WO2023089750A1 - Compressor and refrigeration cycle device using same - Google Patents

Compressor and refrigeration cycle device using same Download PDF

Info

Publication number
WO2023089750A1
WO2023089750A1 PCT/JP2021/042513 JP2021042513W WO2023089750A1 WO 2023089750 A1 WO2023089750 A1 WO 2023089750A1 JP 2021042513 W JP2021042513 W JP 2021042513W WO 2023089750 A1 WO2023089750 A1 WO 2023089750A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
refrigerant
compressor
unit
hole
Prior art date
Application number
PCT/JP2021/042513
Other languages
French (fr)
Japanese (ja)
Inventor
尚孝 黒田
浩平 達脇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/042513 priority Critical patent/WO2023089750A1/en
Publication of WO2023089750A1 publication Critical patent/WO2023089750A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present disclosure relates to a compressor and a refrigeration cycle device including the same.
  • the oil that lubricates the sliding parts of the compressor may be discharged from the discharge pipe to the outside of the compressor together with the compressed refrigerant. If oil continues to be discharged from the compressor in this way, the amount of oil stored in the oil reservoir continues to decrease, and the oil supplied to the sliding parts may be depleted, resulting in insufficient lubrication. Therefore, a compressor has been proposed in which the refrigerant compressed in the compression chamber and the oil are separated, and the separated oil is returned to the oil reservoir to suppress the reduction of the oil in the oil reservoir (see, for example, Patent Document 1). .
  • Patent Document 1 refrigerant compressed in a compression mechanism section is swirled in a centrifugal separation section, oil is separated from the refrigerant by the centrifugal force of the swirling flow, and the separated oil is sent from a return flow path formed by a gap of a frame to an oil storage section. is reverting to
  • Patent Document 1 since the centrifugal separation section is a high-pressure space and the oil storage section is a low-pressure space, the high-pressure, high-temperature oil from the centrifugal separation section is returned to the oil storage section as it is. There is a problem that the reliability is lowered.
  • the present disclosure has been made to solve the above problems, and aims to provide a compressor and a refrigeration cycle device including the same that can suppress deterioration in reliability.
  • a compressor includes a container having an oil reservoir, a suction pipe that sucks refrigerant from the outside of the container, and a compression mechanism that is arranged inside the container and compresses the refrigerant sucked by the suction pipe.
  • a frame for fixing the compression mechanism to the container; an oil separation unit for separating oil from the refrigerant compressed by the compression mechanism; an oil collection section provided outside the oil separation section for collecting the oil discharged from the oil separation section; and a return oil flow for returning the oil collected in the oil collection section to the oil storage section.
  • a refrigeration cycle device has a refrigerant circuit in which the compressor, condenser, expansion device, and evaporator are connected by pipes and in which refrigerant circulates.
  • the pressure reducing section that configures the oil return flow path for returning the oil collected in the oil collection section to the oil storage section.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a compressor according to Embodiment 1;
  • FIG. 4 is a perspective view of a turning mechanism part in the centrifugal separation part of the compressor according to Embodiment 1.
  • FIG. 4 is a perspective view of a cylindrical portion in the centrifugal separation section of the compressor according to Embodiment 1.
  • FIG. 3 is a cross-sectional view of the helical passage screw, the oil return pipe, and the periphery thereof of the compressor according to Embodiment 1.
  • FIG. It is a cross-sectional schematic diagram of an internally grooved copper tube.
  • FIG. 6 is a schematic cross-sectional view showing the configuration of a compressor according to Embodiment 2;
  • FIG. 10 is a diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 3;
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a compressor 101 according to Embodiment 1.
  • FIG. The double-lined arrow in FIG. 1 indicates the direction of gravity, and the dotted-lined arrow indicates the main flow of oil.
  • Compressor 101 according to Embodiment 1 is one of the components of a refrigeration cycle device used for applications such as air conditioners, refrigeration devices, refrigerators, freezers, vending machines, and water heaters. . Further, the compressor 101 according to Embodiment 1 is a scroll compressor.
  • the compressor 101 according to Embodiment 1 includes a compression mechanism portion 30 that compresses refrigerant, an electric mechanism portion 40 that drives the compression mechanism portion 30, and a rotational driving force of the electric mechanism portion 40.
  • a rotating shaft 5 that receives and transmits the power to the compression mechanism section 30 , and a container 1 that houses the compression mechanism section 30 and the electric mechanism section 40 are provided.
  • a frame 4 for fixing the compression mechanism 30 to the container 1 is further provided in the container 1 between the compression mechanism 30 and the electric mechanism 40 .
  • an HFC-based refrigerant, an HC-based refrigerant, or a natural refrigerant is used. Since these refrigerants have a low global warming potential (GWP), they can reduce the impact on global warming.
  • GWP global warming potential
  • the compression mechanism section 30 has a power conversion mechanism section 6 , an orbiting scroll 7 that is attached to the power conversion mechanism section 6 and performs an oscillating motion, and a fixed scroll 8 .
  • the power conversion mechanism section 6 is a mechanism that is attached to the rotary shaft 5 that is rotationally driven by the electric mechanism section 40 and converts rotational driving force into compression driving force.
  • a spiral wrap 7 a is formed on one surface of the orbiting scroll 7
  • a spiral wrap 8 a is formed on one surface of the fixed scroll 8 .
  • the orbiting scroll 7 and the fixed scroll 8 are combined so that the spiral wraps 7a, 8a are meshed with each other. Thereby, a plurality of compression chambers 9 separated from each other by the spiral wrap 7a or the spiral wrap 8a are formed between the orbiting scroll 7 and the fixed scroll 8 .
  • the rotating shaft 5 has one end rotatably supported by the frame 4 and the power conversion mechanism 6 and the other end rotatably supported by the sub-frame 10 .
  • a subframe 10 is fixed to the container 1 .
  • illustration of detailed connection structures and positions of the rotation shaft 5, the frame 4, and the power conversion mechanism 6 is omitted. Further, in FIG. 1, illustration of the detailed connection structure and position between the rotating shaft 5 and the subframe 10 is omitted.
  • a rotor 11 of the electric mechanism section 40 is attached to a portion between one end and the other end of the rotating shaft 5 .
  • the stator 12 of the electric mechanism section 40 is arranged so as to cover the outer circumference of the rotor 11 , and the stator 12 is fixed to the container 1 .
  • the container 1 is constructed by connecting three parts: a bottomed cylindrical upper container 1a, a cylindrical side container 1b, and a bottomed cylindrical lower container 1c.
  • a suction pipe 2 for sucking low-pressure refrigerant from outside the compressor 101 is attached to the side container 1b, and a discharge pipe 3 for discharging compressed high-pressure refrigerant to the outside of the compressor 101 is attached to the upper container 1a.
  • the internal space of the container 1 is divided into a suction space 19 on the side of the suction pipe 2 and a discharge space 20 on the side of the discharge pipe 3 by the compression mechanism portion 30 and the frame 4, and the electric mechanism portion 40 is arranged in the suction space 19.
  • the suction space 19 is filled with the low-pressure refrigerant sucked from the suction pipe 2 and becomes a low-pressure space.
  • the discharge space 20 is filled with the high-pressure refrigerant compressed by the compression mechanism portion 30 to form a high-pressure space.
  • the space between the suction space 19 and the discharge space 20 is called a compression space 25 .
  • the bottom of the container 1 is provided with an oil reservoir 16 for storing oil.
  • An oil pump 18 for pumping up the oil accumulated in the oil reservoir 16 is provided at the end of the rotary shaft 5 on the subframe 10 side.
  • An oil supply pipe 17 extending toward the oil reservoir 16 is connected to the oil pump 18 , and a suction port 17 a formed at the tip of the oil supply pipe 17 is immersed in the oil in the oil reservoir 16 .
  • the oil pump 18 pumps up the oil accumulated in the oil reservoir 16 through the oil supply pipe 17, and through the oil supply pipe 13 formed inside the rotating shaft 5, each sliding part in the compressor 101, for example, Oil is supplied to the power conversion mechanism 6 and the like.
  • the oil level height position of the oil reservoir 16 changes depending on the operating environment or operating conditions of the compressor 101 . Therefore, in order to ensure that the supply of oil to each sliding portion in the compressor 101 is not interrupted, the height position of the suction port 17a is adjusted so that the suction port 17a is immersed in oil under all conditions.
  • the oil pump 18 is provided at the end of the rotating shaft 5 on the sub-frame 10 side, but is not limited thereto, and may be provided at the end of the rotating shaft 5 on the frame 4 side. good.
  • the oil pump 18 pumps having various structures can be used.
  • the frame 4 is provided with a suction hole 14 that serves as a flow path for the refrigerant to flow from the suction space 19 to the compression chamber 9 .
  • the frame 4 and the fixed scroll 8 are provided with a discharge hole 15 serving as a flow path through which the refrigerant flows from the compression chamber 9 to the discharge space 20 .
  • a check valve 21 is provided at the outlet end of the discharge hole 15 to prevent the refrigerant from flowing back from the discharge space 20 to the compression chamber 9 .
  • a discharge pipe 3 for discharging the refrigerant to the outside of the compressor 101 is provided in the discharge space 20 .
  • a centrifugal separator 60 (hereinafter also referred to as an oil separator) is provided between the discharge hole 15 and the discharge pipe 3, and most of the refrigerant compressed in the compression chamber 9 and discharged from the discharge hole 15 is passes through the centrifugal separation section 60 and is discharged from the discharge pipe 3 to the outside of the compressor 101 .
  • An oil collecting portion 20a is provided outside the centrifugal separation portion 60, and the oil separated in the centrifugal separation portion 60 is collected in the oil collecting portion 20a.
  • the frame 4 is fixed to the inner surface of the side container 1b by shrink fitting or the like. Further, in FIG. 1, the frame 4 is provided with a lateral hole (not shown) extending in the horizontal direction, but the frame 4 may not be provided with the lateral hole.
  • the centrifugal separation unit 60 includes a cylindrical portion 23 having a plurality of holes 23a (see FIG. 3, which will be described later) on the side wall, and a refrigerant flow discharged from the discharge hole 15, which flows in the circumferential direction of the cylindrical portion 23 by changing the direction of the flow.
  • a swirling mechanism 22 is provided for causing a swirling flow in the cylindrical portion 23 by causing the water to flow.
  • the discharge pipe 3 is arranged so as to be positioned on the central axis of the cylindrical portion 23 .
  • the compression space 25 is provided with a helical passage screw 51 (hereinafter also referred to as a decompression portion or pressure loss portion), and the suction space 19 is provided with an oil return pipe 24 (hereinafter also referred to as an oil return portion). .
  • the helical passage screw 51 and the oil return pipe 24 form an oil return flow path from the oil collection portion 20a to the oil storage portion 16. As shown in FIG. Details of the spiral passage screw 51 and the oil return pipe 24 will be described later.
  • a fastening bolt (not shown) that fastens the fixed scroll 8 and the frame 4 is the fixed base of the fixed scroll 8. A plurality of them are provided along the outer periphery of a plate (not shown). The fastening bolt is for screwing together and fixing both the fixed scroll 8 and the frame 4, and is completely different from the helical passage screw 51. As shown in FIG.
  • FIG. 2 is a perspective view of the turning mechanism section 22 in the centrifugal separation section 60 of the compressor 101 according to Embodiment 1.
  • FIG. The dotted arrows in FIG. 2 indicate the flow of refrigerant and oil inside the swirling mechanism 22 .
  • the swirl mechanism part 22 is arranged to cover the discharge hole 15 and the check valve 21, and changes the direction of the refrigerant and oil discharged from the discharge hole 15 and the check valve 21 so as to generate a swirling flow.
  • a spiral flow path 22a is formed.
  • a blowout port 22b for blowing out the refrigerant and oil in the circumferential direction of the cylindrical portion 23 is provided at the end of the spiral flow path 22a.
  • FIG. 3 is a perspective view of the cylindrical section 23 in the centrifugal separation section 60 of the compressor 101 according to Embodiment 1.
  • FIG. The solid line arrows in FIG. 3 indicate the flow of refrigerant, and the dotted line arrows in FIG. 3 indicate the flow of oil.
  • the cylindrical portion 23 is provided with the swirl mechanism portion 22 inside thereof so that a swirl flow is formed inside the cylindrical portion 23 .
  • a side wall of the cylindrical portion 23 is provided with a plurality of holes 23a for discharging the oil separated from the refrigerant by the centrifugal force of the swirling flow to the oil collecting portion 20a outside the cylindrical portion 23.
  • a discharge pipe 3 for discharging the oil-separated refrigerant to the outside of the compressor 101 is arranged above the cylindrical portion 23 .
  • FIG. 4 is a cross-sectional view of the helical passage screw 51, the oil return pipe 24, and the surroundings of the compressor 101 according to the first embodiment.
  • a fixed scroll oil return pipe hole 81 is formed on the side of the fixed scroll 8 .
  • the fixed scroll oil return pipe hole 81 includes a fixed scroll oil return pipe upper hole 8f formed in the upper portion of the fixed scroll 8, a fixed scroll oil return pipe lower hole 8d formed in the lower portion of the fixed scroll 8, and a fixed scroll oil return pipe lower hole 8d formed in the lower portion of the fixed scroll oil.
  • a fixed scroll oil return pipe middle hole 8e is formed between the return pipe upper hole 8f and the fixed scroll oil return pipe lower hole 8d and communicates with them, and a fixed scroll oil return bypass hole 8g, which will be described later, is provided. .
  • a frame oil return pipe hole 82 is formed in the side portion of the frame 4 .
  • the frame oil return pipe hole 82 includes a frame oil return pipe upper hole 4a formed in the upper portion of the frame 4, a frame oil return pipe lower hole 4c formed in the lower portion of the frame 4, and a frame oil return pipe upper hole 4a. It is formed between the frame oil return pipe lower hole 4c and the frame oil return pipe middle hole 4b communicating therewith.
  • the spiral passage screw 51 is a rod-shaped member provided inside the frame oil return pipe middle hole 4b and inserted from the fixed scroll oil return pipe upper hole 8f toward the frame oil return pipe lower hole 4c.
  • the helical passage screw 51 has a body portion 51a, a small diameter portion 51b, a threaded portion 51c and a head portion 51d.
  • the main body portion 51a is formed of a cylindrical rod-like body, and a spiral groove having a width (length in the vertical direction in FIG. 4) of about 0.5 to 1.0 mm is formed on the outer peripheral portion. The longer the axial length of the spiral groove of the body portion 51a, the better.
  • the diameter of the body portion 51a ⁇ the diameter of the screw portion of the fastening bolt.
  • the frame 4 corresponding to the main body portion 51a formed with the spiral groove is a cylindrical long hole having no screw structure. A small gap is kept between them to prevent oil from flowing in the axial direction. Therefore, the oil slowly falls downward along the spiral grooves of the main body portion 51a.
  • the small diameter portion 51b is formed to have a smaller diameter than the fixed scroll oil return pipe middle hole 8e, and forms an annular passage inside the fixed scroll oil return pipe middle hole 8e.
  • the small-diameter portion 51b is formed inside the fixed scroll oil return pipe middle hole 8e.
  • the threaded portion 51c is formed of a cylindrical rod-like body, and has a male thread corresponding to a female thread formed at the upper end of the outer peripheral portion of the fixed scroll oil return pipe middle hole 8e. and fixed.
  • the head 51d is formed in a disc shape having a diameter larger than that of the fixed scroll oil return pipe middle hole 8e.
  • the helical passage screw 51 increases the surface area that the oil contacts when passing through it, thereby increasing the pressure loss. The increase in pressure loss decompresses and cools the oil. Further, since the spiral passage screw 51 is provided inside the frame oil return pipe middle hole 4b, it is possible to save space compared to providing it outside the frame oil return pipe middle hole 4b.
  • the fixed scroll oil return pipe upper hole 8f is closed by the head 51d of the spiral passage screw 51, and the male thread of the threaded portion 51c is screwed into and fixed to the internal thread of the fixed scroll oil return pipe middle hole 8e. Therefore, the oil collected by the oil collecting portion 20 a does not flow from the upper side of the spiral passage screw 51 . Therefore, a fixed scroll oil return bypass hole 8g bypassing from the oil collecting portion 20a to the small diameter portion 51b of the helical passage screw 51 is provided obliquely on the side of the fixed scroll 8 as a flow path for the oil collected by the oil collecting portion 20a. is provided.
  • the oil collected by the oil collecting portion 20a flows from the fixed scroll oil return bypass hole 8g (hereinafter also referred to as an oblique hole) through the small diameter portion 51b of the spiral passage screw 51 into the spiral groove of the main body portion 51a. supplied. That is, the oil collected by the oil collection portion 20a flows obliquely above the spiral passage screw 51 and is supplied to the spiral groove of the main body portion 51a through the fixed scroll oil return bypass hole 8g.
  • the fixed scroll oil return bypass hole 8g satisfies the following three conditions in order to increase the pressure reduction and cooling effect. Although it is desirable to satisfy all three conditions, if at least one condition is satisfied, the decompression and cooling effects can be enhanced.
  • First condition the direction in which the fixed scroll oil return bypass hole 8g extends is along the direction in which the spiral groove of the body portion 51a extends (that is, not in the opposite direction).
  • Second condition Angle ⁇ of the fixed scroll oil return bypass hole 8g with respect to the horizontal direction>Angle ⁇ of the spiral groove of the main body portion 51a with respect to the horizontal direction.
  • Third condition diameter of fixed scroll oil return bypass hole 8g>width of spiral groove of body portion 51a.
  • the oil return space A is formed on the right side of the spiral passage screw 51, but in Embodiment 1, oil does not flow from the upper side of the spiral passage screw 51, and this oil return space A is filled with oil. This oil return space A may not be formed because the oil does not flow.
  • the oil return pipe 24 is a circular pipe provided so as to extend from the lower portion (outlet side) of the spiral passage screw 51 toward the oil storage portion 16 .
  • the spiral passage screw 51 and the oil return pipe 24 are in communication.
  • the oil return pipe 24 may not be a simple circular hole as shown in FIG.
  • the oil return pipe 24 is not limited to a pipe, and may be a plate-like wall that forms an oil return space together with the inner wall of the container 1 .
  • the spiral passage screw 51 is arranged on the upstream side of the oil return pipe 24 and fixed in the order of the spiral passage screw 51 and the oil return pipe 24 from the upstream side. Further, the spiral passage screw 51 and the oil return pipe 24 communicate with the fixed scroll oil return bypass hole 8g.
  • the fixed scroll oil return bypass hole 8g, the helical passage screw 51, and the oil return pipe 24 form an oil return flow path from the oil collection portion 20a to the oil storage portion 16.
  • the cylindrical portion 23 is at a higher position than the turning mechanism portion 22 and extends close to the inlet of the discharge pipe 3 .
  • the lower end of the cylindrical portion 23 is tightly connected to the upper surface of the frame 4 without a gap.
  • the hole 23a is not formed at the height at which the swirling mechanism 22 blows out the refrigerant, that is, at the height at which the swirling flow starts to occur, but is formed just above it.
  • the distance from the height of the outlet 22b of the turning mechanism 22 to the lower end of the area where the holes 23a are formed, that is, the height of the lowest hole 23a is preferably smaller than the height of the turning mechanism 22.
  • the height of the region in which the plurality of holes 23a are formed is desirably larger than the height of the turning mechanism 22, for example, 2 to 5 times.
  • the opening ratio of the region having the plurality of holes 23a in the side surface of the cylindrical portion 23 is, for example, less than 50%. This is because if the opening ratio is too high, a large amount of refrigerant gas leaks to the outside of the cylindrical portion 23 through the holes 23a, and a stable swirling flow may not be formed inside the cylindrical portion 23.
  • the oil collecting portion 20a is a space surrounded by the outer peripheral surface of the cylindrical portion 23, the inner wall surface of the upper container 1a, and the upper surface of the fixed scroll 8. It is provided outside the portion 60 .
  • the oil discharged from the plurality of holes 23a of the cylindrical portion 23 of the centrifugal separation portion 60 is collected in the oil collecting portion 20a.
  • the lower surface of the oil collecting portion 20a functions as an oil receiving surface that receives and temporarily holds the oil discharged from the centrifugal separation portion 60 to the oil collecting portion 20a and collected downward by gravity.
  • a fixed scroll oil return bypass hole is provided as an oil return flow path for returning the oil discharged from the centrifugal separation unit 60 and collected in the oil collection unit 20a to the oil storage unit 16 of the suction space 19.
  • a helical passage screw 51 and an oil return pipe 24 are provided in the compression space 25 and the suction space 19.
  • the oil collected in the oil collecting portion 20a flows to the oil storage portion 16 on the suction space 19 side together with a part of the refrigerant.
  • the fixed scroll oil return bypass hole 8g is arranged so that the oil collected in the oil collecting portion 20a and flowed by gravity and collected at a low position of the oil collecting portion 20a flows into the fixed scroll oil return bypass hole 8g. It is preferably arranged at a position lower than the portion 20 a , preferably lower than the upper surface of the fixed scroll 8 .
  • the diameters of the fixed scroll oil return bypass hole 8g, the spiral passage screw 51, and the internal flow path of the oil return pipe 24 are sized to allow the oil to smoothly flow to the oil storage portion 16 without accumulating too much in the oil collection portion 20a.
  • the diameters of the internal flow paths of the fixed scroll oil return bypass hole 8g, the spiral passage screw 51, and the oil return pipe 24 pass through the fixed scroll oil return bypass hole 8g, the spiral passage screw 51, and the oil return pipe 24. It is preferable that the size is adjusted so that the amount of refrigerant flowing from the discharge space 20 to the suction space 19 side is not too large and the compression efficiency or the volumetric efficiency is not lowered.
  • the fixed scroll oil return bypass hole 8g, the helical passage screw 51, and the oil return pipe 24 pass through the oil supply pipe 13 on the way from the oil collection portion 20a to the oil storage portion 16 and the power conversion mechanism portion 6. It may merge with the oil flow path after lubrication, and the oil may be discharged to the suction space 19 .
  • the frame 4 or the fixed scroll 8 is provided with oil supplied to the power conversion mechanism 6 through the oil supply pipe 13.
  • a passage (not shown) may be provided for circulating part of the gas to the suction hole 14 or the compression chamber 9 .
  • the compressor 101 configured as described above, when the electric mechanism portion 40 is energized, a torque is applied to the rotor 11 to rotate the rotating shaft 5 and the orbiting scroll 7 is orbiting relative to the fixed scroll 8. exercise. Thereby, the refrigerant is compressed in the compression chamber 9 . In the process, part of the oil droplets contained in the refrigerant in the suction space 19 or part of the oil flowing through the oil supply pipe 13 to the power conversion mechanism 6 is released into the suction hole together with the refrigerant. 14 into the compression chamber 9 .
  • the refrigerant containing oil that has flowed into the compression chamber 9 is compressed, passes through the discharge hole 15 and the check valve 21, and flows into the swirl mechanism section 22 of the centrifugal separation section 60. Further, the oil that has flowed into the compression chamber 9 lubricates the spiral wrap 7a of the orbiting scroll 7 and the spiral wrap 8a of the fixed scroll 8, and flows into the swirl mechanism portion 22 together with the refrigerant. In the swirl mechanism portion 22, the refrigerant and the oil turn into a swirling flow and flow into the cylindrical portion 23, where the refrigerant and the oil are separated by the centrifugal force of the swirling flow.
  • the oil separated from the refrigerant rises while swirling inside the cylindrical portion 23 and is discharged from the discharge pipe 3 to the outside of the compressor 101 .
  • the oil separated from the refrigerant is discharged from a plurality of holes 23a formed in the wall surface of the cylindrical portion 23 to the oil collecting portion 20a outside the cylindrical portion 23, and flows through the fixed scroll oil return bypass hole 8g and the spiral passage screw 51. , and through the oil return pipe 24 from the high pressure space towards the low pressure space to the oil reservoir 16 .
  • the swirling mechanism 22 generates a swirling flow in the lower portion of the cylindrical portion 23 .
  • the generated swirling flow rises while flowing along the inner wall surface of the cylindrical portion 23 , and is eventually discharged out of the container 1 through the discharge pipe 3 near the center of the cylindrical portion 23 .
  • the swirling flow causes a strong centrifugal force to act on the oil, which is denser than the refrigerant gas, that is, the oil droplets and oil mist contained in the refrigerant gas, causing the oil to fly toward the inner wall of the cylindrical portion 23.
  • a portion of the oil is directly discharged out of the cylindrical portion 23 through the direct holes 23a, and the remaining oil adheres to the inner wall surface of the cylindrical portion 23 and forms an oil film.
  • the oil film Since the swirling flow of the refrigerant gas flows just inside this oil film, the oil film is pushed by the flow and flows to the position of the hole 23a. Then, the oil film is again separated from the edge of the hole 23a by the centrifugal force at the position of the edge of the hole 23a, or pushed out of the cylindrical portion 23 along the inner surface of the hole 23a. In this way, the oil separated from the refrigerant is discharged from the plurality of holes 23 a provided in the cylindrical portion 23 to the oil collecting portion 20 a outside the cylindrical portion 23 .
  • the oil discharged to the oil collecting portion 20a drops by gravity or adheres to the outer wall surface of the cylindrical portion 23 or the inner wall surface of the upper container 1a and then flows by gravity and is fixed to the lower surface of the oil collecting portion 20a. They gather on the upper surface of the scroll 8. Due to gravity and the pressure difference between the discharge space 20 and the suction space 19, the oil collected on the upper surface of the fixed scroll 8 flows along with some refrigerant through the fixed scroll oil return bypass hole 8g, the spiral passage screw 51, and the oil return pipe 24. It flows and is discharged into the suction space 19 . A portion of the oil discharged to the suction space 19 becomes oil droplets and flows through the suction hole 14 and into the compression chamber 9 again, but most of it flows downward to the oil storage portion 16 due to gravity.
  • the oil adhered to the inner wall surface of the cylindrical portion 23 due to the centrifugal force of the swirling flow in the centrifugal separation portion 60 is removed from the plurality of holes 23a formed in the wall surface of the cylindrical portion 23.
  • the oil is quickly discharged to the oil collecting portion 20a outside the portion 23.
  • the amount of oil discharged from the discharge pipe 3 to the outside of the compressor 101 can be greatly reduced.
  • the amount of oil discharged to the outside of the compressor 101 can be sufficiently reduced. It becomes possible.
  • the lower end of the cylindrical portion 23 is connected to the lower surface of the oil collecting portion 20a without a gap, and a hole 23a is formed in a lower region of the side surface of the cylindrical portion 23 adjacent to the lower end of the cylindrical portion 23. preferably not. In other words, it is preferable that the hole 23a is not formed up to a certain height from the lower end of the cylindrical portion 23. As shown in FIG. For example, it is preferable that the hole 23a is not formed below the height of the outlet 22b of the swivel mechanism 22 . As a result, the lower region of the side wall of the cylindrical portion 23 serves as a partition, thereby suppressing the oil collected on the lower surface of the oil collecting portion 20 a from entering the cylindrical portion 23 .
  • the swirling flow inside the cylindrical portion 23 does not blow out to the outside of the cylindrical portion 23, so that the oil collected on the lower surface of the oil collecting portion 20a is prevented from being swirled up.
  • the amount of oil discharged out of the compressor 101 can be further reduced.
  • the oil adhering to the inner wall surface of the lower cylindrical portion 23 where the hole 23a is not formed or the bottom surface of the cylindrical portion 23 is removed from the cylindrical portion 23 by the refrigerant gas flow that rises while swirling. It is pushed up to the hole 23a along the inner wall surface and pushed out of the cylindrical portion 23 from the hole 23a. Therefore, a large amount of oil does not accumulate inside the cylindrical portion 23 .
  • the hole 23a provided on the side surface of the cylindrical portion 23 is not formed at the same height as the outlet 22b of the turning mechanism portion 22.
  • the refrigerant gas ejected from the outlet 22b of the swirl mechanism portion 22 can reliably flow along the inner wall surface of the cylindrical portion 23 to form a strong and stable swirl flow.
  • the “same” height does not have to be exactly the same, but means that the height is substantially the same to the extent that the refrigerant gas ejected from the outlet 22b of the turning mechanism 22 hits directly. ing.
  • the strength of the swirling flow is strongest immediately after exiting from the outlet 22b of the swirling mechanism 22, and tends to weaken as it rises from the outlet 22b of the swirling mechanism 22 toward the discharge pipe 3. For this reason, if there is a region in which the holes 23a are formed at a height just above the outlet 22b of the turning mechanism 22, the oil can be discharged out of the cylindrical portion 23 more efficiently.
  • the distance from the height of the outlet 22b of the turning mechanism 22 to the lower end of the area where the holes 23a are formed should be smaller than the height of the turning mechanism 22. .
  • the ratio of the total opening area of the holes 23a in that region is preferably less than 50%, for example. If the ratio of the opening area of the hole 23a is too large, the amount of refrigerant leaking through the hole 23a to the outside of the cylindrical portion 23 increases, and the amount of refrigerant inside the cylindrical portion 23 decreases, weakening the swirling flow and causing the oil to leak. Separation efficiency may decrease. By reducing the ratio of the opening area, the amount of refrigerant that leaks out of the cylindrical portion 23 through the holes 23a can be reduced, and a strong swirling flow can be formed inside the cylindrical portion 23. FIG.
  • Embodiment 1 even when the compressor 101 is started from a state in which a large amount of liquefied refrigerant has accumulated, the amount of oil discharged from the compressor 101 can be reduced.
  • the compressor 101 is stopped, the refrigerant gas inside the compressor 101 may be liquefied, and a large amount of the liquefied refrigerant may accumulate in the suction space 19 inside the compressor 101 .
  • a large amount of oil flows into the compression chamber 9 through the suction hole 14 due to bubbling of the oil reservoir 16 due to rapid vaporization of the refrigerant or agitation by the rotor 11, and is discharged. It flows through the holes 15 into the discharge space 20 .
  • the return of the oil to the oil storage portion 16 through the oil return passage cannot catch up, the oil will temporarily accumulate in the discharge space 20 .
  • Embodiment 1 a large amount of oil that has flowed into the discharge space 20 is discharged through the plurality of holes 23a to the wide oil collecting portion 20a outside the cylindrical portion 23 and accumulated therein. Therefore, a large amount of oil is not continuously exposed to the violent swirling flow of the refrigerant inside the cylindrical portion 23 and the oil surface is not swirled up.
  • the lower portion of the cylindrical portion 23 is connected to the upper surface of the fixed scroll 8 corresponding to the lower surface of the oil collecting portion 20a without any gap, and the side wall of the cylindrical portion 23 has no hole 23a in the lower region. For this reason, this portion acts as a partition to prevent the oil held in the oil collecting portion 20a outside the cylindrical portion 23 from entering the inside of the cylindrical portion 23.
  • the oil accumulated in the oil collecting portion 20a gradually returns to the fixed scroll oil. It flows through the bypass hole 8g, the helical passage screw 51, and the oil return pipe 24 and returns to the oil reservoir 16. As described above, even when a large amount of oil flows into the discharge space 20 at startup, the amount of oil discharged to the outside of the compressor 101 can be reduced.
  • the refrigerant compressed in the compression chamber 9 flows through the discharge hole 15 and immediately flows into the swirling mechanism portion 22 to form a swirling flow, and then rises while swirling inside the cylindrical portion 23 . It is discharged to the outside of the compressor 101 through the discharge pipe 3 . For this reason, bending, sudden expansion, and sudden contraction of the flow path can be minimized. Therefore, the pressure loss becomes small, and the deterioration of the compression efficiency is suppressed.
  • Embodiment 1 can reduce noise generated during operation of the compressor 101 .
  • a discharge space 20 of the compressor 101 is separated into an outer space and an inner space by a cylindrical portion 23, and both spaces communicate with each other through a plurality of holes 23a.
  • This structure is a resonance type muffling structure, and can greatly reduce noise in a specific frequency band in particular.
  • the thickness or cross-sectional area of the cylindrical portion 23 and the number or cross-sectional area of the plurality of holes 23a provided in the cylindrical portion 23 are adjusted to reduce noise in the frequency band desired to be reduced. may be adjusted.
  • the amount of oil discharged outside the compressor 101 can be reduced by separating the oil by the centrifugal separation section 60, and cost and space can be reduced.
  • the refrigerant and oil flowing into the centrifugal separation section 60 of the discharge space 20 are separated by centrifugation, but the configuration is not limited to this as long as the oil can be separated from the refrigerant.
  • the compressor 101 includes the container 1 having the oil storage portion 16, the suction pipe 2 for sucking the refrigerant from the outside of the container 1, and the suction pipe 2 is arranged inside the container 1 to suck the refrigerant.
  • an oil collection part 20a provided outside the oil separation part and collecting the oil discharged from the oil separation part, and the oil collected in the oil collection part 20a to the oil storage unit 16, and the oil return flow path is configured, and is provided to extend from the outlet side of the pressure reduction unit toward the oil storage unit 16, and after passing through the pressure reduction unit and an oil return section for returning the oil to the oil storage section 16 .
  • the pressure reducing section configuring the oil return flow path for returning the oil collected in the oil collecting section 20 a to the oil storage section 16 is provided.
  • the pressure reducing portion in the oil return passage for returning the oil collected in the oil collecting portion 20a to the oil storage portion 16 the pressure loss of the oil increases when passing through the pressure reducing portion. Since the oil collected in the oil collecting portion 20a can be decompressed and cooled due to the increase in pressure loss, the high-pressure and high-temperature oil collected in the oil collecting portion 20a can be returned to the oil storage portion 16 as it is. Therefore, it is possible to suppress a decrease in reliability.
  • the compressor 101 according to Embodiment 1 has an oblique hole that forms an oil return flow path and supplies the oil collected in the oil collecting portion 20a from obliquely above to the pressure reducing portion.
  • the oblique holes supply the oil collected in the oil collecting section 20a obliquely from above to the decompression section. can do.
  • the direction in which the oblique holes extend is along the direction in which the spiral grooves of the main body portion 51a extend. Further, the angle of the oblique hole with respect to the horizontal direction is larger than the angle of the spiral groove of the main body portion 51a with respect to the horizontal direction. Moreover, the diameter of the oblique hole is larger than the width of the spiral groove of the body portion 51a.
  • the compressor 101 according to Embodiment 1 by satisfying at least one of the above three conditions, the decompression and cooling effects can be enhanced.
  • the side surface of the frame 4 is formed with a frame oil return pipe hole 82 through which the oil collected in the oil collection portion 20a flows, and the decompression portion serves as a frame oil return pipe hole 82. It is provided inside the tube hole 82 .
  • the space can be saved more than if it is provided outside the frame oil return pipe hole 82. can be done.
  • the compressor 101 according to Embodiment 1 uses an HFC-based refrigerant, an HC-based refrigerant, or a natural refrigerant as a refrigerant.
  • an HFC-based refrigerant, an HC-based refrigerant, or a natural refrigerant is used as a refrigerant, and these refrigerants have a low global warming potential (GWP).
  • GWP global warming potential
  • FIG. 5 is a schematic cross-sectional view of the internally grooved copper tube 52 .
  • the spiral passage screw 51 is provided as a structure for decompressing and cooling the oil separated by the centrifugal separation section 60, but the structure is not limited to this.
  • the helical passage screw 51 for example, a capillary tube or an internally grooved copper tube 52 shown in FIG.
  • the pipe length in order to decompress and cool the oil to the same extent as the spiral passage screw 51, the pipe length must be longer than when the spiral passage screw 51 is provided, so the spiral passage screw 51 is preferable. The same effect can be obtained in a space-saving manner.
  • Embodiment 2 The second embodiment will be described below, focusing on the differences between the second embodiment and the first embodiment.
  • FIG. 6 is a schematic cross-sectional view showing the configuration of a compressor 101a according to Embodiment 2.
  • FIG. The dotted arrows in FIG. 6 indicate the main flow of oil.
  • the compressor 101a according to the second embodiment is a horizontal type that is installed sideways so that the rotating shaft 5 is inclined with respect to the direction of gravity or the rotating shaft 5 is horizontal. Compressor.
  • the oil storage section 16 is disposed downward toward the side container 1b due to gravity. Therefore, the oil supply pipe 17 has a structure extending toward the oil storage portion 16 on the lower side in the gravity direction so that the suction port 17a is immersed in the oil in the oil storage portion 16 .
  • the oil discharged from the plurality of holes 23a of the cylindrical portion 23 into the discharge space 20 outside the cylindrical portion 23 is gathered in the lower oil collecting portion 20a by gravity.
  • the end portion of the spiral passage screw 51 on the side of the discharge space 20 is formed on the outer peripheral portion of the frame 4 on the side of the side container 1b, which is the lower side in the direction of gravity.
  • a fixed scroll oil return bypass hole 8g that bypasses the helical passage screw 51 from the oil collecting portion 20a is provided in the side portion of the fixed scroll 8 on the lower side in the direction of gravity. That is, the upper opening of the fixed scroll oil return bypass hole 8g and the suction port 17a of the oil supply pipe 17, which serve as the inlet of the oil return flow path, are provided on the lower side in the direction of gravity when installed horizontally.
  • the refrigerant and oil that have flowed out to the centrifugal separation section 60 of the discharge space 20 through the discharge hole 15 and the check valve 21 in this order form a swirling flow in the swirling mechanism section 22.
  • the centrifugal force of the swirling flow in the cylindrical portion 23 separates the refrigerant and the oil.
  • the refrigerant is discharged outside the compressor 101 through the discharge pipe 3 , and the oil is discharged from the plurality of holes 23 a of the cylindrical portion 23 to the discharge space 20 outside the cylindrical portion 23 .
  • the oil discharged into the discharge space 20 outside the cylindrical portion 23 flows downward through the discharge space 20 as it is due to gravity drop, or flows downward on the surface of the fixed scroll 8 or the bottomed cylindrical upper container 1a of the container 1. It adheres and flows below the discharge space 20 along its surface. Oil collected in the oil collecting portion 20a below the discharge space 20 flows through the fixed scroll oil return bypass hole 8g, the spiral passage screw 51, and the oil return pipe 24 due to the pressure difference between the discharge space 20 and the suction space 19. and discharged into the suction space 19 . A portion of the oil discharged to the suction space 19 becomes oil droplets and flows through the suction hole 14 and into the compression chamber 9 again, but most of it flows downward to the oil storage portion 16 due to gravity.
  • the oil is not collected inside the cylindrical portion 23, but is collected in the discharge space 20 outside the cylindrical portion 23 and is discharged to the suction space 19. Therefore, even in the horizontal type compressor 101a in which the rotating shaft 5 is inclined with respect to the direction of gravity, the oil adhering to the inner wall surface of the cylindrical portion 23 is prevented from being swirled up by the swirling flow and being scattered. The amount of oil discharged from the machine 101a can be greatly reduced.
  • the compressor 101a when the compressor 101a is installed horizontally, the upper opening of the fixed scroll oil return bypass hole 8g serving as the inlet of the oil return passage is provided on the lower side in the direction of gravity.
  • the oil accumulated in the oil collecting portion 20a is discharged from the inlet of the oil return passage to the suction space 19 through the spiral passage screw 51 and the oil return pipe 24.
  • the suction port 17a of the oil supply pipe 17 is provided on the lower side in the direction of gravity.
  • the oil is pumped up from 17a by an oil pump 18 and supplied to each sliding portion in the compressor 101a through an oil supply pipe line 13 formed inside the rotating shaft 5. As shown in FIG.
  • the compressor 101a includes the electric mechanism portion 40 that drives the compression mechanism portion 30, and the rotation shaft 5 that receives the rotational driving force of the electric mechanism portion 40 and transmits it to the compression mechanism portion 30.
  • It is a horizontal type in which the rotating shaft 5 is inclined with respect to the direction of gravity or is installed horizontally so that the rotating shaft 5 is horizontal.
  • An oil pump 18 is provided for pumping up the accumulated oil, and an oil supply pipe 17 extending toward the oil reservoir 16 is connected to the oil pump 18. When the oil pump 18 is installed sideways, the oil return flow path is closed.
  • the suction port 17a formed at the inlet and the tip of the oil supply pipe 17 is provided on the lower side in the direction of gravity.
  • the suction port 17a formed at the inlet of the oil return passage and the tip of the oil supply pipe 17 is provided at the lower side in the direction of gravity. It is Therefore, the oil accumulated in the oil collecting portion 20a below the discharge space 20 is discharged from the inlet of the oil return passage through the spiral passage screw 51 and the oil return pipe 24 to the oil storage portion 16. Further, the oil in the oil storage portion 16 is pumped up by the oil pump 18 from the suction port 17a, and supplied to each sliding portion in the compressor 101a.
  • Embodiment 3 The third embodiment will be described below, focusing on the differences of the third embodiment from the first and second embodiments.
  • FIG. 7 is a diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 3.
  • FIG. 7 shows an air conditioner as the refrigeration cycle device.
  • the solid line arrows in FIG. 7 indicate the flow of the refrigerant during the cooling operation, and the broken line arrows indicate the flow during the heating operation.
  • an outdoor unit 100 and an indoor unit 200 are connected by gas refrigerant piping 300 and liquid refrigerant piping 400 to form a refrigerant circuit for circulating the refrigerant.
  • the outdoor unit 100 has the compressor 101 described in the first embodiment.
  • the air conditioner may have the compressor 101a described in the second embodiment instead of the compressor 101 described in the first embodiment.
  • the outdoor unit 100 has a channel switching device 102 , an outdoor heat exchanger 103 and an expansion device 104 .
  • the indoor unit 200 has an indoor heat exchanger 201 .
  • the compressor 101 compresses and discharges the sucked refrigerant.
  • the compressor 101 may be configured so that the operating frequency can be arbitrarily changed by, for example, an inverter circuit or the like.
  • the channel switching device 102 is, for example, a four-way valve, and switches between the cooling operation and the heating operation by switching the flow direction of the refrigerant.
  • a combination of a two-way valve and a three-way valve may be used instead of the four-way valve.
  • the outdoor heat exchanger 103 exchanges heat between refrigerant and air (outdoor air). For example, during heating operation, it functions as an evaporator to evaporate and vaporize the refrigerant. Also, during cooling operation, it functions as a condenser to condense and liquefy the refrigerant.
  • the expansion device 104 reduces the pressure of the refrigerant to expand it. For example, when an electronic expansion valve or the like is used, the degree of opening is adjusted based on an instruction from a control device (not shown) or the like.
  • the indoor heat exchanger 201 performs heat exchange, for example, between the air to be air-conditioned and the refrigerant. During heating operation, it functions as a condenser to condense and liquefy the refrigerant. Also, during cooling operation, it functions as an evaporator to evaporate and vaporize the refrigerant.
  • the compressor 101 described in Embodiment 1 or the compressor 101a described in Embodiment 2 is provided as equipment. Therefore, the same effects as those of the compressor 101 described in the first embodiment or the compressor 101a described in the second embodiment can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This compressor is provided with: a container having an oil storage unit; a suction pipe that sucks a refrigerant from the outside of the container; a compression mechanism unit that is arranged inside the container and compresses the refrigerant having been sucked by the suction pipe; a frame that fixes the compression mechanism unit to the container; an oil separation unit that separates oil from the refrigerant having been compressed by the compression mechanism unit; an ejection pipe that ejects the refrigerant having passed through the oil separation unit to the outside from above the container; an oil collection unit that is provided outside the oil separation unit and collects the oil having been discharged from the oil separation unit; a depressurization unit that constitutes an oil return flow path to return the oil having been collected by the oil collection unit to the oil storage unit; and an oil return unit that constitutes the oil return flow path, is provided so as to extend from an exit side of the depressurization unit toward the oil storage unit, and returns the oil having passed through the depressurization unit to the oil storage unit. The depressurization unit increases a pressure loss of the oil having been collected by the oil collection unit.

Description

圧縮機およびそれを備えた冷凍サイクル装置Compressor and refrigeration cycle device provided with the same
 本開示は、圧縮機およびそれを備えた冷凍サイクル装置に関するものである。 The present disclosure relates to a compressor and a refrigeration cycle device including the same.
 従来の圧縮機では、圧縮機の摺動部を潤滑する油が、圧縮された冷媒とともに吐出配管から圧縮機外部へ吐出されることがある。このように油が圧縮機から吐出され続けると貯油部に溜められた油が減少し続け、摺動部に供給される油が枯渇して潤滑不足になることがある。そこで、圧縮室で圧縮された冷媒と油とを分離し、分離した油を貯油部に戻すことで貯油部の油の減少を抑制した圧縮機が提案されている(例えば、特許文献1参照)。  In conventional compressors, the oil that lubricates the sliding parts of the compressor may be discharged from the discharge pipe to the outside of the compressor together with the compressed refrigerant. If oil continues to be discharged from the compressor in this way, the amount of oil stored in the oil reservoir continues to decrease, and the oil supplied to the sliding parts may be depleted, resulting in insufficient lubrication. Therefore, a compressor has been proposed in which the refrigerant compressed in the compression chamber and the oil are separated, and the separated oil is returned to the oil reservoir to suppress the reduction of the oil in the oil reservoir (see, for example, Patent Document 1). .
 特許文献1は、圧縮機構部で圧縮された冷媒を遠心分離部で旋回させ旋回流の遠心力により冷媒から油を分離し、分離した油をフレームの間隙で構成された戻し流路から貯油部に戻している。 In Patent Document 1, refrigerant compressed in a compression mechanism section is swirled in a centrifugal separation section, oil is separated from the refrigerant by the centrifugal force of the swirling flow, and the separated oil is sent from a return flow path formed by a gap of a frame to an oil storage section. is reverting to
特許第6573743号公報Japanese Patent No. 6573743
 しかしながら、特許文献1では、遠心分離部は高圧空間であり、貯油部は低圧空間であるため、遠心分離部から高圧・高温の油がそのまま貯油部に戻され、高油温による摺動部の信頼性が低下してしまうという課題があった。 However, in Patent Document 1, since the centrifugal separation section is a high-pressure space and the oil storage section is a low-pressure space, the high-pressure, high-temperature oil from the centrifugal separation section is returned to the oil storage section as it is. There is a problem that the reliability is lowered.
 本開示は、以上のような課題を解決するためになされたもので、信頼性の低下を抑制することができる圧縮機およびそれを備えた冷凍サイクル装置を提供することを目的としている。 The present disclosure has been made to solve the above problems, and aims to provide a compressor and a refrigeration cycle device including the same that can suppress deterioration in reliability.
 本開示に係る圧縮機は、貯油部を有する容器と、前記容器の外部から冷媒を吸入する吸入配管と、前記容器の内部に配置され、前記吸入配管が吸入した冷媒を圧縮する圧縮機構部と、前記圧縮機構部を前記容器に固定するフレームと、前記圧縮機構部で圧縮された冷媒から油を分離する油分離部と、前記油分離部を通過した冷媒を前記容器の上部から外部に吐出する吐出配管と、前記油分離部の外側に設けられ、前記油分離部から排出された油を回収する集油部と、前記集油部に回収された油を前記貯油部へ戻す返油流路を構成する減圧部と、前記返油流路を構成し、前記減圧部の出口側から前記貯油部に向かって延びるように設けられ、前記減圧部を通過した後の油を前記貯油部へ戻す油戻し部と、を備え、前記減圧部は、前記集油部に回収された油の圧力損失を増加させるものである。 A compressor according to the present disclosure includes a container having an oil reservoir, a suction pipe that sucks refrigerant from the outside of the container, and a compression mechanism that is arranged inside the container and compresses the refrigerant sucked by the suction pipe. a frame for fixing the compression mechanism to the container; an oil separation unit for separating oil from the refrigerant compressed by the compression mechanism; an oil collection section provided outside the oil separation section for collecting the oil discharged from the oil separation section; and a return oil flow for returning the oil collected in the oil collection section to the oil storage section. and a decompression section constituting a path, and the oil return flow path, which is provided so as to extend from the outlet side of the decompression section toward the oil storage section, and the oil after passing through the decompression section is returned to the oil storage section. and an oil return section for returning, wherein the decompression section increases the pressure loss of the oil collected in the oil collecting section.
 本開示に係る冷凍サイクル装置は、上記の圧縮機、凝縮器、絞り装置、および、蒸発器が配管で接続され、冷媒が循環する冷媒回路を有するものである。 A refrigeration cycle device according to the present disclosure has a refrigerant circuit in which the compressor, condenser, expansion device, and evaporator are connected by pipes and in which refrigerant circulates.
 本開示に係る圧縮機およびそれを備えた冷凍サイクル装置によれば、集油部に回収された油を貯油部へ戻す返油流路を構成する減圧部を備えている。このように、集油部に回収された油を貯油部へ戻す返油流路に減圧部を設けることにより、減圧部を通過する際に油の圧力損失が増加する。そして、その圧力損失の増加によって集油部に回収された油を減圧および冷却することができるので、集油部に回収された高圧・高温の油がそのまま貯油部に戻されることがなくなるため、信頼性の低下を抑制することができる。 According to the compressor according to the present disclosure and the refrigeration cycle device including the same, the pressure reducing section that configures the oil return flow path for returning the oil collected in the oil collection section to the oil storage section is provided. Thus, by providing the pressure reduction section in the oil return passage for returning the oil collected in the oil collection section to the oil storage section, the pressure loss of the oil increases when passing through the pressure reduction section. Since the pressure loss increases and the oil collected in the oil collection section can be decompressed and cooled, the high-pressure, high-temperature oil collected in the oil collection section is not returned to the oil storage section as it is. A decrease in reliability can be suppressed.
実施の形態1に係る圧縮機の構成を示す概略断面図である。1 is a schematic cross-sectional view showing the configuration of a compressor according to Embodiment 1; FIG. 実施の形態1に係る圧縮機の遠心分離部にある旋回機構部の斜視図である。4 is a perspective view of a turning mechanism part in the centrifugal separation part of the compressor according to Embodiment 1. FIG. 実施の形態1に係る圧縮機の遠心分離部にある円筒部の斜視図である。4 is a perspective view of a cylindrical portion in the centrifugal separation section of the compressor according to Embodiment 1. FIG. 実施の形態1に係る圧縮機の螺旋通路ねじと油戻し管およびその周辺の断面図である。3 is a cross-sectional view of the helical passage screw, the oil return pipe, and the periphery thereof of the compressor according to Embodiment 1. FIG. 内面溝付銅管の断面模式図である。It is a cross-sectional schematic diagram of an internally grooved copper tube. 実施の形態2に係る圧縮機の構成を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing the configuration of a compressor according to Embodiment 2; 実施の形態3に係る冷凍サイクル装置の構成例を示す図である。FIG. 10 is a diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 3;
 以下、実施の形態に係る圧縮機および冷凍サイクル装置について図面等を参照しながら説明する。ここで、図1を含め、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。なお、図1を含む以下の図面では、各構成部材の寸法の関係および形状等が実際のものとは異なる場合がある。 A compressor and a refrigeration cycle device according to an embodiment will be described below with reference to the drawings. Here, in the following drawings including FIG. 1, the same reference numerals denote the same or equivalent parts, and are common throughout the embodiments described below. The forms of the constituent elements shown in the entire specification are merely examples, and are not limited to the forms described in the specification. In addition, in the following drawings including FIG. 1, the dimensional relationship, shape, etc. of each constituent member may differ from the actual one.
 実施の形態1.
 図1は、実施の形態1に係る圧縮機101の構成を示す概略断面図である。なお、図1の二重線の矢印は重力方向を示し、点線の矢印は油の主な流れを示している。
Embodiment 1.
FIG. 1 is a schematic cross-sectional view showing the configuration of a compressor 101 according to Embodiment 1. FIG. The double-lined arrow in FIG. 1 indicates the direction of gravity, and the dotted-lined arrow indicates the main flow of oil.
 実施の形態1に係る圧縮機101は、例えば、空気調和装置、冷凍装置、冷蔵庫、冷凍庫、自動販売機、または給湯装置等の用途に用いられる冷凍サイクル装置の構成要素の1つとなるものである。また、実施の形態1に係る圧縮機101は、スクロール圧縮機である。 Compressor 101 according to Embodiment 1 is one of the components of a refrigeration cycle device used for applications such as air conditioners, refrigeration devices, refrigerators, freezers, vending machines, and water heaters. . Further, the compressor 101 according to Embodiment 1 is a scroll compressor.
 以下、実施の形態1に係る圧縮機101の構造について説明する。
 図1に示すように、実施の形態1に係る圧縮機101は、冷媒を圧縮する圧縮機構部30と、圧縮機構部30を駆動する電動機構部40と、電動機構部40の回転駆動力を受け取って圧縮機構部30に伝達する回転軸5と、圧縮機構部30および電動機構部40を収容する容器1と、を備えている。容器1内にはさらに、圧縮機構部30を容器1に固定するフレーム4が圧縮機構部30と電動機構部40との間に設けられている。なお、圧縮機101が圧縮する冷媒としては、HFC系冷媒、HC系冷媒または自然系冷媒が用いられる。これらの冷媒は地球温暖化係数(GWP)が低いため、地球温暖化への影響を少なくすることができる。
The structure of the compressor 101 according to Embodiment 1 will be described below.
As shown in FIG. 1, the compressor 101 according to Embodiment 1 includes a compression mechanism portion 30 that compresses refrigerant, an electric mechanism portion 40 that drives the compression mechanism portion 30, and a rotational driving force of the electric mechanism portion 40. A rotating shaft 5 that receives and transmits the power to the compression mechanism section 30 , and a container 1 that houses the compression mechanism section 30 and the electric mechanism section 40 are provided. A frame 4 for fixing the compression mechanism 30 to the container 1 is further provided in the container 1 between the compression mechanism 30 and the electric mechanism 40 . As the refrigerant compressed by the compressor 101, an HFC-based refrigerant, an HC-based refrigerant, or a natural refrigerant is used. Since these refrigerants have a low global warming potential (GWP), they can reduce the impact on global warming.
 圧縮機構部30は、動力変換機構部6と、動力変換機構部6に取り付けられて揺動運動する揺動スクロール7と、固定スクロール8とを有している。動力変換機構部6は、電動機構部40により回転駆動される回転軸5に取り付けられて回転駆動力を圧縮駆動力に変換する機構である。揺動スクロール7の一方の面には渦巻ラップ7aが形成されており、固定スクロール8の一方の面には渦巻ラップ8aが形成されている。揺動スクロール7および固定スクロール8は、渦巻ラップ7a、8a同士が噛み合うように組み合わされている。これにより、揺動スクロール7と固定スクロール8との間には、渦巻ラップ7aまたは渦巻ラップ8aによって互いに隔てられた複数の圧縮室9が形成される。 The compression mechanism section 30 has a power conversion mechanism section 6 , an orbiting scroll 7 that is attached to the power conversion mechanism section 6 and performs an oscillating motion, and a fixed scroll 8 . The power conversion mechanism section 6 is a mechanism that is attached to the rotary shaft 5 that is rotationally driven by the electric mechanism section 40 and converts rotational driving force into compression driving force. A spiral wrap 7 a is formed on one surface of the orbiting scroll 7 , and a spiral wrap 8 a is formed on one surface of the fixed scroll 8 . The orbiting scroll 7 and the fixed scroll 8 are combined so that the spiral wraps 7a, 8a are meshed with each other. Thereby, a plurality of compression chambers 9 separated from each other by the spiral wrap 7a or the spiral wrap 8a are formed between the orbiting scroll 7 and the fixed scroll 8 .
 回転軸5は、一端がフレーム4および動力変換機構部6によって回転自在に支持され、他端がサブフレーム10によって回転自在に支持されている。サブフレーム10は、容器1に固定されている。なお、図1では、回転軸5とフレーム4と動力変換機構部6との詳細な接続構造および位置の図示を省略している。また、図1では、回転軸5とサブフレーム10との詳細な接続構造および位置の図示を省略している。 The rotating shaft 5 has one end rotatably supported by the frame 4 and the power conversion mechanism 6 and the other end rotatably supported by the sub-frame 10 . A subframe 10 is fixed to the container 1 . In FIG. 1, illustration of detailed connection structures and positions of the rotation shaft 5, the frame 4, and the power conversion mechanism 6 is omitted. Further, in FIG. 1, illustration of the detailed connection structure and position between the rotating shaft 5 and the subframe 10 is omitted.
 回転軸5の一端と他端との間の部分には、電動機構部40の回転子11が取り付けられている。そして、回転子11の外周を覆うように電動機構部40の固定子12が配置され、固定子12は容器1に固定されている。 A rotor 11 of the electric mechanism section 40 is attached to a portion between one end and the other end of the rotating shaft 5 . The stator 12 of the electric mechanism section 40 is arranged so as to cover the outer circumference of the rotor 11 , and the stator 12 is fixed to the container 1 .
 容器1は、有底筒状の上部容器1aと、円筒状の側部容器1bと、有底筒状の下部容器1cとの3つの部分が結合されて構成されている。側部容器1bには、圧縮機101外部から低圧冷媒を吸入する吸入配管2が取り付けられ、上部容器1aには、圧縮した高圧冷媒を圧縮機101外部に吐出する吐出配管3が取り付けられている。容器1の内部空間は、圧縮機構部30およびフレーム4によって、吸入配管2側の吸入空間19と吐出配管3側の吐出空間20とに分けられ、電動機構部40は吸入空間19に配置されている。つまり、吸入空間19は、吸入配管2から吸入された低圧冷媒で満たされて低圧空間となっている。また、吐出空間20は、圧縮機構部30で圧縮された高圧冷媒で満たされて高圧空間となっている。なお、容器1の内部空間において、吸入空間19と吐出空間20との間を圧縮空間25と称する。 The container 1 is constructed by connecting three parts: a bottomed cylindrical upper container 1a, a cylindrical side container 1b, and a bottomed cylindrical lower container 1c. A suction pipe 2 for sucking low-pressure refrigerant from outside the compressor 101 is attached to the side container 1b, and a discharge pipe 3 for discharging compressed high-pressure refrigerant to the outside of the compressor 101 is attached to the upper container 1a. . The internal space of the container 1 is divided into a suction space 19 on the side of the suction pipe 2 and a discharge space 20 on the side of the discharge pipe 3 by the compression mechanism portion 30 and the frame 4, and the electric mechanism portion 40 is arranged in the suction space 19. there is That is, the suction space 19 is filled with the low-pressure refrigerant sucked from the suction pipe 2 and becomes a low-pressure space. Also, the discharge space 20 is filled with the high-pressure refrigerant compressed by the compression mechanism portion 30 to form a high-pressure space. In addition, in the internal space of the container 1 , the space between the suction space 19 and the discharge space 20 is called a compression space 25 .
 容器1の底部には、油を溜める貯油部16が設けられている。回転軸5のサブフレーム10側の端部には、貯油部16に溜まった油をくみ上げる油ポンプ18が設けられている。油ポンプ18には、貯油部16に向かって延びる油供給パイプ17が接続され、油供給パイプ17の先端に形成された吸引口17aが貯油部16の油に浸かるようになっている。そして、油ポンプ18は、油供給パイプ17を介して貯油部16に溜まった油をくみ上げ、回転軸5の内部に形成された油供給管路13を通じて圧縮機101内の各摺動部、例えば動力変換機構部6等に油を供給する。 The bottom of the container 1 is provided with an oil reservoir 16 for storing oil. An oil pump 18 for pumping up the oil accumulated in the oil reservoir 16 is provided at the end of the rotary shaft 5 on the subframe 10 side. An oil supply pipe 17 extending toward the oil reservoir 16 is connected to the oil pump 18 , and a suction port 17 a formed at the tip of the oil supply pipe 17 is immersed in the oil in the oil reservoir 16 . Then, the oil pump 18 pumps up the oil accumulated in the oil reservoir 16 through the oil supply pipe 17, and through the oil supply pipe 13 formed inside the rotating shaft 5, each sliding part in the compressor 101, for example, Oil is supplied to the power conversion mechanism 6 and the like.
 なお、貯油部16の油面高さ位置は、圧縮機101の使用環境あるいは運転条件によって変わる。そこで、圧縮機101内の各摺動部への油の供給が途絶えないようにするため、あらゆる条件において吸引口17aが油に浸かるように吸引口17aの高さ位置が調整されている。また、実施の形態1では油ポンプ18が回転軸5のサブフレーム10側の端部に設けられているが、それに限定されず、回転軸5のフレーム4側の端部に設けられていてもよい。また、油ポンプ18としては、種々の構造のものを用いることができる。 It should be noted that the oil level height position of the oil reservoir 16 changes depending on the operating environment or operating conditions of the compressor 101 . Therefore, in order to ensure that the supply of oil to each sliding portion in the compressor 101 is not interrupted, the height position of the suction port 17a is adjusted so that the suction port 17a is immersed in oil under all conditions. In Embodiment 1, the oil pump 18 is provided at the end of the rotating shaft 5 on the sub-frame 10 side, but is not limited thereto, and may be provided at the end of the rotating shaft 5 on the frame 4 side. good. Moreover, as the oil pump 18, pumps having various structures can be used.
 フレーム4には、吸入空間19から圧縮室9へ冷媒が流れる流路となる吸入孔14が設けられている。フレーム4および固定スクロール8には、圧縮室9から吐出空間20へ冷媒が流れる流路となる吐出孔15が設けられている。吐出孔15の出口端部には、吐出空間20から圧縮室9への冷媒の逆流を抑える逆止弁21が設けられている。吐出空間20には、冷媒を圧縮機101外部へ排出する吐出配管3が設けられている。また、吐出孔15と吐出配管3との間には遠心分離部60(以下、油分離部とも称する)が設けられており、圧縮室9で圧縮され吐出孔15から吐出された冷媒の大部分は遠心分離部60を通過して吐出配管3から圧縮機101外部へ排出されるようになっている。また、遠心分離部60の外側には集油部20aが設けられており、遠心分離部60において分離された油は集油部20aに回収されるようになっている。なお、フレーム4は焼嵌め等により側部容器1bの内面に固定されている。また、図1では、フレーム4に水平方向に延びた横穴(図示せず)が形成されているが、フレーム4に横穴が形成されていなくてもよい。 The frame 4 is provided with a suction hole 14 that serves as a flow path for the refrigerant to flow from the suction space 19 to the compression chamber 9 . The frame 4 and the fixed scroll 8 are provided with a discharge hole 15 serving as a flow path through which the refrigerant flows from the compression chamber 9 to the discharge space 20 . A check valve 21 is provided at the outlet end of the discharge hole 15 to prevent the refrigerant from flowing back from the discharge space 20 to the compression chamber 9 . A discharge pipe 3 for discharging the refrigerant to the outside of the compressor 101 is provided in the discharge space 20 . A centrifugal separator 60 (hereinafter also referred to as an oil separator) is provided between the discharge hole 15 and the discharge pipe 3, and most of the refrigerant compressed in the compression chamber 9 and discharged from the discharge hole 15 is passes through the centrifugal separation section 60 and is discharged from the discharge pipe 3 to the outside of the compressor 101 . An oil collecting portion 20a is provided outside the centrifugal separation portion 60, and the oil separated in the centrifugal separation portion 60 is collected in the oil collecting portion 20a. The frame 4 is fixed to the inner surface of the side container 1b by shrink fitting or the like. Further, in FIG. 1, the frame 4 is provided with a lateral hole (not shown) extending in the horizontal direction, but the frame 4 may not be provided with the lateral hole.
 遠心分離部60には、側壁に複数の孔23a(後述する図3参照)を有する円筒部23と、吐出孔15から吐出された冷媒流の向きを変更して円筒部23の周方向に向かって流し、円筒部23内に旋回流を発生させる旋回機構部22とが設けられている。また、吐出配管3が円筒部23の中心軸上に位置するように配置されている。 The centrifugal separation unit 60 includes a cylindrical portion 23 having a plurality of holes 23a (see FIG. 3, which will be described later) on the side wall, and a refrigerant flow discharged from the discharge hole 15, which flows in the circumferential direction of the cylindrical portion 23 by changing the direction of the flow. A swirling mechanism 22 is provided for causing a swirling flow in the cylindrical portion 23 by causing the water to flow. Also, the discharge pipe 3 is arranged so as to be positioned on the central axis of the cylindrical portion 23 .
 圧縮空間25には螺旋通路ねじ51(以下、減圧部あるいは圧力損失部とも称する)が設けられており、吸入空間19には油戻し管24(以下、油戻し部とも称する)が設けられている。螺旋通路ねじ51および油戻し管24は、集油部20aから貯油部16への返油流路を形成する。なお、螺旋通路ねじ51および油戻し管24の詳細については後述する。また、固定スクロール8を上側(吐出側)から見たときに、螺旋通路ねじ51の他に、固定スクロール8とフレーム4とを締結する締結ボルト(図示せず)が、固定スクロール8の固定台板(図示せず)の外周部に沿って複数設けられている。なお、締結ボルトは、固定スクロール8およびフレーム4の両方と螺合して両者を固定するためのものであり、螺旋通路ねじ51とは全く異なるものである。 The compression space 25 is provided with a helical passage screw 51 (hereinafter also referred to as a decompression portion or pressure loss portion), and the suction space 19 is provided with an oil return pipe 24 (hereinafter also referred to as an oil return portion). . The helical passage screw 51 and the oil return pipe 24 form an oil return flow path from the oil collection portion 20a to the oil storage portion 16. As shown in FIG. Details of the spiral passage screw 51 and the oil return pipe 24 will be described later. When the fixed scroll 8 is viewed from the upper side (discharge side), in addition to the spiral passage screw 51, a fastening bolt (not shown) that fastens the fixed scroll 8 and the frame 4 is the fixed base of the fixed scroll 8. A plurality of them are provided along the outer periphery of a plate (not shown). The fastening bolt is for screwing together and fixing both the fixed scroll 8 and the frame 4, and is completely different from the helical passage screw 51. As shown in FIG.
 図2は、実施の形態1に係る圧縮機101の遠心分離部60にある旋回機構部22の斜視図である。なお、図2の点線の矢印は旋回機構部22の内部における冷媒および油の流れを示している。 FIG. 2 is a perspective view of the turning mechanism section 22 in the centrifugal separation section 60 of the compressor 101 according to Embodiment 1. FIG. The dotted arrows in FIG. 2 indicate the flow of refrigerant and oil inside the swirling mechanism 22 .
 旋回機構部22は、吐出孔15および逆止弁21を覆うように配置されており、吐出孔15および逆止弁21から吐出された冷媒および油の向きを変えて旋回流を発生させるように、らせん状の流路22aが形成されている。らせん状の流路22aの端部には、冷媒および油を円筒部23の周方向に向かって吹き出す吹出口22bが設けられている。 The swirl mechanism part 22 is arranged to cover the discharge hole 15 and the check valve 21, and changes the direction of the refrigerant and oil discharged from the discharge hole 15 and the check valve 21 so as to generate a swirling flow. , a spiral flow path 22a is formed. A blowout port 22b for blowing out the refrigerant and oil in the circumferential direction of the cylindrical portion 23 is provided at the end of the spiral flow path 22a.
 図3は、実施の形態1に係る圧縮機101の遠心分離部60にある円筒部23の斜視図である。なお、図3の実線の矢印は冷媒の流れを示しており、図3の点線の矢印は油の流れを示している。 FIG. 3 is a perspective view of the cylindrical section 23 in the centrifugal separation section 60 of the compressor 101 according to Embodiment 1. FIG. The solid line arrows in FIG. 3 indicate the flow of refrigerant, and the dotted line arrows in FIG. 3 indicate the flow of oil.
 円筒部23は、その内部に旋回機構部22が設けられており、円筒部23の内部に旋回流が形成されるようになっている。円筒部23の側壁には、旋回流の遠心力により冷媒から分離された油を円筒部23外側の集油部20aへ排出するための複数の孔23aが設けられている。また、円筒部23の上方には、油が分離された冷媒を圧縮機101外部へ吐出する吐出配管3が配置されている。 The cylindrical portion 23 is provided with the swirl mechanism portion 22 inside thereof so that a swirl flow is formed inside the cylindrical portion 23 . A side wall of the cylindrical portion 23 is provided with a plurality of holes 23a for discharging the oil separated from the refrigerant by the centrifugal force of the swirling flow to the oil collecting portion 20a outside the cylindrical portion 23. As shown in FIG. A discharge pipe 3 for discharging the oil-separated refrigerant to the outside of the compressor 101 is arranged above the cylindrical portion 23 .
 図4は、実施の形態1に係る圧縮機101の螺旋通路ねじ51と油戻し管24およびその周辺の断面図である。 FIG. 4 is a cross-sectional view of the helical passage screw 51, the oil return pipe 24, and the surroundings of the compressor 101 according to the first embodiment.
 固定スクロール8の側部には、固定スクロール油戻し管穴81が形成されている。固定スクロール油戻し管穴81は、固定スクロール8の上部に形成された固定スクロール油戻し管上穴8fと、固定スクロール8の下部に形成された固定スクロール油戻し管下穴8dと、固定スクロール油戻し管上穴8fと固定スクロール油戻し管下穴8dとの間に形成され、それらと連通した固定スクロール油戻し管中穴8eと、後述する固定スクロール油戻しバイパス穴8gとが設けられている。 A fixed scroll oil return pipe hole 81 is formed on the side of the fixed scroll 8 . The fixed scroll oil return pipe hole 81 includes a fixed scroll oil return pipe upper hole 8f formed in the upper portion of the fixed scroll 8, a fixed scroll oil return pipe lower hole 8d formed in the lower portion of the fixed scroll 8, and a fixed scroll oil return pipe lower hole 8d formed in the lower portion of the fixed scroll oil. A fixed scroll oil return pipe middle hole 8e is formed between the return pipe upper hole 8f and the fixed scroll oil return pipe lower hole 8d and communicates with them, and a fixed scroll oil return bypass hole 8g, which will be described later, is provided. .
 フレーム4の側部には、フレーム油戻し管穴82が形成されている。フレーム油戻し管穴82は、フレーム4の上部に形成されたフレーム油戻し管上穴4aと、フレーム4の下部に形成されたフレーム油戻し管下穴4cと、フレーム油戻し管上穴4aとフレーム油戻し管下穴4cとの間に形成され、それらと連通したフレーム油戻し管中穴4bとで構成されている。 A frame oil return pipe hole 82 is formed in the side portion of the frame 4 . The frame oil return pipe hole 82 includes a frame oil return pipe upper hole 4a formed in the upper portion of the frame 4, a frame oil return pipe lower hole 4c formed in the lower portion of the frame 4, and a frame oil return pipe upper hole 4a. It is formed between the frame oil return pipe lower hole 4c and the frame oil return pipe middle hole 4b communicating therewith.
 螺旋通路ねじ51は、フレーム油戻し管中穴4bの内部に設けられ、固定スクロール油戻し管上穴8fからフレーム油戻し管下穴4cに向けて挿入された棒状部材である。この螺旋通路ねじ51は、本体部51aと小径部51bとねじ部51cと頭部51dとを有している。本体部51aは、円柱形状の棒状体によって構成され、外周部に幅(図4の上下方向の長さ)0.5~1.0mm程度の螺旋溝が形成されている。この本体部51aの螺旋溝の軸方向の長さは、長ければ長いほどよいが、少なくとも、渦巻ラップ7a、8aの高さより長い方がよい。なお、本体部51aの直径<締結ボルトのネジ部の直径である。ここで、螺旋溝が形成された本体部51aに対応するフレーム4は、ねじ構造を有さない円柱状の長孔であるが、本体部51aを挿入した際は本体部51aの螺旋溝との間に油が軸方向には流れない程度の微小隙間を保つ。そのため、油は本体部51aの螺旋溝を伝いながら下方向にゆっくり落ちていく。小径部51bは、固定スクロール油戻し管中穴8eより小径に形成され、固定スクロール油戻し管中穴8eの内側に環状の通路を形成している。なお、実施の形態1では、小径部51bは、固定スクロール油戻し管中穴8eの内側に形成されているものとしたが、それに限定されず、固定スクロール8の固定台板(図示せず)に形成された雄ねじとしてもよい。ねじ部51cは、円柱形状の棒状体によって構成され、固定スクロール油戻し管中穴8eの外周部の上側端部に形成された雌ねじに対応する雄ねじが形成され、固定スクロール8と螺旋通路ねじ51とを固定する。頭部51dは、固定スクロール油戻し管中穴8eよりも大径な円板状に形成されている。 The spiral passage screw 51 is a rod-shaped member provided inside the frame oil return pipe middle hole 4b and inserted from the fixed scroll oil return pipe upper hole 8f toward the frame oil return pipe lower hole 4c. The helical passage screw 51 has a body portion 51a, a small diameter portion 51b, a threaded portion 51c and a head portion 51d. The main body portion 51a is formed of a cylindrical rod-like body, and a spiral groove having a width (length in the vertical direction in FIG. 4) of about 0.5 to 1.0 mm is formed on the outer peripheral portion. The longer the axial length of the spiral groove of the body portion 51a, the better. The diameter of the body portion 51a<the diameter of the screw portion of the fastening bolt. Here, the frame 4 corresponding to the main body portion 51a formed with the spiral groove is a cylindrical long hole having no screw structure. A small gap is kept between them to prevent oil from flowing in the axial direction. Therefore, the oil slowly falls downward along the spiral grooves of the main body portion 51a. The small diameter portion 51b is formed to have a smaller diameter than the fixed scroll oil return pipe middle hole 8e, and forms an annular passage inside the fixed scroll oil return pipe middle hole 8e. In the first embodiment, the small-diameter portion 51b is formed inside the fixed scroll oil return pipe middle hole 8e. It may be an external thread formed in the The threaded portion 51c is formed of a cylindrical rod-like body, and has a male thread corresponding to a female thread formed at the upper end of the outer peripheral portion of the fixed scroll oil return pipe middle hole 8e. and fixed. The head 51d is formed in a disc shape having a diameter larger than that of the fixed scroll oil return pipe middle hole 8e.
 螺旋通路ねじ51は、そこを油が通過する際に油が触れる表面積を増加させて圧力損失を増加させる。そして、その圧力損失の増加によって油を減圧および冷却させる。また、螺旋通路ねじ51は、フレーム油戻し管中穴4bの内部に設けられているため、フレーム油戻し管中穴4bの外部に設けられるよりも省スペースとすることができる。 The helical passage screw 51 increases the surface area that the oil contacts when passing through it, thereby increasing the pressure loss. The increase in pressure loss decompresses and cools the oil. Further, since the spiral passage screw 51 is provided inside the frame oil return pipe middle hole 4b, it is possible to save space compared to providing it outside the frame oil return pipe middle hole 4b.
 固定スクロール油戻し管上穴8fは、螺旋通路ねじ51の頭部51dによって塞がれており、また、ねじ部51cの雄ねじは固定スクロール油戻し管中穴8eの雌ねじに螺合されて固定されるため、集油部20aで集められた油は、螺旋通路ねじ51の上側からは流れない。そこで、集油部20aで集められた油の流路として、集油部20aから螺旋通路ねじ51の小径部51bにバイパスする固定スクロール油戻しバイパス穴8gが固定スクロール8の側部に斜め向きで設けられている。そして、集油部20aで集められた油は、この固定スクロール油戻しバイパス穴8g(以下、斜め孔とも称する)から、螺旋通路ねじ51の小径部51bを介して、本体部51aの螺旋溝に供給される。つまり、集油部20aで集められた油は、螺旋通路ねじ51の斜め上から流れ、固定スクロール油戻しバイパス穴8gを介して本体部51aの螺旋溝に供給される。 The fixed scroll oil return pipe upper hole 8f is closed by the head 51d of the spiral passage screw 51, and the male thread of the threaded portion 51c is screwed into and fixed to the internal thread of the fixed scroll oil return pipe middle hole 8e. Therefore, the oil collected by the oil collecting portion 20 a does not flow from the upper side of the spiral passage screw 51 . Therefore, a fixed scroll oil return bypass hole 8g bypassing from the oil collecting portion 20a to the small diameter portion 51b of the helical passage screw 51 is provided obliquely on the side of the fixed scroll 8 as a flow path for the oil collected by the oil collecting portion 20a. is provided. The oil collected by the oil collecting portion 20a flows from the fixed scroll oil return bypass hole 8g (hereinafter also referred to as an oblique hole) through the small diameter portion 51b of the spiral passage screw 51 into the spiral groove of the main body portion 51a. supplied. That is, the oil collected by the oil collection portion 20a flows obliquely above the spiral passage screw 51 and is supplied to the spiral groove of the main body portion 51a through the fixed scroll oil return bypass hole 8g.
 固定スクロール油戻しバイパス穴8gは、減圧および冷却効果を高めるべく、次の3つの条件を満たすとさらに望ましい。なお、3つの条件全てを満たすことが望ましいが、少なくとも1つでも満たせば、減圧および冷却効果を高めることができる。 It is more desirable that the fixed scroll oil return bypass hole 8g satisfies the following three conditions in order to increase the pressure reduction and cooling effect. Although it is desirable to satisfy all three conditions, if at least one condition is satisfied, the decompression and cooling effects can be enhanced.
 第1条件:固定スクロール油戻しバイパス穴8gの延びる方向が、本体部51aの螺旋溝の延びる方向に沿う方向である(つまり、逆らう方向ではない)。第2条件:固定スクロール油戻しバイパス穴8gの水平方向に対する角度α>本体部51aの螺旋溝の水平方向に対する角度β。第3条件:固定スクロール油戻しバイパス穴8gの径>本体部51aの螺旋溝の幅。 First condition: the direction in which the fixed scroll oil return bypass hole 8g extends is along the direction in which the spiral groove of the body portion 51a extends (that is, not in the opposite direction). Second condition: Angle α of the fixed scroll oil return bypass hole 8g with respect to the horizontal direction>Angle β of the spiral groove of the main body portion 51a with respect to the horizontal direction. Third condition: diameter of fixed scroll oil return bypass hole 8g>width of spiral groove of body portion 51a.
 なお、図4には、螺旋通路ねじ51の右側に油戻し空間Aが形成されているが、実施の形態1では、螺旋通路ねじ51の上側からは油が流れず、この油戻し空間Aにも油は流れないため、この油戻し空間Aは形成されていなくてもよい。 In FIG. 4, the oil return space A is formed on the right side of the spiral passage screw 51, but in Embodiment 1, oil does not flow from the upper side of the spiral passage screw 51, and this oil return space A is filled with oil. This oil return space A may not be formed because the oil does not flow.
 油戻し管24は、螺旋通路ねじ51の下部(出口側)から貯油部16に向かって延びるように設けられた円管である。そして、螺旋通路ねじ51と油戻し管24とは連通している。なお、油戻し管24は、図5に示すように単なる円形孔ではなく、内表面に凹凸を設けることで表面積を増やした管であってもよい。また、油戻し管24は、管に限らず、容器1の内壁とで油戻し空間を形成するような、板状の壁であってもよい。螺旋通路ねじ51は油戻し管24より上流側に配置され、上流側から螺旋通路ねじ51、油戻し管24の順番に固定されている。また、螺旋通路ねじ51と油戻し管24とは、固定スクロール油戻しバイパス穴8gと連通している。このように、固定スクロール油戻しバイパス穴8g、螺旋通路ねじ51、および、油戻し管24は、集油部20aから貯油部16への返油流路を形成している。 The oil return pipe 24 is a circular pipe provided so as to extend from the lower portion (outlet side) of the spiral passage screw 51 toward the oil storage portion 16 . The spiral passage screw 51 and the oil return pipe 24 are in communication. It should be noted that the oil return pipe 24 may not be a simple circular hole as shown in FIG. Moreover, the oil return pipe 24 is not limited to a pipe, and may be a plate-like wall that forms an oil return space together with the inner wall of the container 1 . The spiral passage screw 51 is arranged on the upstream side of the oil return pipe 24 and fixed in the order of the spiral passage screw 51 and the oil return pipe 24 from the upstream side. Further, the spiral passage screw 51 and the oil return pipe 24 communicate with the fixed scroll oil return bypass hole 8g. Thus, the fixed scroll oil return bypass hole 8g, the helical passage screw 51, and the oil return pipe 24 form an oil return flow path from the oil collection portion 20a to the oil storage portion 16. As shown in FIG.
 以下では、冷媒ガスを吐出する逆止弁21を基準に、回転軸5の軸方向に沿って圧縮機構部30と反対側に離れる方向を「上」、その反対方向を「下」と定義する。逆止弁21の位置を基準にして軸方向の高さを見ると、円筒部23は旋回機構部22よりも上となる高い位置であり、吐出配管3の入口近くまで延在している。円筒部23の下端は、フレーム4の上面と密着して隙間なく接続されている。 Hereinafter, the direction away from the compression mechanism 30 along the axial direction of the rotating shaft 5 with respect to the check valve 21 that discharges the refrigerant gas is defined as "up", and the opposite direction is defined as "down". . Looking at the height in the axial direction with reference to the position of the check valve 21 , the cylindrical portion 23 is at a higher position than the turning mechanism portion 22 and extends close to the inlet of the discharge pipe 3 . The lower end of the cylindrical portion 23 is tightly connected to the upper surface of the frame 4 without a gap.
 円筒部23の下部領域に孔23aはなく、下部領域の上側の領域である上部領域に複数の孔23aを有している。また、孔23aは、旋回機構部22が冷媒を吹き出す高さ、つまり、旋回流が発生し始める高さには形成されておらず、そのすぐ上側に形成されている。旋回機構部22の吹出口22bの高さから、孔23aが形成された領域の下端、つまり最も下にある孔23aの高さまでの距離は、旋回機構部22の高さよりも小さいことが好ましい。また、複数の孔23aが形成された領域の高さは、旋回機構部22の高さよりも大きいことが望ましく、例えば2~5倍等とするとよい。また、円筒部23の側面のうち複数の孔23aを有する領域の開口率は、例えば50%未満であることが好ましい。なぜなら、開口率が高すぎると、孔23aを通じて円筒部23の外側に漏れる冷媒ガスが多くなり、円筒部23の内側に安定した旋回流が形成されないおそれがあるためである。 There are no holes 23a in the lower region of the cylindrical portion 23, and the upper region, which is the upper region of the lower region, has a plurality of holes 23a. Moreover, the hole 23a is not formed at the height at which the swirling mechanism 22 blows out the refrigerant, that is, at the height at which the swirling flow starts to occur, but is formed just above it. The distance from the height of the outlet 22b of the turning mechanism 22 to the lower end of the area where the holes 23a are formed, that is, the height of the lowest hole 23a is preferably smaller than the height of the turning mechanism 22. Also, the height of the region in which the plurality of holes 23a are formed is desirably larger than the height of the turning mechanism 22, for example, 2 to 5 times. Moreover, it is preferable that the opening ratio of the region having the plurality of holes 23a in the side surface of the cylindrical portion 23 is, for example, less than 50%. This is because if the opening ratio is too high, a large amount of refrigerant gas leaks to the outside of the cylindrical portion 23 through the holes 23a, and a stable swirling flow may not be formed inside the cylindrical portion 23.
 図1に示すように、集油部20aは、円筒部23の外周面と、上部容器1aの内壁面と、固定スクロール8の上面とに囲まれた空間であり、吐出空間20内で遠心分離部60の外側に設けられている。そして、遠心分離部60の円筒部23の複数の孔23aから排出された油が、集油部20aに回収されるようになっている。集油部20aの下面は、遠心分離部60から集油部20aへ排出され重力により下方に集まってきた油を受けて一時的に保持する油受け面として機能する。 As shown in FIG. 1, the oil collecting portion 20a is a space surrounded by the outer peripheral surface of the cylindrical portion 23, the inner wall surface of the upper container 1a, and the upper surface of the fixed scroll 8. It is provided outside the portion 60 . The oil discharged from the plurality of holes 23a of the cylindrical portion 23 of the centrifugal separation portion 60 is collected in the oil collecting portion 20a. The lower surface of the oil collecting portion 20a functions as an oil receiving surface that receives and temporarily holds the oil discharged from the centrifugal separation portion 60 to the oil collecting portion 20a and collected downward by gravity.
 また、図1に示すように、遠心分離部60から排出されて集油部20aに回収された油を吸入空間19の貯油部16へ戻すための返油流路として、固定スクロール油戻しバイパス穴8g、螺旋通路ねじ51、および、油戻し管24が、圧縮空間25と吸入空間19とに設けられている。集油部20aに回収された油は、吐出空間20と吸入空間19との間の圧力差によって、一部の冷媒とともに吸入空間19側にある貯油部16へ流れる。 As shown in FIG. 1, a fixed scroll oil return bypass hole is provided as an oil return flow path for returning the oil discharged from the centrifugal separation unit 60 and collected in the oil collection unit 20a to the oil storage unit 16 of the suction space 19. 8g, a helical passage screw 51 and an oil return pipe 24 are provided in the compression space 25 and the suction space 19. As shown in FIG. Due to the pressure difference between the discharge space 20 and the suction space 19, the oil collected in the oil collecting portion 20a flows to the oil storage portion 16 on the suction space 19 side together with a part of the refrigerant.
 なお、集油部20aに回収されて重力により流れて集油部20aの低い位置に集まった油が固定スクロール油戻しバイパス穴8gに流入するように、固定スクロール油戻しバイパス穴8gは、集油部20aの低い位置、好ましくは固定スクロール8の上面よりも低い位置に配置されているとよい。また、固定スクロール油戻しバイパス穴8g、螺旋通路ねじ51、および、油戻し管24の内部流路の径は、油が集油部20a内に溜まりすぎないでスムーズに貯油部16へ流れる大きさに調整されているとよい。かつ、固定スクロール油戻しバイパス穴8g、螺旋通路ねじ51、および、油戻し管24の内部流路の径は、固定スクロール油戻しバイパス穴8g、螺旋通路ねじ51、および、油戻し管24を通って吐出空間20から吸入空間19側へ流れる冷媒の量が多すぎて圧縮効率あるいは体積効率が低下しない大きさに調整されているとよい。また、固定スクロール油戻しバイパス穴8g、螺旋通路ねじ51、および、油戻し管24は、集油部20aから貯油部16へ流れる途中において、油供給管路13を通って動力変換機構部6を潤滑した後の油の流路と合流し、吸入空間19へ油を排出するようになっていてもよい。 The fixed scroll oil return bypass hole 8g is arranged so that the oil collected in the oil collecting portion 20a and flowed by gravity and collected at a low position of the oil collecting portion 20a flows into the fixed scroll oil return bypass hole 8g. It is preferably arranged at a position lower than the portion 20 a , preferably lower than the upper surface of the fixed scroll 8 . In addition, the diameters of the fixed scroll oil return bypass hole 8g, the spiral passage screw 51, and the internal flow path of the oil return pipe 24 are sized to allow the oil to smoothly flow to the oil storage portion 16 without accumulating too much in the oil collection portion 20a. should be adjusted to In addition, the diameters of the internal flow paths of the fixed scroll oil return bypass hole 8g, the spiral passage screw 51, and the oil return pipe 24 pass through the fixed scroll oil return bypass hole 8g, the spiral passage screw 51, and the oil return pipe 24. It is preferable that the size is adjusted so that the amount of refrigerant flowing from the discharge space 20 to the suction space 19 side is not too large and the compression efficiency or the volumetric efficiency is not lowered. In addition, the fixed scroll oil return bypass hole 8g, the helical passage screw 51, and the oil return pipe 24 pass through the oil supply pipe 13 on the way from the oil collection portion 20a to the oil storage portion 16 and the power conversion mechanism portion 6. It may merge with the oil flow path after lubrication, and the oil may be discharged to the suction space 19 .
 なお、フレーム4または固定スクロール8には、揺動スクロール7の渦巻ラップ7aと固定スクロール8の渦巻ラップ8aとを潤滑するために、油供給管路13を通じて動力変換機構部6に供給される油の一部を吸入孔14または圧縮室9へ流通させる流路(図示せず)が設けられていてもよい。 In order to lubricate the spiral wrap 7a of the orbiting scroll 7 and the spiral wrap 8a of the fixed scroll 8, the frame 4 or the fixed scroll 8 is provided with oil supplied to the power conversion mechanism 6 through the oil supply pipe 13. A passage (not shown) may be provided for circulating part of the gas to the suction hole 14 or the compression chamber 9 .
 以上のように構成された圧縮機101において、電動機構部40に通電されると、回転子11にトルクが加わって回転軸5が回転し、揺動スクロール7が固定スクロール8に対して揺動運動を行う。これにより、圧縮室9で冷媒が圧縮される。その過程で、吸入空間19において冷媒中に含まれていた油滴の一部または油供給管路13を通って動力変換機構部6に流通していた油の一部が、冷媒とともに、吸入孔14を通って圧縮室9に流れ込む。 In the compressor 101 configured as described above, when the electric mechanism portion 40 is energized, a torque is applied to the rotor 11 to rotate the rotating shaft 5 and the orbiting scroll 7 is orbiting relative to the fixed scroll 8. exercise. Thereby, the refrigerant is compressed in the compression chamber 9 . In the process, part of the oil droplets contained in the refrigerant in the suction space 19 or part of the oil flowing through the oil supply pipe 13 to the power conversion mechanism 6 is released into the suction hole together with the refrigerant. 14 into the compression chamber 9 .
 圧縮室9に流れ込んだ油を含む冷媒は圧縮され、吐出孔15と逆止弁21とを通って、遠心分離部60の旋回機構部22に流れ込む。また、圧縮室9に流れ込んだ油は、揺動スクロール7の渦巻ラップ7aと固定スクロール8の渦巻ラップ8aとを潤滑し、冷媒とともに旋回機構部22に流れ込む。旋回機構部22において冷媒と油とは旋回流となって円筒部23の内側へ流れ込み、円筒部23において旋回流の遠心力により冷媒と油とは分離される。油から分離された冷媒の大部分は、円筒部23の内部で旋回しながら上昇し、吐出配管3から圧縮機101外部へ排出される。一方、冷媒から分離された油は、円筒部23の壁面に形成された複数の孔23aから円筒部23の外側の集油部20aへ排出され、固定スクロール油戻しバイパス穴8g、螺旋通路ねじ51、および、油戻し管24を通じて高圧空間から低圧空間に向かって貯油部16へと流れる。 The refrigerant containing oil that has flowed into the compression chamber 9 is compressed, passes through the discharge hole 15 and the check valve 21, and flows into the swirl mechanism section 22 of the centrifugal separation section 60. Further, the oil that has flowed into the compression chamber 9 lubricates the spiral wrap 7a of the orbiting scroll 7 and the spiral wrap 8a of the fixed scroll 8, and flows into the swirl mechanism portion 22 together with the refrigerant. In the swirl mechanism portion 22, the refrigerant and the oil turn into a swirling flow and flow into the cylindrical portion 23, where the refrigerant and the oil are separated by the centrifugal force of the swirling flow. Most of the refrigerant separated from the oil rises while swirling inside the cylindrical portion 23 and is discharged from the discharge pipe 3 to the outside of the compressor 101 . On the other hand, the oil separated from the refrigerant is discharged from a plurality of holes 23a formed in the wall surface of the cylindrical portion 23 to the oil collecting portion 20a outside the cylindrical portion 23, and flows through the fixed scroll oil return bypass hole 8g and the spiral passage screw 51. , and through the oil return pipe 24 from the high pressure space towards the low pressure space to the oil reservoir 16 .
 より詳しく述べると、円筒部23の下部において旋回機構部22が旋回流を発生させる。そして、発生した旋回流は円筒部23の内壁面に沿って流れながら上昇し、やがて円筒部23の中心付近にある吐出配管3から容器1の外へ排出される。円筒部23の内部では、旋回流によって、冷媒ガスよりも密度の高い油、つまり、冷媒ガスに含まれる油滴およびオイルミストに遠心力が強く働き、油が円筒部23の内壁に向かって飛行するようになる。そして、一部の油は直接孔23aを通って直接円筒部23の外へ排出され、残りの油は円筒部23の内壁面に付着して油膜状になる。この油膜のすぐ内側を冷媒ガスの旋回流が流れるため、油膜がその流れに押され、孔23aの位置まで流れる。そして、油膜は、孔23aの縁の位置で再び遠心力によって、孔23aの縁から剥離し、または孔23aの内面を伝って円筒部23の外側へと押し出される。このようにして、冷媒から分離された油が、円筒部23に設けられた複数の孔23aから円筒部23の外側の集油部20aへ排出される。 More specifically, the swirling mechanism 22 generates a swirling flow in the lower portion of the cylindrical portion 23 . The generated swirling flow rises while flowing along the inner wall surface of the cylindrical portion 23 , and is eventually discharged out of the container 1 through the discharge pipe 3 near the center of the cylindrical portion 23 . Inside the cylindrical portion 23, the swirling flow causes a strong centrifugal force to act on the oil, which is denser than the refrigerant gas, that is, the oil droplets and oil mist contained in the refrigerant gas, causing the oil to fly toward the inner wall of the cylindrical portion 23. will come to A portion of the oil is directly discharged out of the cylindrical portion 23 through the direct holes 23a, and the remaining oil adheres to the inner wall surface of the cylindrical portion 23 and forms an oil film. Since the swirling flow of the refrigerant gas flows just inside this oil film, the oil film is pushed by the flow and flows to the position of the hole 23a. Then, the oil film is again separated from the edge of the hole 23a by the centrifugal force at the position of the edge of the hole 23a, or pushed out of the cylindrical portion 23 along the inner surface of the hole 23a. In this way, the oil separated from the refrigerant is discharged from the plurality of holes 23 a provided in the cylindrical portion 23 to the oil collecting portion 20 a outside the cylindrical portion 23 .
 集油部20aへ排出された油は、重力により落下して、または、円筒部23の外壁面あるいは上部容器1aの内壁面に付着した後で重力により流れて、集油部20aの下面にあたる固定スクロール8上面に集まる。固定スクロール8上面に集まった油は、重力および吐出空間20と吸入空間19との圧力差により、一部の冷媒とともに固定スクロール油戻しバイパス穴8g、螺旋通路ねじ51、および、油戻し管24を流れて、吸入空間19へ排出される。吸入空間19へ排出された油は、一部が油滴となって吸入孔14を通って再び圧縮室9に流れ込むが、大部分は重力により下方の貯油部16に流れる。 The oil discharged to the oil collecting portion 20a drops by gravity or adheres to the outer wall surface of the cylindrical portion 23 or the inner wall surface of the upper container 1a and then flows by gravity and is fixed to the lower surface of the oil collecting portion 20a. They gather on the upper surface of the scroll 8. Due to gravity and the pressure difference between the discharge space 20 and the suction space 19, the oil collected on the upper surface of the fixed scroll 8 flows along with some refrigerant through the fixed scroll oil return bypass hole 8g, the spiral passage screw 51, and the oil return pipe 24. It flows and is discharged into the suction space 19 . A portion of the oil discharged to the suction space 19 becomes oil droplets and flows through the suction hole 14 and into the compression chamber 9 again, but most of it flows downward to the oil storage portion 16 due to gravity.
 実施の形態1に係る圧縮機101においては、遠心分離部60において旋回流の遠心力により円筒部23の内壁面に付着した油を、円筒部23の壁面に形成された複数の孔23aから円筒部23の外側の集油部20aへ速やかに排出する。このように、油を集油部20aへ排出して円筒部23の内部の旋回流から分離することで、円筒部23の内壁面に付着した油が旋回流に巻き上げられて飛散することが抑制される。これにより、吐出配管3から圧縮機101外部へ排出される油量を大幅に低減することができる。また、遠心分離部60を圧縮機101内部に有するような、遠心分離部60の高さが低い圧縮機101であっても、圧縮機101外部へ排出される油量を十分に低減することが可能となる。 In the compressor 101 according to the first embodiment, the oil adhered to the inner wall surface of the cylindrical portion 23 due to the centrifugal force of the swirling flow in the centrifugal separation portion 60 is removed from the plurality of holes 23a formed in the wall surface of the cylindrical portion 23. The oil is quickly discharged to the oil collecting portion 20a outside the portion 23. In this way, by discharging the oil to the oil collecting portion 20a and separating it from the swirling flow inside the cylindrical portion 23, it is possible to suppress the oil adhering to the inner wall surface of the cylindrical portion 23 from being swirled up by the swirling flow and being scattered. be done. As a result, the amount of oil discharged from the discharge pipe 3 to the outside of the compressor 101 can be greatly reduced. Further, even in a compressor 101 having a low height of the centrifugal separation unit 60, such as having the centrifugal separation unit 60 inside the compressor 101, the amount of oil discharged to the outside of the compressor 101 can be sufficiently reduced. It becomes possible.
 また、円筒部23の下端が集油部20aの下面と隙間なく接続されており、かつ、円筒部23の側面のうち、円筒部23の下端に隣接する下部領域には孔23aが形成されていないことが好ましい。つまり、円筒部23の下端からある一定の高さまでは孔23aが形成されていないことが好ましい。例えば、旋回機構部22の吹出口22bの高さよりも下側には孔23aが形成されていないことが好ましい。これにより、円筒部23の側壁の下部領域が仕切りとなることで、集油部20aの下面に集まった油が円筒部23の内側に浸入することが抑制される。 Further, the lower end of the cylindrical portion 23 is connected to the lower surface of the oil collecting portion 20a without a gap, and a hole 23a is formed in a lower region of the side surface of the cylindrical portion 23 adjacent to the lower end of the cylindrical portion 23. preferably not. In other words, it is preferable that the hole 23a is not formed up to a certain height from the lower end of the cylindrical portion 23. As shown in FIG. For example, it is preferable that the hole 23a is not formed below the height of the outlet 22b of the swivel mechanism 22 . As a result, the lower region of the side wall of the cylindrical portion 23 serves as a partition, thereby suppressing the oil collected on the lower surface of the oil collecting portion 20 a from entering the cylindrical portion 23 .
 また、当該下部領域においては、円筒部23の内側の旋回流が円筒部23の外側に吹き出さないため、集油部20aの下面に集まった油を巻き上げることが防止される。これにより、圧縮機101外へ吐出される油量をさらに低減することができる。なお、円筒部23の内部において、孔23aの形成されていない下部の円筒部23の内壁面または円筒部23の底面に付着した油は、旋回しながら上昇する冷媒ガス流により、円筒部23の内壁面を伝って孔23aまで押し上げられ、孔23aから円筒部23の外に押し出される。このため、円筒部23の内部に大量の油が溜まることはない。 In addition, in the lower region, the swirling flow inside the cylindrical portion 23 does not blow out to the outside of the cylindrical portion 23, so that the oil collected on the lower surface of the oil collecting portion 20a is prevented from being swirled up. As a result, the amount of oil discharged out of the compressor 101 can be further reduced. Inside the cylindrical portion 23, the oil adhering to the inner wall surface of the lower cylindrical portion 23 where the hole 23a is not formed or the bottom surface of the cylindrical portion 23 is removed from the cylindrical portion 23 by the refrigerant gas flow that rises while swirling. It is pushed up to the hole 23a along the inner wall surface and pushed out of the cylindrical portion 23 from the hole 23a. Therefore, a large amount of oil does not accumulate inside the cylindrical portion 23 .
 また、円筒部23の側面に設けられる孔23aが、旋回機構部22の吹出口22bと同じ高さには形成されていないことが好ましい。これにより、旋回機構部22の吹出口22bから噴出された冷媒ガスを確実に円筒部23の内壁面に沿って流し、強く安定した旋回流を形成することができる。なお、「同じ」高さとは、厳密に同一である必要はなく、旋回機構部22の吹出口22bから噴出された冷媒ガスが直接当たる程度に、実質的に同じ高さであることを意味している。 Further, it is preferable that the hole 23a provided on the side surface of the cylindrical portion 23 is not formed at the same height as the outlet 22b of the turning mechanism portion 22. As a result, the refrigerant gas ejected from the outlet 22b of the swirl mechanism portion 22 can reliably flow along the inner wall surface of the cylindrical portion 23 to form a strong and stable swirl flow. The “same” height does not have to be exactly the same, but means that the height is substantially the same to the extent that the refrigerant gas ejected from the outlet 22b of the turning mechanism 22 hits directly. ing.
 また、旋回流の強さは、旋回機構部22の吹出口22bから出た直後が最も強く、旋回機構部22の吹出口22bから吐出配管3に向かって上昇するにつれて弱まる傾向がある。このため、旋回機構部22の吹出口22bのすぐ上の高さに、孔23aを形成した領域が存在するようにすると、より効率よく油を円筒部23の外へ排出することができる。例えば、旋回機構部22の吹出口22bの高さから、孔23aが形成された領域の下端、つまり最も下にある孔23aの高さまでの距離を、旋回機構部22の高さよりも小さくするとよい。 In addition, the strength of the swirling flow is strongest immediately after exiting from the outlet 22b of the swirling mechanism 22, and tends to weaken as it rises from the outlet 22b of the swirling mechanism 22 toward the discharge pipe 3. For this reason, if there is a region in which the holes 23a are formed at a height just above the outlet 22b of the turning mechanism 22, the oil can be discharged out of the cylindrical portion 23 more efficiently. For example, the distance from the height of the outlet 22b of the turning mechanism 22 to the lower end of the area where the holes 23a are formed, that is, the height of the hole 23a at the bottom, should be smaller than the height of the turning mechanism 22. .
 また、円筒部23の側面のうち複数の孔23aが形成された領域において、当該領域における孔23aの開口面積の合計の割合は、例えば50%未満であることが好ましい。孔23aの開口面積の割合が大きすぎると、孔23aを通って円筒部23外に漏れる冷媒の量が増加して、円筒部23の内部の冷媒の量が減少して旋回流が弱まり、油分離効率が低下するおそれがある。開口面積の割合を小さくすることで、孔23aを通じて円筒部23外に漏れる冷媒の量を減少させ、円筒部23の内部に強い旋回流を形成することができる。 In addition, in the region of the side surface of the cylindrical portion 23 where the plurality of holes 23a are formed, the ratio of the total opening area of the holes 23a in that region is preferably less than 50%, for example. If the ratio of the opening area of the hole 23a is too large, the amount of refrigerant leaking through the hole 23a to the outside of the cylindrical portion 23 increases, and the amount of refrigerant inside the cylindrical portion 23 decreases, weakening the swirling flow and causing the oil to leak. Separation efficiency may decrease. By reducing the ratio of the opening area, the amount of refrigerant that leaks out of the cylindrical portion 23 through the holes 23a can be reduced, and a strong swirling flow can be formed inside the cylindrical portion 23. FIG.
 また、実施の形態1では、圧縮機101内部に液化した冷媒が多量に溜まった状態から起動する場合においても、圧縮機101から排出される油量を低減することができる。圧縮機101の停止時には、圧縮機101内部の冷媒ガスが液化し、液化した冷媒が圧縮機101内部の吸入空間19に多量に溜まった状態になる場合がある。この状態から圧縮機101を起動する場合、急激に冷媒が気化することによる貯油部16の発泡あるいは回転子11による攪拌で、多量の油が吸入孔14を通って圧縮室9に流入し、吐出孔15を通って吐出空間20に流れ込む。このとき、返油流路による貯油部16への油の戻しが追いつかないと、一時的に吐出空間20に油が溜まることになる。 Further, in Embodiment 1, even when the compressor 101 is started from a state in which a large amount of liquefied refrigerant has accumulated, the amount of oil discharged from the compressor 101 can be reduced. When the compressor 101 is stopped, the refrigerant gas inside the compressor 101 may be liquefied, and a large amount of the liquefied refrigerant may accumulate in the suction space 19 inside the compressor 101 . When the compressor 101 is started from this state, a large amount of oil flows into the compression chamber 9 through the suction hole 14 due to bubbling of the oil reservoir 16 due to rapid vaporization of the refrigerant or agitation by the rotor 11, and is discharged. It flows through the holes 15 into the discharge space 20 . At this time, if the return of the oil to the oil storage portion 16 through the oil return passage cannot catch up, the oil will temporarily accumulate in the discharge space 20 .
 実施の形態1では、吐出空間20に流れ込んできた多量の油は、複数の孔23aを通じて円筒部23の外側の広い集油部20aへ排出されて溜まることになる。このため、大量の油が円筒部23内側の激しい冷媒の旋回流に曝され続けて油面を巻き上げられることがない。特に、円筒部23の下部は、集油部20aの下面にあたる固定スクロール8上面と隙間なく接続され、かつ、円筒部23の側壁の下部領域には孔23aが形成されていない。このため、この部分が仕切りとなって、円筒部23外側の集油部20aに保持された油が円筒部23の内側に浸入することがない。かつ、円筒部23内側の旋回流が、円筒部23の下部からは円筒部23外部に出ないので、集油部20aの低い位置に溜まった油を巻き上げることが防止される。 In Embodiment 1, a large amount of oil that has flowed into the discharge space 20 is discharged through the plurality of holes 23a to the wide oil collecting portion 20a outside the cylindrical portion 23 and accumulated therein. Therefore, a large amount of oil is not continuously exposed to the violent swirling flow of the refrigerant inside the cylindrical portion 23 and the oil surface is not swirled up. In particular, the lower portion of the cylindrical portion 23 is connected to the upper surface of the fixed scroll 8 corresponding to the lower surface of the oil collecting portion 20a without any gap, and the side wall of the cylindrical portion 23 has no hole 23a in the lower region. For this reason, this portion acts as a partition to prevent the oil held in the oil collecting portion 20a outside the cylindrical portion 23 from entering the inside of the cylindrical portion 23. As shown in FIG. In addition, since the swirling flow inside the cylindrical portion 23 does not flow out from the lower portion of the cylindrical portion 23 to the outside of the cylindrical portion 23, it is possible to prevent the oil accumulated in the low position of the oil collecting portion 20a from being swirled up.
 その後、貯油部16の発泡あるいは回転子11による攪拌が収まり、吐出空間20に流れ込む油量が減少して通常の量に戻るにつれ、集油部20aに溜まった油は、徐々に固定スクロール油戻しバイパス穴8g、螺旋通路ねじ51、および、油戻し管24を流れて貯油部16に戻る。以上により、起動時に多量の油が吐出空間20に流れ込む場合であっても圧縮機101外部へ排出される油量を低減することができる。 After that, as the bubbling of the oil storage portion 16 or the agitation by the rotor 11 subsides and the amount of oil flowing into the discharge space 20 decreases and returns to normal, the oil accumulated in the oil collecting portion 20a gradually returns to the fixed scroll oil. It flows through the bypass hole 8g, the helical passage screw 51, and the oil return pipe 24 and returns to the oil reservoir 16. As described above, even when a large amount of oil flows into the discharge space 20 at startup, the amount of oil discharged to the outside of the compressor 101 can be reduced.
 また、実施の形態1では、圧縮室9で圧縮された冷媒は、吐出孔15を経てすぐに旋回機構部22に流入し旋回流となったあと、円筒部23の内部を旋回しながら上昇し吐出配管3から圧縮機101外部へ排出される。このため、流路の曲がりあるいは急拡大、急収縮が最小限に抑えられる。そのため、圧力損失は小さくなり、圧縮効率の低下が抑えられる。 Further, in Embodiment 1, the refrigerant compressed in the compression chamber 9 flows through the discharge hole 15 and immediately flows into the swirling mechanism portion 22 to form a swirling flow, and then rises while swirling inside the cylindrical portion 23 . It is discharged to the outside of the compressor 101 through the discharge pipe 3 . For this reason, bending, sudden expansion, and sudden contraction of the flow path can be minimized. Therefore, the pressure loss becomes small, and the deterioration of the compression efficiency is suppressed.
 また、実施の形態1は、圧縮機101の運転中に発生する騒音を低減することができる。圧縮機101の吐出空間20は、円筒部23によって外側の空間と内側の空間とに隔てられ、両空間は複数の孔23aを通じて連通している。この構造は共鳴型消音構造となっており、特に特定の周波数帯の騒音を大幅に低減することができる。なお、実施の形態1に係る圧縮機101では、円筒部23の厚みまたは断面積、円筒部23に設けられた複数の孔23aの個数または断面積を調節して、低減したい周波数帯の騒音を調整してもよい。 Also, Embodiment 1 can reduce noise generated during operation of the compressor 101 . A discharge space 20 of the compressor 101 is separated into an outer space and an inner space by a cylindrical portion 23, and both spaces communicate with each other through a plurality of holes 23a. This structure is a resonance type muffling structure, and can greatly reduce noise in a specific frequency band in particular. In the compressor 101 according to Embodiment 1, the thickness or cross-sectional area of the cylindrical portion 23 and the number or cross-sectional area of the plurality of holes 23a provided in the cylindrical portion 23 are adjusted to reduce noise in the frequency band desired to be reduced. may be adjusted.
 このように構成された圧縮機101においては、遠心分離部60による油の分離で圧縮機101外に吐出される油量を低減することができ、低コストおよび省スペース化を図ることができる。 In the compressor 101 configured in this way, the amount of oil discharged outside the compressor 101 can be reduced by separating the oil by the centrifugal separation section 60, and cost and space can be reduced.
 なお、実施の形態1では、吐出空間20の遠心分離部60に流れ出た冷媒と油とは、遠心分離される構成としたが、冷媒から油を分離できる構成であればそれに限定されない。 In Embodiment 1, the refrigerant and oil flowing into the centrifugal separation section 60 of the discharge space 20 are separated by centrifugation, but the configuration is not limited to this as long as the oil can be separated from the refrigerant.
 以上、実施の形態1に係る圧縮機101は、貯油部16を有する容器1と、容器1の外部から冷媒を吸入する吸入配管2と、容器1の内部に配置され、吸入配管2が吸入した冷媒を圧縮する圧縮機構部30と、圧縮機構部30を容器1に固定するフレーム4と、圧縮機構部30で圧縮された冷媒から油を分離する油分離部と、油分離部を通過した冷媒を容器1の上部から外部に吐出する吐出配管3と、油分離部の外側に設けられ、油分離部から排出された油を回収する集油部20aと、集油部20aに回収された油を貯油部16へ戻す返油流路を構成する減圧部と、返油流路を構成し、減圧部の出口側から貯油部16に向かって延びるように設けられ、減圧部を通過した後の油を貯油部16へ戻す油戻し部と、を備えている。 As described above, the compressor 101 according to Embodiment 1 includes the container 1 having the oil storage portion 16, the suction pipe 2 for sucking the refrigerant from the outside of the container 1, and the suction pipe 2 is arranged inside the container 1 to suck the refrigerant. A compression mechanism portion 30 for compressing the refrigerant, a frame 4 for fixing the compression mechanism portion 30 to the container 1, an oil separation portion for separating oil from the refrigerant compressed by the compression mechanism portion 30, and a refrigerant passing through the oil separation portion. to the outside from the upper part of the container 1, an oil collection part 20a provided outside the oil separation part and collecting the oil discharged from the oil separation part, and the oil collected in the oil collection part 20a to the oil storage unit 16, and the oil return flow path is configured, and is provided to extend from the outlet side of the pressure reduction unit toward the oil storage unit 16, and after passing through the pressure reduction unit and an oil return section for returning the oil to the oil storage section 16 .
 実施の形態1に係る圧縮機101によれば、集油部20aに回収された油を貯油部16へ戻す返油流路を構成する減圧部を備えている。このように、集油部20aに回収された油を貯油部16へ戻す返油流路に減圧部を設けることにより、減圧部を通過する際に油の圧力損失が増加する。そして、その圧力損失の増加によって集油部20aに回収された油を減圧および冷却することができるので、集油部20aに回収された高圧・高温の油がそのまま貯油部16に戻されることがなくなるため、信頼性の低下を抑制することができる。 According to the compressor 101 according to Embodiment 1, the pressure reducing section configuring the oil return flow path for returning the oil collected in the oil collecting section 20 a to the oil storage section 16 is provided. Thus, by providing the pressure reducing portion in the oil return passage for returning the oil collected in the oil collecting portion 20a to the oil storage portion 16, the pressure loss of the oil increases when passing through the pressure reducing portion. Since the oil collected in the oil collecting portion 20a can be decompressed and cooled due to the increase in pressure loss, the high-pressure and high-temperature oil collected in the oil collecting portion 20a can be returned to the oil storage portion 16 as it is. Therefore, it is possible to suppress a decrease in reliability.
 また、実施の形態1に係る圧縮機101は、返油流路を構成し、集油部20aに回収された油を斜め上から減圧部に供給する斜め孔を備えたものである。 Further, the compressor 101 according to Embodiment 1 has an oblique hole that forms an oil return flow path and supplies the oil collected in the oil collecting portion 20a from obliquely above to the pressure reducing portion.
 実施の形態1に係る圧縮機101によれば、減圧部の上側の流路が塞がれていたとしても、斜め孔によって、集油部20aに回収された油を斜め上から減圧部に供給することができる。 According to the compressor 101 according to Embodiment 1, even if the upper flow path of the decompression section is blocked, the oblique holes supply the oil collected in the oil collecting section 20a obliquely from above to the decompression section. can do.
 また、実施の形態1に係る圧縮機101において、斜め孔の延びる方向は、本体部51aの螺旋溝の延びる方向に沿う方向である。また、斜め孔の水平方向に対する角度は、本体部51aの螺旋溝の水平方向に対する角度よりも大きい。また、斜め孔の径は、本体部51aの螺旋溝の幅よりも大きい。 Further, in the compressor 101 according to Embodiment 1, the direction in which the oblique holes extend is along the direction in which the spiral grooves of the main body portion 51a extend. Further, the angle of the oblique hole with respect to the horizontal direction is larger than the angle of the spiral groove of the main body portion 51a with respect to the horizontal direction. Moreover, the diameter of the oblique hole is larger than the width of the spiral groove of the body portion 51a.
 実施の形態1に係る圧縮機101によれば、上記の3つの条件のうち、少なくとも1つを満たすことにより、減圧および冷却効果を高めることができる。 According to the compressor 101 according to Embodiment 1, by satisfying at least one of the above three conditions, the decompression and cooling effects can be enhanced.
 また、実施の形態1に係る圧縮機101において、フレーム4の側面には、集油部20aに回収された油が流れるフレーム油戻し管穴82が形成されており、減圧部は、フレーム油戻し管穴82の内部に設けられている。 Further, in the compressor 101 according to Embodiment 1, the side surface of the frame 4 is formed with a frame oil return pipe hole 82 through which the oil collected in the oil collection portion 20a flows, and the decompression portion serves as a frame oil return pipe hole 82. It is provided inside the tube hole 82 .
 実施の形態1に係る圧縮機101によれば、減圧部は、フレーム油戻し管穴82の内部に設けられているため、フレーム油戻し管穴82の外部に設けられるよりも省スペースとすることができる。 According to the compressor 101 according to Embodiment 1, since the decompression part is provided inside the frame oil return pipe hole 82, the space can be saved more than if it is provided outside the frame oil return pipe hole 82. can be done.
 また、実施の形態1に係る圧縮機101は、冷媒としてHFC系冷媒、HC系冷媒または自然系冷媒が用いられるものである。 Also, the compressor 101 according to Embodiment 1 uses an HFC-based refrigerant, an HC-based refrigerant, or a natural refrigerant as a refrigerant.
 実施の形態1に係る圧縮機101によれば、冷媒としてHFC系冷媒、HC系冷媒または自然系冷媒が用いられており、これらの冷媒は地球温暖化係数(GWP)が低いため、地球温暖化への影響を少なくすることができる。 According to the compressor 101 according to Embodiment 1, an HFC-based refrigerant, an HC-based refrigerant, or a natural refrigerant is used as a refrigerant, and these refrigerants have a low global warming potential (GWP). can reduce the impact on
 図5は、内面溝付銅管52の断面模式図である。
 なお、実施の形態1では、遠心分離部60で分離した油を減圧および冷却させる構造として、螺旋通路ねじ51を設けたが、それに限定されない。螺旋通路ねじ51の代わりに、例えば、キャピラリーチューブ、あるいは図5に示す内面溝付銅管52を設けてもよく、これらを設けることでも油を減圧および冷却することができる。ただし、これらを設けた場合、螺旋通路ねじ51と同等に油を減圧および冷却するためには、螺旋通路ねじ51を設ける場合よりも配管長を長くする必要があるため、螺旋通路ねじ51のほうが省スペースで同効果を得ることができる。
FIG. 5 is a schematic cross-sectional view of the internally grooved copper tube 52 .
In Embodiment 1, the spiral passage screw 51 is provided as a structure for decompressing and cooling the oil separated by the centrifugal separation section 60, but the structure is not limited to this. Instead of the helical passage screw 51, for example, a capillary tube or an internally grooved copper tube 52 shown in FIG. However, when these are provided, in order to decompress and cool the oil to the same extent as the spiral passage screw 51, the pipe length must be longer than when the spiral passage screw 51 is provided, so the spiral passage screw 51 is preferable. The same effect can be obtained in a space-saving manner.
 実施の形態2.
 以下、実施の形態2について説明するが、実施の形態2が実施の形態1と異なる点を中心に説明する。
Embodiment 2.
The second embodiment will be described below, focusing on the differences between the second embodiment and the first embodiment.
 図6は、実施の形態2に係る圧縮機101aの構成を示す概略断面図である。なお、図6の点線の矢印は主な油の流れを示している。 FIG. 6 is a schematic cross-sectional view showing the configuration of a compressor 101a according to Embodiment 2. FIG. The dotted arrows in FIG. 6 indicate the main flow of oil.
 図6に示すように、実施の形態2に係る圧縮機101aは、回転軸5が重力方向に対して傾斜するか、あるいは回転軸5が水平となるように横向きで設置される横置き型の圧縮機である。回転軸5の重力方向に対する傾斜が水平に近くなるほど、貯油部16は重力によって、下方の側部容器1b側に配置される。そのため、油供給パイプ17は、吸引口17aが貯油部16の油に浸かるように、重力方向の下側となる貯油部16に向けて延びた構造となっている。さらに、円筒部23の複数の孔23aから円筒部23外側の吐出空間20に排出された油は、重力により下方の集油部20aに集まる。そのため、螺旋通路ねじ51の吐出空間20側端部は、重力方向の下側となる側部容器1b側のフレーム4外周部に形成されている。また、集油部20aから螺旋通路ねじ51にバイパスする固定スクロール油戻しバイパス穴8gは、重力方向の下側となる固定スクロール8の側部に設けられている。つまり、返油流路の入口となる固定スクロール油戻しバイパス穴8gの上部開口および油供給パイプ17の吸引口17aは、横向きで設置された状態において、重力方向の下側に設けられている。 As shown in FIG. 6, the compressor 101a according to the second embodiment is a horizontal type that is installed sideways so that the rotating shaft 5 is inclined with respect to the direction of gravity or the rotating shaft 5 is horizontal. Compressor. As the inclination of the rotating shaft 5 with respect to the direction of gravity approaches horizontal, the oil storage section 16 is disposed downward toward the side container 1b due to gravity. Therefore, the oil supply pipe 17 has a structure extending toward the oil storage portion 16 on the lower side in the gravity direction so that the suction port 17a is immersed in the oil in the oil storage portion 16 . Furthermore, the oil discharged from the plurality of holes 23a of the cylindrical portion 23 into the discharge space 20 outside the cylindrical portion 23 is gathered in the lower oil collecting portion 20a by gravity. Therefore, the end portion of the spiral passage screw 51 on the side of the discharge space 20 is formed on the outer peripheral portion of the frame 4 on the side of the side container 1b, which is the lower side in the direction of gravity. A fixed scroll oil return bypass hole 8g that bypasses the helical passage screw 51 from the oil collecting portion 20a is provided in the side portion of the fixed scroll 8 on the lower side in the direction of gravity. That is, the upper opening of the fixed scroll oil return bypass hole 8g and the suction port 17a of the oil supply pipe 17, which serve as the inlet of the oil return flow path, are provided on the lower side in the direction of gravity when installed horizontally.
 実施の形態1に示す例と同様に、吐出孔15と逆止弁21とを順に通って、吐出空間20の遠心分離部60に流れ出た冷媒と油とは、旋回機構部22において旋回流となり、円筒部23において旋回流の遠心力により、冷媒と油とが分離される。その後、冷媒は吐出配管3を通って圧縮機101の外へ排出され、油は円筒部23の複数の孔23aから円筒部23外側の吐出空間20に排出される。円筒部23外側の吐出空間20に排出された油は、重力落下により、吐出空間20の中をそのまま下方に流れるか、もしくは固定スクロール8または容器1の有底筒状の上部容器1aの面に付着して、その面に沿って吐出空間20の下方に流れる。吐出空間20の下方の集油部20aに溜まった油は、吐出空間20と吸入空間19との圧力差により、固定スクロール油戻しバイパス穴8g、螺旋通路ねじ51、および、油戻し管24を流れて、吸入空間19へ排出される。吸入空間19へ排出された油は、一部が油滴となって吸入孔14を通って再び圧縮室9に流れ込むが、大部分は重力により下方の貯油部16に流れる。 As in the example shown in the first embodiment, the refrigerant and oil that have flowed out to the centrifugal separation section 60 of the discharge space 20 through the discharge hole 15 and the check valve 21 in this order form a swirling flow in the swirling mechanism section 22. , the centrifugal force of the swirling flow in the cylindrical portion 23 separates the refrigerant and the oil. After that, the refrigerant is discharged outside the compressor 101 through the discharge pipe 3 , and the oil is discharged from the plurality of holes 23 a of the cylindrical portion 23 to the discharge space 20 outside the cylindrical portion 23 . The oil discharged into the discharge space 20 outside the cylindrical portion 23 flows downward through the discharge space 20 as it is due to gravity drop, or flows downward on the surface of the fixed scroll 8 or the bottomed cylindrical upper container 1a of the container 1. It adheres and flows below the discharge space 20 along its surface. Oil collected in the oil collecting portion 20a below the discharge space 20 flows through the fixed scroll oil return bypass hole 8g, the spiral passage screw 51, and the oil return pipe 24 due to the pressure difference between the discharge space 20 and the suction space 19. and discharged into the suction space 19 . A portion of the oil discharged to the suction space 19 becomes oil droplets and flows through the suction hole 14 and into the compression chamber 9 again, but most of it flows downward to the oil storage portion 16 due to gravity.
 このように、円筒部23の内側に油を集めず、円筒部23の外側の吐出空間20に油を集めて、吸入空間19に油を排出する構造となっている。そのため、回転軸5が重力方向に対して傾いている横置き型の圧縮機101aにおいても、円筒部23の内壁面に付着した油が旋回流に巻き上げられて飛散することが抑えられて、圧縮機101aから吐出する油量を大幅に少なくすることができる。 In this way, the oil is not collected inside the cylindrical portion 23, but is collected in the discharge space 20 outside the cylindrical portion 23 and is discharged to the suction space 19. Therefore, even in the horizontal type compressor 101a in which the rotating shaft 5 is inclined with respect to the direction of gravity, the oil adhering to the inner wall surface of the cylindrical portion 23 is prevented from being swirled up by the swirling flow and being scattered. The amount of oil discharged from the machine 101a can be greatly reduced.
 圧縮機101aでは、横向きで設置された状態において、返油流路の入口となる固定スクロール油戻しバイパス穴8gの上部開口が重力方向の下側に設けられているため、吐出空間20の下方の集油部20aに溜まった油が、返油流路の入口から螺旋通路ねじ51と油戻し管24とを通って吸入空間19に排出される。さらに、圧縮機101aでは、横向きで設置された状態において、油供給パイプ17の吸引口17aが重力方向の下側に設けられているため、吸入空間19の貯油部16に溜まった油が吸引口17aから油ポンプ18でくみ上げられ、回転軸5の内部に形成された油供給管路13を通じて圧縮機101a内の各摺動部に油が供給される。そのため、圧縮機101aが横向きで設置されたとしても、吐出空間20の集油部20aまたは吸入空間19の貯油部16に油が溜まってしまい、摺動部に供給される油が枯渇してしまうことによる信頼性の低下を抑制することができる。そして、縦置き型の圧縮機を設置することが困難な、設置スペースが低背な場合でも横置き型の圧縮機101aを設置することが可能となる。 In the compressor 101a, when the compressor 101a is installed horizontally, the upper opening of the fixed scroll oil return bypass hole 8g serving as the inlet of the oil return passage is provided on the lower side in the direction of gravity. The oil accumulated in the oil collecting portion 20a is discharged from the inlet of the oil return passage to the suction space 19 through the spiral passage screw 51 and the oil return pipe 24. - 特許庁Furthermore, in the compressor 101a, when the compressor 101a is installed horizontally, the suction port 17a of the oil supply pipe 17 is provided on the lower side in the direction of gravity. The oil is pumped up from 17a by an oil pump 18 and supplied to each sliding portion in the compressor 101a through an oil supply pipe line 13 formed inside the rotating shaft 5. As shown in FIG. Therefore, even if the compressor 101a is installed horizontally, the oil will accumulate in the oil collecting portion 20a of the discharge space 20 or the oil storage portion 16 of the suction space 19, and the oil supplied to the sliding portion will be depleted. It is possible to suppress a decrease in reliability due to In addition, it is possible to install the horizontal compressor 101a even when the installation space is low and it is difficult to install the vertical compressor 101a.
 以上、実施の形態2に係る圧縮機101aは、圧縮機構部30を駆動する電動機構部40と、電動機構部40の回転駆動力を受け取って圧縮機構部30に伝達する回転軸5と、を備え、回転軸5が重力方向に対して傾斜するか、あるいは回転軸5が水平となるように横向きで設置される横置き型であって、回転軸5の一端部には、貯油部16に溜まった油をくみ上げる油ポンプ18が設けられており、油ポンプ18には、貯油部16に向かって延びる油供給パイプ17が接続されており、横向きで設置された状態において、返油流路の入口および油供給パイプ17の先端に形成された吸引口17aは、重力方向の下側に設けられている。 As described above, the compressor 101a according to the second embodiment includes the electric mechanism portion 40 that drives the compression mechanism portion 30, and the rotation shaft 5 that receives the rotational driving force of the electric mechanism portion 40 and transmits it to the compression mechanism portion 30. It is a horizontal type in which the rotating shaft 5 is inclined with respect to the direction of gravity or is installed horizontally so that the rotating shaft 5 is horizontal. An oil pump 18 is provided for pumping up the accumulated oil, and an oil supply pipe 17 extending toward the oil reservoir 16 is connected to the oil pump 18. When the oil pump 18 is installed sideways, the oil return flow path is closed. The suction port 17a formed at the inlet and the tip of the oil supply pipe 17 is provided on the lower side in the direction of gravity.
 実施の形態2に係る圧縮機101aによれば、横向きで設置された状態において、返油流路の入口および油供給パイプ17の先端に形成された吸引口17aは、重力方向の下側に設けられている。そのため、吐出空間20の下方の集油部20aに溜まった油が、返油流路の入口から螺旋通路ねじ51と油戻し管24とを通って貯油部16に排出される。さらに、貯油部16の油が吸引口17aから油ポンプ18でくみ上げられ、圧縮機101a内の各摺動部に油が供給される。そのため、圧縮機101aが横向きで設置されたとしても、吐出空間20の集油部20aまたは吸入空間19の貯油部16に油が溜まってしまい、摺動部に供給される油が枯渇してしまうことによる信頼性の低下を抑制することができる。そして、縦置き型の圧縮機を設置することが困難な、設置スペースが低背な場合でも横置き型の圧縮機101aを設置することが可能となる。 According to the compressor 101a according to the second embodiment, when the compressor 101a is installed sideways, the suction port 17a formed at the inlet of the oil return passage and the tip of the oil supply pipe 17 is provided at the lower side in the direction of gravity. It is Therefore, the oil accumulated in the oil collecting portion 20a below the discharge space 20 is discharged from the inlet of the oil return passage through the spiral passage screw 51 and the oil return pipe 24 to the oil storage portion 16. Further, the oil in the oil storage portion 16 is pumped up by the oil pump 18 from the suction port 17a, and supplied to each sliding portion in the compressor 101a. Therefore, even if the compressor 101a is installed horizontally, the oil will accumulate in the oil collecting portion 20a of the discharge space 20 or the oil storage portion 16 of the suction space 19, and the oil supplied to the sliding portion will be depleted. It is possible to suppress a decrease in reliability due to In addition, it is possible to install the horizontal compressor 101a even when the installation space is low and it is difficult to install the vertical compressor 101a.
 実施の形態3.
 以下、実施の形態3について説明するが、実施の形態3が実施の形態1および2と異なる点を中心に説明する。
Embodiment 3.
The third embodiment will be described below, focusing on the differences of the third embodiment from the first and second embodiments.
 図7は、実施の形態3に係る冷凍サイクル装置の構成例を示す図である。なお、図7では、冷凍サイクル装置として空気調和装置を示している。また、図7の実線の矢印は冷房運転時の冷媒の流れを示しており、破線の矢印は暖房運転時の流れを示している。 FIG. 7 is a diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 3. FIG. Note that FIG. 7 shows an air conditioner as the refrigeration cycle device. Further, the solid line arrows in FIG. 7 indicate the flow of the refrigerant during the cooling operation, and the broken line arrows indicate the flow during the heating operation.
 図7に示す空気調和装置は、室外機100と室内機200とをガス冷媒配管300、液冷媒配管400により配管接続し、冷媒を循環させる冷媒回路を構成する。室外機100は、実施の形態1で説明した圧縮機101を有する。なお、空気調和装置は、実施の形態1で説明した圧縮機101ではなく実施の形態2で説明した圧縮機101aを有していてもよい。また、室外機100は、流路切替装置102、室外熱交換器103、および、絞り装置104を有する。また、室内機200は、室内熱交換器201を有する。 In the air conditioner shown in FIG. 7, an outdoor unit 100 and an indoor unit 200 are connected by gas refrigerant piping 300 and liquid refrigerant piping 400 to form a refrigerant circuit for circulating the refrigerant. The outdoor unit 100 has the compressor 101 described in the first embodiment. The air conditioner may have the compressor 101a described in the second embodiment instead of the compressor 101 described in the first embodiment. In addition, the outdoor unit 100 has a channel switching device 102 , an outdoor heat exchanger 103 and an expansion device 104 . Also, the indoor unit 200 has an indoor heat exchanger 201 .
 圧縮機101は、吸入した冷媒を圧縮して吐出する。ここで、特に限定するものではないが、圧縮機101を、たとえば、インバータ回路等により、運転周波数を任意に変化できるようにしてもよい。 The compressor 101 compresses and discharges the sucked refrigerant. Here, although not particularly limited, the compressor 101 may be configured so that the operating frequency can be arbitrarily changed by, for example, an inverter circuit or the like.
 流路切替装置102は、例えば四方弁であり、冷媒の流れ方向を切り替えることで、冷房運転と暖房運転とを切り替えるものである。なお、流路切替装置102として、四方弁に代えて二方弁および三方弁の組み合わせ等を用いてもよい。 The channel switching device 102 is, for example, a four-way valve, and switches between the cooling operation and the heating operation by switching the flow direction of the refrigerant. As the channel switching device 102, a combination of a two-way valve and a three-way valve may be used instead of the four-way valve.
 室外熱交換器103は、冷媒と空気(室外の空気)との熱交換を行う。たとえば、暖房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。 The outdoor heat exchanger 103 exchanges heat between refrigerant and air (outdoor air). For example, during heating operation, it functions as an evaporator to evaporate and vaporize the refrigerant. Also, during cooling operation, it functions as a condenser to condense and liquefy the refrigerant.
 絞り装置104は、冷媒を減圧して膨張させるものである。例えば電子式膨張弁等で構成した場合には、制御装置(図示せず)等の指示に基づいて開度調整を行う。 The expansion device 104 reduces the pressure of the refrigerant to expand it. For example, when an electronic expansion valve or the like is used, the degree of opening is adjusted based on an instruction from a control device (not shown) or the like.
 室内熱交換器201は、たとえば空調対象となる空気と冷媒との熱交換を行う。暖房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。また、冷房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。 The indoor heat exchanger 201 performs heat exchange, for example, between the air to be air-conditioned and the refrigerant. During heating operation, it functions as a condenser to condense and liquefy the refrigerant. Also, during cooling operation, it functions as an evaporator to evaporate and vaporize the refrigerant.
 以上のように、実施の形態3の冷凍サイクル装置によれば、実施の形態1で説明した圧縮機101または実施の形態2で説明した圧縮機101aを機器として有している。そのため、実施の形態1で説明した圧縮機101または実施の形態2で説明した圧縮機101aと同様の効果を得ることができる。 As described above, according to the refrigeration cycle apparatus of Embodiment 3, the compressor 101 described in Embodiment 1 or the compressor 101a described in Embodiment 2 is provided as equipment. Therefore, the same effects as those of the compressor 101 described in the first embodiment or the compressor 101a described in the second embodiment can be obtained.
 1 容器、1a 上部容器、1b 側部容器、1c 下部容器、2 吸入配管、3 吐出配管、4 フレーム、4a フレーム油戻し管上穴、4b フレーム油戻し管中穴、4c フレーム油戻し管下穴、5 回転軸、6 動力変換機構部、7 揺動スクロール、7a 渦巻ラップ、8 固定スクロール、8a 渦巻ラップ、8d 固定スクロール油戻し管下穴、8e 固定スクロール油戻し管中穴、8f 固定スクロール油戻し管上穴、8g 固定スクロール油戻しバイパス穴、9 圧縮室、10 サブフレーム、11 回転子、12 固定子、13 油供給管路、14 吸入孔、15 吐出孔、16 貯油部、17 油供給パイプ、17a 吸引口、18 油ポンプ、19 吸入空間、20 吐出空間、20a 集油部、21 逆止弁、22 旋回機構部、22a 流路、22b 吹出口、23 円筒部、23a 孔、24 油戻し管、25 圧縮空間、30 圧縮機構部、40 電動機構部、51 螺旋通路ねじ、51a 本体部、51b 小径部、51c ねじ部、51d 頭部、52 内面溝付銅管、60 遠心分離部、81 固定スクロール油戻し管穴、82 フレーム油戻し管穴、100 室外機、101 圧縮機、101a 圧縮機、102 流路切替装置、103 室外熱交換器、104 絞り装置、200 室内機、201 室内熱交換器、300 ガス冷媒配管、400 液冷媒配管。 1 container, 1a upper container, 1b side container, 1c lower container, 2 suction pipe, 3 discharge pipe, 4 frame, 4a frame oil return pipe upper hole, 4b frame oil return pipe middle hole, 4c frame oil return pipe lower hole , 5 rotary shaft, 6 power conversion mechanism, 7 orbiting scroll, 7a spiral wrap, 8 fixed scroll, 8a spiral wrap, 8d fixed scroll oil return pipe pilot hole, 8e fixed scroll oil return pipe middle hole, 8f fixed scroll oil Return pipe upper hole 8g Fixed scroll oil return bypass hole 9 Compression chamber 10 Subframe 11 Rotor 12 Stator 13 Oil supply pipe 14 Suction hole 15 Discharge hole 16 Oil reservoir 17 Oil supply Pipe, 17a Suction port, 18 Oil pump, 19 Suction space, 20 Discharge space, 20a Oil collecting part, 21 Check valve, 22 Turning mechanism part, 22a Flow path, 22b Blowout port, 23 Cylindrical part, 23a Hole, 24 Oil Return pipe, 25 Compression space, 30 Compression mechanism, 40 Electric mechanism, 51 Spiral passage screw, 51a Main body, 51b Small diameter part, 51c Threaded part, 51d Head, 52 Inner grooved copper tube, 60 Centrifugal separator, 81 fixed scroll oil return pipe hole, 82 frame oil return pipe hole, 100 outdoor unit, 101 compressor, 101a compressor, 102 flow switching device, 103 outdoor heat exchanger, 104 expansion device, 200 indoor unit, 201 indoor heat Exchanger, 300 gas refrigerant piping, 400 liquid refrigerant piping.

Claims (11)

  1.  貯油部を有する容器と、
     前記容器の外部から冷媒を吸入する吸入配管と、
     前記容器の内部に配置され、前記吸入配管が吸入した冷媒を圧縮する圧縮機構部と、
     前記圧縮機構部を前記容器に固定するフレームと、
     前記圧縮機構部で圧縮された冷媒から油を分離する油分離部と、
     前記油分離部を通過した冷媒を前記容器の上部から外部に吐出する吐出配管と、
     前記油分離部の外側に設けられ、前記油分離部から排出された油を回収する集油部と、
     前記集油部に回収された油を前記貯油部へ戻す返油流路を構成する減圧部と、
     前記返油流路を構成し、前記減圧部の出口側から前記貯油部に向かって延びるように設けられ、前記減圧部を通過した後の油を前記貯油部へ戻す油戻し部と、を備え、
     前記減圧部は、
     前記集油部に回収された油の圧力損失を増加させるものである
     圧縮機。
    a container having an oil reservoir;
    a suction pipe for sucking refrigerant from the outside of the container;
    a compression mechanism that is disposed inside the container and compresses the refrigerant sucked by the suction pipe;
    a frame that fixes the compression mechanism to the container;
    an oil separation unit that separates oil from the refrigerant compressed by the compression mechanism;
    a discharge pipe that discharges the refrigerant that has passed through the oil separation unit to the outside from the upper part of the container;
    an oil collection section provided outside the oil separation section for collecting the oil discharged from the oil separation section;
    a decompression unit that forms an oil return passage for returning the oil collected in the oil collection unit to the oil storage unit;
    an oil return portion that constitutes the oil return flow path, is provided so as to extend from the outlet side of the pressure reduction portion toward the oil storage portion, and returns oil after passing through the pressure reduction portion to the oil storage portion. ,
    The decompression unit is
    A compressor for increasing the pressure loss of the oil collected in the oil collecting section.
  2.  前記減圧部は、
     円柱形状の棒状体によって構成され、外周部に螺旋溝が形成された本体部を有する螺旋通路ねじである
     請求項1に記載の圧縮機。
    The decompression unit is
    The compressor according to claim 1, which is a helical passage screw having a main body formed by a cylindrical rod body and having a helical groove formed on an outer peripheral portion thereof.
  3.  前記返油流路を構成し、前記集油部に回収された油を斜め上から前記減圧部に供給する斜め孔を備えた
     請求項2に記載の圧縮機。
    The compressor according to claim 2, further comprising an oblique hole that constitutes the oil return flow path and supplies the oil collected in the oil collecting portion to the pressure reducing portion from obliquely above.
  4.  前記斜め孔の延びる方向は、前記本体部の前記螺旋溝の延びる方向に沿う方向である
     請求項3に記載の圧縮機。
    The compressor according to claim 3, wherein the direction in which the oblique holes extend is along the direction in which the spiral grooves of the body portion extend.
  5.  前記斜め孔の水平方向に対する角度は、前記本体部の前記螺旋溝の水平方向に対する角度よりも大きい
     請求項3または4に記載の圧縮機。
    The compressor according to claim 3 or 4, wherein the angle of the oblique hole with respect to the horizontal direction is larger than the angle of the spiral groove of the main body with respect to the horizontal direction.
  6.  前記斜め孔の径は、前記本体部の前記螺旋溝の幅よりも大きい
     請求項3~5のいずれか一項に記載の圧縮機。
    The compressor according to any one of claims 3 to 5, wherein the diameter of the oblique hole is larger than the width of the spiral groove of the main body.
  7.  前記フレームの側面には、前記集油部に回収された油が流れるフレーム油戻し管穴が形成されており、
     前記減圧部は、前記フレーム油戻し管穴の内部に設けられている
     請求項1~6のいずれか一項に記載の圧縮機。
    A frame oil return pipe hole is formed in the side surface of the frame through which the oil collected in the oil collecting portion flows,
    The compressor according to any one of claims 1 to 6, wherein the decompression section is provided inside the frame oil return pipe hole.
  8.  前記油分離部は、
     油を前記集油部へ排出する複数の孔を側面に有する円筒部と、
     前記円筒部の下部領域の内側に設けられ、前記圧縮機構部で圧縮された冷媒を吹き出すことにより、前記円筒部の内側を旋回しながら前記容器の上部の前記吐出配管に向かって流れ、冷媒から油を分離させる旋回流を形成する旋回機構部と、を有する
     請求項1~7のいずれか一項に記載の圧縮機。
    The oil separation unit is
    a cylindrical portion having a plurality of holes on its side surface for discharging oil to the oil collecting portion;
    Provided inside the lower region of the cylindrical portion, by blowing out the refrigerant compressed by the compression mechanism portion, it flows toward the discharge pipe at the top of the container while rotating inside the cylindrical portion, and flows from the refrigerant. The compressor according to any one of Claims 1 to 7, further comprising a swirl mechanism portion that forms a swirl flow that separates the oil.
  9.  前記圧縮機構部を駆動する電動機構部と、
     前記電動機構部の回転駆動力を受け取って前記圧縮機構部に伝達する回転軸と、を備え、
     前記回転軸が重力方向に対して傾斜するか、あるいは前記回転軸が水平となるように横向きで設置される横置き型であって、
     前記回転軸の一端部には、前記貯油部に溜まった油をくみ上げる油ポンプが設けられており、
     前記油ポンプには、前記貯油部に向かって延びる油供給パイプが接続されており、
     横向きで設置された状態において、
     前記返油流路の入口および前記油供給パイプの先端に形成された吸引口は、重力方向の下側に設けられている
     請求項1~8のいずれか一項に記載の圧縮機。
    an electric mechanism unit that drives the compression mechanism unit;
    a rotating shaft that receives the rotational driving force of the electric mechanism and transmits it to the compression mechanism;
    A horizontal installation type in which the rotation axis is inclined with respect to the direction of gravity or is installed sideways so that the rotation axis is horizontal,
    One end of the rotating shaft is provided with an oil pump for pumping up the oil accumulated in the oil reservoir,
    An oil supply pipe extending toward the oil reservoir is connected to the oil pump,
    When installed horizontally,
    The compressor according to any one of claims 1 to 8, wherein the inlet of the oil return passage and the suction port formed at the tip of the oil supply pipe are provided on the lower side in the direction of gravity.
  10.  前記冷媒としてHFC系冷媒、HC系冷媒または自然系冷媒が用いられる
     請求項1~9のいずれか一項に記載の圧縮機。
    The compressor according to any one of claims 1 to 9, wherein an HFC refrigerant, an HC refrigerant, or a natural refrigerant is used as the refrigerant.
  11.  請求項1~10のいずれか一項に記載の圧縮機、凝縮器、絞り装置、および、蒸発器が配管で接続され、冷媒が循環する冷媒回路を有する冷凍サイクル装置。 A refrigeration cycle apparatus having a refrigerant circuit in which the compressor, condenser, expansion device, and evaporator according to any one of claims 1 to 10 are connected by pipes and in which refrigerant circulates.
PCT/JP2021/042513 2021-11-19 2021-11-19 Compressor and refrigeration cycle device using same WO2023089750A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042513 WO2023089750A1 (en) 2021-11-19 2021-11-19 Compressor and refrigeration cycle device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042513 WO2023089750A1 (en) 2021-11-19 2021-11-19 Compressor and refrigeration cycle device using same

Publications (1)

Publication Number Publication Date
WO2023089750A1 true WO2023089750A1 (en) 2023-05-25

Family

ID=86396447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042513 WO2023089750A1 (en) 2021-11-19 2021-11-19 Compressor and refrigeration cycle device using same

Country Status (1)

Country Link
WO (1) WO2023089750A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017527738A (en) * 2015-05-26 2017-09-21 ハンオン システムズ Compressor having oil recovery means
CN207349066U (en) * 2017-09-04 2018-05-11 珠海格力电器股份有限公司 scroll compressor, throttling structure and air conditioner
WO2019102673A1 (en) * 2017-11-27 2019-05-31 三菱電機株式会社 Compressor and refrigeration cycle device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017527738A (en) * 2015-05-26 2017-09-21 ハンオン システムズ Compressor having oil recovery means
CN207349066U (en) * 2017-09-04 2018-05-11 珠海格力电器股份有限公司 scroll compressor, throttling structure and air conditioner
WO2019102673A1 (en) * 2017-11-27 2019-05-31 三菱電機株式会社 Compressor and refrigeration cycle device

Similar Documents

Publication Publication Date Title
US7386994B2 (en) Oil separator and cooling-cycle apparatus using the same
JP4455546B2 (en) High pressure shell type compressor and refrigeration system
US7819644B2 (en) Scroll compressor with crankshaft venting
US20160186754A1 (en) Scroll compressor and air conditioner having the same
JPH02196188A (en) Rotary compressor
CN111386397B (en) Compressor and refrigeration cycle device
JP3232769B2 (en) Scroll compressor and gas-liquid separator
KR102274758B1 (en) Scroll compressor
JP4591350B2 (en) Refrigeration equipment
JP4114337B2 (en) Refrigeration equipment
WO2023089750A1 (en) Compressor and refrigeration cycle device using same
JP4696530B2 (en) Fluid machinery
JP7378646B2 (en) Compressor and refrigeration cycle equipment equipped with it
JP2017053222A (en) Hermetic scroll compressor and refrigeration air conditioning equipment
JP2016161163A (en) Air conditioner
US11306953B2 (en) Compressor and refrigeration cycle apparatus
JP2016161211A (en) Refrigeration device
JP7493627B2 (en) Two-Stage Scroll Compressor
WO2024057444A1 (en) Oil separator, compressor, and refrigeration cycle device
WO2024134757A1 (en) Scroll compressor
JP2010084954A (en) Refrigerating cycle device
WO2024029028A1 (en) Oil separator and refrigeration cycle device
JPH07189964A (en) Closed type motor-driven compressor
WO2020067197A1 (en) Multistage compression system
WO2021131048A1 (en) Gas-liquid separation device and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964765

Country of ref document: EP

Kind code of ref document: A1