set to ⁇ C or more and ⁇ D or less.
  • ⁇ C and ⁇ D are set so that the change point ⁇ A on the low opening side and the change point ⁇ B on the high opening side, which are assumed based on preliminary tests and idling opening settings, are greater than or equal to ⁇ C and less than or equal to ⁇ D. Set in advance to be included in the range.
  • the learning value acquisition completion flag is 1 at least at one point in the range from ⁇ C to ⁇ D , it is determined that the change point search is possible.
  • the learned value of the deposit thickness is acquired, it can be reflected in the calculation of the throttle valve effective opening area promptly without waiting for the completion of acquisition of the learned value under other conditions. I can.
  • step s107 If the change point search possibility determination (s107) is No, proceed to step s112. If the determination is Yes, proceed to step s108.
  • step s108 the differential value of the learning value of deposit thickness is calculated.
  • the learning value of the deposit thickness recorded in the change point searching learning map is substituted into the equation (16) to calculate the differential value of the deposit thickness with respect to the throttle valve opening.
  • is the differential interval [deg] ( ⁇ is an even number). For example, if it is desired to calculate the change in the deposit thickness in increments of 1 degree of opening of the throttle valve, ⁇ is set to 2 degrees.
  • step s109 the change point of the deposit thickness is calculated.
  • a point at which the differential value of the deposit thickness is equal to or greater than the threshold value is set as the point of change.
  • the throttle valve opening degree at which the differential value calculated in step s108 is equal to or greater than the threshold value L1 is searched.
  • M min is the smallest opening that satisfies the same conditions.
  • the maximum opening is M max . If there is only one degree of opening that satisfies the same conditions, M min. and M max have the same value.
  • the degrees of opening determined by equations (17) and (18) are defined as a low-side change point ⁇ A [deg] and a high-side change point ⁇ B [deg].
  • the low opening side change point, the high opening side change point, and the deposit thickness is determined as follows.
  • step s110 the deposit thickness of the deposit thickness learning value unacquired opening degree is calculated.
  • the deposit thickness of the opening degree for which the learning value of the deposit thickness has not yet been acquired is calculated by equation (21).
  • the deposit thickness in the throttle valve opening range below the change point on the low opening side where the learning value of the deposit thickness cannot be obtained can be calculated with high accuracy.
  • the deposit thickness in the throttle valve opening range from the low opening side change point to the high opening side change point at which the learning value of the deposit thickness cannot be acquired can be calculated with high accuracy.
  • the deposit thickness in the throttle valve opening range larger than the high opening side change point at which the learning value of the deposit thickness cannot be obtained can be calculated with high accuracy.
  • step s111 the deposit thickness learning value of the deposit thickness learning value unacquired opening degree is updated to the change point searching learning value map.
  • step s112 the throttle valve effective opening area for an arbitrary throttle valve opening is calculated based on the deposit thickness.
  • the throttle valve effective opening area is calculated by equation (22).
  • Fig. 12 shows a time chart when the deposit thickness learning is performed in the case of deceleration in this embodiment.
  • the vertical axis is throttle valve opening, amount of change in throttle valve opening, engine torque, engine speed, throttle valve upstream pressure calculation value, stability condition judgment value, number of times of learning, deposit thickness learning value, deposit thickness learning value from the top.
  • the acquisition completion determination value and the throttle valve effective opening area calculation value are shown, and the horizontal axis is the time.
  • Time t1 is the time when these three conditions are satisfied and the stability condition determination flag (stable condition determination value) is turned ON. Acquisition of the learning value of the deposit thickness starts at time t1. The number of times of learning increases, exceeds the learning completion criterion at time t2, and the flag for determining completion of learning value of deposit thickness is turned ON. Thereby, the throttle valve effective opening area calculated value is corrected. Due to the correction, the throttle valve upstream pressure calculated value increases and matches the atmospheric pressure.
  • Fig. 13 is a time chart during acceleration when deposit thickness learning has been performed and when learning has not been performed in this embodiment.
  • the vertical axis represents the throttle valve opening, the number of revolutions, the calculated throttle valve upstream pressure value, the calculated throttle valve downstream pressure value, the calculated cylinder inflow gas flow rate, the calculated throttle valve effective opening area, and the exhaust air-fuel ratio. Time. A solid line indicates that learning has been completed, and a dashed line indicates that there is no learning.
  • the opening of the throttle valve provided in the intake path of the internal combustion engine, the rotational speed of the internal combustion engine, and the An index correlated with a decrease rate of the effective opening area of the throttle valve is calculated based on the intake air amount, the upstream pressure of the throttle valve, the downstream pressure of the throttle valve, and the atmospheric temperature, and the throttle valve opening degree is calculated.
  • a change point of the index is determined based on the amount of change of the index with respect to , and the effective opening area of the throttle valve is calculated based on the change point of the index.
  • the effective opening area of the throttle valve can be calculated with high accuracy.
  • the cylinder inflow gas flow rate during transient operation can be calculated with high accuracy, it is possible to appropriately control the fuel injection amount and prevent deterioration of fuel consumption and exhaust emissions.
  • the configuration described in the first embodiment is applied to the configuration other than the difference from the first embodiment.
  • FIG. 14 is a diagram showing the relationship between the valve overlap amount and the opening degree of the throttle valve for realizing a constant output under a constant rotation speed condition.
  • the amount of valve overlap is the period during which both the intake and exhaust valves are open at the same time.
  • valve overlap amount As a method of changing the valve overlap amount, operate the variable valve mechanism to operate the intake valve or the exhaust valve, and set the opening timing of the intake valve to be on the advance side of the closing timing of the exhaust valve.
  • FIG. 14 there is a positive correlation between the amount of valve overlap and the degree of opening of the throttle valve under the constant rotation speed and constant output conditions. If the engine speed is constant, increasing the amount of valve overlap increases the amount of combustion gas (internal EGR gas) carried over to the next cycle. As a result, the intake flow rate decreases unless the throttle valve opening is manipulated. In order to keep the intake air flow rate constant, it is necessary to increase the opening of the throttle valve.
  • Various throttle valve openings can be set by operating the variable valve mechanism and the throttle valve opening so that the valve overlap amount and the throttle valve opening have a positive correlation.
  • the learning value of the deposit thickness can be obtained at various throttle valve openings while preventing deterioration of drivability.
  • the combination of the variable valve mechanism and the throttle valve opening to the condition where the amount of valve overlap increases (to the right in Fig. 14), the amount of high-temperature combustion gas remaining in the cylinder is increased. can be made As a result, the in-cylinder gas temperature increases, so even if the cooling water temperature of the engine is low and the combustion stability is poor, the combustion stability is improved, and learning can be performed in a stable engine operating state. It is also possible to widen the range of cooling water temperatures that can be learned.
  • FIG. 15 shows a flowchart for learning the deposit thickness and correcting the throttle valve effective opening area in this embodiment. Each step will be described in detail below.
  • Steps s201 to s203 and steps s207 to s215 are the same as steps s101 to s103 and steps s104 to s112 of the first embodiment, so descriptions are omitted.
  • step s204 it is determined whether the throttle valve opening coincides with the learning target throttle valve opening.
  • the learning target throttle valve opening is, for example, a minimum opening, an intermediate opening, and a maximum opening within a preset use range of the idle opening.
  • step s205 based on the relationship between the throttle valve opening and the valve overlap amount as shown in FIG. Calculate
  • step s206 the intake valve, the exhaust valve, and the throttle valve opening are operated so as to achieve the target intake valve closing timing, the target exhaust valve closing timing, and the learning target throttle valve opening.
  • step s206 After completing step s206, proceed to step s203.
  • variable valve mechanism provided in the internal combustion engine and the throttle valve opening have a positive correlation between the valve overlap amount, which is the angle at which both the intake valve and the exhaust valve are open, and the throttle valve opening.
  • the learning value of the deposit thickness can be acquired at multiple openings in the idling state, so the effective opening area of the throttle valve can be calculated with high accuracy.
  • the flow rate of gas flowing into the cylinder during transient operation can be calculated with high accuracy. It can prevent deterioration.
  • Embodiments 1 and 2 can be summarized as follows.
  • the processor (CPU 40e, FIG. 2) of the control unit (ECU 0) of the internal combustion engine calculates an index (deposit thickness, reduction ratio of effective opening area, The first throttle valve opening degree ⁇ A and the second throttle valve opening degree ⁇ B at which the rate of change (differential value) in 9) changes is identified (s109, FIG. 10).
  • the processor (CPU 40e) estimates the index at an arbitrary throttle valve opening degree from the first throttle valve opening degree ⁇ A and the second throttle valve opening degree ⁇ B (s110, FIG. 10), and from the estimated index, throttle Calculate the effective opening area of the valve (s112, Fig. 10).
  • the index is, for example, the thickness of deposits deposited on the throttle body, the rate of decrease in the flow rate of air passing through the throttle valve, or the rate of decrease in the effective opening area of the throttle valve.
  • the effective opening area of the throttle valve can be calculated from not only the deposit thickness but also the rate of decrease in the flow rate or the rate of decrease in the effective opening area.
  • the processor (CPU 40e) converts the value D( ⁇ ) of the index (for example, deposit thickness) in the range of throttle valve openings smaller than the first throttle valve opening ⁇ A to the index at the first throttle valve opening ⁇ A . (( i ) in equation (21)). As a result, the effective opening area of the throttle valve can be calculated with high accuracy in a range lower than the first throttle valve opening ⁇ A .
  • the processor (CPU 40e) converts the value D( ⁇ ) of the index (for example, deposit thickness) in the range of throttle valve openings larger than the second throttle valve opening ⁇ B to the index at the second throttle valve opening ⁇ B .
  • the effective opening area of the throttle valve can be calculated with high accuracy in a range higher than the second throttle valve opening ⁇ B .
  • the processor (CPU 40e) converts the value D( ⁇ ) of the index (for example, deposit thickness) in the range between the first throttle valve opening ⁇ A and the second throttle valve opening ⁇ B to the first throttle valve It is estimated based on the index value D( ⁇ A ) at the opening degree ⁇ A and the index value D( ⁇ B ) at the second throttle valve opening degree ⁇ B ((ii) in equation (21)). This makes it possible to accurately calculate the effective opening area of the throttle valve within the range between the first throttle valve opening degree ⁇ A and the second throttle valve opening degree ⁇ B .
  • the throttle valve opening and the index value (for example, deposit thickness) in the range between the first throttle valve opening ⁇ A and the second throttle valve opening ⁇ B have a linear relationship ( (ii) of formula (21). Thereby, the effective opening area of the throttle valve can be calculated using the linear relationship.
  • the processor (CPU 40e) determines that the rate of change dD/d ⁇ of the index (eg, deposit thickness) with respect to the throttle valve opening is within a predetermined range (eg, dD/d ⁇ predetermined value L 1 ),
  • the first throttle valve opening ⁇ A is identified based on the minimum throttle valve opening M min
  • the second throttle valve opening ⁇ B is identified based on the maximum throttle valve opening M max (s109, FIG. 10 ).
  • the first throttle valve opening degree ⁇ A and the second throttle valve opening degree ⁇ B can be identified within a predetermined range.
  • the predetermined range is a range in which the rate of change dD/d ⁇ of the index with respect to the throttle valve opening is equal to or greater than the predetermined value L1 .
  • the processor calculates the weighted average of the previous value and the current value of the index (for example, deposit thickness) as the learning value of the index (s105, Fig. 10). This can reduce the influence of outliers.
  • the processor determines whether acquisition of the learning value of the index is completed based on the number of calculations of the index and the difference between the traveled distance when the index was calculated and the current traveled distance (s106, FIG. Ten). This improves the reliability of the learned value of the index.
  • the processor (CPU 40e) determines if at least one learning value of the index (for example, deposit thickness) that has been acquired is at least one or more in a predetermined throttle valve opening range ( ⁇ C ⁇ ⁇ ⁇ ⁇ D ).
  • the first throttle valve opening ⁇ A and the second throttle valve opening ⁇ B are identified from the throttle valve openings (for example, ⁇ 1 , ⁇ 2 , etc.) corresponding to the learned values of the indices (Figs. 11B, 11C ).
  • the first throttle valve opening degree ⁇ A and the second throttle valve opening degree ⁇ B can be identified when the learning value of the index is at least one or more.
  • the processor (CPU 40e) has only one learning value of the index (for example, deposit thickness) that has been acquired in a predetermined throttle valve opening range ( ⁇ C ⁇ ⁇ ⁇ ⁇ D )
  • the first throttle valve opening degree ⁇ A and the second throttle valve opening degree ⁇ B are identified based on the throttle valve opening degree ⁇ 1 corresponding to the learned value D( ⁇ 1 ) of the index (FIG. 11B). This makes it possible to identify the first throttle valve opening degree ⁇ A and the second throttle valve opening degree ⁇ B even if there is only one learning value for the index.
  • the processor controls the throttle valve, the variable intake valve, and the variable exhaust valve so that the valve overlap amount increases as the throttle valve opening increases (Fig. 14). thickness) and the corresponding throttle valve opening are learned (s206, Fig. 15).
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above configurations, functions, etc. may be realized by hardware, for example, by designing a part or all of them with an integrated circuit.
  • each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function.
  • Information such as programs, tables, files, etc. that realize each function can be stored in memory, hard disks, SSD (Solid State Drives) and other recording devices, or IC cards, SD cards, DVDs and other recording media.
  • a control device for an internal combustion engine comprising a decrease rate correlation index calculation unit and a throttle valve effective opening area calculation unit that calculates the throttle valve effective opening area based on the index, wherein a change in the index with respect to the throttle valve opening is and a change point calculator for determining the opening degree of the first throttle valve and the opening degree of the second throttle valve based on the control apparatus for an internal combustion engine.
  • the value of the index for the throttle valve opening in the range between the first throttle valve opening and the second throttle valve opening is The internal combustion engine control device according to [4], wherein the calculation is performed based on the value of the index.
  • the first throttle valve opening and the second throttle valve opening are set to the predetermined throttle valve opening. and calculating the index of the first throttle valve opening and the second throttle valve opening based on the learning value at the point when the learning value has been acquired, Control device for an internal combustion engine as described.
  • SYMBOLS 100... Engine (internal combustion engine), 0... ECU, 1... Accelerator opening sensor, 3... Intake flow rate sensor, 4... Supercharger, 5... Intercooler, 6... Throttle valve, 8... Intake pipe, 9a... Variable intake Valve 9b Variable exhaust valve 10 Fuel injector 11 Spark plug 12 Crank angle sensor 13 Combustion chamber 14 Exhaust pipe 15 Intake air temperature sensor 16 Atmospheric pressure sensor 20 Air Fuel ratio sensor 21 Catalytic converter 30 EGR cooler 31 EGR valve 32 EGR pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

内燃機関の制御装置(ECU0)のプロセッサ(CPU40e)は、スロットル弁の有効開口面積の減少割合に相関のある指標(デポジット厚さ、有効開口面積の減少割合、流量減少率等)の変化率(微分値)が変化する第1スロットル弁開度θAと第2スロットル弁開度θBを同定する(s109)。プロセッサ(CPU40e)は、第1スロットル弁開度θAと第2スロットル弁開度θBから任意のスロットル弁開度における指標を推定し(s110)、推定された指標からスロットル弁の有効開口面積を算出する(s112)。

Description

内燃機関の制御装置
 本発明は、内燃機関の制御装置に関する。
 環境負荷低減のため年々厳格化している自動車排出ガス規制には、空燃比(筒内の空気量と燃料量の比)を適切な状態に制御する技術(空燃比制御)の高精度化が必須である。空燃比制御の方法としては、排気ガス中の酸素濃度を検出し燃料供給量を修正する、吸気経路に備えた吸気流量センサで検出した吸気流量に応じて燃料供給量を決定する、という方法がある。
 これらの手法は、内燃機関の運転状態(回転数、出力)に大きな変化が無い状態(定常状態)にある場合は、適用が容易である。一方で、自動車の急激な加速や、急激な減速といった過渡運転条件では、これらの方法は、過渡的に変化する筒内に流入するガス流量(以後、筒内流入ガス流量と記載)を捉えることができないため、十分に早く空燃比を適切な条件に設定ができない。
 そのため、内燃機関の運転が過渡状態にある条件で、吸気計量モデルを用いて筒内流入ガス量を算出し、目標空燃比となるように適切な燃料噴射量を設定することが必要である。内燃機関の筒内流入ガス流量の算出方法としては、吸気流量とスロットル弁のスロットル弁有効開口面積(以後、スロットル弁有効開口面積と記載)に基づき算出したスロットル弁通過ガス流量から、吸気管圧力を算出し、当該圧力から筒内流入ガス流量を算出する方法がある。
 内燃機関のスロットル弁のボディー部(以後、スロットルボディーと記載)へデポジットが付着すると、スロットル弁とスロットルボディーの間の空気の流れることができる断面の一部がデポジットにより塞がれるためスロットル弁有効開口面積(スロットル弁とボディーの間の空気の流れることができる断面の実効面積)が減少する。ここで、デポジットとは吸気中に導入されるブローバイガスや排気中の燃料の未燃分がスロットルボディーに付着、固化し堆積したものである。
 デポジットが堆積した状態を吸気計量モデルに反映せずスロットル弁有効開口面積を算出する場合、吸気計量モデルで算出されるスロットル弁有効開口面積が実際の状態を再現できず誤差が生じる。この結果、スロットル弁通過ガス流量および筒内流入ガス流量の算出誤差が生じる。そのため、デポジット付着に起因するスロットル弁有効開口面積の変化を吸気計量モデルに反映する必要がある。
 従来技術では、3つの異なるスロットル弁開度における定常運転条件下での空気流量の学習値を用いて算出されるスロットル弁有効開口面積を、開度を変数とする2次曲線で近似することで、デポジット堆積によるスロットル弁有効開口面積の変化を反映する技術を開示している(例えば、特許文献1参照)。
 特許文献1では、3つのスロットル弁開度として、所定のアイドル状態におけるスロットル弁開度である第1スロットル弁開度と、上記第1スロットル弁開度よりも小さい任意の第2スロットル弁開度と、上記第1スロットル弁開度よりも大きく、上記スロットル弁近傍に堆積したデポジット影響を受けない所定の第3スロットル弁開度を用いることを示している。
特開2015-214925号公報
 ところが、特許文献1に開示されるような従来技術では、上記第1スロットル弁開度と上記第3スロットル弁開度の間隔が大きくなることが想定されるため、所定の2次曲線に近似した特性となるように補正すると、上記第1スロットル弁開度と上記第3スロットル弁開度の範囲、つまり、アイドル状態におけるスロットル弁開度からデポジット影響を受けないスロットル弁開度の範囲における流量特性を必ずしも精度よく補正されているとは言えない。
 その結果、第1スロットル弁開度と第3スロットル弁開度の間を通過してスロットル弁開度が変化する場合、過渡状態におけるスロットル通過ガス流量の算出誤差が大きくなり、過渡状態における筒内流入ガス流量の算出量に大きな誤差が生じる。この結果、過渡運転時の空燃比を所望の空燃比に保つことが難しい。
 本発明はこのような事情を考慮して発明されたものである。本発明の目的は、デポジットの影響を反映したスロットル弁の有効開口面積を精度よく算出することができる内燃機関の制御装置を提供することにある。
 上記目的を達成するために、本発明の内燃機関の制御装置は、スロットル弁の有効開口面積の減少割合に相関のある指標の変化率が変化する第1スロットル弁開度と第2スロットル弁開度を同定し、前記第1スロットル弁開度と前記第2スロットル弁開度から任意のスロットル弁開度における前記指標を推定し、推定された前記指標からスロットル弁の有効開口面積を算出するプロセッサを備える。
 本発明によれば、デポジットの影響を反映したスロットル弁の有効開口面積を精度よく算出することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の実施形態1による自動車用エンジンシステムのシステム構成図である。 本発明の実施形態1によるECUの構成を示すシステム構成図である。 本発明の実施形態1による減少割合相関指標の算出、減少割合相関指標の変化点の算出、およびスロットル弁有効開口面積の算出を行うためのブロック図である。 デポジット付着時のスロットル弁周辺の流れの状態を表す図である。 スロットル弁開度とスロットル弁有効開口面積の関係を表す図である。 スロットルボディーへのデポジット付着イメージ図である。 デポジット厚さ分布の測定結果を示す図である。 本発明の実施形態1によるデポジット付着を考慮したスロットル弁開口面積のモデル化のイメージ図である。 デポジット厚さとスロットル弁有効開口面積と流量減少率の関係を示す図である。 本発明の実施形態1によるデポジット厚さを学習しスロットル弁有効開口面積の算出を行うフローチャート図である。 本発明の実施形態1による変化点探索用学習値マップを示す図である。 格子点数が1である場合における低開度側変化点、高開度側変化点およびデポジット厚さの決定方法を説明するための図である。 格子点数が2である場合における低開度側変化点、高開度側変化点およびデポジット厚さの決定方法を説明するための図である。 本発明の実施形態1によるデポジット厚さ学習を実施した場合のタイムチャート図である。 本発明の実施形態1によるデポジット厚さ学習を実施済みの場合と学習無しの場合における加速時のタイムチャートを示す図である。 回転数一定、出力一定条件におけるバルブオーバーラップ量とスロットル弁開度の関係を表す図である。 本発明の実施形態2によるデポジット厚さを学習しスロットル弁有効開口面積の算出を行うフローチャート図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。本実施形態は吸気経路にスロットル弁を備えた内燃機関の筒内流入ガス流量を算出する内燃機関の制御装置に関するものである。本実施形態ではアイドル状態におけるスロットル弁開度以上の領域においてスロットル弁有効開口面積を精度よく算出し、筒内流入ガス流量の計算精度を向上させ、特に過渡運転時の空燃比を所望の空燃比に保つことが出来る内燃機関の制御装置を提供することを目的とする。
 (実施形態1)
 図1に本実施形態におけるエンジンのシステム構成図を示す。本システム構成は、以下に示す全ての実施形態に共通である。
 エンジン100(内燃機関)は火花点火式内燃機関である。エンジンの吸気経路を通過する吸気流量を計測する吸気流量センサ3と、吸入ガスを圧縮する過給器の圧縮機4bと、吸入ガスを冷却するインタークーラ5と、吸気流量を調整するスロットル弁6が、吸気管8の各々の適宜位置に備えられている。なお、吸気流量センサ3には吸気温度を検出する吸気温度センサ15が、スロットル弁6にはスロットル弁の開度を検出するスロットルポジションセンサが内蔵されている。
 またエンジン100には吸気バルブの開閉位相を制御する可変吸気バルブ9aと、排気バルブの開閉位相を制御する可変排気バルブ9bと、燃焼室13の中に燃料を噴射する燃料噴射装置10と、点火エネルギを供給する点火プラグ11と、クランク角センサ12と、大気圧力を計測する大気圧力センサ16とがエンジン100の各々の適宜位置に備えられている。なお、可変吸気バルブ9aおよび可変排気バルブ9bには開閉位相を検出する位相センサが各々設けられている。
 さらに排気のエネルギを利用し、圧縮機4bを駆動するタービン4aと排気を浄化する触媒コンバータ21と、空燃比検出器の一態様であって触媒コンバータ21の上流側にて排気の空燃比を検出する空燃比センサ20が、排気管14の各々の適宜位置に備えられている。空燃比センサ20は酸素濃度センサとしてもよい。排気管14のタービン4aより上流からEGRを取り出すEGR配管32が分岐しており、EGRを冷却するEGRクーラ30とEGR流量を調整するEGR弁31がEGR配管32の適宜位置に備えられている。
 吸気流量センサ3から得られる検出信号(吸気流量)Ss3と、スロットルポジションセンサから得られる検出信号(スロットル弁開度)Ss6と、可変吸気バルブ9aおよび可変排気バルブ9bの位相センサから得られる開閉位相検出信号(吸気バルブ位相および排気バルブ位相)Ss9a、Ss9bと、クランク角センサ12から得られる検出信号(回転数)Ss12と、吸気温度センサ15から得られる検出信号(大気温度)Ss15と、大気圧力センサ16から得られる検出信号(大気圧力)Ss16と、空燃比センサ20から得られる検出信号Ss20とは、エンジンコントロールユニット(以下ECU)0に送られる。アクセルペダルの踏み込み量、すなわちアクセル開度を検出するアクセル開度センサ1から得られる信号Ss1はECU0に送られる。
 ECU0はアクセル開度センサ1の出力信号Ss1や各種センサ信号に基づいて要求トルクを演算する。すなわちアクセル開度センサ1はエンジン100への要求トルクを検出する要求トルク検出センサとして用いられる。ECU0は前記各種センサの出力から得られるエンジン100の運転状態に基づいてスロットル弁6の開度、燃料噴射装置10の噴射パルス期間、点火プラグ11の点火時期、可変吸気バルブ9aおよび可変排気バルブ9bの開閉時期、EGR弁31の開度などのエンジン100の主要な作動量を最適に演算する。
 ECU0で演算された燃料噴射パルス期間は燃料噴射装置駆動信号Ds10(開バルブパルス信号)に変換され燃料噴射装置10に送られる。ECU0で演算されたスロットル弁6の開度はスロットル弁駆動信号Ds6としてスロットル弁6へ送られる。同様に点火プラグ駆動信号Ds11は点火プラグ11へ送られる。EGR弁の開度はEGR弁駆動信号Ds31としてEGR弁31へ送られる。
 吸気管8から可変吸気バルブ9aを経て燃焼室13内に流入した空気に対し、図示していない燃料タンクから燃料が図示していない燃料タンク燃料ポンプを経て燃料噴射装置10から噴射され混合気を形成する。混合気は所定の点火時期で点火プラグ11から発生される火花により燃焼し、その燃焼圧によりピストンを押し下げてエンジン100の駆動力となる。燃焼後の排気は可変排気バルブ9bおよび排気管14、タービン4aを経て触媒コンバータ21に送られ、NOx、CO、HC成分が浄化されたのち排出される。また排気の一部はEGR配管32、EGRクーラ30、EGR弁31を経て吸気管8に導入される。
 図2は本発明の実施形態によるECU0の構成を示すシステムブロック図である。アクセル開度センサ1、吸気流量センサ3、可変吸気バルブ9aおよび可変排気バルブ9bの位相センサ、クランク角センサ12、吸気温度センサ15、大気圧力センサ16、および空燃比センサ20の各出力信号は、ECU0の入力回路40aに入力される。ただし入力信号はこれらだけに限定されるものではない。
 入力された各センサからの入力信号は、入出力ポート40b内の入力ポートに送られる。入出力ポート40bに送られた入力信号の値はランダムアクセスメモリ(RAM)40cに保管されCPU40eで演算処理される。このとき、入力回路40aに送られる入力信号のうちアナログ信号で構成される信号は、入力回路40aに設けられたA/D変換器によりデジタル信号に変換される。
 演算処理内容を記述した制御プログラムはリードオンリーメモリ(ROM)40dに予め書き込まれている。制御プログラムに従って演算された各アクチュエータの作動量を示す値は、RAM40cに保管された後、入出力ポート40bの出力ポートに送られ、各駆動回路を経て各アクチュエータに送られる。本実施形態の場合は駆動回路としてスロットル駆動回路40f、EGR弁駆動回路40g、可変バルブ機構駆動回路40h、燃料噴射装置駆動回路40i、および点火出力回路40jがある。
 各駆動回路はスロットル弁6、可変バルブ9、燃料噴射装置10、点火プラグ11、およびEGR弁31を制御する。本実施形態のECU0はECU0内に前記駆動回路を備えているが、これに限るものでは無く、前記駆動回路のいずれか或いは全てをECU0外に設けてもよい。
 以下、本発明の実施形態を図3乃至図13を用いて詳細に説明する。図3に本実施形態によるスロットル弁有効開口面積の補正を行うためのブロック図を示す。各ブロックの機能の概要は、以下のとおりである。
 減少割合相関指標算出部では、大気圧力を含む各種検出値と吸気流量、吸気管圧力に基づき減少割合相関指標の学習値を取得する。なお、本実施形態では、スロットルボディーに付着しているデポジットの厚さ(デポジット厚さ)を減少割合相関指標として説明するが、これに限らない。例えば、スロットル弁有効開口面積減少率(新品時のスロットル弁有効開口面積に対するデポジット付着後のスロットル弁有効開口面積の減少率)又は流量減少率(基準条件における新品時の流量に対するデポジット付着後の流量の減少率)を同指標として取り扱うこともできる。
 変化点算出部は、学習値未取得点のデポジット厚さを算出するために必要となる、デポジット厚さが変化するスロットル弁開度(低開度側変化点および高開度側変化点)を算出する。ここでは、スロットル弁開度に対するデポジット厚さの微分値に基づき、当該変化点を算出する。
 スロットル弁有効開口面積算出部は、低開度側変化点および高開度側変化点に基づきデポジット厚さの学習値を取得できていないスロットル弁開度のデポジット厚さを算出し、当該デポジット厚さから任意スロットル弁開度のスロットル弁有効開口面積を算出する。なお、スロットル弁上流圧力およびスロットル弁下流圧力の算出は図示していないブロックにて実行される。
 まず、各ブロックで実施する処理の詳細を説明する前に、本実施形態の説明に用いる式や計算方法の例を説明する。続いて、本実施形態の具体的な処理を説明する。
 初めに本実施形態の説明に用いる式や計算方法の例を説明する。なお、以下に示す式や計算方法はあくまでも一例である。初めに、スロットル弁開度の変化から筒内流入ガス流量の変化が生じるまでの空気挙動を算出する吸気系物理モデルの例(I)の概略を説明し、スロットル弁通過ガス流量(II)、筒内流入ガス流量(III)、について説明する。
 (I)吸気系物理モデルの基本原理
 本実施形態では、図1に示すシステムにおいて吸気口からエンジンまでの経路を、圧縮機-スロットル弁間(以降、この個所をスロットル弁上流という)、スロットル弁-吸気マニフォールド間(以降、この個所を吸気管という)、排気管の3つのコントロールボリューム(CV)に分割し、各CVにおけるガスの質量、エネルギや各CVを通過する質量流量、エネルギ流量を算出する。
 算出にあたっては、吸気流量検出値、吸気温度検出値、大気圧力検出値、スロットル弁開度検出値、EGR弁開度検出値、吸気バルブ位相検出値、排気バルブ位相検出値、回転数検出値、冷却水温度検出値、トルク、ひとつ前の演算時刻で算出した質量流量と温度を用いて、以下に示す基礎方程式に基づき、各CVの質量やエネルギから、圧力や温度を算出する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ここでmは質量[kg]、eはエネルギ[J]、Tは温度[K]、κκは比熱比[-]、Rは気体定数[J/(kg・K)]、Qはガスが接触する壁面への熱伝達量(壁面熱損失量)[J]、Vは容積[m3]、添え字のinはCVへの流入、outはCVからの流出を表す。
 次にスロットル弁上流の質量、エネルギ、温度、圧力の算出方法を説明する。スロットル弁上流ガス質量mThrは吸気流量dGAFS、後述するスロットル弁通過流量dGThrの前回値、スロットル弁上流ガス質量の前回値に基づき、(1)式を離散化した式である(5)式にて算出する。
Figure JPOXMLDOC01-appb-M000005
 スロットル弁上流ガスエネルギは、スロットル弁上流ガス質量mThr、大気温度Tatm、スロットル弁上流温度TThrの前回値、吸気流量dGAFS、スロットル弁通過ガス流量dGThrの前回値に基づき、(2)式を離散化した式である(6)式にて算出する。
Figure JPOXMLDOC01-appb-M000006
 ここで、比熱比および気体定数は、代表値として標準状態の空気の値を用いる。またインタークーラ冷却量dQc/dtは、あらかじめ実験的に求めておき定数として与える。
 スロットル弁上流ガス温度は、スロットル弁上流ガスエネルギに基づき、(4)式により算出され、スロットル弁上流圧力は、スロットル弁上流ガス温度、スロットル弁上流ガス質量、に基づき(3)式により算出される。
 次に吸気管ガスの質量、エネルギ、温度、圧力の算出方法を説明する。吸気管ガス質量mmaniは後述するスロットル弁通過流量dGThr、筒内流入ガス流量dGcylの前回値、吸気管ガス質量の前回値に基づき、(1)式を離散化した式である(7)式にて算出する。
Figure JPOXMLDOC01-appb-M000007
 吸気管ガスエネルギは、吸気管ガス質量mmaniスロットル弁上流温度TThr、吸気管温度Tmaniの前回値、スロットル弁通過ガス流量dGThr、筒内流入ガス流量dGcylの前回値に基づき、(2)式を離散化した式である(8)式にて算出する。
Figure JPOXMLDOC01-appb-M000008
 ここで、比熱比および気体定数は、代表値として標準状態の空気の値を用いる。また壁面熱損失量は、あらかじめ実験的に求めておくことで定数として与える。
 吸気管ガス温度は、吸気管ガスエネルギに基づき、(4)式により算出される。吸気管圧力は、吸気管ガス温度、吸気管質量、に基づき(3)式により算出される。なお、吸気管圧力を検出する装置を具備する場合は、その検出値を用いることもできる。
 (II)スロットル弁通過ガス流量
 次にスロットル弁通過ガス流量の演算方法を説明する。本実施形態ではスロットルをオリフィスとみなしスロットル周りの流体力学モデルを構築してスロットル弁通過ガス流量を演算する。ここでスロットル弁通過ガス流量は、スロットル弁の開度とスロットル弁前後の圧力に基づき、以下の流体の圧縮性を考慮した流量の式で与える。
Figure JPOXMLDOC01-appb-M000009
 dGThrはスロットル弁通過ガス流量[kg/s]、μはスロットル弁有効開口面積補正係数[-]、Aはスロットル弁幾何学的開口面積量[m2]、Pupはスロットル弁上流圧力[Pa]、Pdnはスロットル弁下流圧力[Pa]、Rは気体定数[J/(kg・K)]、Tupはスロットル弁上流温度[K]、Ψは流量係数[-]である。また、μとAの積がスロットル弁有効開口面積[m2]と呼ばれる指標である。ここで、流量係数はスロットル弁上流圧力Pupとスロットル弁下流圧力Pdnとの圧力比Pdn/Pupに応じて、上記(9.2)式と(9.3)式のいずれかが選択される。また当該比の条件である不等式(9.2.1)は、ソニック条件と呼ばれ、バルブを通過する流速が音速と等しくなり、流量が飽和するため、圧力状態に依存せず流量係数は定数で与えられる。なお、当該圧力比の条件である不等式(9.3.1)は、非ソニック条件であり、バルブを通過する流速は音速より小さい。
 (III)筒内流入ガス流量
 次に筒内流入ガス流量は次に述べる方法で計算する。10式に、筒内への流入ガス流量の計算式を示す。
Figure JPOXMLDOC01-appb-M000010
 dGcylは筒内流入ガス流量[kg/s]、 ηは吸気効率[-]、 Neはエンジン回転数[rpm]、 Vsは行程容積[m3]、Pmaniはスロットル弁下流の吸気管圧力[Pa]、 Tmaniは吸気管ガス温度[K]、ncylは気筒数[-]である。なお、吸気効率は事前に適合し、エンジン回転数、吸気管圧力、吸気バルブ位相、排気バルブ位相とから検索できるように予め設定されている。
 このように、ECU0では決められた計算周期ごとに上記で説明した(I)、(II)、(III)の計算を繰り返し、物理式を用いてスロットル弁上流から気筒下流までの圧力を正確に算出することにより、吸気流量センサ3で正確に計測できない過渡条件における筒内流入ガス流量を高応答、高精度に算出が可能となる。
 次に本実施形態のポイントとなるデポジット厚さに基づきスロットル弁有効開口面積を補正する方法の考え方を図4から図10を用いて説明する。
 図4にデポジット付着時のスロットル弁周辺の流れの状態を示す。デポジットがスロットル弁近傍に堆積すると、流路を塞ぎ、スロットル弁有効開口面積が減少する。この状態をモデルに反映せずスロットル弁有効開口面積を算出した場合、スロットル弁有効開口面積の算出値と実際の状態との間に誤差を生じる。
 図5に新品でデポジットの付着が無いスロットル弁と、相当量走行し、デポジットが付着したスロットル弁を想定したスロットル弁有効開口面積を示す。実線がデポジット付着なし、破線がデポジット付着有りである。図5に示すように、デポジット付着によりデポジット付着が無い場合に比べて、スロットル弁有効開口面積が小さくなるスロットル弁開度の範囲がある。ここで、スロットル弁開度が大きくなるとスロットル弁有効開口面積に対するデポジット厚さによりふさがる面積の比率が小さくなるため、デポジットによるスロットル弁有効開口面積の変化率はスロットル弁開度の増加に伴い小さくなる。
 次にデポジット厚さ分布の特徴について説明する。始めに、本実施形態におけるデポジット厚さの定義を説明する。図6にスロットルボディーへのデポジット付着イメージ図を示す。ここで、スロットル弁開度をθ[deg]とする。本実施形態では、スロットル弁開度をθに設定した際のスロットル弁の弁先端位置におけるデポジット厚さをスロットル弁開度θにおけるデポジット厚さとして定義する。
 図7にデポジット厚さ分布の一例を示す。本願発明者らは、次の(A)から(C)に示すデポジット厚さ分布の特徴を見出した。
 (A) スロットル弁開度が小さい範囲(スロットル弁開度θA以下)でデポジット厚さが一定となる。
 (B) スロットル弁開度θA~θB間でデポジット厚さが増加する。
 (C) スロットル弁開度が大きい範囲(スロットル弁開度θB以上の範囲)でデポジット厚さが一定となる。
 スロットル弁通過時のガスの断熱膨張によりガス温度が低下し、それに伴いスロットルボディー壁面の温度が下がる。その結果、吸気に含まれるブローバイガスやEGRガス由来の高沸点炭化水素が凝集し、デポジットが形成され、スロットルボディーに付着するメカニズムが知られている。このようなメカニズムによって付着するデポジットには、(A)から(C)の特徴が生じると推察される。
 本実施形態では、上に示す(A)から(C)の特徴を使いデポジット堆積影響を反映する。具体的には、デポジット厚さは流れ方向に対し2 段階の分布となることを想定することとした。このように流れ方向のデポジット厚さ分布を仮定し、2段階の分布の厚さ情報を持つ2 点(例えば、スロットル弁開度θAとθB)におけるデポジット厚さを算出することで、流れ方向の広い範囲のデポジット厚さが算出できる。
 以下で、同モデル化の詳細を説明する。
 図8にデポジット付着を考慮したスロットル弁開口面積のモデル化のイメージ図を示す。図8は、スロットル弁上流側から流れ方向にスロットル弁を模写した図である。ここでは、スロットルボディーとスロットル弁間のクリアランスを高さとし、面積がスロットル弁開口面積と等しい長方形を等価開口面として考え、この等価開口面とデポジット厚さの関係をモデル化する。
 図8にデポジット付着状態に応じた等価開口面を示す。デポジット付着無しの状態では、等価開口面は、スロットル弁開口面積AA[m2]と同じ面積を持ち、高さh[m]、長さl [m]の長方形である。また、デポジット付着がスロットルボディーにのみ(図中下側のみ)に付着すると取り扱い、デポジット付着の状態では、等価開口面は、スロットル弁開口面積AA’と同じ面積を持ち、高さh’ [m]、長さl[m]の長方形を等価開口面とする。スロットル弁開口面積とクリアランス、クリアランスとデポジット厚さに、以下の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 ここでDはデポジット厚さ[m]である。(11)、(12)式により、スロットル弁開口面積の減少率とデポジット厚さが関係づけられる。ここまでは幾何学的なスロットル弁開口面積について述べたが、(11)式は、スロットル弁有効開口面積に対しても成立するとし、学習に適用した。具体的には(13)式を定義し、(13)式により、走行中に取得可能なスロットル弁有効開口面積から、デポジット厚さを算出できる。
Figure JPOXMLDOC01-appb-M000013
 またスロットル弁有効開口面積の減少率以外に、流量減少率を用いることも出来る。一般に流速が音速となるソニック条件では、吸気流量はスロットル弁有効開口面積に比例することが知られている。故に、スロットル弁有効開口面積の減少率と流量減少率は等価である。したがって、(11)式において、スロットル弁有効開口面積の減少率の代替として、流量減少率を用いることが可能である。
 図9にデポジット厚さ、スロットル弁有効開口面積減少率、流量減少率を示す。スロットル弁有効開口面積減少率および流量減少率は、所定のスロットル弁開度で一定値をとるという傾向がある。この傾向から、スロットル弁有効開口面積および流量減少率が一定値になる2点でθAとθBを定義することで、デポジット厚さが変化する2点を抽出でき、かつ2点のデポジット厚さを定義できる。これにより、限られた情報に基づき、流れ方向の広い範囲のデポジット厚さを定義できる。
 上述のように、デポジット厚さの算出には、スロットル弁有効開口面積の算出が必要である。スロットル弁有効開口面積は、定常状態であれば単位時間当たりのスロットル弁通過ガス流量と吸気流量検出値dGAFSは等しいことを仮定した(9)式から導出した(14)式で算出できる。
Figure JPOXMLDOC01-appb-M000014
 (14)式より、スロットル弁有効開口面積は、吸気流量検出値、スロットル弁上流圧力検出値、吸気温度検出値、上流温度検出値、吸気管圧力を入力すると算出できる。ここでスロットル弁上流圧力センサが無い場合、非過給条件に限り、スロットル弁上流圧力検出値を大気圧力検出値で代用できる。
 本実施形態では、学習値は、スロットル弁開度の小さい条件(回転数が低くエンジン負荷の小さい条件)で取得するため、大気圧力検出値で代用可能なエンジン動作範囲である。これにより、スロットル弁上流の圧力を得る手段を具備していないシステムにおいても、非過給条件でのスロットル弁上流圧力の検出値を得ることが可能である。ただし、具備するウェイストゲートバルブの制御方法や、可変容量ターボの制御方法といったシステム構成によって、大気圧力検出値で代用可能な範囲が変化するため、事前の試験などで当該範囲を確認しておくことが望ましい。
 以上より、非過給条件では、スロットル弁有効開口面積は(14)式に、吸気流量検出値、吸気温度検出値、大気圧力検出値、吸気管圧力を入力すると算出できる。検出値を用いることにより、デポジット付着に伴うスロットル弁有効開口面積の変化を反映したスロットル弁有効開口面積(以下、実スロットル弁有効開口面積という)を算出できる。これにより、デポジットが付着した場合においても、正確にスロットル弁有効開口面積を算出できる。
 図10に本実施形態によるスロットル弁有効開口面積を算出するフローチャートを示す。ここでは、デポジット厚さを学習する際に所定の条件であるかを判定するロジックを含むロジック全体を説明する。以下、ステップごとに詳細を説明する。なお、ステップs101~s103は図3に図示されていないブロック、ステップs104~s105は減少割合相関指標算出部、ステップs106~s109は変化点算出部、ステップs110~s112はスロットル弁有効開口面積算出部で処理される。
 <<ステップs101>>
 ステップs101ではクランク角センサ、吸気流量センサ、吸気温度センサ、大気圧力センサ、スロットル弁開度センサ、によって、機関回転数、吸気流量、吸入空気温度、大気圧力、スロットル弁開度を検出する。
 <<ステップs102>>
 ステップs102ではスロットル弁開度と、予め記憶されているスロットル弁開度を軸とした新品時のスロットル弁有効開口面積(以下、初期スロットル弁有効開口面積)のテーブルに基づき、初期スロットル弁有効開口面積μA0[m2]を算出する。このように新品時のスロットル弁有効開口面積をテーブル化することで、ECUの演算負荷を低減することが出来る。
 <<ステップs103>>
 ステップs103では、以下の3条件をすべて満たしているかを判定し、デポジット学習起動の実施可否判定を行う。
 (A1)回転数が閾値以下であること
 (A2)エンジン負荷が閾値以下であること
 (A3)スロットル弁開度が定常であること
 (A1)、(A2)では、回転数およびエンジン負荷と各閾値を比較する手法をとる。これにより、非過給条件であるかを判定する。ここでの閾値は、非過給域と判定できる範囲とし、予め実験によりスロットル弁上流圧が大気圧力に比べて所定値よりも小さい範囲を規定する必要がある。これによりスロットル弁上流圧力として、大気圧力検出値を用いることができるため、高精度に実スロットル弁有効開口面積の算出が可能となり、誤学習を防ぐことが出来る。またスロットル弁上流圧力センサを備える場合、スロットル弁上流圧力センサ検出値を用いることが出来る。
 (A3)ではスロットル弁開度の所定時間前の値と現在の値との差分値と閾値を比較する手法をとる。ここの閾値は、スロットル弁開度の変化量とスロットル弁有効開口面積の変化量の関係に依存するが、例えば、スロットル弁有効開口面積の変化量が所定の範囲に収まるスロットル弁開度の変化量として規定することができる。これにより、スロットル弁開度が定常であるか判定できるため、安定した条件で学習が可能となり、誤学習を防ぐことが出来る。
 学習起動判定(s103)がNoである場合、ステップs112に進む。判定がYesの場合、ステップs104に進む。
 <<ステップs104>>
 ステップs104では、検出したスロットル弁開度θにおけるデポジット厚さの学習値を算出する。ここでは、スロットル弁有効開口面積減少率がクリアランス減少率と等しいという関係に基づき、(15)式によりデポジット厚さを算出する。
Figure JPOXMLDOC01-appb-M000015
 ここで、Dはデポジット厚さ[m]、h0は新品時のスロットルボディーとスロットル弁先端との距離(以下、初期クリアランスと呼ぶ)[m]、μAは実スロットル弁有効開口面積[m2]である。ここで初期クリアランスは、スロットル弁開度とスロットル弁の径から幾何学的に決めることが出来る。
 本実施形態ではスロットル弁開度を軸として初期クリアランスをテーブルとして予めECUに記憶しておく。これによりECUの演算負荷を軽減できる。またこのようにデポジット厚さを算出することで、スロットル弁開度θにおけるデポジット厚さの学習値を高精度に算出できる。
 <<ステップs105>>
 ステップs105では、デポジット厚さの学習値、学習回数、学習値取得時の走行距離を変化点探索用学習値マップに更新する。図11Aに変化点探索用学習値マップを示す。当該マップは、スロットル弁開度を格子点として、学習回数、学習値取得時の走行距離、学習値取得完了フラグ、デポジット厚さの学習値、変化点探索用デポジット厚さの学習値が記録される。なお、当該マップの初期値は全ての変数で0とする。一般にデポジットがスロットル弁有効開口面積に与える影響は通常低開度で大きく、スロットル弁開度が増加するにつれその影響は小さくなるため、例えば、格子点は、デポジットの影響が及ぶ範囲内に規定することで、ECUで使用する記憶領域を低減できる。
 またステップs105では算出したデポジット厚さの学習値と、当該マップに保持されているデポジット厚さの学習値とを加重平均した値を新たなデポジット厚さの学習値として当該マップを更新する。加重平均を用いることで当該マップのデポジット厚さの学習値が徐々に変化するため、例えば、瞬間的に外れ値が入力されるといった学習値が急激に変化する場合においても、誤学習を抑制できる。また学習回数はs105の処理が実施されるごとに、当該マップの該当箇所の前回値に対し1ずつ加算し、当該マップを更新する。
 <<ステップs106>>
 ステップs106では、学習値の取得回数と学習値取得時の走行距離が、以下に示す所定の条件を満たす場合にスロットル弁開度θの学習値の取得完了と判定し、変化点探索用学習値マップの学習値取得完了フラグを更新する。ここで学習値取得完了フラグは、1が取得完了、0が未取得を表す。
 (B1)学習値の取得回数が閾値以上であること
 (B2)学習値取得時の走行距離と現在の走行距離との差分が閾値以内であること
 (B1)では、学習値の取得回数と閾値を比較する手法をとる。学習値の取得回数に閾値を設けることで、学習値が十分な回数取得できたかを判別できる。 (B2)では、学習値取得時の走行距離と現在の走行距離との差分と閾値を比較する手法をとる。一般に走行距離の増加に伴い、デポジット厚さも増加するため、学習値の信頼性を担保するうえで学習値をどのタイミングで取得したかが重要となる。
 例えば、スロットル弁有効開口面積が100km走行で1%程度減少し、スロットル弁有効開口面積の変化2%を検出したいと考える場合、当該閾値を200km程度とする。 (B1)、(B2)により十分に学習され、かつ、比較的新しい情報の学習値を使用できるため、学習値の信頼性が向上し、誤学習を防ぐことが出来る。
 デポジット厚さの学習値取得完了判定(s106)がNoである場合、ステップs112に進む。判定がYesの場合、ステップs107に進む。
 <<ステップs107>>
 ステップs107では、デポジット厚さの変化点探索が可能かの判定を行う。学習値の有無を確認するスロットル弁開度をθC以上θD以下とする。本実施形態では、θCとθDは、事前の試験やアイドル開度設定などにより想定される低開度側変化点θAおよび高開度側変化点θBがθC以上θD以下の範囲に含まれるように、事前に設定する。
 θC以上θD以下の範囲において、少なくとも1点で学習値取得完了フラグが1である場合に、変化点探索可能と判定する。当該判定条件とすることで、デポジット厚さの学習値を取得できた際に、その他の条件での学習値取得の完了を待つことなく、速やかにスロットル弁有効開口面積の算出に反映することが出来る。
 変化点探索可能判定(s107)がNoである場合、ステップs112に進む。判定がYesの場合、ステップs108に進む。
 <<ステップs108>>
 ステップs108では、デポジット厚さの学習値の微分値を算出する。ここでは、(16)式に変化点探索用学習マップに記録されたデポジット厚さの学習値を代入し、スロットル弁開度に対するデポジット厚さの微分値を算出する。
Figure JPOXMLDOC01-appb-M000016
 ここでαは微分間隔[deg](αは偶数)である。例えばスロットル弁開度1deg刻みでデポジット厚さの変化を算出したいと考える場合、αを2degとする。
 <<ステップs109>>
 ステップs109では、デポジット厚さの変化点を算出する。本実施形態では、デポジット厚さの微分値が閾値以上となる点を変化点とする仕組みとした。ここでは、ステップs108で算出した微分値が閾値L1以上となるスロットル弁開度を検索する。同条件を満たす最も小さい開度をMmin。、最も大きい開度をMmaxとする。同条件を満たす開度が1つの場合は、Mmin。とMmaxは同じ値とする。(17)、(18)式により求まる開度を、低開度側変化点θA [deg]、高開度側変化点θB[deg]と定義する。このように処理をすることで、デポジット厚さの学習値を取得完了した開度の中から高精度に低開度側変化点および高開度側変化点を算出できる。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 ただし、スロットル弁開度θC以上θD以下の範囲において、デポジット厚さの学習値を取得完了した格子点数が以下の場合は低開度側変化点、高開度側変化点およびデポジット厚さを次のように決定する。
 (i) 当該格子点数が1である場合
 低開度側変化点をθC(θA=θC)、高開度側変化点をθD(θB=θD)とする。またスロットル弁有効開口面積減少率は、スロットル弁開度θA以上θB以下の範囲において一定値をとるという傾向に基づき、低開度側変化点および高開度側変化点のデポジット厚さを以下の(19)、(20)式により算出する。ここでデポジット厚さの学習値を取得完了した格子点をθ1とする(図11B参照)。これによりデポジット厚さの学習値を取得完了した条件が1点の場合でも低開度側変化点、高開度側変化点およびデポジット厚さを定義することが出来る。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 (ii) 当該格子点数が2である場合
 スロットル弁開度θC以上θD以下の範囲でデポジット厚さ学習値を取得完了している格子点のうち、スロットル弁開度の小さい格子点θ1を低開度側変化点、スロットル弁開度の大きい格子点θ2を高開度側変化点とする(図11C参照)。またデポジット厚さは学習により取得した値を用いる。これにより、デポジット厚さの学習値を取得完了した条件が2点の場合でも低開度側変化点、高開度側変化点およびデポジット厚さを定義することが出来る。
 <<ステップs110>>
 ステップs110では、デポジット厚さの学習値未取得開度のデポジット厚さを算出する。ここでは、デポジット厚さが2段に分布することを踏まえ、(21)式によりデポジット厚さの学習値未取得開度のデポジット厚さを算出する。
Figure JPOXMLDOC01-appb-M000021
 (i)により、デポジット厚さの学習値を取得できていない低開度側変化点未満のスロットル弁開度範囲のデポジット厚さを高精度に算出できる。また(ii)により、デポジット厚さの学習値を取得できていない低開度側変化点以上、高開度側変化点以下のスロットル弁開度範囲のデポジット厚さを高精度に算出できる。また(iii)により、デポジット厚さの学習値を取得できていない高開度側変化点より大きいスロットル弁開度範囲のデポジット厚さを高精度に算出できる。
 <<ステップs111>>
 ステップs111では、デポジット厚さの学習値未取得開度のデポジット厚さの学習値を変化点探索用学習値マップに更新する。
 <<ステップs112>>
 ステップs112では、デポジット厚さに基づき任意スロットル弁開度のスロットル弁有効開口面積を算出する。ここでは、(22)式によりスロットル弁有効開口面積を算出する。
Figure JPOXMLDOC01-appb-M000022
 これにより、アイドル状態におけるスロットル弁開度以上の領域においてスロットル弁有効開口面積を精度よく算出することができる。
 図12に本実施形態において減速時を事例にデポジット厚さ学習を実施した場合のタイムチャートを示す。縦軸は上段からスロットル弁開度、スロットル弁開度変化量、エンジントルク、回転数、スロットル弁上流圧力算出値、安定条件判定値、学習回数、デポジット厚さ学習値、デポジット厚さの学習値取得完了判定値、スロットル弁有効開口面積算出値であり、横軸は時刻である。
 図12において、エンジントルク、回転数が学習条件範囲(範囲は点線で表示)に入ったのち、スロットル弁開度の変化量が所定値範囲(点線で示した定常判定基準値未満)となるとスロットル弁開度が安定したと判断する。
 これら3つの条件が満たされて安定条件判定のフラグ(安定条件判定値)がONになった時刻が、時刻t1である。時刻t1にてデポジット厚さの学習値取得が開始する。学習回数が上昇し、時刻t2にて学習完了基準を超え、デポジット厚さの学習値完了判定のフラグがONになる。それにより、スロットル弁有効開口面積算出値が補正される。補正されたことにより、スロットル弁上流圧力算出値が増加し、大気圧力と一致する。
 図13は本実施形態にてデポジット厚さ学習を実施済みの場合と学習無しの場合における加速時のタイムチャートである。縦軸はスロットル弁開度、回転数、スロットル弁上流圧力算出値、スロットル弁下流圧力算出値、筒内流入ガス流量算出値、スロットル弁有効開口面積算出値、排気空燃比であり、横軸は時刻である。実線は学習済み、破線は学習無しを示す。
 時刻t3にて加速が開始する。学習無しの場合は、加速時に排気空燃比がリーンになるのに対し、学習済みの場合は、排気空燃比の変動は発生しない。これはデポジットが付着した場合においても、学習によりスロットル弁有効開口面積が補正され、筒内流入ガス流量を高精度に算出できるためである。これにより、適切な燃料噴射量の制御が可能となり、燃費および排気エミッションの悪化を防止できる。
 このように本実施形態によれば、所定の学習条件が成立しているときに内燃機関の吸気経路に設けられたスロットル弁の開度と、内燃機関の回転数と、前記スロットル弁を通過する吸入空気量と、前記スロットル弁の上流圧力と、前記スロットル弁の下流圧力と、大気温度とに基づいて、スロットル弁有効開口面積の減少割合に相関のある指標を算出し、前記スロットル弁開度に対する前記指標の変化量に基づき、前記指標の変化点を判定し、前記指標の変化点に基づき、前記スロットル弁有効開口面積を算出する。
 これにより、スロットルボディーへのデポジット付着が発生した場合においても、スロットル弁有効開口面積を高精度に算出することができる。またこれにより過渡運転時の筒内流入ガス流量を高精度に算出できるため、適切な燃料噴射量の制御が可能となり、燃費および排気エミッションの悪化を防止できる。
 (実施形態2)
 実施形態2では、スロットルボディーにデポジットが付着した場合に、吸気バルブ閉じ時期および排気バルブの閉じ時期を操作することで、所望のスロットル弁開度条件でデポジット厚さの学習値を取得するための方法を示す。
 実施形態1で述べたように、デポジット厚さの変化点を算出するためには、アイドル開度範囲における複数開度でデポジット厚さの学習値を取得する必要がある。本実施形態では、この事情に鑑みて考案されたものである。なお、以下で説明する実施形態2において、実施形態1との差異以外の構成は、実施形態1で説明した構成が適用される。
 初めに、本実施形態にて実施する吸気バルブおよび排気バルブの閉じ時期の操作方法及びスロットル弁開度の操作方法について説明する。続いて、本実施形態の具体的な処理を説明する。
 まず、本実施形態にて実施する吸気バルブおよび排気バルブの閉じ時期の操作方法及びスロットル弁開度の操作方法について説明する。図14は回転数一定の条件において、出力一定を実現するバルブオーバーラップ量とスロットル弁開度の関係を示した図である。ここで、バルブオーバーラップ量は、吸気バルブと排気バルブの両方が同時に開いている期間である。
 バルブオーバーラップ量を変える方法としては、可変動弁機構を操作し吸気バルブまたは排気バルブを操作し、吸気バルブの開き時期が排気バルブの閉じ時期よりも進角側にくるように設定する。図14に示すように回転数一定、出力一定条件において、バルブオーバーラップ量とスロットル弁開度は正の相関を持つ。ここで回転数一定の場合、バルブオーバーラップ量を増やすことで次のサイクルに持ち越される燃焼ガス(内部EGRガス)が増加する。この結果、スロットル弁開度を操作しないと、吸気流量が減少する。吸気流量を一定に保つためには、スロットル弁開度を増加させる必要がある。
 このようにバルブオーバーラップ量とスロットル弁開度が正の相関を持つように、可変動弁機構およびスロットル弁開度を操作することで、様々なスロットル弁開度が設定できる。これにより様々なスロットル弁開度で、運転性の悪化を防ぎつつ、デポジット厚さの学習値を取得できる。さらに、例えばバルブオーバーラップ量が大きくなる条件に、可変動弁機構とスロットル弁開度の組み合わせを設定することで(図14における右方向)、筒内に残留する高温の燃焼ガスの量を増加させることができる。この結果、筒内ガス温度が増加するため、エンジンの冷却水温度が低く燃焼安定性が悪い条件でも、燃焼安定性が向上し、安定したエンジン運転状態で学習が可能となる。また学習可能な冷却水温度範囲を広げることが可能となる。
 続いて、本実施形態の具体的な処理を説明する。図15に本実施形態においてデポジット厚さを学習しスロットル弁有効開口面積の補正を行うフローチャートを示す。以下、ステップごとに詳細を説明する。
 ステップs201からステップs203、ステップs207からステップs215までは、実施形態1のステップs101からステップs103、ステップs104からステップs112と同様の処理のため、説明は割愛する。
 <<ステップs204>>
 ステップs204ではスロットル弁開度が学習用目標スロットル弁開度と一致しているかを判定する。ここでは、スロットル弁開度と学習用目標スロットル弁開度の差と閾値を比較する手法をとる。また学習用目標スロットル弁開度は、例えば、予め設定されているアイドル開度の使用範囲における最小開度、中間開度、最大開度である。
 判定(s204)がYesの場合s207に進む。判定がNoの場合、ステップs205に進む。
 <<ステップs205>>
 ステップs205では、図14に示すようなスロットル弁開度とバルブ「オーバーラップ量の関係に基づき、ステップs204にて設定する目標スロットル弁開度を実現する目標吸気バルブ閉じ時期および目標排気バルブ閉じ時期を算出する。
 <<ステップs206>>
 ステップs206では、目標吸気バルブ閉じ時期、目標排気バルブ閉じ時期および学習用目標スロットル弁開度となるように吸気バルブ、排気バルブおよびスロットル弁開度を操作する。これらの操作により、回転数および出力を一定に保ちつつ、燃焼安定性を向上できる。これにより、運転性の悪化を防ぎ、かつ、デポジット厚さの学習値を取得できる。
 ステップs206が完了後、ステップs203に進む。
 このように吸気バルブと排気バルブが両方とも開いている角度であるバルブオーバーラップ量とスロットル弁開度が正の相関を持つように、内燃機関に備えられた可変動弁機構とスロットル弁開度を操作することにより、回転数および出力を一定に保ちつつ、燃焼安定性が向上するため、運転性の悪化を防ぎつつ、デポジット厚さの学習値を取得できる。
 これにより、アイドル状態において複数開度でデポジット厚さの学習値を取得できるため、高精度にスロットル弁有効開口面積を算出することが出来る。またこれにより、スロットルボディーへのデポジット付着が発生した場合においても、過渡運転時の筒内流入ガス流量を高精度に算出できるため、適切な燃料噴射量の制御が可能となり、燃費および排気エミッションの悪化を防止できる。
 実施形態1、2の主な特徴は、次のようにまとめることもできる。
 内燃機関の制御装置(ECU0)のプロセッサ(CPU40e、図2)は、スロットル弁の有効開口面積の減少割合に相関のある指標(デポジット厚さ、有効開口面積の減少割合、流量減少率等、図9)の変化率(微分値)が変化する第1スロットル弁開度θAと第2スロットル弁開度θBを同定する(s109、図10)。プロセッサ(CPU40e)は、第1スロットル弁開度θAと第2スロットル弁開度θBから任意のスロットル弁開度における前記指標を推定し(s110、図10)、推定された前記指標からスロットル弁の有効開口面積を算出する(s112、図10)。
 これにより、デポジットの影響を反映したスロットル弁の有効開口面積を精度よく算出することができる。
 図9に示すように、前記指標は、例えば、スロットルボディーに堆積するデポジットの厚さ、スロットル弁を通過する空気の流量減少率、又はスロットル弁の有効開口面積の減少割合である。これにより、デポジットの厚さだけでなく、流量減少率又は有効開口面積の減少割合からスロットル弁の有効開口面積を算出することができる。
 プロセッサ(CPU40e)は、第1スロットル弁開度θAより小さいスロットル弁開度の範囲における前記指標(例えば、デポジット厚さ)の値D(θ)を、第1スロットル弁開度θAにおける指標の値D(θA)と等しい一定値であると推定する((21)式の(i))。これにより、第1スロットル弁開度θAより低開度側の範囲でスロットル弁の有効開口面積を精度よく算出することができる。
 プロセッサ(CPU40e)は、第2スロットル弁開度θBより大きいスロットル弁開度の範囲における前記指標(例えば、デポジット厚さ)の値D(θ)を、第2スロットル弁開度θBにおける指標の値D(θB)と等しい一定値であると推定する((21)式の(iii))。これにより、第2スロットル弁開度θBより高開度側の範囲でスロットル弁の有効開口面積を精度よく算出することができる。
 プロセッサ(CPU40e)は、第1スロットル弁開度θAと第2スロットル弁開度θBとの間の範囲における前記指標(例えば、デポジット厚さ)の値D(θ)を、第1スロットル弁開度θAにおける指標の値D(θA)と第2スロットル弁開度θBにおける指標の値D(θB)に基づいて推定する((21)式の(ii))。これにより、第1スロットル弁開度θAと第2スロットル弁開度θBとの間の範囲でスロットル弁の有効開口面積を精度よく算出することができる。
 本実施形態では、第1スロットル弁開度θAと第2スロットル弁開度θBとの間の範囲におけるスロットル弁開度と指標の値(例えば、デポジット厚さ)は、線形関係を有する((21)式の(ii))。これにより、線形関係を用いてスロットル弁の有効開口面積を算出することができる。
 プロセッサ(CPU40e)は、スロットル弁開度に対する前記指標(例えば、デポジット厚さ)の変化率dD/dθが所定の範囲内(例えば、dD/dθ≧所定値L1)におけるスロットル弁開度において、最小のスロットル弁開度Mminに基づいて第1スロットル弁開度θAを同定し、最大のスロットル弁開度Mmaxに基づいて第2スロットル弁開度θBを同定する(s109、図10)。これにより、所定の範囲内で、第1スロットル弁開度θAと第2スロットル弁開度θBを同定することができる。
 本実施形態では、前記所定の範囲は、スロットル弁開度に対する指標の変化率dD/dθが所定値L1以上となる範囲である。これにより、第1スロットル弁開度θAと第2スロットル弁開度θBを探索する範囲を狭めることができる。
 プロセッサ(CPU40e)は、前記指標(例えば、デポジット厚さ)の前回値と今回値とを加重平均した値を、前記指標の学習値として算出する(s105、図10)。これにより、外れ値の影響を低減することができる。
 プロセッサ(CPU40e)は、前記指標の算出回数、および前記指標の算出時の走行距離と現在の走行距離との差分に基づき、前記指標の学習値の取得が完了したかを判定する(s106、図10)。これにより、指標の学習値の信頼度が向上する。
 プロセッサ(CPU40e)は、所定のスロットル弁開度の範囲(θC≦θ≦θD)において、取得が完了した前記指標(例えば、デポジット厚さ)の学習値が少なくとも1つ以上である場合に、前記指標の前記学習値に対応するスロットル弁開度(例えば、θ1、θ2等)から第1スロットル弁開度θAと第2スロットル弁開度θBを同定する(図11B、11C)。これにより、指標の学習値が少なくとも1つ以上である場合に、第1スロットル弁開度θAと第2スロットル弁開度θBを同定することができる。
 プロセッサ(CPU40e)は、所定のスロットル弁開度の範囲(θC≦θ≦θD)において、取得が完了した前記指標(例えば、デポジット厚さ)の学習値が1つのみである場合に、前記指標の学習値D(θ1)に対応するスロットル弁開度θ1に基づいて第1スロットル弁開度θAと第2スロットル弁開度θBを同定する(図11B)。これにより、指標の学習値が1つであっても、第1スロットル弁開度θAと第2スロットル弁開度θBを同定することができる。
 プロセッサ(CPU40e)は、スロットル弁開度が大きくなるにつれてバルブオーバーラップ量が大きくなるように(図14)、スロットル弁、可変吸気バルブ及び可変排気バルブを制御することで、前記指標(例えば、デポジット厚さ)とそれに対応するスロットル弁開度を学習する(s206、図15)。
 これにより、回転数と出力トルクを保持しつつ、指標とそれに対応するスロットル弁開度を学習することができる。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 なお、本発明の実施形態は、以下の態様であってもよい。
 [1].所定の学習条件が成立しているときに内燃機関の吸気経路に設けられたスロットル弁の開度と内燃機関の回転数と、前記スロットル弁を通過する吸入空気量と、前記スロットル弁の上流圧力と、前記スロットル弁の下流圧力と、大気温度とに基づいて、第1スロットル弁開度と第2スロットル弁開度における流れ方向に対するスロットル弁有効開口面積の減少割合に相関のある指標を算出する減少割合相関指標算出部と、前記指標に基づき、前記スロットル弁有効開口面積を算出するスロットル弁有効開口面積算出部、を備える内燃機関の制御装置において、前記スロットル弁開度に対する前記指標の変化に基づき前記第1スロットル弁開度と前記第2スロットル弁開度を判定する変化点算出部、とを備えることを特徴とする内燃機関の制御装置。
 [2].前記指標がスロットルボディーに堆積するデポジットの厚さ、または流量減少割合、またはスロットル弁有効開口面積の減少割合、であることを特徴とする、[1]に記載の内燃機関の制御装置。
 [3].前記第1スロットル弁開度未満のスロットル弁開度における前記指標の値は、前記第1スロットル弁開度における前記指標の値と等しいことを特徴とする、[2]に記載の内燃機関の制御装置。
 [4].前記第2スロットル弁開度より大きいスロットル弁開度における前記指標の値は、前記第2スロットル弁開度における前記指標の値と等しいことを特徴とする、[3]に記載の内燃機関の制御装置。
 [5].前記第1スロットル弁開度と前記第2スロットル弁開度の範囲のスロットル弁開度における前記指標の値は、前記第1スロットル弁開度における前記指標の値と前記第2スロットル弁開度における前記指標の値に基づき算出することを特徴とする、[4]に記載の内燃機関の制御装置。
 [6].前記スロットル弁開度に対する前記指標の変化が所定の範囲内におけるスロットル弁開度において、最小の開度を前記第1スロットル弁開度、最大の開度を前記第2スロットル弁開度であることを特徴とする、[5]に記載の内燃機関の制御装置。
 [7].前記指標の前回値と今回値とを加重平均した値を、前記指標の学習値として算出することを特徴とする、[6]に記載の内燃機関の制御装置。
 [8].前記指標の算出回数および前記指標算出時の走行距離と現在の走行距離との差分に基づき、前記指標の学習値の取得が完了したかを判定することを特徴とする、[7]に記載の内燃機関の制御装置。
 [9].所定の前記スロットル弁開度範囲において、前記指標の学習値を少なくとも1点以上取得できた場合に、前記第1スロットル弁開度および前記第2スロットル弁開度を探索可能と判定することを特徴とする、[8]に記載の内燃機関の制御装置。
 [10].所定の前記スロットル弁開度範囲において、前記指標の学習値を取得完了した点が1点である場合、前記第1スロットル弁開度および前記第2スロットル弁開度を所定の前記スロットル弁開度として算出し、また前記学習値を取得完了した点の学習値に基づき、前記第1スロットル弁開度および前記第2スロットル弁開度の前記指標を算出することを特徴とする、[9]に記載の内燃機関の制御装置。
 [11].前記指標を算出する際に、回転数が所定の範囲に収まる範囲でスロットル弁開度と吸気弁開閉タイミングを操作することを特徴とする、[10]に記載の内燃機関の制御装置。
 [1]-[11]によれば、アイドル状態におけるスロットル弁開度以上のスロットル弁開度領域においてスロットル弁有効開口面積を精度よく算出することができる。これによりデポジットが付着した場合においても、スロットル弁通過ガス流量を高精度に算出できる。その結果、筒内流入ガス流量を高精度に算出できるため、適切な燃料噴射量の制御が可能となり、燃費悪化および排気エミッション悪化を防止できる。
100…エンジン(内燃機関)、0…ECU、1…アクセル開度センサ、3…吸気流量センサ、4…過給器、5…インタークーラ、6…スロットル弁、8…吸気管、9a…可変吸気バルブ、9b…可変排気バルブ、10…燃料噴射装置、11…点火プラグ、12…クランク角センサ、13…燃焼室、14…排気管、15…吸気温度センサ、16…大気圧力センサ、20…空燃比センサ、21…触媒コンバータ、30…EGRクーラ、31…EGR弁、32…EGR配管

Claims (13)

  1.  スロットル弁の有効開口面積の減少割合に相関のある指標の変化率が変化する第1スロットル弁開度と第2スロットル弁開度を同定し、
     前記第1スロットル弁開度と前記第2スロットル弁開度から任意のスロットル弁開度における前記指標を推定し、
     推定された前記指標からスロットル弁の有効開口面積を算出するプロセッサを備える内燃機関の制御装置。
  2.  請求項1に記載の内燃機関の制御装置であって、
     前記指標は、
     スロットルボディーに堆積するデポジットの厚さ、
     前記スロットル弁を通過する空気の流量減少率、又は
     前記スロットル弁の有効開口面積の減少割合である
     ことを特徴とする内燃機関の制御装置。
  3.  請求項1に記載の内燃機関の制御装置であって、
     前記プロセッサは、
     前記第1スロットル弁開度より小さいスロットル弁開度の範囲における前記指標の値を、前記第1スロットル弁開度における前記指標の値と等しい一定値であると推定する
     ことを特徴とする内燃機関の制御装置。
  4.  請求項3に記載の内燃機関の制御装置であって、
     前記プロセッサは、
     前記第2スロットル弁開度より大きいスロットル弁開度の範囲における前記指標の値を、前記第2スロットル弁開度における前記指標の値と等しい一定値であると推定する
     ことを特徴とする内燃機関の制御装置。
  5.  請求項4に記載の内燃機関の制御装置であって、
     前記プロセッサは、
     前記第1スロットル弁開度と前記第2スロットル弁開度との間の範囲における前記指標の値を、前記第1スロットル弁開度における前記指標の値と前記第2スロットル弁開度における前記指標の値に基づいて推定する
     ことを特徴とする内燃機関の制御装置。
  6.  請求項5に記載の内燃機関の制御装置であって、
     前記プロセッサは、
     前記スロットル弁開度に対する前記指標の変化率が所定の範囲内におけるスロットル弁開度において、最小のスロットル弁開度に基づいて前記第1スロットル弁開度を同定し、最大のスロットル弁開度に基づいて前記第2スロットル弁開度と同定する
     ことを特徴とする内燃機関の制御装置。
  7.  請求項6に記載の内燃機関の制御装置であって、
     前記プロセッサは、
     前記指標の前回値と今回値とを加重平均した値を、前記指標の学習値として算出する
     ことを特徴とする内燃機関の制御装置。
  8.  請求項7に記載の内燃機関の制御装置であって、
     前記プロセッサは、
     前記指標の算出回数、および前記指標の算出時の走行距離と現在の走行距離との差分に基づき、前記指標の学習値の取得が完了したかを判定する
     ことを特徴とする内燃機関の制御装置。
  9.  請求項8に記載の内燃機関の制御装置であって、
     前記プロセッサは、
     所定のスロットル弁開度の範囲において、取得が完了した前記指標の学習値が少なくとも1つ以上である場合に、前記指標の前記学習値に対応するスロットル弁開度から前記第1スロットル弁開度と前記第2スロットル弁開度を同定する
     ことを特徴とする内燃機関の制御装置。
  10.  請求項9に記載の内燃機関の制御装置であって、
     前記プロセッサは、
     前記所定のスロットル弁開度の範囲において、取得が完了した前記指標の学習値が1つのみである場合に、前記指標の学習値に対応するスロットル弁開度に基づいて前記第1スロットル弁開度と前記第2スロットル弁開度を同定する
     ことを特徴とする内燃機関の制御装置。
  11.  請求項1に記載の内燃機関の制御装置であって、
     前記プロセッサは、
     スロットル弁開度が大きくなるにつれてバルブオーバーラップ量が大きくなるように、前記スロットル弁、可変吸気バルブ及び可変排気バルブを制御することで、前記指標とそれに対応するスロットル弁開度を学習する
     ことを特徴とする内燃機関の制御装置。
  12.  請求項5に記載の内燃機関の制御装置であって、
     前記第1スロットル弁開度と前記第2スロットル弁開度との間の範囲におけるスロットル弁開度と前記指標の値は、線形関係を有する
     ことを特徴とする内燃機関の制御装置。
  13.  請求項6に記載の内燃機関の制御装置であって、
     前記所定の範囲は、前記スロットル弁開度に対する前記指標の変化率が所定値以上となる範囲である
     ことを特徴とする内燃機関の制御装置。
PCT/JP2021/042754 2021-11-22 2021-11-22 内燃機関の制御装置 WO2023089811A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042754 WO2023089811A1 (ja) 2021-11-22 2021-11-22 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042754 WO2023089811A1 (ja) 2021-11-22 2021-11-22 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2023089811A1 true WO2023089811A1 (ja) 2023-05-25

Family

ID=86396560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042754 WO2023089811A1 (ja) 2021-11-22 2021-11-22 内燃機関の制御装置

Country Status (1)

Country Link
WO (1) WO2023089811A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138270A (ja) * 2004-11-12 2006-06-01 Toyota Motor Corp 内燃機関の制御装置
JP2015090138A (ja) * 2013-11-07 2015-05-11 トヨタ自動車株式会社 内燃機関の制御装置
JP2015090112A (ja) * 2013-11-06 2015-05-11 トヨタ自動車株式会社 内燃機関の制御装置
JP2020197173A (ja) * 2019-06-04 2020-12-10 愛三工業株式会社 スロットル制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138270A (ja) * 2004-11-12 2006-06-01 Toyota Motor Corp 内燃機関の制御装置
JP2015090112A (ja) * 2013-11-06 2015-05-11 トヨタ自動車株式会社 内燃機関の制御装置
JP2015090138A (ja) * 2013-11-07 2015-05-11 トヨタ自動車株式会社 内燃機関の制御装置
JP2020197173A (ja) * 2019-06-04 2020-12-10 愛三工業株式会社 スロットル制御装置

Similar Documents

Publication Publication Date Title
EP1705359B1 (en) Method of feedforward controlling a multi-cylinder internal combustion engine and relative feedforward fuel injection control system
US7140356B2 (en) Engine throttle opening degree area estimation method, as well as engine acceleration detection method and device and engine fuel injection control method and device using the estimation method
JP6375912B2 (ja) 内燃機関の制御装置
JP5865942B2 (ja) 内燃機関のシリンダ吸入空気量推定装置および推定方法
EP2565430B1 (en) Internal combustion engine control apparatus
MX2015001532A (es) Monitoreo no invasivo del sensor de gases de escape.
US11454181B2 (en) System and method for avoiding compressor surge during cylinder deactivation of a diesel engine
WO2023089811A1 (ja) 内燃機関の制御装置
JP3985746B2 (ja) 内燃機関の制御装置
JP2010106734A (ja) 内燃機関のegr制御方法及び内燃機関
JP4274064B2 (ja) 内燃機関の筒内吸入新気量推定装置
US7546760B2 (en) Device for pressure-based load detection
CN113027617B (zh) 发动机扫气控制装置、系统、方法及计算机可读取介质
JP4148024B2 (ja) 内燃機関の排気圧力推定装置及びこれを用いた内部egr量推定装置
JP2006291871A (ja) 内燃機関の制御装置
JP2006046071A (ja) 車両の大気圧推定装置
WO2023248462A1 (ja) 内燃機関の制御装置および内燃機関の制御方法
JP4661325B2 (ja) 内燃機関の制御装置
JP2010096021A (ja) 内燃機関の燃焼状態診断装置
JP2022114011A (ja) 内燃機関の制御装置
JP7430114B2 (ja) 内燃機関の制御装置
JP2006283639A (ja) エンジンの制御装置及び制御方法
JP7206625B2 (ja) 内燃機関の制御装置
JP4000972B2 (ja) 内燃機関の筒内ガス状態取得装置
JP6497035B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023562084

Country of ref document: JP

Kind code of ref document: A