WO2023088323A1 - 具有永磁变速器的飞轮储能系统 - Google Patents

具有永磁变速器的飞轮储能系统 Download PDF

Info

Publication number
WO2023088323A1
WO2023088323A1 PCT/CN2022/132340 CN2022132340W WO2023088323A1 WO 2023088323 A1 WO2023088323 A1 WO 2023088323A1 CN 2022132340 W CN2022132340 W CN 2022132340W WO 2023088323 A1 WO2023088323 A1 WO 2023088323A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
permanent magnet
flywheel
transmission
energy storage
Prior art date
Application number
PCT/CN2022/132340
Other languages
English (en)
French (fr)
Inventor
陈俊
李莹
陈厚存
刘雨涵
牛明宇
李芳菲
白宁
Original Assignee
国家电投集团科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电投集团科学技术研究院有限公司 filed Critical 国家电投集团科学技术研究院有限公司
Publication of WO2023088323A1 publication Critical patent/WO2023088323A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present disclosure relates to the technical field of energy storage, in particular to a flywheel energy storage system with a permanent magnet transmission.
  • connection of a high proportion of power electronic devices will cause the power grid to remain at a low inertia level for a long time, increasing the unbalanced power impact of the system, which brings more and more pressure to the safe and stable operation of the power system.
  • an energy storage system with a certain ability to support the dynamic adjustment of the power grid is urgently needed to improve the ability of the power grid to efficiently accept new energy.
  • Flywheel energy storage technology is an energy storage technology that stores energy in the form of kinetic energy.
  • the energy storage/release is realized by the motor/generator driving the rotor to accelerate/decelerate.
  • the main advantages of flywheel energy storage are fast climbing ability, high energy conversion efficiency and long service life, etc. It has unique advantages in providing auxiliary services, such as inertia and frequency regulation.
  • the flywheel does not have any geographical restrictions, can be easily installed, and has the advantages of being scalable and replicable on a large scale.
  • flywheel energy storage technologies all use power electronic devices to assist the motor/generator in the process of mutual conversion between kinetic energy and electric energy.
  • the system When the system needs to store electric energy, it will supply the external AC power to the motor through AC/DC, and then drive the flywheel rotor to rotate and store energy; when it needs to discharge, the power electronic device decouples the rotor inertia of the flywheel rotor , Play the role of rectification, frequency modulation and voltage stabilization to meet the power demand of the load.
  • power electronic devices do not have moment of inertia, so it is difficult to participate in grid inertia response. Therefore, flywheel energy storage technology cannot solve the problem that the proportion of total moment of inertia in the current grid is constantly decreasing due to the large-scale use of power electronic devices.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent. To this end, the present disclosure proposes a flywheel energy storage system with a permanent magnet transmission.
  • a flywheel energy storage system with a permanent magnet transmission includes: a motor and a flywheel rotor, the motor is connected to the flywheel rotor to drive the flywheel rotor to rotate; a permanent magnet transmission, the permanent magnet transmission is included in A permanent magnet rotor and a conductor rotor oppositely arranged in one direction, an air gap is formed between the permanent magnet rotor and the conductor rotor in the first direction, and the flywheel rotor and the permanent magnet rotor and the conductor rotor One of the transmissions is connected to drive it to rotate, thereby driving the other to rotate, and the permanent magnet transmission also includes a displacement device, which is used to adjust the size of the air gap, so that the rotation speed of the other can be keep constant; and a generator, the other one is in drive connection with the input end of the generator, so as to drive the generator to stably generate electricity and output constant frequency electric energy.
  • the flywheel rotor of the flywheel energy storage system is connected to the permanent magnet transmission with variable speed function, and the output speed of the permanent magnet transmission can remain unchanged, so it can drive the generator to generate constant frequency current to meet the requirements of power transmission to the grid Require. Since the permanent magnet transmission has a variable speed function, the change in the speed of the flywheel rotor will not affect the input of constant-frequency current from the generator to the grid.
  • the flywheel energy storage system provided by the embodiment of the present disclosure is connected to the grid without using power electronic devices for decoupling, Rectification, frequency modulation, and voltage stabilization solve the problem that the total moment of inertia caused by the use of power electronic devices in the current power grid is continuously reduced, and can increase the moment of inertia in the power grid, provide the necessary voltage and frequency support for the power grid, and reduce the The risk of large frequency deviations in the power grid enables the power system to operate safely and stably, and improves the ability of the grid to efficiently accept new energy.
  • the permanent magnet rotor is coaxial with the conductor rotor
  • the displacement device is connected to at least one of the permanent magnet rotor and the conductor rotor for moving along the permanent magnet rotor The relative position between the permanent magnet rotor and the conductor rotor is adjusted axially to adjust the size of the air gap.
  • the flywheel rotor is drivingly connected to the permanent magnet rotor, and the displacement device is connected to the conductor rotor to adjust its relative position with the permanent magnet rotor along the axial direction.
  • the flywheel rotor is drivingly connected to the conductor rotor, and the displacement device is connected to the permanent magnet rotor to adjust its relative position with the permanent magnet rotor along the axial direction.
  • the generator is a synchronous generator.
  • the electric motor is connected to the grid and is used to take power from the grid.
  • the flywheel energy storage system has an energy release state and an energy storage state. In the energy release state, the motor is on standby, and the flywheel The rotor releases kinetic energy to drive the generator to generate electricity.
  • the generator inputs electric energy with a stable frequency to the grid. In the state of energy storage, the motor takes power from the grid to drive the flywheel rotor to rotate.
  • the generator The machine is idling.
  • the flywheel energy storage system has a standby state, and in the standby state, the electric motor is on standby and the generator is idling.
  • the flywheel energy storage system further includes a speed change device, the flywheel rotor is drivingly connected to the input end of the speed change device, and the output end of the speed change device is connected to the permanent magnet rotor and the conductor rotor. The one is connected by transmission.
  • the transmission device is a transmission device with a fixed transmission ratio, or the transmission device is a transmission device with an adjustable transmission ratio.
  • the transmission device is a gear transmission, a torque converter or a magnetic converter.
  • Fig. 1 is a schematic diagram of a flywheel energy storage system according to Embodiment 1 of the present disclosure
  • Fig. 2 is a schematic diagram of a flywheel energy storage system according to Embodiment 2 of the present disclosure.
  • Fig. 3 is a schematic diagram of a flywheel energy storage system according to Embodiment 3 of the present disclosure.
  • FIG. 4 is a schematic diagram of a flywheel energy storage controller according to an embodiment of the disclosure.
  • Flywheel energy storage system 1 motor 10, flywheel rotor 20, permanent magnet transmission 30, permanent magnet rotor 31, conductor rotor 32, displacement device 33, generator 40, constant speed ratio transmission device 51, speed ratio adjustable device 52, the second A transmission shaft 61 , a second transmission shaft 62 , and a third transmission shaft 63 .
  • a flywheel energy storage system 1 includes a motor 10 , a flywheel rotor 20 , a permanent magnet transmission 30 and a generator 40 .
  • Acceleration of the flywheel rotor 20 can realize energy storage, and deceleration of the flywheel rotor 20 can realize energy release.
  • the flywheel rotor 20 is connected with the motor 10, and the motor 10 is used to drive the flywheel rotor 20 to rotate.
  • the electric motor 10 accelerates the rotation by driving the flywheel rotor 20 , and finally realizes that electric energy is stored in the form of kinetic energy in the flywheel energy storage unit.
  • the motor 10 is connected to the grid for taking power from the grid, and the motor 10 takes power from the grid to drive the flywheel rotor 20 to rotate, and the speed of the flywheel rotor 20 increases to store kinetic energy.
  • the permanent magnet transmission 30 includes a permanent magnet rotor 31, a conductor rotor 32 and a displacement device 33.
  • the permanent magnet rotor 31 and the conductor rotor 32 are coaxially arranged, and in the axial direction, the permanent magnet rotor 31 is opposite to the conductor rotor 32 and forms an interval therebetween. air gap.
  • the permanent magnet rotor 31 includes permanent magnets. It can be understood that since the permanent magnets are magnetic, a magnetic field is formed in the air gap. Both the permanent magnet rotor 31 and the conductor rotor 32 can rotate independently with their respective rotation axes.
  • the magnetic lines of force move in the conductor to generate an induced eddy current, which in turn generates an induced magnetic field on the conductor, thereby generating torque, and the actively rotating one can drive the other to rotate.
  • the flywheel rotor 20 is in transmission connection with the driving rotor, and the ratio of the rotation speed of the driving rotor to the rotation speed of the driven rotor is the transmission ratio of the permanent magnet transmission 30 .
  • the flywheel rotor 20 is drivingly connected with the permanent magnet rotor 31 and can drive the permanent magnet rotor 31 to rotate.
  • the permanent magnet rotor 31 drives the conductor rotor 32 to rotate.
  • the permanent magnet rotor 31 is an active rotor, and the conductor The rotor 32 is a driven rotor.
  • the flywheel rotor 20 is connected to the conductor rotor 32 and can drive the conductor rotor 32 to rotate, and the conductor rotor 32 drives the permanent magnet rotor 31 to rotate.
  • the conductor rotor 32 is an active rotor, and the permanent magnet rotor 31 is the driven rotor.
  • the displacement device 33 is used to adjust the size of the air gap so that the rotational speed of the driven rotor remains constant.
  • the displacement device 33 is connected to at least one of the permanent magnet rotor 31 and the conductor rotor 32 for adjusting the relative position between the permanent magnet rotor 31 and the conductor rotor 32 in the axial direction to adjust the size of the air gap.
  • the displacement device 33 is connected with the conductor rotor 32 and is used to move the conductor rotor 32 axially. If the displacement device 33 moves the conductor rotor 32 axially towards the direction close to the permanent magnet rotor 31, the air gap decreases and the conductor The denser the magnetic force lines of the rotor 32 , the stronger the induced magnetic field, the greater the torque, the faster the relative movement, and the reduction of the transmission ratio of the permanent magnet transmission 30 .
  • the displacement device 33 When the speed of the driving rotor increases under the drive of the flywheel rotor 20 , in order to keep the speed of the driven rotor constant, the displacement device 33 should increase the air gap and the transmission ratio of the permanent magnet transmission 30 . When the speed of the driving rotor decreases under the drive of the flywheel rotor 20, in order to keep the speed of the driven rotor constant, the displacement device 33 should reduce the air gap and the transmission ratio of the permanent magnet transmission 30 should be reduced.
  • the permanent magnet transmission 30 can be regarded as a transmission device with variable transmission ratio.
  • the driven rotor is drivingly connected to the input end of the generator 40. Since the rotational speed of the driven rotor can be kept constant, the generator 40 generates electricity and connects to the grid and inputs electric energy with a stable frequency into the grid. That is to say, through the function of the permanent magnet transmission 30, the generator 40 can input constant frequency current to the grid.
  • the stable input of electric energy from the generator 40 to the grid is not affected by changes in the rotational speed of the flywheel rotor 20 , even if the rotational speed of the flywheel rotor 20 changes, the generator 40 can stably input electrical energy to the grid.
  • the rotational speed of the driven rotor is 3000 rpm, and the generator 40 can stably input current with a frequency of 50 Hz to the grid.
  • the flywheel energy storage system 1 can be connected to the grid to participate in the grid inertia response, store the overflow energy in the flywheel rotor 20 according to the overflow ratio, or draw energy from the flywheel rotor 20 according to the missing ratio to supplement the grid, reducing grid frequency fluctuations.
  • the flywheel rotor of the flywheel energy storage system is connected to the permanent magnet transmission with variable speed function, and the output speed of the permanent magnet transmission can remain unchanged, so it can drive the generator to generate constant frequency current to meet the requirements of power transmission to the grid Require. Since the permanent magnet transmission has a variable speed function, the change in the speed of the flywheel rotor will not affect the input of constant-frequency current from the generator to the grid.
  • the flywheel energy storage system provided by the embodiment of the present disclosure is connected to the grid without using power electronic devices for decoupling, Rectification, frequency modulation, and voltage stabilization solve the problem that the total moment of inertia caused by the use of power electronic devices in the current power grid is continuously reduced, and can increase the moment of inertia in the power grid, provide the necessary voltage and frequency support for the power grid, and reduce the The risk of large frequency deviations in the power grid enables the power system to operate safely and stably, and improves the ability of the grid to efficiently accept new energy.
  • the flywheel energy storage system 1 also includes a speed change device, the speed change device is connected between the flywheel rotor 20 and the permanent magnet transmission 30, and the speed change device has an input end and an output end.
  • the flywheel rotor 20 is drivingly connected with the input end of the speed changer, and the output end of the speed changer is drivenly connected with the permanent magnet rotor 31 of the permanent magnet speed changer 30, and the speed changer is used for speed change.
  • the variator also serves to transmit the moment of inertia of the flywheel rotor.
  • the speed change device is used to adjust the speed of the flywheel rotor 20 input to the permanent magnet transmission 30, and the speed change ratio of the speed change device is the ratio of the input end (the speed of the flywheel rotor 20) to the output end (the speed of the driving rotor).
  • the output speed of the flywheel rotor 20 can be better adapted to the application range of the speed of the permanent magnet speed changer 30, reducing the burden on the permanent magnet speed changer 30, that is, the setting of the speed changer can make the output speed of the flywheel rotor 20 change to a permanent magnet speed changer.
  • the input rotational speed of the magnetic transmission 30 (the mechanical rotational speed of the drive rotor) is within an ideal range.
  • the ideal interval of the input speed of the permanent magnet transmission 30 is (3000 ⁇ 1000) rpm, when the input speed of the permanent magnet transmission 30 is within the range of (3000 ⁇ 1000) rpm, the permanent magnet transmission 30 can change the rotational speed of the active rotor to respond better.
  • the output rotational speed of the flywheel rotor 20 can be varied within the ideal range of the input rotational speed of the permanent magnet transmission 30 .
  • the transmission device is a transmission device with a fixed transmission ratio (constant transmission ratio transmission device 51 ), or the transmission device is a transmission device with an adjustable transmission ratio (speed ratio adjustable device 52 ).
  • the speed change device is the speed change device with adjustable gear ratio and refers to that the speed change device can be a multi-stage speed change device or a continuously variable speed change device.
  • the speed change device is a multi-stage speed change device with multiple speed change ratios, and the speed change ratios can be adjusted according to the speed of the flywheel rotor 20 .
  • the speed change device is a continuously variable speed change device, which can continuously adjust its speed change ratio within a certain range.
  • the flywheel energy storage system 1 of this embodiment includes a motor 10 , a flywheel rotor 20 , a permanent magnet transmission 30 , a generator 40 , a first transmission shaft 61 , and a second transmission shaft 62 .
  • the permanent magnet transmission 30 includes a permanent magnet rotor 31 , a conductor rotor 32 and a displacement device 33 .
  • the electric motor 10 is connected with the flywheel rotor 20, and the electric motor 10 can drive the speed of the flywheel rotor 20 to increase through the transmission shaft to store kinetic energy.
  • the flywheel rotor 20 can drive the active rotor of the permanent magnet transmission 30 to rotate through the transmission shaft.
  • the driving rotor drives the driven rotor to rotate at a constant speed.
  • the permanent magnet rotor 31 is the input end of the permanent magnet transmission 30 , and the conductor rotor 32 is in transmission connection with the input end of the generator 40 . That is to say, in this embodiment, the permanent magnet rotor 31 is a driving rotor, and the conductor rotor 32 is a driven rotor. The permanent magnet rotor 31 is separated from the conductor rotor 32 by an air gap.
  • the motor 10 is located on the side of the flywheel rotor 20 away from the permanent magnet transmission 30, the first transmission shaft 61 passes through the flywheel rotor 20 and is connected to the flywheel rotor 20, and one end of the first transmission shaft 61 is connected to the output end of the motor 10.
  • the other end of a transmission shaft 61 is connected with the permanent magnet rotor 31 .
  • One end of the second transmission shaft 62 is in transmission connection with the conductor rotor 32
  • the other end of the second transmission shaft 62 is in transmission connection with the input end of the generator 40 .
  • the conductor rotor 32 rotates to drive the generator 40 to generate electricity, and the generator 40 is connected to the grid through a transformer (not shown in the figure) to supply power to the grid.
  • the generator 40 is a synchronous generator.
  • the conductor rotor 32 cuts the magnetic lines of force to generate eddy currents, which in turn generate induced magnetic fields, and the induced magnetic fields and The magnetic fields of the permanent magnets interact with each other, and have a tendency to prevent the relative movement between the permanent magnet rotor 31 and the conductor rotor 32, and drive the conductor rotor 32 to rotate in the same direction as the permanent magnet rotor 31, thereby realizing the permanent magnet rotor 31
  • the torque transmission to the conductor rotor 32 is the transmission of the moment of inertia.
  • the rotational speed of the conductor rotor 32 is related to the rotational speed of the permanent magnet rotor 31 and the size of the gas.
  • the displacement device 33 is connected with the conductor rotor 32, and is used to move the conductor rotor 32 in the axial direction so as to change the relative position between the conductor rotor 32 and the permanent magnet rotor 31, thereby changing the air gap between the two. size.
  • the smaller the air gap between the two the greater the strength of the magnetic field passing through the conductor rotor 32 , the greater the transmitted torque, and the faster the rotation speed of the conductor rotor 32 .
  • the larger the air gap the smaller the intensity of the magnetic field passing through the conductor rotor 32 , the smaller the transmitted torque, and the slower the rotational speed of the conductor rotor 32 .
  • the torque transmission relationship between the two can be adjusted smoothly and controllably, that is, the transmission of the permanent magnet transmission 30 can be adjusted.
  • Ratio the ratio of the rotational speed of the permanent magnet rotor 31 to the conductor rotor 32).
  • the speed of the flywheel rotor 20 drops, the speed of the permanent magnet rotor 31 is driven to drop, and the displacement device 33 is controlled to move the conductor rotor 32 to a direction close to the permanent magnet rotor 32 to reduce the air gap, thereby reducing the permanent magnet transmission 30. gear ratio.
  • the rotational speed of the conductor rotor 32 can be kept constant, and the conductor rotor 32 drives the generator 40 to generate electricity at a constant frequency.
  • the displacement device 33 can be any device in the prior art that can realize the displacement function.
  • the displacement device 33 includes a telescopic rod, a cylinder, an electric actuator, and the like. Not too much introduction here.
  • the rotation speed of the permanent magnet rotor 31 is equal to the output rotation speed of the flywheel rotor 20
  • the rotation speed of the conductor rotor 32 is equal to the input rotation speed of the generator 40 .
  • the mechanical rotational speed of the conductor rotor 32 was constant at 3000 rpm.
  • the output frequency of the generator 40 is stabilized at 50 Hz.
  • the domestic power grid frequency reference line is 50 Hz
  • the rotational speed of the conductor rotor 32 can be kept constant at 3000 rpm.
  • the foreign power grid frequency reference line is 60 Hz
  • the rotating speed of the conductor rotor 32 can be kept constant at 3600 rpm, that is, the rated rotating speed of the conductor rotor 32 can be adjusted according to the frequency reference of the power grid.
  • the flywheel rotor 20 may be connected with the conductor rotor 32 to drive the conductor rotor 32 to rotate, that is to say, the conductor rotor 32 may be a driving rotor, and the permanent magnet rotor 31 may be a driven rotor.
  • the flywheel rotor 20 drives the conductor rotor 32 , the conductor rotor 32 cuts the magnetic field lines to generate eddy current, the induced magnetic field interacts with the permanent magnetic field to generate torque, and drives the permanent magnet rotor 31 to rotate in the same direction as the conductor rotor 32 .
  • the displacement device 33 may also be connected with the permanent magnet rotor 31 for moving the permanent magnet rotor 31 in the axial direction so as to change the size of the air gap.
  • the displacement device 33 can also be connected to each of the conductor rotor 32 and the permanent magnet rotor 31 , and can simultaneously move the conductor rotor 32 and the permanent magnet rotor 31 to change the size of the air gap.
  • the flywheel energy storage system 1 has an energy storage state and an energy release state, and can switch between the energy storage state and the energy release state. It can also be said that the flywheel energy storage system 1 includes an energy storage stage and an energy release stage during operation, the energy storage stage corresponds to the above energy storage state, and the energy release stage corresponds to the above energy release state.
  • the flywheel energy storage system 1 converts electrical energy into kinetic energy for storage; when the flywheel energy storage system 1 is in the energy release state, it releases its stored kinetic energy and converts the kinetic energy into electrical energy for output.
  • the electric motor 10 operates to take power from the grid or other power sources and drives the flywheel rotor 20 to rotate through the drive shaft. Input electrical energy. That is to say, in the energy storage stage, no power transmission is performed between the generator 40 and the grid, and the generator 40 does not generate electricity.
  • the flywheel rotor 20 is driven by the motor 10 to increase its speed to a rated maximum speed.
  • the flywheel rotor 20 completes energy storage, and then the motor 10 stops driving the flywheel rotor 20 .
  • the rated maximum rotational speed is 100rpm-1000000rpm.
  • the motor 10 In the energy release state, the motor 10 is on standby, and the flywheel rotor 20 releases kinetic energy.
  • the flywheel rotor 20 drives the permanent magnet rotor 31 to rotate through the first transmission shaft 61, and the conductor rotor 32 rotates and drives the generator 40 to generate electricity through the second transmission shaft 62.
  • the machine 40 inputs electric energy with a stable frequency into the power grid through the transformer, without using power electronic devices for decoupling, rectification, frequency modulation, and voltage stabilization, which increases the moment of inertia in the power grid, provides the necessary voltage and frequency support for the power grid, and reduces the power consumption of the power grid.
  • the risk of large frequency deviations enables the power system to operate safely and stably, and improves the ability of the grid to efficiently accept new energy.
  • the flywheel rotor 20 releases kinetic energy and the rotational speed drops.
  • the standby state of the motor 10 in the energy-discharging state means that the motor 10 is not operating, and it does not drive the flywheel rotor 20 to accelerate. That is to say, when the flywheel energy storage system 1 is in the energy release state, there is only energy output in the flywheel energy storage system 1 , but no energy input. When the flywheel energy storage system 1 is in the above energy storage state, there is only energy input in the flywheel energy storage system 1 and no energy output.
  • the displacement device 33 is controlled to change the size of the air gap, so that the conductor rotor 32 maintains the preset speed. Set the rotation speed to rotate, and the generator 40 generates a steady current.
  • the flywheel energy storage system 1 also has a standby state. It can also be said that the flywheel energy storage system 1 also includes a standby stage during operation. When the flywheel energy storage system 1 is in the standby state, the flywheel energy storage system 1 is in the energy maintenance stage, that is, there is no energy input or energy output, and the flywheel energy storage system 1 operates with minimum loss. In the standby state, the motor 10 is on standby, the generator 40 is idling, and the flywheel rotor 20 releases a small amount of kinetic energy to keep the permanent magnet rotor 31 rotating.
  • the flywheel energy storage system 1 enters a standby state, and the flywheel rotor 20 loses a small amount of kinetic energy to maintain the rotation of the permanent magnet rotor 31, ensuring that the flywheel energy storage system 1 Respond optimally to the next grid frequency fluctuation.
  • a preset value for example, the grid frequency is equal to 50 Hz
  • the flywheel energy storage system 1 when the flywheel energy storage system 1 is connected to the grid, it can perform inertia response or frequency regulation on the grid.
  • the motor 10 absorbs the excess electric energy from the power grid to drive the flywheel rotor 20 to rotate at a higher speed, so that the electric energy is converted into kinetic energy and stored in the flywheel rotor 20, thereby reducing the frequency of the power grid.
  • the flywheel rotor 20 drives the generator 40 to generate electricity, and the speed of the flywheel rotor 20 drops, so that kinetic energy is converted into electrical energy and input to the power grid, thereby increasing the frequency of the power grid.
  • the flywheel energy storage system 1 further includes a flywheel energy storage controller.
  • the flywheel energy storage controller is used to control the energy input and input power of the flywheel energy storage unit 10, that is, the flywheel energy storage controller is used to control whether to input electric energy to the flywheel energy storage unit 10, and is also used to control the input power to the flywheel energy storage unit 10. power of electrical energy.
  • the flywheel energy storage controller is powered by an independent power source to ensure that it will not be affected by fluctuations in the external power grid.
  • the flywheel energy storage controller includes a grid detection module and a motor control module.
  • the power grid detection module is used to detect the current frequency of the power grid.
  • the power grid detection module can monitor the frequency of the power grid in real time, so as to better respond to and regulate the frequency of the power grid.
  • the motor control module when the motor control module receives the current frequency signal of the power grid and judges that it is necessary to start the motor 10 to store energy in the flywheel energy storage unit 10, the motor control module sends a start signal to the motor 10 to start the motor 10, and from absorb electricity from the grid.
  • the motor control module judges according to the current frequency of the power grid that there is no need to store energy in the flywheel energy storage unit 10 , it sends a shutdown signal to the motor 10 to shut down the motor 10 .
  • the motor control module can also determine the magnitude of the input power of the motor 10 according to the current frequency of the grid, and control the power input to the motor 10 .
  • the motor control module determines to change the input power of the motor 10 to adjust the frequency of the grid to suppress further increase of the grid frequency.
  • the flywheel energy storage unit 10 can absorb more electric energy, and the rotation speed of the flywheel rotor 20 increases.
  • the greater the frequency deviation of the grid the greater the moment of the flywheel rotor 20 , that is, the greater the input power of the motor 10 . It can be understood that the input power of the motor 10 will not exceed the maximum power it can withstand.
  • the flywheel energy storage system 1 provided in the embodiment of the present application can realize auxiliary services such as power grid disturbance power distribution, inertia response, and primary frequency regulation, and improve the primary frequency regulation and inertia support capabilities of the power system. Compared with traditional mechanical inertia, the flywheel energy storage system 1 provided by the embodiment of the present application can provide faster and more stable frequency control.
  • the flywheel energy storage system 1 of this embodiment is described below by taking FIG.
  • the flywheel rotor 20, the motor 10, and the permanent magnet transmission 30 are similar to those in the first embodiment, and will not be repeated here, only the differences will be described.
  • the first transmission shaft 31 passes through the flywheel rotor 20 and is connected with the flywheel rotor 20.
  • One end of the first transmission shaft 31 is in transmission connection with the output end of the motor 10, and the other end of the first transmission shaft 31 is connected with the fixed end.
  • the input end of the variable speed ratio transmission device 51 is connected in transmission.
  • One end of the second transmission shaft 32 is drivingly connected to the output end of the constant speed ratio transmission device 51 , and the other end is connected to the permanent magnet rotor 31 .
  • One end of the third transmission shaft 63 is connected with the conductor rotor 32 , and the other end is connected with the input section of the generator 40 .
  • the gear ratio of the constant gear ratio transmission device 51 is fixed, which is the ratio of the rotational speed of the input end to the rotational speed of the output end.
  • the rotational speed of the flywheel rotor 20 is equal to the rotational speed of the input end of the constant speed ratio transmission device 51
  • the rotational speed of the output end of the constant speed ratio transmission device 51 is equal to the rotational speed of the permanent magnet rotor 31 .
  • the stator of the generator is disconnected from the grid, the generator 40 is idling, the motor 10 draws electric energy from the grid, the output end of the motor 10 drives the speed of the flywheel rotor 20 through the first drive shaft 31 to increase, and the speed of the flywheel rotor 20
  • the rising kinetic energy is stored, that is, electric energy is converted into kinetic energy and stored in the flywheel rotor 20 .
  • the rotational speed of the flywheel rotor 20 increases until it reaches the set rotational speed. It can be understood that in the energy storage stage, the flywheel energy storage system 1 only has energy input but no energy output.
  • the motor 10 In the energy release stage, the motor 10 is on standby, that is, the motor 10 does not input energy to the flywheel rotor 20, and the flywheel rotor 20 releases kinetic energy, and the flywheel rotor 20 drives the input end of the constant speed ratio transmission device 51 to rotate through the first drive shaft 31, and the moment of inertia changes from
  • the output end of the constant speed ratio transmission device 51 outputs, and the rotating speed of the output end of the constant speed ratio transmission device 51 is related to the input end speed of the constant speed ratio transmission device 51 and the speed ratio of the constant speed ratio transmission device 51, the constant speed ratio transmission device
  • the output end of 51 drives the permanent magnet rotor 31 to rotate through the second transmission shaft 32 , the rotation of the permanent magnet rotor 31 drives the conductor rotor 32 to rotate, and the conductor rotor 32 drives the generator 40 to generate electricity through the third transmission shaft 62 .
  • a fixed speed ratio transmission device 51 is arranged between the flywheel rotor 20 and the permanent magnet transmission 30, so that the rotating speed of the generator rotor can better adapt to the application range of the rotational speed of the permanent magnet transmission 30, and reduce the burden of the permanent magnet transmission 30, that is, the speed change device
  • the setting of can make the output rotational speed of the flywheel rotor 20 change to the ideal range of the input rotational speed of the permanent magnet transmission 30 (the rotational speed of the permanent magnet rotor 31 ).
  • the ideal range of the input rotational speed of the permanent magnet transmission 30 is (3000 ⁇ 1000) rpm, and by setting a transmission device with a suitable gear ratio, the output rotational speed of the flywheel rotor 20 can be changed to 100% of the input rotational speed of the permanent magnetic transmission 30. within this ideal range.
  • the input speed of the permanent magnet transmission 30 (the rotation speed of the generator rotor) is within the range of (3000 ⁇ 1000) rpm, the permanent magnet transmission 30 can better respond to the change of the mechanical speed of the permanent magnet rotor 31, so as to keep the conductor rotor
  • the rotational speed of 32 is constant.
  • the transmission ratio of the constant transmission ratio transmission device 51 is 0.03-333.
  • the constant speed ratio transmission device 51 is a gear transmission with a transmission function, a hydraulic torque converter, a magnetic transformer or a magnetic coupling transmission device.
  • the flywheel energy storage system 1 of this embodiment is described below by taking FIG.
  • the flywheel rotor 20, the motor 10, and the permanent magnet transmission 30 are similar to those in the first embodiment, and will not be repeated here, only the differences will be described.
  • the first transmission shaft 31 passes through the flywheel rotor 20 and is connected with the flywheel rotor 20.
  • One end of the first transmission shaft 31 is in transmission connection with the output end of the motor 10, and the other end of the first transmission shaft 31 is connected with the transmission.
  • the input end of the ratio adjustable device 52 is connected in transmission.
  • One end of the second transmission shaft 32 is in transmission connection with the output end of the gear ratio adjustable device 52 , and the other end is connected with the permanent magnet rotor 31 .
  • One end of the third transmission shaft 63 is connected with the conductor rotor 32 , and the other end is connected with the input section of the generator 40 .
  • the variable speed ratio of the variable speed ratio adjustable device 52 is adjustable, and the variable speed ratio of the variable speed ratio adjustable device 52 is the ratio of the rotational speed of the input end to the rotational speed of the output end.
  • variable speed ratio device 52 may be a multi-stage speed change device, that is, the variable speed ratio device 52 has multiple speed ratios, and can be switched according to the rotational speed of the flywheel rotor 20 .
  • the variable speed ratio device 52 can be a continuously variable speed device, that is, the variable speed ratio device 52 can continuously adjust its speed ratio within a certain range.
  • the gear ratio adjustable device 52 is a gear transmission with a multi-stage or continuously variable transmission function, a hydraulic torque converter, a magnetic transformer or a magnetic coupling transmission device.
  • the output speed of the flywheel rotor 20 can be Better transfer to the ideal range of the input speed of the permanent magnet transmission 30 , further reduce the adjustment burden of the permanent magnet transmission 30 , improve the applicability of the permanent magnet transmission 30 , and expand the speed range of the flywheel rotor 20 .
  • variable speed ratio adjustable device 52 When the speed of the flywheel rotor 20 rises, the speed ratio of the variable speed ratio adjustable device 52 can be increased; The output end of the adjustable device 52 is kept within the ideal range of the input speed of the permanent magnet transmission 30, so that the permanent magnet transmission 30 responds better to the adjustment and the output speed is stable.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being “on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the terms “one embodiment,” “some embodiments,” “example,” “specific examples,” or “some examples” mean a specific feature, structure, material, or feature described in connection with the embodiment or example. Features are included in at least one embodiment or example of the present disclosure. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本公开提供了一种具有永磁变速器的飞轮储能系统,包括电动机、飞轮转子、永磁变速器和发电机。电动机与飞轮转子相连以驱动飞轮转子旋转。永磁变速器包括同轴设置的永磁转子和导体转子,永磁转子与导体转子在轴向上相对且形成气隙,飞轮转子与永磁转子和导体转子中的一者传动连接以驱动其旋转,从而带动另一者旋转,永磁变速器还包括位移装置,位移装置用于调节气隙大小,以使另一者的转速能够保持恒定,另一者与发电机的输入端传动连接,以驱动发电机稳定发电输出恒频电能。

Description

具有永磁变速器的飞轮储能系统
相关申请的交叉引用
本申请基于申请号为202122808916.8、申请日为2021年11月16日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本文作为参考。
技术领域
本公开涉及储能技术领域,尤其是涉及一种具有永磁变速器的飞轮储能系统。
背景技术
随着以清洁能源为主的新一轮能源变革的发展,新能源在我国电网中的占比将越来越高。但是,新能源技术中多采用电力电子装置接入电网,而电力电子装置没有转动惯量,无法主动为电网提供必要的电压和频率支撑,也无法提供必要的阻尼作用。尤其是随着通过电力电子装置连接到电网的分布式能源的渗透率越来越高,电网总的转动惯量不断减小,因此当发生重大的负荷或电源突变时电网出现大的频率偏差的风险也不断提高。高比例电力电子装置的接入会导致电网长期处于低惯量水平中,增加系统不平衡功率冲击,这给电力系统安全稳定的运行带来了越来越大的压力。为改善缓解电网运行压力及新能源消纳压力,亟需具备一定的支撑电网动态调整能力的储能系统来提高电网高效接纳新能源的能力。
发明内容
本公开是基于发明人对以下事实和问题的发现和认识做出的:
飞轮储能技术是一种以动能形式存储能量的储能技术,通过电动机/发电机带动转子加速/减速的方式来实现能量的存储/释放。飞轮储能的主要优点是具有快速的爬坡能力、能量转换效率高和使用寿命长等,在提供辅助服务,例如惯量和频率调节等方面具有得天独厚的优势。且飞轮没有任何地理限制,可以轻松安装,具有可推广及可大规模复制的优点。
目前已有的飞轮储能技术均通过电力电子装置辅助电动/发电机进行动能和电能之间的相互转换过程。当系统需要储存电能时,其会将外部输送来的交流电通过AC/DC的方式供给电动机,进而驱动飞轮转子旋转储能;当需要放电时,电力电子装置对飞轮转子的转子转动惯量进行解耦,起到整流、调频、稳压的作用,以满足负载用电需求。但是电力电子装置没有转动惯量,难以参与电网惯量响应,因此,飞轮储能技术无法解决当前电网中由电力电子装置的大规模使用导致的总的转动惯量比例不断减小的问题。
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开提出一种具有永磁变速器的飞轮储能系统。
根据本公开的具有永磁变速器的飞轮储能系统,包括:电动机和飞轮转子,所述电动机与所述飞轮转子相连以驱动所述飞轮转子旋转;永磁变速器,所述永磁变速器包括在第一方向上相对设置的永磁转子和导体转子,所述永磁转子与所述导体转子之间在第一方向上形成气隙,所述飞轮转子与所述永磁转子和所述导体转子中的一者传动连接以驱动其旋转,从而带动另一者旋转,所述永磁变速器还包括位移装置,所述位移装置用于调节所述气隙大小,以使所述另一者的转速能够保持恒定;和发电机,所述另一者与所述发电机的输入端传动连接,以驱动所述发电机稳定发电输出恒频电能。
根据本公开实施例提供的飞轮储能系统的飞轮转子与具有变速功能的永磁变速器相连,永磁变速器的输出转速能够保持不变,因此能够驱动发电机产生恒频电流,满足向电网输电的要求。由于永磁变速器具有变速功能,飞轮转子的转速变化不会影响发电机向电网中输入恒频电流,因此将本公开实施例提供的飞轮储能系统与电网连接,无需采用电力电子装置解耦、整流、调频、稳压,解决了目前电网中由电力电子装置的使用导致的总的转动惯量不断减小的问题,能够提高电网中的转动惯量,为电网提供必要的电压和频率支撑,降低了电网出现大的频率偏差的风险,使电力系统能够安全稳定的运行,并提高了电网高效接纳新能源的能力。
在一些实施例中,所述永磁转子与所述导体转子同轴,所述位移装置与所述永磁转子和所述导体转子中的至少一者相连,用于沿所述永磁转子的轴向调节所述永磁转子和所述导体转子之间的相对位置以调节所述气隙大小。
在一些实施例中,所述飞轮转子与所述永磁转子传动连接,所述位移装置与所述导体转子相连以沿所述轴向调节其与所述永磁转子之间的相对位置。
在一些实施例中,所述飞轮转子与所述导体转子传动连接,所述位移装置与所述永磁转子相连以沿所述轴向调节其与所述永磁转子之间的相对位置。
在一些实施例中,所述发电机为同步发电机。
在一些实施例中,所述电动机与电网相连并用于从电网取电,所述飞轮储能系统具备释能状态和储能状态,在所述释能状态下,所述电动机待机,所述飞轮转子释放动能驱动所述发电机发电,所述发电机向电网中输入具有稳定频率的电能,在所述储能状态下,所述电动机从电网取电以驱动所述飞轮转子旋转,所述发电机空转。
在一些实施例中,所述飞轮储能系统具备待机状态,在所述待机状态下,所述电动机待机,所述发电机空转。
在一些实施例中,飞轮储能系统还包括变速装置,所述飞轮转子与所述变速装置的输入端传动连接,所述变速装置的输出端与所述永磁转子和所述导体转子中的所述一者传动连接。
在一些实施例中,所述变速装置为具有固定变速比的变速装置,或者,所述变速装置为变速比可调的变速装置。
在一些实施例中,所述变速装置为齿轮变速器、液力变矩器或磁力变液器。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
图1是根据本公开实施例一的飞轮储能系统的示意图
图2是根据本公开实施例二的飞轮储能系统的示意图。
图3是根据本公开实施例三的飞轮储能系统的示意图。
图4是根据本公开实施例的飞轮储能控制器的示意图。
附图标记:
飞轮储能系统1、电动机10、飞轮转子20、永磁变速器30、永磁转子31、导体转子32、位移装置33、发电机40、定变速比变速装置51、变速比可调装置52、第一传动轴61、第二传动轴62、第三传动轴63。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面根据图1-图4描述本公开的实施例的飞轮储能系统1的基本结构。如图1所示,飞轮储能系统1包括电动机10、飞轮转子20、永磁变速器30和发电机40。
飞轮转子20的加速能够实现能量的储存,飞轮转子20的减速能够实现能量的释放。其中飞轮转子20与电动机10相连,电动机10用于驱动飞轮转子20旋转。电动机10通过驱动飞轮转子20加速旋转,最终实现电能以动能的形式储存在飞轮储能单元中。可选地,电动机10与电网相连用于从电网中取电,电动机10从电网中取电驱动飞轮转子20旋转,飞轮转子20的转速上升以储存动能。
永磁变速器30包括永磁转子31、导体转子32和位移装置33,永磁转子31与导体转子32同轴设置,且在轴向上,永磁转子31与导体转子32相对且之间间隔形成气隙。永磁转子31包括永磁体,可以理解的是,由于永磁体具有磁性,气隙内形成有磁场。永磁转子31和导体转子32均可以随各自的旋转轴独立转动。当永磁转子31和导体转子32之间发生相对运动,磁力线在导体中移动产生感应涡电流,进而在导体上产生感应磁场,从而产生扭矩,主动旋转的一者从而能够带动另一者旋转。
飞轮转子20与主动转子传动连接,主动转子的转速与从动转子的转速之比为永磁变速器30的传动比。在一些实施例中,飞轮转子20与永磁转子31传动连接并能够驱动永磁转子31旋转,永磁转子31带动导体转子32转动,在该实施例中,永磁转子31为主动转子,导体转子32为从动转子。在另一些实施例中,飞轮转子20与导体转子32传动连接并能够驱动导体转子32旋转,导体转子32带动永磁转子31转动,在该实施例中,导体转子32为主动转子,永磁转子31为从动转子。
位移装置33用于调节气隙的大小,以使从动转子的转速保持恒定。可选地,位移装置33与永磁转子31和导体转子32中的至少一者相连,用于沿轴向调节永磁转子31与导体转子32之间的相对位置以调节气隙的大小。通过调节气隙的大小以调节导体转子32产生的感应磁场的大小,从而调节传递的扭矩,使从动转子的转速能够保持恒定。
例如,位移装置33与导体转子32相连,并用于沿轴向移动导体转子32,若位移装置33电动导体转子32沿轴向向靠近永磁转子31的方向移动,气隙减小,穿过导体转子32的磁力线越密集,产生的感应磁场越强,扭矩越大,相对运动越快,永磁变速器30的传动比减小。
当主动转子在飞轮转子20的驱动下转速上升时,为了保持从动转子的转速恒定,位移装置33应该使气隙增大,永磁变速器30的传动比增大。当主动转子在飞轮转子20的驱动下转速下降时,为了保持从动转子的转速恒定,位移装置33应该使气隙减小,永磁变速器30的传动比减小。永磁变速器30可以看作是一种变传动比的变速装置。
从动转子与发电机40的输入端传动连接,由于从动转子的转速能够保持恒定,发电机40发电接入电网并向电网中输入具有稳定频率的电能。也就是说,通过永磁变速器30的作用,发电机40能够向电网输入恒频电流。发电机40向电网稳定输入电能不受飞轮转子20的转速的变化的影响,即使飞轮转子20转速发生改变,发电机40也能够向电网稳定输入电能。
可选地,从动转子的转速为3000rpm,发电机40能够稳定向电网中输入频率为50Hz的电流。
可选地,飞轮储能系统1可以与电网相连以便参与电网惯量响应,将溢出的能量按溢出比例存于飞轮转子20或者从飞轮转子20按缺失比例汲取能量补充电网,降低电网频率波动。
根据本公开实施例提供的飞轮储能系统的飞轮转子与具有变速功能的永磁变速器相连,永磁变速器的输出转速能够保持不变,因此能够驱动发电机产生恒频电流,满足向电网输电的要求。由于永磁变速器具有变速功能,飞轮转子的转速变化不会影响发电机向电网中输入恒频电流,因此将本公开实施例提供的飞轮储能系统与电网连接,无需采用电力电子装置解耦、整流、调频、稳压,解决了目前电网中由电力电子装置的使用导致的总的转动惯量不断减小的问题,能够提高电网中的转动惯量,为电网提供必要的电压和频率支撑,降低了电网出现大的频率偏差的风险,使电力系统能够安全稳定的运行,并提高了电网高效接纳新能源的能力。
为了使发电机40更好输出稳定的电流,在一些实施例中,飞轮储能系统1还包括变速装置,变速装置连接在飞轮转子20与永磁变速器30之间,变速装置具有输入端和输出端,飞轮转子20与变速装置的输入端传动连接,变速装置的输出端与永磁变速器30的永磁转子31传动连接,变速装置用于变速。变速装置还用于传导所述飞轮转子的转动惯量。
也就是说,变速装置用于对飞轮转子20输入永磁变速器30的转速进行调速,变速装置的变速比为输入端(飞轮转子20的转速)与输出端(主动转子的转速)之比。通过变速装置变速,能够使飞轮转子20的输出转速更好地适应永磁变速器30的转速适用范围,减轻永磁变速器30的负担,即变速装置的设置可以使飞轮转子20的输出转速变化到永磁变速器30的输入转速(主动转子的机械转速)的理想区间内。
例如,永磁变速器30的输入转速的理想区间为(3000±1000)rpm,当永磁变速器30的输入转速在(3000±1000)rpm范围内时,永磁变速器30能够对主动转子的转速变化进行更好地响应。通过设置具有合适变速比的变速装置,可以使飞轮转子20的输出转速变化到永磁变速器30的输入转速的该理想区间内。
可选地,变速装置为具有固定变速比的变速装置(定变速比变速装置51),或者,变速装置为变速比可调的变速装置(变速比可调装置52)。变速装置为变速比可调的变速装置是指,变速装置可以为多 级变速装置或无级变速装置。变速装置为多级变速装置,其具有多个变速比,且可根据飞轮转子20的转速情况调节其变速比。变速装置为无级变速装置,其可在一定范围内连续调节其变速比。
下面以图1-图4为例描述本公开提供的若干具体实施例。
实施例一:
如图1所示,本实施例的飞轮储能系统1包括电动机10、飞轮转子20、永磁变速器30、发电机40、第一传动轴61、第二传动轴62。永磁变速器30包括永磁转子31、导体转子32和位移装置33。电动机10与飞轮转子20相连,电动机10能够通过传动轴驱动飞轮转子20的转速上升以储存动能。飞轮转子20能够通过传动轴驱动永磁变速器30的主动转子转动。主动转子带动从动转子恒速转动。
在本实施例中,永磁转子31为永磁变速器30的输入端,导体转子32与发电机40的输入端传动连接。也就是说,在本实施例中,永磁转子31为主动转子,导体转子32为从动转子。永磁转子31与导体转子32通过气隙分开。
电动机10位于飞轮转子20的远离永磁变速器30的一侧,第一传动轴61穿过飞轮转子20并与飞轮转子20传动连接,第一传动轴61一端与电动机10的输出端传动连接,第一传动轴61的另一端与永磁转子31相连。第二传动轴62的一端与导体转子32传动连接,第二传动轴62的另一端与发电机40的输入端传动连接。导体转子32转动驱动发电机40发电,发电机40通过变压器(图中未示出)与电网相连,向电网供电。在本实施例中,发电机40为同步发电机。
当永磁转子31在飞轮转子20的作用下旋转时,即永磁转子31与导体转子32之间产生相对运动时,导体转子32切割磁力线产生涡电流,涡电流进而产生感应磁场,感应磁场与永磁体的磁场之间相互作用,并具有阻止永磁转子31与导体转子32之间的相对运动的趋势,带动导体转子32沿与永磁转子31相同的方向转动,从而实现了永磁转子31向导体转子32的扭矩传递,即转动惯量的传递。导体转子32的转速的大小与永磁转子31的转速以及气体大小有关。
如图1所示,位移装置33与导体转子32连接,用于沿轴向移动导体转子32从而改变导体转子32与永磁转子31之间的相对位置,进而改变两者之间的气隙的大小。两者之间的气隙越小,导体转子32中穿过的磁场强度越大,传递的扭矩就越大,导体转子32的转速越快。反之,气隙越大,导体转子32中穿过的磁场强度越小,传递的扭矩就越小,导体转子32的转速越慢。
因此,通过位移装置33调节导体转子32与永磁转子31在轴向上的相对位置关系,可以实现平稳地、可控地调节两者之间的扭矩传递关系,即调节永磁变速器30的传动比(永磁转子31与导体转子32的转速之比)的大小。
本领域的技术人员可以理解的是,飞轮转子20的转速是在不断变化中的,导致永磁转子31的机械转速会断变化。为了使导体转子32的转速恒定:
当飞轮转子20的转速上升时,带动永磁转子31的转速上升,控制位移装置33将导体转子32向远离永磁转子32的方向移动,以增大气隙,从而增大永磁变速器30的传动比;
当飞轮转子20的转速下降时,带动永磁转子31的转速下降,控制位移装置33将导体转子32向靠近永磁转子32的方向移动,以减小气隙,从而减小永磁变速器30的传动比。通过以上控制策略,可以保持导体转子32的转速不变,导体转子32驱动发电机40恒频发电。
也就是说,为了使导体转子32的转速保持恒定,对其设定预设值,根据永磁转子31的当前的转速,调节两者之间的相对位置。位移装置33可以为现有技术中任一种可以实现位移功能的设备,例如位移装置33包括伸缩杆、气缸、电动执行器等。这里不作过多介绍。
在本实施例中,永磁转子31的转速与飞轮转子20的输出转速相等,导体转子32的转速与发电机40的输入转速相等。导体转子32的机械转速恒定在3000rpm。发电机40的输出频率稳定在50Hz。
需要说明的是,国内的电网频率基准线为50Hz,导体转子32的转速可以恒定在3000rpm。国外的电网频率基准线为60Hz,导体转子32的转速可以恒定在3600rpm,即可以根据电网的频率基准,调整导体转子32的额定转速。
在其他实施例中,飞轮转子20可以与导体转子32传动连接驱动导体转子32旋转,也就是说,导体转子32可以为主动转子,永磁转子31可以为从动转子。飞轮转子20驱动导体转子32,导体转子32 切割磁力线产生涡电流,感应磁场与永磁场相互作用产生扭矩,驱动永磁转子31沿与导体转子32相同的方向转动。
此外,在其他实施例中,位移装置33还可以与永磁转子31相连,用于沿轴向移动永磁转子31从而改变气隙大小。或者,位移装置33还可以与导体转子32和永磁转子31中的每一者相连,可以同时移动导体转子32和永磁转子31改变气隙大小。
进一步地,本申请实施例提供的飞轮储能系统1具备储能状态和释能状态,且能够在储能状态和释能状态之间切换。也可以说,飞轮储能系统1在运行过程包括储能阶段和释能阶段,储能阶段对应上述储能状态,释能阶段对应上述释能状态。当飞轮储能系统1在储能状态下时,将电能转化为动能储存;当飞轮储能系统1在释能状态下时,释放其储存的动能,并将动能转化为电能输出。
下面以电动机10与电网相连且可从电网中取电,发电机40能够向电网中输能为例描述本申请的技术方案,具体如下:
在储能状态下,电动机10运作从电网或其它电源取电并通过传动轴驱动飞轮转子20转动,飞轮转子20的转速上升实现储能,且在该状态下发电机40空转以停止向电网中输入电能。也就是说,在储能阶段,发电机40与电网之间的不进行功率传递,发电机40不发电。
可选地,飞轮转子20在电动机10的驱动下转速上升到额定最高转速,当到达额定最高转速后,飞轮转子20完成储能,而后电动机10停止驱动飞轮转子20。可选地,额定最高转速为100rpm-1000000rpm。
在释能状态下,电动机10待机,飞轮转子20释放动能,飞轮转子20通过第一传动轴61驱动永磁转子31转动,导体转子32转动并通过第二传动轴62驱动发电机40发电,发电机40通过变压器向电网中输入具有稳定频率的电能,无需采用电力电子装置解耦、整流、调频、稳压,提高了电网中的转动惯量,为电网提供必要的电压和频率支撑,降低了电网出现大的频率偏差的风险,使电力系统能够安全稳定的运行,并提高了电网高效接纳新能源的能力。飞轮转子20释放动能转速下降。
其中在释能状态下电动机10待机是指,电动机10没有运作,其没有驱动飞轮转子20加速。也就是说,当飞轮储能系统1处于释能状态下时,飞轮储能系统1中只有能量输出,没有能量输入。当飞轮储能系统1处于上述储能状态下时,飞轮储能系统1中只有能量输入,没有能量输出。
需要说明的是,在释能状态下,根据飞轮转子20的转速(永磁转子31的转速)与导体转子32的预定转速之差,控制位移装置33改变气隙大小,使导体转子32保持预设转速转动,发电机40产生稳定电流。
在一些实施例中,飞轮储能系统1还具备待机状态。也可以说,飞轮储能系统1在运行过程还包括待机阶段。当飞轮储能系统1在待机状态下时,飞轮储能系统1处于能量保持阶段,即没有能量的输入也没有能量的输出,飞轮储能系统1以最小的损耗运行。在待机状态下,电动机10待机,发电机40空转,飞轮转子20释放少量的动能以保持永磁转子31转动。
例如,当电网中的频率等于预设值时(例如电网频率等于50Hz),使飞轮储能系统1进入待机状态,飞轮转子20损耗少量动能以维持永磁转子31转动,保证飞轮储能系统1以最佳状态应对下一次电网频率波动。
在一些实施例中,飞轮储能系统1接入电网能够对电网进行惯量响应或调频。当电网的频率上升时,电动机10从电网中吸取溢出的电能,驱动飞轮转子20转速上升,使电能转化为动能储存在飞轮转子20中,从而使得电网的频率降低。当电网的频率下降时,飞轮转子20驱动发电机40发电,飞轮转子20转速下降,使动能转化为电能输入电网,从而使得电网的频率提升。
在一些实施例中,如图4所示,飞轮储能系统1还包括飞轮储能控制器。飞轮储能控制器用于控制飞轮储能单元10的能量输入及输入功率,即飞轮储能控制器用于控制是否向飞轮储能单元10中输入电能,还用于控制向飞轮储能单元10中输入的电能的功率。可选地,飞轮储能控制器由独立电源供电,以保证其不会受外界电网的波动影响。
飞轮储能控制器包括电网检测模块和电动机控制模块。电网检测模块用于检测电网的当前频率。可选地,电网检测模块能够对电网的频率进行实时监控,以便更好地对电网的频率进行响应、调控。
电动机控制模块与电网检测模块之间通讯连接,电网检测模块将检测到的电网的频率传递给电动机 控制模块,电动机控制模块接收到频率信号,并根据频率信号控制电动机10的启闭,以及电动机10的输入功率。
也就是说,当电动机控制模块接收到电网的当前频率信号,并判断需要启动电动机10对飞轮储能单元10进行储能时,电动机控制模块向电动机10发送启动信号,使电动机10开启,并从电网中吸收电能。
当电动机控制模块根据电网的当前频率判断出,不需要向飞轮储能单元10储能时,向电动机10发动关闭信号,关闭电动机10。
并且,电动机控制模块还可以根据电网的当前频率判断出电动机10的输入功率的大小,并控制向电动机10输入的功率。
例如,当电网的当前频率上升至大于预设值时,电动机控制模块判断改变电动机10的输入功率以对电网进行调频,抑制电网频率的进一步抬升。通过改变电动机10的输入功率,能够使飞轮储能单元10吸收更多的电能,飞轮转子20的转速增加。并且电网的频率偏差越大,飞轮转子20的力矩越大,即电动机10的输入功率越大。可以理解的是,电动机10的输入功率不会超过其能承受的最大功率。
因此,本申请实施例提供的飞轮储能系统1能够实现对电网的扰动功率分配、惯量响应、一次调频等辅助服务,提高电力系统一次调频及惯量支撑能力。相比于传统机械惯量,本申请实施例提供的飞轮储能系统1能够提供更快速且更稳定的频率控制。
实施例二:
下面以图2为例描述本实施例的飞轮储能系统1,本实施例的飞轮储能系统1包括电动机10、飞轮转子20、永磁变速器30、发电机40、定变速比变速装置51、第一传动轴61、第二传动轴62和第三传动轴63。飞轮转子20、电动机10、永磁变速器30同实施例一类似,这里不作赘述,只描述区别部分。
如图2所示,第一传动轴31穿过飞轮转子20并与飞轮转子20传动连接,第一传动轴31的一端与电动机10的输出端传动连接,第一传动轴31的另一端与定变速比变速装置51的输入端传动连接。第二传动轴32的一端与定变速比变速装置51的输出端传动连接,另一端与永磁转子31相连。第三传动轴63一端与导体转子32相连,另一端与发电机40的输入段相连。定变速比变速装置51的变速比固定,为输入端转速与输出端转速之比。
在本实施例中,飞轮转子20的转速等于定变速比变速装置51的输入端的转速,定变速比变速装置51的输出端的转速等于永磁转子31的转速。
在储能阶段,发电机定子与电网断开,发电机40空转,电动机10从电网中吸取电能,电动机10的输出端通过第一传动轴31驱动飞轮转子20的转速上升,飞轮转子20的转速上升储存动能,即电能转化为动能储存在飞轮转子20中。飞轮转子20的转速上升直至达到设定转速。可以理解的是,在储能阶段飞轮储能系统1只有能量输入没有能量输出。
在释能阶段,电动机10待机,即电动机10不向飞轮转子20输入能量,飞轮转子20释放动能,飞轮转子20通过第一传动轴31驱动定变速比变速装置51的输入端旋转,转动惯量从定变速比变速装置51的输出端输出,且定变速比变速装置51的输出端的转速与定变速比变速装置51的输入端转速和定变速比变速装置51的变速比有关,定变速比变速装置51的输出端通过第二传动轴32带动永磁转子31转动,永磁转子31转动带动导体转子32转动,导体转子32通过第三传动轴62驱动发电机40发电。
在飞轮转子20与永磁变速器30之间设置定变速比变速装置51,可以使发电机转子的转速更好地适应永磁变速器30的转速适用范围,减轻永磁变速器30的负担,即变速装置的设置可以使飞轮转子20的输出转速变化到永磁变速器30的输入转速(永磁转子31的转速)的理想区间内。
可选地,永磁变速器30的输入转速的理想区间为(3000±1000)rpm,通过设置具有合适变速比的变速装置,可以使飞轮转子20的输出转速变化到永磁变速器30的输入转速的该理想区间内。当永磁变速器30的输入转速(发电机转子的转速)在(3000±1000)rpm范围内时,永磁变速器30能够对永磁转子31的机械转速变化进行更好地响应,以保持导体转子32的转速恒定。
可选地,定变速比变速装置51的变速比为0.03-333。
可选地,定变速比变速装置51为具有变速功能的齿轮变速器、液力变矩器、磁力变液器或磁耦合 器变速装置。
实施例三:
下面以图3为例描述本实施例的飞轮储能系统1,本实施例的飞轮储能系统1包括电动机10、飞轮转子20、永磁变速器30、发电机40、变速比可调装置52、第一传动轴61、第二传动轴62和第三传动轴63。飞轮转子20、电动机10、永磁变速器30同实施例一类似,这里不作赘述,只描述区别部分。
如图3所示,第一传动轴31穿过飞轮转子20并与飞轮转子20传动连接,第一传动轴31的一端与电动机10的输出端传动连接,第一传动轴31的另一端与变速比可调装置52的输入端传动连接。第二传动轴32的一端与变速比可调装置52的输出端传动连接,另一端与永磁转子31相连。第三传动轴63一端与导体转子32相连,另一端与发电机40的输入段相连。变速比可调装置52的变速比可调,变速比可调装置52的变速比为输入端转速与输出端转速之比。
可选地,变速比可调装置52可以为多级变速装置,即变速比可调装置52具有多个变速比,且可根据飞轮转子20的转速情况进行切换。或者,变速比可调装置52可以为无级变速装置,即变速比可调装置52可在一定范围内连续调节其变速比。
可选地,变速比可调装置52为具有多级或无级变速功能的齿轮变速器、液力变矩器、磁力变液器或磁耦合器变速装置。
通过在飞轮转子20与永磁变速器30之间设置变速比可调装置52,并根据飞轮转子20的当前转速适应性地调整变速比可调装置52的变速比,可以使飞轮转子20的输出转速更好地转变到永磁变速器30的输入转速的理想区间内,进一步减轻永磁变速器30的调节负担,提高永磁变速器30的适用性,还可以扩大飞轮转子20的转速区间。
当飞轮转子20的转速上升时,可以使变速比可调装置52的变速比增大,当飞轮转子20的转速下降时,可以使变速比可调装置52的变速比减小,以使变速比可调装置52的输出端保持在永磁变速器30的输入转速的理想区间内,使永磁变速器30更好地响应调节,输出转速稳定。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本公开中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行 结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种具有永磁变速器的飞轮储能系统,其特征在于,包括:
    电动机和飞轮转子,所述电动机与所述飞轮转子相连以驱动所述飞轮转子旋转;
    永磁变速器,所述永磁变速器包括在第一方向上相对设置的永磁转子和导体转子,所述永磁转子与所述导体转子之间在第一方向上形成气隙,所述飞轮转子与所述永磁转子和所述导体转子中的一者传动连接以驱动其旋转,从而带动另一者旋转,所述永磁变速器还包括位移装置,所述位移装置用于调节所述气隙大小,以使所述另一者的转速能够保持恒定;和
    发电机,所述另一者与所述发电机的输入端传动连接,以驱动所述发电机稳定发电输出恒频电能。
  2. 根据权利要求1所述的具有永磁变速器的飞轮储能系统,其特征在于,所述永磁转子与所述导体转子同轴,所述位移装置与所述永磁转子和所述导体转子中的至少一者相连,用于沿所述永磁转子的轴向调节所述永磁转子和所述导体转子之间的相对位置以调节所述气隙大小。
  3. 根据权利要求2所述的具有永磁变速器的飞轮储能系统,其特征在于,所述飞轮转子与所述永磁转子传动连接,所述位移装置与所述导体转子相连以沿所述轴向调节其与所述永磁转子之间的相对位置。
  4. 根据权利要求2所述的具有永磁变速器的飞轮储能系统,其特征在于,所述飞轮转子与所述导体转子传动连接,所述位移装置与所述永磁转子相连以沿所述轴向调节其与所述永磁转子之间的相对位置。
  5. 根据权利要求1所述的具有永磁变速器的飞轮储能系统,其特征在于,所述发电机为同步发电机。
  6. 根据权利要求1-5中的任一项所述的具有永磁变速器的飞轮储能系统,其特征在于,所述电动机与电网相连并用于从电网或其它电源取电,所述飞轮储能系统具备释能状态和储能状态,
    在所述释能状态下,所述电动机待机,所述飞轮转子释放动能驱动所述发电机发电,所述发电机向电网中输入具有稳定频率的电能,
    在所述储能状态下,所述电动机从电网取电以驱动所述飞轮转子旋转,所述发电机空转。
  7. 根据权利要求6所述的具有永磁变速器的飞轮储能系统,其特征在于,所述飞轮储能系统具备待机状态,在所述待机状态下,所述电动机待机,所述发电机空转。
  8. 根据权利要求1所述的具有永磁变速器的飞轮储能系统,其特征在于,还包括变速装置,所述飞轮转子与所述变速装置的输入端传动连接,所述变速装置的输出端与所述永磁转子和所述导体转子中的所述一者传动连接。
  9. 根据权利要求8所述的具有永磁变速器的飞轮储能系统,其特征在于,所述变速装置为具有固定变速比的变速装置,或者,所述变速装置为变速比可调的变速装置。
  10. 根据权利要求9所述的具有永磁变速器的飞轮储能系统,其特征在于,所述变速装置为齿轮变速器、液力变矩器或磁力变液器。
PCT/CN2022/132340 2021-11-16 2022-11-16 具有永磁变速器的飞轮储能系统 WO2023088323A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122808916.8 2021-11-16
CN202122808916.8U CN216721106U (zh) 2021-11-16 2021-11-16 一种具有永磁变速器的飞轮储能系统

Publications (1)

Publication Number Publication Date
WO2023088323A1 true WO2023088323A1 (zh) 2023-05-25

Family

ID=81880130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132340 WO2023088323A1 (zh) 2021-11-16 2022-11-16 具有永磁变速器的飞轮储能系统

Country Status (2)

Country Link
CN (1) CN216721106U (zh)
WO (1) WO2023088323A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216721106U (zh) * 2021-11-16 2022-06-10 国家电投集团科学技术研究院有限公司 一种具有永磁变速器的飞轮储能系统
CN115159316B (zh) * 2022-06-22 2023-11-28 常熟理工学院 一种兼备双向缓冲功能的电梯节能装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1539669A (zh) * 2003-04-23 2004-10-27 沈裕祥 汽车永磁自动变速器
CN101725476A (zh) * 2008-10-28 2010-06-09 马杰 变速恒频永磁调速风力发电机
JP2016084708A (ja) * 2014-10-23 2016-05-19 日本精工株式会社 エネルギー貯蔵装置及び風力発電装置
CN113489230A (zh) * 2021-07-13 2021-10-08 坎德拉(深圳)新能源科技有限公司 基于飞轮储能技术的新型调频系统
CN114257026A (zh) * 2021-11-16 2022-03-29 国家电投集团科学技术研究院有限公司 具有永磁变速器的飞轮储能系统
CN216721106U (zh) * 2021-11-16 2022-06-10 国家电投集团科学技术研究院有限公司 一种具有永磁变速器的飞轮储能系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1539669A (zh) * 2003-04-23 2004-10-27 沈裕祥 汽车永磁自动变速器
CN101725476A (zh) * 2008-10-28 2010-06-09 马杰 变速恒频永磁调速风力发电机
JP2016084708A (ja) * 2014-10-23 2016-05-19 日本精工株式会社 エネルギー貯蔵装置及び風力発電装置
CN113489230A (zh) * 2021-07-13 2021-10-08 坎德拉(深圳)新能源科技有限公司 基于飞轮储能技术的新型调频系统
CN114257026A (zh) * 2021-11-16 2022-03-29 国家电投集团科学技术研究院有限公司 具有永磁变速器的飞轮储能系统
CN216721106U (zh) * 2021-11-16 2022-06-10 国家电投集团科学技术研究院有限公司 一种具有永磁变速器的飞轮储能系统

Also Published As

Publication number Publication date
CN216721106U (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2023088323A1 (zh) 具有永磁变速器的飞轮储能系统
WO2023005951A1 (zh) 飞轮储能及惯量传导系统
CN105006951B (zh) 一种恒功率调速运行的磁耦合传动装置
CN114257026A (zh) 具有永磁变速器的飞轮储能系统
JP2014502136A (ja) 低電圧乗切インテリジェント電力制御ユニット及びその使用
CN107681828B (zh) 一种双转子调速风力发电系统及其控制方法
CN215934637U (zh) 飞轮储能及惯量传导系统
CN216721105U (zh) 一种具有异步调速器的飞轮储能系统
CN114257031A (zh) 具有异步调速器的飞轮储能系统
CN216016619U (zh) 异步发电的飞轮储能系统
CN114257030B (zh) 具有电磁耦合器的飞轮储能系统
CN114257028B (zh) 具有电磁耦合器的飞轮储能系统
CN215934636U (zh) 垂直飞轮储能及惯量传导系统
CN215934638U (zh) 垂直飞轮储能及惯量传导系统
CN216078188U (zh) 具有液力变矩器的飞轮储能及惯量传导系统
CN114257027A (zh) 具有双馈变速装置的飞轮储能系统
CN215682042U (zh) 立式飞轮储能及惯量传导系统
WO2023088321A1 (zh) 具有电磁耦合器的飞轮储能系统
CN215682043U (zh) 卧式飞轮储能及惯量传导系统
WO2023088320A1 (zh) 具有双馈变速装置的飞轮储能系统
WO2023005950A1 (zh) 飞轮储能系统
CN107317457A (zh) 一种永磁耦合调速电机
CN115694051A (zh) 立式飞轮储能及惯量传导系统
CN116937609A (zh) 具有电磁耦合器的飞轮调相系统
CN207053364U (zh) 一种永磁耦合调速电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894855

Country of ref document: EP

Kind code of ref document: A1