WO2023088333A1 - 盘根自预紧系统和方法 - Google Patents

盘根自预紧系统和方法 Download PDF

Info

Publication number
WO2023088333A1
WO2023088333A1 PCT/CN2022/132403 CN2022132403W WO2023088333A1 WO 2023088333 A1 WO2023088333 A1 WO 2023088333A1 CN 2022132403 W CN2022132403 W CN 2022132403W WO 2023088333 A1 WO2023088333 A1 WO 2023088333A1
Authority
WO
WIPO (PCT)
Prior art keywords
packing
torque
driving
drive
transmission
Prior art date
Application number
PCT/CN2022/132403
Other languages
English (en)
French (fr)
Inventor
王�锋
姜一博
李海龙
Original Assignee
烟台杰瑞石油服务集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油服务集团股份有限公司 filed Critical 烟台杰瑞石油服务集团股份有限公司
Publication of WO2023088333A1 publication Critical patent/WO2023088333A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements

Definitions

  • Embodiments of the present disclosure relate to a packing self-tightening system and a packing self-tightening method.
  • fracturing In the field of oil and natural gas extraction, fracturing refers to a technology that uses high-pressure fracturing fluid to form cracks in oil and gas layers during oil or gas extraction. Through fracturing operations, oil and gas layers can be fractured, which can improve the flow environment of oil or natural gas underground and increase the production of oil wells. Therefore, fracturing operation is the main production stimulation method in oil and gas field exploitation.
  • shale gas resources are abundant in the world, but due to the low permeability of shale formations, they have not been widely developed yet.
  • fracturing technology can be widely used in shale reservoir reconstruction and shale gas exploitation.
  • the plunger pump is one of the core equipment used for fracturing operations.
  • the plunger pump converts the power output by the prime mover into the reciprocating motion of the plunger, and then uses the reciprocating motion of the plunger to convert the low-pressure fracturing fluid into high-pressure of fracturing fluid.
  • Embodiments of the present disclosure provide a packing self-tightening system and method.
  • the packing self-tightening system can detect the torque of the packing cap through the packing torque detector to automatically judge whether the packing cap is loose, and can also use the driving device and the transmission device to make the packing cap loose. Tighten, thereby providing a system for automatic tightening of the packing.
  • the packing self-tightening system also sets torque between the first transmission assembly and the packing gland, between the first transmission assembly and the second transmission assembly, or between the second transmission assembly and the driving device. Limiter, to avoid excessive torque of the packing gland.
  • At least one embodiment of the present disclosure provides a packing self-tightening system
  • the packing includes a packing pressure cap
  • the packing self-tightening system includes: a packing monitoring device, including a packing torque detector, the The packing torque detector is configured to detect the torque of the packing gland;
  • the transmission device includes a first transmission assembly and a second transmission assembly, the first transmission assembly is connected to the packing gland and is configured To drive the packing gland to rotate;
  • a driving device connected to the second transmission assembly and configured to drive the second transmission assembly; and a torque limiter arranged between the first transmission assembly and the Between packing glands, between the first transmission assembly and the second transmission assembly, or between the second transmission assembly and the driving device.
  • the packing self-tightening system further includes: a controller, which is respectively connected in communication with the packing torque detector, the driving device, and the torque limiter, and the controller is configured to In order to send an activation signal to the driving device when the torque detected by the packing torque detector is less than a preset torque, and to send a shutdown signal to the driving device when the torque limiter is slipping.
  • the packing monitoring device further includes: a packing liquid leakage monitor configured to monitor whether the packing has liquid leakage.
  • the controller is connected in communication with the packing leakage monitor, and the controller is configured to When liquid leakage is detected and the torque detected by the packing torque detector is less than the preset torque, a start signal is sent to the driving device, and when the liquid leakage is detected by the packing torque detector and the When the torque detected by the packing torque detector is greater than or equal to the preset torque, an alarm signal is sent.
  • the first transmission assembly or the second transmission assembly includes a one-way transmission member.
  • the first transmission assembly includes a packing driving member connected to the packing pressure cap;
  • the second transmission assembly includes a strip driving member , the strip-shaped driving member is connected to the driving device, the driving device is configured to drive the strip-shaped driving member to perform linear motion, and the strip-shaped driving member is configured to drive the packing drive member to rotate movement to drive the packing pressing cap to tighten.
  • the packing driving member includes a packing driving gear fixed on the packing pressure cap, and the first transmission member further includes a first Torque transmission gear, the first torque transmission gear meshes with the packing drive gear;
  • the bar-shaped driving member includes a driving rack, and the second transmission member also includes a one-way driving gear, and the driving rack and The one-way drive gear meshes;
  • the torque limiter is disposed between the one-way drive gear and the first torque transmission gear, and is connected to the one-way drive gear and the first torque transmission gear respectively .
  • the packing driving part includes a one-way packing driving gear
  • the strip-shaped driving part includes a driving rack
  • the driving rack is connected to the The one-way packing drive gear meshes with the one-way packing drive gear
  • the torque limiter is arranged between the one-way packing drive gear and the packing pressure cap, and is respectively connected with the one-way packing drive gear and the packing Press the cap to connect.
  • the packing driving part includes a one-way packing driving ratchet fixed to the packing pressing cap, and the strip driving part includes a pawl
  • the drive bar, the pawl drive bar is connected to the packing drive ratchet, the torque limiter is arranged between the one-way packing drive ratchet and the packing pressure cap, and is connected to the one-way drive ratchet respectively.
  • the packing driving ratchet is connected with the packing pressing cap.
  • the first transmission assembly includes a packing drive gear
  • the second transmission assembly includes a second torque transmission gear
  • the packing drive gear and The second torque transmission gear is meshed
  • the torque limiter is disposed between the driving device and the second torque transmission gear, and is respectively connected to the driving device and the second torque transmission gear
  • the A drive arrangement is configured to drive the second torque transmitting gear in rotation.
  • the first transmission assembly includes a packing drive sprocket
  • the second transmission assembly includes a packing drive chain and a torque transmission sprocket
  • the packing driving chain is respectively connected with the packing driving sprocket and the torque transmission sprocket
  • the torque limiter is arranged between the driving device and the torque transmitting sprocket, and is respectively connected with the driving device Connected to the torque transfer sprocket
  • the drive device is configured to drive the torque transfer sprocket in rotation.
  • the driving device includes at least one of an electric motor, a hydraulic motor, a hydraulic cylinder, and a pneumatic cylinder.
  • At least one embodiment of the present disclosure also provides a packing self-tightening method, which includes: using a packing torque detector to detect the torque of the packing pressure cap of the packing; when the torque detected by the packing torque detector is less than the preset Torque, turn on the driving device, and tighten the packing gland through the transmission device; when the torque detected by the packing torque detector is greater than or equal to the preset torque, turn off the driving device, and the driving device passes the
  • the transmission device tightening the packing pressure cap includes: limiting the magnitude of the torque transmitted by the transmission device to the packing pressure cap through a torque limiter.
  • the packing self-tightening method provided by an embodiment of the present disclosure further includes: closing the driving device when the torque limiter slips.
  • the packing self-tightening method provided by an embodiment of the present disclosure further includes: monitoring whether the packing leaks; when the packing leakage monitor detects the liquid leakage and the packing torque detects When the torque detected by the sensor is less than the preset torque, the driving device is turned on and the packing gland is tightened through the transmission device; when the packing liquid leakage monitor detects liquid leakage and the disc When the torque detected by the root torque detector is greater than or equal to the preset torque, an alarm signal is sent.
  • the transmission device includes a one-way transmission member.
  • Fig. 1 is a structural representation of a plunger pump
  • Fig. 2 is a schematic diagram of the liquid end in the plunger pump shown in Fig. 1;
  • Fig. 3 is a schematic diagram of a packing self-tensioning system provided by an embodiment of the present disclosure
  • Fig. 4 is a logic flow chart of a packing self-tensioning system provided by an embodiment of the present disclosure
  • Fig. 5 is a front view of a packing self-tensioning system provided by an embodiment of the present disclosure
  • Fig. 6 is a side view of a packing self-tensioning system provided by an embodiment of the present disclosure
  • Fig. 7 is a front view of another packing self-tensioning system provided by an embodiment of the present disclosure.
  • Fig. 8 is a side view of another packing self-tensioning system provided by an embodiment of the present disclosure.
  • Fig. 9 is a front view of another packing self-tensioning system provided by an embodiment of the present disclosure.
  • Fig. 10 is a side view of another packing self-tensioning system provided by an embodiment of the present disclosure.
  • Fig. 12 is a side view of another packing self-tensioning system provided by an embodiment of the present disclosure.
  • Fig. 13 is a front view of another packing self-tensioning system provided by an embodiment of the present disclosure.
  • Fig. 14 is a side view of another packing self-tensioning system provided by an embodiment of the present disclosure.
  • Fig. 15 is a schematic flowchart of a packing self-tightening method provided by an embodiment of the present disclosure.
  • the plunger pump must not only be able to meet the continuous operation of high pressure and large displacement (for example, the current operating pressure of the plunger pump reaches More than 80Mpa, the displacement reaches more than 1800m 3 ), but also to ensure the quality stability under continuous high-load operation, and reduce the time of pump shutdown and maintenance. Moreover, as the power of the plunger pump increases, higher requirements are placed on the running stability and support strength of the plunger pump itself.
  • Fig. 1 is a schematic structural diagram of a plunger pump
  • Fig. 2 is a schematic diagram of a fluid end in the plunger pump shown in Fig. 1 .
  • the plunger pump 40 includes a power end 20 and a fluid end 10 .
  • the hydraulic end 10 mainly includes a valve box 11, a plunger 12, a first valve assembly 13, a second valve assembly 14, a first sealing assembly 15, a second sealing assembly 16 and a packing assembly 17
  • the packing assembly 17 includes a disc Root pressure cap 18 and other seals (not shown).
  • the first valve assembly 13 is a one-way valve, which allows fluid to enter the first cavity 11A from the outside, but prevents the fluid in the first cavity 11A from flowing out
  • the second valve assembly 14 is also a one-way valve.
  • the valve allows the fluid in the first cavity 11A to flow out, but prevents the fluid from entering the first cavity 11A from the outside
  • the power end 20 mainly includes a crankshaft 21, a connecting rod 22, a crosshead 23, a tie rod 24 and a clamp 25; the crankshaft 21 is connected with the connecting rod 22, and the crosshead 23 is connected with the connecting rod 22 and the pull rod 24 respectively, and the pull rod 24 is connected with the plunger 12 through a clamp.
  • the working principle of the plunger pump is as follows: driven by the prime mover, the crankshaft 21 of the power end 20 rotates, thereby driving the connecting rod 22 and the crosshead 23 to reciprocate; then the cross The head 23 drives the plunger 12 to reciprocate through the pull rod 24 .
  • the volume inside the valve box 11 (that is, the total volume of the first cavity 11A and the second cavity 11B) gradually increases, forming a partial negative pressure or vacuum;
  • the first valve assembly 13 is opened, the second valve assembly 14 is closed, and the external fluid enters the valve box 11;
  • the plunger 12 returns to the limit position the inside of the valve box 11 is filled with fluid, and a fluid suction process is completed.
  • the seal between the plunger 12 and the packing assembly 17 is a dynamic seal, which is mainly realized by the radial expansion of the packing assembly 17 .
  • the packing pressure cap 18 under the cyclic action of low pressure and high pressure, long-time work will cause the packing pressure cap 18 to loosen. If the inspection is not timely, the plunger pump may have fracturing fluid puncture leakage, packing cap flying out, valve box puncture leakage, power end damage and other faults, which will seriously affect the operation efficiency and even cause safety accidents.
  • the oil and gas field operation site still adopts the maintenance method of planned maintenance and sudden accident maintenance.
  • the planned maintenance requires the operator to check the looseness of each packing gland of dozens or even dozens of plunger pumps on site; this Under this maintenance system, regardless of whether the packing cap is loose or not, the operator needs to check it one by one and cylinder by cylinder, which is time-consuming and laborious; The torque of the packing pressing cap to compress the packing is different, and a unified standard cannot be formed, which is neither economical nor reasonable; and emergency maintenance, that is, maintenance after a failure occurs, which has a large degree of damage to the equipment and Maintenance costs are high.
  • the embodiments of the present disclosure provide a packing self-tensioning system and method.
  • the packing self-tightening system includes a packing monitoring device, a transmission device, a driving device and a torque limiter;
  • the packing monitoring device includes a packing torque detector, and the packing torque detector is configured to detect the torque of the packing pressure cap;
  • the transmission device includes a first transmission assembly and a second transmission assembly.
  • the first transmission assembly is connected to the packing and is configured to drive the rotation of the packing pressing cap;
  • the driving device is connected to the second transmission assembly and is configured to drive the second transmission Components;
  • the torque limiter is arranged between the first transmission component and the packing pressure cap, between the first transmission component and the second transmission component, or between the second transmission component and the driving device.
  • the packing self-tightening system can detect the torque of the packing cap through the packing torque detector to automatically judge whether the packing cap is loose, and can also use the driving device and the transmission device to make the packing cap loose. Tighten, thereby providing a system for automatic tightening of the packing.
  • the packing self-tightening system also sets torque between the first transmission assembly and the packing gland, between the first transmission assembly and the second transmission assembly, or between the second transmission assembly and the driving device. Limiter, to avoid excessive torque of the packing gland.
  • FIG. 3 is a schematic diagram of a packing self-tightening system provided by an embodiment of the present disclosure.
  • the plunger pump 200 includes at least one packing assembly 210 , and each packing assembly 210 includes a packing pressure cap 215 .
  • torque limiter shown in FIG. 3 is set between the second transmission assembly and the driving device, embodiments of the present disclosure include but are not limited thereto.
  • the torque limiter may also be set between the first transmission assembly and the disc. between the root pressing caps, or between the first transmission assembly and the second transmission assembly.
  • the packing self-tightening system can detect the torque of the packing pressure cap through the packing torque detector to automatically judge whether the packing pressure cap is loose,
  • the packing pressing cap can also be tightened by the driving device and the transmission device, so as to provide an automatic fastening system for the packing.
  • the packing self-tightening system also sets torque between the first transmission assembly and the packing gland, between the first transmission assembly and the second transmission assembly, or between the second transmission assembly and the driving device. Limiter, to avoid excessive torque of the packing gland.
  • the packing self-tensioning system 100 further includes a controller 150, and the controller 150 is communicated with the packing torque detector 112, the driving device 130 and the torque limiter 140 respectively; the controller 150 is configured to send an activation signal to the drive device 130 when the torque detected by the packing torque detector 112 is less than a preset torque, and to send a shutdown signal to the drive device 130 when the torque limiter 140 is slipping.
  • the packing self-tightening system can automatically tighten the packing. It should be noted that when the set torque is reached, the torque limiter will limit the transmission of torque in the form of slipping, and the torque limiter can also transmit the currently set torque while slipping.
  • the torque limiter 140 when the torque limiter 140 is slipping, the torque limiter 140 may send a slipping signal to the controller 150 ; after receiving the slipping signal, the controller 150 may send a shutdown signal to the driving device 130 .
  • the packing monitoring device 110 further includes a packing liquid leakage monitor 114 configured to monitor whether the packing 210 produces liquid leakage. Therefore, the packing self-tightening system can also monitor whether the packing has liquid leakage through the packing liquid leakage detector.
  • the controller 150 is in communication with the packing leakage monitor 114 , and the controller 150 is configured to detect a liquid leakage at the packing leakage monitor 114 and the packing torque detector
  • a start signal is sent to the driving device 130, and it is sent when the packing leakage monitor 114 detects liquid leakage and the torque detected by the packing torque detector 112 is greater than or equal to the preset torque Alarm. Therefore, when the packing is tightened, if there is still liquid leakage, the packing self-tightening system can send out an alarm signal, so that the operator can deal with it in time.
  • the second transmission assembly 122 includes a one-way transmission member 1225; thus, it can prevent the reverse action of the torque generated by the packing press cap and the transmission or drive, causing damage to the drive.
  • the embodiments of the present disclosure include but are not limited thereto, and the one-way transmission element may also be disposed in the first transmission assembly, that is, the first transmission assembly includes the one-way transmission element.
  • Fig. 4 is a logic flow chart of a packing self-tensioning system provided by an embodiment of the present disclosure.
  • firstly whether the packing leaks can be monitored by the packing leakage monitor, and whether the packing is pre-tightened by the packing torque detector; when the packing does not leak and the packing is pre-tightened, control
  • the packing leakage monitor monitors continuously; when the packing does not leak and the packing is not pre-tightened, the controller can send a start signal to the drive device; when the packing leaks and the packing is pre-tightened, an alarm is sent Information; when the packing leaks and the packing is not preloaded, a start signal can be sent to the drive through the controller.
  • the driving device transmits torque to the packing gland through the transmission device and the torque limiter, so as to tighten the packing gland and tighten the packing; after that, Use the packing torque detector and torque limiter to judge whether the torque of the packing gland reaches the preset torque; when the torque of the packing gland reaches the preset torque, the controller can send a closing signal to the drive device, and continue Monitoring; when the torque of the packing gland does not reach the preset torque, the driving device continues to transmit torque to the packing gland through the transmission and the torque limiter.
  • the above-mentioned various controllers or controller modules may be implemented by software so as to be executed by various types of processors.
  • An identified module of executable code may, by way of example, comprise one or more physical or logical blocks of computer instructions which may, for example, be structured as an object, procedure, or function. Notwithstanding, the executable code of an identified module need not be physically located together, but may comprise distinct instructions stored on different physical locations which, when logically combined, constitute the module and carry out the stated purpose of the module .
  • a module of executable code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs and across multiple memory devices.
  • operational data may be identified within modules, and may be implemented in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed in different locations (including on different storage devices), and may exist, at least in part, only as electronic signals on a system or network.
  • the hardware circuit includes conventional very large scale integration (VLSI) circuits or gate arrays as well as existing semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI very large scale integration
  • a module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, and the like.
  • the first transmission assembly 121 includes a packing driving member 121A, which is connected to the packing pressing cap 215;
  • the driving device 130 is configured to drive the strip-shaped driving member 122A to perform linear motion
  • the strip-shaped driving member 122A is configured to drive the packing driving member 121A to perform rotational movement, so as to drive the packing pressing cap 215 to tighten.
  • the driving device can drive the packing pressing cap to be screwed tightly through the strip driving part and the packing driving part.
  • the packing driving member 121A includes a packing driving gear, and the packing driving gear 121A is fixed on the packing pressing cap 215; at this time, the first transmission member 121 also includes a second A torque transmission gear 121B, the first torque transmission gear 121B meshes with the packing drive gear 121A; the strip drive member 122A includes a drive rack, and the second transmission member 122 also includes a one-way drive gear 1225, and the drive rack 122A and the one-way drive gear 1225 Drive gear 1225 is engaged.
  • the torque limiter 140 is disposed between the one-way driving gear 1225 and the first torque transmission gear 121B, and is connected to the one-way driving gear 1225 and the first torque transmission gear 121B, respectively.
  • the driving rack 122A can drive the one-way driving gear 1225 to rotate
  • the one-way driving gear 1225 drives the first torque transmission gear 121B to rotate through the torque limiter 140
  • the first torque transmission gear 121B can drive the packing drive gear 121A to rotate
  • the packing pressing cap 215 is driven to rotate.
  • the torque limiter 140 may limit the torque transmitted from the one-way drive gear 1225 to the first torque transmission gear 121B.
  • the driving device 130 may be a hydraulic cylinder or a pneumatic cylinder.
  • the embodiments of the present disclosure include but are not limited thereto, and the driving device may also be other forms of driving device, as long as it can drive the strip-shaped driving member to perform linear motion.
  • the first transmission assembly 121 includes a packing driving member 121A, which is connected to the packing pressing cap 215;
  • the driving device 130 is configured to drive the strip-shaped driving member 122A to perform linear motion
  • the strip-shaped driving member 122A is configured to drive the packing driving member 121A to perform rotational movement, so as to drive the packing pressing cap 215 to tighten.
  • the driving device can drive the packing pressing cap to be screwed tightly through the strip driving part and the packing driving part.
  • the packing driving part 121A includes a one-way packing driving gear, and the one-way packing driving gear 121A is fixed on the packing pressing cap 215; the strip driving part 122A includes a driving rack.
  • the driving rack 122A directly meshes with the one-way packing driving gear 121A, and the torque limiter 140 is arranged between the one-way packing driving gear 121A and the packing pressing cap 215, and is respectively connected with the one-way packing driving gear 121A and the packing The pressing cap 215 is connected.
  • the driving rack 122A can drive the one-way packing driving gear 121A to rotate, and the one-way packing driving gear 121A drives the packing pressing cap 215 to rotate through the torque limiter 140 .
  • the torque limiter 140 can limit the torque transmitted from the one-way packing driving gear 121A to the packing pressing cap 215 .
  • the driving device 130 may be a hydraulic cylinder or a pneumatic cylinder.
  • the embodiments of the present disclosure include but are not limited thereto, and the driving device may also be other forms of driving device, as long as it can drive the strip-shaped driving member to perform linear motion.
  • Fig. 9 is a front view of another packing self-tightening system provided by an embodiment of the present disclosure
  • Fig. 10 is a side view of another packing self-tightening system provided by an embodiment of the present disclosure.
  • the first transmission assembly 121 includes a packing driving member 121A, which is connected to the packing pressing cap 215;
  • the driving device 130 is configured to drive the strip-shaped driving member 122A to perform linear motion
  • the strip-shaped driving member 122A is configured to drive the packing driving member 121A to perform rotational movement, so as to drive the packing pressing cap 215 to tighten.
  • the driving device can drive the packing pressing cap to be screwed tightly through the strip driving part and the packing driving part.
  • the packing driving member 121A includes a one-way packing driving ratchet, the one-way packing driving ratchet 121A has a pawl 1215, and the one-way packing driving ratchet 121A is connected to the The pressing cap 215 is fixed;
  • the strip driving member 122A includes a pawl driving bar, the pawl driving bar 122A is connected with the packing driving ratchet 121A, the torque limiter 140 is arranged between the packing driving ratchet 121A and the packing pressing cap 215, and They are respectively connected with the one-way packing driving ratchet 121A and the packing pressing cap 215 .
  • the pawl driving bar 122A can drive the one-way packing driving ratchet 121A to rotate, and the one-way packing driving ratchet 121A drives the packing pressing cap 215 to rotate through the torque limiter 140 .
  • the torque limiter 140 can limit the torque transmitted from the one-way packing driving ratchet 121A to the packing pressing cap 215 .
  • the driving device 130 may be a hydraulic cylinder or a pneumatic cylinder.
  • the embodiments of the present disclosure include but are not limited thereto, and the driving device may also be other forms of driving device, as long as it can drive the strip-shaped driving member to perform linear motion.
  • Fig. 11 is a front view of another packing self-tightening system provided by an embodiment of the present disclosure
  • Fig. 12 is a side view of another packing self-tightening system provided by an embodiment of the present disclosure.
  • the first transmission assembly 121 includes a packing drive gear 121A
  • the second transmission assembly 122 includes a second torque transmission gear 122C
  • the packing drive gear 121A and the second torque transmission gear 122C mesh, and the torque is limited
  • the drive device 140 is disposed between the driving device 130 and the second torque transmission gear 122C, and is respectively connected to the driving device 130 and the second torque transmission gear 122C.
  • the driving device 130 is configured to drive the second torque transmission gear 122C to rotate.
  • the driving device 130 can drive the second torque transmission gear 122C to rotate through the torque limiter 140 , and the second torque transmission gear 122C can drive the packing driving gear 121A to rotate, thereby driving the packing pressing cap 215 to tighten.
  • the torque limiter 140 may limit the torque transmitted by the drive device 130 to the second torque transmitting gear 122C.
  • the driving device 130 may be an electric motor or a hydraulic motor.
  • the embodiments of the present disclosure include but are not limited thereto, and the driving device may also be other types of driving device, as long as it can drive the second torque transmission gear to rotate.
  • Fig. 13 is a front view of another packing self-tightening system provided by an embodiment of the present disclosure
  • Fig. 14 is a side view of another packing self-tightening system provided by an embodiment of the present disclosure.
  • the first transmission assembly 121 includes a packing drive sprocket 121C
  • the second transmission assembly 122 includes a packing drive chain 122D and a torque transmission sprocket 122E
  • the packing drive chain 122D is respectively connected to the packing drive
  • the sprocket 121C is connected to the torque transmission sprocket 122E
  • the torque limiter 140 is arranged between the driving device 130 and the torque transmission sprocket 122E, and is respectively connected to the driving device 130 and the torque transmission sprocket 122E
  • the driving device 130 is configured to drive Torque transmitting sprocket 122E rotates.
  • the driving device 130 can drive the torque transmission sprocket 122E to rotate through the torque limiter 140, and the torque transmission sprocket 122E can drive the packing drive chain 122D to rotate, and the packing drive chain 122D can drive the packing drive sprocket 121C to rotate, Thereby drive the packing pressing cap 215 to tighten.
  • the torque limiter 140 may limit the torque transmitted by the drive device 130 to the torque transmitting sprocket 122E.
  • the second transmission assembly 122 further includes a tensioning sprocket 122F connected to the packing drive chain 122D and configured to tension the packing drive chain 122D.
  • the driving device 130 may be an electric motor or a hydraulic motor.
  • the embodiments of the present disclosure include but are not limited thereto, and the driving device may also be other types of driving device, as long as it can drive the torque transmission sprocket to rotate.
  • FIG. 15 is a schematic flowchart of a packing self-tightening method provided by an embodiment of the present disclosure. As shown in Figure 15, the packing self-tightening method includes the following steps:
  • the packing self-tightening system can detect the torque of the packing pressure cap through the packing torque detector to automatically judge whether the packing pressure cap is loose, Moreover, the packing pressing cap can also be tightened by the driving device and the transmission device, thereby providing an automatic fastening method for the packing.
  • the packing self-tightening system also uses a torque limiter to avoid excessive torque of the packing pressure cap.
  • the packing self-tightening method further includes: when the torque limiter slips, closing the driving device, so as to avoid excessive torque of the packing pressing cap.
  • the packing self-tightening method further includes: monitoring the packing for liquid leakage; when the packing liquid leakage monitor detects liquid leakage and the torque detected by the packing torque detector is less than the preset torque , turn on the driving device and tighten the packing gland through the transmission device; when the packing leakage monitor detects liquid leakage and the torque detected by the packing torque detector is greater than or equal to the preset torque, an alarm signal is issued.
  • the packing self-tightening method can send out an alarm signal so that the operator can handle it in time.
  • the transmission includes a one-way transmission. In this way, the torque generated by the packing pressing cap can be prevented from acting reversely on the transmission device or the driving device, causing damage to the driving device.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Sealing Devices (AREA)

Abstract

一种盘根自预紧系统和方法。该盘根自预紧系统(100)包括盘根监测装置(110)、传动装置(120)、驱动装置(130)和扭矩限制器(140);盘根监测装置(110)包括盘根扭矩检测器(112),盘根扭矩检测器(112)被配置为检测盘根压帽(215)的扭矩;传动装置(120)包括第一传动组件(121)和第二传动组件(122),第一传动组件(121)与盘根相连,并被配置为驱动盘根压帽(215)旋转;驱动装置(130)与第二传动组件(122)相连,并被配置为驱动第二传动组件(122);扭矩限制器(140)设置在第一传动组件(121)与盘根压帽(215)之间,第一传动组件(121)和第二传动组件(122)之间,或者第二传动组件(122)与驱动装置(130)之间。该盘根自预紧系统可提供一种盘根自动紧固的系统。

Description

盘根自预紧系统和方法
本申请要求于2021年11月19日递交的中国专利申请202111401986.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种盘根自预紧系统和盘根自预紧方法。
背景技术
在石油和天然气开采领域,压裂作业是指在采油或采气过程中,利用高压的压裂液使油气层形成裂缝的一种技术。通过压裂作业可使得油气层形成裂缝,从而可改善石油或天然气在地下的流动环境,使油井产量增加。因此,压裂作业是油气田开采中主要的增产方式。另一方面,世界页岩气资源丰富,但由于页岩地层渗透率很低,目前还没有得到广泛开发。压裂技术作为页岩气开发的核心技术之一,可广泛用于页岩储层改造和页岩气的开采。
柱塞泵是用于进行压裂作业的核心设备之一,柱塞泵通过将原动机输出的动力转换为柱塞的往复运动,然后利用柱塞的往复运动将低压的压裂液转换为高压的压裂液。随着油气田超高压、超深井、水平井的不断开发,压裂作业的工况也越来越恶劣,因此对柱塞泵的排量和压力的要求也越来越高。
发明内容
本公开实施例提供一种盘根自预紧系统和方法。一方面,该盘根自预紧系统可通过盘根扭矩检测器检测盘根压帽的扭矩,来自动判断盘根压帽是否松动,并且还可通过驱动装置和传动装置来将盘根压帽旋紧,从而可提供一种盘根自动紧固的系统。另一方面,该盘根自预紧系统还通过在第一传动组件与盘根压帽之间,第一传动组件和第二传动组件之间,或者第二传动组件与驱动装置之间设置扭矩限制器,来避免盘根压帽的扭矩过大。
本公开至少一个实施例提供一种盘根自预紧系统,所述盘根包括盘根压帽,所述盘根自预紧系统包括:盘根监测装置,包括盘根扭矩检测器,所述盘根扭矩检测器被配置为检测所述盘根压帽的扭矩;传动装置,包括第一传动组 件和第二传动组件,所述第一传动组件与所述盘根压帽相连,并被配置为驱动所述盘根压帽旋转;驱动装置,与所述第二传动组件相连,并被配置为驱动所述第二传动组件;以及扭矩限制器,设置在所述第一传动组件与所述盘根压帽之间,所述第一传动组件和所述第二传动组件之间,或者所述第二传动组件与所述驱动装置之间。
例如,本公开一实施例提供的盘根自预紧系统还包括:控制器,与所述盘根扭矩检测器、所述驱动装置和所述扭矩限制器分别通信相连,所述控制器被配置为在所述盘根扭矩检测器检测到的扭矩小于预设扭矩时,向所述驱动装置发送启动信号,在所述扭矩限制器打滑时,向所述驱动装置发送关闭信号。
例如,在本公开一实施例提供的盘根自预紧系统中,所述盘根监测装置还包括:盘根漏液监测器,被配置为监测所述盘根是否产生漏液现象。
例如,在本公开一实施例提供的盘根自预紧系统中,所述控制器与所述盘根漏液监测器通信连接,所述控制器被配置为在所述盘根漏液监测器检测到漏液现象且所述盘根扭矩检测器检测到的扭矩小于所述预设扭矩时,向所述驱动装置发送启动信号,在所述盘根漏液监测器检测到漏液现象且所述盘根扭矩检测器检测到的扭矩大于等于所述预设扭矩时发出报警信号。
例如,在本公开一实施例提供的盘根自预紧系统中,所述第一传动组件或所述第二传动组件包括单向传动件。
例如,在本公开一实施例提供的盘根自预紧系统中,所述第一传动组件包括盘根驱动件,与所述盘根压帽相连;所述第二传动组件包括条状驱动件,所述条状驱动件与所述驱动装置相连,所述驱动装置被配置为驱动所述条状驱动件进行直线运动,所述条状驱动件被配置为驱动所述盘根驱动件进行旋转运动,以带动所述盘根压帽旋紧。
例如,在本公开一实施例提供的盘根自预紧系统中,所述盘根驱动件包括盘根驱动齿轮,固定在所述盘根压帽上,所述第一传动件还包括第一扭矩传递齿轮,所述第一扭矩传递齿轮与所述盘根驱动齿轮啮合;所述条状驱动件包括驱动齿条,所述第二传动件还包括单向驱动齿轮,所述驱动齿条与所述单向驱动齿轮啮合;所述扭矩限制器设置在所述单向驱动齿轮与所述第一扭矩传递齿轮之间,并分别与所述单向驱动齿轮和所述第一扭矩传动齿轮相连。
例如,在本公开一实施例提供的盘根自预紧系统中,所述盘根驱动件包括单向盘根驱动齿轮,所述条状驱动件包括驱动齿条,所述驱动齿条与所述单向 盘根驱动齿轮啮合,所述扭矩限制器设置在所述单向盘根驱动齿轮与所述盘根压帽之间,并分别与所述单向盘根驱动齿轮和所述盘根压帽相连。
例如,在本公开一实施例提供的盘根自预紧系统中,所述盘根驱动件包括单向盘根驱动棘轮,与所述盘根压帽固定,所述条状驱动件包括棘爪驱动条,所述棘爪驱动条与所述盘根驱动棘轮相连,所述扭矩限制器设置在所述单向盘根驱动棘轮与所述盘根压帽之间,并分别与所述单向盘根驱动棘轮和所述盘根压帽相连。
例如,在本公开一实施例提供的盘根自预紧系统中,所述第一传动组件包括盘根驱动齿轮,所述第二传动组件包括第二扭矩传递齿轮,所述盘根驱动齿轮和所述第二扭矩传递齿轮啮合,所述扭矩限制器设置在所述驱动装置与所述第二扭矩传递齿轮之间,并分别与所述驱动装置和所述第二扭矩传递齿轮相连,所述驱动装置被配置为驱动所述第二扭矩传递齿轮旋转。
例如,在本公开一实施例提供的盘根自预紧系统中,所述第一传动组件包括盘根驱动链轮,所述第二传动组件包括盘根驱动链条和扭矩传递链轮,所述盘根驱动链条分别与所述盘根驱动链轮和所述扭矩传递链轮相连,所述扭矩限制器设置在所述驱动装置与所述扭矩传递链轮之间,并分别与所述驱动装置和所述扭矩传递链轮相连,所述驱动装置被配置为驱动所述扭矩传递链轮旋转。
例如,在本公开一实施例提供的盘根自预紧系统中,所述驱动装置包括电动机、液压马达、液压缸和气动缸中的至少一种。
本公开至少一个实施例还提供一种盘根自预紧方法,其包括:通过盘根扭矩检测器检测盘根的盘根压帽的扭矩;当盘根扭矩检测器检测到的扭矩小于预设扭矩时,开启驱动装置,并通过传动装置将所述盘根压帽旋紧;当盘根扭矩检测器检测到的扭矩大于等于所述预设扭矩时,关闭驱动装置,所述驱动装置通过所述传动装置将所述盘根压帽旋紧包括:通过扭矩限制器限制所述传动装置向所述盘根压帽传递的扭矩的大小。
例如,本公开一实施例提供的盘根自预紧方法还包括:当所述扭矩限制器打滑时,关闭所述驱动装置。
例如,本公开一实施例提供的盘根自预紧方法还包括:监测所述盘根是否产生漏液现象;当所述盘根漏液监测器检测到漏液现象且所述盘根扭矩检测器检测到的扭矩小于所述预设扭矩时,开启所述驱动装置并通过传动装置将所述盘根压帽旋紧;当所述盘根漏液监测器检测到漏液现象且所述盘根扭矩检测器 检测到的扭矩大于等于所述预设扭矩时发出报警信号。
例如,在本公开一实施例提供的盘根自预紧方法中,所述传动装置包括单向传动件。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种柱塞泵的结构示意图;
图2为图1所示的柱塞泵中的液力端的示意图;
图3为本公开一实施例提供的一种盘根自预紧系统的示意图;
图4为本公开一实施例提供的一种盘根自预紧系统的逻辑流程图;
图5为本公开一实施例提供的一种盘根自预紧系统的主视图;
图6为本公开一实施例提供的一种盘根自预紧系统的侧视图;
图7为本公开一实施例提供的另一种盘根自预紧系统的主视图;
图8为本公开一实施例提供的另一种盘根自预紧系统的侧视图;
图9为本公开一实施例提供的另一种盘根自预紧系统的主视图;
图10为本公开一实施例提供的另一种盘根自预紧系统的侧视图;
图11为本公开一实施例提供的另一种盘根自预紧系统的主视图;
图12为本公开一实施例提供的另一种盘根自预紧系统的侧视图;
图13为本公开一实施例提供的另一种盘根自预紧系统的主视图;
图14为本公开一实施例提供的另一种盘根自预紧系统的侧视图;以及
图15为本公开一实施例提供的一种盘根自预紧方法的流程示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领 域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
随着压裂作业对于单台柱塞泵的排量和压力的要求也越来越高,柱塞泵不仅要能够满足高压力、大排量的持续作业(例如,目前的柱塞泵作业压力达到80Mpa以上,排量达到1800m 3以上),还要保证连续高负荷作业下的质量稳定性,减少停泵时间和检修时间。并且,随着柱塞泵的功率的提升,对于柱塞泵本身的运行稳定性以及支撑强度也提出了更高的要求。
图1为一种柱塞泵的结构示意图;图2为图1所示的柱塞泵中的液力端的示意图。如图1和图2所示,柱塞泵40包括动力端20和液力端10。液力端10主要包括阀箱11、柱塞12、第一阀门组件13、第二阀们组件14、第一密封组件15、第二密封组件16和盘根组件17;盘根组件17包括盘根压帽18和其他的密封件(未示出)。
如图1和图2所示,阀箱11包括交叉设置的第一腔体11A和第二腔体11B,第一腔体11A和第二腔体11B交叉的部分为交贯腔体;第一密封组件15设置在第一腔体11A的一端,第一阀门组件13设置在第一腔体11A的另一端,第二阀门组件14设置在第一密封组件15靠近第一阀门组件13的一侧;柱塞12设置在第二腔体11B之内,盘根组件17和第二密封组件16分别设置在第二腔体11B的两端,以将第二腔体11B的两端密封;柱塞12可在盘根组件17和第二腔体11B内进行往复运动。
如图1和图2所示,第一阀门组件13为单向阀,允许流体从外部进入第一腔体11A,但防止第一腔体11A中的流体流出,第二阀门组件14也为单向阀,允许第一腔体11A中的流体流出,但防止流体从外部进入第一腔体11A;动力端20主要包括曲轴21、连杆22、十字头23、拉杆24和卡箍25;曲轴21与连杆22相连,十字头23分别与连杆22和拉杆24相连,拉杆24通过卡箍与柱塞12相连。
如图1和图2所示,该柱塞泵的工作原理如下所述:在原动机的驱动下,动力端20的曲轴21进行旋转,从而带动连杆22和十字头23进行往复运动; 然后十字头23通过拉杆24带动柱塞12进行往复运动。当柱塞12作回程运动(例如朝向曲轴21运动)时,阀箱11内部的容积(即第一腔体11A和第二腔体11B的总容积)逐渐增大,形成局部负压或真空;此时,第一阀门组件13打开,第二阀门组件14关闭,外部的流体进入阀箱11;当柱塞12回程到极限位置时,阀箱11的内部充满流体,完成一次流体吸入过程。然后,当柱塞12作进程运动时,阀箱11内部的容积逐渐减小,阀箱11内部的流体受到挤压,压力增加;此时,第一阀门组件13关闭,第二阀门组件14打开,阀箱11内部的流体通过第二阀门组件14排出;当柱塞12进程致极限位置时,阀箱11内部的容积最小,完成一次流体排出过程。由此,在柱塞12的往复运动下,上述的流体吸入过程和流体排出过程不断交替进行,从而可持续将低压流体转换为高压流体,并输出。
如图1和图2所示,在柱塞泵的工作过程中,柱塞12和盘根组件17之间的密封为动密封,主要依靠盘根组件17的径向膨胀来实现。然而,在低压和高压的循环作用下,长时间的工作会使得盘根压帽18产生松动现象。如果检查不及时,柱塞泵则可能出现压裂液刺漏、盘根压帽飞出、阀箱刺漏、动力端损坏等故障,从而严重影响作业效率,甚至引发安全事故。
目前,油气田作业现场仍然采用的是计划维修、突发事故维修的维修保养方式,计划维修需要操作人员对现场十几台甚至是几十台柱塞泵的每个盘根压帽进行松动检查;这种维修制度下,无论盘根压帽有无松动,都需要操作人员逐台、逐缸进行检查,费时费力;另一方面,由于每个操作人员的仅凭手感紧固盘根压帽,造成盘根压帽压紧盘根的扭矩大小不一,无法形成统一标准,既不经济又不合理;而突发事故维修,即出现故障后进行维修,这中维修对设备损伤破坏程度大、且维修费用高。
对此,本公开实施例提供一种盘根自预紧系统和方法。该盘根自预紧系统包括盘根监测装置、传动装置、驱动装置和扭矩限制器;盘根监测装置包括盘根扭矩检测器,盘根扭矩检测器被配置为检测盘根压帽的扭矩;传动装置包括第一传动组件和第二传动组件,第一传动组件与盘根相连,并被配置为驱动盘根压帽旋转;驱动装置与第二传动组件相连,并被配置为驱动第二传动组件;扭矩限制器设置在第一传动组件与盘根压帽之间,第一传动组件和第二传动组件之间,或者第二传动组件与驱动装置之间。一方面,该盘根自预紧系统可通过盘根扭矩检测器检测盘根压帽的扭矩,来自动判断盘根压帽是否松动,并且 还可通过驱动装置和传动装置来将盘根压帽旋紧,从而可提供一种盘根自动紧固的系统。另一方面,该盘根自预紧系统还通过在第一传动组件与盘根压帽之间,第一传动组件和第二传动组件之间,或者第二传动组件与驱动装置之间设置扭矩限制器,来避免盘根压帽的扭矩过大。
下面,结合附图对本公开实施例提供的盘根自预紧系统和方法进行详细的说明。
本公开一实施例体用一种盘根自预紧系统,图3为本公开一实施例提供的一种盘根自预紧系统的示意图。如图3所示,柱塞泵200包括至少一个盘根组件210,各盘根组件210包括盘根压帽215。该盘根自预紧系统110包括盘根监测装置110、传动装置120、驱动装置130和扭矩限制器140;盘根监测装置110包括盘根扭矩检测器112,盘根扭矩检测器112被配置为检测盘根压帽215的扭矩;传动装置120包括第一传动组件121和第二传动组件122,第一传动组件121与盘根压帽215相连,并被配置为驱动盘根压帽215旋转,从而可实现盘根组件210的紧固;驱动装置130与第二传动组件122相连,并被配置为驱动第二传动组件122;扭矩限制器140设置在第一传动组件121与盘根压帽215之间,第一传动组件121和第二传动组件122之间,或者第二传动组件122与驱动装置130之间。需要说明的是,虽然图3示出的扭矩限制器设置在第二传动组件和驱动装置之间,但本公开实施例包括但不限于此,扭矩限制器也可设置在第一传动组件与盘根压帽之间,或者第一传动组件和第二传动组件之间。
在本公开实施例提供的盘根自预紧系统中,一方面,该盘根自预紧系统可通过盘根扭矩检测器检测盘根压帽的扭矩,来自动判断盘根压帽是否松动,并且还可通过驱动装置和传动装置来将盘根压帽旋紧,从而可提供一种盘根自动紧固的系统。另一方面,该盘根自预紧系统还通过在第一传动组件与盘根压帽之间,第一传动组件和第二传动组件之间,或者第二传动组件与驱动装置之间设置扭矩限制器,来避免盘根压帽的扭矩过大。
在一些示例中,如图3所示,该盘根自预紧系统100还包括控制器150,控制器150与盘根扭矩检测器112、驱动装置130和扭矩限制器140分别通信相连;控制器150被配置为在盘根扭矩检测器112检测到的扭矩小于预设扭矩时,向驱动装置130发送启动信号,在扭矩限制器140打滑时,向驱动装置130发送关闭信号。由此,该盘根自预紧系统可将盘根自动紧固。需要说明的是, 当达到设定的扭矩时,扭矩限制器会以打滑的形式来限制扭矩的传递,扭矩限制器打滑的同时也能传递目前设定的扭矩。
在一些示例中,当扭矩限制器140打滑时,扭矩限制器140可向控制器150发动打滑信号;控制器150接收到打滑信号之后,可向驱动装置130发送关闭信号。
在一些示例中,如图3所示,盘根监测装置110还包括盘根漏液监测器114,盘根漏液监测器114被配置为监测盘根210是否产生漏液现象。由此,该盘根自预紧系统还可通过盘根漏液检测器来监测盘根是否产生漏液现象。
在一些示例中,如图3所示,控制器150与盘根漏液监测器114通信连接,控制器150被配置为在盘根漏液监测器114检测到漏液现象且盘根扭矩检测器112检测到的扭矩小于预设扭矩时,向驱动装置130发送启动信号,在盘根漏液监测器114检测到漏液现象且盘根扭矩检测器112检测到的扭矩大于等于预设扭矩时发出报警信号。由此,当盘根紧固之后,仍然存在漏液现象,该盘根自预紧系统可发出报警信号,以便操作人员及时进行处理。
在一些示例中,如图3所示,在该盘根自预紧系统100中,第二传动组件122包括单向传动件1225;由此,可防止盘根压帽产生的扭矩反向作用与传动装置或驱动装置,造成驱动装置损伤。当然,本公开实施例包括但不限于此,单向传动件也可设置在第一传动组件之中,即第一传动组件包括单向传动件。
图4为本公开一实施例提供的一种盘根自预紧系统的逻辑流程图。如图4所示,首先,可通过盘根漏液监测器监测盘根是否泄漏,通过盘根扭矩检测器检测盘根是否预紧;当盘根没有产生泄漏且盘根已经预紧时,控制盘根漏液监测器持续进行监测;当盘根没有产生泄漏且盘根没有预紧时,可通过控制器向驱动装置发出启动信号;当盘根产生泄漏且盘根已经预紧时,发出报警信息;当盘根产生泄漏且盘根没有预紧时,可通过控制器向驱动装置发出启动信号。然后,当控制器向驱动装置发出启动信号之后,驱动装置通过传动装置和扭矩限制器向盘根压帽传递扭矩,以将盘根压帽旋紧,从而将盘根紧固;之后,还可通过盘根扭矩检测器和扭矩限制器来判断盘根压帽的扭矩是否达到预设扭矩;当盘根压帽的扭矩达到预设扭矩时,可通过控制器向驱动装置发送关闭信号,并持续进行监测;当盘根压帽的扭矩没有达到预设扭矩时,驱动装置则继续通过传动装置和扭矩限制器向盘根压帽传递扭矩。
本公开实施例中,上述各种控制器或控制器模块可以用软件实现,以便由 各种类型的处理器执行。举例来说,一个标识的可执行代码模块可以包括计算机指令的一个或多个物理或者逻辑块,举例来说,其可以被构建为对象、过程或函数。尽管如此,所标识模块的可执行代码无需物理地位于一起,而是可以包括存储在不同物理上的不同的指令,当这些指令逻辑上结合在一起时,其构成模块并且实现该模块的规定目的。
实际上,可执行代码模块可以是单条指令或者是许多条指令,并且甚至可以分布在多个不同的代码段上,分布在不同程序当中,以及跨越多个存储器设备分布。同样地,操作数据可以在模块内被识别,并且可以依照任何适当的形式实现并且被组织在任何适当类型的数据结构内。所述操作数据可以作为单个数据集被收集,或者可以分布在不同位置上(包括在不同存储设备上),并且至少部分地可以仅作为电子信号存在于系统或网络上。
在模块可以利用软件实现时,考虑到现有硬件工艺的水平,所以可以以软件实现的模块,在不考虑成本的情况下,本领域技术人员都可以搭建对应的硬件电路来实现对应的功能,所述硬件电路包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的现有半导体或者是其它分立的元件。模块还可以用可编程硬件设备,诸如现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备等实现。
图5为本公开一实施例提供的一种盘根自预紧系统的主视图;图6为本公开一实施例提供的一种盘根自预紧系统的侧视图。如图5和图6所示,第一传动组件121包括盘根驱动件121A,与盘根压帽215相连;第二传动组件122包括条状驱动件122A,条状驱动件122A与驱动装置130相连,驱动装置130被配置为驱动条状驱动件122A进行直线运动,条状驱动件122A被配置为驱动盘根驱动件121A进行旋转运动,以带动盘根压帽215旋紧。由此,该驱动装置可通过条状驱动件和盘根驱动件带动盘根压帽旋紧。
在一些示例中,如图5和图6所示,盘根驱动件121A包括盘根驱动齿轮,盘根驱动齿轮121A固定在盘根压帽215上;此时,第一传动件121还包括第一扭矩传递齿轮121B,第一扭矩传递齿轮121B与盘根驱动齿轮121A啮合;条状驱动件122A包括驱动齿条,第二传动件122还包括单向驱动齿轮1225,驱动齿条122A与单向驱动齿轮1225啮合。扭矩限制器140设置在单向驱动齿轮1225与第一扭矩传递齿轮121B之间,并分别与单向驱动齿轮1225和第一扭矩传动齿轮121B相连。由此,驱动齿条122A可带动单向驱动齿轮1225旋 转,单向驱动齿轮1225通过扭矩限制器140带动第一扭矩传递齿轮121B旋转,第一扭矩传递齿轮121B可带动盘根驱动齿轮121A旋转,从而带动盘根压帽215旋转。并且,扭矩限制器140可限制单向驱动齿轮1225传递给第一扭矩传递齿轮121B的扭矩。
在一些示例中,如图5和图6所示,驱动装置130可为液压缸或者气动缸。当然,本公开实施例包括但不限于此,驱动装置也可为其他形式的驱动装置,只要可带动条状驱动件进行直线运动即可。
图7为本公开一实施例提供的另一种盘根自预紧系统的主视图;图8为本公开一实施例提供的另一种盘根自预紧系统的侧视图。如图7和图8所示,第一传动组件121包括盘根驱动件121A,与盘根压帽215相连;第二传动组件122包括条状驱动件122A,条状驱动件122A与驱动装置130相连,驱动装置130被配置为驱动条状驱动件122A进行直线运动,条状驱动件122A被配置为驱动盘根驱动件121A进行旋转运动,以带动盘根压帽215旋紧。由此,该驱动装置可通过条状驱动件和盘根驱动件带动盘根压帽旋紧。
在一些示例中,如图7和图8所示,盘根驱动件121A包括单向盘根驱动齿轮,单向盘根驱动齿轮121A固定在盘根压帽215上;条状驱动件122A包括驱动齿条。驱动齿条122A直接与单向盘根驱动齿轮121A啮合,扭矩限制器140设置在单向盘根驱动齿轮121A与盘根压帽215之间,并分别与单向盘根驱动齿轮121A和盘根压帽215相连。由此,驱动齿条122A可带动单向盘根驱动齿轮121A旋转,单向盘根驱动齿轮121A通过扭矩限制器140带动盘根压帽215旋转。并且,扭矩限制器140可限制单向盘根驱动齿轮121A传递给盘根压帽215的扭矩。
在一些示例中,如图7和图8所示,驱动装置130可为液压缸或者气动缸。当然,本公开实施例包括但不限于此,驱动装置也可为其他形式的驱动装置,只要可带动条状驱动件进行直线运动即可。
图9为本公开一实施例提供的另一种盘根自预紧系统的主视图;图10为本公开一实施例提供的另一种盘根自预紧系统的侧视图。如图9和图10所示,第一传动组件121包括盘根驱动件121A,与盘根压帽215相连;第二传动组件122包括条状驱动件122A,条状驱动件122A与驱动装置130相连,驱动装置130被配置为驱动条状驱动件122A进行直线运动,条状驱动件122A被配置为驱动盘根驱动件121A进行旋转运动,以带动盘根压帽215旋紧。由此, 该驱动装置可通过条状驱动件和盘根驱动件带动盘根压帽旋紧。
在一些示例中,如图9和图10所示,盘根驱动件121A包括单向盘根驱动棘轮,单向盘根驱动棘轮121A上有棘爪1215,单向盘根驱动棘轮121A与盘根压帽215固定;条状驱动件122A包括棘爪驱动条,棘爪驱动条122A与盘根驱动棘轮121A相连,扭矩限制器140设置在盘根驱动棘轮121A与盘根压帽215之间,并分别与单向盘根驱动棘轮121A和盘根压帽215相连。由此,棘爪驱动条122A可带动单向盘根驱动棘轮121A旋转,单向盘根驱动棘轮121A通过扭矩限制器140带动盘根压帽215旋转。并且,扭矩限制器140可限制单向盘根驱动棘轮121A传递给盘根压帽215的扭矩。
在一些示例中,如图9和图10所示,驱动装置130可为液压缸或者气动缸。当然,本公开实施例包括但不限于此,驱动装置也可为其他形式的驱动装置,只要可带动条状驱动件进行直线运动即可。
图11为本公开一实施例提供的另一种盘根自预紧系统的主视图;图12为本公开一实施例提供的另一种盘根自预紧系统的侧视图。如图11和图12所示,第一传动组件121包括盘根驱动齿轮121A,第二传动组件122包括第二扭矩传递齿轮122C,盘根驱动齿轮121A和第二扭矩传递齿轮122C啮合,扭矩限制器140设置在驱动装置130与第二扭矩传递齿轮122C之间,并分别与驱动装置130和第二扭矩传递齿轮122C相连,驱动装置130被配置为驱动第二扭矩传递齿轮122C旋转。由此,驱动装置130可通过扭矩限制器140带动第二扭矩传递齿轮122C旋转,而第二扭矩传递齿轮122C可带动盘根驱动齿轮121A旋转,从而带动盘根压帽215旋紧。并且,扭矩限制器140可限制驱动装置130传递给第二扭矩传递齿轮122C的扭矩。
在一些示例中,如图11和图12所示,驱动装置130可为电动机或者液压马达。当然,本公开实施例包括但不限于此,驱动装置也可为其他形式的驱动装置,只要可带动第二扭矩传递齿轮旋转即可。
图13为本公开一实施例提供的另一种盘根自预紧系统的主视图;图14为本公开一实施例提供的另一种盘根自预紧系统的侧视图。如图13和图14所示,第一传动组件121包括盘根驱动链轮121C,第二传动组件122包括盘根驱动链条122D和扭矩传递链轮122E,盘根驱动链条122D分别与盘根驱动链轮121C和扭矩传递链轮122E相连,扭矩限制器140设置在驱动装置130与扭矩传递链轮122E之间,并分别与驱动装置130和扭矩传递链轮122E相连,驱动 装置130被配置为驱动扭矩传递链轮122E旋转。由此,驱动装置130可通过扭矩限制器140带动扭矩传递链轮122E旋转,而扭矩传递链轮122E可带动盘根驱动链条122D旋转,盘根驱动链条122D可带动盘根驱动链轮121C旋转,从而带动盘根压帽215旋紧。并且,扭矩限制器140可限制驱动装置130传递给扭矩传递链轮122E的扭矩。
在一些示例中,如图13和图14所示,第二传动组件122还包括张紧链轮122F,与盘根驱动链条122D相连,并被配置为张紧盘根驱动链条122D。
在一些示例中,如图13和图14所示,驱动装置130可为电动机或者液压马达。当然,本公开实施例包括但不限于此,驱动装置也可为其他形式的驱动装置,只要可带动扭矩传递链轮旋转即可。
本公开一实施例还提供一种盘根自预紧方法。图15为本公开一实施例提供的一种盘根自预紧方法的流程示意图。如图15所示,该盘根自预紧方法包括以下步骤:
S101:通过盘根扭矩检测器检测盘根的盘根压帽的扭矩。
S102:当盘根扭矩检测器检测到的扭矩小于预设扭矩时,开启驱动装置,并通过传动装置将盘根压帽旋紧;驱动装置通过传动装置将盘根压帽旋紧包括:通过扭矩限制器限制传动装置向盘根压帽传递的扭矩的大小。
S103:当盘根扭矩检测器检测到的扭矩大于等于预设扭矩时,关闭驱动装置。
在本公开实施例提供的盘根自预紧方法中,一方面,该盘根自预紧系统可通过盘根扭矩检测器检测盘根压帽的扭矩,来自动判断盘根压帽是否松动,并且还可通过驱动装置和传动装置来将盘根压帽旋紧,从而可提供一种盘根自动紧固的方法。另一方面,该盘根自预紧系统还通过扭矩限制器,来避免盘根压帽的扭矩过大。
在一些示例中,该盘根自预紧方法还包括:当扭矩限制器打滑时,关闭所述驱动装置,从而避免盘根压帽的扭矩过大。
在一些示例中,该盘根自预紧方法还包括:监测盘根是否产生漏液现象;当盘根漏液监测器检测到漏液现象且盘根扭矩检测器检测到的扭矩小于预设扭矩时,开启驱动装置并通过传动装置将盘根压帽旋紧;当盘根漏液监测器检测到漏液现象且盘根扭矩检测器检测到的扭矩大于等于预设扭矩时发出报警信号。由此,当盘根紧固之后,仍然存在漏液现象,该盘根自预紧方法可发出 报警信号,以便操作人员及时进行处理。
在一些示例中,在该盘根自预紧方法中,传动装置包括单向传动件。由此,可防止盘根压帽产生的扭矩反向作用与传动装置或驱动装置,造成驱动装置损伤。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (16)

  1. 一种盘根自预紧系统,其中,所述盘根包括盘根压帽,所述盘根自预紧系统包括:
    盘根监测装置,包括盘根扭矩检测器,所述盘根扭矩检测器被配置为检测所述盘根压帽的扭矩;
    传动装置,包括第一传动组件和第二传动组件,所述第一传动组件与所述盘根压帽相连,并被配置为驱动所述盘根压帽旋转;
    驱动装置,与所述第二传动组件相连,并被配置为驱动所述第二传动组件;以及
    扭矩限制器,设置在所述第一传动组件与所述盘根压帽之间,所述第一传动组件和所述第二传动组件之间,或者所述第二传动组件与所述驱动装置之间。
  2. 根据权利要求1所述的盘根自预紧系统,还包括:
    控制器,与所述盘根扭矩检测器、所述驱动装置和所述扭矩限制器分别通信相连,
    其中,所述控制器被配置为在所述盘根扭矩检测器检测到的扭矩小于预设扭矩时,向所述驱动装置发送启动信号,在所述扭矩限制器打滑时,向所述驱动装置发送关闭信号。
  3. 根据权利要求2所述的盘根自预紧系统,其中,所述盘根监测装置还包括:
    盘根漏液监测器,被配置为监测所述盘根是否产生漏液现象。
  4. 根据权利要求3所述的盘根自预紧系统,其中,所述控制器与所述盘根漏液监测器通信连接,所述控制器被配置为在所述盘根漏液监测器检测到漏液现象且所述盘根扭矩检测器检测到的扭矩小于所述预设扭矩时,向所述驱动装置发送启动信号,在所述盘根漏液监测器检测到漏液现象且所述盘根扭矩检测器检测到的扭矩大于等于所述预设扭矩时发出报警信号。
  5. 根据权利要求1-4中任一项所述的盘根自预紧系统,其中,所述第一传动组件或所述第二传动组件包括单向传动件。
  6. 根据权利要求1-5中任一项所述的盘根自预紧系统,其中,所述第一传动组件包括盘根驱动件,与所述盘根压帽相连;所述第二传动组件包括条状 驱动件,所述条状驱动件与所述驱动装置相连,所述驱动装置被配置为驱动所述条状驱动件进行直线运动,所述条状驱动件被配置为驱动所述盘根驱动件进行旋转运动,以带动所述盘根压帽旋紧。
  7. 根据权利要求6所述的盘根自预紧系统,其中,所述盘根驱动件包括盘根驱动齿轮,固定在所述盘根压帽上,所述第一传动件还包括第一扭矩传递齿轮,所述第一扭矩传递齿轮与所述盘根驱动齿轮啮合;
    所述条状驱动件包括驱动齿条,所述第二传动件还包括单向驱动齿轮,所述驱动齿条与所述单向驱动齿轮啮合;
    所述扭矩限制器设置在所述单向驱动齿轮与所述第一扭矩传递齿轮之间,并分别与所述单向驱动齿轮和所述第一扭矩传动齿轮相连。
  8. 根据权利要求6所述的盘根自预紧系统,其中,所述盘根驱动件包括单向盘根驱动齿轮,所述条状驱动件包括驱动齿条,所述驱动齿条与所述单向盘根驱动齿轮啮合,所述扭矩限制器设置在所述单向盘根驱动齿轮与所述盘根压帽之间,并分别与所述单向盘根驱动齿轮和所述盘根压帽相连。
  9. 根据权利要求6所述的盘根自预紧系统,其中,所述盘根驱动件包括单向盘根驱动棘轮,与所述盘根压帽固定,所述条状驱动件包括棘爪驱动条,所述棘爪驱动条与所述盘根驱动棘轮相连,所述扭矩限制器设置在所述单向盘根驱动棘轮与所述盘根压帽之间,并分别与所述单向盘根驱动棘轮和所述盘根压帽相连。
  10. 根据权利要求1-9中任一项所述的盘根自预紧系统,其中,所述第一传动组件包括盘根驱动齿轮,所述第二传动组件包括第二扭矩传递齿轮,所述盘根驱动齿轮和所述第二扭矩传递齿轮啮合,所述扭矩限制器设置在所述驱动装置与所述第二扭矩传递齿轮之间,并分别与所述驱动装置和所述第二扭矩传递齿轮相连,所述驱动装置被配置为驱动所述第二扭矩传递齿轮旋转。
  11. 根据权利要求1-10中任一项所述的盘根自预紧系统,其中,所述第一传动组件包括盘根驱动链轮,所述第二传动组件包括盘根驱动链条和扭矩传递链轮,所述盘根驱动链条分别与所述盘根驱动链轮和所述扭矩传递链轮相连,所述扭矩限制器设置在所述驱动装置与所述扭矩传递链轮之间,并分别与所述驱动装置和所述扭矩传递链轮相连,所述驱动装置被配置为驱动所述扭矩传递链轮旋转。
  12. 根据权利要求1-11中任一项所述的盘根自预紧系统,其中,所述驱动 装置包括电动机、液压马达、液压缸和气动缸中的至少一种。
  13. 一种盘根自预紧方法,包括:
    通过盘根扭矩检测器检测盘根的盘根压帽的扭矩;
    当盘根扭矩检测器检测到的扭矩小于预设扭矩时,开启驱动装置,并通过传动装置将所述盘根压帽旋紧;
    当盘根扭矩检测器检测到的扭矩大于等于所述预设扭矩时,关闭驱动装置,
    其中,所述驱动装置通过所述传动装置将所述盘根压帽旋紧包括:通过扭矩限制器限制所述传动装置向所述盘根压帽传递的扭矩的大小。
  14. 根据权利要求13所述的盘根自预紧方法,还包括:
    当所述扭矩限制器打滑时,关闭所述驱动装置。
  15. 根据权利要求13所述的盘根自预紧方法,还包括:
    监测所述盘根是否产生漏液现象;
    当所述盘根漏液监测器检测到漏液现象且所述盘根扭矩检测器检测到的扭矩小于所述预设扭矩时,开启所述驱动装置并通过传动装置将所述盘根压帽旋紧;
    当所述盘根漏液监测器检测到漏液现象且所述盘根扭矩检测器检测到的扭矩大于等于所述预设扭矩时发出报警信号。
  16. 根据权利要求13-15中任一项所述的盘根自预紧方法,其中,所述传动装置包括单向传动件。
PCT/CN2022/132403 2021-11-19 2022-11-17 盘根自预紧系统和方法 WO2023088333A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111401986.XA CN114109286A (zh) 2021-11-19 2021-11-19 盘根自预紧系统和方法
CN202111401986.X 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023088333A1 true WO2023088333A1 (zh) 2023-05-25

Family

ID=80371647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132403 WO2023088333A1 (zh) 2021-11-19 2022-11-17 盘根自预紧系统和方法

Country Status (2)

Country Link
CN (1) CN114109286A (zh)
WO (1) WO2023088333A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114109286A (zh) * 2021-11-19 2022-03-01 烟台杰瑞石油服务集团股份有限公司 盘根自预紧系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323852A (en) * 1992-11-03 1994-06-28 Atlantic Richfield Company Torque limiter for auger gravel pack assembly
CN202249906U (zh) * 2011-10-28 2012-05-30 刘世富 油井盘根帽自动旋紧器
CN105156059A (zh) * 2015-09-25 2015-12-16 长春市艾必利务科技有限公司 一种具有远程监控功能的抽油机盘根自动旋紧装置
CN206206140U (zh) * 2016-11-30 2017-05-31 潍坊胜利石化机械有限公司 自动紧盘根装置
CN211397528U (zh) * 2019-12-10 2020-09-01 山西潞安环保能源开发股份有限公司王庄煤矿 一种自动紧盘根装置
CN114109286A (zh) * 2021-11-19 2022-03-01 烟台杰瑞石油服务集团股份有限公司 盘根自预紧系统和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6318532B1 (en) * 2000-06-23 2001-11-20 Gkn Automotive, Inc. Externally controlled hydraulic torque transfer device
CN103128539B (zh) * 2011-11-29 2015-07-15 陆亦群 高精度智能化轨道扣件螺栓扳手及其操作方法
CN106382218B (zh) * 2016-11-30 2019-05-10 潍坊胜利石化机械有限公司 自动紧盘根装置
CN106639954B (zh) * 2017-03-09 2022-09-27 大庆市嘉钰机械制造有限公司 抽油机井定扭矩盘根盒
CN113338834B (zh) * 2021-07-26 2024-08-27 中国石油大学胜利学院 自动调压光杆密封装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323852A (en) * 1992-11-03 1994-06-28 Atlantic Richfield Company Torque limiter for auger gravel pack assembly
CN202249906U (zh) * 2011-10-28 2012-05-30 刘世富 油井盘根帽自动旋紧器
CN105156059A (zh) * 2015-09-25 2015-12-16 长春市艾必利务科技有限公司 一种具有远程监控功能的抽油机盘根自动旋紧装置
CN206206140U (zh) * 2016-11-30 2017-05-31 潍坊胜利石化机械有限公司 自动紧盘根装置
CN211397528U (zh) * 2019-12-10 2020-09-01 山西潞安环保能源开发股份有限公司王庄煤矿 一种自动紧盘根装置
CN114109286A (zh) * 2021-11-19 2022-03-01 烟台杰瑞石油服务集团股份有限公司 盘根自预紧系统和方法

Also Published As

Publication number Publication date
CN114109286A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2023088333A1 (zh) 盘根自预紧系统和方法
CN108217089B (zh) 刮板机用间歇自锁式紧链装置以及紧链方法
CN210087277U (zh) 一种高承压采油井口装置
CN210037098U (zh) 液驱式油套管气密封检测装置
CN109025886B (zh) 往复式轴向密封调偏节能防喷装置
CN201943639U (zh) 压力式抽油井光杆密封器
CN219062723U (zh) 一种石油天然气管道连接辅助装置
CN201460789U (zh) 一种低压井口电缆密封工具
CN211203295U (zh) 一种海底管道抢险卡具
CN212803147U (zh) 一种用于油气井分层段测试的可重复坐封解封电控封隔器
CN211347204U (zh) 一种水处理设备压力表的新型安装结构
CN210770214U (zh) 一种执行机构调节螺栓密封圈防挤出垫圈
CN218991860U (zh) 盘根压帽拧紧装置、压裂泵和作业机械
CN209469631U (zh) 一种增压缸结构
CN207315249U (zh) 一种用于表层套管双公短节连接的封堵装置
CN202433243U (zh) 油管外压密封实验装置
CN206845142U (zh) 泵下驱动小径解封封隔器
CN221548105U (zh) 一种直管用快速充注带压堵漏装置
CN217152982U (zh) 一种双端面带骨架油封的机械密封
CN208587567U (zh) 一种能量回收用关断阀
CN109854166B (zh) 一种用于电动钻井的双缓冲钻压自动控制工具
CN114483749B (zh) 一种汽车用紧固件及其使用方法
CN201053318Y (zh) 测井装置旁通短节的电缆通道动密封装置
CN215001006U (zh) 一种用于检测天然气管道法兰微漏的检测装置
CN205703210U (zh) 一种用于安装柱塞泵的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE