WO2023089759A1 - Circuit unit for aerosol generation device, aerosol generation device, and program - Google Patents

Circuit unit for aerosol generation device, aerosol generation device, and program Download PDF

Info

Publication number
WO2023089759A1
WO2023089759A1 PCT/JP2021/042550 JP2021042550W WO2023089759A1 WO 2023089759 A1 WO2023089759 A1 WO 2023089759A1 JP 2021042550 W JP2021042550 W JP 2021042550W WO 2023089759 A1 WO2023089759 A1 WO 2023089759A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
time
puff
period
control unit
Prior art date
Application number
PCT/JP2021/042550
Other languages
French (fr)
Japanese (ja)
Inventor
拓磨 中野
一真 水口
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2021/042550 priority Critical patent/WO2023089759A1/en
Publication of WO2023089759A1 publication Critical patent/WO2023089759A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the present invention relates to a circuit unit of an aerosol generator, an aerosol generator, and a program.
  • aerosol generators that generate aerosol by heating a liquid containing fragrance
  • the heater is energized when the user's inhalation action is detected, and the liquid inside the glass fiber called a wick is atomized (aerosolized). be done. Aerosols are generated when the temperature of the liquid in the wick reaches its boiling point.
  • the energization time for the heater is designed assuming standard suction behavior, but compared to the standard suction behavior, the interval between suction (puff) and suction (puff) (hereinafter referred to as " When the suction action with a short puff interval” is repeated, heating of the liquid starts before the temperature of the liquid in the wick drops sufficiently. If the liquid temperature at the start of energization is high, vaporization of the liquid is promoted. As a result, the amount of liquid consumed after the start of energization is greater than during standard suction behavior. On the other hand, the supply of liquid to the wick depends on capillary action.
  • the present invention provides a technique for suppressing liquid drying during inhalation regardless of how the aerosol generator is used by the user.
  • the invention according to claim 1 has a control unit that controls the supply of electric power to a load that heats the aerosol source, and the control unit sets the interval between suctions of the aerosols to be greater than the first period.
  • a circuit unit of an aerosol generator for controlling, if short, the amount of power supplied to said load to generate an aerosol to be less than a reference value.
  • the invention according to claim 2 further includes a first sensor that detects the inhalation of the aerosol by the user, and the controller controls the current inhalation start from the end of the previous inhalation detected by the first sensor. 2.
  • the circuit unit of an aerosol generating device wherein the time to power the load is shorter than the second period if the time to is shorter than the first period.
  • the control unit controls the load.
  • a circuit unit of an aerosol generating device wherein the power supply time is shorter than the second period.
  • the invention according to claim 4 further includes a first sensor for detecting inhalation of aerosol by the user, and the control unit controls the first sensor from the end of heating immediately before the end of generation of aerosol from the aerosol source.
  • the time to supply power to the load is shorter than the second period when the time until the current suction start detected by the sensor of is shorter than the first period.
  • the invention according to claim 5 has an operation unit that receives a user's operation related to supply and stop of power supply to the load, and the control unit is configured to stop the supply of power immediately before according to the user's operation on the operation unit.
  • the circuit unit of the aerosol generating device according to claim 1 wherein, if the time from the start of power supply to the current power supply start is shorter than the first period, the time to supply power to the load is shorter than the second period. is.
  • the invention according to claim 6 further comprises a first sensor for detecting inhalation of the aerosol by the user and a second sensor for detecting the temperature of the load, wherein the control unit detects the temperature of the first sensor.
  • the invention according to claim 7 further includes a first sensor for detecting inhalation of aerosol by the user, and the control unit detects the resistance of the load at the start of inhalation of the aerosol detected by the first sensor. 2.
  • the invention according to claim 8 further comprises a first sensor for detecting inhalation of the aerosol by the user and a third sensor for detecting the temperature of the aerosol source, wherein the control unit detects the temperature of the first sensor If the temperature detected by the third sensor at the start of suction of the aerosol detected in is higher than the second temperature, the time for supplying power to the load is shortened from the second period.
  • 1 is a circuit unit of the described aerosol generating device; According to the ninth aspect of the invention, the control unit predicts the next interval or the next interval from the tendency of the intervals between the aerosol inhalations of a plurality of times in the past, and the predicted interval is compared with the first period. 2.
  • the circuit unit of the aerosol generating device wherein, if shorter than the second period, the power supply time to the load in the predicted suction cycle is set shorter than the second period.
  • the control unit obtains a plurality of past measured values of intervals between aerosol inhalations, and the number of consecutive occurrences of measured values shorter than the first period is the first.
  • the time for supplying power to the load in the next and subsequent suction times is controlled stepwise shorter than the second period as the number of times increases. It is the circuit unit of the device.
  • the control unit includes it in the calculation of the number of times.
  • the controller controls the amount of electric power supplied to the load to be smaller as the interval is shorter.
  • the control unit controls the amount of electric power supplied to the load to be smaller as the remaining amount is smaller.
  • the controller controls the interval between suctions of the aerosol is shorter than the first period, the amount of power supplied to the load is controlled to a value smaller than the amount of power only for heating with aerosol generation. or a circuit unit of the aerosol generator according to item 1.
  • the invention according to claim 15 further includes a second sensor that detects the temperature of the load, and the control unit, when the temperature detected by the second sensor reaches a third temperature, The circuit unit of an aerosol generating device according to any one of claims 1 to 8, wherein the heating of the load is forcibly terminated at that point.
  • the invention according to claim 16 further includes a third sensor that detects the temperature of the aerosol source, and the control unit detects that when the temperature detected by the third sensor reaches a fourth temperature, The circuit unit of an aerosol generating device according to any one of claims 1 to 8, wherein the heating of the load is forcibly terminated at that point.
  • the controller controls the first maximum voltage to be supplied to the load to generate the aerosol when the interval between suctions of the aerosol is shorter than the first period. value is controlled to a value smaller than the second maximum voltage value supplied to the load when the interval between aerosol inhalations is longer than the first period. or a circuit unit of the aerosol generator according to item 1.
  • the invention according to claim 18 has a control unit for controlling power supply to a load that heats the aerosol source, and the control unit sets the interval between suctions of the aerosols to be greater than the first period. If shorter, the aerosol generating device controls the amount of power supplied to the load to generate the aerosol below a reference value.
  • the computer for controlling the supply of power to the load that heats the aerosol source generates aerosol when the interval between aspirations of the aerosol is shorter than the first period. is a program for realizing a function of controlling the amount of electric power supplied to the load to be smaller than a reference value.
  • the first aspect of the invention it is possible to provide a technique for suppressing the drying up of liquid during suction regardless of the usage method of the user who uses the aerosol generating device.
  • the second aspect of the invention it is possible to prevent the liquid from drying up even when the suction interval of the user is short.
  • the third aspect of the invention it is possible to prevent the liquid from drying up even when the suction interval of the user is short.
  • the fourth aspect of the invention it is possible to prevent the liquid from drying up even when the suction interval of the user is short.
  • the fifth aspect of the invention it is possible to prevent the liquid from drying up even when the suction interval of the user is short.
  • the sixth aspect of the present invention it is possible to suppress the drying up of the liquid even when the suction interval of the user is short.
  • the seventh aspect of the present invention it is possible to prevent the liquid from drying up even when the user's suction interval is short.
  • the eighth aspect of the invention it is possible to suppress the liquid drying even when the user's suction interval is short.
  • control when it is detected that the user's suction interval tends to be short, control can be executed to prevent the liquid from drying up.
  • control when it is confirmed that the user's suction interval tends to be short, control can be executed to prevent the liquid from drying up.
  • control when it is confirmed that the user's suction interval tends to be short, control can be executed to prevent the liquid from drying up.
  • the twelfth aspect of the present invention it is possible to suppress the drying up of the liquid even when the suction interval of the user is short.
  • the thirteenth aspect of the present invention it is possible to suppress the drying up of the liquid even when the suction interval of the user is short.
  • the fourteenth aspect of the invention even when the aerosol source is heated prior to the heating that accompanies the generation of the aerosol in order to promote the generation of the aerosol, it is possible to suppress the drying up of the liquid when the suction interval of the user is short.
  • the fifteenth aspect of the present invention it is possible to suppress liquid drying even when an environment in which liquid drying is likely to occur is detected.
  • the sixteenth aspect of the present invention it is possible to suppress liquid drying even when an environment in which liquid drying is likely to occur is detected.
  • the seventeenth aspect of the invention even when the user's suction interval is short, it is possible to prevent the liquid from drying up.
  • the eighteenth aspect of the invention it is possible to provide a technique for suppressing drying up of the liquid during inhalation regardless of the usage method of the user who uses the aerosol generating device.
  • the nineteenth aspect of the invention it is possible to provide a technique for suppressing drying up of liquid during inhalation regardless of the usage method of the user who uses the aerosol generating device.
  • FIG. 1 is a diagram for explaining an example of the external configuration of an aerosol generating device assumed in Embodiment 1;
  • FIG. 1 is a diagram schematically showing the internal configuration of an aerosol generator assumed in Embodiment 1.
  • FIG. 4 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 1.
  • FIG. 4 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 1.
  • FIG. 9 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 2.
  • FIG. 10 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 2; (A) shows an example of the timing of suction (puff), and (B) shows an example of setting the main heating time.
  • 10 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 3.
  • FIG. FIG. 11 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 3; (A) shows an example of the timing of suction (puff), and (B) shows an example of setting the main heating time.
  • FIG. 12 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 4.
  • FIG. 13 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 4;
  • (A) shows an example of the timing of suction (puff), and
  • (B) shows an example of setting the main heating time.
  • FIG. 10 is a diagram schematically showing the internal configuration of an aerosol generating device assumed in Embodiment 5;
  • 14 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 5.
  • FIG. FIG. 12 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 5.
  • FIG. (A) shows an example of the timing of suction (puff),
  • (B) shows a temperature change of the heating section, and
  • (C) shows an example of setting the main heating time.
  • FIG. 12 is a diagram schematically showing the internal configuration of an aerosol generating device assumed in Embodiment 6; 14 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 6.
  • FIG. FIG. 14 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 6.
  • FIG. (A) shows an example of the timing of suction (puff),
  • (B) shows a change in the resistance value of the heating unit, and
  • C shows an example of setting the main heating time.
  • FIG. 12 is a diagram schematically showing the internal configuration of an aerosol generating device assumed in Embodiment 7;
  • FIG. 12 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 7;
  • FIG. FIG. 14 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 7.
  • FIG. (A) shows an example of a suction (puff) timing
  • (B) shows a change in the temperature of the liquid guide section
  • (C) shows an example of setting the main heating time.
  • FIG. 20 is a diagram schematically showing the internal configuration of an aerosol generating device assumed in Embodiment 8
  • FIG. 13 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 8.
  • FIG. 20 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 8.
  • FIG. (A) shows an example of a suction (puff) timing
  • (B) shows a change in ambient temperature
  • (C) shows an example of setting the main heating time.
  • FIG. 20 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 9.
  • FIG. FIG. 22 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 9.
  • FIG. (A) shows an example of the timing of suction (puff)
  • (B) shows an example of setting the main heating time when the predicted puff interval is longer than or equal to the first period
  • (C) shows the predicted puff interval.
  • FIG. 20 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 10.
  • FIG. FIG. 22 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 10.
  • FIG. (A) shows an example of the timing of suction (puff)
  • (B) shows an example of setting the main heating time when the number of consecutive short puffs is the first number or less
  • (C) shows a continuous short puff.
  • An example of setting the main heating time when the number of times of heating is smaller than the first number of times is shown.
  • FIG. 13 is a flow chart for explaining an example of control of the main heating time by a control unit used in Embodiment 11;
  • FIG. 22 is a flowchart for explaining an example of control of the main heating time by a control unit used in Embodiment 12;
  • FIG. FIG. 20 is a diagram schematically showing the internal configuration of an aerosol generating device assumed in Embodiment 13;
  • FIG. 22 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 13;
  • FIG. It is a figure explaining preheating time.
  • (A) shows the positional relationship between the preheating time and the main heating time
  • (B) shows the temperature change of the aerosol source.
  • FIG. 10 is a diagram illustrating an example of setting the main heating time depending on the presence or absence of preheating and the length of the puff interval.
  • FIG. 20 is a flowchart for explaining an example of control of the main heating time by a control unit used in Embodiment 14;
  • FIG. 29 is a flowchart for explaining an example of control of the main heating time by a control unit used in Embodiment 15.
  • FIG. FIG. 22 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 16;
  • FIG. FIG. 22 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 17;
  • FIG. 20 is a diagram for explaining an example of the external configuration of an aerosol generating device assumed in Embodiment 18;
  • FIG. 20 is a diagram schematically showing an internal configuration example of an aerosol generating device assumed in Embodiment 19;
  • FIG. 1 is a diagram illustrating an example of the external configuration of an aerosol generating device 1 assumed in Embodiment 1.
  • FIG. 1 The aerosol generator 1 shown in FIG. 1 is one form of electronic cigarette, and generates flavored aerosol without combustion.
  • the electronic cigarette shown in FIG. 1 has a generally cylindrical shape.
  • the aerosol generator 1 shown in FIG. 1 is composed of a plurality of units. In the case of FIG. 1, the multiple units are composed of a power supply unit 10, a cartridge 20 containing an aerosol source, and a cartridge 30 containing a flavor source.
  • the cartridge 20 can be attached to and detached from the power supply unit 10, and the cartridge 30 can be attached to and detached from the cartridge 20.
  • FIG. In other words, both the cartridge 20 and the cartridge 30 are replaceable.
  • the power supply unit 10 incorporates an electronic circuit and the like.
  • the power supply unit 10 is one form of a circuit unit.
  • a power button 11 is provided on the side surface of the power supply unit 10 .
  • the power button 11 is an example of an operation unit that is used to input user instructions to the power supply unit 10 .
  • the cartridge 20 includes a liquid storage section for storing the liquid that is the aerosol source, a liquid guide section for drawing the liquid from the liquid storage section by capillary action, and a heating section for heating and vaporizing the liquid held in the liquid guide section. and are built-in.
  • a side surface of the cartridge 20 is provided with an air inlet (hereinafter referred to as an “air inlet”) 21 .
  • the air that has flowed in through the air inlet holes 21 passes through the cartridge 20 and is discharged from the cartridge 30 .
  • Cartridge 20 is also called an atomizer.
  • the cartridge 30 incorporates a flavor unit that adds flavor to the aerosol.
  • a mouthpiece 31 is provided in the cartridge 30 .
  • FIG. 2 is a diagram schematically showing the internal configuration of the aerosol generator 1 assumed in Embodiment 1.
  • the aerosol generator 1 is composed of a power supply unit 10 and cartridges 20 and 30 .
  • the power supply unit 10 incorporates a power supply unit 111, a puff sensor 112, a power button sensor 113, a notification unit 114, a storage unit 115, a communication unit 116, and a control unit 117.
  • the cartridge 20 incorporates a heating portion 211 , a liquid guiding portion 212 and a liquid storing portion 213 .
  • a flavor source 311 is built in the cartridge 30 .
  • One end of cartridge 30 is used as mouthpiece 31 .
  • An air flow path 40 connected to the air inlet 21 is formed inside the cartridges 20 and 30 .
  • the power supply unit 111 is a device that stores power necessary for operation.
  • the power supply unit 111 supplies electric power to each unit constituting the aerosol generation device 1 through control by the control unit 117 .
  • the power supply unit 111 is composed of a rechargeable battery such as a lithium ion secondary battery, for example.
  • the puff sensor 112 is a sensor that detects inhalation of aerosol by the user, and is configured by, for example, a flow rate sensor. Puff sensor 112 is an example of a first sensor.
  • the power button sensor 113 is a sensor that detects an operation on the power button 11 (see FIG. 1), and is composed of, for example, a pressure sensor. In addition to the puff sensor 112 and the power button sensor 113, the power supply unit 10 is provided with various sensors.
  • the notification unit 114 is a device used to notify the user of information.
  • the notification unit 114 includes, for example, a light emitting device, a display device, a sound output device, and a vibration device.
  • the storage unit 115 is a device that stores various information necessary for the operation of the aerosol generator 1 .
  • a nonvolatile storage medium such as a flash memory is used for the storage unit 115 .
  • the communication unit 116 is a communication interface conforming to a wired or wireless communication standard. Wi-Fi (registered trademark) and Bluetooth (registered trademark), for example, are used as communication standards.
  • the control unit 117 is a device that functions as an arithmetic processing unit and a control unit, and controls overall operations in the aerosol generation device 1 through execution of various programs.
  • the liquid storage unit 213 is a tank that stores the aerosol source. Aerosol is generated by atomization of an aerosol source stored in liquid reservoir 213 . Liquids such as water and polyhydric alcohols such as glycerin and propylene glycol are used as aerosol sources.
  • the aerosol source may include tobacco-derived or non-tobacco-derived flavoring ingredients. If the aerosol-generating device 1 is a medical inhaler such as a nebulizer, the aerosol source may contain a medicament.
  • the liquid guide section 212 is a member that guides and holds the liquid aerosol source from the liquid storage section 213 to the heating area.
  • a member called a wick made by twisting a fiber material such as glass fiber or a porous material such as porous ceramic is used for the liquid guide portion 212 .
  • the liquid guiding part 212 is composed of a wick, the aerosol source stored in the liquid storing part 213 is guided to the heating area by capillary action of the wick.
  • the heating unit 211 is a member that heats the aerosol source held in the heating region to atomize the aerosol source and generate an aerosol.
  • the heating part 211 is a coil and is wound around the liquid guiding part 212 .
  • the area around which the coil is wound in the liquid guide portion 212 serves as a heating area. Due to the heat generated by the heating unit 211, the temperature of the aerosol source held in the heating area rises to the boiling point to generate an aerosol.
  • the heating unit 211 generates heat by power supply from the power supply unit 111 . Power supply to the heating unit 211 is started when a predetermined condition is satisfied. Predetermined conditions include, for example, the user's start of suction, pressing of the power button 11 a predetermined number of times, and input of predetermined information. However, in the case of the present embodiment, power supply to heating unit 211 is started upon detection of suction.
  • Power supply to heating unit 211 is stopped when a predetermined condition is satisfied.
  • Predetermined conditions include, for example, the end of suction by the user, the end of the main heating time described later, the long press of the power button 11, and the input of predetermined information.
  • the power supply to the heating unit 211 stops when the suction ends.
  • the heating unit 211 here is an example of a load that consumes power.
  • Flavor source 311 is a component that imparts a flavor component to the aerosol generated within cartridge 20 .
  • the flavor source 311 includes tobacco-derived or non-tobacco-derived flavor components.
  • An air flow path 40 passing through the insides of the cartridges 20 and 30 is a flow path for air and aerosol inhaled by the user.
  • the air flow path 40 has a tubular structure with the air inflow hole 21 as an air inlet and the air outflow hole 42 as an air outlet.
  • a liquid guide portion 212 is arranged on the upstream side of the air flow path 40, and a flavor source 311 is arranged on the downstream side thereof.
  • the air that has flowed in through the air inflow hole 21 is mixed with the aerosol generated by the heating section 211 .
  • the mixed gas passes through the flavor source 311 and is transported to the air outlet holes 42 as indicated by arrows 41 .
  • the gas in which the aerosol and air are mixed is imparted with the flavor component of the flavor source 311 when passing through the flavor source 311 . It is also possible to use the flavor source 311 without attaching it to the cartridge 30 .
  • the mouthpiece 31 is a member held by the user when inhaling.
  • the mouthpiece 31 is provided with an air outlet hole 42 .
  • the user can take in the gas in which the aerosol and the air are mixed into the oral cavity.
  • An example of the internal configuration of the aerosol generator 1 has been described above, but the configuration shown in FIG. 2 is just one form.
  • the aerosol generator 1 can be configured without the cartridge 30 . In that case, the cartridge 20 is provided with a mouthpiece 31 .
  • the aerosol generator 1 can also include multiple types of aerosol sources.
  • a plurality of types of aerosol generated from a plurality of types of aerosol sources may be mixed in the air flow path 40 to cause a chemical reaction, thereby generating another type of aerosol.
  • the means for atomizing the aerosol source is not limited to heating by the heating unit 211 .
  • induction heating techniques may be used to atomize the aerosol source.
  • FIG. 3 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the first embodiment.
  • Control by the control unit 117 is realized through execution of a program. Therefore, the control unit 117 is a form of computer.
  • the symbol S is used to mean step.
  • the “main heating time” is used to mean the time during which the aerosol source held in the liquid guide section 212 (see FIG. 2) is heated and atomized to generate an aerosol.
  • power supply to the heating unit 211 coincides with suction of the aerosol generating device 1 (see FIG. 1) by the user.
  • inhalation of the aerosol generating device 1 by the user is also referred to as "inhalation of aerosol" generated from the aerosol source.
  • the temperature of the heating unit 211 rises when power supply is started, and decreases when power supply is stopped. In the case of the present embodiment, the temperature of the heating unit 211 rises above the boiling point of the aerosol when power supply is started, and drops below the boiling point of the aerosol when power supply is stopped.
  • the controller 117 determines whether or not the puff sensor 112 has detected the start of suction (step 1). If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1. On the other hand, when the user's start of aerosol inhalation is detected, the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then obtains the last puff interval (step 2).
  • the last puff interval is given by the time from the end of the previous suction (puff) to the start of the current suction (puff).
  • the puff interval may be measured, for example, by a timer, or may be calculated as the difference between the last suction end time and the current suction start time.
  • the time is acquired, for example, from a timer built in the control unit 117 or an integrated circuit that realizes the timer function.
  • the control unit 117 determines whether the puff interval is shorter than the first period (step 3).
  • the first period is set in consideration of the ability to supply the aerosol source by the liquid guide section 212 and the time when the liquid may dry up.
  • the first period is 10 seconds, for example. Of course, this value is an example. It should be noted that the first period is not an absolute value, but differs depending on the adopted heating mode and the like, as described in other embodiments described later.
  • the control section 117 obtains a negative result in step 3 .
  • the controller 117 sets the current main heating time to the reference time LT1 (step 4).
  • the reference time LT1 here is an example of the second period. In this embodiment, for example, 2.4 seconds is used as the reference time. Of course, this value is an example of the reference time.
  • the reference time is set to a time during which liquid drying does not occur due to inhalation of aerosol by an assumed standard user when the puff interval is longer than the threshold.
  • the control section 117 obtains a positive result in step 3. This case is called a "short puff".
  • a short puff is a state in which the puff interval is shorter than the first period.
  • the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5).
  • a time LT2 shorter than the reference time (step 5).
  • the main heating time is shortened, and the voltage value and current value supplied to the heating unit 211 are the same regardless of the difference in the puff interval.
  • 1.7 seconds for example, is used as the time LT2.
  • this value is an example of the main heating time for short puffs. The shorter the time LT2, the more difficult it is for the liquid drying phenomenon, in which no aerosol is generated even if the aerosol source is heated, to occur.
  • the controller 117 determines whether or not it is time to finish the main heating (step 6).
  • the main heating is ended by, for example, the end of the set main heating time, the end of aerosol suction by the user, or a forced end operation. Therefore, even if the set main heating time remains, the power supply to the heating unit 211 is finished when it is determined that the main heating is finished.
  • the elapse of the main heating time is monitored by the elapsed time from the start of power supply to the heating unit 211 . It should be noted that, for example, a long press of the power button 11 (see FIG. 1) is used for the forced termination operation.
  • Pressing the power button 11 for a long time means that the power button 11 is continuously pressed for a predetermined time or longer. For example, when the power button 11 is pressed for three seconds or more, the control unit 117 determines that a long press operation has been performed.
  • step 6 While a negative result is obtained in step 6, the control unit 117 repeats the determination in step 6. During this time, power supply to the heating unit 211 is continued. On the other hand, when a positive result is obtained in step 6, the control section 117 terminates the main heating (step 7). That is, power supply to the heating unit 211 is stopped. Thus, one cycle of suction is completed. In the case of a short puff, the main heating time is shorter than the reference time, so the amount of power supplied to the heating unit 211 during one suction cycle is smaller than the amount of power supplied in the case of the reference time.
  • FIG. 4 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in the first embodiment.
  • (A) shows an example of the timing of suction (puff)
  • (B) shows an example of setting the main heating time.
  • the vertical axis in FIG. 4A is puff intensity
  • the vertical axis in FIG. 4B is heating intensity
  • the horizontal axis in FIGS. 4A and 4B is time.
  • the puff intensity is detected by a puff sensor.
  • the strength of the puff is detected by the presence or absence of the puff, but it may be defined as the amount of air sucked.
  • the intensity of heating is the amount of electric power, and is given by the product of the voltage value and the current value supplied to the heating unit 211 .
  • the number of suctions (puffs) is five.
  • the interval between the first and second puffs is IT1
  • the interval between the second and third puffs is IT2
  • the interval between the third and fourth puffs is IT2.
  • the interval is IT3 and the interval between the 4th and 5th puffs is IT4.
  • the third and fourth puff intervals IT3 and IT4 are shorter than the first period. That is, the third and fourth puff intervals are determined as short puffs. Therefore, the first and second puff intervals IT1 and IT2 are not short puffs.
  • the main heating times of the first puff, the second puff, and the third puff are set to the reference time LT1, while the main heating times of the fourth puff and the fifth puff are set to the reference time LT1.
  • the time LT2 is set to be shorter than the time LT1.
  • the aerosol suction period by the user and the heating time of the heating unit 211 are matched within the preset main heating time, but the main heating may be started by turning on the power button 11. However, the main heating may be continued until the main heating time elapses even after the user finishes inhaling. Although the puff interval in these cases does not coincide with the time during which the main heating is stopped, it is possible to effectively suppress liquid drying during short puffs, as in the control example described above.
  • the puff interval is defined as a period during which power supply to heating unit 211 (see FIG. 2) is stopped.
  • power supply to the heating unit 211 is started by a predetermined operation of the power button 11 (see FIG. 1), and heating is performed when a preset main heating time elapses or when the user forcibly terminates power supply.
  • Power supply to the unit 211 ends.
  • the power supply to the heating unit 211 may be executed in accordance with the inhalation of the aerosol by the user.
  • FIG. 5 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the second embodiment.
  • the parts corresponding to those in FIG. 3 are indicated by the reference numerals. Control by the control unit 117 is realized through execution of a program.
  • Control unit 117 in the present embodiment determines whether or not the start of heating by heating unit 211 has been detected (step 11). That is, it is determined whether or not the main heating has started.
  • the start of heating by the heating unit 211 is detected, for example, by an ON operation of the power button 11 (see FIG. 1), the start of suction by the user, or the like.
  • the ON operation here is an operation for instructing the start of power supply to the heating unit 211, and means, for example, pressing the power button 11 for a long time.
  • the start of heating of the aerosol source by the heating part 211 is detected by detection of current for main heating, detection of voltage for main heating, change in resistance value of the heating part 211, temperature rise of the liquid guide part 212, and the like. may
  • the control unit 117 obtains a negative result in step 11 . While a negative result is obtained in step 11, the control unit 117 repeats the determination of step 11. On the other hand, when the start of heating by the heating unit 211 is detected, the control unit 117 obtains a positive result in step 11 .
  • the control unit 117 starts main heating (step 11), and then obtains the last heating stop time (step 12).
  • the immediately preceding heating stop time is given by the elapsed time from the end of heating in the previous suction cycle to the start of heating in the current suction cycle.
  • the heating stop time may be measured, for example, by a timer, or may be calculated as the difference between the time when the previous heating was finished and the time when the current heating was started.
  • the controller 117 determines whether or not the heating stop time is shorter than the first period (step 13).
  • the first period here is set in consideration of the ability to supply the aerosol source by the liquid guide section 212 and the time when the liquid may dry up.
  • the first period is, for example, 10 seconds. Of course, this value is an example. It should be noted that the first period is not an absolute value, but differs depending on the adopted heating mode and the like, as described in other embodiments described later.
  • the controller 117 obtains a negative result in step 13 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4). On the other hand, if the heating stop time is shorter than the first period, that is, if the short puff condition is met, the controller 117 sets the current main heating time to LT2, which is shorter than the reference time (step 5). After setting the main heating time in step 4 or step 5, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
  • control unit 117 in the present embodiment detects the occurrence of short puffs that cause liquid drying, focusing on the heating stop time, which is the period during which aerosol generation is stopped. Therefore, it is possible to effectively suppress the occurrence of dryness. Also in this embodiment, in the case of a short puff, the main heating time is shorter than the reference time, so the amount of power supplied to the heating unit 211 during one cycle of suction is equal to the amount of power supplied in the case of the reference time. become smaller.
  • FIG. 6 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in the second embodiment.
  • (A) shows an example of the timing of suction (puff), and
  • (B) shows an example of setting the main heating time.
  • the vertical axis in FIG. 6A is puff intensity
  • the vertical axis in FIG. 6B is heating intensity
  • the horizontal axis in FIGS. 6A and 6B is time.
  • FIGS. 6A and 6B show a case where the period during which the heating unit 211 is heated does not match the period during which the user sucks.
  • heating of the heating unit 211 is started by an ON operation of the power button 11 or the like, and heating is finished after a pre-set main heating time elapses.
  • the number of times of suction (puff) is five.
  • the heating stop time that gives the interval between the first puff and the second puff is IT11
  • the heating stop time that gives the interval between the second puff and the third puff is IT12.
  • the heating stop time that provides the interval between the third puff and the fourth puff is IT13
  • the heating stop time that provides the interval between the fourth puff and the fifth puff is IT14.
  • the third and fourth puff intervals are shorter than the first period. That is, the third and fourth puff intervals are determined as short puffs.
  • the main heating times of the first puff, the second puff, and the third puff are set to the reference time LT1, while the main heating times of the fourth puff and the fifth puff are set to the reference time LT1.
  • the time LT2 is set to be shorter than the time LT1.
  • the puff interval is defined as the elapsed time from the stoppage of power supply to the heating unit 211 (see FIG. 2) immediately before to the start of current suction. In other words, it corresponds to the combined control of the first embodiment and the second embodiment.
  • Other configurations of the aerosol generator 1 (see FIG. 1) in the present embodiment are the same as in the first embodiment. That is, the external configuration and internal configuration of the aerosol generator 1 are the same as those of the first embodiment.
  • FIG. 7 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the third embodiment. In FIG. 7, parts corresponding to those in FIGS. 3 and 5 are indicated by reference numerals. Control by the control unit 117 is realized through execution of a program.
  • Control unit 117 in the present embodiment determines whether or not the start of heating by heating unit 211 has been detected (step 11). If the start of heating by the heating unit 211 is not detected, the control unit 117 obtains a negative result in step 11 . While a negative result is obtained in step 11, the control unit 117 repeats the determination of step 11. On the other hand, when the start of heating by the heating unit 211 is detected, the control unit 117 obtains a positive result in step 11 . When a positive result is obtained in step 11, the control unit 117 acquires the last heating end time (step 21). In the case of the present embodiment, the heating end time refers to the time when the main heating is completed.
  • the controller 117 determines whether or not the puff sensor 112 has detected the start of suction (step 1). If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1. On the other hand, when the user's start of aerosol inhalation is detected, the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the control section 117 acquires the current puff start time (step 22). The current puff start time is the time when a positive result was obtained in step 1.
  • the control unit 117 calculates the elapsed time from the last heating end time to the current puff start time (step 23). After the elapsed time is calculated, the controller 117 determines whether the elapsed time is shorter than the first period (step 24). If the elapsed time is longer than or equal to the first period, the control section 117 obtains a negative result in step 24 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4). On the other hand, if the elapsed time is shorter than the first period, the control section 117 obtains a positive result in step 24 . In this case, the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5).
  • the control unit 117 After setting the main heating time in step 4 or step 5, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
  • the control unit 117 in the present embodiment focuses on the elapsed time from the end of the previous heating to the start of the current suction of the aerosol, and the short puff that causes the liquid to dry up. Detect occurrence. Therefore, it is possible to effectively suppress the occurrence of dryness.
  • the main heating time is shorter than the reference time, so the amount of power supplied to the heating unit 211 during one cycle of suction is equal to the amount of power supplied in the case of the reference time. become smaller.
  • FIG. 8 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in the third embodiment.
  • (A) shows an example of suction (puff) timing
  • (B) shows an example of setting the main heating time.
  • parts corresponding to those in FIG. 4 are shown with reference numerals.
  • the vertical axis in FIG. 8A is puff intensity
  • the vertical axis in FIG. 8B is heating intensity
  • the horizontal axis in FIGS. 8A and 8B is time.
  • FIGS. 8A and 8B also show a case where the period during which the heating unit 211 is heated does not match the period during which the user sucks.
  • the number of times of suction is five.
  • IT21 is the elapsed time that gives the interval between the first puff and the second puff
  • IT22 is the elapsed time that gives the interval between the second puff and the third puff
  • IT22 is the elapsed time that gives the interval between the second puff and the third puff.
  • the elapsed time giving the interval between the first puff and the fourth puff is IT23
  • the elapsed time giving the interval between the fourth and fifth puffs is IT24.
  • the third and fourth puff intervals are shorter than the first period. That is, the third and fourth puff intervals are determined as short puffs.
  • the main heating times of the first puff, the second puff, and the third puff are set to the reference time LT1, while the main heating times of the fourth puff and the fifth puff are set to the reference time LT1.
  • the time LT2 is set to be shorter than the time LT1.
  • the puff interval is defined as the period from when the power button 11 (see FIG. 1) is turned on to when it is turned off.
  • power supply to the heating unit 211 starts when the power button 11 is turned on, and power supply to the heating unit 211 ends when the preset main heating time elapses or the user turns off the power button 11 .
  • the termination of power supply due to the elapse of the preset main heating time is regarded as the termination of power supply due to the user's turning off operation.
  • FIG. 9 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the fourth embodiment.
  • parts corresponding to those in FIG. Control by the control unit 117 is realized through execution of a program.
  • Control unit 117 in the present embodiment determines whether or not an ON operation of power button 11 has been detected (step 31).
  • control unit 117 obtains a negative result in step 31 . While a negative result is obtained in step 31 , the control section 117 repeats the determination of step 31 . On the other hand, when the ON operation of the power button 11 is detected, the control unit 117 obtains a positive result in step 31 . When a positive result is obtained in step 31, the control unit 117 acquires the time of the current ON operation (step 32). When the time of the ON operation is acquired, the control unit 117 acquires the time of the previous OFF operation (step 33).
  • the control unit 117 calculates the elapsed time from the previous OFF operation to the current ON operation (step 34). After the elapsed time is calculated, the controller 117 determines whether the elapsed time is shorter than the first period (step 35). If the elapsed time is greater than or equal to the first period, the control section 117 obtains a negative result in step 35 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4). If the elapsed time is shorter than the first period, the control unit 117 gets a positive result in step 35 . In this case, the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5).
  • the control unit 117 After setting the main heating time in step 4 or step 5, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
  • the control unit 117 detects the occurrence of a short puff that causes liquid drying, based on the relationship between the first period and the elapsed time from the OFF operation to the ON operation of the power button 11. . Therefore, it is possible to effectively suppress the occurrence of dryness.
  • the main heating time is shorter than the reference time, so the amount of power supplied to the heating unit 211 during one cycle of suction is equal to the amount of power supplied in the case of the reference time. become smaller.
  • FIG. 10 is a diagram illustrating the relationship between the puff interval and the setting of the main heating time in the fourth embodiment.
  • (A) shows an example of the timing of suction (puff), and (B) shows an example of setting the main heating time.
  • parts corresponding to those in FIG. 4 are shown with reference numerals.
  • the vertical axis in FIG. 10A is puff intensity
  • the vertical axis in FIG. 10B is heating intensity
  • the horizontal axis in FIGS. 10A and 10B is time.
  • FIGS. 10A and 10B also show a case where the period during which the heating unit 211 is heated does not match the period during which the user sucks. That is, it represents the case where the user inhales the aerosol during an arbitrary period within the main heating period started by turning on the power button 11 .
  • the number of times of suction is five.
  • IT31 is the elapsed time that provides the interval between the first and second puffs
  • IT32 is the elapsed time that provides the interval between the second and third puffs
  • IT32 is the elapsed time that provides the interval between the second and third puffs.
  • the elapsed time giving the interval between the first puff and the fourth puff is IT33
  • the elapsed time giving the interval between the fourth and fifth puffs is IT34.
  • the third and fourth puff intervals are shorter than the first period. That is, the third and fourth puff intervals are determined as short puffs.
  • the main heating times of the first puff, the second puff, and the third puff are set to the reference time LT1, while the main heating times of the fourth puff and the fifth puff are set to the reference time LT1.
  • the time LT2 is set to be shorter than the time LT1.
  • the main heating time for that suction time is again set to the reference time LT1.
  • the ON operation and OFF operation of the power button 11 are targeted for detection. is detected, the control operation described in the present embodiment may be executed.
  • Embodiment 5 will explain an example of a technique for indirectly detecting the occurrence of a short puff.
  • reheating of the aerosol source is started before the liquid temperature of the aerosol source in the liquid guide section 212 has fully decreased.
  • This embodiment focuses on this phenomenon.
  • the external configuration of the aerosol generator 1 is the same as that of the first embodiment.
  • the internal configuration of the aerosol generator 1 assumed in this embodiment is partially different from that in the first embodiment.
  • FIG. 11 is a diagram schematically showing the internal configuration of the aerosol generator 1 assumed in Embodiment 5. As shown in FIG. In FIG. 11, parts corresponding to those in FIG. 2 are shown with reference numerals corresponding thereto.
  • the aerosol generator 1 shown in FIG. 11 is different from the aerosol generator 1 shown in FIG. 2 in that a coil temperature sensor 113A is provided.
  • the heating unit 211 is a coil.
  • a thermistor for example, is used for the coil temperature sensor 113A.
  • a thermistor is placed near the coil.
  • Coil temperature sensor 113A is an example of a second sensor.
  • the current value flowing through the heating unit 211 may be measured, or the voltage appearing in the resistor connected in series to the heating unit 211 may be measured.
  • the puff interval is short, the temperature of the heating unit 211 at the start of suction becomes higher than when the puff interval is long, and the resistance value of the heating unit 211 becomes large. Therefore, when the puff interval is short, the current is less likely to flow than when the puff interval is long.
  • Sensing of the temperature of the portion 211 is possible. For example, if a table that associates the current value or voltage value with the temperature of the heating unit 211 is prepared, the control unit 117 reads the temperature corresponding to the measured current value or voltage value from the table. Further, for example, if a conversion formula for the current value or voltage value and the temperature of the heating unit 211 is prepared, the control unit 117 substitutes the measured current value or voltage value for variables and calculates the corresponding temperature. .
  • FIG. 12 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the fifth embodiment.
  • Control by the control unit 117 is realized through execution of a program.
  • Control unit 117 in the present embodiment determines whether or not the puff sensor 112 has detected the start of suction (step 1). This determination is performed when main heating is initiated by the user's initiation of suction. As in the second embodiment, it may be determined whether or not the heating of the heating unit 211 has started. It may be determined whether or not an ON operation has been performed.
  • the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1. On the other hand, when the start of inhalation of aerosol by the user is detected, the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then acquires the temperature of the coil at the start of suction (step 41). The temperature of the coil is the temperature of the heating unit 211 . When the temperature of the coil is acquired, the control unit 117 determines whether the temperature of the coil at the start of suction is higher than the first temperature (step 42). The first temperature is set to an intermediate value between the temperature encountered for short puffs and the temperature encountered for non-short puffs.
  • the controller 117 obtains a negative result in step 42 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4). On the other hand, if the temperature of the coil is higher than the first temperature, the controller 117 obtains a positive result in step 42 . In this case, the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5). After setting the main heating time in step 4 or step 5, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
  • control unit 117 focuses on the temperature of the heating unit 211 that generates the aerosol, and detects the occurrence of short puffs that cause liquid drying. Therefore, it is possible to effectively suppress the occurrence of dryness. Also in this embodiment, in the case of a short puff, the main heating time is shorter than the reference time, so the amount of power supplied to the heating unit 211 during one cycle of suction is equal to the amount of power supplied in the case of the reference time. become smaller.
  • FIG. 13A and 13B are diagrams for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 5.
  • FIG. (A) shows a timing example of suction (puff)
  • (B) shows a temperature change of the heating unit 211
  • (C) shows a setting example of the main heating time.
  • the vertical axis in FIG. 13(A) is puff intensity
  • the vertical axis in FIG. 13(B) is temperature
  • the vertical axis in FIG. 13(C) is heating intensity.
  • the horizontal axis in FIGS. 13A to 13C is time.
  • 13A and 13B also show a case where the time during which the heating unit 211 is heated does not match the user's sucking period. That is, it represents the case where the user inhales the aerosol during an arbitrary period within the main heating period started by turning on the power button 11 .
  • the number of times of suction is five.
  • the interval between the first and second puffs, the interval between the second and third puffs, and the interval between the fourth and fifth puffs are not short puffs, It is assumed that the interval between the third puff and the fourth puff is a short puff. Therefore, in the example of FIG. 13B, the temperature TA of the heating unit 211 at the start of the second puff, at the start of the third puff, and at the start of the fifth puff is the first temperature. is in a lower state than However, the temperature TB of the heating unit 211 at the start of the fourth puff is higher than the first temperature.
  • the main heating time of the first puff, the second puff, the third puff, and the fifth puff is set to the reference time LT1
  • the main heating time for the fourth puff is set to LT2, which is shorter than the reference time LT1.
  • Embodiment 6 also describes an example of a technique for indirectly detecting the occurrence of short puffs. In the present embodiment, it is detected through a change in resistance that the heating portion 211 is in a high temperature state at the start of suction.
  • the external configuration of the aerosol generator 1 is the same as that of the first embodiment. However, the internal configuration of the aerosol generator 1 assumed in this embodiment is partially different from that in the first embodiment.
  • FIG. 14 is a diagram schematically showing the internal configuration of the aerosol generator 1 assumed in Embodiment 6. As shown in FIG. In FIG. 14, parts corresponding to those in FIG. 2 are shown with reference numerals.
  • the aerosol generator 1 shown in FIG. 14 is different from the aerosol generator 1 shown in FIG. 2 in that a resistance value sensor 113B is provided.
  • the resistance value sensor 113B measures the resistance value of the heating unit 211 .
  • the resistance value sensor 113B detects the resistance value of the heating unit 211 by measuring the value of current flowing through the heating unit 211, for example. This method detects changes in the resistance value due to temperature changes in the heating unit 211 as changes in the current value.
  • the resistance value sensor 113B detects a change in the resistance value of the heating unit 211 by measuring the voltage value appearing across the resistor connected in series with the heating unit 211, for example. This method detects changes in the resistance value of the heating unit 211 due to temperature changes through changes in voltage appearing across a resistor connected in series to the heating unit 211 .
  • FIG. 15 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the sixth embodiment.
  • Control by the control unit 117 is realized through execution of a program.
  • Control unit 117 in the present embodiment also determines whether or not the start of suction is detected by puff sensor 112 (step 1). This determination is performed when main heating is initiated by the user's initiation of suction. As in the second embodiment, it may be determined whether or not the heating of the heating unit 211 has started. It may be determined whether or not an ON operation has been performed.
  • control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1. On the other hand, when the user's start of aerosol inhalation is detected, the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the control unit 117 starts main heating (step 1100), and then acquires the resistance value of the coil at the start of suction (step 51). The resistance value of the coil is the resistance value of the heating unit 211 .
  • the control unit 117 determines whether or not the resistance value of the coil at the start of suction is greater than the first resistance value (step 52).
  • the first resistance value is determined according to the actual measurement value of the change in the resistance value according to the elapsed time from the end of the power supply to the heating unit 211 .
  • the first resistance value is set to an intermediate value between the resistance value that appears for short puffs and the resistance value that appears for non-short puffs.
  • the controller 117 obtains a negative result in step 52 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4). On the other hand, if the resistance value of the coil is greater than the first resistance value, the controller 117 obtains a positive result in step 52 . In this case, the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5). After setting the main heating time in step 4 or step 5, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
  • control unit 117 focuses on the resistance value of the heating unit 211 that generates the aerosol, and detects the occurrence of short puffs that cause liquid drying. Therefore, it is possible to effectively suppress the occurrence of dryness.
  • the main heating time is shorter than the reference time, so the amount of power supplied to the heating unit 211 during one cycle of suction is equal to the amount of power supplied in the case of the reference time. become smaller.
  • FIG. 16 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in the sixth embodiment.
  • A shows an example of a suction (puff) timing
  • B shows a change in the resistance value of the heating unit 211
  • C shows an example of setting the main heating time.
  • the vertical axis in FIG. 16(A) is the puff intensity
  • the vertical axis in FIG. 16(B) is the resistance value
  • the vertical axis in FIG. 16(C) is the heating intensity.
  • the horizontal axis in FIGS. 16A to 16C is time.
  • 16A and 16B also show a case where the period during which the heating unit 211 is heated does not match the period during which the user sucks. That is, it represents a case where the user inhales the aerosol during an arbitrary period within the main heating period started by turning on the power button 11 .
  • the number of times of suction is five.
  • the interval between the first and second puffs, the interval between the second and third puffs, and the interval between the fourth and fifth puffs are not short puffs, It is assumed that the interval between the third puff and the fourth puff is a short puff. Therefore, in the example of FIG. 16B, the resistance value RA of the coil at the start of the second puff, at the start of the third puff, and at the start of the fifth puff is higher than the first resistance value. is also at a low level. This is because the temperature of the coil has decreased and the resistance value has also decreased as a result of the passage of time since the end of the previous heating.
  • the resistance value RB of the coil at the start of the fourth puff is higher than the first resistance value. This is because the interval between the third puff and the fourth puff is short, and the temperature of the heating unit 211 has not sufficiently decreased. Therefore, in the example shown in FIG. 16C, the main heating times for the first, second, third, and fifth puffs are set to the reference time LT1, while the main heating time for the fourth puff is set to LT1. , is set to a time LT2 shorter than the reference time LT1. As a result, even when the puff interval until the start of the fourth puff is short and the supply amount of the aerosol source supplied to the heating unit 211 before the start of suction is small, the main heating time is shortened from the reference time LT2. No dryness occurs during the fourth puff.
  • Embodiment 7 also describes an example of a technique for indirectly detecting the occurrence of short puffs. In this embodiment, it is detected through the temperature change of the liquid guide portion 212 that the heating portion 211 is in a high temperature state at the start of suction. Also in the present embodiment, the external configuration of the aerosol generator 1 is the same as that of the first embodiment. However, the internal configuration of the aerosol generator 1 assumed in this embodiment is partially different from that in the first embodiment.
  • FIG. 17 is a diagram schematically showing the internal configuration of the aerosol generator 1 assumed in Embodiment 7. As shown in FIG. In FIG. 17, parts corresponding to those in FIG.
  • the aerosol generator 1 shown in FIG. 17 is different from the aerosol generator 1 shown in FIG. 2 in that a liquid temperature sensor 113C is provided.
  • the temperature of the liquid guide portion 212 is measured by the liquid temperature sensor 113C. Therefore, the liquid temperature sensor 113 ⁇ /b>C is arranged near the liquid guide section 212 .
  • a temperature sensor or a thermistor, for example, is used as the liquid temperature sensor 113C.
  • Liquid temperature sensor 113C is an example of a third sensor.
  • FIG. 18 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the seventh embodiment. In FIG. 18, parts corresponding to those in FIG. 3 are shown with reference numerals. Control by the control unit 117 is realized through execution of a program.
  • Control unit 117 in the present embodiment also determines whether or not the start of suction is detected by puff sensor 112 (step 1). This determination is performed when main heating is initiated by the user's initiation of suction. As in the second embodiment, it may be determined whether or not the heating of the heating unit 211 has started. It may be determined whether or not an ON operation has been performed. If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
  • the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then acquires the liquid temperature at the start of suction (step 61). The liquid temperature is the temperature of the liquid guide portion 212 . When the temperature of the liquid guide part 212 is obtained, the control part 117 determines whether or not the liquid temperature at the start of suction is higher than the second temperature (step 62). The second temperature is determined according to the actual measurement value of the liquid temperature change according to the elapsed time from the end of power supply to the heating unit 211 .
  • the control section 117 obtains a negative result in step 62 .
  • the controller 117 sets the current main heating time to the reference time LT1 (step 4).
  • the controller 117 obtains a positive result in step 62 .
  • the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5). After setting the main heating time in step 4 or step 5, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
  • control unit 117 focuses on the temperature of the liquid in the heating unit 211 that generates the aerosol, and detects the occurrence of short puffs that cause the liquid to dry up. Therefore, it is possible to effectively suppress the occurrence of dryness.
  • the main heating time is shorter than the reference time, so the amount of power supplied to the heating unit 211 during one cycle of suction is equal to the amount of power supplied in the case of the reference time. become smaller.
  • FIG. 19 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in the seventh embodiment.
  • (A) shows an example of a suction (puff) timing
  • (B) shows a change in the temperature of the liquid guide section 212
  • (C) shows an example of setting the main heating time.
  • the vertical axis in FIG. 19(A) is puff strength
  • the vertical axis in FIG. 19(B) is liquid temperature
  • the vertical axis in FIG. 19(C) is heating strength.
  • the horizontal axis in FIGS. 19A to 19C is time.
  • FIGS. 19A to 19C is time.
  • FIG. 19A and 19B also show a case where the time during which the heating unit 211 is heated does not match the user's sucking period. That is, it represents a case where the user inhales the aerosol during an arbitrary period within the main heating period started by turning on the power button 11 .
  • FIG. 19B shows how the liquid temperature starts to rise at the same time as the main heating starts.
  • the number of suctions (puffs) is five.
  • the interval between the first and second puffs, the interval between the second and third puffs, and the interval between the fourth and fifth puffs are not short puffs, It is assumed that the third and fourth puff intervals are short puffs. Therefore, in the example of FIG. 19B, the liquid temperature TA at the start of the second and third puffs and the liquid temperature TC at the start of the fifth puff are the second values. lower than the temperature. This is because heating is started in a state where the liquid temperature has dropped to or near room temperature as a result of the passage of time since the end of the previous heating.
  • the liquid temperature TB at the start of the fourth puff is higher than the second temperature. This is because the interval between the third puff and the fourth puff is short, and the temperature of the liquid guide portion 212 has not sufficiently decreased. Therefore, in the example shown in FIG. 19C, the main heating time of the first puff, the second puff, the third puff, and the fifth puff is set to the reference time LT1, The main heating time for the fourth puff is set to LT2, which is shorter than the reference time LT1.
  • the main heating time is shortened from the reference time LT2.
  • No dryness occurs during the fourth puff.
  • the liquid temperature at the time when heating of the heating unit 211 starts is the timing at which the temperature becomes the lowest in one cycle. In this case, a lower value than the example of FIG. 19 is used for the second temperature.
  • FIG. 20 is a diagram schematically showing the internal configuration of the aerosol generator 1 assumed in the eighth embodiment.
  • the aerosol generator 1 shown in FIG. 20 is different from the aerosol generator 1 shown in FIG. 2 in that an air temperature sensor 113D is provided. Air temperature sensor 113D is intended for measuring ambient temperature. Therefore, it is desirable to place the air temperature sensor 113D as far away from the heat source in the device as possible.
  • a liquid temperature sensor may be arranged near liquid reservoir 213 .
  • FIG. 21 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the eighth embodiment.
  • parts corresponding to those in FIG. Control by the control unit 117 is realized through execution of a program.
  • Control unit 117 in the present embodiment also determines whether or not the start of suction is detected by puff sensor 112 (step 1). This determination is performed when main heating is initiated by the user's initiation of suction.
  • step 1 it may be determined whether or not the heating of the heating unit 211 has started. It may be determined whether or not the ON operation has been performed. If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
  • the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then obtains the air temperature at the start of suction (step 71). The air temperature is the air temperature around the aerosol generator 1 . When the ambient temperature is acquired, the control unit 117 determines whether or not the temperature at the start of suctioning is lower than a threshold value for temperature determination (hereinafter referred to as "temperature threshold value”) (step 72).
  • the air temperature threshold is determined according to the relationship between the viscosity of the aerosol source and air temperature.
  • the controller 117 obtains a negative result in step 72 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4). On the other hand, if the temperature is lower than the temperature threshold, the controller 117 obtains a positive result in step 72 . In this case, the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5). After setting the main heating time in step 4 or step 5, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
  • FIG. 22 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in the eighth embodiment.
  • (A) shows an example of a suction (puff) timing
  • (B) shows a change in ambient temperature
  • (C) shows an example of setting the main heating time.
  • parts corresponding to those in FIG. 4 are shown with reference numerals.
  • the vertical axis in FIG. 22A is puff intensity
  • the vertical axis in FIG. 22B is temperature
  • the vertical axis in FIG. 22C is heating intensity. Note that the horizontal axis in FIGS. 22A to 22C is time.
  • FIGS. 22A and 22C also show cases where the time during which the heating unit 211 is heated does not match the user's suction period. That is, it represents the case where the user inhales the aerosol during an arbitrary period within the main heating period started by turning on the power button 11 .
  • FIG. 22(B) shows changes in ambient temperature where the aerosol generator 1 is used. In FIG. 22(B), it is assumed that the air temperature drops enough to affect the viscosity of the aerosol source as a result of moving from a heated room to the outdoors in winter.
  • the number of times of suction is five.
  • the interval between the first and second puffs, the interval between the second and third puffs, the interval between the third and fourth puffs, and the fourth puff and the fifth puff interval are not short puffs.
  • the 1st, 2nd and 3rd puffs were performed indoors, while the 4th and 5th puffs were performed outdoors. Therefore, in FIG. 22B, the temperature drops between the third puff and the fourth puff.
  • the main heating time of the first puff, the second puff, and the third puff is set to the reference time LT1
  • the fourth puff and 5 The main heating time of the first puff is set to a time LT2 shorter than the reference time LT1.
  • FIG. 23 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the ninth embodiment. In FIG. 23, parts corresponding to those in FIG. 3 are shown with reference numerals. Control by the control unit 117 is realized through execution of a program. Control unit 117 in the present embodiment determines whether or not the start of suction has been detected (step 1). If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
  • the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the control unit 117 starts main heating (step 1100), and then acquires a history of past puff intervals (step 81).
  • the number of puff interval histories to be acquired is preset. For example, a history of 3 to 5 times is acquired. Since the purpose is to prevent the liquid from drying up in the next suction session, even if the number of samples to be acquired is increased too much, the latest suction tendency cannot be determined. On the other hand, if the number of histories to be acquired is increased, it becomes possible to analyze the user's long-term inhalation tendency.
  • the control unit 117 predicts the next puff interval (step 82).
  • the latest puff interval is obtained each time a new suction cycle is started, but in the present embodiment, the puff interval is predicted before the next suction cycle is started. .
  • the control unit 117 determines whether or not the predicted next puff interval is shorter than the first period (step 83). If the predicted next puff interval is greater than or equal to the first period, the control section 117 obtains a negative result in step 83 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4). On the other hand, if the predicted next puff interval is shorter than the first period, the controller 117 obtains a positive result in step 83 . In this case, the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5). After setting the main heating time in step 4 or step 5, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
  • control unit 117 preemptively shortens the main heating time when the predicted value satisfies the short puff condition.
  • the next main heating time is the same as in the above-described other embodiments.
  • the main heating time is shorter than in the above-described other embodiments.
  • the puff interval until the next suction time is substantially longer, and drying up of the liquid is less likely to occur.
  • the main heating time is shorter than the reference time. power consumption.
  • FIG. 24 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in the ninth embodiment.
  • A shows an example of the timing of suction (puff)
  • B shows an example of setting the main heating time when the predicted puff interval is equal to or greater than the threshold
  • C shows an example of the predicted puff interval than the threshold.
  • An example of setting the main heating time when it is short is shown.
  • parts corresponding to those in FIG. 4 are shown with reference numerals.
  • the vertical axis in FIG. 24(A) is puff intensity
  • the vertical axis in FIGS. 24(B) and (C) is heating intensity.
  • the horizontal axis in FIGS. 24A to 24C is time.
  • the next puff interval is predicted from N puff intervals before the M+1 puff starts.
  • the predicted puff interval is not a short puff, so the main heating time is set to the reference time LT1.
  • the predicted puff interval is a short puff, so the main heating time is set to LT2, which is shorter than the reference time.
  • the interval of the next suction time is predicted from the tendency of a plurality of times in the past. The power supplied to the predicted aspiration times may be controlled.
  • the main heating time is set using the puff intervals of a plurality of times in the past.
  • the actual heating time of the ongoing suction is set after the start of the current suction, as in the first to seventh embodiments, instead of prediction.
  • Other configurations of the aerosol generator 1 (see FIG. 1) in the present embodiment are the same as in the first embodiment. That is, the external configuration and internal configuration of the aerosol generating device 1 are the same as those of the first embodiment.
  • FIG. 25 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the tenth embodiment.
  • Control by the control unit 117 is realized through execution of a program.
  • Control unit 117 in the present embodiment determines whether or not the start of suction has been detected (step 1). If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
  • the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the control unit 117 starts main heating (step 1100), and then acquires the history of past puff intervals including the current puff interval (step 91). . In the case of the present embodiment, actual measurements are used instead of predictions, so the current puff interval is also measured.
  • the number of puff interval histories to be acquired is preset. For example, a history of 3 to 5 times is acquired. The number of puff interval histories to be acquired is set within a range in which the most recent inhalation tendency can be detected.
  • the control unit 117 acquires the number of consecutive puff intervals shorter than the threshold up to the present time (step 92).
  • the higher the number of consecutive times the higher the possibility that the liquid temperature of the aerosol source at the start of suction is higher, and the higher the possibility that the aerosol source will not be supplied in time during the main heating. Note that instead of the number of consecutive times up to this time, the maximum number of consecutive times in the acquired history may be obtained. It can be seen that the liquid temperature may have increased even if it is not a continuous number of times up to this time.
  • the control unit 117 determines whether or not the number of consecutive times is greater than the first number (step 93). If the number of consecutive times is equal to or less than the first number of times, the control unit 117 obtains a negative result in step 93 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4). On the other hand, if the consecutive number of times is greater than the first number of times, the control section 117 obtains a positive result in step 93 . In this case, the controller 117 sets the current main heating time to a shorter time LT3 ( ⁇ LT1) as the number of times increases (step 94).
  • ⁇ LT1 shorter time LT3
  • the control unit 117 sets the time LT3 to a shorter value step by step as the number of consecutive times increases.
  • the main heating time is shortened by 0.2 seconds ⁇ the number of consecutive times.
  • This example is an example in which the time LT3 is linearly shortened according to the number of consecutive times.
  • the time LT3 may be shortened non-linearly according to a quadratic curve or the like.
  • control unit 117 After setting the main heating time in step 4 or step 94, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
  • control unit 117 shortens the main heating time as the number of times short puffs appear in succession increases. This is because, as the number of consecutive short puffs increases, the main heating continues in a state where the temperature of the liquid in the aerosol source is high, and the increase in the amount of generated aerosol tends to cause the liquid to dry up.
  • the more the number of consecutive short puffs increases the shorter the main heating time, so the drying up of the liquid is effectively suppressed.
  • FIG. 26 is a diagram illustrating the relationship between the puff interval and the setting of the main heating time in the tenth embodiment.
  • A shows an example of the timing of suction (puff)
  • B shows an example of setting the main heating time when the number of consecutive short puffs is the first number or less
  • C shows a continuous short puff.
  • An example of setting the main heating time when the number of times of heating is greater than the first number of times is shown.
  • the vertical axis in FIG. 26(A) is puff intensity
  • the vertical axis in FIGS. 26(B) and (C) is heating intensity
  • the horizontal axis in FIGS. 26(A) to (C) is time. .
  • 26A depicts how the number of consecutive short puffs up to the current time is acquired among the N puff intervals up to the M+1th puff.
  • the number of consecutive times is equal to or less than the first number of times, so the main heating time is set to the reference time LT1.
  • the main heating time is set to a time LT3 shorter than the reference time.
  • Embodiment 11 a modification of the tenth embodiment will be described.
  • the number of consecutive short puffs is counted, but if the puff interval even slightly exceeds the threshold value, the number is once reset.
  • FIG. 27 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the eleventh embodiment.
  • Control by the control unit 117 is realized through execution of a program.
  • Control unit 117 in the present embodiment detects the start of suction (step 1). If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1. On the other hand, when the start of inhalation of aerosol by the user is detected, the control unit 117 obtains a positive result in step 1 .
  • step 1 If a positive result is obtained in step 1, the control unit 117 starts main heating (step 1100), and then acquires the history of past puff intervals including the current puff interval (step 91). . In the case of the present embodiment, actual measurements are used instead of predictions, so the current puff interval is also measured.
  • the control unit 117 determines that the puff interval shorter than the value obtained by adding the margin to the threshold value for judging short puffs (indicated as “threshold value + ⁇ ” in FIG. 27) Obtain the number of consecutive times (step 101).
  • a value obtained by adding a margin to the short puff determination threshold is a pseudo short puff determination threshold.
  • the margin value ⁇ is given in advance through an empirical rule or the like.
  • the margin value ⁇ is an example of the third period.
  • the number of times acquired by step 101 is likely to be greater than the number of times acquired by step 92 (see FIG. 25).
  • the control unit 117 determines whether or not the number of consecutive times is greater than the first number (step 93).
  • step 93 If the number of consecutive times is equal to or less than the first number of times, the control unit 117 obtains a negative result in step 93 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4). On the other hand, if the consecutive number of times is greater than the first number of times, the control section 117 obtains a positive result in step 93 . In this case, the controller 117 sets the current main heating time to a shorter time LT3 ( ⁇ LT1) as the number of times increases. (step 94). After setting the main heating time in step 4 or step 94, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction. In the case of the present embodiment, the control unit 117 counts the number of continuous puffs including pseudo short puffs, so even if the pseudo short puffs are continuous, dryness is effectively suppressed.
  • the main heating time is a fixed value when it is determined that the puff is short. That is, it was the time LT2 given in advance.
  • the amount of power supplied to the heating unit 211 (see FIG. 2) during short puffs was always constant.
  • the amount of electric power supplied to the heating unit 211 during short puffs is made smaller as the immediately preceding puff interval is shorter.
  • Other configurations of the aerosol generator 1 (see FIG. 1) in the present embodiment are the same as in the first embodiment. That is, the external configuration and internal configuration of the aerosol generator 1 are the same as those of the first embodiment.
  • FIG. 28 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the twelfth embodiment.
  • Control by the control unit 117 is realized through execution of a program. That is, FIG. 28 describes a modification of the first embodiment.
  • the control unit 117 determines whether or not the start of suction is detected (step 1). If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
  • the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then obtains the last puff interval (step 2). After obtaining the puff interval, the control unit 117 determines whether the puff interval is shorter than the first period (step 3). If the puff interval is longer than or equal to the first period, the control section 117 obtains a negative result in step 3 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4).
  • the control section 117 obtains a positive result in step 3 .
  • the controller 117 sets the current main heating time to LT3 ( ⁇ LT1), which is shorter as the previous puff interval is shorter (step 111).
  • LT3 may be shortened linearly according to the number of consecutive times, or may be shortened non-linearly such as by a quadratic curve.
  • the control unit 117 sequentially executes steps 6 and 7 to complete one cycle of suction. In the case of the present embodiment, the shorter the immediately preceding puff interval, the less the amount of electric power supplied to the heating unit 211 during the main heating time.
  • the shorter the time from the end of the previous heating to the start of the current heating the shorter the main heating time.
  • the method of the present embodiment is applied to the method of the third embodiment, the shorter the time from the end of the previous heating to the start of suction this time, the shorter the main heating time.
  • the length of the main heating time is shortened as the time from the last power button 11 off operation to the current on operation is shorter.
  • the technique of this embodiment is applied to the technique of Embodiment 5
  • the length of the main heating time is shortened as the temperature of the heating unit 211 at the start of suction is higher.
  • the length of the main heating time is shortened as the resistance value of the heating unit 211 at the start of suction is higher.
  • the length of the main heating time is shortened as the temperature of the liquid guide portion 212 at the start of suction is higher.
  • a control method focusing on the amount of liquid remaining in the aerosol source at the start of main heating will be described.
  • the supply of the aerosol source to the liquid guide portion 212 is based on capillary action.
  • a control method will be described in which the speed of liquid transfer by capillarity depends on the amount of residual liquid. For example, in a situation where the liquid supply rate is decreasing due to a decrease in the remaining liquid amount, the control example in which the liquid amount of the aerosol source that can be supplied during one suction is less than when the remaining liquid amount is large is shown. explain. In this case, not enough aerosol is generated during one inhalation.
  • the length of the main heating time is controlled in consideration of the remaining liquid amount.
  • FIG. 29 is a diagram schematically showing the internal configuration of the aerosol generator 1 assumed in the thirteenth embodiment. In FIG. 29, parts corresponding to those in FIG. 2 are shown with reference numerals corresponding thereto.
  • the aerosol generating device 1 shown in FIG. 29 is different from the aerosol generating device 1 shown in FIG. 2 in that a remaining liquid amount sensor 113E is provided.
  • the remaining liquid amount sensor 113E for example, a level switch, a level meter, a capacitance sensor, or a sensor that measures the distance to the liquid surface is used.
  • the distance to the liquid surface can be measured by, for example, the time it takes for an ultrasonic wave, an electromagnetic wave, or a laser to return after being reflected by the liquid surface.
  • the control unit 117 corrects the amount of remaining liquid to be finally used using information on the attitude of the aerosol generating device 1 .
  • the attitude information for example, an output signal of a gyro sensor is used.
  • the remaining liquid amount sensor 113E is used, but it is also possible to calculate the remaining liquid amount by calculation. For example, since the amount of liquid consumed for each suction cycle can be calculated as a function of the amount of power supplied to the heating unit 211, by subtracting the integrated value from the initial value, the remaining amount of liquid at each time can be calculated. .
  • FIG. 30 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the thirteenth embodiment.
  • Control by the control unit 117 is realized through execution of a program.
  • the control unit 117 determines whether or not the start of suction is detected (step 1). If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
  • control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then acquires the last puff interval (step 2).
  • the control section 117 acquires the remaining liquid amount in the liquid storage section 213 (step 121).
  • the remaining liquid amount may be obtained using the measured value of the remaining liquid amount sensor 113E, or may be calculated using the power supply amount for each suction.
  • the control unit 117 determines whether or not the remaining liquid amount is less than the first remaining liquid amount (step 122).
  • the first remaining amount is set in advance. If the remaining liquid amount is greater than or equal to the first remaining amount, the controller 117 obtains a negative result in step 122 . In this case, the remaining liquid amount is large, and the same control as in the first embodiment and the like is executed. That is, the control unit 117 determines whether or not the puff interval is shorter than the first period (step 3). is obtained, step 5 is executed.
  • the control section 117 determines whether or not the puff interval is shorter than the first period (step 3A).
  • the threshold used for determination in step 3A may be different from that in step 3.
  • the threshold used for the determination of step 3A may be smaller than the threshold used for the determination of step 3. If the remaining liquid amount is less than the first remaining amount but the puff is not a short puff, the control section 117 obtains a negative result in step 3A. In this case, the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5).
  • the main heating time when a negative result is obtained in step 3A should be shorter than the reference time LT1, and does not necessarily have to be LT2.
  • the controller 117 controls the length of the main heating time to be shorter when the residual liquid amount is small but the puff is not a short puff, compared to when the residual liquid amount is large. This suppresses the possibility that the liquid will dry up.
  • the controller 117 obtains a positive result in step 123 .
  • the controller 117 sets the current main heating time to LT3 ( ⁇ LT1), which is shorter as the remaining liquid amount is smaller (step 123).
  • ⁇ LT1 the main heating time
  • the main heating time is reduced stepwise, for example. However, it may be shortened non-linearly according to a binary curve or the like. In any case, even if the liquid supply capability of the aerosol source is lowered, it is possible to effectively suppress the occurrence of liquid depletion.
  • the control unit 117 After setting the main heating time in step 4, step 5, or step 123, the control unit 117 sequentially executes steps 6 and 7, and completes one suction cycle.
  • the time from the end of the previous heating to the start of the current heating may be used as the puff interval.
  • the time from the end of the previous heating to the start of current suction may be used as the puff interval.
  • the time from the last power button 11 off operation to the current power on operation may be used as the puff interval.
  • the temperature of the heating unit 211 at the start of suction and the determination step may be used for the puff interval and the determination step.
  • the resistance value of the heating unit 211 at the start of suction and the determination step thereof may be used for the puff interval and the determination step thereof.
  • the temperature of the liquid guide portion 212 at the start of suction and the determination step may be used for the puff interval and the determination step.
  • FIG. 31 is a diagram for explaining the preheating time LT0.
  • (A) shows the positional relationship between the preheating time LT0 and the main heating time LT11
  • (B) shows the temperature change of the aerosol source.
  • the vertical axis in FIG. 31A is heating intensity
  • the vertical axis in FIG. 31B is temperature
  • the horizontal axis in FIGS. 31A and 31B is time.
  • the preheating time LT0 is a time for preheating, and is arranged immediately before the main heating time LT11.
  • Preheating is provided to preheat the liquid temperature of the aerosol source in the liquid guide section 212 (see FIG. 2) to room temperature or higher and lower than the boiling point. Preheating is a technique for shortening the delay time from the start of power supply to the heating unit 211 to the generation of aerosol.
  • the liquid temperature of the aerosol source can be raised in advance. Therefore, it becomes possible to allocate the power supplied during the main heating time LT11 to the generation of the aerosol rather than to the increase in the liquid temperature of the aerosol source. As a result, it becomes possible to generate aerosol immediately after the start of the main heating time, and as a result, it is possible to increase the total amount of aerosol generated during the main heating time.
  • the time from the start of the main heating time LT11 until the temperature of the aerosol source reaches the boiling point is TD1 when preheating is not used, but can be shortened to TD2 ( ⁇ TD1) when preheating is used. Therefore, if the length of the main heating time LT11 is the same as when preheating is not used, more aerosol can be generated when preheating is used.
  • the main heating time LT11 when preheating is used is shorter than the main heating time LT1 when preheating is not used. This is to equalize the total amount of aerosol generated during the main heating time. In other words, when controlling the amount of aerosol generated to be the same as in the case without preheating, the main heating time LT11 with preheating should be shorter than the main heating time LT1 without preheating. becomes possible.
  • the reason why preheating promotes aerosol generation is that the viscosity of the aerosol source at the start of the main heating time is lower than when preheating is not used.
  • FIG. 32 is a diagram for explaining an example of setting the main heating time depending on the presence or absence of preheating and the length of the puff interval.
  • (A) shows the case without preheating
  • (B) shows the case with preheating.
  • “without preheating” and “with preheating” do not mean the presence or absence of the preheating function, but rather whether the preheating function is used.
  • the setting example of the main heating time shown in FIG. 32(A) is the same as that of the first embodiment. That is, when the puff interval is long, the main heating time is set to 2.4 seconds, and when the puff interval is short, the main heating time is set to 1.7 seconds. On the other hand, as shown in FIG.
  • the main heating time when preheating is used, the main heating time is set shorter than when preheating is not used, both when the puff interval is long and when the puff interval is short. For example, when “with preheating” and the puff interval is long, the main heating time is 1.7 seconds. On the other hand, when “with preheating” and the puff interval is short, the main heating time is 1.2 seconds.
  • the main heating time shown in FIGS. 32A and 32B is an example, and the main heating time in the case of "with preheating" and a long puff interval can be shortened or lengthened to less than 1.7 seconds. is also possible.
  • FIG. 33 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the fourteenth embodiment.
  • Control unit 117 in the present embodiment first determines whether or not there is preheating (step 131). If a negative result is obtained in step 131, control unit 117 performs the same operation as in the first embodiment and the like. That is, the controller 117 sets the main heating time according to the flowchart shown in FIG.
  • step 131 determines whether or not the puff sensor 112 has detected the start of suction (step 1A). This determination is repeated until a positive result is obtained in step 1A.
  • the control unit 117 starts main heating after preheating (step 1100A), acquires the immediately preceding puff interval (step 2A), and then acquires the acquired puff interval. Determine whether the interval is shorter than the first period (step 3A).
  • step 3A the controller 117 proceeds to step 5 and sets the current main heating time to LT2, which is shorter than the reference time. As described above, it is also possible to set a time different from LT2 as the main heating time. If a positive result is obtained in step 3A, the controller 117 sets the current main heating time to a time LT11 shorter than the reference time (step 132).
  • the time LT11 here is, for example, 1.2 seconds, which is shorter than the main heating time set in steps 4 and 5.
  • step 5 or step 132 the control unit 117 sequentially executes steps 6 and 7, and completes one suction cycle.
  • the threshold used for the determination in step 3A may be different from that in step 3, as in the thirteenth embodiment. Also, if a negative result is obtained in step 3A, the main heating time need not be LT2 if it is shorter than the reference time LT1.
  • FIG. 34 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the fifteenth embodiment.
  • FIG. 34 parts corresponding to those in FIG. Control by the control unit 117 is realized through execution of a program.
  • Control unit 117 in the present embodiment determines whether or not start of suction has been detected by puff sensor 112 (step 1).
  • step 1 While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1. If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then acquires the temperature of the coil at the start of suction (step 41). That is, the temperature of the heating unit 211 (see FIG. 2) is obtained. When the temperature of the coil is acquired, the control unit 117 determines whether or not the temperature of the coil at the start of suction is higher than the third temperature (step 141). The third temperature is a threshold for determining overheating.
  • the controller 117 obtains a positive result in step 141 . In this case, the controller 117 forcibly terminates the main heating (step 142). That is, the control unit 117 ends the power supply to the heating unit 211 even if the set main heating time remains. Note that the temperature of the heating unit 211 remains high for a while even after the power supply is terminated. Therefore, aerosol generation continues for a while.
  • step 143 the controller 117 continues heating according to the set main heating time (step 143).
  • FIG. 35 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the sixteenth embodiment.
  • the parts corresponding to those in FIG. 18 are indicated by the reference numerals.
  • Control by the control unit 117 is realized through execution of a program.
  • Control unit 117 in the present embodiment also determines whether or not the start of suction is detected by puff sensor 112 (step 1).
  • step 1 While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1. If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then obtains the liquid temperature at the start of suction (step 61).
  • the liquid temperature here is the temperature of the liquid guide portion 212 .
  • the control unit 117 determines whether or not the liquid temperature at the start of suction is higher than the fourth temperature (step 151).
  • the fourth temperature is a threshold for judging overheating.
  • the controller 117 obtains a positive result in step 151 . In this case, the controller 117 forcibly terminates the main heating (step 152). That is, the control unit 117 ends the power supply to the heating unit 211 even if the set main heating time remains. Note that the temperature of the heating unit 211 remains high for a while even after the power supply is stopped. Therefore, aerosol generation continues for a while.
  • step 153 the controller 117 continues heating according to the set main heating time (step 153).
  • FIG. 36 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the seventeenth embodiment. In FIG. 36, parts corresponding to those in FIG. Control by the control unit 117 is realized through execution of a program.
  • Control unit 117 in the present embodiment also determines whether or not the start of suction is detected by puff sensor 112 (step 1). While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1. If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then acquires the last puff interval (step 2). Subsequently, the control section 117 determines whether or not the puff interval is shorter than the first period (step 3). That is, it is determined whether or not the latest puff interval is a short puff.
  • step 161 the control unit 117 sets the maximum voltage value applied during the current main heating time as the reference voltage value (step 161).
  • the reference voltage value here is the same as the voltage value used in the first embodiment and the like.
  • the reference voltage value here is an example of the second maximum voltage value.
  • step 162 the control unit 117 sets the maximum voltage value to be applied during the current main heating time to a value smaller than the reference voltage value (step 162). That is, the maximum voltage value is set to a low value instead of shortening the main heating time.
  • the maximum voltage value set in step 162 is an example of a first maximum voltage value.
  • the power supplied to the heating unit 211 during the main heating time is smaller than when the puff interval is not short. That is, it becomes smaller than the reference value.
  • the lower the maximum voltage value is set than the reference voltage value the smaller the power supplied to the heating unit 211 during the main heating time.
  • FIG. 37 is a diagram for explaining an example of the external configuration of the aerosol generating device 1 assumed in the eighteenth embodiment. In FIG. 37, parts corresponding to those in FIG. 1 are shown with reference numerals. In the case of the present embodiment, when the start of suction by the user is detected, power supply to the heating unit 211 (see FIG. 2) is started.
  • FIG. 38 is a diagram schematically showing an internal configuration example of the aerosol generating device 1 assumed in the nineteenth embodiment. In FIG. 38, parts corresponding to those in FIG. 2 are shown with reference numerals.
  • the aerosol generating device 1 shown in FIG. 38 includes a power supply unit 111, a puff sensor 112, a power button sensor 113, a notification unit 114, a storage unit 115, a communication unit 116, a control unit 117, a heating unit 211, a liquid induction unit 212, and a liquid storage unit.
  • a holding portion 301 used to hold the stick-shaped substrate 400, a heating portion 302 arranged on the outer periphery of the holding portion 301, and a heat insulating portion 303 arranged on the outer periphery of the heating portion 302 are provided.
  • FIG. 38 shows a state in which the stick-shaped base material 400 is attached to the holding portion 301 .
  • the user performs a suction operation while inserting the stick-shaped substrate 400 into the holding portion 301 .
  • the aerosol generator 1 is formed with an air flow path 40 that transports the air introduced from the air inlet 21 to the bottom 301 ⁇ /b>C of the holding section 301 via the liquid guide section 212 . Therefore, the air that has flowed in from the air inflow hole 21 flows along the arrow 500 in the air flow path 40 as the user sucks.
  • the aerosol generated by the heating unit 211 and the aerosol generated by the heating unit 302 are mixed with this airflow.
  • control unit 117 in the present embodiment controls the heating operation of heating unit 302 in addition to the heating operation of heating unit 211 . At that time, the control unit 117 acquires information such as the temperature of the heating unit 302 by a sensor (not shown).
  • the holding portion 301 has a substantially cylindrical shape. Therefore, the inside of the holding portion 301 is hollow. This cavity is called internal space 301A.
  • the internal space 301A has approximately the same diameter as the stick-shaped substrate 400, and accommodates the tip portion of the stick-shaped substrate 400 inserted from the opening 301B while being in contact therewith. That is, stick-type substrate 400 is held in internal space 301A.
  • the holding portion 301 has a bottom portion 301C on the opposite side of the opening 301B. The bottom portion 301C is connected to the air flow path 40 .
  • the inner diameter of the holding portion 301 is configured to be smaller than the outer diameter of the stick-shaped base material 400 at least in part in the height direction of the cylindrical body. Therefore, the outer peripheral surface of stick-shaped base material 400 inserted into internal space 301A through opening 301B is pressed by the inner wall of holding portion 301 .
  • the stick-type base material 400 is held by the holding part 301 by this compression.
  • the holding portion 301 also functions to define air flow paths through the stick-shaped substrate 400 .
  • the bottom portion 301C is an air inflow hole for the holding portion 301
  • the opening 301B is an air outflow hole from the holding portion 301. As shown in FIG.
  • the stick-type base material 400 is a substantially cylindrical member.
  • a stick-shaped base material 400 assumed in the present embodiment is composed of a base material portion 401 and a mouthpiece portion 402 .
  • the base portion 401 houses an aerosol source.
  • An aerosol source is a substance that is atomized by heating to form an aerosol.
  • the aerosol source accommodated in the base member 401 includes tobacco-derived substances, such as cut tobacco or tobacco raw materials that have been formed into granules, sheets, or powder.
  • the aerosol source housed in the substrate portion 401 may also include non-tobacco-derived substances made from plants other than tobacco, such as mints and herbs.
  • the aerosol source may contain a perfume ingredient such as menthol.
  • the aerosol source of the stick-type substrate 400 may contain a drug for patient inhalation.
  • the aerosol source is not limited to solids, and may be polyhydric alcohols such as glycerin and propylene glycol, or liquids such as water.
  • At least part of the base material part 401 is housed in the internal space 301A of the holding part 301 while the stick-shaped base material 400 is held by the holding part 301 .
  • the mouthpiece 402 is a member held by the user when inhaling. At least part of the mouthpiece 402 protrudes from the opening 301B when the stick-shaped base material 400 is held by the holding part 301 .
  • air flows into the bottom 301C of the holding part 301 through the air inlet 21 as described above.
  • the inflowing air passes through the inner space 301A of the holding portion 301 and the base portion 401 and reaches the user's mouth.
  • the aerosol generated from the base member 401 is mixed with the gas passing through the inner space 301A of the holding member 301 and the base member 401 .
  • the heating unit 302 heats the aerosol source included in the base member 401 to atomize the aerosol source and generate an aerosol.
  • the heating part 302 is made of any material such as metal or polyimide.
  • the heating part 302 is configured in a film shape and arranged so as to cover the outer periphery of the holding part 301 .
  • the heating part 302 generates heat, the aerosol source contained in the stick-shaped base material 400 is heated from the outer periphery of the stick-shaped base material 400 and atomized to generate an aerosol.
  • the heating unit 302 generates heat by power supply from the power supply unit 111 .
  • a predetermined user input is detected by a sensor or the like (not shown)
  • power supply to the heating unit 302 is started and aerosol is generated.
  • the temperature of the stick-shaped base material 400 reaches a predetermined temperature due to the heating by the heating unit 302
  • the aerosol starts to be generated and the user can inhale the aerosol.
  • a sensor or the like not shown
  • power supply to the heating unit 302 is stopped. It should be noted that while the puff sensor 112 detects the user's inhalation, power supply to the heating unit 302 may be continued to generate aerosol.

Abstract

A control unit that controls the supply of power to a load that heats an aerosol source is provided in a circuit unit for an aerosol generation device. The control unit controls the amount of power supplied to the load to generate aerosol, to less than a reference value if the interval between aerosol puffs is shorter than a first period.

Description

エアロゾル生成装置の回路ユニット、エアロゾル生成装置及びプログラムAerosol generator circuit unit, aerosol generator and program
 本発明は、エアロゾル生成装置の回路ユニット、エアロゾル生成装置及びプログラムに関する。 The present invention relates to a circuit unit of an aerosol generator, an aerosol generator, and a program.
 香料等を含む液体を加熱してエアロゾルを生成するエアロゾル生成装置では、ユーザの吸引行動の感知に応じてヒータへの通電が開始し、ウィックと呼ばれるガラス繊維内の液体が霧化(エアロゾル化)される。エアロゾルは、ウィック内の液体の温度が沸点に達することで発生する。 In aerosol generators that generate aerosol by heating a liquid containing fragrance, the heater is energized when the user's inhalation action is detected, and the liquid inside the glass fiber called a wick is atomized (aerosolized). be done. Aerosols are generated when the temperature of the liquid in the wick reaches its boiling point.
米国特許出願公開2020/0329776号明細書U.S. Patent Application Publication No. 2020/0329776
 エアロゾル生成装置では、標準的な吸引行動を想定してヒータへの通電時間を設計しているが、標準的な吸引行動に比して、吸引(パフ)と吸引(パフ)の間隔(以下「パフ間隔」ともいう)が短い吸引行動が繰り返される場合、ウィック内の液温が十分に下がり切る前に液体の加熱が開始されるようになる。通電開始時の液温が高いと、液体の気化が促進される。その結果、通電開始後の液体の消費量が、標準的な吸引行動時よりも増加する。
 一方、ウィックへの液体の供給は毛管現象に依存する。このため、パフ間隔が短い吸引行動が繰り返された場合、ウィックへの液体の供給が間に合わない事態が生じ得る。液体の供給が間に合わなければ、ヒータへの通電が継続していてもエアロゾルの発生が停止してしまう。この現象は、液枯れと呼ばれる。
In the aerosol generator, the energization time for the heater is designed assuming standard suction behavior, but compared to the standard suction behavior, the interval between suction (puff) and suction (puff) (hereinafter referred to as " When the suction action with a short puff interval” is repeated, heating of the liquid starts before the temperature of the liquid in the wick drops sufficiently. If the liquid temperature at the start of energization is high, vaporization of the liquid is promoted. As a result, the amount of liquid consumed after the start of energization is greater than during standard suction behavior.
On the other hand, the supply of liquid to the wick depends on capillary action. Therefore, when the suction action with short puff intervals is repeated, a situation may arise in which the supply of the liquid to the wick is not in time. If the liquid is not supplied in time, the generation of aerosol will stop even if the heater continues to be energized. This phenomenon is called dryness.
 本発明は、エアロゾル生成装置を使用するユーザの使用方法によらず吸引中の液枯れを抑制する技術を提供する。 The present invention provides a technique for suppressing liquid drying during inhalation regardless of how the aerosol generator is used by the user.
 請求項1に記載の発明は、エアロゾル源を加熱する負荷への電力の供給を制御する制御部を有し、前記制御部は、エアロゾルの吸引と吸引の間隔が第1の期間に比して短い場合、エアロゾルを発生するために前記負荷に供給する電力量を基準値よりも小さく制御する、エアロゾル生成装置の回路ユニットである。
 請求項2に記載の発明は、ユーザによるエアロゾルの吸引を検知する第1のセンサを更に有し、前記制御部は、前記第1のセンサで検知された直前回の吸引終了から今回の吸引開始までの時間が前記第1の期間より短い場合、前記負荷に電力を供給する時間を第2の期間よりも短縮する、請求項1に記載のエアロゾル生成装置の回路ユニットである。
 請求項3に記載の発明は、前記制御部は、エアロゾル源からのエアロゾルの発生が終了する直前回の加熱終了から今回の加熱開始までの時間が前記第1の期間より短い場合、前記負荷に電力を供給する時間を第2の期間よりも短縮する、請求項1に記載のエアロゾル生成装置の回路ユニットである。
 請求項4に記載の発明は、ユーザによるエアロゾルの吸引を検知する第1のセンサを更に有し、前記制御部は、エアロゾル源からのエアロゾルの発生が終了する直前回の加熱終了から前記第1のセンサで検知された今回の吸引開始までの時間が前記第1の期間より短い場合、前記負荷に電力を供給する時間を第2の期間よりも短縮する、請求項1に記載のエアロゾル生成装置の回路ユニットである。
 請求項5に記載の発明は、前記負荷に対する電力の供給と供給停止に関するユーザの操作を受け付ける操作部を有し、前記制御部は、前記操作部に対するユーザの操作による直前回の電力の供給停止から今回の電力の供給開始までの時間が前記第1の期間より短い場合、前記負荷に電力を供給する時間を第2の期間よりも短縮する、請求項1に記載のエアロゾル生成装置の回路ユニットである。
 請求項6に記載の発明は、ユーザによるエアロゾルの吸引を検知する第1のセンサと、前記負荷の温度を検知する第2のセンサとを更に有し、前記制御部は、前記第1のセンサで検知されたエアロゾルの吸引開始時に前記第2のセンサで検知された温度が第1の温度よりも高い場合、前記負荷に電力を供給する時間を第2の期間よりも短縮する、請求項1に記載のエアロゾル生成装置の回路ユニットである。
 請求項7に記載の発明は、ユーザによるエアロゾルの吸引を検知する第1のセンサを更に有し、前記制御部は、前記第1のセンサで検知されたエアロゾルの吸引開始時における前記負荷の抵抗値が第1の抵抗値より高い場合、当該負荷に電力を供給する時間を第2の期間よりも短縮する、請求項1に記載のエアロゾル生成装置の回路ユニットである。
 請求項8に記載の発明は、ユーザによるエアロゾルの吸引を検知する第1のセンサと、エアロゾル源の温度を検知する第3のセンサとを更に有し、前記制御部は、前記第1のセンサで検知されたエアロゾルの吸引開始時に前記第3のセンサで検知された温度が第2の温度より高い場合、前記負荷に電力を供給する時間を第2の期間よりも短縮する、請求項1に記載のエアロゾル生成装置の回路ユニットである。
 請求項9に記載の発明は、前記制御部は、エアロゾルの吸引と吸引の間隔の過去複数回の傾向から次回又は次回以降の間隔を予測し、予測された間隔が前記第1の期間に比して短い場合、予測した吸引回における前記負荷への電力の供給時間を第2の期間よりも短く設定する、請求項1に記載のエアロゾル生成装置の回路ユニットである。
 請求項10に記載の発明は、前記制御部は、エアロゾルの吸引と吸引の間隔の過去複数回の測定値を取得し、前記第1の期間より短い測定値が連続して出現する回数が第1の回数を超える場合、当該回数の増加に伴って次回以降の吸引回において前記負荷に電力を供給する時間を第2の期間よりも段階的に短く制御する、請求項1に記載のエアロゾル生成装置の回路ユニットである。
 請求項11に記載の発明は、前記制御部は、前記測定値が前記第1の期間より長い場合でも、超過する時間が第3の期間未満のときは、前記回数に含めて計算する、請求項10に記載のエアロゾル生成装置の回路ユニットである。
 請求項12に記載の発明は、前記制御部は、エアロゾルの吸引と吸引の間隔が前記第1の期間よりも短い場合、間隔が短いほど、前記負荷に供給する電力量を小さく制御する、請求項1~8のうちいずれか1項に記載のエアロゾル生成装置の回路ユニットである。
 請求項13に記載の発明は、前記制御部は、エアロゾル源の残量が第1の残量より少ない場合、残量が少ないほど、前記負荷に供給する電力量を小さく制御する、請求項1~8のうちいずれか1項に記載のエアロゾル生成装置の回路ユニットである。
 請求項14に記載の発明は、エアロゾルの発生を伴うエアロゾル源の加熱に先立って、エアロゾル源をエアロゾルの発生を伴わない温度範囲で加熱する場合、前記制御部は、エアロゾルの吸引と吸引の間隔が前記第1の期間に比して短いときに前記負荷に供給する電力量を、エアロゾルの発生を伴う加熱のみのときの電力量よりも小さい値に制御する、請求項1~8のうちいずれか1項に記載のエアロゾル生成装置の回路ユニットである。
 請求項15に記載の発明は、前記負荷の温度を検知する第2のセンサを更に有し、前記制御部は、前記第2のセンサで検知された温度が第3の温度に達した場合、その時点で、前記負荷の加熱を強制的に終了する、請求項1~8のうちいずれか1項に記載のエアロゾル生成装置の回路ユニットである。
 請求項16に記載の発明は、エアロゾル源の温度を検知する第3のセンサを更に有し、前記制御部は、前記第3のセンサで検知された温度が第4の温度に達した場合、その時点で、前記負荷の加熱を強制的に終了する、請求項1~8のうちいずれか1項に記載のエアロゾル生成装置の回路ユニットである。
 請求項17に記載の発明は、前記制御部は、エアロゾルの吸引と吸引の間隔が前記第1の期間に比して短い場合、エアロゾルを発生するために前記負荷に供給する第1の最大電圧値を、エアロゾルの吸引と吸引の間隔が当該第1の期間に比して長いときに当該負荷に供給する第2の最大電圧値よりも小さい値に制御する、請求項1~8のうちいずれか1項に記載のエアロゾル生成装置の回路ユニットである。
 請求項18に記載の発明は、エアロゾル源を加熱する負荷への電力の供給を制御する制御部を有し、前記制御部は、エアロゾルの吸引と吸引の間隔が第1の期間に比して短い場合、エアロゾルを発生するために前記負荷に供給する電力量を基準値よりも小さく制御する、エアロゾル生成装置である。
 請求項19に記載の発明は、エアロゾル源を加熱する負荷への電力の供給を制御するコンピュータに、エアロゾルの吸引と吸引の間隔が第1の期間に比して短い場合、エアロゾルを発生するために前記負荷に供給する電力量を基準値よりも小さく制御する機能を実現させるためのプログラムである。
The invention according to claim 1 has a control unit that controls the supply of electric power to a load that heats the aerosol source, and the control unit sets the interval between suctions of the aerosols to be greater than the first period. A circuit unit of an aerosol generator for controlling, if short, the amount of power supplied to said load to generate an aerosol to be less than a reference value.
The invention according to claim 2 further includes a first sensor that detects the inhalation of the aerosol by the user, and the controller controls the current inhalation start from the end of the previous inhalation detected by the first sensor. 2. The circuit unit of an aerosol generating device according to claim 1, wherein the time to power the load is shorter than the second period if the time to is shorter than the first period.
In the invention according to claim 3, when the time from the end of heating immediately before the end of the generation of aerosol from the aerosol source to the start of heating this time is shorter than the first period, the control unit controls the load. 2. A circuit unit of an aerosol generating device according to claim 1, wherein the power supply time is shorter than the second period.
The invention according to claim 4 further includes a first sensor for detecting inhalation of aerosol by the user, and the control unit controls the first sensor from the end of heating immediately before the end of generation of aerosol from the aerosol source. 2. The aerosol generating device according to claim 1, wherein the time to supply power to the load is shorter than the second period when the time until the current suction start detected by the sensor of is shorter than the first period. is a circuit unit of
The invention according to claim 5 has an operation unit that receives a user's operation related to supply and stop of power supply to the load, and the control unit is configured to stop the supply of power immediately before according to the user's operation on the operation unit. 2. The circuit unit of the aerosol generating device according to claim 1, wherein, if the time from the start of power supply to the current power supply start is shorter than the first period, the time to supply power to the load is shorter than the second period. is.
The invention according to claim 6 further comprises a first sensor for detecting inhalation of the aerosol by the user and a second sensor for detecting the temperature of the load, wherein the control unit detects the temperature of the first sensor. If the temperature detected by the second sensor at the start of suction of the aerosol detected in is higher than the first temperature, the time for supplying power to the load is shortened from the second period. A circuit unit of the aerosol generator according to .
The invention according to claim 7 further includes a first sensor for detecting inhalation of aerosol by the user, and the control unit detects the resistance of the load at the start of inhalation of the aerosol detected by the first sensor. 2. The circuit unit of an aerosol generating device according to claim 1, wherein when the value is higher than the first resistance value, the load is powered for less time than the second period.
The invention according to claim 8 further comprises a first sensor for detecting inhalation of the aerosol by the user and a third sensor for detecting the temperature of the aerosol source, wherein the control unit detects the temperature of the first sensor If the temperature detected by the third sensor at the start of suction of the aerosol detected in is higher than the second temperature, the time for supplying power to the load is shortened from the second period. 1 is a circuit unit of the described aerosol generating device;
According to the ninth aspect of the invention, the control unit predicts the next interval or the next interval from the tendency of the intervals between the aerosol inhalations of a plurality of times in the past, and the predicted interval is compared with the first period. 2. The circuit unit of the aerosol generating device according to claim 1, wherein, if shorter than the second period, the power supply time to the load in the predicted suction cycle is set shorter than the second period.
According to the tenth aspect of the invention, the control unit obtains a plurality of past measured values of intervals between aerosol inhalations, and the number of consecutive occurrences of measured values shorter than the first period is the first. 2. The aerosol generation according to claim 1, wherein when the number of times exceeds 1, the time for supplying power to the load in the next and subsequent suction times is controlled stepwise shorter than the second period as the number of times increases. It is the circuit unit of the device.
In the invention according to claim 11, even if the measured value is longer than the first period, if the overtime period is less than a third period, the control unit includes it in the calculation of the number of times. 11. A circuit unit of the aerosol generator according to item 10.
According to a twelfth aspect of the invention, when an interval between suctions of aerosols is shorter than the first period, the controller controls the amount of electric power supplied to the load to be smaller as the interval is shorter. A circuit unit for an aerosol generator according to any one of items 1 to 8.
In the invention according to claim 13, when the remaining amount of the aerosol source is less than the first remaining amount, the control unit controls the amount of electric power supplied to the load to be smaller as the remaining amount is smaller. 9. A circuit unit of an aerosol generator according to any one of 1 to 8.
In the invention according to claim 14, when the aerosol source is heated in a temperature range that does not generate aerosol prior to the heating of the aerosol source that generates aerosol, the controller controls the interval between suctions of the aerosol is shorter than the first period, the amount of power supplied to the load is controlled to a value smaller than the amount of power only for heating with aerosol generation. or a circuit unit of the aerosol generator according to item 1.
The invention according to claim 15 further includes a second sensor that detects the temperature of the load, and the control unit, when the temperature detected by the second sensor reaches a third temperature, The circuit unit of an aerosol generating device according to any one of claims 1 to 8, wherein the heating of the load is forcibly terminated at that point.
The invention according to claim 16 further includes a third sensor that detects the temperature of the aerosol source, and the control unit detects that when the temperature detected by the third sensor reaches a fourth temperature, The circuit unit of an aerosol generating device according to any one of claims 1 to 8, wherein the heating of the load is forcibly terminated at that point.
According to the seventeenth aspect of the invention, the controller controls the first maximum voltage to be supplied to the load to generate the aerosol when the interval between suctions of the aerosol is shorter than the first period. value is controlled to a value smaller than the second maximum voltage value supplied to the load when the interval between aerosol inhalations is longer than the first period. or a circuit unit of the aerosol generator according to item 1.
The invention according to claim 18 has a control unit for controlling power supply to a load that heats the aerosol source, and the control unit sets the interval between suctions of the aerosols to be greater than the first period. If shorter, the aerosol generating device controls the amount of power supplied to the load to generate the aerosol below a reference value.
In the invention according to claim 19, the computer for controlling the supply of power to the load that heats the aerosol source generates aerosol when the interval between aspirations of the aerosol is shorter than the first period. is a program for realizing a function of controlling the amount of electric power supplied to the load to be smaller than a reference value.
 請求項1記載の発明によれば、エアロゾル生成装置を使用するユーザの使用方法によらず吸引中の液枯れを抑制する技術を提供できる。
 請求項2記載の発明によれば、ユーザの吸引間隔が短い場合でも液枯れを抑制できる。
 請求項3記載の発明によれば、ユーザの吸引間隔が短い場合でも液枯れを抑制できる。
 請求項4記載の発明によれば、ユーザの吸引間隔が短い場合でも液枯れを抑制できる。
 請求項5記載の発明によれば、ユーザの吸引間隔が短い場合でも液枯れを抑制できる。
 請求項6記載の発明によれば、ユーザの吸引間隔が短い場合でも液枯れを抑制できる。
 請求項7記載の発明によれば、ユーザの吸引間隔が短い場合でも液枯れを抑制できる。
 請求項8記載の発明によれば、ユーザの吸引間隔が短い場合でも液枯れを抑制できる。
 請求項9記載の発明によれば、ユーザの吸引間隔が短い傾向が検知された場合には液枯れを予防する制御を実行できる。
 請求項10記載の発明によれば、ユーザの吸引間隔が短い傾向が確認された場合には液枯れを予防する制御を実行できる。
 請求項11記載の発明によれば、ユーザの吸引間隔が短い傾向が確認された場合には液枯れを予防する制御を実行できる。
 請求項12記載の発明によれば、ユーザの吸引間隔が短い場合でも液枯れを抑制できる。
 請求項13記載の発明によれば、ユーザの吸引間隔が短い場合でも液枯れを抑制できる。
 請求項14記載の発明によれば、エアロゾルの発生を促進するためにエアロゾルの発生を伴う加熱に先立ってエアロゾル源を加熱する場合でも、ユーザの吸引間隔が短いときの液枯れを抑制できる。
 請求項15記載の発明によれば、液枯れが発生しやすい環境が検知された場合にも、液枯れを抑制できる。
 請求項16記載の発明によれば、液枯れが発生しやすい環境が検知された場合にも、液枯れを抑制できる。
 請求項17記載の発明によれば、ユーザの吸引間隔が短い場合でも液枯れを抑制できる。
 請求項18記載の発明によれば、エアロゾル生成装置を使用するユーザの使用方法によらず吸引中の液枯れを抑制する技術を提供できる。
 請求項19記載の発明によれば、エアロゾル生成装置を使用するユーザの使用方法によらず吸引中の液枯れを抑制する技術を提供できる。
According to the first aspect of the invention, it is possible to provide a technique for suppressing the drying up of liquid during suction regardless of the usage method of the user who uses the aerosol generating device.
According to the second aspect of the invention, it is possible to prevent the liquid from drying up even when the suction interval of the user is short.
According to the third aspect of the invention, it is possible to prevent the liquid from drying up even when the suction interval of the user is short.
According to the fourth aspect of the invention, it is possible to prevent the liquid from drying up even when the suction interval of the user is short.
According to the fifth aspect of the invention, it is possible to prevent the liquid from drying up even when the suction interval of the user is short.
According to the sixth aspect of the present invention, it is possible to suppress the drying up of the liquid even when the suction interval of the user is short.
According to the seventh aspect of the present invention, it is possible to prevent the liquid from drying up even when the user's suction interval is short.
According to the eighth aspect of the invention, it is possible to suppress the liquid drying even when the user's suction interval is short.
According to the ninth aspect of the invention, when it is detected that the user's suction interval tends to be short, control can be executed to prevent the liquid from drying up.
According to the tenth aspect of the invention, when it is confirmed that the user's suction interval tends to be short, control can be executed to prevent the liquid from drying up.
According to the eleventh aspect of the invention, when it is confirmed that the user's suction interval tends to be short, control can be executed to prevent the liquid from drying up.
According to the twelfth aspect of the present invention, it is possible to suppress the drying up of the liquid even when the suction interval of the user is short.
According to the thirteenth aspect of the present invention, it is possible to suppress the drying up of the liquid even when the suction interval of the user is short.
According to the fourteenth aspect of the invention, even when the aerosol source is heated prior to the heating that accompanies the generation of the aerosol in order to promote the generation of the aerosol, it is possible to suppress the drying up of the liquid when the suction interval of the user is short.
According to the fifteenth aspect of the present invention, it is possible to suppress liquid drying even when an environment in which liquid drying is likely to occur is detected.
According to the sixteenth aspect of the present invention, it is possible to suppress liquid drying even when an environment in which liquid drying is likely to occur is detected.
According to the seventeenth aspect of the invention, even when the user's suction interval is short, it is possible to prevent the liquid from drying up.
According to the eighteenth aspect of the invention, it is possible to provide a technique for suppressing drying up of the liquid during inhalation regardless of the usage method of the user who uses the aerosol generating device.
According to the nineteenth aspect of the invention, it is possible to provide a technique for suppressing drying up of liquid during inhalation regardless of the usage method of the user who uses the aerosol generating device.
実施の形態1で想定するエアロゾル生成装置の外観構成例を説明する図である。1 is a diagram for explaining an example of the external configuration of an aerosol generating device assumed in Embodiment 1; FIG. 実施の形態1で想定するエアロゾル生成装置の内部構成を模式的に示す図である。1 is a diagram schematically showing the internal configuration of an aerosol generator assumed in Embodiment 1. FIG. 実施の形態1で使用する制御部による本加熱時間の制御例を説明するフローチャートである。4 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 1. FIG. 実施の形態1におけるパフ間隔と本加熱時間の設定との関係を説明する図である。4 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 1. FIG. 実施の形態2で使用する制御部による本加熱時間の制御例を説明するフローチャートである。9 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 2. FIG. 実施の形態2におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は本加熱時間の設定例を示す。FIG. 10 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 2; (A) shows an example of the timing of suction (puff), and (B) shows an example of setting the main heating time. 実施の形態3で使用する制御部による本加熱時間の制御例を説明するフローチャートである。10 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 3. FIG. 実施の形態3におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は本加熱時間の設定例を示す。FIG. 11 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 3; (A) shows an example of the timing of suction (puff), and (B) shows an example of setting the main heating time. 実施の形態4で使用する制御部による本加熱時間の制御例を説明するフローチャートである。FIG. 12 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 4. FIG. 実施の形態4におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は本加熱時間の設定例を示す。FIG. 13 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 4; (A) shows an example of the timing of suction (puff), and (B) shows an example of setting the main heating time. 実施の形態5で想定するエアロゾル生成装置の内部構成を模式的に示す図である。FIG. 10 is a diagram schematically showing the internal configuration of an aerosol generating device assumed in Embodiment 5; 実施の形態5で使用する制御部による本加熱時間の制御例を説明するフローチャートである。14 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 5. FIG. 実施の形態5におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は加熱部の温度変化を示し、(C)は本加熱時間の設定例を示す。FIG. 12 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 5. FIG. (A) shows an example of the timing of suction (puff), (B) shows a temperature change of the heating section, and (C) shows an example of setting the main heating time. 実施の形態6で想定するエアロゾル生成装置の内部構成を模式的に示す図である。FIG. 12 is a diagram schematically showing the internal configuration of an aerosol generating device assumed in Embodiment 6; 実施の形態6で使用する制御部による本加熱時間の制御例を説明するフローチャートである。14 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 6. FIG. 実施の形態6におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は加熱部の抵抗値の変化を示し、(C)は本加熱時間の設定例を示す。FIG. 14 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 6. FIG. (A) shows an example of the timing of suction (puff), (B) shows a change in the resistance value of the heating unit, and (C) shows an example of setting the main heating time. 実施の形態7で想定するエアロゾル生成装置の内部構成を模式的に示す図である。FIG. 12 is a diagram schematically showing the internal configuration of an aerosol generating device assumed in Embodiment 7; 実施の形態7で使用する制御部による本加熱時間の制御例を説明するフローチャートである。FIG. 12 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 7; FIG. 実施の形態7におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は液誘導部の温度の変化を示し、(C)は本加熱時間の設定例を示す。FIG. 14 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 7. FIG. (A) shows an example of a suction (puff) timing, (B) shows a change in the temperature of the liquid guide section, and (C) shows an example of setting the main heating time. 実施の形態8で想定するエアロゾル生成装置の内部構成を模式的に示す図である。FIG. 20 is a diagram schematically showing the internal configuration of an aerosol generating device assumed in Embodiment 8; 実施の形態8で使用する制御部による本加熱時間の制御例を説明するフローチャートである。FIG. 13 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 8. FIG. 実施の形態8におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は周囲の気温の変化を示し、(C)は本加熱時間の設定例を示す。FIG. 20 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 8. FIG. (A) shows an example of a suction (puff) timing, (B) shows a change in ambient temperature, and (C) shows an example of setting the main heating time. 実施の形態9で使用する制御部による本加熱時間の制御例を説明するフローチャートである。FIG. 20 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 9. FIG. 実施の形態9におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は予測されたパフ間隔が第1の期間以上の場合の本加熱時間の設定例を示し、(C)は予測されたパフ間隔が第1の期間より小さい場合の本加熱時間の設定例を示す。FIG. 22 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 9. FIG. (A) shows an example of the timing of suction (puff), (B) shows an example of setting the main heating time when the predicted puff interval is longer than or equal to the first period, and (C) shows the predicted puff interval. is smaller than the first period. 実施の形態10で使用する制御部による本加熱時間の制御例を説明するフローチャートである。FIG. 20 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 10. FIG. 実施の形態10におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は短パフが連続する回数が第1の回数以下の場合の本加熱時間の設定例を示し、(C)は短パフが連続する回数が第1の回数より大きい小さい場合の本加熱時間の設定例を示す。FIG. 22 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 10. FIG. (A) shows an example of the timing of suction (puff), (B) shows an example of setting the main heating time when the number of consecutive short puffs is the first number or less, and (C) shows a continuous short puff. An example of setting the main heating time when the number of times of heating is smaller than the first number of times is shown. 実施の形態11で使用する制御部による本加熱時間の制御例を説明するフローチャートである。FIG. 13 is a flow chart for explaining an example of control of the main heating time by a control unit used in Embodiment 11; FIG. 実施の形態12で使用する制御部による本加熱時間の制御例を説明するフローチャートである。FIG. 22 is a flowchart for explaining an example of control of the main heating time by a control unit used in Embodiment 12; FIG. 実施の形態13で想定するエアロゾル生成装置の内部構成を模式的に示す図である。FIG. 20 is a diagram schematically showing the internal configuration of an aerosol generating device assumed in Embodiment 13; 実施の形態13で使用する制御部による本加熱時間の制御例を説明するフローチャートである。FIG. 22 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 13; FIG. 予備加熱時間を説明する図である。(A)は予備加熱時間と本加熱時間の位置の関係を示し、(B)はエアロゾル源の温度変化を示す。It is a figure explaining preheating time. (A) shows the positional relationship between the preheating time and the main heating time, and (B) shows the temperature change of the aerosol source. 予備加熱の有無とパフ間隔の長短による本加熱時間の設定例を説明する図である。(A)は予備加熱なしの場合、(B)は予備加熱ありの場合を示す。FIG. 10 is a diagram illustrating an example of setting the main heating time depending on the presence or absence of preheating and the length of the puff interval. (A) shows the case without preheating, and (B) shows the case with preheating. 実施の形態14で使用する制御部による本加熱時間の制御例を説明するフローチャートである。FIG. 20 is a flowchart for explaining an example of control of the main heating time by a control unit used in Embodiment 14; FIG. 実施の形態15で使用する制御部による本加熱時間の制御例を説明するフローチャートである。29 is a flowchart for explaining an example of control of the main heating time by a control unit used in Embodiment 15. FIG. 実施の形態16で使用する制御部による本加熱時間の制御例を説明するフローチャートである。FIG. 22 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 16; FIG. 実施の形態17で使用する制御部による本加熱時間の制御例を説明するフローチャートである。FIG. 22 is a flowchart for explaining an example of control of main heating time by a control unit used in Embodiment 17; FIG. 実施の形態18で想定するエアロゾル生成装置の外観構成例を説明する図である。FIG. 20 is a diagram for explaining an example of the external configuration of an aerosol generating device assumed in Embodiment 18; 実施の形態19で想定するエアロゾル生成装置の内部構成例を模式的に示す図である。FIG. 20 is a diagram schematically showing an internal configuration example of an aerosol generating device assumed in Embodiment 19;
 以下、図面を参照して、本発明の実施の形態を説明する。各図面には、同一の部分に同一の符号を付して示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing, the same parts are indicated by the same reference numerals.
<実施の形態1>
<外観構成>
 図1は、実施の形態1で想定するエアロゾル生成装置1の外観構成例を説明する図である。
 図1に示すエアロゾル生成装置1は、電子たばこの一形態であり、燃焼を伴わずに、香味を付加したエアロゾルを生成する。図1に示す電子たばこは、概略円筒型の形状を有している。
 図1に示すエアロゾル生成装置1は、複数のユニットにより構成されている。図1の場合、複数のユニットは、電源ユニット10と、エアロゾル源を内蔵するカートリッジ20と、香味源を内蔵するカートリッジ30とで構成される。
<Embodiment 1>
<External configuration>
FIG. 1 is a diagram illustrating an example of the external configuration of an aerosol generating device 1 assumed in Embodiment 1. FIG.
The aerosol generator 1 shown in FIG. 1 is one form of electronic cigarette, and generates flavored aerosol without combustion. The electronic cigarette shown in FIG. 1 has a generally cylindrical shape.
The aerosol generator 1 shown in FIG. 1 is composed of a plurality of units. In the case of FIG. 1, the multiple units are composed of a power supply unit 10, a cartridge 20 containing an aerosol source, and a cartridge 30 containing a flavor source.
 本実施の形態の場合、カートリッジ20は、電源ユニット10に対して着脱が可能であり、カートリッジ30は、カートリッジ20に対して着脱が可能である。換言すると、カートリッジ20とカートリッジ30は、いずれも交換が可能である。
 電源ユニット10には、電子回路等が内蔵されている。電源ユニット10は、回路ユニットの一形態である。因みに、電源ユニット10の側面には、電源ボタン11が設けられている。電源ボタン11は、電源ユニット10に対するユーザの指示の入力に使用される操作部の一例である。
In the case of this embodiment, the cartridge 20 can be attached to and detached from the power supply unit 10, and the cartridge 30 can be attached to and detached from the cartridge 20. FIG. In other words, both the cartridge 20 and the cartridge 30 are replaceable.
The power supply unit 10 incorporates an electronic circuit and the like. The power supply unit 10 is one form of a circuit unit. Incidentally, a power button 11 is provided on the side surface of the power supply unit 10 . The power button 11 is an example of an operation unit that is used to input user instructions to the power supply unit 10 .
 カートリッジ20には、エアロゾル源である液体を貯留する液貯蔵部と、毛管現象により液貯蔵部から液体を引き込む液誘導部と、液誘導部に保持される液体を加熱して蒸気化する加熱部とが内蔵されている。
 カートリッジ20の側面には、空気の流入孔(以下「空気流入孔」という)21が設けられている。空気流入孔21から流入した空気が、カートリッジ20内を通過し、カートリッジ30から排出される。カートリッジ20は、アトマイザとも呼ばれる。
 カートリッジ30には、エアロゾルに香味を加える香味ユニットが内蔵される。カートリッジ30には、吸い口31が設けられている。
The cartridge 20 includes a liquid storage section for storing the liquid that is the aerosol source, a liquid guide section for drawing the liquid from the liquid storage section by capillary action, and a heating section for heating and vaporizing the liquid held in the liquid guide section. and are built-in.
A side surface of the cartridge 20 is provided with an air inlet (hereinafter referred to as an “air inlet”) 21 . The air that has flowed in through the air inlet holes 21 passes through the cartridge 20 and is discharged from the cartridge 30 . Cartridge 20 is also called an atomizer.
The cartridge 30 incorporates a flavor unit that adds flavor to the aerosol. A mouthpiece 31 is provided in the cartridge 30 .
<内部構成>
 図2は、実施の形態1で想定するエアロゾル生成装置1の内部構成を模式的に示す図である。
 エアロゾル生成装置1は、電源ユニット10とカートリッジ20及び30により構成される。
 電源ユニット10には、電源部111、パフセンサ112、電源ボタンセンサ113、通知部114、記憶部115、通信部116、及び、制御部117が内蔵されている。
 カートリッジ20には、加熱部211、液誘導部212、及び、液貯蔵部213が内蔵されている。
<Internal configuration>
FIG. 2 is a diagram schematically showing the internal configuration of the aerosol generator 1 assumed in Embodiment 1. As shown in FIG.
The aerosol generator 1 is composed of a power supply unit 10 and cartridges 20 and 30 .
The power supply unit 10 incorporates a power supply unit 111, a puff sensor 112, a power button sensor 113, a notification unit 114, a storage unit 115, a communication unit 116, and a control unit 117.
The cartridge 20 incorporates a heating portion 211 , a liquid guiding portion 212 and a liquid storing portion 213 .
 カートリッジ30には、香味源311が内蔵されている。カートリッジ30の一端は、吸い口31として使用される。
 カートリッジ20及び30の内部には、空気流入孔21に接続される空気流路40が形成されている。
 電源部111は、動作に必要な電力を蓄積するデバイスである。電源部111は、制御部117による制御を通じ、エアロゾル生成装置1を構成する各部に電力を供給する。電源部111は、例えばリチウムイオン二次電池等の充電式バッテリにより構成される。
A flavor source 311 is built in the cartridge 30 . One end of cartridge 30 is used as mouthpiece 31 .
An air flow path 40 connected to the air inlet 21 is formed inside the cartridges 20 and 30 .
The power supply unit 111 is a device that stores power necessary for operation. The power supply unit 111 supplies electric power to each unit constituting the aerosol generation device 1 through control by the control unit 117 . The power supply unit 111 is composed of a rechargeable battery such as a lithium ion secondary battery, for example.
 パフセンサ112は、ユーザによるエアロゾルの吸引を検知するセンサであり、例えば流量センサで構成される。パフセンサ112は、第1のセンサの一例である。
 電源ボタンセンサ113は、電源ボタン11(図1参照)に対する操作を検知するセンサであり、例えば圧力センサで構成される。なお、電源ユニット10には、パフセンサ112や電源ボタンセンサ113以外にも各種のセンサが設けられる。
 通知部114は、ユーザに対する情報の通知に用いられるデバイスである。通知部114には、例えば発光装置、表示装置、音出力装置、振動装置がある。
The puff sensor 112 is a sensor that detects inhalation of aerosol by the user, and is configured by, for example, a flow rate sensor. Puff sensor 112 is an example of a first sensor.
The power button sensor 113 is a sensor that detects an operation on the power button 11 (see FIG. 1), and is composed of, for example, a pressure sensor. In addition to the puff sensor 112 and the power button sensor 113, the power supply unit 10 is provided with various sensors.
The notification unit 114 is a device used to notify the user of information. The notification unit 114 includes, for example, a light emitting device, a display device, a sound output device, and a vibration device.
 記憶部115は、エアロゾル生成装置1の動作に必要な各種の情報を記憶するデバイスである。記憶部115には、フラッシュメモリ等の不揮発性の記憶媒体が用いられる。
 通信部116は、有線方式又は無線方式の通信規格に準拠した通信インタフェースである。通信規格には、例えばWi-Fi(登録商標)、Bluetooth(登録商標)を使用する。
 制御部117は、演算処理装置や制御装置として機能するデバイスであり、各種のプログラムの実行を通じてエアロゾル生成装置1内の動作全般を制御する。制御部117は、CPU(=CentralProcessingUnit)、MPU(=Micro Processing Unit)等の電子回路により実現される。
The storage unit 115 is a device that stores various information necessary for the operation of the aerosol generator 1 . A nonvolatile storage medium such as a flash memory is used for the storage unit 115 .
The communication unit 116 is a communication interface conforming to a wired or wireless communication standard. Wi-Fi (registered trademark) and Bluetooth (registered trademark), for example, are used as communication standards.
The control unit 117 is a device that functions as an arithmetic processing unit and a control unit, and controls overall operations in the aerosol generation device 1 through execution of various programs. The control unit 117 is implemented by an electronic circuit such as a CPU (=Central Processing Unit) and an MPU (=Micro Processing Unit).
 液貯蔵部213は、エアロゾル源を貯蔵するタンクである。液貯蔵部213に貯蔵されているエアロゾル源の霧化によりエアロゾルが生成される。
 エアロゾル源には、グリセリンやプロピレングリコール等の多価アルコール、水等の液体が使用される。エアロゾル源は、たばこ由来又は非たばこ由来の香味成分を含んでもよい。
 エアロゾル生成装置1がネブライザー等の医療用吸入器である場合、エアロゾル源は、薬剤を含んでもよい。
The liquid storage unit 213 is a tank that stores the aerosol source. Aerosol is generated by atomization of an aerosol source stored in liquid reservoir 213 .
Liquids such as water and polyhydric alcohols such as glycerin and propylene glycol are used as aerosol sources. The aerosol source may include tobacco-derived or non-tobacco-derived flavoring ingredients.
If the aerosol-generating device 1 is a medical inhaler such as a nebulizer, the aerosol source may contain a medicament.
 液誘導部212は、液体であるエアロゾル源を、液貯蔵部213から加熱領域に誘導して保持する部材である。液誘導部212には、ガラス繊維等の繊維素材、又は、多孔質状のセラミック等の多孔質状素材を撚ったウィックと呼ばれる部材が用いられる。液誘導部212がウィックで構成される場合、液貯蔵部213に貯蔵されているエアロゾル源は、ウィックの毛管現象により加熱領域に誘導される。 The liquid guide section 212 is a member that guides and holds the liquid aerosol source from the liquid storage section 213 to the heating area. A member called a wick made by twisting a fiber material such as glass fiber or a porous material such as porous ceramic is used for the liquid guide portion 212 . When the liquid guiding part 212 is composed of a wick, the aerosol source stored in the liquid storing part 213 is guided to the heating area by capillary action of the wick.
 加熱部211は、加熱領域に保持されているエアロゾル源を加熱することにより、エアロゾル源を霧化してエアロゾルを生成する部材である。
 図2の場合、加熱部211はコイルであり、液誘導部212に巻き付けられている。液誘導部212のうちコイルが巻き付けられている領域が加熱領域となる。加熱部211の発熱により、加熱領域に保持されているエアロゾル源の温度が沸点まで上昇し、エアロゾルが生成される。
 加熱部211は、電源部111からの給電により発熱する。加熱部211への給電は、予め定めた条件が満たされることで開始される。予め定めた条件には、例えばユーザの吸引開始、電源ボタン11の所定回数の押下、予め定めた所定の情報の入力がある。もっとも、本実施の形態の場合、加熱部211への給電は、吸引の検知により開始される。
The heating unit 211 is a member that heats the aerosol source held in the heating region to atomize the aerosol source and generate an aerosol.
In the case of FIG. 2, the heating part 211 is a coil and is wound around the liquid guiding part 212 . The area around which the coil is wound in the liquid guide portion 212 serves as a heating area. Due to the heat generated by the heating unit 211, the temperature of the aerosol source held in the heating area rises to the boiling point to generate an aerosol.
The heating unit 211 generates heat by power supply from the power supply unit 111 . Power supply to the heating unit 211 is started when a predetermined condition is satisfied. Predetermined conditions include, for example, the user's start of suction, pressing of the power button 11 a predetermined number of times, and input of predetermined information. However, in the case of the present embodiment, power supply to heating unit 211 is started upon detection of suction.
 加熱部211への給電の停止は、予め定めた条件が満たされることで実行される。予め定めた条件には、例えばユーザの吸引終了、後述する本加熱時間の終了、電源ボタン11の長押し、予め定めた所定の情報の入力がある。もっとも、本実施の形態の場合、加熱部211への給電は、吸引の終了により停止する。
 ここでの加熱部211は、電力を消費する負荷の一例である。
Power supply to heating unit 211 is stopped when a predetermined condition is satisfied. Predetermined conditions include, for example, the end of suction by the user, the end of the main heating time described later, the long press of the power button 11, and the input of predetermined information. However, in the case of the present embodiment, the power supply to the heating unit 211 stops when the suction ends.
The heating unit 211 here is an example of a load that consumes power.
 香味源311は、カートリッジ20内で発生されたエアロゾルに香味成分を付与する構成要素である。香味源311には、たばこ由来又は非たばこ由来の香味成分が含まれる。
 カートリッジ20とカートリッジ30の内部を貫通する空気流路40は、ユーザが吸引する空気とエアロゾルの流路である。空気流路40は、空気流入孔21を空気の入り口とし、空気流出孔42を空気の出口とする管状構造を有している。
 空気流路40の上流側には液誘導部212が配置され、下流側には香味源311が配置される。
Flavor source 311 is a component that imparts a flavor component to the aerosol generated within cartridge 20 . The flavor source 311 includes tobacco-derived or non-tobacco-derived flavor components.
An air flow path 40 passing through the insides of the cartridges 20 and 30 is a flow path for air and aerosol inhaled by the user. The air flow path 40 has a tubular structure with the air inflow hole 21 as an air inlet and the air outflow hole 42 as an air outlet.
A liquid guide portion 212 is arranged on the upstream side of the air flow path 40, and a flavor source 311 is arranged on the downstream side thereof.
 ユーザの吸引に伴い、空気流入孔21から流入した空気は、加熱部211により生成されたエアロゾルと混合される。混合後の気体は、矢印41に示すように、香味源311を通過して空気流出孔42に輸送される。エアロゾルと空気が混合された気体には、香味源311を通過する際に、香味源311の香味成分が付与される。
 なお、香味源311をカートリッジ30に装着せずに使用することも可能である。
As the user inhales, the air that has flowed in through the air inflow hole 21 is mixed with the aerosol generated by the heating section 211 . The mixed gas passes through the flavor source 311 and is transported to the air outlet holes 42 as indicated by arrows 41 . The gas in which the aerosol and air are mixed is imparted with the flavor component of the flavor source 311 when passing through the flavor source 311 .
It is also possible to use the flavor source 311 without attaching it to the cartridge 30 .
 吸い口31は、吸引の際にユーザに咥えられる部材である。吸い口31には、空気流出孔42が設けられている。ユーザは、吸い口31を咥えて吸引することで、エアロゾルと空気が混合した気体を口腔内へ取り込むことができる。
 以上、エアロゾル生成装置1の内部構成の一例を説明したが、図2に示す構成は、あくまでも一つの形態である。
 例えばエアロゾル生成装置1は、カートリッジ30を含まない構成も可能である。その場合、カートリッジ20に吸い口31が設けられる。
The mouthpiece 31 is a member held by the user when inhaling. The mouthpiece 31 is provided with an air outlet hole 42 . By holding the mouthpiece 31 in one's mouth and sucking, the user can take in the gas in which the aerosol and the air are mixed into the oral cavity.
An example of the internal configuration of the aerosol generator 1 has been described above, but the configuration shown in FIG. 2 is just one form.
For example, the aerosol generator 1 can be configured without the cartridge 30 . In that case, the cartridge 20 is provided with a mouthpiece 31 .
 また、エアロゾル生成装置1は、複数種類のエアロゾル源を含むことも可能である。複数種類のエアロゾル源から生成された複数種類のエアロゾルが空気流路40内で混合され化学反応を起こすことで、さらに他の種類のエアロゾルが生成されてもよい。
 また、エアロゾル源を霧化する手段は、加熱部211による加熱に限定されない。例えば、エアロゾル源の霧化には誘導加熱の技術を使用してもよい。
The aerosol generator 1 can also include multiple types of aerosol sources. A plurality of types of aerosol generated from a plurality of types of aerosol sources may be mixed in the air flow path 40 to cause a chemical reaction, thereby generating another type of aerosol.
Moreover, the means for atomizing the aerosol source is not limited to heating by the heating unit 211 . For example, induction heating techniques may be used to atomize the aerosol source.
<本加熱時間の長さの制御>
 図3は、実施の形態1で使用する制御部117(図2参照)による本加熱時間の制御例を説明するフローチャートである。制御部117による制御は、プログラムの実行を通じて実現される。従って、制御部117は、コンピュータの一形態である。図3では、ステップの意味で記号のSを使用する。
 本実施の形態では、「本加熱時間」を、液誘導部212(図2参照)に保持されているエアロゾル源が加熱されて霧化され、エアロゾルが生成される時間の意味で使用する。
<Controlling the length of main heating time>
FIG. 3 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the first embodiment. Control by the control unit 117 is realized through execution of a program. Therefore, the control unit 117 is a form of computer. In FIG. 3, the symbol S is used to mean step.
In the present embodiment, the “main heating time” is used to mean the time during which the aerosol source held in the liquid guide section 212 (see FIG. 2) is heated and atomized to generate an aerosol.
 本実施の形態の場合、加熱部211への給電は、ユーザによるエアロゾル生成装置1(図1参照)の吸引と一致する。以下では、ユーザによるエアロゾル生成装置1の吸引を、エアロゾル源から生成される「エアロゾルの吸引」ともいう。
 加熱部211の温度は、電力の供給開始に伴い上昇し、電力の供給停止により低下する。本実施の形態の場合、加熱部211の温度は、電力の供給開始に伴いエアロゾルの沸点以上に上昇し、電力の供給停止によりエアロゾルの沸点以下に低下する。
In the case of the present embodiment, power supply to the heating unit 211 coincides with suction of the aerosol generating device 1 (see FIG. 1) by the user. In the following, inhalation of the aerosol generating device 1 by the user is also referred to as "inhalation of aerosol" generated from the aerosol source.
The temperature of the heating unit 211 rises when power supply is started, and decreases when power supply is stopped. In the case of the present embodiment, the temperature of the heating unit 211 rises above the boiling point of the aerosol when power supply is started, and drops below the boiling point of the aerosol when power supply is stopped.
 本実施の形態では、加熱部211に対する給電時間と液誘導部212からエアロゾルが生成される時間がほぼ同じであるとみなす。
 もっとも、厳密には、供給開始直後の電力は、液誘導部212に保持されているエアロゾル源の温度上昇のために消費される。このため、エアロゾル源の液温が沸点に達してエアロゾルの生成が開始されるまでには、時間差が存在する。ただし、この時間差はごく僅かであるので、本実施の形態では、この時間差を無視する。
In the present embodiment, it is assumed that the power feeding time to the heating part 211 and the aerosol generation time from the liquid guiding part 212 are almost the same.
Strictly speaking, however, the power immediately after the start of supply is consumed to raise the temperature of the aerosol source held in the liquid guide section 212 . Therefore, there is a time lag between when the liquid temperature of the aerosol source reaches the boiling point and when the aerosol starts to be generated. However, since this time difference is very small, this time difference is ignored in this embodiment.
 まず、制御部117は、パフセンサ112により、吸引の開始を検知したか否かを判定する(ステップ1)。
 ユーザによるエアロゾルの吸引の開始が検知されない場合、制御部117は、ステップ1で否定結果を得る。ステップ1で否定結果が得られている間、制御部117は、ステップ1の判定を繰り返す。
 一方、ユーザによるエアロゾルの吸引の開始が検知された場合、制御部117は、ステップ1で肯定結果を得る。ステップ1で肯定結果が得られた場合、制御部117は、本加熱を開始し(ステップ1100)、その後、直前のパフ間隔を取得する(ステップ2)。
First, the controller 117 determines whether or not the puff sensor 112 has detected the start of suction (step 1).
If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
On the other hand, when the user's start of aerosol inhalation is detected, the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then obtains the last puff interval (step 2).
 本実施の形態の場合、直前のパフ間隔は、直前回の吸引(パフ)の終了から今回の吸引(パフ)の開始までの時間で与えられる。パフ間隔は、例えばタイマーにより計測してもよいし、直前回の吸引の終了時刻と、今回の吸引の開始時刻との差分として計算してもよい。時刻は、例えば制御部117が内蔵するタイマーやタイマー機能を実現する集積回路等から取得する。
 パフ間隔が取得されると、制御部117は、パフ間隔が第1の期間より短いか否かを判定する(ステップ3)。
 ここでの第1の期間は、液誘導部212によるエアロゾル源の供給能力と、液枯れの可能性が生じる時間との兼ね合いで設定される。本実施の形態の場合、第1の期間は、例えば10秒とする。勿論、この値は一例である。なお、第1の期間は、絶対的な値ではなく、後述する他の実施の形態でも説明するように、採用する加熱モード等によっても異なる。
In the case of the present embodiment, the last puff interval is given by the time from the end of the previous suction (puff) to the start of the current suction (puff). The puff interval may be measured, for example, by a timer, or may be calculated as the difference between the last suction end time and the current suction start time. The time is acquired, for example, from a timer built in the control unit 117 or an integrated circuit that realizes the timer function.
After obtaining the puff interval, the control unit 117 determines whether the puff interval is shorter than the first period (step 3).
Here, the first period is set in consideration of the ability to supply the aerosol source by the liquid guide section 212 and the time when the liquid may dry up. In the case of this embodiment, the first period is 10 seconds, for example. Of course, this value is an example. It should be noted that the first period is not an absolute value, but differs depending on the adopted heating mode and the like, as described in other embodiments described later.
 パフ間隔が第1の期間以上の場合、制御部117は、ステップ3で否定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間LT1に設定する(ステップ4)。ここでの基準時間LT1は、第2の期間の一例である。本実施の形態の場合、基準時間として例えば2.4秒を使用する。勿論、この値は基準時間の一例である。基準時間は、パフ間隔が閾値より長い場合に、想定する標準ユーザによるエアロゾルの吸引によって液枯れが発生しない時間に設定される。
 一方、パフ間隔が閾値より短い場合、制御部117は、ステップ3で肯定結果を得る。この場合を、「短パフ」という。
If the puff interval is longer than or equal to the first period, the control section 117 obtains a negative result in step 3 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4). The reference time LT1 here is an example of the second period. In this embodiment, for example, 2.4 seconds is used as the reference time. Of course, this value is an example of the reference time. The reference time is set to a time during which liquid drying does not occur due to inhalation of aerosol by an assumed standard user when the puff interval is longer than the threshold.
On the other hand, if the puff interval is shorter than the threshold, the control section 117 obtains a positive result in step 3. This case is called a "short puff".
 短パフとは、パフ間隔が第1の期間より短い状態をいう。このとき、制御部117は、今回の本加熱時間を基準時間より短い時間LT2に設定する(ステップ5)。本実施の形態の場合、本加熱時間だけが短縮され、加熱部211に供給される電圧値や電流値は、パフ間隔の違いによらず同じである。
 本実施の形態の場合、時間LT2として、例えば1.7秒を使用する。勿論、この値は、短パフ用の本加熱時間の一例である。時間LT2が短いほど、エアロゾル源を加熱してもエアロゾルが発生しない液枯れ現象は発生され難くなる。
A short puff is a state in which the puff interval is shorter than the first period. At this time, the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5). In the case of this embodiment, only the main heating time is shortened, and the voltage value and current value supplied to the heating unit 211 are the same regardless of the difference in the puff interval.
In this embodiment, 1.7 seconds, for example, is used as the time LT2. Of course, this value is an example of the main heating time for short puffs. The shorter the time LT2, the more difficult it is for the liquid drying phenomenon, in which no aerosol is generated even if the aerosol source is heated, to occur.
 ステップ4又はステップ5による本加熱時間の設定後、制御部117は、本加熱の終了タイミングか否かを判定する(ステップ6)。
 本実施の形態の場合、本加熱は、例えば設定された本加熱時間の終了、ユーザによるエアロゾルの吸引終了、強制終了の操作により終了する。従って、設定された本加熱時間が残っていても、本加熱の終了と判定されると、加熱部211への給電が終了する。本加熱時間の経過は、加熱部211への給電の開始からの経過時間により監視される。
 なお、強制終了の操作には、例えば電源ボタン11(図1参照)の長押しが用いられる。電源ボタン11の長押しとは、予め定めた時間以上、電源ボタン11の押下が継続することをいう。例えば3秒以上、電源ボタン11が押下された場合、制御部117は、長押し操作があったと判定する。
After setting the main heating time in step 4 or step 5, the controller 117 determines whether or not it is time to finish the main heating (step 6).
In the case of the present embodiment, the main heating is ended by, for example, the end of the set main heating time, the end of aerosol suction by the user, or a forced end operation. Therefore, even if the set main heating time remains, the power supply to the heating unit 211 is finished when it is determined that the main heating is finished. The elapse of the main heating time is monitored by the elapsed time from the start of power supply to the heating unit 211 .
It should be noted that, for example, a long press of the power button 11 (see FIG. 1) is used for the forced termination operation. Pressing the power button 11 for a long time means that the power button 11 is continuously pressed for a predetermined time or longer. For example, when the power button 11 is pressed for three seconds or more, the control unit 117 determines that a long press operation has been performed.
 ステップ6で否定結果が得られている間、制御部117は、ステップ6の判定を繰り返す。この間、加熱部211への給電が継続される。
 一方、ステップ6で肯定結果が得られると、制御部117は、本加熱を終了する(ステップ7)。すなわち、加熱部211への給電を停止する。
 以上により、吸引の1サイクルが終了する。
 なお、短パフの場合、本加熱時間が基準時間より短くなるので、吸引の1サイクル中に加熱部211に供給される電力量は、基準時間の場合に供給される電力量より小さくなる。
While a negative result is obtained in step 6, the control unit 117 repeats the determination in step 6. During this time, power supply to the heating unit 211 is continued.
On the other hand, when a positive result is obtained in step 6, the control section 117 terminates the main heating (step 7). That is, power supply to the heating unit 211 is stopped.
Thus, one cycle of suction is completed.
In the case of a short puff, the main heating time is shorter than the reference time, so the amount of power supplied to the heating unit 211 during one suction cycle is smaller than the amount of power supplied in the case of the reference time.
 図4は、実施の形態1におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は本加熱時間の設定例を示す。図4(A)における縦軸はパフの強度であり、図4(B)における縦軸は加熱の強度であり、図4(A)及び(B)における横軸は時間である。パフの強度は、パフセンサで検出される。本実施の形態の場合、パフの強度は、パフの有無で検出されるが、吸引される空気量として規定してもよい。加熱の強度は、電力量であり、加熱部211に供給される電圧値と電流値の積で与えられる。
 図4(A)及び(B)の場合、吸引(パフ)の回数は5回である。
 図4(A)の場合、1回目のパフと2回目のパフの間隔はIT1であり、2回目のパフと3回目のパフの間隔はIT2であり、3回目のパフと4回目のパフの間隔はIT3であり、4回目のパフと5回目のパフの間隔はIT4である。この例では、3番目と4番目のパフ間隔IT3及びIT4が第1の期間より短い。すなわち、3番目と4番目のパフ間隔は、短パフと判定される。従って、1番目と2番目のパフ間隔IT1及びIT2は、短パフではない。
FIG. 4 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in the first embodiment. (A) shows an example of the timing of suction (puff), and (B) shows an example of setting the main heating time. The vertical axis in FIG. 4A is puff intensity, the vertical axis in FIG. 4B is heating intensity, and the horizontal axis in FIGS. 4A and 4B is time. The puff intensity is detected by a puff sensor. In the case of this embodiment, the strength of the puff is detected by the presence or absence of the puff, but it may be defined as the amount of air sucked. The intensity of heating is the amount of electric power, and is given by the product of the voltage value and the current value supplied to the heating unit 211 .
In the case of FIGS. 4A and 4B, the number of suctions (puffs) is five.
In the case of FIG. 4A, the interval between the first and second puffs is IT1, the interval between the second and third puffs is IT2, and the interval between the third and fourth puffs is IT2. The interval is IT3 and the interval between the 4th and 5th puffs is IT4. In this example, the third and fourth puff intervals IT3 and IT4 are shorter than the first period. That is, the third and fourth puff intervals are determined as short puffs. Therefore, the first and second puff intervals IT1 and IT2 are not short puffs.
 このため、1回目のパフと、2回目のパフと、3回目のパフの本加熱時間は、基準時間LT1に設定される一方、4回目のパフと5回目のパフの本加熱時間は、基準時間LT1よりも短い時間LT2に設定されている。
 その結果、4回目のパフが開始するまでのパフ間隔が短く、吸引開始までに加熱部211に供給されるエアロゾル源の供給量が少ない場合でも、本加熱時間が基準時間LT2より短縮されるので4回目のパフ中に液枯れが生じることはない。5回目のパフも同様である。
 なお、6回目以降のパフにおいて、直前のパフ間隔が閾値より長くなった場合には、その吸引回の本加熱時間は、再び基準時間LT1に設定される。
Therefore, the main heating times of the first puff, the second puff, and the third puff are set to the reference time LT1, while the main heating times of the fourth puff and the fifth puff are set to the reference time LT1. The time LT2 is set to be shorter than the time LT1.
As a result, even if the puff interval until the start of the fourth puff is short and the supply amount of the aerosol source supplied to the heating unit 211 before the start of suction is small, the main heating time is shortened from the reference time LT2. No dryness occurs during the fourth puff. The same is true for the fifth puff.
It should be noted that in the sixth and subsequent puffs, if the immediately preceding puff interval is longer than the threshold value, the main heating time for that suction time is again set to the reference time LT1.
 因みに、図4では、ユーザによるエアロゾルの吸引期間と加熱部211の加熱時間を、予め設定した本加熱時間内で一致させているが、電源ボタン11のオン操作により本加熱を開始してもよいし、ユーザの吸引が終了しても本加熱時間が経過するまでは本加熱を継続してもよい。
 これらの場合のパフ間隔は、本加熱が停止している時間と一致しないが、前述した制御例と同様に、短パフ時における液枯れを効果的に抑制できる。
Incidentally, in FIG. 4, the aerosol suction period by the user and the heating time of the heating unit 211 are matched within the preset main heating time, but the main heating may be started by turning on the power button 11. However, the main heating may be continued until the main heating time elapses even after the user finishes inhaling.
Although the puff interval in these cases does not coincide with the time during which the main heating is stopped, it is possible to effectively suppress liquid drying during short puffs, as in the control example described above.
<実施の形態2>
 実施の形態2では、パフ間隔を、加熱部211(図2参照)に対する電力の供給が停止している期間として規定する。
 本実施の形態の場合、電源ボタン11(図1参照)に対する所定の操作により加熱部211への給電が開始し、予め設定した本加熱時間の経過又はユーザによる給電の強制終了の操作等により加熱部211への給電が終了する。
 もっとも、実施の形態1の場合と同じく、ユーザによるエアロゾルの吸引に合わせて加熱部211への給電を実行してもよい。
<Embodiment 2>
In Embodiment 2, the puff interval is defined as a period during which power supply to heating unit 211 (see FIG. 2) is stopped.
In the case of this embodiment, power supply to the heating unit 211 is started by a predetermined operation of the power button 11 (see FIG. 1), and heating is performed when a preset main heating time elapses or when the user forcibly terminates power supply. Power supply to the unit 211 ends.
However, as in the case of the first embodiment, the power supply to the heating unit 211 may be executed in accordance with the inhalation of the aerosol by the user.
 本実施の形態におけるエアロゾル生成装置1(図1参照)のその他の構成は、実施の形態1と同じである。すなわち、エアロゾル生成装置1の外観構成及び内部構成は、実施の形態1と同じである。
 図5は、実施の形態2で使用する制御部117(図2参照)による本加熱時間の制御例を説明するフローチャートである。図5には、図3との対応部分に対応する符号を付して示す。制御部117による制御は、プログラムの実行を通じて実現される。
Other configurations of the aerosol generator 1 (see FIG. 1) in the present embodiment are the same as in the first embodiment. That is, the external configuration and internal configuration of the aerosol generator 1 are the same as those of the first embodiment.
FIG. 5 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the second embodiment. In FIG. 5, the parts corresponding to those in FIG. 3 are indicated by the reference numerals. Control by the control unit 117 is realized through execution of a program.
 本実施の形態における制御部117は、加熱部211の加熱の開始を検知したか否かを判定する(ステップ11)。すなわち、本加熱が開始したか否かが判定される。
 加熱部211の加熱の開始は、例えば電源ボタン11(図1参照)のオン操作、ユーザによる吸引の開始等により検知される。
 ここでのオン操作は、加熱部211への給電の開始を指示する操作であり、例えば電源ボタン11を長押しすることをいう。
 なお、加熱部211によるエアロゾル源の加熱の開始は、本加熱用の電流の検知、本加熱用の電圧の検知、加熱部211の抵抗値の変化、液誘導部212の温度上昇等によって検知してもよい。
Control unit 117 in the present embodiment determines whether or not the start of heating by heating unit 211 has been detected (step 11). That is, it is determined whether or not the main heating has started.
The start of heating by the heating unit 211 is detected, for example, by an ON operation of the power button 11 (see FIG. 1), the start of suction by the user, or the like.
The ON operation here is an operation for instructing the start of power supply to the heating unit 211, and means, for example, pressing the power button 11 for a long time.
The start of heating of the aerosol source by the heating part 211 is detected by detection of current for main heating, detection of voltage for main heating, change in resistance value of the heating part 211, temperature rise of the liquid guide part 212, and the like. may
 加熱部211の加熱の開始が検知されない場合、制御部117は、ステップ11で否定結果を得る。ステップ11で否定結果が得られている間、制御部117は、ステップ11の判定を繰り返す。
 一方、加熱部211の加熱の開始が検知された場合、制御部117は、ステップ11で肯定結果を得る。ステップ11で肯定結果が得られた場合、制御部117は、本加熱を開始し(ステップ11)、その後、直前の加熱停止時間を取得する(ステップ12)。直前の加熱停止時間は、前吸引回における加熱の終了から現吸引回における加熱が開始するまでの経過時間で与えられる。
 加熱停止時間は、例えばタイマーにより計測してもよいし、直前回の加熱が終了した時刻と、今回の加熱が開始した時刻との差分として計算してもよい。
If the start of heating by the heating unit 211 is not detected, the control unit 117 obtains a negative result in step 11 . While a negative result is obtained in step 11, the control unit 117 repeats the determination of step 11.
On the other hand, when the start of heating by the heating unit 211 is detected, the control unit 117 obtains a positive result in step 11 . When a positive result is obtained in step 11, the control unit 117 starts main heating (step 11), and then obtains the last heating stop time (step 12). The immediately preceding heating stop time is given by the elapsed time from the end of heating in the previous suction cycle to the start of heating in the current suction cycle.
The heating stop time may be measured, for example, by a timer, or may be calculated as the difference between the time when the previous heating was finished and the time when the current heating was started.
 加熱停止時間が取得されると、制御部117は、加熱停止時間が第1の期間より短いか否かを判定する(ステップ13)。
 ここでの第1の期間は、実施の形態1と同じく、液誘導部212によるエアロゾル源の供給能力と、液枯れの可能性が生じる時間との兼ね合いで設定される。本実施の形態の場合も、第1の期間は、例えば10秒とする。勿論、この値は一例である。なお、第1の期間は、絶対的な値ではなく、後述する他の実施の形態でも説明するように、採用する加熱モード等によっても異なる。
When the heating stop time is obtained, the controller 117 determines whether or not the heating stop time is shorter than the first period (step 13).
As in the first embodiment, the first period here is set in consideration of the ability to supply the aerosol source by the liquid guide section 212 and the time when the liquid may dry up. Also in this embodiment, the first period is, for example, 10 seconds. Of course, this value is an example. It should be noted that the first period is not an absolute value, but differs depending on the adopted heating mode and the like, as described in other embodiments described later.
 加熱停止時間が第1の期間以上の場合、制御部117は、ステップ13で否定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間LT1に設定する(ステップ4)。
 一方、加熱停止時間が第1の期間より短い場合、すなわち短パフの条件を満たす場合、制御部117は、今回の本加熱時間を基準時間より短い時間LT2に設定する(ステップ5)。
 ステップ4又はステップ5による本加熱時間の設定後、制御部117は、ステップ6及びステップ7を順番に実行し、吸引の1サイクルを終了する。
If the heating stop time is longer than or equal to the first period, the controller 117 obtains a negative result in step 13 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4).
On the other hand, if the heating stop time is shorter than the first period, that is, if the short puff condition is met, the controller 117 sets the current main heating time to LT2, which is shorter than the reference time (step 5).
After setting the main heating time in step 4 or step 5, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
 以上の通り、本実施の形態における制御部117は、エアロゾルの生成が停止する期間である加熱停止時間に着目し、液枯れが発生する原因となる短パフの発生を検知する。このため、液枯れの発生を効果的に抑制できる。
 本実施の形態においても、短パフの場合、本加熱時間が基準時間より短くなるので、吸引の1サイクル中に加熱部211に供給される電力量は、基準時間の場合に供給される電力量より小さくなる。
As described above, control unit 117 in the present embodiment detects the occurrence of short puffs that cause liquid drying, focusing on the heating stop time, which is the period during which aerosol generation is stopped. Therefore, it is possible to effectively suppress the occurrence of dryness.
Also in this embodiment, in the case of a short puff, the main heating time is shorter than the reference time, so the amount of power supplied to the heating unit 211 during one cycle of suction is equal to the amount of power supplied in the case of the reference time. become smaller.
 図6は、実施の形態2におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は本加熱時間の設定例を示す。図6には、図4との対応部分に対応する符号を付して示す。図6(A)における縦軸はパフの強度であり、図6(B)における縦軸は加熱の強度であり、図6(A)及び(B)における横軸は時間である。
 図6(A)及び(B)では、加熱部211が加熱される期間とユーザの吸引の期間が一致しない場合について表している。すなわち、電源ボタン11のオン操作等によって加熱部211の加熱が開始し、事前に設定された本加熱時間の経過後に加熱が終了する場合について表している。もっとも、前述したように、加熱部211が加熱される時間とユーザがエアロゾルを吸引する時間を一致させることも可能である。
FIG. 6 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in the second embodiment. (A) shows an example of the timing of suction (puff), and (B) shows an example of setting the main heating time. In FIG. 6, parts corresponding to those in FIG. The vertical axis in FIG. 6A is puff intensity, the vertical axis in FIG. 6B is heating intensity, and the horizontal axis in FIGS. 6A and 6B is time.
FIGS. 6A and 6B show a case where the period during which the heating unit 211 is heated does not match the period during which the user sucks. That is, a case is shown in which heating of the heating unit 211 is started by an ON operation of the power button 11 or the like, and heating is finished after a pre-set main heating time elapses. However, as described above, it is also possible to match the time during which the heating unit 211 is heated and the time during which the user inhales the aerosol.
 図6(A)及び(B)の場合も、吸引(パフ)の回数は5回である。
 図6(A)の場合、1回目のパフと2回目のパフの間隔を与える加熱停止時間はIT11であり、2回目のパフと3回目のパフの間隔を与える加熱停止時間はIT12であり、3回目のパフと4回目のパフの間隔を与える加熱停止時間はIT13であり、4回目のパフと5回目のパフの間隔を与える加熱停止時間はIT14である。この例では、3番目と4番目のパフ間隔は第1の期間より短い。すなわち、3番目と4番目のパフ間隔は短パフと判定される。
In the cases of FIGS. 6A and 6B as well, the number of times of suction (puff) is five.
In the case of FIG. 6(A), the heating stop time that gives the interval between the first puff and the second puff is IT11, and the heating stop time that gives the interval between the second puff and the third puff is IT12. The heating stop time that provides the interval between the third puff and the fourth puff is IT13, and the heating stop time that provides the interval between the fourth puff and the fifth puff is IT14. In this example, the third and fourth puff intervals are shorter than the first period. That is, the third and fourth puff intervals are determined as short puffs.
 このため、1回目のパフと、2回目のパフと、3回目のパフの本加熱時間は、基準時間LT1に設定される一方、4回目のパフと5回目のパフの本加熱時間は、基準時間LT1よりも短い時間LT2に設定される。
 その結果、4回目のパフが開始するまでのパフ間隔が短く、吸引開始までに加熱部211に供給されるエアロゾル源の供給量が少ない場合でも、本加熱時間が基準時間LT2より短縮されるので4回目のパフ中に液枯れが生じることはない。5回目のパフも同様である。
 なお、6回目以降のパフにおいて、直前のパフ間隔が第1の期間より長くなった場合には、その吸引回の本加熱時間は、再び基準時間LT1に設定される。
Therefore, the main heating times of the first puff, the second puff, and the third puff are set to the reference time LT1, while the main heating times of the fourth puff and the fifth puff are set to the reference time LT1. The time LT2 is set to be shorter than the time LT1.
As a result, even when the puff interval until the start of the fourth puff is short and the supply amount of the aerosol source supplied to the heating unit 211 before the start of suction is small, the main heating time is shortened from the reference time LT2. No dryness occurs during the fourth puff. The same is true for the fifth puff.
Note that in the sixth and subsequent puffs, if the immediately preceding puff interval is longer than the first period, the main heating time for that suction time is again set to the reference time LT1.
<実施の形態3>
 実施の形態3では、パフ間隔を、加熱部211(図2参照)に対する直前回の給電の停止から今回の吸引が開始されるまでの経過時間として規定する。換言すると、実施の形態1と実施の形態2の組み合わせ制御に相当する。
 本実施の形態におけるエアロゾル生成装置1(図1参照)のその他の構成は、実施の形態1と同じである。すなわち、エアロゾル生成装置1の外観構成及び内部構成は、実施の形態1と同じである。
 図7は、実施の形態3で使用する制御部117(図2参照)による本加熱時間の制御例を説明するフローチャートである。図7には、図3及び図5との対応部分に対応する符号を付して示す。制御部117による制御は、プログラムの実行を通じて実現される。
<Embodiment 3>
In Embodiment 3, the puff interval is defined as the elapsed time from the stoppage of power supply to the heating unit 211 (see FIG. 2) immediately before to the start of current suction. In other words, it corresponds to the combined control of the first embodiment and the second embodiment.
Other configurations of the aerosol generator 1 (see FIG. 1) in the present embodiment are the same as in the first embodiment. That is, the external configuration and internal configuration of the aerosol generator 1 are the same as those of the first embodiment.
FIG. 7 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the third embodiment. In FIG. 7, parts corresponding to those in FIGS. 3 and 5 are indicated by reference numerals. Control by the control unit 117 is realized through execution of a program.
 本実施の形態における制御部117は、加熱部211の加熱の開始を検知したか否かを判定する(ステップ11)。
 加熱部211の加熱の開始が検知されない場合、制御部117は、ステップ11で否定結果を得る。ステップ11で否定結果が得られている間、制御部117は、ステップ11の判定を繰り返す。
 一方、加熱部211の加熱の開始が検知された場合、制御部117は、ステップ11で肯定結果を得る。ステップ11で肯定結果が得られた場合、制御部117は、直前回の加熱終了時刻を取得する(ステップ21)。本実施の形態の場合、加熱終了時刻は、本加熱が終了した時刻をいう。
Control unit 117 in the present embodiment determines whether or not the start of heating by heating unit 211 has been detected (step 11).
If the start of heating by the heating unit 211 is not detected, the control unit 117 obtains a negative result in step 11 . While a negative result is obtained in step 11, the control unit 117 repeats the determination of step 11.
On the other hand, when the start of heating by the heating unit 211 is detected, the control unit 117 obtains a positive result in step 11 . When a positive result is obtained in step 11, the control unit 117 acquires the last heating end time (step 21). In the case of the present embodiment, the heating end time refers to the time when the main heating is completed.
 次に、制御部117は、パフセンサ112により、吸引の開始を検知したか否かを判定する(ステップ1)。
 ユーザによるエアロゾルの吸引の開始が検知されない場合、制御部117は、ステップ1で否定結果を得る。ステップ1で否定結果が得られている間、制御部117は、ステップ1の判定を繰り返す。
 一方、ユーザによるエアロゾルの吸引の開始が検知された場合、制御部117は、ステップ1で肯定結果を得る。ステップ1で肯定結果が得られた場合、制御部117は、今回のパフ開始時刻を取得する(ステップ22)。今回のパフ開始時刻は、ステップ1で肯定結果が得られた時刻である。
Next, the controller 117 determines whether or not the puff sensor 112 has detected the start of suction (step 1).
If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
On the other hand, when the user's start of aerosol inhalation is detected, the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the control section 117 acquires the current puff start time (step 22). The current puff start time is the time when a positive result was obtained in step 1.
 続いて、制御部117は、直前回の加熱終了時刻から今回のパフ開始時刻までの経過時間を算出する(ステップ23)。
 経過時間が算出されると、制御部117は、経過時間が第1の期間より短いか否かを判定する(ステップ24)。
 経過時間が第1の期間以上の場合、制御部117は、ステップ24で否定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間LT1に設定する(ステップ4)。
 一方、経過時間が第1の期間より短い場合、制御部117は、ステップ24で肯定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間より短い時間LT2に設定する(ステップ5)。
Subsequently, the control unit 117 calculates the elapsed time from the last heating end time to the current puff start time (step 23).
After the elapsed time is calculated, the controller 117 determines whether the elapsed time is shorter than the first period (step 24).
If the elapsed time is longer than or equal to the first period, the control section 117 obtains a negative result in step 24 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4).
On the other hand, if the elapsed time is shorter than the first period, the control section 117 obtains a positive result in step 24 . In this case, the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5).
 ステップ4又はステップ5による本加熱時間の設定後、制御部117は、ステップ6及びステップ7を順番に実行し、吸引の1サイクルを終了する。
 以上の通り、本実施の形態における制御部117は、直前回の加熱が終了した時刻と今回のエアロゾルの吸引が開始するまでの経過時間に着目し、液枯れが発生する原因となる短パフの発生を検知する。このため、液枯れの発生を効果的に抑制できる。
 本実施の形態においても、短パフの場合、本加熱時間が基準時間より短くなるので、吸引の1サイクル中に加熱部211に供給される電力量は、基準時間の場合に供給される電力量より小さくなる。
After setting the main heating time in step 4 or step 5, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
As described above, the control unit 117 in the present embodiment focuses on the elapsed time from the end of the previous heating to the start of the current suction of the aerosol, and the short puff that causes the liquid to dry up. Detect occurrence. Therefore, it is possible to effectively suppress the occurrence of dryness.
Also in this embodiment, in the case of a short puff, the main heating time is shorter than the reference time, so the amount of power supplied to the heating unit 211 during one cycle of suction is equal to the amount of power supplied in the case of the reference time. become smaller.
 図8は、実施の形態3におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は本加熱時間の設定例を示す。図8には、図4との対応部分に対応する符号を付して示す。図8(A)における縦軸はパフの強度であり、図8(B)における縦軸は加熱の強度であり、図8(A)及び(B)における横軸は時間である。
 図8(A)及び(B)も、加熱部211が加熱される期間とユーザの吸引の期間とが一致しない場合について表している。すなわち、電源ボタン11のオン操作によって加熱部211の加熱が開始し、事前に設定された本加熱時間の経過後に加熱が終了する場合について表している。もっとも、前述したように、加熱部211が加熱される時間とユーザがエアロゾルを吸引する時間を一致させることも可能である。
FIG. 8 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in the third embodiment. (A) shows an example of suction (puff) timing, and (B) shows an example of setting the main heating time. In FIG. 8, parts corresponding to those in FIG. 4 are shown with reference numerals. The vertical axis in FIG. 8A is puff intensity, the vertical axis in FIG. 8B is heating intensity, and the horizontal axis in FIGS. 8A and 8B is time.
FIGS. 8A and 8B also show a case where the period during which the heating unit 211 is heated does not match the period during which the user sucks. That is, a case is shown in which the heating of the heating unit 211 is started by the ON operation of the power button 11 and the heating is finished after the pre-set main heating time elapses. However, as described above, it is also possible to match the time during which the heating unit 211 is heated and the time during which the user inhales the aerosol.
 図8(A)及び(B)の場合も、吸引(パフ)の回数は5回である。
 図8(A)の場合、1回目のパフと2回目のパフの間隔を与える経過時間はIT21であり、2回目のパフと3回目のパフの間隔を与える経過時間はIT22であり、3回目のパフと4回目のパフの間隔を与える経過時間はIT23であり、4回目のパフと5回目のパフの間隔を与える経過時間はIT24である。この例では、3番目と4番目のパフ間隔は第1の期間より短い。すなわち、3番目と4番目のパフ間隔は短パフと判定される。
In the cases of FIGS. 8A and 8B as well, the number of times of suction (puff) is five.
In the case of FIG. 8A, IT21 is the elapsed time that gives the interval between the first puff and the second puff, IT22 is the elapsed time that gives the interval between the second puff and the third puff, and IT22 is the elapsed time that gives the interval between the second puff and the third puff. The elapsed time giving the interval between the first puff and the fourth puff is IT23, and the elapsed time giving the interval between the fourth and fifth puffs is IT24. In this example, the third and fourth puff intervals are shorter than the first period. That is, the third and fourth puff intervals are determined as short puffs.
 このため、1回目のパフと、2回目のパフと、3回目のパフの本加熱時間は、基準時間LT1に設定される一方、4回目のパフと5回目のパフの本加熱時間は、基準時間LT1よりも短い時間LT2に設定される。
 その結果、4回目のパフが開始するまでのパフ間隔が短く、吸引開始までに加熱部211に供給されるエアロゾル源の供給量が少ない場合でも、本加熱時間が基準時間LT2より短縮されるので4回目のパフ中に液枯れが生じることはない。5回目のパフも同様である。
 なお、6回目以降のパフにおいて、直前のパフ間隔が閾値より長くなった場合には、その吸引回の本加熱時間は、再び基準時間LT1に設定される。
Therefore, the main heating times of the first puff, the second puff, and the third puff are set to the reference time LT1, while the main heating times of the fourth puff and the fifth puff are set to the reference time LT1. The time LT2 is set to be shorter than the time LT1.
As a result, even if the puff interval until the start of the fourth puff is short and the supply amount of the aerosol source supplied to the heating unit 211 before the start of suction is small, the main heating time is shortened from the reference time LT2. No dryness occurs during the fourth puff. The same is true for the fifth puff.
It should be noted that in the sixth and subsequent puffs, if the immediately preceding puff interval is longer than the threshold value, the main heating time for that suction time is again set to the reference time LT1.
<実施の形態4>
 実施の形態4では、パフ間隔を、電源ボタン11(図1参照)に対するオン操作からオフ操作までの期間として規定する。本実施の形態の場合も、電源ボタン11に対するオン操作により加熱部211への給電が開始し、予め設定した本加熱時間の経過又はユーザによるオフ操作により加熱部211への給電が終了する。
 本実施の形態の場合、予め設定した本加熱時間の経過による給電の終了は、ユーザによるオフ操作による給電の終了とみなす。
<Embodiment 4>
In the fourth embodiment, the puff interval is defined as the period from when the power button 11 (see FIG. 1) is turned on to when it is turned off. In the present embodiment as well, power supply to the heating unit 211 starts when the power button 11 is turned on, and power supply to the heating unit 211 ends when the preset main heating time elapses or the user turns off the power button 11 .
In the case of the present embodiment, the termination of power supply due to the elapse of the preset main heating time is regarded as the termination of power supply due to the user's turning off operation.
 本実施の形態におけるエアロゾル生成装置1(図1参照)のその他の構成は、実施の形態1と同じである。すなわち、エアロゾル生成装置1の外観構成及び内部構成は、実施の形態1と同じである。
 図9は、実施の形態4で使用する制御部117(図2参照)による本加熱時間の制御例を説明するフローチャートである。図9には、図3との対応部分に対応する符号を付して示す。制御部117による制御は、プログラムの実行を通じて実現される。
 本実施の形態における制御部117は、電源ボタン11のオン操作を検知したか否かを判定する(ステップ31)。
Other configurations of the aerosol generator 1 (see FIG. 1) in the present embodiment are the same as in the first embodiment. That is, the external configuration and internal configuration of the aerosol generator 1 are the same as those of the first embodiment.
FIG. 9 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the fourth embodiment. In FIG. 9, parts corresponding to those in FIG. Control by the control unit 117 is realized through execution of a program.
Control unit 117 in the present embodiment determines whether or not an ON operation of power button 11 has been detected (step 31).
 電源ボタン11のオン操作が検知されない場合、制御部117は、ステップ31で否定結果を得る。ステップ31で否定結果が得られている間、制御部117は、ステップ31の判定を繰り返す。
 一方、電源ボタン11のオン操作が検知された場合、制御部117は、ステップ31で肯定結果を得る。ステップ31で肯定結果が得られた場合、制御部117は、今回のオン操作の時刻を取得する(ステップ32)。
 オン操作の時刻が取得されると、制御部117は、直前回のオフ操作の時刻を取得する(ステップ33)。
If the ON operation of the power button 11 is not detected, the control unit 117 obtains a negative result in step 31 . While a negative result is obtained in step 31 , the control section 117 repeats the determination of step 31 .
On the other hand, when the ON operation of the power button 11 is detected, the control unit 117 obtains a positive result in step 31 . When a positive result is obtained in step 31, the control unit 117 acquires the time of the current ON operation (step 32).
When the time of the ON operation is acquired, the control unit 117 acquires the time of the previous OFF operation (step 33).
 次に、制御部117は、直前回のオフ操作から今回のオン操作までの経過時間を算出する(ステップ34)。
 経過時間が算出されると、制御部117は、経過時間が第1の期間より短いか否かを判定する(ステップ35)。
 経過時間が第1の期間以上の場合、制御部117は、ステップ35で否定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間LT1に設定する(ステップ4)。
 経過時間が第1の期間より短い場合、制御部117は、ステップ35で肯定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間より短い時間LT2に設定する(ステップ5)。
Next, the control unit 117 calculates the elapsed time from the previous OFF operation to the current ON operation (step 34).
After the elapsed time is calculated, the controller 117 determines whether the elapsed time is shorter than the first period (step 35).
If the elapsed time is greater than or equal to the first period, the control section 117 obtains a negative result in step 35 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4).
If the elapsed time is shorter than the first period, the control unit 117 gets a positive result in step 35 . In this case, the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5).
 ステップ4又はステップ5による本加熱時間の設定後、制御部117は、ステップ6及びステップ7を順番に実行し、吸引の1サイクルを終了する。
 本実施の形態の場合、制御部117は、電源ボタン11に対するオフ操作からオン操作までの経過時間と第1の期間との関係により、液枯れが発生する原因となる短パフの発生を検知する。このため、液枯れの発生を効果的に抑制できる。
 本実施の形態においても、短パフの場合、本加熱時間が基準時間より短くなるので、吸引の1サイクル中に加熱部211に供給される電力量は、基準時間の場合に供給される電力量より小さくなる。
After setting the main heating time in step 4 or step 5, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
In the case of the present embodiment, the control unit 117 detects the occurrence of a short puff that causes liquid drying, based on the relationship between the first period and the elapsed time from the OFF operation to the ON operation of the power button 11. . Therefore, it is possible to effectively suppress the occurrence of dryness.
Also in this embodiment, in the case of a short puff, the main heating time is shorter than the reference time, so the amount of power supplied to the heating unit 211 during one cycle of suction is equal to the amount of power supplied in the case of the reference time. become smaller.
 図10は、実施の形態4におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は本加熱時間の設定例を示す。図10には、図4との対応部分に対応する符号を付して示す。図10(A)における縦軸はパフの強度であり、図10(B)の縦軸は加熱の強度であり、図10(A)及び(B)における横軸は時間である。
 図10(A)及び(B)も、加熱部211が加熱される期間とユーザの吸引の期間とが一致しない場合について表している。すなわち、電源ボタン11のオン操作によって開始した本加熱期間内の任意の期間にユーザがエアロゾルを吸引する場合について表している。
FIG. 10 is a diagram illustrating the relationship between the puff interval and the setting of the main heating time in the fourth embodiment. (A) shows an example of the timing of suction (puff), and (B) shows an example of setting the main heating time. In FIG. 10, parts corresponding to those in FIG. 4 are shown with reference numerals. The vertical axis in FIG. 10A is puff intensity, the vertical axis in FIG. 10B is heating intensity, and the horizontal axis in FIGS. 10A and 10B is time.
FIGS. 10A and 10B also show a case where the period during which the heating unit 211 is heated does not match the period during which the user sucks. That is, it represents the case where the user inhales the aerosol during an arbitrary period within the main heating period started by turning on the power button 11 .
 図10(A)及び(B)の場合も、吸引(パフ)の回数は5回である。
 図10(A)の場合、1回目のパフと2回目のパフの間隔を与える経過時間はIT31であり、2回目のパフと3回目のパフの間隔を与える経過時間はIT32であり、3回目のパフと4回目のパフの間隔を与える経過時間はIT33であり、4回目のパフと5回目のパフの間隔を与える経過時間はIT34である。この例では、3番目と4番目のパフ間隔は第1の期間より短い。すなわち、3番目と4番目のパフ間隔は短パフと判定される。
In the cases of FIGS. 10A and 10B as well, the number of times of suction (puff) is five.
In the case of FIG. 10A, IT31 is the elapsed time that provides the interval between the first and second puffs, IT32 is the elapsed time that provides the interval between the second and third puffs, and IT32 is the elapsed time that provides the interval between the second and third puffs. The elapsed time giving the interval between the first puff and the fourth puff is IT33, and the elapsed time giving the interval between the fourth and fifth puffs is IT34. In this example, the third and fourth puff intervals are shorter than the first period. That is, the third and fourth puff intervals are determined as short puffs.
 このため、1回目のパフと、2回目のパフと、3回目のパフの本加熱時間は、基準時間LT1に設定される一方、4回目のパフと5回目のパフの本加熱時間は、基準時間LT1よりも短い時間LT2に設定されている。
 その結果、4回目のパフが開始するまでのパフ間隔が短く、吸引開始までに加熱部211に供給されるエアロゾル源の供給量が少ない場合でも、本加熱時間が基準時間LT2より短縮されるので4回目のパフ中に液枯れが生じることはない。5回目のパフも同様である。
Therefore, the main heating times of the first puff, the second puff, and the third puff are set to the reference time LT1, while the main heating times of the fourth puff and the fifth puff are set to the reference time LT1. The time LT2 is set to be shorter than the time LT1.
As a result, even when the puff interval until the start of the fourth puff is short and the supply amount of the aerosol source supplied to the heating unit 211 before the start of suction is small, the main heating time is shortened from the reference time LT2. No dryness occurs during the fourth puff. The same is true for the fifth puff.
 なお、6回目以降のパフにおいて、直前のパフ間隔が第1の期間より長くなった場合には、その吸引回の本加熱時間は、再び基準時間LT1に設定される。
 本実施の形態では、電源ボタン11のオン操作とオフ操作を検知の対象としているが、加熱部211への電力の供給が別のボタンやGUIの操作を通じて実行される場合には、それらの操作の検知により、本実施の形態で説明した制御動作を実行すればよい。
Note that, in the sixth and subsequent puffs, if the immediately preceding puff interval is longer than the first period, the main heating time for that suction time is again set to the reference time LT1.
In the present embodiment, the ON operation and OFF operation of the power button 11 are targeted for detection. is detected, the control operation described in the present embodiment may be executed.
<実施の形態5>
 実施の形態5では、短パフの発生を間接的に検知する手法の一例を説明する。前述したように、パフ間隔が短い場合、液誘導部212内のエアロゾル源の液温が十分に下がり切る前にエアロゾル源の再加熱が開始される。本実施の形態では、この現象に着目する。
 本実施の形態の場合も、エアロゾル生成装置1の外観構成は実施の形態1と同じである。ただし、本実施の形態で想定するエアロゾル生成装置1の内部構成は実施の形態1と一部で相違する。
 図11は、実施の形態5で想定するエアロゾル生成装置1の内部構成を模式的に示す図である。図11には、図2との対応部分に対応する符号を付して示している。
<Embodiment 5>
Embodiment 5 will explain an example of a technique for indirectly detecting the occurrence of a short puff. As described above, when the puff interval is short, reheating of the aerosol source is started before the liquid temperature of the aerosol source in the liquid guide section 212 has fully decreased. This embodiment focuses on this phenomenon.
In the case of the present embodiment as well, the external configuration of the aerosol generator 1 is the same as that of the first embodiment. However, the internal configuration of the aerosol generator 1 assumed in this embodiment is partially different from that in the first embodiment.
FIG. 11 is a diagram schematically showing the internal configuration of the aerosol generator 1 assumed in Embodiment 5. As shown in FIG. In FIG. 11, parts corresponding to those in FIG. 2 are shown with reference numerals corresponding thereto.
 図11に示すエアロゾル生成装置1には、コイル温度センサ113Aが設けられる点で、図2に示すエアロゾル生成装置1と相違する。なお、加熱部211はコイルである。
 コイル温度センサ113Aには、例えばサーミスタを使用する。サーミスタは、コイルの近傍に配置される。コイル温度センサ113Aは、第2のセンサの一例である。
 もっとも、コイル温度センサ113Aの代わりに、加熱部211に流れる電流値を計測してもよいし、加熱部211に対して直列に接続された抵抗に現れる電圧を計測してもよい。
 パフ間隔が短い場合、パフ間隔が長い場合よりも、吸引開始時における加熱部211の温度が高くなり、加熱部211の抵抗値が大きくなる。このため、パフ間隔が短い場合には、パフ間隔が長い場合よりも電流が流れ難くなる。
The aerosol generator 1 shown in FIG. 11 is different from the aerosol generator 1 shown in FIG. 2 in that a coil temperature sensor 113A is provided. Note that the heating unit 211 is a coil.
A thermistor, for example, is used for the coil temperature sensor 113A. A thermistor is placed near the coil. Coil temperature sensor 113A is an example of a second sensor.
However, instead of the coil temperature sensor 113A, the current value flowing through the heating unit 211 may be measured, or the voltage appearing in the resistor connected in series to the heating unit 211 may be measured.
When the puff interval is short, the temperature of the heating unit 211 at the start of suction becomes higher than when the puff interval is long, and the resistance value of the heating unit 211 becomes large. Therefore, when the puff interval is short, the current is less likely to flow than when the puff interval is long.
 従って、加熱部211に流れる電流の値(すなわち「電流値」)や加熱部211に対して直列に接続された抵抗に出現する電圧の値(すなわち「電圧値」)を監視することにより、加熱部211の温度の検知が可能である。
 例えば電流値や電圧値と加熱部211の温度との関係を対応付けたテーブルを用意されている場合、制御部117は、測定された電流値や電圧値に対応する温度をテーブルから読み出す。
 また例えば電流値や電圧値と加熱部211の温度との換算式が用意されている場合、制御部117は、測定された電流値や電圧値を変数に代入して、対応する温度を算出する。
Therefore, by monitoring the value of the current flowing through the heating unit 211 (that is, the “current value”) and the value of the voltage that appears across the resistance that is connected in series with the heating unit 211 (that is, the “voltage value”), Sensing of the temperature of the portion 211 is possible.
For example, if a table that associates the current value or voltage value with the temperature of the heating unit 211 is prepared, the control unit 117 reads the temperature corresponding to the measured current value or voltage value from the table.
Further, for example, if a conversion formula for the current value or voltage value and the temperature of the heating unit 211 is prepared, the control unit 117 substitutes the measured current value or voltage value for variables and calculates the corresponding temperature. .
 図12は、実施の形態5で使用する制御部117(図2参照)による本加熱時間の制御例を説明するフローチャートである。図12には、図3との対応部分に対応する符号を付して示す。制御部117による制御は、プログラムの実行を通じて実現される。
 本実施の形態における制御部117は、パフセンサ112により、吸引の開始を検知したか否かを判定する(ステップ1)。この判定は、本加熱がユーザの吸引の開始により開始される場合に実行する。なお、実施の形態2の場合のように、加熱部211の加熱が開始されたか否かを判定してもよいし、実施の形態4の場合のように、電源ボタン11(図1参照)がオン操作されたか否かを判定してもよい。
FIG. 12 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the fifth embodiment. In FIG. 12, parts corresponding to those in FIG. 3 are shown with reference numerals. Control by the control unit 117 is realized through execution of a program.
Control unit 117 in the present embodiment determines whether or not the puff sensor 112 has detected the start of suction (step 1). This determination is performed when main heating is initiated by the user's initiation of suction. As in the second embodiment, it may be determined whether or not the heating of the heating unit 211 has started. It may be determined whether or not an ON operation has been performed.
 ユーザによるエアロゾルの吸引の開始が検知されない場合、制御部117は、ステップ1で否定結果を得る。ステップ1で否定結果が得られている間、制御部117は、ステップ1の判定を繰り返す。
 一方、ユーザによるエアロゾルの吸引の開始が検知された場合、制御部117は、ステップ1で肯定結果を得る。ステップ1で肯定結果が得られた場合、制御部117は、本加熱を開始し(ステップ1100)、その後、吸引開始時のコイルの温度を取得する(ステップ41)。コイルの温度は、加熱部211の温度である。
 コイルの温度が取得されると、制御部117は、吸引開始時のコイルの温度が第1の温度より高いか否かを判定する(ステップ42)。第1の温度は、短パフの場合に現れる温度と、短パフでない場合に現れる温度との中間値に設定される。
If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
On the other hand, when the start of inhalation of aerosol by the user is detected, the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then acquires the temperature of the coil at the start of suction (step 41). The temperature of the coil is the temperature of the heating unit 211 .
When the temperature of the coil is acquired, the control unit 117 determines whether the temperature of the coil at the start of suction is higher than the first temperature (step 42). The first temperature is set to an intermediate value between the temperature encountered for short puffs and the temperature encountered for non-short puffs.
 コイルの温度が第1の温度以下の場合、制御部117は、ステップ42で否定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間LT1に設定する(ステップ4)。
 一方、コイルの温度が第1の温度より高い場合、制御部117は、ステップ42で肯定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間より短い時間LT2に設定する(ステップ5)。
 ステップ4又はステップ5による本加熱時間の設定後、制御部117は、ステップ6及びステップ7を順番に実行し、吸引の1サイクルを終了する。
If the temperature of the coil is equal to or lower than the first temperature, the controller 117 obtains a negative result in step 42 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4).
On the other hand, if the temperature of the coil is higher than the first temperature, the controller 117 obtains a positive result in step 42 . In this case, the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5).
After setting the main heating time in step 4 or step 5, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
 本実施の形態の場合、制御部117は、エアロゾルを生成する加熱部211の温度に着目し、液枯れが発生する原因となる短パフの発生を検知する。このため、液枯れの発生を効果的に抑制できる。
 本実施の形態においても、短パフの場合、本加熱時間が基準時間より短くなるので、吸引の1サイクル中に加熱部211に供給される電力量は、基準時間の場合に供給される電力量より小さくなる。
In the case of this embodiment, the control unit 117 focuses on the temperature of the heating unit 211 that generates the aerosol, and detects the occurrence of short puffs that cause liquid drying. Therefore, it is possible to effectively suppress the occurrence of dryness.
Also in this embodiment, in the case of a short puff, the main heating time is shorter than the reference time, so the amount of power supplied to the heating unit 211 during one cycle of suction is equal to the amount of power supplied in the case of the reference time. become smaller.
 図13は、実施の形態5におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は加熱部211の温度変化を示し、(C)は本加熱時間の設定例を示す。図13には、図4との対応部分に対応する符号を付して示す。図13(A)における縦軸はパフの強度であり、図13(B)における縦軸は温度であり、図13(C)における縦軸は加熱の強度である。なお、図13(A)~(C)における横軸は時間である。
 図13(A)及び(B)も、加熱部211が加熱される時間とユーザの吸引の期間とが一致しない場合について表している。すなわち、電源ボタン11のオン操作によって開始した本加熱期間内の任意の期間にユーザがエアロゾルを吸引する場合について表している。
13A and 13B are diagrams for explaining the relationship between the puff interval and the setting of the main heating time in Embodiment 5. FIG. (A) shows a timing example of suction (puff), (B) shows a temperature change of the heating unit 211, and (C) shows a setting example of the main heating time. In FIG. 13, the parts corresponding to those in FIG. 4 are indicated by the reference numerals. The vertical axis in FIG. 13(A) is puff intensity, the vertical axis in FIG. 13(B) is temperature, and the vertical axis in FIG. 13(C) is heating intensity. Note that the horizontal axis in FIGS. 13A to 13C is time.
FIGS. 13A and 13B also show a case where the time during which the heating unit 211 is heated does not match the user's sucking period. That is, it represents the case where the user inhales the aerosol during an arbitrary period within the main heating period started by turning on the power button 11 .
 図13(A)及び(B)の場合も、吸引(パフ)の回数は5回である。
 図13(A)の場合、1回目のパフと2回目のパフの間隔、2回目のパフと3回目のパフの間隔、4回目のパフと5回目のパフの間隔は短パフではないが、3回目のパフと4回目のパフの間隔は短パフの場合を想定する。
 このため、図13(B)の例では、2回目のパフの開始時と、3回目のパフの開始時と、5回目のパフの開始時における加熱部211の温度TAは、第1の温度よりも低い状態にある。しかし、4回目のパフの開始時における加熱部211の温度TBは、第1の温度よりも高い状態にある。
In the cases of FIGS. 13A and 13B as well, the number of times of suction (puff) is five.
In the case of FIG. 13(A), the interval between the first and second puffs, the interval between the second and third puffs, and the interval between the fourth and fifth puffs are not short puffs, It is assumed that the interval between the third puff and the fourth puff is a short puff.
Therefore, in the example of FIG. 13B, the temperature TA of the heating unit 211 at the start of the second puff, at the start of the third puff, and at the start of the fifth puff is the first temperature. is in a lower state than However, the temperature TB of the heating unit 211 at the start of the fourth puff is higher than the first temperature.
 このため、図13(C)に示す例では、1回目のパフと、2回目のパフと、3回目のパフと、5回目のパフの本加熱時間は、基準時間LT1に設定される一方、4回目のパフの本加熱時間は、基準時間LT1よりも短い時間LT2に設定されている。
 その結果、4回目のパフが開始するまでのパフ間隔が短く、吸引開始までに加熱部211に供給されるエアロゾル源の供給量が少ない場合でも、本加熱時間が基準時間LT2より短縮されるので4回目のパフ中に液枯れが生じることはない。
Therefore, in the example shown in FIG. 13C, the main heating time of the first puff, the second puff, the third puff, and the fifth puff is set to the reference time LT1, The main heating time for the fourth puff is set to LT2, which is shorter than the reference time LT1.
As a result, even if the puff interval until the start of the fourth puff is short and the supply amount of the aerosol source supplied to the heating unit 211 before the start of suction is small, the main heating time is shortened from the reference time LT2. No dryness occurs during the fourth puff.
<実施の形態6>
 実施の形態6も、短パフの発生を間接的に検知する手法の一例を説明する。本実施の形態では、吸引の開始時に加熱部211が高温状態にあることを抵抗値の変化を通じて検知する。
 本実施の形態の場合も、エアロゾル生成装置1の外観構成は実施の形態1と同じである。ただし、本実施の形態で想定するエアロゾル生成装置1の内部構成は実施の形態1と一部で相違する。
 図14は、実施の形態6で想定するエアロゾル生成装置1の内部構成を模式的に示す図である。図14には、図2との対応部分に対応する符号を付して示している。
<Embodiment 6>
Embodiment 6 also describes an example of a technique for indirectly detecting the occurrence of short puffs. In the present embodiment, it is detected through a change in resistance that the heating portion 211 is in a high temperature state at the start of suction.
In the case of the present embodiment as well, the external configuration of the aerosol generator 1 is the same as that of the first embodiment. However, the internal configuration of the aerosol generator 1 assumed in this embodiment is partially different from that in the first embodiment.
FIG. 14 is a diagram schematically showing the internal configuration of the aerosol generator 1 assumed in Embodiment 6. As shown in FIG. In FIG. 14, parts corresponding to those in FIG. 2 are shown with reference numerals.
 図14に示すエアロゾル生成装置1には、抵抗値センサ113Bが設けられる点で、図2に示すエアロゾル生成装置1と相違する。なお、抵抗値センサ113Bは、加熱部211の抵抗値を測定の対象とする。
 抵抗値センサ113Bは、例えば加熱部211に流れる電流値の計測を通じ、加熱部211の抵抗値を検知する。この手法は、加熱部211の温度変化に起因する抵抗値の変化を電流値の変化として検知する。
The aerosol generator 1 shown in FIG. 14 is different from the aerosol generator 1 shown in FIG. 2 in that a resistance value sensor 113B is provided. Note that the resistance value sensor 113B measures the resistance value of the heating unit 211 .
The resistance value sensor 113B detects the resistance value of the heating unit 211 by measuring the value of current flowing through the heating unit 211, for example. This method detects changes in the resistance value due to temperature changes in the heating unit 211 as changes in the current value.
 また、抵抗値センサ113Bは、例えば加熱部211に対して直列に接続された抵抗の両端に現れる電圧値の計測を通じ、加熱部211の抵抗値の変化を検知する。この手法は、温度変化に起因する加熱部211の抵抗値の変化を、加熱部211に対して直列に接続された抵抗の両端に現れる電圧の変化を通じて検知する。 Also, the resistance value sensor 113B detects a change in the resistance value of the heating unit 211 by measuring the voltage value appearing across the resistor connected in series with the heating unit 211, for example. This method detects changes in the resistance value of the heating unit 211 due to temperature changes through changes in voltage appearing across a resistor connected in series to the heating unit 211 .
 図15は、実施の形態6で使用する制御部117(図2参照)による本加熱時間の制御例を説明するフローチャートである。図15には、図3との対応部分に対応する符号を付して示す。制御部117による制御は、プログラムの実行を通じて実現される。
 本実施の形態における制御部117も、パフセンサ112により、吸引の開始を検知したか否かを判定する(ステップ1)。この判定は、本加熱がユーザの吸引の開始により開始される場合に実行する。なお、実施の形態2の場合のように、加熱部211の加熱が開始されたか否かを判定してもよいし、実施の形態4の場合のように、電源ボタン11(図1参照)がオン操作されたか否かを判定してもよい。
FIG. 15 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the sixth embodiment. In FIG. 15, parts corresponding to those in FIG. 3 are shown with reference numerals. Control by the control unit 117 is realized through execution of a program.
Control unit 117 in the present embodiment also determines whether or not the start of suction is detected by puff sensor 112 (step 1). This determination is performed when main heating is initiated by the user's initiation of suction. As in the second embodiment, it may be determined whether or not the heating of the heating unit 211 has started. It may be determined whether or not an ON operation has been performed.
 ユーザによるエアロゾルの吸引の開始が検知されない場合、制御部117は、ステップ1で否定結果を得る。ステップ1で否定結果が得られている間、制御部117は、ステップ1の判定を繰り返す。
 一方、ユーザによるエアロゾルの吸引の開始が検知された場合、制御部117は、ステップ1で肯定結果を得る。ステップ1で肯定結果が得られた場合、制御部117は、本加熱を開始し(ステップ1100)、その後、吸引開始時のコイルの抵抗値を取得する(ステップ51)。コイルの抵抗値は、加熱部211の抵抗値である。
 コイルの抵抗値が取得されると、制御部117は、吸引開始時のコイルの抵抗値が第1の抵抗値より大きいか否かを判定する(ステップ52)。第1の抵抗値は、加熱部211への給電の終了からの経過時間に応じた抵抗値の変化の実測値に応じて定められる。第1の抵抗値は、短パフの場合に現れる抵抗値と、短パフでない場合に現れる抵抗値との中間値に設定される。
If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
On the other hand, when the user's start of aerosol inhalation is detected, the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the control unit 117 starts main heating (step 1100), and then acquires the resistance value of the coil at the start of suction (step 51). The resistance value of the coil is the resistance value of the heating unit 211 .
When the resistance value of the coil is acquired, the control unit 117 determines whether or not the resistance value of the coil at the start of suction is greater than the first resistance value (step 52). The first resistance value is determined according to the actual measurement value of the change in the resistance value according to the elapsed time from the end of the power supply to the heating unit 211 . The first resistance value is set to an intermediate value between the resistance value that appears for short puffs and the resistance value that appears for non-short puffs.
 コイルの抵抗値が第1の抵抗値以下の場合、制御部117は、ステップ52で否定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間LT1に設定する(ステップ4)。
 一方、コイルの抵抗値が第1の抵抗値より大きい場合、制御部117は、ステップ52で肯定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間より短い時間LT2に設定する(ステップ5)。
 ステップ4又はステップ5による本加熱時間の設定後、制御部117は、ステップ6及びステップ7を順番に実行し、吸引の1サイクルを終了する。
If the resistance value of the coil is less than or equal to the first resistance value, the controller 117 obtains a negative result in step 52 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4).
On the other hand, if the resistance value of the coil is greater than the first resistance value, the controller 117 obtains a positive result in step 52 . In this case, the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5).
After setting the main heating time in step 4 or step 5, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
 本実施の形態の場合、制御部117は、エアロゾルを生成する加熱部211の抵抗値に着目し、液枯れが発生する原因となる短パフの発生を検知する。このため、液枯れの発生を効果的に抑制できる。
 本実施の形態においても、短パフの場合、本加熱時間が基準時間より短くなるので、吸引の1サイクル中に加熱部211に供給される電力量は、基準時間の場合に供給される電力量より小さくなる。
In the case of this embodiment, the control unit 117 focuses on the resistance value of the heating unit 211 that generates the aerosol, and detects the occurrence of short puffs that cause liquid drying. Therefore, it is possible to effectively suppress the occurrence of dryness.
Also in this embodiment, in the case of a short puff, the main heating time is shorter than the reference time, so the amount of power supplied to the heating unit 211 during one cycle of suction is equal to the amount of power supplied in the case of the reference time. become smaller.
 図16は、実施の形態6におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は加熱部211の抵抗値の変化を示し、(C)は本加熱時間の設定例を示す。図16には、図4との対応部分に対応する符号を付して示す。図16(A)における縦軸はパフの強度であり、図16(B)における縦軸は抵抗値であり、図16(C)における縦軸は加熱の強度である。なお、図16(A)~(C)における横軸は時間である。
 図16(A)及び(B)も、加熱部211が加熱される期間とユーザの吸引の期間とが一致しない場合について表している。すなわち、電源ボタン11のオン操作によって開始した本加熱期間内の任意の期間にユーザがエアロゾルを吸引する場合について表している。
FIG. 16 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in the sixth embodiment. (A) shows an example of a suction (puff) timing, (B) shows a change in the resistance value of the heating unit 211, and (C) shows an example of setting the main heating time. In FIG. 16, parts corresponding to those in FIG. 4 are shown with reference numerals. The vertical axis in FIG. 16(A) is the puff intensity, the vertical axis in FIG. 16(B) is the resistance value, and the vertical axis in FIG. 16(C) is the heating intensity. Note that the horizontal axis in FIGS. 16A to 16C is time.
FIGS. 16A and 16B also show a case where the period during which the heating unit 211 is heated does not match the period during which the user sucks. That is, it represents a case where the user inhales the aerosol during an arbitrary period within the main heating period started by turning on the power button 11 .
 図16(A)及び(B)の場合も、吸引(パフ)の回数は5回である。
 図16(A)の場合、1回目のパフと2回目のパフの間隔、2回目のパフと3回目のパフの間隔、4回目のパフと5回目のパフの間隔は短パフではないが、3回目のパフと4回目のパフの間隔は短パフの場合を想定する。
 このため、図16(B)の例では、2回目のパフの開始時と、3回目のパフの開始時と、5回目のパフの開始時におけるコイルの抵抗値RAが第1の抵抗値よりも低い状態にある。直前回の加熱の終了から時間が経過した結果、コイルの温度が低下し、抵抗値も低下したためである。
In the case of FIGS. 16A and 16B as well, the number of times of suction (puff) is five.
In the case of FIG. 16(A), the interval between the first and second puffs, the interval between the second and third puffs, and the interval between the fourth and fifth puffs are not short puffs, It is assumed that the interval between the third puff and the fourth puff is a short puff.
Therefore, in the example of FIG. 16B, the resistance value RA of the coil at the start of the second puff, at the start of the third puff, and at the start of the fifth puff is higher than the first resistance value. is also at a low level. This is because the temperature of the coil has decreased and the resistance value has also decreased as a result of the passage of time since the end of the previous heating.
 しかし、4回目のパフの開始時におけるコイルの抵抗値RBは、第1の抵抗値よりも高い状態にある。3回目と4回目のパフ間隔が短く、加熱部211の温度が十分に下がり切っていないためである。
 このため、図16(C)に示す例では、1回目、2回目、3回目及び5回目のパフの本加熱時間は、基準時間LT1に設定される一方、4回目のパフの本加熱時間は、基準時間LT1よりも短い時間LT2に設定されている。
 その結果、4回目のパフが開始するまでのパフ間隔が短く、吸引開始までに加熱部211に供給されるエアロゾル源の供給量が少ない場合でも、本加熱時間が基準時間LT2より短縮されるので4回目のパフ中に液枯れが生じることはない。
However, the resistance value RB of the coil at the start of the fourth puff is higher than the first resistance value. This is because the interval between the third puff and the fourth puff is short, and the temperature of the heating unit 211 has not sufficiently decreased.
Therefore, in the example shown in FIG. 16C, the main heating times for the first, second, third, and fifth puffs are set to the reference time LT1, while the main heating time for the fourth puff is set to LT1. , is set to a time LT2 shorter than the reference time LT1.
As a result, even when the puff interval until the start of the fourth puff is short and the supply amount of the aerosol source supplied to the heating unit 211 before the start of suction is small, the main heating time is shortened from the reference time LT2. No dryness occurs during the fourth puff.
<実施の形態7>
 実施の形態7も、短パフの発生を間接的に検知する手法の一例を説明する。本実施の形態では、吸引の開始時に加熱部211が高温状態にあることを液誘導部212の温度変化を通じて検知する。
 本実施の形態の場合も、エアロゾル生成装置1の外観構成は実施の形態1と同じである。ただし、本実施の形態で想定するエアロゾル生成装置1の内部構成は実施の形態1と一部で相違する。
 図17は、実施の形態7で想定するエアロゾル生成装置1の内部構成を模式的に示す図である。図17には、図2との対応部分に対応する符号を付して示している。
<Embodiment 7>
Embodiment 7 also describes an example of a technique for indirectly detecting the occurrence of short puffs. In this embodiment, it is detected through the temperature change of the liquid guide portion 212 that the heating portion 211 is in a high temperature state at the start of suction.
Also in the present embodiment, the external configuration of the aerosol generator 1 is the same as that of the first embodiment. However, the internal configuration of the aerosol generator 1 assumed in this embodiment is partially different from that in the first embodiment.
FIG. 17 is a diagram schematically showing the internal configuration of the aerosol generator 1 assumed in Embodiment 7. As shown in FIG. In FIG. 17, parts corresponding to those in FIG.
 図17に示すエアロゾル生成装置1には、液温センサ113Cが設けられる点で、図2に示すエアロゾル生成装置1と相違する。なお、液温センサ113Cは、液誘導部212の温度を測定の対象とする。このため、液温センサ113Cは、液誘導部212の近傍に配置される。液温センサ113Cには、例えば温度センサ、サーミスタを使用する。液温センサ113Cは、第3のセンサの一例である。
 図18は、実施の形態7で使用する制御部117(図2参照)による本加熱時間の制御例を説明するフローチャートである。図18には、図3との対応部分に対応する符号を付して示す。制御部117による制御は、プログラムの実行を通じて実現される。
The aerosol generator 1 shown in FIG. 17 is different from the aerosol generator 1 shown in FIG. 2 in that a liquid temperature sensor 113C is provided. The temperature of the liquid guide portion 212 is measured by the liquid temperature sensor 113C. Therefore, the liquid temperature sensor 113</b>C is arranged near the liquid guide section 212 . A temperature sensor or a thermistor, for example, is used as the liquid temperature sensor 113C. Liquid temperature sensor 113C is an example of a third sensor.
FIG. 18 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the seventh embodiment. In FIG. 18, parts corresponding to those in FIG. 3 are shown with reference numerals. Control by the control unit 117 is realized through execution of a program.
 本実施の形態における制御部117も、パフセンサ112により、吸引の開始を検知したか否かを判定する(ステップ1)。この判定は、本加熱がユーザの吸引の開始により開始される場合に実行する。なお、実施の形態2の場合のように、加熱部211の加熱が開始されたか否かを判定してもよいし、実施の形態4の場合のように、電源ボタン11(図1参照)がオン操作されたか否かを判定してもよい。
 ユーザによるエアロゾルの吸引の開始が検知されない場合、制御部117は、ステップ1で否定結果を得る。ステップ1で否定結果が得られている間、制御部117は、ステップ1の判定を繰り返す。
Control unit 117 in the present embodiment also determines whether or not the start of suction is detected by puff sensor 112 (step 1). This determination is performed when main heating is initiated by the user's initiation of suction. As in the second embodiment, it may be determined whether or not the heating of the heating unit 211 has started. It may be determined whether or not an ON operation has been performed.
If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
 一方、ユーザによるエアロゾルの吸引の開始が検知された場合、制御部117は、ステップ1で肯定結果を得る。ステップ1で肯定結果が得られた場合、制御部117は、本加熱を開始し(ステップ1100)、その後、吸引開始時の液温を取得する(ステップ61)。液温は、液誘導部212の温度である。
 液誘導部212の温度が取得されると、制御部117は、吸引開始時の液温が第2の温度より大きいか否かを判定する(ステップ62)。第2の温度は、加熱部211への給電の終了からの経過時間に応じた液温の変化の実測値に応じて定められる。
On the other hand, when the user's start of aerosol inhalation is detected, the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then acquires the liquid temperature at the start of suction (step 61). The liquid temperature is the temperature of the liquid guide portion 212 .
When the temperature of the liquid guide part 212 is obtained, the control part 117 determines whether or not the liquid temperature at the start of suction is higher than the second temperature (step 62). The second temperature is determined according to the actual measurement value of the liquid temperature change according to the elapsed time from the end of power supply to the heating unit 211 .
 液温が第2の温度以下の場合、制御部117は、ステップ62で否定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間LT1に設定する(ステップ4)。
 一方、液温が第2の温度より高い場合、制御部117は、ステップ62で肯定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間より短い時間LT2に設定する(ステップ5)。
 ステップ4又はステップ5による本加熱時間の設定後、制御部117は、ステップ6及びステップ7を順番に実行し、吸引の1サイクルを終了する。
If the liquid temperature is equal to or lower than the second temperature, the control section 117 obtains a negative result in step 62 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4).
On the other hand, if the liquid temperature is higher than the second temperature, the controller 117 obtains a positive result in step 62 . In this case, the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5).
After setting the main heating time in step 4 or step 5, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
 本実施の形態の場合、制御部117は、エアロゾルを生成する加熱部211の液温に着目し、液枯れが発生する原因となる短パフの発生を検知する。このため、液枯れの発生を効果的に抑制できる。
 本実施の形態においても、短パフの場合、本加熱時間が基準時間より短くなるので、吸引の1サイクル中に加熱部211に供給される電力量は、基準時間の場合に供給される電力量より小さくなる。
In the case of this embodiment, the control unit 117 focuses on the temperature of the liquid in the heating unit 211 that generates the aerosol, and detects the occurrence of short puffs that cause the liquid to dry up. Therefore, it is possible to effectively suppress the occurrence of dryness.
Also in this embodiment, in the case of a short puff, the main heating time is shorter than the reference time, so the amount of power supplied to the heating unit 211 during one cycle of suction is equal to the amount of power supplied in the case of the reference time. become smaller.
 図19は、実施の形態7におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は液誘導部212の温度の変化を示し、(C)は本加熱時間の設定例を示す。図19には、図4との対応部分に対応する符号を付して示す。図19(A)における縦軸はパフの強度であり、図19(B)における縦軸は液温であり、図19(C)における縦軸は加熱の強度である。なお、図19(A)~(C)における横軸は時間である。
 図19(A)及び(B)も、加熱部211が加熱される時間とユーザの吸引の期間とが一致しない場合について表している。すなわち、電源ボタン11のオン操作によって開始した本加熱期間内の任意の期間にユーザがエアロゾルを吸引する場合について表している。図19(B)には、本加熱の開始と同時に液温の上昇が開始される様子が表されている。
FIG. 19 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in the seventh embodiment. (A) shows an example of a suction (puff) timing, (B) shows a change in the temperature of the liquid guide section 212, and (C) shows an example of setting the main heating time. In FIG. 19, the parts corresponding to those in FIG. The vertical axis in FIG. 19(A) is puff strength, the vertical axis in FIG. 19(B) is liquid temperature, and the vertical axis in FIG. 19(C) is heating strength. Note that the horizontal axis in FIGS. 19A to 19C is time.
FIGS. 19A and 19B also show a case where the time during which the heating unit 211 is heated does not match the user's sucking period. That is, it represents a case where the user inhales the aerosol during an arbitrary period within the main heating period started by turning on the power button 11 . FIG. 19B shows how the liquid temperature starts to rise at the same time as the main heating starts.
 図19(A)及び(C)の場合も、吸引(パフ)の回数は5回である。
 図19(A)の場合、1回目のパフと2回目のパフの間隔、2回目のパフと3回目のパフの間隔、4回目のパフと5回目のパフの間隔は短パフではないが、3回目と4回目のパフ間隔は短パフの場合を想定する。
 このため、図19(B)の例では、2回目のパフの開始時と、3回目のパフの開始時との液温TAと、5回目のパフの開始時における液温TCが第2の温度よりも低い状態にある。直前回の加熱の終了から時間が経過した結果、液温が室温又は室温近くに下がった状態から加熱が開始されるためである。
In the cases of FIGS. 19A and 19C as well, the number of suctions (puffs) is five.
In the case of FIG. 19(A), the interval between the first and second puffs, the interval between the second and third puffs, and the interval between the fourth and fifth puffs are not short puffs, It is assumed that the third and fourth puff intervals are short puffs.
Therefore, in the example of FIG. 19B, the liquid temperature TA at the start of the second and third puffs and the liquid temperature TC at the start of the fifth puff are the second values. lower than the temperature. This is because heating is started in a state where the liquid temperature has dropped to or near room temperature as a result of the passage of time since the end of the previous heating.
 しかし、4回目のパフの開始時における液温TBは、第2の温度よりも高い状態にある。3回目のパフと4回目のパフの間隔が短く、液誘導部212の温度が十分に下がり切っていないためである。
 このため、図19(C)に示す例では、1回目のパフと、2回目のパフと、3回目のパフと、5回目のパフの本加熱時間は、基準時間LT1に設定される一方、4回目のパフの本加熱時間は、基準時間LT1よりも短い時間LT2に設定されている。
However, the liquid temperature TB at the start of the fourth puff is higher than the second temperature. This is because the interval between the third puff and the fourth puff is short, and the temperature of the liquid guide portion 212 has not sufficiently decreased.
Therefore, in the example shown in FIG. 19C, the main heating time of the first puff, the second puff, the third puff, and the fifth puff is set to the reference time LT1, The main heating time for the fourth puff is set to LT2, which is shorter than the reference time LT1.
 その結果、4回目のパフが開始するまでのパフ間隔が短く、吸引開始までに加熱部211に供給されるエアロゾル源の供給量が少ない場合でも、本加熱時間が基準時間LT2より短縮されるので4回目のパフ中に液枯れが生じることはない。
 なお、本実施の形態では、加熱部211の加熱の開始とほぼ同時にユーザのパフが検知される場合を想定しているが、加熱部211の加熱が開始された時点の液温を取得してもよい。加熱部211の加熱が開始する時点の液温は、1回のサイクルの最も温度が低くなるタイミングである。この場合、第2の温度には、図19の例よりも低い値を使用する。
As a result, even if the puff interval until the start of the fourth puff is short and the supply amount of the aerosol source supplied to the heating unit 211 before the start of suction is small, the main heating time is shortened from the reference time LT2. No dryness occurs during the fourth puff.
In the present embodiment, it is assumed that the user's puff is detected almost at the same time as the heating of the heating unit 211 is started. good too. The liquid temperature at the time when heating of the heating unit 211 starts is the timing at which the temperature becomes the lowest in one cycle. In this case, a lower value than the example of FIG. 19 is used for the second temperature.
<実施の形態8>
 本実施の形態では、エアロゾル生成装置1を使用する環境の気温が低い場合を想定する。緯度が高い国や地域の場合、冬季の外気温が低い。外気温が低いと、エアロゾル生成装置1の液貯蔵部213に貯蔵されているエアロゾル源の液温も低くなり、同時に粘度が増加する。粘度が増加すると、パフ間隔が短い場合は勿論、パフ間隔が長い場合でも、エアロゾルの送液速度が、気温が高い場合に比して低下する。その結果として、吸引開始までに加熱部211に供給されるエアロゾル源の供給量が、エアロゾルの生成に必要な液量を下回ると、液枯れと同じ現象が発生することになる。
 そこで、本実施の形態では、エアロゾル生成装置1が使用される環境又は雰囲気の気温に着目する。
<Embodiment 8>
In this embodiment, it is assumed that the temperature of the environment where the aerosol generator 1 is used is low. In countries and regions with high latitudes, the outside temperature is low in winter. When the outside air temperature is low, the liquid temperature of the aerosol source stored in the liquid storage unit 213 of the aerosol generator 1 also becomes low, and at the same time the viscosity increases. When the viscosity increases, not only when the puff interval is short, but also when the puff interval is long, the aerosol liquid transfer speed is lower than when the air temperature is high. As a result, when the amount of the aerosol source supplied to the heating unit 211 before the start of suction falls below the amount of liquid required to generate the aerosol, the same phenomenon as liquid depletion occurs.
Therefore, in the present embodiment, attention is focused on the temperature of the environment or atmosphere in which the aerosol generator 1 is used.
 なお、本実施の形態の場合も、エアロゾル生成装置1の外観構成は実施の形態1と同じである。ただし、本実施の形態で想定するエアロゾル生成装置1の内部構成は実施の形態1と一部で相違する。
 図20は、実施の形態8で想定するエアロゾル生成装置1の内部構成を模式的に示す図である。図20には、図2との対応部分に対応する符号を付して示している。
 図20に示すエアロゾル生成装置1には、気温センサ113Dが設けられる点で、図2に示すエアロゾル生成装置1と相違する。気温センサ113Dは、周囲の気温の測定を対象とする。このため、気温センサ113Dは、装置内の熱源から可能な限り離して配置することが望ましい。もっとも、エアロゾル源の粘度は液貯蔵部213に貯蔵されているエアロゾル源の液温に依存するので、液貯蔵部213の近傍に液温センサを配置してもよい。
Also in the present embodiment, the external configuration of the aerosol generating device 1 is the same as that of the first embodiment. However, the internal configuration of the aerosol generator 1 assumed in this embodiment is partially different from that in the first embodiment.
FIG. 20 is a diagram schematically showing the internal configuration of the aerosol generator 1 assumed in the eighth embodiment. In FIG. 20, parts corresponding to those in FIG. 2 are shown with reference numerals corresponding thereto.
The aerosol generator 1 shown in FIG. 20 is different from the aerosol generator 1 shown in FIG. 2 in that an air temperature sensor 113D is provided. Air temperature sensor 113D is intended for measuring ambient temperature. Therefore, it is desirable to place the air temperature sensor 113D as far away from the heat source in the device as possible. However, since the viscosity of the aerosol source depends on the liquid temperature of the aerosol source stored in liquid reservoir 213 , a liquid temperature sensor may be arranged near liquid reservoir 213 .
 図21は、実施の形態8で使用する制御部117(図2参照)による本加熱時間の制御例を説明するフローチャートである。図21には、図3との対応部分に対応する符号を付して示す。制御部117による制御は、プログラムの実行を通じて実現される。
 本実施の形態における制御部117も、パフセンサ112により、吸引の開始を検知したか否かを判定する(ステップ1)。この判定は、本加熱がユーザの吸引の開始により開始される場合に実行する。
FIG. 21 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the eighth embodiment. In FIG. 21, parts corresponding to those in FIG. Control by the control unit 117 is realized through execution of a program.
Control unit 117 in the present embodiment also determines whether or not the start of suction is detected by puff sensor 112 (step 1). This determination is performed when main heating is initiated by the user's initiation of suction.
 なお、実施の形態2の場合のように、加熱部211の加熱が開始されたか否かを判定してもよいし、実施の形態4の場合のように、電源ボタン11(図1参照)がオン操作されたか否かを判定してもよい。
 ユーザによるエアロゾルの吸引の開始が検知されない場合、制御部117は、ステップ1で否定結果を得る。ステップ1で否定結果が得られている間、制御部117は、ステップ1の判定を繰り返す。
As in the second embodiment, it may be determined whether or not the heating of the heating unit 211 has started. It may be determined whether or not the ON operation has been performed.
If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
 一方、ユーザによるエアロゾルの吸引の開始が検知された場合、制御部117は、ステップ1で肯定結果を得る。ステップ1で肯定結果が得られた場合、制御部117は、本加熱を開始し(ステップ1100)、その後、吸引開始時の気温を取得する(ステップ71)。気温は、エアロゾル生成装置1の周囲の気温である。
 周囲の気温が取得されると、制御部117は、吸引開始時の気温が気温判定用の閾値(以下「気温閾値」という)より低いか否かを判定する(ステップ72)。気温閾値は、エアロゾル源の粘度と気温との関係に応じて定められる。
On the other hand, when the user's start of aerosol inhalation is detected, the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then obtains the air temperature at the start of suction (step 71). The air temperature is the air temperature around the aerosol generator 1 .
When the ambient temperature is acquired, the control unit 117 determines whether or not the temperature at the start of suctioning is lower than a threshold value for temperature determination (hereinafter referred to as "temperature threshold value") (step 72). The air temperature threshold is determined according to the relationship between the viscosity of the aerosol source and air temperature.
 気温が気温閾値以上の場合、制御部117は、ステップ72で否定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間LT1に設定する(ステップ4)。
 一方、気温が気温閾値より低い場合、制御部117は、ステップ72で肯定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間より短い時間LT2に設定する(ステップ5)。
 ステップ4又はステップ5による本加熱時間の設定後、制御部117は、ステップ6及びステップ7を順番に実行し、吸引の1サイクルを終了する。
If the temperature is equal to or higher than the temperature threshold, the controller 117 obtains a negative result in step 72 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4).
On the other hand, if the temperature is lower than the temperature threshold, the controller 117 obtains a positive result in step 72 . In this case, the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5).
After setting the main heating time in step 4 or step 5, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
 本実施の形態の場合、制御部117は、エアロゾルの生成効率が低下する周囲の気温に着目し、液枯れが発生する環境での使用を検知する。このため、液枯れの発生を効果的に抑制できる。
 図22は、実施の形態8におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は周囲の気温の変化を示し、(C)は本加熱時間の設定例を示す。図22には、図4との対応部分に対応する符号を付して示す。図22(A)における縦軸はパフの強度であり、図22(B)における縦軸は気温であり、図22(C)における縦軸は加熱の強度である。なお、図22(A)~(C)における横軸は時間である。
In the case of the present embodiment, the control unit 117 detects the use in an environment where the liquid dries up by focusing on the ambient temperature at which the aerosol generation efficiency decreases. Therefore, it is possible to effectively suppress the occurrence of dryness.
FIG. 22 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in the eighth embodiment. (A) shows an example of a suction (puff) timing, (B) shows a change in ambient temperature, and (C) shows an example of setting the main heating time. In FIG. 22, parts corresponding to those in FIG. 4 are shown with reference numerals. The vertical axis in FIG. 22A is puff intensity, the vertical axis in FIG. 22B is temperature, and the vertical axis in FIG. 22C is heating intensity. Note that the horizontal axis in FIGS. 22A to 22C is time.
 図22(A)及び(C)も、加熱部211が加熱される時間とユーザの吸引の期間とが一致しない場合について表している。すなわち、電源ボタン11のオン操作によって開始した本加熱期間内の任意の期間にユーザがエアロゾルを吸引する場合について表している。図22(B)には、エアロゾル生成装置1が使用される周囲の気温の変化を表している。図22(B)では、冬季に暖房がある室内から屋外に移動した結果、エアロゾル源の粘度に影響が及ぶほど気温が下がる場面を想定している。 FIGS. 22A and 22C also show cases where the time during which the heating unit 211 is heated does not match the user's suction period. That is, it represents the case where the user inhales the aerosol during an arbitrary period within the main heating period started by turning on the power button 11 . FIG. 22(B) shows changes in ambient temperature where the aerosol generator 1 is used. In FIG. 22(B), it is assumed that the air temperature drops enough to affect the viscosity of the aerosol source as a result of moving from a heated room to the outdoors in winter.
 図22(A)の場合も、吸引(パフ)の回数は5回である。ただし、図22(A)の場合、1回目のパフと2回目のパフの間隔、2回目のパフと3回目のパフの間隔、3回目のパフと4回目のパフの間隔、4回目のパフと5回目のパフの間隔はいずれも短パフでない。
 ただし、1回目のパフと、2回目のパフと、3回目のパフは屋内で実行されているが、4回目のパフと、5回目のパフは屋外で実行されている。このため、図22(B)では、3回目のパフと4回目のパフの間に気温が低下している。
In the case of FIG. 22A as well, the number of times of suction (puff) is five. However, in the case of FIG. 22(A), the interval between the first and second puffs, the interval between the second and third puffs, the interval between the third and fourth puffs, and the fourth puff and the fifth puff interval are not short puffs.
However, the 1st, 2nd and 3rd puffs were performed indoors, while the 4th and 5th puffs were performed outdoors. Therefore, in FIG. 22B, the temperature drops between the third puff and the fourth puff.
 なお、3回目のパフと4回目のパフの間には、エアロゾル源の液温が下がるだけの時間が存在し、結果として、4回目のパフの開始時には、エアロゾル源の液温が気温に近づいているものとする。また、その際のエアロゾル源の液温は、気温閾値よりも低い値まで低下しているものとする。このため、図22(C)に示す例では、1回目のパフと、2回目のパフと、3回目のパフの本加熱時間は、基準時間LT1に設定される一方、4回目のパフと5回目のパフの本加熱時間は、基準時間LT1よりも短い時間LT2に設定されている。
 その結果、4回目のパフと5回目のパフでは、周囲の気温が低いために吸引開始までに加熱部211に供給されるエアロゾル源の供給量が少ない場合でも、本加熱時間が基準時間LT2より短縮されるので液枯れが生じずに済む。
Between the third puff and the fourth puff, there is time for the temperature of the liquid in the aerosol source to drop. shall be It is also assumed that the liquid temperature of the aerosol source at that time has decreased to a value lower than the air temperature threshold. Therefore, in the example shown in FIG. 22C, the main heating time of the first puff, the second puff, and the third puff is set to the reference time LT1, while the fourth puff and 5 The main heating time of the first puff is set to a time LT2 shorter than the reference time LT1.
As a result, in the fourth puff and the fifth puff, even if the amount of aerosol source supplied to the heating unit 211 before the start of suction is small due to the low ambient temperature, the main heating time is longer than the reference time LT2. Since the time is shortened, drying of the liquid does not occur.
<実施の形態9>
 本実施の形態では、液枯れの発生を予測して本加熱時間を制御する場合について説明する。本実施の形態におけるエアロゾル生成装置1(図1参照)のその他の構成は、実施の形態1と同じである。すなわち、エアロゾル生成装置1の外観構成及び内部構成は、実施の形態1と同じである。
 図23は、実施の形態9で使用する制御部117(図2参照)による本加熱時間の制御例を説明するフローチャートである。図23には、図3との対応部分に対応する符号を付して示す。制御部117による制御は、プログラムの実行を通じて実現される。
 本実施の形態における制御部117は、吸引の開始を検知したか否かを判定する(ステップ1)。
 ユーザによるエアロゾルの吸引の開始が検知されない場合、制御部117は、ステップ1で否定結果を得る。ステップ1で否定結果が得られている間、制御部117は、ステップ1の判定を繰り返す。
<Embodiment 9>
In the present embodiment, a case will be described in which the main heating time is controlled by predicting the occurrence of liquid dryness. Other configurations of the aerosol generator 1 (see FIG. 1) in the present embodiment are the same as in the first embodiment. That is, the external configuration and internal configuration of the aerosol generator 1 are the same as those of the first embodiment.
FIG. 23 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the ninth embodiment. In FIG. 23, parts corresponding to those in FIG. 3 are shown with reference numerals. Control by the control unit 117 is realized through execution of a program.
Control unit 117 in the present embodiment determines whether or not the start of suction has been detected (step 1).
If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
 一方、ユーザによるエアロゾルの吸引の開始が検知された場合、制御部117は、ステップ1で肯定結果を得る。ステップ1で肯定結果が得られた場合、制御部117は、本加熱を開始し(ステップ1100)、その後、過去複数回のパフ間隔の履歴を取得する(ステップ81)。取得するパフ間隔の履歴の数は予め設定されている。例えば3~5回分の履歴が取得される。
 次の吸引回における液枯れの予防が目的であるので、取得する数を増やし過ぎても直近の吸引傾向は分からない。一方で、取得する履歴の数を増やせば、ユーザの長期間の吸引傾向の分析が可能になる。
 過去複数回のパフ間隔の履歴が取得されると、制御部117は、次回のパフ間隔を予測する(ステップ82)。前述の実施の形態では、新たな吸引回が開始されるたびに最新のパフ間隔が取得されているが、本実施の形態では、次回の吸引回が開始される前にパフ間隔が予測される。
On the other hand, when the start of inhalation of aerosol by the user is detected, the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the control unit 117 starts main heating (step 1100), and then acquires a history of past puff intervals (step 81). The number of puff interval histories to be acquired is preset. For example, a history of 3 to 5 times is acquired.
Since the purpose is to prevent the liquid from drying up in the next suction session, even if the number of samples to be acquired is increased too much, the latest suction tendency cannot be determined. On the other hand, if the number of histories to be acquired is increased, it becomes possible to analyze the user's long-term inhalation tendency.
When the history of the past puff intervals is acquired, the control unit 117 predicts the next puff interval (step 82). In the above-described embodiment, the latest puff interval is obtained each time a new suction cycle is started, but in the present embodiment, the puff interval is predicted before the next suction cycle is started. .
 続いて、制御部117は、予測された次回のパフ間隔が第1の期間より短いか否かを判定する(ステップ83)。
 予測された次回のパフ間隔が第1の期間以上の場合、制御部117は、ステップ83で否定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間LT1に設定する(ステップ4)。
 一方、予測された次回のパフ間隔が第1の期間より短い場合、制御部117は、ステップ83で肯定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間より短い時間LT2に設定する(ステップ5)。
 ステップ4又はステップ5による本加熱時間の設定後、制御部117は、ステップ6及びステップ7を順番に実行し、吸引の1サイクルを終了する。
Subsequently, the control unit 117 determines whether or not the predicted next puff interval is shorter than the first period (step 83).
If the predicted next puff interval is greater than or equal to the first period, the control section 117 obtains a negative result in step 83 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4).
On the other hand, if the predicted next puff interval is shorter than the first period, the controller 117 obtains a positive result in step 83 . In this case, the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5).
After setting the main heating time in step 4 or step 5, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
 本実施の形態の場合、制御部117は、予測値が短パフの条件を満たすと、予防的に本加熱時間を短縮する。その結果、次回の吸引が開始する直前のパフ間隔が短パフの場合には、次回の本加熱時間は、前述した他の実施の形態と同じになる。
 一方で、次回の吸引が開始する直前のパフ間隔が短パフでない場合には、前述した他の実施の形態よりも、本加熱時間が短くなる。その分、更に次の吸引回までのパフ間隔が実質的に長くなり、液枯れが起こり難くなる。
 本実施の形態においても、予測値が短パフの場合、本加熱時間が基準時間より短くなるので、吸引の1サイクル中に加熱部211に供給される電力量は、基準時間の場合に供給される電力量より小さくなる。
In the case of the present embodiment, control unit 117 preemptively shortens the main heating time when the predicted value satisfies the short puff condition. As a result, when the puff interval immediately before the start of the next suction is short, the next main heating time is the same as in the above-described other embodiments.
On the other hand, if the puff interval immediately before the start of the next suction is not a short puff, the main heating time is shorter than in the above-described other embodiments. As a result, the puff interval until the next suction time is substantially longer, and drying up of the liquid is less likely to occur.
Also in the present embodiment, when the predicted value is a short puff, the main heating time is shorter than the reference time. power consumption.
 図24は、実施の形態9におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は予測されたパフ間隔が閾値以上の場合の本加熱時間の設定例を示し、(C)は予測されたパフ間隔が閾値より短い場合の本加熱時間の設定例を示す。図24には、図4との対応部分に対応する符号を付して示す。図24(A)における縦軸はパフの強度であり、図24(B)及び(C)における縦軸は加熱の強度であり、る。図24(A)~(C)における横軸は時間である。
 図24(A)では、M+1回目のパフが開始する前に、N回分のパフ間隔から次回のパフ間隔を予測している。
 図24(B)の例では、予測されたパフ間隔が短パフでないので、本加熱時間が基準時間LT1に設定されている。
 図24(C)の例では、予測されたパフ間隔が短パフなので、本加熱時間が基準時間より短い時間LT2に設定されている。
 なお、本実施の形態では、過去複数回の傾向から次の吸引回の間隔を予測しているが、次次回やそれ以降の吸引回(すなわち、次回以降の吸引回)の間隔を予測し、予測した吸引回に供給する電力を制御してもよい。
FIG. 24 is a diagram for explaining the relationship between the puff interval and the setting of the main heating time in the ninth embodiment. (A) shows an example of the timing of suction (puff), (B) shows an example of setting the main heating time when the predicted puff interval is equal to or greater than the threshold, and (C) shows an example of the predicted puff interval than the threshold. An example of setting the main heating time when it is short is shown. In FIG. 24, parts corresponding to those in FIG. 4 are shown with reference numerals. The vertical axis in FIG. 24(A) is puff intensity, and the vertical axis in FIGS. 24(B) and (C) is heating intensity. The horizontal axis in FIGS. 24A to 24C is time.
In FIG. 24A, the next puff interval is predicted from N puff intervals before the M+1 puff starts.
In the example of FIG. 24B, the predicted puff interval is not a short puff, so the main heating time is set to the reference time LT1.
In the example of FIG. 24C, the predicted puff interval is a short puff, so the main heating time is set to LT2, which is shorter than the reference time.
In the present embodiment, the interval of the next suction time is predicted from the tendency of a plurality of times in the past. The power supplied to the predicted aspiration times may be controlled.
<実施の形態10>
 本実施の形態でも、過去複数回のパフ間隔を使用して本加熱時間を設定する。ただし、本実施の形態の場合には、予測ではなく、実施の形態1~7と同様、今回の吸引の開始後に、進行中の吸引回の本加熱時間を設定する。
 本実施の形態におけるエアロゾル生成装置1(図1参照)のその他の構成は、実施の形態1と同じである。すなわち、エアロゾル生成装置1の外観構成及び内部構成は、実施の形態1と同じである。
<Embodiment 10>
Also in the present embodiment, the main heating time is set using the puff intervals of a plurality of times in the past. However, in the case of the present embodiment, the actual heating time of the ongoing suction is set after the start of the current suction, as in the first to seventh embodiments, instead of prediction.
Other configurations of the aerosol generator 1 (see FIG. 1) in the present embodiment are the same as in the first embodiment. That is, the external configuration and internal configuration of the aerosol generating device 1 are the same as those of the first embodiment.
 図25は、実施の形態10で使用する制御部117(図2参照)による本加熱時間の制御例を説明するフローチャートである。図25には、図3との対応部分に対応する符号を付して示す。制御部117による制御は、プログラムの実行を通じて実現される。
 本実施の形態における制御部117は、吸引の開始を検知したか否かを判定する(ステップ1)。
 ユーザによるエアロゾルの吸引の開始が検知されない場合、制御部117は、ステップ1で否定結果を得る。ステップ1で否定結果が得られている間、制御部117は、ステップ1の判定を繰り返す。
FIG. 25 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the tenth embodiment. In FIG. 25, parts corresponding to those in FIG. Control by the control unit 117 is realized through execution of a program.
Control unit 117 in the present embodiment determines whether or not the start of suction has been detected (step 1).
If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
 一方、ユーザによるエアロゾルの吸引の開始が検知された場合、制御部117は、ステップ1で肯定結果を得る。ステップ1で肯定結果が得られた場合、制御部117は、本加熱を開始し(ステップ1100)、その後、今回のパフ間隔も含め、過去複数回のパフ間隔の履歴を取得する(ステップ91)。本実施の形態の場合、予測ではなく実測値を用いるので、今回のパフ間隔も測定する。
 取得するパフ間隔の履歴の数は予め設定されている。例えば3~5回分の履歴が取得される。取得するパフ間隔の履歴の数は、直近の吸引傾向を検出できる範囲で設定する。
 過去複数回のパフ間隔の履歴が取得されると、制御部117は、閾値より短いパフ間隔が今回までに連続した回数を取得する(ステップ92)。連続する回数が多いほど、吸引開始時におけるエアロゾル源の液温が高くなっている可能性が高く、本加熱中にエアロゾル源の供給が間に合わなくなる可能性も高くなる。
 なお、今回までに連続した回数ではなく、取得した履歴内での連続数の最大値を求めてもよい。今回までに連続した回数でなくても、液温が高くなっている可能性が分かる。
On the other hand, when the user's start of aerosol inhalation is detected, the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the control unit 117 starts main heating (step 1100), and then acquires the history of past puff intervals including the current puff interval (step 91). . In the case of the present embodiment, actual measurements are used instead of predictions, so the current puff interval is also measured.
The number of puff interval histories to be acquired is preset. For example, a history of 3 to 5 times is acquired. The number of puff interval histories to be acquired is set within a range in which the most recent inhalation tendency can be detected.
When the history of past puff intervals is acquired, the control unit 117 acquires the number of consecutive puff intervals shorter than the threshold up to the present time (step 92). The higher the number of consecutive times, the higher the possibility that the liquid temperature of the aerosol source at the start of suction is higher, and the higher the possibility that the aerosol source will not be supplied in time during the main heating.
Note that instead of the number of consecutive times up to this time, the maximum number of consecutive times in the acquired history may be obtained. It can be seen that the liquid temperature may have increased even if it is not a continuous number of times up to this time.
 続いて、制御部117は、連続する回数が第1の回数より大きいか否かを判定する(ステップ93)。
 連続する回数が第1の回数以下の場合、制御部117は、ステップ93で否定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間LT1に設定する(ステップ4)。
 一方、連続する回数が第1の回数より大きい場合、制御部117は、ステップ93で肯定結果を得る。この場合、制御部117は、今回の本加熱時間を、回数が多いほどより短い時間LT3(<LT1)に設定する(ステップ94)。本実施の形態の場合、制御部117は、連続する回数が多いほど、時間LT3を段階的に短い値に設定する。例えば0.2秒×連続する回数だけ本加熱時間を短縮する。この例は、時間LT3を連続する回数に応じて線形的に短縮する例である。もっとも、時間LT3は、二次曲線等に従って非線形に短縮してもよい。
Subsequently, the control unit 117 determines whether or not the number of consecutive times is greater than the first number (step 93).
If the number of consecutive times is equal to or less than the first number of times, the control unit 117 obtains a negative result in step 93 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4).
On the other hand, if the consecutive number of times is greater than the first number of times, the control section 117 obtains a positive result in step 93 . In this case, the controller 117 sets the current main heating time to a shorter time LT3 (<LT1) as the number of times increases (step 94). In the case of the present embodiment, the control unit 117 sets the time LT3 to a shorter value step by step as the number of consecutive times increases. For example, the main heating time is shortened by 0.2 seconds×the number of consecutive times. This example is an example in which the time LT3 is linearly shortened according to the number of consecutive times. However, the time LT3 may be shortened non-linearly according to a quadratic curve or the like.
 ステップ4又はステップ94による本加熱時間の設定後、制御部117は、ステップ6及びステップ7を順番に実行し、吸引の1サイクルを終了する。
 本実施の形態の場合、制御部117は、短パフが連続して出現する回数が多いほど、本加熱時間を短縮する。短パフが連続する回数が増えるほど、エアロゾル源の液温が高い状態での本加熱が連続し、エアロゾルの発生量の増加による液枯れが生じ易くなるためである。
 ただし、本実施の形態では、短パフの連続回数が増えるほど本加熱時間も短くなるので、液枯れが効果的に抑制される。
After setting the main heating time in step 4 or step 94, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
In the case of the present embodiment, control unit 117 shortens the main heating time as the number of times short puffs appear in succession increases. This is because, as the number of consecutive short puffs increases, the main heating continues in a state where the temperature of the liquid in the aerosol source is high, and the increase in the amount of generated aerosol tends to cause the liquid to dry up.
However, in the present embodiment, the more the number of consecutive short puffs increases, the shorter the main heating time, so the drying up of the liquid is effectively suppressed.
 図26は、実施の形態10におけるパフ間隔と本加熱時間の設定との関係を説明する図である。(A)は吸引(パフ)のタイミング例を示し、(B)は短パフが連続する回数が第1の回数以下の場合の本加熱時間の設定例を示し、(C)は短パフが連続する回数が第1の回数より大きい場合の本加熱時間の設定例を示す。
 図26には、図4との対応部分に対応する符号を付して示す。図26(A)における縦軸はパフの強度であり、図26(B)及び(C)における縦軸は加熱の強度であり、図26(A)~(C)における横軸は時間である。
 図26(A)では、M+1回目のパフまでのN回分のパフ間隔のうち今回までに連続した短パフの回数が取得される様子が描かれている。
 図26(B)の例では、連続した回数が第1の回数以下なので、本加熱時間が基準時間LT1に設定されている。
 図26(C)の例では、連続した回数が第1の回数より多いので、本加熱時間が基準時間より短い時間LT3に設定されている。
FIG. 26 is a diagram illustrating the relationship between the puff interval and the setting of the main heating time in the tenth embodiment. (A) shows an example of the timing of suction (puff), (B) shows an example of setting the main heating time when the number of consecutive short puffs is the first number or less, and (C) shows a continuous short puff. An example of setting the main heating time when the number of times of heating is greater than the first number of times is shown.
In FIG. 26, the parts corresponding to those in FIG. The vertical axis in FIG. 26(A) is puff intensity, the vertical axis in FIGS. 26(B) and (C) is heating intensity, and the horizontal axis in FIGS. 26(A) to (C) is time. .
FIG. 26A depicts how the number of consecutive short puffs up to the current time is acquired among the N puff intervals up to the M+1th puff.
In the example of FIG. 26(B), the number of consecutive times is equal to or less than the first number of times, so the main heating time is set to the reference time LT1.
In the example of FIG. 26(C), since the number of consecutive times is greater than the first number, the main heating time is set to a time LT3 shorter than the reference time.
<実施の形態11>
 本実施の形態では、実施の形態10の変形例を説明する。実施の形態10では、短パフが連続する回数を計数しているが、パフ間隔が少しでも閾値を超過すると、回数が一旦リセットされる。
 しかし、閾値を超過した吸引回でも実質的には短パフとみなす方が、液枯れの抑制には望ましい場合もある。例えばパフ間隔が閾値を僅かに上回るユーザやパフ間隔が閾値を挟んで僅かに変動するユーザの場合である。これらのユーザの場合、ステップ92(図25参照)で取得された回数は少なくても、短パフが多数回連続する場合と同じく、本加熱の開始時における液温が高くなり易い。
 本実施の形態では、この種の現象への対策について説明する。
 本実施の形態におけるエアロゾル生成装置1(図1参照)のその他の構成は、実施の形態1と同じである。すなわち、エアロゾル生成装置1の外観構成及び内部構成は、実施の形態1と同じである。
<Embodiment 11>
In this embodiment, a modification of the tenth embodiment will be described. In Embodiment 10, the number of consecutive short puffs is counted, but if the puff interval even slightly exceeds the threshold value, the number is once reset.
However, in some cases, it is preferable to regard the number of times of suction exceeding the threshold value as being substantially short puffs in order to suppress the drying up of the liquid. For example, this is the case for a user whose puff interval slightly exceeds the threshold or for a user whose puff interval slightly fluctuates across the threshold. For these users, even if the number of times obtained in step 92 (see FIG. 25) is small, the liquid temperature at the start of main heating is likely to be high, as in the case of a large number of short puffs in succession.
In this embodiment, countermeasures against this type of phenomenon will be described.
Other configurations of the aerosol generator 1 (see FIG. 1) in the present embodiment are the same as in the first embodiment. That is, the external configuration and internal configuration of the aerosol generator 1 are the same as those of the first embodiment.
 図27は、実施の形態11で使用する制御部117(図2参照)による本加熱時間の制御例を説明するフローチャートである。図27には、図25との対応部分に対応する符号を付して示す。制御部117による制御は、プログラムの実行を通じて実現される。
 本実施の形態における制御部117は、吸引の開始を検知する(ステップ1)。
 ユーザによるエアロゾルの吸引の開始が検知されない場合、制御部117は、ステップ1で否定結果を得る。ステップ1で否定結果が得られている間、制御部117は、ステップ1の判定を繰り返す。
 一方、ユーザによるエアロゾルの吸引の開始が検知された場合、制御部117は、ステップ1で肯定結果を得る。ステップ1で肯定結果が得られた場合、制御部117は、本加熱を開始し(ステップ1100)、その後、今回のパフ間隔も含め、過去複数回のパフ間隔の履歴を取得する(ステップ91)。本実施の形態の場合、予測ではなく実測値を用いるので、今回のパフ間隔も測定する。
FIG. 27 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the eleventh embodiment. In FIG. 27, the parts corresponding to those in FIG. 25 are indicated by the reference numerals. Control by the control unit 117 is realized through execution of a program.
Control unit 117 in the present embodiment detects the start of suction (step 1).
If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
On the other hand, when the start of inhalation of aerosol by the user is detected, the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the control unit 117 starts main heating (step 1100), and then acquires the history of past puff intervals including the current puff interval (step 91). . In the case of the present embodiment, actual measurements are used instead of predictions, so the current puff interval is also measured.
 過去複数回のパフ間隔の履歴が取得されると、制御部117は、短パフ判定用の閾値にマージンを加算した値(図27では「閾値+α」と示す)より短いパフ間隔が今回までに連続した回数を取得する(ステップ101)。短パフ判定用の閾値にマージンを加算した値は、疑似的な短パフの判定閾値である。マージンの値αは、経験則等を通じて事前に与えられる。マージンの値αは、第3の期間の一例である。
 ステップ101により取得される回数は、ステップ92(図25参照)により取得される回数より大きくなり易い。
 続いて、制御部117は、連続する回数が第1の回数より大きいか否かを判定する(ステップ93)。
When the history of the puff intervals of a plurality of times in the past is acquired, the control unit 117 determines that the puff interval shorter than the value obtained by adding the margin to the threshold value for judging short puffs (indicated as “threshold value +α” in FIG. 27) Obtain the number of consecutive times (step 101). A value obtained by adding a margin to the short puff determination threshold is a pseudo short puff determination threshold. The margin value α is given in advance through an empirical rule or the like. The margin value α is an example of the third period.
The number of times acquired by step 101 is likely to be greater than the number of times acquired by step 92 (see FIG. 25).
Subsequently, the control unit 117 determines whether or not the number of consecutive times is greater than the first number (step 93).
 連続する回数が第1の回数以下の場合、制御部117は、ステップ93で否定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間LT1に設定する(ステップ4)。
 一方、連続する回数が第1の回数より大きい場合、制御部117は、ステップ93で肯定結果を得る。この場合、制御部117は、今回の本加熱時間を、回数が多いほどより短い時間LT3(<LT1)。に設定する(ステップ94)。
 ステップ4又はステップ94による本加熱時間の設定後、制御部117は、ステップ6及びステップ7を順番に実行し、吸引の1サイクルを終了する。
 本実施の形態の場合、制御部117は、擬似的な短パフも含めた連続回数が計数されるので、擬似的な短パフが連続しても、液枯れが効果的に抑制される。
If the number of consecutive times is equal to or less than the first number of times, the control unit 117 obtains a negative result in step 93 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4).
On the other hand, if the consecutive number of times is greater than the first number of times, the control section 117 obtains a positive result in step 93 . In this case, the controller 117 sets the current main heating time to a shorter time LT3 (<LT1) as the number of times increases. (step 94).
After setting the main heating time in step 4 or step 94, the control unit 117 sequentially executes steps 6 and 7, and completes one cycle of suction.
In the case of the present embodiment, the control unit 117 counts the number of continuous puffs including pseudo short puffs, so even if the pseudo short puffs are continuous, dryness is effectively suppressed.
<実施の形態12>
 本実施の形態では、実施の形態1~7に対する変形例について説明する。実施の形態1では、短パフと判定された場合における本加熱時間が固定値であった。すなわち、予め与えられた時間LT2であった。換言すると、短パフ時に加熱部211(図2参照)に供給される電力量は常に一定であった。
 本実施の形態では、短パフ時に加熱部211に供給される電力量を、直前のパフ間隔が短いほど小さくする。
 本実施の形態におけるエアロゾル生成装置1(図1参照)のその他の構成は、実施の形態1と同じである。すなわち、エアロゾル生成装置1の外観構成及び内部構成は、実施の形態1と同じである。
<Embodiment 12>
In this embodiment, modified examples of the first to seventh embodiments will be described. In Embodiment 1, the main heating time is a fixed value when it is determined that the puff is short. That is, it was the time LT2 given in advance. In other words, the amount of power supplied to the heating unit 211 (see FIG. 2) during short puffs was always constant.
In the present embodiment, the amount of electric power supplied to the heating unit 211 during short puffs is made smaller as the immediately preceding puff interval is shorter.
Other configurations of the aerosol generator 1 (see FIG. 1) in the present embodiment are the same as in the first embodiment. That is, the external configuration and internal configuration of the aerosol generator 1 are the same as those of the first embodiment.
 図28は、実施の形態12で使用する制御部117(図2参照)による本加熱時間の制御例を説明するフローチャートである。図28には、図3との対応部分に対応する符号を付して示す。制御部117による制御は、プログラムの実行を通じて実現される。すなわち、図28は、実施の形態1の変形例について説明する。
 本実施の形態の場合も、制御部117は、吸引の開始を検知したか否かを判定する(ステップ1)。
 ユーザによるエアロゾルの吸引の開始が検知されない場合、制御部117は、ステップ1で否定結果を得る。ステップ1で否定結果が得られている間、制御部117は、ステップ1の判定を繰り返す。
FIG. 28 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the twelfth embodiment. In FIG. 28, parts corresponding to those in FIG. 3 are shown with reference numerals. Control by the control unit 117 is realized through execution of a program. That is, FIG. 28 describes a modification of the first embodiment.
Also in this embodiment, the control unit 117 determines whether or not the start of suction is detected (step 1).
If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
 一方、ユーザによるエアロゾルの吸引の開始が検知された場合、制御部117は、ステップ1で肯定結果を得る。ステップ1で肯定結果が得られた場合、制御部117は、本加熱を開始し(ステップ1100)、その後、直前のパフ間隔を取得する(ステップ2)。
 パフ間隔が取得されると、制御部117は、パフ間隔が第1の期間より短いか否かを判定する(ステップ3)。
 パフ間隔が第1の期間以上の場合、制御部117は、ステップ3で否定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間LT1に設定する(ステップ4)。
On the other hand, when the user's start of aerosol inhalation is detected, the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then obtains the last puff interval (step 2).
After obtaining the puff interval, the control unit 117 determines whether the puff interval is shorter than the first period (step 3).
If the puff interval is longer than or equal to the first period, the control section 117 obtains a negative result in step 3 . In this case, the controller 117 sets the current main heating time to the reference time LT1 (step 4).
 一方、パフ間隔が第1の期間より短い場合、制御部117は、ステップ3で肯定結果を得る。この場合、制御部117は、今回の本加熱時間を、直前のパフ間隔が短いほど短い時間LT3(<LT1)に設定する(ステップ111)。なお、時間LT3は、連続する回数に応じて線形的に短縮してもよいし、二次曲線等の非線形的に短縮してもよい。
 ステップ4又はステップ111による本加熱時間の設定後、制御部117は、ステップ6及びステップ7を順番に実行し、吸引の1サイクルを終了する。
 本実施の形態の場合、直前のパフ間隔が短いほど、本加熱時間に加熱部211に供給される電力量は低減されるので、液枯れが発生する可能性が抑制される。
On the other hand, if the puff interval is shorter than the first period, the control section 117 obtains a positive result in step 3 . In this case, the controller 117 sets the current main heating time to LT3 (<LT1), which is shorter as the previous puff interval is shorter (step 111). Note that the time LT3 may be shortened linearly according to the number of consecutive times, or may be shortened non-linearly such as by a quadratic curve.
After setting the main heating time in step 4 or step 111, the control unit 117 sequentially executes steps 6 and 7 to complete one cycle of suction.
In the case of the present embodiment, the shorter the immediately preceding puff interval, the less the amount of electric power supplied to the heating unit 211 during the main heating time.
 なお、本実施の形態の手法を実施の形態2の手法に応用する場合には、直前回の加熱終了から今回の加熱開始までの時間が短いほど、本加熱時間の長さを短くする。
 本実施の形態の手法を実施の形態3の手法に応用する場合には、直前回の加熱終了から今回の吸引開始までの時間が短いほど、本加熱時間の長さを短くする。
 本実施の形態の手法を実施の形態4の手法に応用する場合には、直前回の電源ボタン11のオフ操作から今回のオン操作までの時間が短いほど、本加熱時間の長さを短くする。
 本実施の形態の手法を実施の形態5の手法に応用する場合には、吸引開始時における加熱部211の温度が高いほど、本加熱時間の長さを短くする。
 本実施の形態の手法を実施の形態6の手法に応用する場合には、吸引開始時における加熱部211の抵抗値が高いほど、本加熱時間の長さを短くする。
 本実施の形態の手法を実施の形態7の手法に応用する場合には、吸引開始時における液誘導部212の温度が高いほど、本加熱時間の長さを短くする。
When applying the method of the present embodiment to the method of the second embodiment, the shorter the time from the end of the previous heating to the start of the current heating, the shorter the main heating time.
When the method of the present embodiment is applied to the method of the third embodiment, the shorter the time from the end of the previous heating to the start of suction this time, the shorter the main heating time.
When the method of the present embodiment is applied to the method of Embodiment 4, the length of the main heating time is shortened as the time from the last power button 11 off operation to the current on operation is shorter. .
When the technique of this embodiment is applied to the technique of Embodiment 5, the length of the main heating time is shortened as the temperature of the heating unit 211 at the start of suction is higher.
When the technique of the present embodiment is applied to the technique of the sixth embodiment, the length of the main heating time is shortened as the resistance value of the heating unit 211 at the start of suction is higher.
When applying the method of the present embodiment to the method of the seventh embodiment, the length of the main heating time is shortened as the temperature of the liquid guide portion 212 at the start of suction is higher.
<実施の形態13>
 本実施の形態では、本加熱開始時におけるエアロゾル源の残液量に着目する制御手法について説明する。
 前述したように、液誘導部212へのエアロゾル源の供給は毛管現象による。本実施の形態では、毛管現象による送液の速度は残液量に依存する場合の制御手法について説明する。例えば残液量の減少により給液速度が低下している状況下では、1回の吸引中に供給可能なエアロゾル源の液量が、残液量が多い場合よりも少なくなる場合の制御例を説明する。この場合、1回の吸引中に十分なエアロゾルが発生されなくなる。
 このため、残液量によらず本加熱時間が同じであると、エアロゾル源の供給が間に合わずに液枯れと同様の現象が生じる可能性がある。
 そこで、本実施の形態では、残液量も考慮して本加熱時間の長さを制御する。
<Embodiment 13>
In this embodiment, a control method focusing on the amount of liquid remaining in the aerosol source at the start of main heating will be described.
As described above, the supply of the aerosol source to the liquid guide portion 212 is based on capillary action. In this embodiment, a control method will be described in which the speed of liquid transfer by capillarity depends on the amount of residual liquid. For example, in a situation where the liquid supply rate is decreasing due to a decrease in the remaining liquid amount, the control example in which the liquid amount of the aerosol source that can be supplied during one suction is less than when the remaining liquid amount is large is shown. explain. In this case, not enough aerosol is generated during one inhalation.
Therefore, if the main heating time is the same regardless of the amount of residual liquid, the aerosol source may not be supplied in time and a phenomenon similar to drying up may occur.
Therefore, in the present embodiment, the length of the main heating time is controlled in consideration of the remaining liquid amount.
 本実施の形態の場合も、エアロゾル生成装置1の外観構成は実施の形態1と同じである。ただし、本実施の形態で想定するエアロゾル生成装置1の内部構成は実施の形態1と一部で相違する。
 図29は、実施の形態13で想定するエアロゾル生成装置1の内部構成を模式的に示す図である。図29には、図2との対応部分に対応する符号を付して示している。
 図29に示すエアロゾル生成装置1には、残液量センサ113Eが設けられる点で、図2に示すエアロゾル生成装置1と相違する。
In the case of the present embodiment as well, the external configuration of the aerosol generator 1 is the same as that of the first embodiment. However, the internal configuration of the aerosol generator 1 assumed in this embodiment is partially different from that in the first embodiment.
FIG. 29 is a diagram schematically showing the internal configuration of the aerosol generator 1 assumed in the thirteenth embodiment. In FIG. 29, parts corresponding to those in FIG. 2 are shown with reference numerals corresponding thereto.
The aerosol generating device 1 shown in FIG. 29 is different from the aerosol generating device 1 shown in FIG. 2 in that a remaining liquid amount sensor 113E is provided.
 残液量センサ113Eには、例えばレベルスイッチ、レベル計、静電容量センサ、液面までの距離を測定するセンサを使用する。液面までの距離は、例えば超音波、電磁波、レーザが液面で反射して戻ってくるまでの時間により測定が可能である。
 もっとも、最終的に使用する残液量は、制御部117が、エアロゾル生成装置1の姿勢の情報を用いて補正する。姿勢の情報には、例えばジャイロセンサの出力信号を使用する。
 本実施の形態では、残液量センサ113Eを使用するが、計算によって残液量を算出することも可能である。例えば吸引回毎の液消費量は、加熱部211への供給電力量の関数として計算することが可能であるので、その積分値を初期値から減算すれば、各時点における残液量を算出できる。
For the remaining liquid amount sensor 113E, for example, a level switch, a level meter, a capacitance sensor, or a sensor that measures the distance to the liquid surface is used. The distance to the liquid surface can be measured by, for example, the time it takes for an ultrasonic wave, an electromagnetic wave, or a laser to return after being reflected by the liquid surface.
However, the control unit 117 corrects the amount of remaining liquid to be finally used using information on the attitude of the aerosol generating device 1 . For the attitude information, for example, an output signal of a gyro sensor is used.
In this embodiment, the remaining liquid amount sensor 113E is used, but it is also possible to calculate the remaining liquid amount by calculation. For example, since the amount of liquid consumed for each suction cycle can be calculated as a function of the amount of power supplied to the heating unit 211, by subtracting the integrated value from the initial value, the remaining amount of liquid at each time can be calculated. .
 図30は、実施の形態13で使用する制御部117(図2参照)による本加熱時間の制御例を説明するフローチャートである。図13には、図3との対応部分に対応する符号を付して示す。制御部117による制御は、プログラムの実行を通じて実現される。
 本実施の形態の場合も、制御部117は、吸引の開始を検知したか否かを判定する(ステップ1)。
 ユーザによるエアロゾルの吸引の開始が検知されない場合、制御部117は、ステップ1で否定結果を得る。ステップ1で否定結果が得られている間、制御部117は、ステップ1の判定を繰り返す。
 一方、ユーザによるエアロゾルの吸引の開始が検知された場合、制御部117は、ステップ1で肯定結果を得る。ステップ1で肯定結果が得られた場合、制御部117は、本加熱を開始し(ステップ1100)、その後、直前のパフ間隔を取得する(ステップ2)。
FIG. 30 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the thirteenth embodiment. In FIG. 13, parts corresponding to those in FIG. 3 are denoted by reference numerals. Control by the control unit 117 is realized through execution of a program.
Also in this embodiment, the control unit 117 determines whether or not the start of suction is detected (step 1).
If the user's start of aerosol inhalation is not detected, the control unit 117 obtains a negative result in step 1 . While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
On the other hand, when the start of inhalation of aerosol by the user is detected, the control unit 117 obtains a positive result in step 1 . If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then acquires the last puff interval (step 2).
 次に、制御部117は、液貯蔵部213内の残液量を取得する(ステップ121)。残液量は、残液量センサ113Eの測定値を用いて取得してもよいし、吸引回毎の供給電力量を用いて算出してもよい。
 残液量が取得されると、制御部117は、残液量が第1の残量より少ないか否かを判定する(ステップ122)。第1の残量は、予め設定されている。
 残液量が第1の残量以上の場合、制御部117は、ステップ122で否定結果を得る。この場合は、残液量が多い場合であり、前述した実施の形態1等と同様の制御が実行される。
 すなわち、制御部117は、パフ間隔が第1の期間より短いか否かを判定し(ステップ3)、ステップ3で否定結果が得られた場合にはステップ4を実行し、ステップ3で肯定結果が得られた場合にはステップ5を実行する。
Next, the control section 117 acquires the remaining liquid amount in the liquid storage section 213 (step 121). The remaining liquid amount may be obtained using the measured value of the remaining liquid amount sensor 113E, or may be calculated using the power supply amount for each suction.
When the remaining liquid amount is acquired, the control unit 117 determines whether or not the remaining liquid amount is less than the first remaining liquid amount (step 122). The first remaining amount is set in advance.
If the remaining liquid amount is greater than or equal to the first remaining amount, the controller 117 obtains a negative result in step 122 . In this case, the remaining liquid amount is large, and the same control as in the first embodiment and the like is executed.
That is, the control unit 117 determines whether or not the puff interval is shorter than the first period (step 3). is obtained, step 5 is executed.
 一方、残液量が第1の残量より少ない場合、制御部117は、ステップ122で肯定結果を得る。次に、制御部117は、パフ間隔が第1の期間より短いか否かを判定する(ステップ3A)。もっとも、ステップ3Aの判定に使用する閾値は、ステップ3と異なってもよい。例えばステップ3Aの判定に使用する閾値は、ステップ3の判定に使用する閾値より小さくてもよい。
 残液量は第1の残量より少ないが、短パフではない場合、制御部117は、ステップ3Aで否定結果を得る。この場合、制御部117は、今回の本加熱時間を基準時間より短い時間LT2に設定する(ステップ5)。もっとも、ステップ3Aで否定結果が得られた場合における本加熱時間は、基準時間LT1より短ければよく、必ずしもLT2である必要はない。
 換言すると、制御部117は、残液量が少ないが、短パフではない場合には、残液量が多い場合に比して、本加熱時間の長さを短く制御する。これにより、液枯れが発生する可能性を抑制する。
On the other hand, when the remaining liquid amount is less than the first remaining amount, the control section 117 obtains a positive result in step 122 . Next, the control section 117 determines whether or not the puff interval is shorter than the first period (step 3A). However, the threshold used for determination in step 3A may be different from that in step 3. For example, the threshold used for the determination of step 3A may be smaller than the threshold used for the determination of step 3.
If the remaining liquid amount is less than the first remaining amount but the puff is not a short puff, the control section 117 obtains a negative result in step 3A. In this case, the controller 117 sets the current main heating time to a time LT2 shorter than the reference time (step 5). However, the main heating time when a negative result is obtained in step 3A should be shorter than the reference time LT1, and does not necessarily have to be LT2.
In other words, the controller 117 controls the length of the main heating time to be shorter when the residual liquid amount is small but the puff is not a short puff, compared to when the residual liquid amount is large. This suppresses the possibility that the liquid will dry up.
 残液量が第1の残量より少なく、かつ、短パフである場合、制御部117は、ステップ123で肯定結果を得る。この場合、制御部117は、今回の本加熱時間を残液量が少ないほど短い時間LT3(<LT1)に設定する(ステップ123)。
 換言すると、制御部117は、残液量が少なく、かつ、短パフである場合には、パフ間隔が短いほど、本加熱時間の長さを短く制御する。ここでも、本加熱時間は、例えば段階的に短縮する。もっとも、二元曲線等に従って非線形に短縮してもよい。いずれにしても、エアロゾル源の給液能力が低下しても、液枯れの発生を効果的に抑制できる。
 ステップ4、又は、ステップ5、又は、ステップ123による本加熱時間の設定後、制御部117は、ステップ6及びステップ7を順番に実行し、吸引の1サイクルを終了する。
If the remaining liquid amount is less than the first remaining amount and the puff is short, the controller 117 obtains a positive result in step 123 . In this case, the controller 117 sets the current main heating time to LT3 (<LT1), which is shorter as the remaining liquid amount is smaller (step 123).
In other words, when the remaining liquid amount is small and the puff is short, the controller 117 controls the main heating time to be shorter as the puff interval is shorter. Again, the main heating time is reduced stepwise, for example. However, it may be shortened non-linearly according to a binary curve or the like. In any case, even if the liquid supply capability of the aerosol source is lowered, it is possible to effectively suppress the occurrence of liquid depletion.
After setting the main heating time in step 4, step 5, or step 123, the control unit 117 sequentially executes steps 6 and 7, and completes one suction cycle.
 なお、本実施の形態の手法を実施の形態2の手法に応用する場合には、パフ間隔として、直前回の加熱終了から今回の加熱開始までの時間を使用すればよい。
 本実施の形態の手法を実施の形態3の手法に応用する場合には、パフ間隔として、直前回の加熱終了から今回の吸引開始までの時間を使用すればよい。
 本実施の形態の手法を実施の形態4の手法に応用する場合には、パフ間隔として、直前回の電源ボタン11のオフ操作から今回のオン操作までの時間を使用すればよい。
 本実施の形態の手法を実施の形態5の手法に応用する場合には、パフ間隔とその判定ステップに、吸引開始時における加熱部211の温度とその判定ステップを使用すればよい。
 本実施の形態の手法を実施の形態6の手法に応用する場合には、パフ間隔とその判定ステップに、吸引開始時における加熱部211の抵抗値とその判定ステップを使用すればよい。
 本実施の形態の手法を実施の形態7の手法に応用する場合には、パフ間隔とその判定ステップに、吸引開始時における液誘導部212の温度とその判定ステップを使用すればよい。
When applying the method of the present embodiment to the method of the second embodiment, the time from the end of the previous heating to the start of the current heating may be used as the puff interval.
When applying the method of the present embodiment to the method of the third embodiment, the time from the end of the previous heating to the start of current suction may be used as the puff interval.
When applying the method of the present embodiment to the method of the fourth embodiment, the time from the last power button 11 off operation to the current power on operation may be used as the puff interval.
When applying the method of the present embodiment to the method of the fifth embodiment, the temperature of the heating unit 211 at the start of suction and the determination step may be used for the puff interval and the determination step.
When the method of the present embodiment is applied to the method of the sixth embodiment, the resistance value of the heating unit 211 at the start of suction and the determination step thereof may be used for the puff interval and the determination step thereof.
When the method of the present embodiment is applied to the method of Embodiment 7, the temperature of the liquid guide portion 212 at the start of suction and the determination step may be used for the puff interval and the determination step.
<実施の形態14>
 本実施の形態では、本加熱に先立って予備的に加熱部211(図2参照)を加熱する機能を有する場合を想定する。
 図31は、予備加熱時間LT0を説明する図である。(A)は予備加熱時間LT0と本加熱時間LT11の位置の関係を示し、(B)はエアロゾル源の温度変化を示す。図31(A)における縦軸は加熱の強度であり、図31(B)の縦軸は温度であり、図31(A)及び(B)の横軸は時間である。
 予備加熱時間LT0は、予備加熱のための時間であり、本加熱時間LT11の直前に配置される。
 予備加熱は、液誘導部212(図2参照)内のエアロゾル源の液温を室温以上かつ沸点未満に予め加熱するために設けられる。予備加熱は、加熱部211への電力の供給開始からエアロゾルの発生までの遅延時間の短縮を実現する技術である。
<Embodiment 14>
In this embodiment, it is assumed that the heating unit 211 (see FIG. 2) is preliminarily heated prior to the main heating.
FIG. 31 is a diagram for explaining the preheating time LT0. (A) shows the positional relationship between the preheating time LT0 and the main heating time LT11, and (B) shows the temperature change of the aerosol source. The vertical axis in FIG. 31A is heating intensity, the vertical axis in FIG. 31B is temperature, and the horizontal axis in FIGS. 31A and 31B is time.
The preheating time LT0 is a time for preheating, and is arranged immediately before the main heating time LT11.
Preheating is provided to preheat the liquid temperature of the aerosol source in the liquid guide section 212 (see FIG. 2) to room temperature or higher and lower than the boiling point. Preheating is a technique for shortening the delay time from the start of power supply to the heating unit 211 to the generation of aerosol.
 予備加熱により、エアロゾル源の液温を事前に上昇させておくことができる。このため、本加熱時間LT11に供給される電力を、エアロゾル源の液温の上昇よりも、エアロゾルの発生に割り当てることが可能になる。その結果、本加熱時間の開始直後からエアロゾルの発生が可能になり、結果的に、本加熱時間内に発生するエアロゾルの総量を増やすことが可能になる。
 本加熱時間LT11の開始からエアロゾル源の温度が沸点に達するまでの時間は、予備加熱を使用しない場合はTD1であるが、予備加熱を使用する場合にはTD2(<TD1)に短縮できる。このため、本加熱時間LT11の長さが予備加熱を用いない場合と同じであれば、予備加熱を使用する方が、より多くのエアロゾルを発生することが可能である。
By preheating, the liquid temperature of the aerosol source can be raised in advance. Therefore, it becomes possible to allocate the power supplied during the main heating time LT11 to the generation of the aerosol rather than to the increase in the liquid temperature of the aerosol source. As a result, it becomes possible to generate aerosol immediately after the start of the main heating time, and as a result, it is possible to increase the total amount of aerosol generated during the main heating time.
The time from the start of the main heating time LT11 until the temperature of the aerosol source reaches the boiling point is TD1 when preheating is not used, but can be shortened to TD2 (<TD1) when preheating is used. Therefore, if the length of the main heating time LT11 is the same as when preheating is not used, more aerosol can be generated when preheating is used.
 もっとも、図31(A)及び(B)では、予備加熱を使用する場合の本加熱時間LT11を、予備加熱を使用しない場合の本加熱時間LT1よりも短くしている。本加熱時間内に発生するエアロゾルの総量を同じにするためである。
 換言すると、エアロゾルの発生量を予備加熱なしの場合と同じに制御する場合には、予備加熱を使用する場合の本加熱時間LT11を、予備加熱なしの場合の本加熱時間LT1よりも短くすることが可能になる。
 なお、予備加熱によりエアロゾルの発生が促進される理由には、本加熱時間の開始時におけるエアロゾル源の粘度が、予備加熱を使用しない場合よりも低下することもある。エアロゾル源の粘度が低いほど、液誘導部212に対する送液速度が増加し、結果的に給液量が増加するためである。
 もっとも、予備加熱時間が長くなると、その分だけ消費される電力量も増える。このため、予備加熱時間の長さは、本加熱時間に消費される電力量とのバランスを考慮して設定する必要がある。
However, in FIGS. 31A and 31B, the main heating time LT11 when preheating is used is shorter than the main heating time LT1 when preheating is not used. This is to equalize the total amount of aerosol generated during the main heating time.
In other words, when controlling the amount of aerosol generated to be the same as in the case without preheating, the main heating time LT11 with preheating should be shorter than the main heating time LT1 without preheating. becomes possible.
The reason why preheating promotes aerosol generation is that the viscosity of the aerosol source at the start of the main heating time is lower than when preheating is not used. This is because the lower the viscosity of the aerosol source, the higher the liquid feeding speed to the liquid guide section 212, resulting in an increase in the amount of liquid supplied.
However, the longer the preheating time is, the more power is consumed. Therefore, it is necessary to set the length of the preheating time in consideration of the balance with the amount of power consumed during the main heating time.
 図32は、予備加熱の有無とパフ間隔の長短による本加熱時間の設定例を説明する図である。(A)は予備加熱なしの場合、(B)は予備加熱ありの場合を示す。ここでの「予備加熱なし」と「予備加熱あり」は、予備加熱の機能の有無を意味するのではなく、予備加熱の機能を使用するか否かを意味する。
 図32(A)に示す本加熱時間の設定例は、実施の形態1等と同じである。すなわち、パフ間隔が長い場合には、本加熱時間を2.4秒とし、パフ間隔が短い場合には、本加熱時間を1.7秒とする。
 一方、図32(B)に示すように、予備加熱を用いる場合、パフ間隔が長い場合もパフ間隔が短い場合も、予備加熱を用いない場合に比して本加熱時間を短く設定する。例えば「予備加熱あり」でパフ間隔が長い場合、本加熱時間は1.7秒である。一方、「予備加熱あり」でパフ間隔が短い場合、本加熱時間は1.2秒である。
 もっとも、図32(A)及び(B)に示す本加熱時間は一例であり、「予備加熱あり」でパフ間隔が長い場合の本加熱時間を、1.7秒より短くすることも、長くすることも可能である。
FIG. 32 is a diagram for explaining an example of setting the main heating time depending on the presence or absence of preheating and the length of the puff interval. (A) shows the case without preheating, and (B) shows the case with preheating. Here, "without preheating" and "with preheating" do not mean the presence or absence of the preheating function, but rather whether the preheating function is used.
The setting example of the main heating time shown in FIG. 32(A) is the same as that of the first embodiment. That is, when the puff interval is long, the main heating time is set to 2.4 seconds, and when the puff interval is short, the main heating time is set to 1.7 seconds.
On the other hand, as shown in FIG. 32B, when preheating is used, the main heating time is set shorter than when preheating is not used, both when the puff interval is long and when the puff interval is short. For example, when "with preheating" and the puff interval is long, the main heating time is 1.7 seconds. On the other hand, when "with preheating" and the puff interval is short, the main heating time is 1.2 seconds.
However, the main heating time shown in FIGS. 32A and 32B is an example, and the main heating time in the case of "with preheating" and a long puff interval can be shortened or lengthened to less than 1.7 seconds. is also possible.
 図33は、実施の形態14で使用する制御部117(図2参照)による本加熱時間の制御例を説明するフローチャートである。図33には、図3との対応部分に対応する符号を付して示す。
 本実施の形態における制御部117は、最初に、予備加熱ありか否かを判定する(ステップ131)。
 ステップ131で否定結果が得られた場合、制御部117は、実施の形態1等と同様の動作を実行する。すなわち、制御部117は、図3に示すフローチャートに従って、本加熱時間を設定する。
FIG. 33 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the fourteenth embodiment. In FIG. 33, parts corresponding to those in FIG. 3 are shown with reference numerals.
Control unit 117 in the present embodiment first determines whether or not there is preheating (step 131).
If a negative result is obtained in step 131, control unit 117 performs the same operation as in the first embodiment and the like. That is, the controller 117 sets the main heating time according to the flowchart shown in FIG.
 一方、ステップ131で肯定結果が得られた場合、制御部117は、パフセンサ112により、吸引の開始を検知したか否かを判定する(ステップ1A)。この判定は、ステップ1Aで肯定結果が得られるまで繰り返される。ステップ1Aで肯定結果が得られると、制御部117は、予備加熱の終了後に本加熱を開始し(ステップ1100A)、その後、直前のパフ間隔を取得し(ステップ2A)、その後、取得されたパフ間隔が第1の期間より短いか否かを判定する(ステップ3A)。 On the other hand, if a positive result is obtained in step 131, the control unit 117 determines whether or not the puff sensor 112 has detected the start of suction (step 1A). This determination is repeated until a positive result is obtained in step 1A. When a positive result is obtained in step 1A, the control unit 117 starts main heating after preheating (step 1100A), acquires the immediately preceding puff interval (step 2A), and then acquires the acquired puff interval. Determine whether the interval is shorter than the first period (step 3A).
 なお、ステップ3Aで否定結果が得られた場合、制御部117は、ステップ5に移行し、今回の本加熱時間を基準時間より短い時間LT2に設定する。前述したように、本加熱時間としてLT2とは別の時間を設定することも可能である。
 ステップ3Aで肯定結果が得られた場合、制御部117は、今回の本加熱時間を基準時間より短い時間LT11に設定する(ステップ132)。ここでの時間LT11は、例えば1.2秒であり、ステップ4及びステップ5で設定される本加熱時間よりも短くなる。
 ステップ4、又は、ステップ5、又は、ステップ132による本加熱時間の設定後、制御部117は、ステップ6及びステップ7を順番に実行し、吸引の1サイクルを終了する。
 本実施の形態の場合も、実施の形態13と同じく、ステップ3Aの判定に使用する閾値は、ステップ3と異なってもよい。また、ステップ3Aで否定結果が得られた場合における本加熱時間は、基準時間LT1より短ければLT2である必要はない。 
If a negative result is obtained in step 3A, the controller 117 proceeds to step 5 and sets the current main heating time to LT2, which is shorter than the reference time. As described above, it is also possible to set a time different from LT2 as the main heating time.
If a positive result is obtained in step 3A, the controller 117 sets the current main heating time to a time LT11 shorter than the reference time (step 132). The time LT11 here is, for example, 1.2 seconds, which is shorter than the main heating time set in steps 4 and 5.
After setting the main heating time in step 4, step 5, or step 132, the control unit 117 sequentially executes steps 6 and 7, and completes one suction cycle.
Also in the case of this embodiment, the threshold used for the determination in step 3A may be different from that in step 3, as in the thirteenth embodiment. Also, if a negative result is obtained in step 3A, the main heating time need not be LT2 if it is shorter than the reference time LT1.
<実施の形態15>
 本実施の形態では、本加熱時間中に過加熱が検知された場合の制御動作について説明する。本実施の形態の場合も、エアロゾル生成装置1の外観構成は実施の形態1と同じである。なお、本実施の形態の場合、コイル温度センサ113A(図11参照)を設ける点を除き、実施の形態1~7のいずれに対しても組み合わせが可能である。
 図34は、実施の形態15で使用する制御部117(図2参照)による本加熱時間の制御例を説明するフローチャートである。図34には、図12との対応部分に対応する符号を付して示す。制御部117による制御は、プログラムの実行を通じて実現される。
 本実施の形態における制御部117は、パフセンサ112により、吸引の開始を検知したか否かを判定する(ステップ1)。
<Embodiment 15>
In this embodiment, a control operation when overheating is detected during the main heating time will be described. In the case of the present embodiment as well, the external configuration of the aerosol generator 1 is the same as that of the first embodiment. It should be noted that this embodiment can be combined with any of Embodiments 1 to 7, except that a coil temperature sensor 113A (see FIG. 11) is provided.
FIG. 34 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the fifteenth embodiment. In FIG. 34, parts corresponding to those in FIG. Control by the control unit 117 is realized through execution of a program.
Control unit 117 in the present embodiment determines whether or not start of suction has been detected by puff sensor 112 (step 1).
 ステップ1で否定結果が得られている間、制御部117は、ステップ1の判定を繰り返す。
 ステップ1で肯定結果が得られた場合、制御部117は、本加熱を開始し(ステップ1100)、その後、吸引開始時のコイルの温度を取得する(ステップ41)。すなわち、加熱部211(図2参照)の温度が取得される。
 コイルの温度が取得されると、制御部117は、吸引開始時のコイルの温度が第3の温度より高いか否かを判定する(ステップ141)。第3の温度は、過加熱の判定用閾値である。
While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then acquires the temperature of the coil at the start of suction (step 41). That is, the temperature of the heating unit 211 (see FIG. 2) is obtained.
When the temperature of the coil is acquired, the control unit 117 determines whether or not the temperature of the coil at the start of suction is higher than the third temperature (step 141). The third temperature is a threshold for determining overheating.
 取得された温度が第3の温度より高い場合、制御部117は、ステップ141で肯定結果を得る。この場合、制御部117は、本加熱を強制的に終了する(ステップ142)。すなわち、制御部117は、設定された本加熱時間が残っていても、加熱部211に対する電力の供給を終了する。
 なお、電力の供給を終了しても、加熱部211の温度はしばらくの間、高い状態を維持する。このため、エアロゾルの発生はしばらく継続する。
If the obtained temperature is higher than the third temperature, the controller 117 obtains a positive result in step 141 . In this case, the controller 117 forcibly terminates the main heating (step 142). That is, the control unit 117 ends the power supply to the heating unit 211 even if the set main heating time remains.
Note that the temperature of the heating unit 211 remains high for a while even after the power supply is terminated. Therefore, aerosol generation continues for a while.
 設定された本加熱時間が満了する前に加熱が終了することにより、そのまま本加熱時間が満了するまで加熱を継続する場合に比して、次の吸引回までの冷却時間を延ばすことが可能になる。その結果、次の吸引回の開始時におけるエアロゾル源の液温は、本実施の形態による制御を採用しない場合に比して低くなり易い。また、過加熱が解消されることで、設計温度内でのエアロゾル生成装置1の使用を継続することが可能になる。
 一方、ステップ141で否定結果が得られた場合、制御部117は、設定された本加熱時間に応じた加熱を継続する(ステップ143)。
By completing the heating before the set main heating time expires, it is possible to extend the cooling time until the next suction time compared to the case where the heating is continued until the main heating time expires. Become. As a result, the liquid temperature of the aerosol source at the start of the next suction cycle tends to be lower than when the control according to the present embodiment is not employed. In addition, by eliminating overheating, it is possible to continue using the aerosol generator 1 within the design temperature.
On the other hand, if a negative result is obtained in step 141, the controller 117 continues heating according to the set main heating time (step 143).
<実施の形態16>
 本実施の形態では、本加熱時間中に過加熱が検知された場合の他の制御動作を説明する。本実施の形態の場合も、エアロゾル生成装置1の外観構成は実施の形態1と同じである。なお、本実施の形態の場合、液温センサ113C(図17参照)を設ける点を除き、実施の形態1~7のいずれに対しても組み合わせが可能である。
 図35は、実施の形態16で使用する制御部117(図2参照)による本加熱時間の制御例を説明するフローチャートである。図35には、図18との対応部分に対応する符号を付して示す。制御部117による制御は、プログラムの実行を通じて実現される。
 本実施の形態における制御部117も、パフセンサ112により、吸引の開始を検知したか否かを判定する(ステップ1)。
<Embodiment 16>
In this embodiment, another control operation when overheating is detected during the main heating time will be described. In the case of the present embodiment as well, the external configuration of the aerosol generator 1 is the same as that of the first embodiment. It should be noted that this embodiment can be combined with any of Embodiments 1 to 7, except that a liquid temperature sensor 113C (see FIG. 17) is provided.
FIG. 35 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the sixteenth embodiment. In FIG. 35, the parts corresponding to those in FIG. 18 are indicated by the reference numerals. Control by the control unit 117 is realized through execution of a program.
Control unit 117 in the present embodiment also determines whether or not the start of suction is detected by puff sensor 112 (step 1).
 ステップ1で否定結果が得られている間、制御部117は、ステップ1の判定を繰り返す。
 ステップ1で肯定結果が得られた場合、制御部117は、本加熱を開始し(ステップ1100)、その後、吸引開始時の液温を取得する(ステップ61)。ここでの液温は、液誘導部212の温度である。
 液温が取得されると、制御部117は、吸引開始時の液温が第4の温度より高いか否かを判定する(ステップ151)。第4の温度は、過加熱の判定用閾値である。
While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then obtains the liquid temperature at the start of suction (step 61). The liquid temperature here is the temperature of the liquid guide portion 212 .
When the liquid temperature is acquired, the control unit 117 determines whether or not the liquid temperature at the start of suction is higher than the fourth temperature (step 151). The fourth temperature is a threshold for judging overheating.
 取得された液温が第4の温度より高い場合、制御部117は、ステップ151で肯定結果を得る。この場合、制御部117は、本加熱を強制的に終了する(ステップ152)。すなわち、制御部117は、設定された本加熱時間が残っていても、加熱部211に対する電力の供給を終了する。
 なお、電力の供給を終了しても、加熱部211の温度はしばらくの間、高い状態を維持する。このため、エアロゾルの発生はしばらく継続する。
If the obtained liquid temperature is higher than the fourth temperature, the controller 117 obtains a positive result in step 151 . In this case, the controller 117 forcibly terminates the main heating (step 152). That is, the control unit 117 ends the power supply to the heating unit 211 even if the set main heating time remains.
Note that the temperature of the heating unit 211 remains high for a while even after the power supply is stopped. Therefore, aerosol generation continues for a while.
 設定された本加熱時間が満了する前に加熱が終了することにより、そのまま本加熱時間が満了するまで加熱を継続する場合に比して、次の吸引回までの冷却時間を延ばすことが可能になる。その結果、次の吸引回の開始時におけるエアロゾル源の液温は、本実施の形態による制御を採用しない場合に比して低くなり易い。また、過加熱が解消されることで、設計温度内でのエアロゾル生成装置1の使用を継続することが可能になる。
 一方、ステップ151で否定結果が得られた場合、制御部117は、設定された本加熱時間に応じた加熱を継続する(ステップ153)。
By completing the heating before the set main heating time expires, it is possible to extend the cooling time until the next suction time compared to the case where the heating is continued until the main heating time expires. Become. As a result, the liquid temperature of the aerosol source at the start of the next suction cycle tends to be lower than when the control according to the present embodiment is not employed. In addition, by eliminating overheating, it is possible to continue using the aerosol generator 1 within the design temperature.
On the other hand, if a negative result is obtained in step 151, the controller 117 continues heating according to the set main heating time (step 153).
<実施の形態17>
 本実施の形態では、短パフの検出時に、本加熱時間を短縮するのではなく、加熱部211に与える電圧値又は電流値を低い値に設定することにより、液枯れの発生を抑制する。
 本実施の形態におけるエアロゾル生成装置1(図1参照)のその他の構成は、実施の形態1と同じである。すなわち、エアロゾル生成装置1の外観構成及び内部構成は、実施の形態1と同じである。
 図36は、実施の形態17で使用する制御部117(図2参照)による本加熱時間の制御例を説明するフローチャートである。図36には、図3との対応部分に対応する符号を付して示す。制御部117による制御は、プログラムの実行を通じて実現される。
<Embodiment 17>
In this embodiment, when a short puff is detected, rather than shortening the main heating time, the voltage value or current value applied to the heating unit 211 is set to a low value to suppress the occurrence of liquid drying.
Other configurations of the aerosol generator 1 (see FIG. 1) in the present embodiment are the same as in the first embodiment. That is, the external configuration and internal configuration of the aerosol generator 1 are the same as those of the first embodiment.
FIG. 36 is a flowchart for explaining an example of control of the main heating time by the controller 117 (see FIG. 2) used in the seventeenth embodiment. In FIG. 36, parts corresponding to those in FIG. Control by the control unit 117 is realized through execution of a program.
 本実施の形態における制御部117も、パフセンサ112により、吸引の開始を検知したか否かを判定する(ステップ1)。
 ステップ1で否定結果が得られている間、制御部117は、ステップ1の判定を繰り返す。
 ステップ1で肯定結果が得られた場合、制御部117は、本加熱を開始し(ステップ1100)、その後、直前のパフ間隔を取得する(ステップ2)。
 続いて、制御部117は、パフ間隔が第1の期間より短いか否かを判定する(ステップ3)。すなわち、直近のパフ間隔が短パフか否かを判定する。
Control unit 117 in the present embodiment also determines whether or not the start of suction is detected by puff sensor 112 (step 1).
While a negative result is obtained in step 1, the control unit 117 repeats the determination in step 1.
If a positive result is obtained in step 1, the controller 117 starts main heating (step 1100), and then acquires the last puff interval (step 2).
Subsequently, the control section 117 determines whether or not the puff interval is shorter than the first period (step 3). That is, it is determined whether or not the latest puff interval is a short puff.
 ステップ3で否定結果が得られた場合、制御部117は、今回の本加熱時間に印加する最大電圧値を基準電圧値に設定する(ステップ161)。ここでの基準電圧値は、実施の形態1等で使用される電圧値と同じである。ここでの基準電圧値は、第2の最大電圧値の一例である。なお、前述したように、電流値を指定することも可能である。
 ステップ3で肯定結果が得られた場合、制御部117は、今回の本加熱時間に印加する最大電圧値を基準電圧値よりも小さい値に設定する(ステップ162)。
 すなわち、本加熱時間の短縮ではなく、最大電圧値が低い値に設定される。ステップ162で設定される最大電圧値は、第1の最大電圧値の一例である。この結果、本加熱時間内に加熱部211に供給される電力は、パフ間隔が短くない場合よりも小さくなる。すなわち、基準値よりも小さくなる。なお、最大電圧値を基準電圧値よりも低く設定するほど、本加熱時間内に加熱部211に供給される電力は小さくなる。勿論、電圧値ではなく、電流値を指定することも可能である。
If a negative result is obtained in step 3, the control unit 117 sets the maximum voltage value applied during the current main heating time as the reference voltage value (step 161). The reference voltage value here is the same as the voltage value used in the first embodiment and the like. The reference voltage value here is an example of the second maximum voltage value. In addition, as described above, it is also possible to specify the current value.
If a positive result is obtained in step 3, the control unit 117 sets the maximum voltage value to be applied during the current main heating time to a value smaller than the reference voltage value (step 162).
That is, the maximum voltage value is set to a low value instead of shortening the main heating time. The maximum voltage value set in step 162 is an example of a first maximum voltage value. As a result, the power supplied to the heating unit 211 during the main heating time is smaller than when the puff interval is not short. That is, it becomes smaller than the reference value. Note that the lower the maximum voltage value is set than the reference voltage value, the smaller the power supplied to the heating unit 211 during the main heating time. Of course, it is also possible to specify a current value instead of a voltage value.
<実施の形態18>
 前述の実施の形態では、電源ボタン11(図1参照)を有するエアロゾル生成装置1について説明したが、電源ボタン11を有しないエアロゾル生成装置1にも応用が可能である。
 図37は、実施の形態18で想定するエアロゾル生成装置1の外観構成例を説明する図である。図37には、図1との対応部分に対応する符号を付して示す。
 本実施の形態の場合、ユーザによる吸引の開始を検知すると、加熱部211(図2参照)に対する電力の供給が開始される。
<Embodiment 18>
Although the aerosol generator 1 having the power button 11 (see FIG. 1) has been described in the above embodiment, the aerosol generator 1 without the power button 11 can also be applied.
FIG. 37 is a diagram for explaining an example of the external configuration of the aerosol generating device 1 assumed in the eighteenth embodiment. In FIG. 37, parts corresponding to those in FIG. 1 are shown with reference numerals.
In the case of the present embodiment, when the start of suction by the user is detected, power supply to the heating unit 211 (see FIG. 2) is started.
<実施の形態19>
 本実施の形態では、液体としてのエアロゾル源を加熱する機構に加え、エアロゾルを含む基材を加熱する機構を有するエアロゾル生成装置1について説明する。
 図38は、実施の形態19で想定するエアロゾル生成装置1の内部構成例を模式的に示す図である。図38には、図2との対応部分に対応する符号を付して示す。
 図38に示すエアロゾル生成装置1は、電源部111、パフセンサ112、電源ボタンセンサ113、通知部114、記憶部115、通信部116、制御部117、加熱部211、液誘導部212、液貯蔵部213に加え、スティック型基材400の保持に用いる保持部301と、保持部301の外周に配置される加熱部302と、加熱部302の外周に配置される断熱部303が設けられている。
<Embodiment 19>
In the present embodiment, an aerosol generator 1 having a mechanism for heating a substrate containing an aerosol in addition to a mechanism for heating a liquid aerosol source will be described.
FIG. 38 is a diagram schematically showing an internal configuration example of the aerosol generating device 1 assumed in the nineteenth embodiment. In FIG. 38, parts corresponding to those in FIG. 2 are shown with reference numerals.
The aerosol generating device 1 shown in FIG. 38 includes a power supply unit 111, a puff sensor 112, a power button sensor 113, a notification unit 114, a storage unit 115, a communication unit 116, a control unit 117, a heating unit 211, a liquid induction unit 212, and a liquid storage unit. 213, a holding portion 301 used to hold the stick-shaped substrate 400, a heating portion 302 arranged on the outer periphery of the holding portion 301, and a heat insulating portion 303 arranged on the outer periphery of the heating portion 302 are provided.
 図38では、保持部301にスティック型基材400が装着された状態を表している。ユーザは、保持部301にスティック型基材400を挿入した状態で吸引動作を行う。
 エアロゾル生成装置1には、空気流入孔21から流入された空気を、液誘導部212を経て保持部301の底部301Cに輸送する空気流路40が形成されている。このため、ユーザの吸引行動に伴い、空気流入孔21から流入した空気は、矢印500に沿って空気流路40内を流れる。この空気流に、加熱部211で生成されたエアロゾルと、加熱部302で生成されたエアロゾルとが混合される。
 なお、本実施の形態における制御部117は、加熱部211の加熱動作に加え、加熱部302の加熱動作も制御する。その際、制御部117は、不図示のセンサによって加熱部302の温度等の情報を取得する。
FIG. 38 shows a state in which the stick-shaped base material 400 is attached to the holding portion 301 . The user performs a suction operation while inserting the stick-shaped substrate 400 into the holding portion 301 .
The aerosol generator 1 is formed with an air flow path 40 that transports the air introduced from the air inlet 21 to the bottom 301</b>C of the holding section 301 via the liquid guide section 212 . Therefore, the air that has flowed in from the air inflow hole 21 flows along the arrow 500 in the air flow path 40 as the user sucks. The aerosol generated by the heating unit 211 and the aerosol generated by the heating unit 302 are mixed with this airflow.
Note that control unit 117 in the present embodiment controls the heating operation of heating unit 302 in addition to the heating operation of heating unit 211 . At that time, the control unit 117 acquires information such as the temperature of the heating unit 302 by a sensor (not shown).
 保持部301は、概略円筒形状である。このため、保持部301の内側は空洞である。この空洞を内部空間301Aという。内部空間301Aは、スティック型基材400と概略同径であり、開口301Bから挿入されたスティック型基材400の先端部分と接触した状態で収容する。すなわち、スティック型基材400は、内部空間301Aに保持される。
 保持部301には、開口301Bの反対側に底部301Cを有する。底部301Cは、空気流路40に連結されている。
The holding portion 301 has a substantially cylindrical shape. Therefore, the inside of the holding portion 301 is hollow. This cavity is called internal space 301A. The internal space 301A has approximately the same diameter as the stick-shaped substrate 400, and accommodates the tip portion of the stick-shaped substrate 400 inserted from the opening 301B while being in contact therewith. That is, stick-type substrate 400 is held in internal space 301A.
The holding portion 301 has a bottom portion 301C on the opposite side of the opening 301B. The bottom portion 301C is connected to the air flow path 40 .
 保持部301の内径は、筒状体の高さ方向の少なくとも一部において、スティック型基材400の外径よりも小さく構成されている。このため、開口301Bから内部空間301Aに挿入されたスティック型基材400の外周面は、保持部301の内壁により圧迫を受ける。この圧迫により、スティック型基材400は、保持部301に保持される。
 保持部301は、スティック型基材400を通る空気の流路を画定する機能も有する。ここでの底部301Cは、保持部301に対する空気の流入孔であり、開口301Bは、保持部301からの空気の流出孔である。
The inner diameter of the holding portion 301 is configured to be smaller than the outer diameter of the stick-shaped base material 400 at least in part in the height direction of the cylindrical body. Therefore, the outer peripheral surface of stick-shaped base material 400 inserted into internal space 301A through opening 301B is pressed by the inner wall of holding portion 301 . The stick-type base material 400 is held by the holding part 301 by this compression.
The holding portion 301 also functions to define air flow paths through the stick-shaped substrate 400 . Here, the bottom portion 301C is an air inflow hole for the holding portion 301, and the opening 301B is an air outflow hole from the holding portion 301. As shown in FIG.
 スティック型基材400は、概略円筒状の部材である。本実施の形態で想定するスティック型基材400は、基材部401と吸口部402とで構成されている。
 基材部401には、エアロゾル源が収容されている。エアロゾル源は、加熱されることで霧化され、エアロゾルを生成する物質である。基材部401に収容されるエアロゾル源には、例えば刻みたばこ又はたばこ原料を粒状、シート状、又は粉末状に成形した加工物等の、たばこ由来の物質がある。もっとも、基材部401に収容されるエアロゾル源として、たばこ以外の植物(例えばミント及びハーブ等)から作られた、非たばこ由来の物質を含めてもよい。例えばエアロゾル源は、メントール等の香料成分を含んでもよい。
The stick-type base material 400 is a substantially cylindrical member. A stick-shaped base material 400 assumed in the present embodiment is composed of a base material portion 401 and a mouthpiece portion 402 .
The base portion 401 houses an aerosol source. An aerosol source is a substance that is atomized by heating to form an aerosol. The aerosol source accommodated in the base member 401 includes tobacco-derived substances, such as cut tobacco or tobacco raw materials that have been formed into granules, sheets, or powder. However, the aerosol source housed in the substrate portion 401 may also include non-tobacco-derived substances made from plants other than tobacco, such as mints and herbs. For example, the aerosol source may contain a perfume ingredient such as menthol.
 エアロゾル生成装置1が医療用の吸入器である場合、スティック型基材400のエアロゾル源は、患者が吸入するための薬剤を含んでもよい。なお、エアロゾル源は固体に限らず、例えばグリセリン及びプロピレングリコール等の多価アルコール、水等の液体でもよい。
 基材部401の少なくとも一部は、スティック型基材400が保持部301に保持された状態において、保持部301の内部空間301Aに収容される。
When the aerosol generating device 1 is a medical inhaler, the aerosol source of the stick-type substrate 400 may contain a drug for patient inhalation. The aerosol source is not limited to solids, and may be polyhydric alcohols such as glycerin and propylene glycol, or liquids such as water.
At least part of the base material part 401 is housed in the internal space 301A of the holding part 301 while the stick-shaped base material 400 is held by the holding part 301 .
 吸口部402は、吸引の際にユーザに咥えられる部材である。吸口部402の少なくとも一部は、スティック型基材400が保持部301に保持された状態において、開口301Bから突出する。
 開口301Bから突出した吸口部402をユーザが咥えて吸引すると、前述したように、空気流入孔21から保持部301の底部301Cに空気が流入する。流入した空気は、保持部301の内部空間301Aと基材部401を通過してユーザの口内に到達する。なお、保持部301の内部空間301Aと基材部401を通過する気体には、基材部401から発生するエアロゾルが混合される。
The mouthpiece 402 is a member held by the user when inhaling. At least part of the mouthpiece 402 protrudes from the opening 301B when the stick-shaped base material 400 is held by the holding part 301 .
When the user sucks while holding the mouthpiece 402 projecting from the opening 301B, air flows into the bottom 301C of the holding part 301 through the air inlet 21 as described above. The inflowing air passes through the inner space 301A of the holding portion 301 and the base portion 401 and reaches the user's mouth. The aerosol generated from the base member 401 is mixed with the gas passing through the inner space 301A of the holding member 301 and the base member 401 .
 加熱部302は、基材部401に含まれるエアロゾル源を加熱することで、エアロゾル源を霧化してエアロゾルを生成する。加熱部302は、金属又はポリイミド等の任意の素材で構成される。例えば加熱部302は、フィルム状に構成され、保持部301の外周を覆うように配置される。
 加熱部302が発熱すると、スティック型基材400に含まれるエアロゾル源がスティック型基材400の外周から加熱されて霧化され、エアロゾルが生成される。
The heating unit 302 heats the aerosol source included in the base member 401 to atomize the aerosol source and generate an aerosol. The heating part 302 is made of any material such as metal or polyimide. For example, the heating part 302 is configured in a film shape and arranged so as to cover the outer periphery of the holding part 301 .
When the heating part 302 generates heat, the aerosol source contained in the stick-shaped base material 400 is heated from the outer periphery of the stick-shaped base material 400 and atomized to generate an aerosol.
 加熱部302は、電源部111からの給電により発熱する。例えば所定のユーザ入力が不図示のセンサ等により検出された場合、加熱部302に対する給電が開始され、エアロゾルが生成される。
 加熱部302の加熱によりスティック型基材400の温度が所定の温度に達した場合に、エアロゾルの生成が開始され、ユーザによる吸引が可能となる。
 その後、所定のユーザ入力が行われたことが不図示のセンサ等により検出された場合、加熱部302に対する給電が停止される。
 なお、ユーザによる吸引がパフセンサ112で検出されている間、加熱部302に対する給電が継続され、エアロゾルが生成されるようにしてもよい。
The heating unit 302 generates heat by power supply from the power supply unit 111 . For example, when a predetermined user input is detected by a sensor or the like (not shown), power supply to the heating unit 302 is started and aerosol is generated.
When the temperature of the stick-shaped base material 400 reaches a predetermined temperature due to the heating by the heating unit 302, the aerosol starts to be generated and the user can inhale the aerosol.
After that, when a sensor or the like (not shown) detects that a predetermined user input has been performed, power supply to the heating unit 302 is stopped.
It should be noted that while the puff sensor 112 detects the user's inhalation, power supply to the heating unit 302 may be continued to generate aerosol.
 <他の実施の形態>
 以上、本発明の実施の形態について説明したが、本発明の技術的範囲は前述した実施の形態に記載の範囲に限定されない。前述した実施の形態に、種々の変更又は改良を加えたものも、本発明の技術的範囲に含まれることは、特許請求の範囲の記載から明らかである。
<Other embodiments>
Although the embodiments of the present invention have been described above, the technical scope of the present invention is not limited to the scope described in the above-described embodiments. It is clear from the scope of claims that the technical scope of the present invention includes various modifications and improvements to the above-described embodiment.
1…エアロゾル生成装置、10…電源ユニット、11…電源ボタン、20、30…カートリッジ、21…空気流入孔、40…空気流路、42…空気流出孔、112…パフセンサ、113…電源ボタンセンサ、113A…コイル温度センサ、113B…抵抗値センサ、113C…液温センサ、113D…気温センサ、113E…残液量センサ、117…制御部、211、302…加熱部、212…液誘導部、213…液貯蔵部 DESCRIPTION OF SYMBOLS 1... Aerosol generating apparatus 10... Power supply unit 11... Power button 20, 30... Cartridge 21... Air inflow hole 40... Air flow path 42... Air outflow hole 112... Puff sensor 113... Power button sensor, 113A... Coil temperature sensor 113B... Resistance value sensor 113C... Liquid temperature sensor 113D... Air temperature sensor 113E... Remaining liquid amount sensor 117... Control unit 211, 302... Heating unit 212... Liquid induction unit 213... liquid reservoir

Claims (19)

  1.  エアロゾル源を加熱する負荷への電力の供給を制御する制御部を有し、
     前記制御部は、エアロゾルの吸引と吸引の間隔が第1の期間に比して短い場合、エアロゾルを発生するために前記負荷に供給する電力量を基準値よりも小さく制御する、
     エアロゾル生成装置の回路ユニット。
    a controller for controlling power supply to a load that heats the aerosol source;
    The control unit controls the amount of power supplied to the load to generate the aerosol to be smaller than a reference value when the interval between suctions of the aerosol is shorter than the first period.
    A circuit unit for an aerosol generator.
  2.  ユーザによるエアロゾルの吸引を検知する第1のセンサを更に有し、
     前記制御部は、前記第1のセンサで検知された直前回の吸引終了から今回の吸引開始までの時間が前記第1の期間より短い場合、前記負荷に電力を供給する時間を第2の期間よりも短縮する、
     請求項1に記載のエアロゾル生成装置の回路ユニット。
    further comprising a first sensor for detecting inhalation of the aerosol by the user;
    When the time from the last suction end detected by the first sensor to the current suction start is shorter than the first period, the control unit sets the time for supplying power to the load to the second period. be shorter than
    A circuit unit of an aerosol generator according to claim 1.
  3.  前記制御部は、エアロゾル源からのエアロゾルの発生が終了する直前回の加熱終了から今回の加熱開始までの時間が前記第1の期間より短い場合、前記負荷に電力を供給する時間を第2の期間よりも短縮する、
     請求項1に記載のエアロゾル生成装置の回路ユニット。
    If the time from the end of heating immediately before the end of generation of aerosol from the aerosol source to the start of heating this time is shorter than the first period, the control unit sets the time for supplying power to the load to a second period. shorten the period,
    A circuit unit of an aerosol generator according to claim 1.
  4.  ユーザによるエアロゾルの吸引を検知する第1のセンサを更に有し、
     前記制御部は、エアロゾル源からのエアロゾルの発生が終了する直前回の加熱終了から前記第1のセンサで検知された今回の吸引開始までの時間が前記第1の期間より短い場合、前記負荷に電力を供給する時間を第2の期間よりも短縮する、
     請求項1に記載のエアロゾル生成装置の回路ユニット。
    further comprising a first sensor for detecting inhalation of the aerosol by the user;
    If the time from the end of heating immediately before the end of generation of aerosol from the aerosol source to the start of suction this time detected by the first sensor is shorter than the first period, the control unit shortening the period of time to supply power than the second period;
    A circuit unit of an aerosol generator according to claim 1.
  5.  前記負荷に対する電力の供給と供給停止に関するユーザの操作を受け付ける操作部を有し、
     前記制御部は、前記操作部に対するユーザの操作による直前回の電力の供給停止から今回の電力の供給開始までの時間が前記第1の期間より短い場合、前記負荷に電力を供給する時間を第2の期間よりも短縮する、
     請求項1に記載のエアロゾル生成装置の回路ユニット。
    an operation unit that receives a user's operation regarding supply and stop of power supply to the load;
    If the time period from the immediately preceding power supply stop by the user's operation on the operation unit to the current power supply start time is shorter than the first period, the control unit sets the power supply time to the load as the first period. shorter than the period of 2,
    A circuit unit of an aerosol generator according to claim 1.
  6.  ユーザによるエアロゾルの吸引を検知する第1のセンサと、前記負荷の温度を検知する第2のセンサとを更に有し、
     前記制御部は、前記第1のセンサで検知されたエアロゾルの吸引開始時に前記第2のセンサで検知された温度が第1の温度よりも高い場合、前記負荷に電力を供給する時間を第2の期間よりも短縮する、
     請求項1に記載のエアロゾル生成装置の回路ユニット。
    further comprising a first sensor for detecting inhalation of aerosol by a user and a second sensor for detecting temperature of the load;
    When the temperature detected by the second sensor at the start of suction of the aerosol detected by the first sensor is higher than the first temperature, the control unit controls the time for supplying power to the load to a second time. less than the period of
    A circuit unit of an aerosol generator according to claim 1.
  7.  ユーザによるエアロゾルの吸引を検知する第1のセンサを更に有し、
     前記制御部は、前記第1のセンサで検知されたエアロゾルの吸引開始時における前記負荷の抵抗値が第1の抵抗値より高い場合、当該負荷に電力を供給する時間を第2の期間よりも短縮する、
     請求項1に記載のエアロゾル生成装置の回路ユニット。
    further comprising a first sensor for detecting inhalation of the aerosol by the user;
    When the resistance value of the load at the start of suction of the aerosol detected by the first sensor is higher than the first resistance value, the control unit supplies power to the load for a period longer than the second period. Shorten,
    A circuit unit of an aerosol generator according to claim 1.
  8.  ユーザによるエアロゾルの吸引を検知する第1のセンサと、エアロゾル源の温度を検知する第3のセンサとを更に有し、
     前記制御部は、前記第1のセンサで検知されたエアロゾルの吸引開始時に前記第3のセンサで検知された温度が第2の温度より高い場合、前記負荷に電力を供給する時間を第2の期間よりも短縮する、
     請求項1に記載のエアロゾル生成装置の回路ユニット。
    further comprising a first sensor for sensing inhalation of the aerosol by the user and a third sensor for sensing the temperature of the aerosol source;
    When the temperature detected by the third sensor at the start of suction of the aerosol detected by the first sensor is higher than a second temperature, the control unit sets the time for supplying power to the load to a second temperature. shorten the period,
    A circuit unit of an aerosol generator according to claim 1.
  9.  前記制御部は、エアロゾルの吸引と吸引の間隔の過去複数回の傾向から次回又は次回以降の間隔を予測し、予測された間隔が前記第1の期間に比して短い場合、予測した吸引回における前記負荷への電力の供給時間を第2の期間よりも短く設定する、
     請求項1に記載のエアロゾル生成装置の回路ユニット。
    The control unit predicts the next interval or the interval after the next time based on the trend of the intervals between the aerosol inhalations of a plurality of times in the past, and if the predicted interval is shorter than the first period, the predicted inhalation times setting the power supply time to the load in the second period shorter than the second period,
    A circuit unit of an aerosol generator according to claim 1.
  10.  前記制御部は、エアロゾルの吸引と吸引の間隔の過去複数回の測定値を取得し、前記第1の期間より短い測定値が連続して出現する回数が第1の回数を超える場合、当該回数の増加に伴って次回以降の吸引回において前記負荷に電力を供給する時間を第2の期間よりも段階的に短く制御する、
     請求項1に記載のエアロゾル生成装置の回路ユニット。
    The control unit acquires a plurality of past measured values of intervals between inhalations of the aerosol, and when the number of consecutive appearances of measured values shorter than the first period exceeds the first number of times, the number of times Controls the time for supplying power to the load in the next and subsequent suction times to be shorter than the second period step by step with the increase of
    A circuit unit of an aerosol generator according to claim 1.
  11.  前記制御部は、前記測定値が前記第1の期間より長い場合でも、超過する時間が第3の期間未満のときは、前記回数に含めて計算する、請求項10に記載のエアロゾル生成装置の回路ユニット。 11. The aerosol generating device according to claim 10, wherein even if the measured value is longer than the first period, if the overtime period is less than the third period, the controller includes it in the number of times in the calculation. circuit unit.
  12.  前記制御部は、エアロゾルの吸引と吸引の間隔が前記第1の期間よりも短い場合、間隔が短いほど、前記負荷に供給する電力量を小さく制御する、
     請求項1~8のうちいずれか1項に記載のエアロゾル生成装置の回路ユニット。
    When the interval between aerosol suctions is shorter than the first period, the control unit controls the amount of power supplied to the load to be smaller as the interval is shorter.
    The circuit unit of an aerosol generator according to any one of claims 1-8.
  13.  前記制御部は、エアロゾル源の残量が第1の残量より少ない場合、残量が少ないほど、前記負荷に供給する電力量を小さく制御する、
     請求項1~8のうちいずれか1項に記載のエアロゾル生成装置の回路ユニット。
    When the remaining amount of the aerosol source is less than the first remaining amount, the control unit controls the amount of power supplied to the load to be smaller as the remaining amount is smaller.
    The circuit unit of an aerosol generator according to any one of claims 1-8.
  14.  エアロゾルの発生を伴うエアロゾル源の加熱に先立って、エアロゾル源をエアロゾルの発生を伴わない温度範囲で加熱する場合、前記制御部は、エアロゾルの吸引と吸引の間隔が前記第1の期間に比して短いときに前記負荷に供給する電力量を、エアロゾルの発生を伴う加熱のみのときの電力量よりも小さい値に制御する、
     請求項1~8のうちいずれか1項に記載のエアロゾル生成装置の回路ユニット。
    If the aerosol source is heated in a temperature range that does not generate aerosol prior to the heating of the aerosol source that generates aerosol, the control unit adjusts the interval between suctions of the aerosol to be greater than the first period. controlling the amount of power supplied to the load when the time is short to a value smaller than the amount of power when only heating with aerosol generation is performed;
    The circuit unit of an aerosol generator according to any one of claims 1-8.
  15.  前記負荷の温度を検知する第2のセンサを更に有し、
     前記制御部は、前記第2のセンサで検知された温度が第3の温度に達した場合、その時点で、前記負荷の加熱を強制的に終了する、
     請求項1~8のうちいずれか1項に記載のエアロゾル生成装置の回路ユニット。
    further comprising a second sensor that detects the temperature of the load;
    When the temperature detected by the second sensor reaches a third temperature, the control unit forcibly terminates the heating of the load at that point.
    The circuit unit of an aerosol generator according to any one of claims 1-8.
  16.  エアロゾル源の温度を検知する第3のセンサを更に有し、
     前記制御部は、前記第3のセンサで検知された温度が第4の温度に達した場合、その時点で、前記負荷の加熱を強制的に終了する、
     請求項1~8のうちいずれか1項に記載のエアロゾル生成装置の回路ユニット。
    further comprising a third sensor that senses the temperature of the aerosol source;
    When the temperature detected by the third sensor reaches a fourth temperature, the control unit forcibly terminates the heating of the load at that point.
    The circuit unit of an aerosol generator according to any one of claims 1-8.
  17.  前記制御部は、エアロゾルの吸引と吸引の間隔が前記第1の期間に比して短い場合、エアロゾルを発生するために前記負荷に供給する第1の最大電圧値を、エアロゾルの吸引と吸引の間隔が当該第1の期間に比して長いときに当該負荷に供給する第2の最大電圧値よりも小さい値に制御する、
     請求項1~8のうちいずれか1項に記載のエアロゾル生成装置の回路ユニット。
    The control unit sets a first maximum voltage value to be supplied to the load to generate aerosol when an interval between suctions of the aerosol is shorter than the first period. Control to a value smaller than a second maximum voltage value supplied to the load when the interval is longer than the first period;
    The circuit unit of an aerosol generator according to any one of claims 1-8.
  18.  エアロゾル源を加熱する負荷への電力の供給を制御する制御部を有し、
     前記制御部は、エアロゾルの吸引と吸引の間隔が第1の期間に比して短い場合、エアロゾルを発生するために前記負荷に供給する電力量を基準値よりも小さく制御する、
     エアロゾル生成装置。
    a controller for controlling power supply to a load that heats the aerosol source;
    The control unit controls the amount of power supplied to the load to generate the aerosol to be smaller than a reference value when the interval between suctions of the aerosol is shorter than the first period.
    Aerosol generator.
  19.  エアロゾル源を加熱する負荷への電力の供給を制御するコンピュータに、
     エアロゾルの吸引と吸引の間隔が第1の期間に比して短い場合、エアロゾルを発生するために前記負荷に供給する電力量を基準値よりも小さく制御する機能
     を実現させるためのプログラム。
    a computer that controls the supply of power to the load that heats the aerosol source;
    A program for realizing a function of controlling the amount of power supplied to the load to generate aerosol to be smaller than a reference value when the interval between aerosol inhalations is shorter than the first period.
PCT/JP2021/042550 2021-11-19 2021-11-19 Circuit unit for aerosol generation device, aerosol generation device, and program WO2023089759A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042550 WO2023089759A1 (en) 2021-11-19 2021-11-19 Circuit unit for aerosol generation device, aerosol generation device, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042550 WO2023089759A1 (en) 2021-11-19 2021-11-19 Circuit unit for aerosol generation device, aerosol generation device, and program

Publications (1)

Publication Number Publication Date
WO2023089759A1 true WO2023089759A1 (en) 2023-05-25

Family

ID=86396445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042550 WO2023089759A1 (en) 2021-11-19 2021-11-19 Circuit unit for aerosol generation device, aerosol generation device, and program

Country Status (1)

Country Link
WO (1) WO2023089759A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019521664A (en) * 2016-05-31 2019-08-08 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generator with integrated heater assembly
JP2021509276A (en) * 2018-11-16 2021-03-25 ケイティー アンド ジー コーポレイション Aerosol generator and aerosol generator control method and equipment
JP2021525061A (en) * 2019-04-30 2021-09-24 ケーティー・アンド・ジー・コーポレーション Aerosol generator and its operation method
JP2021151244A (en) * 2017-10-24 2021-09-30 日本たばこ産業株式会社 Aerosol generation device, control method of aerosol generation device, and program for causing processor to execute the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019521664A (en) * 2016-05-31 2019-08-08 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generator with integrated heater assembly
JP2021151244A (en) * 2017-10-24 2021-09-30 日本たばこ産業株式会社 Aerosol generation device, control method of aerosol generation device, and program for causing processor to execute the method
JP2021509276A (en) * 2018-11-16 2021-03-25 ケイティー アンド ジー コーポレイション Aerosol generator and aerosol generator control method and equipment
JP2021525061A (en) * 2019-04-30 2021-09-24 ケーティー・アンド・ジー・コーポレーション Aerosol generator and its operation method

Similar Documents

Publication Publication Date Title
CN111225572B (en) Unheated non-combustible smoking article
US11304454B1 (en) Power supply unit for aerosol generation device, and aerosol generation device
JP2019505179A (en) Aerosol generation system with pump
KR20190133779A (en) Steam delivery systems
US11297878B1 (en) Power supply unit for aerosol generation device
US20230000172A1 (en) Inhaling device
JP2021509259A (en) Aerosol generator and how to control it
CN114304736A (en) Power supply unit for an aerosol generating device
WO2023089759A1 (en) Circuit unit for aerosol generation device, aerosol generation device, and program
JP7244664B2 (en) Battery unit, information processing method, and program
JP7148032B2 (en) steam supply system
WO2023089763A1 (en) Circuit unit for aerosol generation device, and device and program for aerosol generation
US20230000152A1 (en) Inhaling device, control method, and non-transitory computer readable medium
WO2023089761A1 (en) Circuit unit for aerosol generation device, aerosol generation device, and program
AU2023200106A1 (en) Vapour provision system and corresponding method
KR102593728B1 (en) Aerosol-generating apparatus based on ultrasound and cartridge recognition method thereof
JP2022544659A (en) Aerosol generator and method of operation
WO2023089754A1 (en) Inhalation device
WO2023089752A1 (en) Inhalation device
WO2023089753A1 (en) Suction device
TWI674072B (en) Non-burning type fragrance inhaler
WO2023089756A1 (en) Inhalation device
RU2799935C2 (en) Aerosol generating device with improved power supply controller
EP4353106A1 (en) Inhalation device, base material, and control method
WO2023188102A1 (en) Aerosol generating device, control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964774

Country of ref document: EP

Kind code of ref document: A1