WO2023088085A1 - 关节摩擦副及关节假体 - Google Patents

关节摩擦副及关节假体 Download PDF

Info

Publication number
WO2023088085A1
WO2023088085A1 PCT/CN2022/128987 CN2022128987W WO2023088085A1 WO 2023088085 A1 WO2023088085 A1 WO 2023088085A1 CN 2022128987 W CN2022128987 W CN 2022128987W WO 2023088085 A1 WO2023088085 A1 WO 2023088085A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
friction pair
support
pair according
cross
Prior art date
Application number
PCT/CN2022/128987
Other languages
English (en)
French (fr)
Inventor
俞天白
李蒙
潘忠诚
常兆华
Original Assignee
苏州微创关节医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州微创关节医疗科技有限公司 filed Critical 苏州微创关节医疗科技有限公司
Publication of WO2023088085A1 publication Critical patent/WO2023088085A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3836Special connection between upper and lower leg, e.g. constrained

Definitions

  • the present application relates to the technical field of medical devices, in particular to a joint friction pair and a joint prosthesis.
  • joint replacement has become the most successful and effective method for treating severe joint diseases, relieving joint pain, and rebuilding joint function.
  • the life of the joint prosthesis often determines the quality of life and satisfaction of the patient after replacement.
  • An ideal joint prosthesis should be used for the patient's lifetime. Even for young patients, the service life of the prosthesis should be extended as much as possible to reduce the occurrence of subsequent revisions.
  • the joint friction pair in the current joint prosthesis generally adopts a hard-hard or hard-soft design.
  • Hard-hard design for example, one end of the joint friction pair is made of hard materials such as metal or ceramics, and the other end is also made of hard materials.
  • Hard-soft design for example, one end of the joint friction pair is made of a hard material, and the other end is made of a relatively soft material such as ultra-high molecular weight polyethylene (UHMWPE), polyetheretherketone (PEEK) or hydrogel. plan.
  • UHMWPE ultra-high molecular weight polyethylene
  • PEEK polyetheretherketone
  • the design of hard-hard friction pairs generally adopts metal-metal or ceramic-ceramic design. Although it has the lowest wear rate, the metal wear particles produced by the metal-metal combination will cause severe inflammation. Be eliminated.
  • the ceramic-ceramic combination has the problem that the ceramic is relatively brittle and has a high risk of fracture. In contrast, the hard-soft design reduces this risk, and at the same time, it can also play a certain role in cushioning and shock absorption, improving patient comfort. However, due to the difference in hardness between the two ends of the friction pair, the softer end is easily worn, resulting in wear debris.
  • the wear debris generated during the wear of the joint prosthesis will trigger a series of immune reactions in the human body, resulting in bone loss and bone resorption, which in turn will cause osteolysis and aseptic loosening, which will seriously affect the service life of the joint prosthesis. Therefore, the primary task of prolonging the life of joint prosthesis is to optimize and improve the design of the friction pair of the articular surface, and the current technology still needs to be improved.
  • a joint friction pair and a joint prosthesis are provided.
  • One aspect of the present application provides a joint friction pair, including:
  • the first support body includes a first support body and a first support surface formed on the first support body
  • the material of the first supporting body includes a hard metal material or a hard alloy material
  • the surface roughness of the first support surface is ⁇ 0.01 ⁇ m, the water contact angle of the first support surface is ⁇ 60°; and the second support body includes a second support main body and a support body formed on the second support main body the second bearing surface,
  • the second supporting body includes a cross-linked ultra-high molecular weight polyethylene material, and the degree of cross-linking of the second supporting body tends to decrease from the surface layer to the inside;
  • the second supporting surface is used to cooperate with the first supporting surface, the surface roughness of the second supporting surface is ⁇ 0.1 ⁇ m, and the water contact angle of the second supporting surface is ⁇ 30°.
  • the first bearing surface includes a hard metal oxide layer.
  • the first supporting surface is formed by oxidation of the surface of the first supporting body.
  • the material of the first support body includes a zirconium alloy material
  • the first supporting surface includes a hard oxide layer formed of zirconium alloy material.
  • the second supporting body is made by direct molding of ultra-high molecular weight polyethylene material and then undergoing cross-linking treatment.
  • the cross-linking treatment is carried out by electron beam or ⁇ -ray irradiation.
  • the cross-linking treatment adopts electron beam irradiation, and the total irradiation dose of electron beam irradiation is 50 kGy-120 kGy.
  • the second support surface includes a hydrophilic polymer layer.
  • the hydrophilic polymer layer is formed on the surface of the second supporting body by chemical grafting or physical coating.
  • the material of the second supporting surface includes at least one of poly-2-methacryloyloxyethyl phosphorylcholine, polyvinylpyrrolidone and polyhydroxyethylmethacrylate.
  • the water contact angle of the first supporting surface is ⁇ 53°.
  • the water contact angle of the second support surface is ⁇ 15°.
  • the coefficient of friction between the first bearing surface and the second bearing surface is ⁇ 0.08.
  • the swelling degree of the surface layer of the second support body close to the second support surface is ⁇ 3.5; the swelling degree of the inner center of the second support body is ⁇ 4.5; the thickness of the surface layer is the 10%-30% of the total thickness of the second supporting body.
  • the thickness of the first supporting surface is 5 ⁇ m ⁇ 30 ⁇ m.
  • the thickness of the second support surface is 50nm-300nm.
  • Another aspect of the present application provides a joint prosthesis, including the joint friction pair described in any one of the above.
  • the joint prosthesis comprises a hip joint, a knee joint, a shoulder joint, an elbow joint, an ankle joint, a condyle joint, a wrist joint or a finger joint.
  • Fig. 1 is the structural representation of the hip joint friction pair that embodiment 1 of the present application makes;
  • Fig. 2 is a schematic structural view of the knee joint friction pair prepared in Example 3 of the present application.
  • first and second are used for description purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • An embodiment of the present application provides a joint friction pair, including a first support body and a second support body.
  • the first supporting body includes a first supporting body and a first supporting surface formed on the first supporting body.
  • the material of the first supporting body includes hard metal material or hard alloy material.
  • the surface roughness of the first supporting surface is ⁇ 0.01 ⁇ m, and the water contact angle of the first supporting surface is ⁇ 60°.
  • the second supporting body includes a second supporting body and a second supporting surface formed on the second supporting body.
  • the second support body includes a cross-linked ultra-high molecular weight polyethylene material. The degree of cross-linking of the second supporting body tends to decrease from the surface layer to the inside.
  • the second bearing surface is adapted to cooperate with the first bearing surface.
  • the surface roughness of the second supporting surface is ⁇ 0.1 ⁇ m, and the water contact angle of the second supporting surface is ⁇ 30°.
  • the first supporting body is made of hard metal or hard alloy.
  • the second support body is cross-linked ultra-high molecular weight polyethylene.
  • the technical staff of the present application found that there are many factors affecting the wear rate of the joint friction pair of hard-soft design, mainly the surface roughness of the bearing surface of the joint, the friction coefficient between the two bearing surfaces, the joint friction pair Lubrication conditions etc. After research, it is found that only improving the surface roughness of the hard end has very limited improvement in improving the wear problem, because the wear mainly occurs at the soft end.
  • the hydrophilicity of the traditional bearing surface is poor, resulting in insufficient joint fluid after the joint prosthesis is implanted, resulting in dry grinding, which increases the wear rate of the joint prosthesis.
  • non-gradient high-crosslinked ultra-high molecular weight polyethylene is used as the material of the second support body, although it can effectively reduce wear, compared with traditional ultra-high molecular weight polyethylene, its impact resistance and creep resistance are inferior. The performance and fatigue crack growth resistance are greatly reduced, which in turn increases the risk of soft end failure and reduces the safety of use.
  • the above-mentioned joint friction pair includes a first supporting body as a hard end and a second supporting body as a soft end, and the two supporting surfaces where the first supporting body and the second supporting body cooperate with each other have relatively low surface roughness, and control
  • the water contact angles of the two supporting surfaces are in a specific range, so that they both have good hydrophilicity, which can promote the formation of liquid film lubrication to reduce the friction coefficient between the two supporting surfaces, which in turn is beneficial to reduce joint friction
  • cross-linked ultra-high molecular weight polyethylene is used as the material of the second supporting body, and the cross-linking degree of the second supporting body is controlled to decrease from the surface layer to the inside, which can give full play to the advantages of a higher cross-linking degree
  • the anti-wear performance of ultra-high molecular weight polyethylene and the impact resistance, creep resistance and crack growth resistance of ultra-high molecular weight polyethylene with a lower degree of crosslinking, such multi-dimensional optimization and synergy can ensure excellent safety of joint friction pairs
  • the degree of cross-linking of the second supporting body tends to decrease from the surface layer to the inside, as long as the degree of cross-linking of the second supporting body on the side close to its own surface is compared to the degree of cross-linking at the position closer to its interior Higher is fine.
  • the decreasing trend may be a continuous decreasing trend (ie linear decreasing), or a discontinuous decreasing trend (ie gradient decreasing).
  • the interior of the second supporting body may have a relatively low degree of cross-linking, or may not be cross-linked.
  • the first bearing surface includes a hard metal oxide layer.
  • the first supporting surface is formed by oxidation of the surface of the first supporting body. In this way, a hard metal oxide layer is formed on the surface of the first supporting body, which improves the hardness of the surface, and at the same time makes the surface roughness Ra reach ⁇ 0.01 ⁇ m.
  • the material of the first supporting body includes a zirconium alloy material; the first supporting surface includes a hard oxide layer formed of a zirconium alloy material.
  • the zirconium alloy material includes, but is not limited to, binary, ternary or multi-element alloys formed of at least one of niobium, titanium, tantalum, molybdenum, cobalt and chromium and zirconium.
  • the zirconium alloy is made of binary alloys such as zirconium-niobium alloy, zirconium-titanium alloy, zirconium-tantalum alloy, zirconium-molybdenum alloy, zirconium-cobalt alloy, zirconium-chromium alloy, zirconium-iron alloy, or zirconium-niobium-titanium alloy, zirconium-niobium-molybdenum alloy, zirconium-niobium-molybdenum alloy, zirconium-niobium-molybdenum alloy, zirconium-niobium-molybdenum alloy.
  • the thickness of the first support surface is 5 ⁇ m ⁇ 30 ⁇ m.
  • the water contact angle of the first support surface is ⁇ 53°.
  • the material of the first support body is zirconium-niobium alloy
  • the first support surface is a hard oxide layer formed by zirconium-niobium alloy
  • the thickness of the first support surface is 5 ⁇ m to 30 ⁇ m
  • the surface of the first support surface The roughness is ⁇ 0.01 ⁇ m
  • the water contact angle of the first support surface is ⁇ 60°.
  • the material of the first support body is zirconium-niobium alloy
  • the first support surface is a hard oxide layer formed by zirconium-niobium alloy
  • the thickness of the first support surface is 5 ⁇ m to 30 ⁇ m
  • the surface roughness of the first support surface is ⁇ 0.01 ⁇ m
  • the water contact angle of the first support surface is ⁇ 53°.
  • the second supporting body can be directly molded by ultra-high molecular weight polyethylene and then subjected to cross-linking treatment, so that the surface roughness Ra of the second supporting body can be reduced to ⁇ 0.1 micron. In this way, both the first supporting body and the second supporting body have ultra-low roughness, so that the wear between the supporting surfaces of the joint can always be kept at a low level.
  • the cross-linking treatment is carried out by electron beam or gamma ray irradiation, thus forming a gradient cross-linked structure with a higher surface cross-linking degree and a lower internal cross-linking degree.
  • the crosslinking treatment utilizes electron beam irradiation.
  • the total irradiation dose of electron beam irradiation is 50kGy-120kGy, such as 50kGy, 55kGy, 60kGy, 70kGy, 75kGy, 80kGy, 90kGy, 95kGy, 100kGy, 110kGy, 120kGy.
  • the second support surface includes a hydrophilic polymer layer.
  • a hydrophilic polymer layer can be formed on the surface of the second supporting body by means of chemical grafting or physical coating.
  • the material of the second supporting surface includes but not limited to at least one of poly-2-methacryloyloxyethyl phosphorylcholine (PMPC), polyvinylpyrrolidone (PVP) and polyhydroxyethylmethacrylate.
  • hydrophilic polymer layer can be formed by grafting reaction of hydrophilic monomers on the surface of the second supporting body under photoinitiator or irradiation initiation.
  • the surface of UHMWPE after compression molding and crosslinking treatment is coated with a layer of photoinitiator, and then immersed in a solution of hydrophilic monomer to initiate polymerization by ultraviolet light irradiation.
  • the photoinitiator is benzophenone (BP) and derivatives based on benzophenone.
  • BP benzophenone
  • the ultra-high molecular weight polyethylene after compression molding and cross-linking treatment is irradiated, then immersed in a solution of a hydrophilic monomer, heated for reaction, and dried.
  • the type of irradiation here may be the same as or different from that in the cross-linking treatment, for example, electron beam irradiation is used in the cross-linking treatment, and ultraviolet light irradiation is used here.
  • the irradiation may not be carried out here, and the free radicals generated by the cross-linking irradiation are used to carry out the grafting reaction.
  • the thickness of the second support surface is 50nm-300nm.
  • the water contact angle of the second support surface is ⁇ 15°.
  • the second support body is made by direct molding of ultra-high molecular weight polyethylene and then undergoes cross-linking treatment.
  • the cross-linking treatment is carried out by electron beam or ⁇ -ray irradiation, and the second support surface is a hydrophilic polymer
  • the layer is formed on the surface of the second supporting body by chemical grafting or physical coating, the surface roughness of the second supporting surface is ⁇ 0.1 ⁇ m, the water contact angle of the second supporting surface is ⁇ 30°, and the The thickness is 50nm-300nm.
  • the water contact angle of the first support surface is ⁇ 53°. Further, the water contact angle of the second supporting surface is ⁇ 15°. Within this performance range, the hydrophilic performance of the first bearing surface and the second bearing surface is good, which is conducive to further reducing the wear rate of the joint friction pair.
  • the coefficient of friction between the first bearing surface and the second bearing surface is ⁇ 0.08.
  • the swelling degree of the surface layer of the second supporting body close to the second supporting surface is ⁇ 3.5; the swelling degree of the interior of the second supporting body is ⁇ 4.5.
  • the thickness of the surface layer is 10%-30% of the total thickness of the second supporting body. Further, the thickness of the surface layer is 15%-25% of the total thickness of the second supporting body.
  • the thickness of the first support surface is 5 ⁇ m ⁇ 30 ⁇ m. Further, the thickness of the second supporting surface is 50nm-300nm.
  • joint friction pair mentioned above can be applied to various joint prostheses, such as but not limited to hip joints, knee joints, shoulder joints, elbow joints, ankle joints, condyle joints, wrist joints, finger joints, etc.
  • Another embodiment of the present application provides a joint prosthesis, including any joint friction pair described above.
  • the joint prosthesis includes, but is not limited to, hip joints, knee joints, shoulder joints, elbow joints, ankle joints, condyle joints, wrist joints, finger joints, and the like.
  • the joint prosthesis further includes a third support body, the second support body is arranged on one side of the third support body as a pad for the third support body, and the second support surface faces the first support surface .
  • the third support provides strong support to the second support.
  • the material of the third supporting body can also be made of hard metal or hard alloy.
  • the first support body and the third support body are respectively a femoral head prosthesis and an acetabular prosthesis; the second support body is arranged on the inner side of the acetabular prosthesis, As an acetabular liner.
  • the second supporting body may be a knee joint pad.
  • the first supporting body and the third supporting body are the femoral condyle prosthesis and the tibial tray prosthesis respectively; the second supporting body is arranged on the inner side of the tibial tray prosthesis as tibial liner. Others will not be cited one by one.
  • the above-mentioned joint prosthesis adopts the above-mentioned joint friction pair, which can reduce the wear rate on the premise of ensuring the excellent safety of the joint friction pair.
  • Another embodiment of the present application also provides a joint replacement method, comprising implanting any one of the joint prostheses above into a patient in need.
  • This embodiment is a joint friction pair used for a hip joint prosthesis, and its structure is shown in FIG. 1 .
  • the joint friction pair includes a femoral head prosthesis 1 and an acetabular liner 2 .
  • the femoral head prosthesis 1 and the acetabular liner 2 cooperate with each other to form a friction pair.
  • the femoral head prosthesis 1 is used as the hard end of the friction pair.
  • the oxidation process uses dry air as the medium, treats at 650°C for 3 hours, and air-cools.
  • the acetabular liner 2 acts as the soft end of the friction pair.
  • the preparation method of the acetabular liner 2 is as follows: the ultra-high molecular weight polyethylene is used for direct molding, followed by cross-linking treatment; and then a layer of 50nm-thick acetabular is grafted on the surface of the cross-linked ultra-high molecular weight polyethylene by chemical reaction. PMPC layer.
  • the steps of cross-linking treatment are as follows: 75kGy electron beam irradiation is applied to the surface of the acetabular liner, based on the attenuation of the electron beam radiation penetration process, the radiation dose received on the surface of the acetabular liner is relatively high, and the internal radiation dose It is greatly reduced to form a gradient cross-linked structure with a higher degree of cross-linking on the surface than inside.
  • the steps of chemical reaction grafting are as follows: a layer of photoinitiator benzophenone (BP) is coated on the surface of cross-linked ultra-high molecular weight polyethylene, and immersed in 0.5mol/L hydrophilic monomer 2-methacryloyl In an aqueous solution of oxyethylphosphorylcholine (MPC), the polymerization is initiated by ultraviolet light irradiation for 60 minutes, and after cleaning and drying, an ultra-high molecular weight polyethylene acetabular liner with a PMPC layer on the surface is finally obtained.
  • the thickness of the PMPC layer is 50 Nano
  • PMPC layer is formed on the surface of ultra-high molecular weight polyethylene acetabular liner through surface chemical grafting reaction.
  • the surface swelling degree of the acetabular liner 2 is 3.21, and the swelling degree of the central part is 4.60, indicating that the surface is highly cross-linked polyethylene, while the central part is still ordinary ultra-high molecular weight polyethylene.
  • the thickness of the cross-linked surface layer is 20.9% of the total thickness of the acetabular liner.
  • the femoral head prosthesis 1 slides in the acetabular liner 2 to form a friction pair, and the sliding friction coefficient of the friction pair is 0.05.
  • This embodiment is basically the same as embodiment 1, the difference is only: the preparation steps of the PMPC layer in the acetabular liner 2 are different; its preparation steps are as follows:
  • the specific steps are as follows: the cross-linked ultra-high molecular weight polyethylene is irradiated with an electron beam, and the irradiation dose is 30 kGy. Then the material is immersed in 0.5mol/L aqueous solution of hydrophilic monomer MPC, heated to 60°C, reacted for 50min, and after cleaning and drying, the ultra-high molecular weight polyethylene acetabular liner with PMPC layer on the surface is finally obtained, PMPC The thickness of the layer is 50 nanometers, and the PMPC layer is formed on the surface of the ultra-high molecular weight polyethylene acetabular liner through a surface chemical grafting reaction.
  • This embodiment is a joint friction pair used for a knee joint prosthesis, and its structure is shown in FIG. 2 .
  • the joint friction pair includes a femoral condyle prosthesis 1 and a tibial liner 2 .
  • the femoral condyle prosthesis 1 and the tibial liner 2 cooperate with each other to form a friction pair.
  • the femoral condyle prosthesis 1 is used as the hard end of the friction pair.
  • the tibial pad 2 acts as the soft end of the friction pair.
  • the preparation method of the tibial liner 2 is as follows: it is made by direct molding of ultra-high molecular weight polyethylene; the surface of the tibial liner 2 is irradiated with an electron beam of 75 kGy, and the tibial liner 2 is attenuated based on the penetration process of the electron beam radiation. 2 The surface receives a higher radiation dose, and the internal radiation dose is greatly reduced, forming a gradient cross-linked structure with a higher degree of cross-linking on the surface than inside.
  • a 300nm-thick polyvinylpyrrolidone layer (PVP layer) is then formed on the surface of the crosslinked ultra-high molecular weight polyethylene.
  • the polyvinylpyrrolidone layer is formed by physical coating.
  • the surface swelling degree of tibial liner 2 is 2.89, and the swelling degree of the central part is 5.21, indicating that the surface is highly cross-linked ultra-high molecular weight polyethylene, while the central part is still Common ultra-high molecular weight polyethylene, and the thickness of the cross-linked surface layer is 18.8% of the total thickness of the tibial liner.
  • the femoral condyle prosthesis 1 and the tibial liner 2 slide and cooperate to form a friction pair, and the sliding friction coefficient of the friction pair is 0.04.
  • Example 4 and Example 1 are used to prepare joint friction pairs for hip joint prosthesis, the basic steps are the same, the difference is:
  • the soft end is made of ultra-high molecular weight polyethylene by direct molding, and then 75kGy of electron beam irradiation is applied to the surface of ultra-high molecular weight polyethylene.
  • the radiation dose is higher, the internal radiation dose is greatly reduced, forming a gradient cross-linked structure with a higher degree of surface cross-linking than internal cross-linking.
  • a PMPC layer with a thickness of 150 nm is grafted on the surface of the cross-linked ultra-high molecular weight polyethylene through a chemical reaction.
  • the swelling degree was tested by sampling samples of different thicknesses.
  • the surface swelling degree of the soft end is 3.49
  • the swelling degree of the central part is 4.73, indicating that the surface is highly cross-linked ultra-high molecular weight polyethylene, while the central part is still ordinary ultra-high molecular weight polyethylene.
  • vinyl, and the thickness of the cross-linked skin was 22.0% of the total thickness of the acetabular liner. .
  • Comparative example 1 prepared a joint friction pair for hip joint prosthesis, the size and structure of the hard end and soft end were basically the same as those in Example 1, and the main steps were as follows:
  • Comparative example 2 prepares a joint friction pair for a hip joint prosthesis, the size and structure of the hard end and soft end are basically the same as those in Example 1, and the main steps are as follows:
  • Comparative example 3 prepares a joint friction pair for a hip joint prosthesis, the size and structure of the hard end and the soft end are basically the same as those in Example 1, and the main steps are as follows:
  • the hard end is made of cobalt-chromium alloy, and the surface is not oxidized.
  • Comparative example 4 prepares a joint friction pair for a hip joint prosthesis, the size and structure of the hard end and soft end are basically the same as those in Example 1, and the main steps are as follows:
  • the hard end is made of zirconium-niobium alloy, and the surface is oxidized to form a hard oxide layer with a thickness of 10 ⁇ m.
  • Comparative Example 5 prepared a joint friction pair for a hip joint prosthesis, the size and structure of the hard end and the soft end were basically the same as in Example 1, and the main steps were as follows:
  • the soft end is made of ultra-high molecular weight polyethylene by direct molding, and then 75kGy of electron beam irradiation is applied to the surface of ultra-high molecular weight polyethylene.
  • the radiation dose is higher, the internal radiation dose is greatly reduced, forming a gradient cross-linked structure with a higher degree of surface cross-linking than internal cross-linking.
  • the surface swelling degree of the soft end is 3.01
  • the swelling degree of the central part is 5.33, indicating that the surface is highly cross-linked ultra-high molecular weight polyethylene, while the central part is still ordinary ultra-high molecular weight polyethylene.
  • Comparative Example 6 Prepare a joint friction pair for a hip joint prosthesis, the size and structure of the hard end and soft end are basically the same as those in Example 1, and the main steps are as follows:
  • the hard end is made of zirconium-niobium alloy, and the surface is oxidized to form a hard oxide layer with a thickness of 20 ⁇ m.
  • UHMWPE ultra-high molecular weight polyethylene
  • the swelling degree test refers to the standard method for in-situ determination of the molecular network structure parameters of cross-linked ultra-high molecular weight polyethylene (UHMWPE) YY/T 0813. Using a slicer, the swelling degree is tested layer by layer to obtain the swelling degree of the surface layer and the inside. Using o-xylene as a solvent, the swelling was carried out at 130° C. until the swelling equilibrium state ( ⁇ 10 ⁇ m), and the degree of swelling was calculated.
  • UHMWPE ultra-high molecular weight polyethylene
  • test conditions and methods of surface roughness are as follows: use the inductive roughness profiler Form Talysurf of British Taylor Company to test the roughness of the sample surface. Fix the sample on the test platform, adjust the stylus to contact the surface to be tested, slide the stylus on the surface of the sample for a certain distance, and read the surface roughness.
  • test conditions and methods of the water contact angle are: drop pure water (2 ⁇ L) on the surface of the sample, and use the PT-705A water contact angle meter of Guangdong Beidou Precision Instrument Co., Ltd. to directly measure the water contact angle after each drop for 30 seconds size. The test was repeated 10 times for each sample, and the measured water contact angle values were averaged.
  • test conditions and test methods for the coefficient of friction are: use a pin-on-disk friction and wear testing machine for testing, room temperature, frequency 1.6Hz, wear cycle 5 million times, and calf serum as the lubricating medium.
  • a pin-on-disk wear instrument was used to simulate the wear conditions of the joint friction pairs in the various embodiments and comparative examples in vivo.
  • the specific steps are as follows: a pin with a diameter of 6 mm is prepared from the same material at the soft end, and a disc with a diameter of 50 mm is prepared from the same material at the hard end, and both the pin and the disc are soaked in calf serum.
  • Example 1 -4.94 (weight gain, no wear measured) -0.004 (weight gain, wear not measured)
  • Example 2 -4.17 (weight gain, no wear measured) -0.001 (weight gain, wear not measured)
  • Example 3 -4.35 (weight gain, no wear measured) 0.001
  • Example 4 -3.51 (weight gain, no wear measured) -0.07 (weight gain, no wear measured) Comparative example 1 5.38 3.83 Comparative example 2 11.95 11.26 Comparative example 3 -0.03 (weight gain, no wear measured) 8.45 Comparative example 4 5.03 3.32 Comparative example 5 -5.03 (weight gain, no wear measured) -0.012 (weight gain, no wear measured) Comparative example 6 -0.11 (weight gain, no wear measured) 2.25 Comparative example 7 -3.91 (weight gain, no wear measured) 0.02
  • the wear rate is negative, which represents weight gain, which means no wear is detected; the wear rate is positive, which means weight loss and wear.
  • the soft end of Comparative Example 1 is manufactured by machining. Since the highly cross-linked ultra-high molecular weight polyethylene material cannot be polished, there are machining knife marks, and the surface roughness Ra of the soft end is relatively high, which is 0.69 ⁇ m. The hard end and the soft end of comparative example 1 had severe running-in wear in the early stage.
  • Both the cobalt-chromium alloy material at the hard end and the highly cross-linked polyethylene at the soft end in Comparative Example 2 are hydrophobic materials.
  • the joint fluid cannot completely infiltrate the surface, so that the joint fluid cannot fully exert its lubrication and isolation function during exercise, and dry grinding occurs, resulting in serious wear of the articular surface.
  • Comparative Example 4 The soft end of Comparative Example 4 was not hydrophilically modified. During the long-term wear process, the joint fluid cannot completely infiltrate the surface, resulting in the joint fluid not being able to fully exert its lubrication and isolation function during exercise, resulting in dry wear, resulting in severe wear of the articular surface.
  • Comparative Example 5 is a hydrophilic gradient cross-linked structure, which helps to reduce wear.
  • the hard end is a ceramic structure, and the wear result is similar to that of Example 1. But ceramic materials increase the risk of brittle fracture.
  • Comparative Example 6 The soft end of Comparative Example 6 is not a cross-linked structure, and the molecular chains of uncross-linked UHMWPE are weaker than those of cross-linked UHMWPE in long-term wear. So the long-term wear is still serious.
  • Comparative Example 7 is a fully cross-linked structure (non-gradient cross-linking), and its wear resistance is higher than that of the molecular chain of uncross-linked UHMWPE, but its mechanical properties such as impact resistance are weaker than that of gradient cross-linked UHMWPE. Therefore, the wear result is similar to that of Example 1, but the impact resistance is poor.
  • Embodiments of the present application can achieve short-term and long-term articular surface combinations with lower wear levels.
  • the failure risk test is mainly used to evaluate the mechanical properties of the product.
  • a universal testing machine and a fatigue testing machine are used to carry out fatigue load test and static load test on the hard end and soft end in each embodiment and comparative example respectively, and the load is continuously increased to 80kN during the test process.
  • the scoring criteria are as follows:
  • Fatigue load test 10 million tests with constant load. Fatigue life: 0 to 5 million times is 1 point, poor; fatigue life: 5 million to 10 million times is 2 points, medium; fatigue life: 10 million to 12 million times is 3 points, good (meeting the basic quality requirements); Fatigue life: 12 million to 15 million times is 4 points, excellent; fatigue life: 15 million times or more is 5 points, excellent.
  • the above ranges include the left endpoint and exclude the right endpoint.
  • the lower score of the fatigue load test and the static load test is used to determine the failure risk assessment score and give the final score.
  • the statistical results of the failure risk are shown in Table 3 below.
  • Examples 1-4 are made of zirconium-niobium alloy, and the surface layer is an oxide layer, which has ceramic-like properties and can reduce wear; the substrate is made of zirconium-niobium alloy, which can avoid the risk of fragmentation.
  • Examples 1-4 are made of gradient cross-linked ultra-high molecular weight polyethylene, and the surface layer has a cross-linked structure to improve wear performance.
  • the interior is not cross-linked, has good toughness, and avoids risks such as impact fragmentation and fatigue fracture.
  • Comparative Example 1 and Comparative Example 5 are made of ceramic materials, although the wear is reduced, but the risk of brittle fracture is increased.
  • the soft ends of Comparative Examples 1-4 and Comparative Example 7 are made of highly cross-linked ultra-high molecular weight polyethylene, which improves the wear performance but increases the risks of impact fracture and fatigue fracture.
  • the embodiment of the present application not only reduces the wear rate between the hard end and the soft end, but also ensures that the hard end and the soft end have good impact resistance and fatigue resistance, so the applicability of the joint prosthesis can be significantly improved. It is widely used in hip, knee, shoulder, elbow, ankle and other joint prosthesis, effectively prolonging the life of joint prosthesis, reducing the revision rate of joint prosthesis, and improving user satisfaction.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

一种关节摩擦副及关节假体,包括:第一支承体,包括第一支承主体及形成于第一支承主体上的第一支承表面,第一支承主体为硬质金属材质或硬质合金材质,第一支承表面的表面粗糙度≤0.01μm,第一支承表面的水接触角≤60°;及第二支承体,包括第二支承主体及形成于第二支承主体上且用于与第一支承表面配合的第二支承表面,第二支承主体为交联超高分子量聚乙烯材料,第二支承主体的交联度从表层至内部呈降低趋势,第二支承表面的表面粗糙度≤0.1μm,第二支承表面的水接触角≤30°。

Description

关节摩擦副及关节假体
相关申请
本申请要求2021年11月22日申请的,申请号为2021113848714,名称为“关节摩擦副及关节假体”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及医疗器械技术领域,特别是涉及一种关节摩擦副及关节假体。
背景技术
关节置换术经过多年发展已经成为治疗关节严重疾患、解除关节疼痛、重建关节功能最成功也是最有效的方法。而关节假体的寿命,往往决定了置换后患者的生活质量与满意度。理想的关节假体,应该能用于患者一生,即使对于年轻的患者,也应该尽可能延长假体使用寿命,减少后续翻修的发生。
目前的关节假体中的关节摩擦副,一般采用硬-硬或硬-软设计。硬-硬设计,例如关节摩擦副中的一端采用金属或陶瓷等硬质材料,另一端也采用硬质材料的硬-硬的配合方案。硬-软设计,例如关节摩擦副中的一端采用硬质材料,另一端采用高分子如超高分子量聚乙烯(UHMWPE)、聚醚醚酮(PEEK)或水凝胶等相对较软材料的配合方案。
硬-硬的摩擦副设计一般采用金属-金属或陶瓷-陶瓷的设计,其虽然具有最低的磨损率,但金属-金属的配合在摩擦中产生的金属磨损粒子会导致严重的炎症反应,目前已被淘汰。陶瓷-陶瓷的配合存在陶瓷脆性较大、断裂风险较高的问题。相比之下,硬-软设计则降低了这种风险,同时还可起到一定的缓冲减震的作用,提高患者的舒适度。但由于摩擦副两端的硬度不同,较软的一端容易被磨损,进而产生磨屑。而关节假体在磨损过程中产生的磨屑,将引发人体一系列免疫反应而造成骨量损失和骨吸收,进而引起骨溶解与无菌松动,最终将严重影响关节假体的使用寿命。因此,延长关节假体寿命的首要任务是优化和改善关节面摩擦副的设计,目前的技术仍有待改进。
发明内容
基于此,根据本申请的各种实施例,提供一种关节摩擦副及关节假体。
本申请是通过如下技术方案实现的。
本申请的一个方面提供了一种关节摩擦副,包括:
第一支承体,包括第一支承主体及形成于所述第一支承主体上的第一支承表面,
所述第一支承主体的材质包括硬质金属材质或硬质合金材质;
所述第一支承表面的表面粗糙度≤0.01μm,所述第一支承表面的水接触角≤60°;及第二支承体,包括第二支承主体及形成于所述第二支承主体上的第二支承表面,
所述第二支承主体包括交联超高分子量聚乙烯材料,所述第二支承主体的交联度从表层至内部呈降低趋势;
所述第二支承表面用于与所述第一支承表面配合,所述第二支承表面的表面粗糙度≤0.1μm,所述第二支承表面的水接触角≤30°。
在其中一些实施例中,所述第一支承表面包括硬质金属氧化层。
在其中一些实施例中,所述第一支承表面由所述第一支承主体的表面经氧化形成。
在其中一些实施例中,所述第一支承主体的材质包括锆合金材质;
所述第一支承表面包括锆合金材质形成的硬质氧化层。
在其中一些实施例中,所述第二支承主体通过超高分子量聚乙烯材料直接模压成型再经交联处理制得。
在其中一些实施例中,所述交联处理采用电子束或γ射线辐照进行。
在其中一些实施例中,所述交联处理采用电子束辐照,电子束辐照的辐照总剂量为50kGy~120kGy。
在其中一些实施例中,所述第二支承表面包括亲水聚合物层。
其中一些实施例中,通过化学接枝或物理涂敷的方法在所述第二支承主体的表面形成所述亲水聚合物层。
在其中一些实施例中,所述第二支承表面的材质包括聚2-甲基丙烯酰氧乙基磷酸胆碱、聚乙烯吡咯烷酮和聚甲基丙烯酸羟乙酯中的至少一种。
在其中一些实施例中,所述第一支承表面的水接触角≤53°。
在其中一些实施例中,所述第二支承表面的水接触角≤15°。
在其中一些实施例中,所述第一支承表面与所述第二支承表面之间的摩擦系数≤0.08。
在其中一些实施例中,所述第二支承主体靠近所述第二支承表面的表层的溶胀度≤3.5;所述第二支承主体的内部中心的溶胀度≥4.5;所述表层的厚度为所述第二支承主体的总厚度的10%~30%。
在其中一些实施例中,所述第一支承表面的厚度为5μm~30μm。
在其中一些实施例中,所述第二支承表面的厚度为50nm~300nm。
本申请的另一个方面提供了一种关节假体,包括上述任一项所述的关节摩擦副。
在其中一些实施例中,所述关节假体包括髋关节、膝关节、肩关节、肘关节、踝关节、髁关节、腕关节或指关节。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本申请的实施例1制得的髋关节摩擦副的结构示意图;
图2为本申请的实施例3制得的膝关节摩擦副的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本申请的一实施方式提供了一种关节摩擦副,包括第一支承体及第二支承体。
第一支承体包括第一支承主体及形成于第一支承主体上的第一支承表面。第一支承主体的材质包括硬质金属材质或硬质合金材质。第一支承表面的表面粗糙度≤0.01μm,第一支承表面的水接触角≤60°。
第二支承体包括第二支承主体及形成于第二支承主体上的第二支承表面。第二支承主体包括交联超高分子量聚乙烯材料。第二支承主体的交联度从表层至内部呈降低趋势。第二支承表面用于与第一支承表面配合。第二支承表面的表面粗糙度≤0.1μm,第二支承表面的水接触角≤30°。
进一步地,第一支承主体为硬质金属材质或硬质合金材质。第二支承主体为交联超高分子量聚乙烯。
本申请的技术人员发现,影响硬-软设计的关节摩擦副的磨损率的因素是多方面的,主要有关节的支承表面的表面粗糙度、两个支承表面之间的摩擦系数、关节摩擦副之间的润滑情况等。经过研究发现,仅仅改善硬端的表面粗糙度,对于改善磨损问题的提升十分有限,因为磨损主要发生在软端。传统的支承表面的亲水性较差,导致关节假体植入后,包裹的关节液不充足,出现干磨的情况,增加了关节假体的磨损率。此外,若采用无梯度的高交联度的超高分子量聚乙烯作为第二支承主体的材质,虽然可以有效降低磨损,但是相比传统的超高分子量聚乙烯,其抗冲击性能、抗蠕变性能以及抗疲劳裂纹扩展性能大大降低,进而增加了软端失效的风险,降低了使用安全性。
上述关节摩擦副包含作为硬端的第一支承体和作为软端的第二支承体,且该第一支承体和第二支承体相互配合的两个支承表面均具有较低的表面粗糙度,并控制该两个支承表面的水接触角在特定范围,使其均具有较好的亲水性,可以促进液膜润滑的形成,以降低两个支承表面之间的摩擦系数,进而有利于降低关节摩擦面的磨损率;同时,采用交联超高分子量聚乙烯作为第二支承主体的材质,并控制第二支承主体的交联度自表层至内部呈降低趋势,可充分发挥较高交联度的超高分子量聚乙烯的抗磨损性能和较低交联度的超高分子量聚乙烯的抗冲击、抗蠕变及抗裂纹扩展性能,如此多维度优化协同作用,在保证关节摩擦副具有优良的安全性的前提下降低了磨损率。
可理解,第二支承主体的交联度从表层至内部呈降低趋势,只要第二支承主体在靠近其自身表面的一侧的交联度相比于其更靠近其内部的位置的交联度更高即可。进一步地,该降低趋势可以是连续的降低趋势(即线性降低),也可以是断层式的降低趋势(即梯度降低)。进一步地,第二支承主体的内部可以是相对较低的交联度,也可以是未交联的。
在其中一些实施例中,第一支承表面包括硬质金属氧化层。进一步地,第一支承表面由第一支承主体的表面经氧化形成。如此在第一支承主体的表面形成硬质金属氧化层,提高了表面的硬度,同时还可使表面粗糙度Ra达到≤0.01μm。
进一步地,第一支承主体的材质包括锆合金材质;第一支承表面包括锆合金材质形成的硬质氧化层。
可理解,该锆合金材质包括但不限于由铌、钛、钽、钼、钴和铬元素中的至少一种,与锆元素形成的二元、三元或者多元合金。例如,锆合金材质采用锆铌合金、锆钛合金、锆钽合金、锆钼合金、锆钴合金、锆铬合金、锆铁合金这些二元合金,或锆铌钛合金、锆铌钼合金、锆铌钽合金这些三元合金,或者锆铌钛钽、锆铌钛钼这些四元合金中的任意一 种。
在其中一些实施例中,第一支承表面的厚度为5μm~30μm。
在其中一些实施例中,第一支承表面的水接触角≤53°。
在其中一些实施例中,第一支承主体的材质为锆铌合金,第一支承表面为锆铌合金形成的硬质氧化层,第一支承表面的厚度为5μm~30μm,第一支承表面的表面粗糙度≤0.01μm,第一支承表面的水接触角≤60°。进一步地,第一支承主体的材质为锆铌合金,第一支承表面为锆铌合金形成的硬质氧化层,第一支承表面的厚度为5μm~30μm,第一支承表面的表面粗糙度≤0.01μm,第一支承表面的水接触角≤53°。
在其中一些实施例中,第二支承主体可采用超高分子量聚乙烯直接模压成型再经交联处理等方法,使第二支承体的表面粗糙度Ra降低到≤0.1微米。如此使第一支承体及第二支承体均具有超低粗糙度,可以使关节的支承面之间的磨损一直保持较低水平。
进一步地,交联处理采用电子束或γ射线辐照进行,故而形成表层交联度较高、内部交联度较低的梯度交联结构。在其中一些实施例中,交联处理采用电子束辐照。进一步地,电子束辐照的辐照总剂量为50kGy~120kGy,例如50kGy、55kGy、60kGy、70kGy、75kGy、80kGy、90kGy、95kGy、100kGy、110kGy、120kGy。
在其中一些实施例中,第二支承表面包括亲水聚合物层。进一步地,可通过化学接枝或物理涂敷等方法在第二支承主体的表面形成亲水聚合物层。进一步地,第二支承表面的材质包括但不限于聚2-甲基丙烯酰氧乙基磷酸胆碱(PMPC)、聚乙烯吡咯烷酮(PVP)和聚甲基丙烯酸羟乙酯中的至少一种。
进一步地,亲水聚合物层可通过亲水单体在光引发剂或者辐照引发下在第二支承主体的表面进行接枝反应后形成。
例如,在其中一个示例中,在模压成型和交联处理之后的超高分子量聚乙烯表面涂敷一层光引发剂,然后浸入到亲水单体的溶液中,通过紫外光辐照引发聚合。光引发剂为二苯甲酮(BP)及以二苯甲酮为母体的衍生物。又例如,在另一示例中,将模压成型和交联处理之后的超高分子量聚乙烯进行辐照,然后将其浸入到亲水单体的溶液中,加热反应,干燥。可以理解,此处辐照与交联处理过程中的辐照种类可以相同或不同,例如交联处理过程中采用电子束辐照,此处采用紫外光辐照。此外,此处辐照也可以不进行,利用交联辐照产生的自由基进行接枝反应。
在其中一些实施例中,第二支承表面的厚度为50nm~300nm。
在其中一些实施例中,第二支承表面的水接触角≤15°。
在其中一些实施例中,第二支承主体通过超高分子量聚乙烯直接模压成型再经交联处 理制得,交联处理采用电子束或γ射线辐照进行,第二支承表面为亲水聚合物层,通过化学接枝或物理涂敷的方法在第二支承主体的表面形成,第二支承表面的表面粗糙度≤0.1μm,第二支承表面的水接触角≤30°,第二支承表面的厚度为50nm~300nm。
在其中一些实施例中,第一支承表面的水接触角≤53°。进一步地,第二支承表面的水接触角≤15°。在该性能范围内,第一支承表面和第二支承表面的亲水性能好,有利于进一步降低关节摩擦副的磨损率。
在其中一些实施例中,第一支承表面与第二支承表面的摩擦系数≤0.08。
在其中一些实施例中,第二支承主体靠近第二支承表面的表层的溶胀度≤3.5;第二支承主体的内部的溶胀度≥4.5。其中,表层的厚度为第二支承主体的总厚度的10%~30%。进一步地,表层的厚度为第二支承主体的总厚度的15%~25%。
在其中一些实施例中,第一支承表面的厚度为5μm~30μm。进一步地,第二支承表面的厚度为50nm~300nm。
可理解,上述的关节摩擦副可适用于各种关节假体,诸如但不限于髋关节、膝关节、肩关节、肘关节、踝关节、髁关节、腕关节、指关节等。
本申请的另一实施方式提供了一种关节假体,包括上述任一项的关节摩擦副。
在其中一些实施例中,关节假体包括但不限于髋关节、膝关节、肩关节、肘关节、踝关节、髁关节、腕关节、指关节等。
在其中一些实施例中,关节假体还包括第三支承体,第二支承体设于第三支承体的一侧,作为第三支承体的衬垫,且第二支承表面朝向第一支承表面。第三支承体给第二支承体提供强支撑。
进一步地,第三支承体的材质也可为硬质金属材质或硬质合金材质。
在一些实施例中,以关节假体为髋关节为例,第一支承体和第三支承体分别为股骨头假体和髋臼假体;第二支承体设于髋臼假体的内侧,作为髋臼衬垫。
在另一些实施例中,以关节假体为膝关节例,第二支承体可为膝关节衬垫。进一步地,第一支承体和第三支承体分别为股骨髁假体和胫骨托假体;第二支承体设于胫骨托假体的内侧,作为胫骨衬垫。其他不再一一例举。
上述关节假体,采用上述关节摩擦副,可在保证关节摩擦副具有优良的安全性的前提下降低磨损率。
本申请的又一实施方式还提供一种关节置换方法,包括向有需要的患者体内植入上述任一项的关节假体。
为了使本申请的目的、技术方案及优点更加简洁明了,本申请用以下实施例进行说明,但本申请绝非仅限于这些实施例。以下所描述的实施例仅为本申请的一些实施例,可用于描述本申请,不能理解为对本申请的范围的限制。应当指出的是,凡在本申请的精神和原则之内所做的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。
为了更好地说明本申请,下面结合实施例对本申请内容作进一步说明。以下为具体实施例。
实施例1
本实施例为用于髋关节假体的关节摩擦副,其结构如图1所示。该关节摩擦副包括股骨头假体1和髋臼衬垫2。股骨头假体1和髋臼衬垫2相互配合构成摩擦副。
其中,股骨头假体1作为摩擦副的硬端。股骨头假体1的制备方法如下:采用锆铌合金制成,再于锆铌合金的表面通过氧化工艺形成一层30μm厚度的硬质氧化层;该硬质氧化层的表面粗糙度Ra=0.006μm,水接触角为58°。氧化工艺以干燥空气为介质,于650℃处理3h,空冷。
髋臼衬垫2作为摩擦副的软端。
髋臼衬垫2的制备方法如下:采用超高分子量聚乙烯通过直接模压成型制成,之后进行交联处理;再于交联超高分子量聚乙烯的表面通过化学反应接枝一层50nm厚度的PMPC层。PMPC层的表面粗糙度Ra=0.09μm。
其中,交联处理的步骤如下:对髋臼衬垫表面施加75kGy的电子束辐照,基于电子束辐照穿透过程发生衰减,髋臼衬垫表面接受辐照剂量较高,内部辐照剂量大幅度减少,形成表面交联度高于内部的梯度交联结构。
化学反应接枝的步骤如下:在交联超高分子量聚乙烯表面涂敷一层光引发剂二苯甲酮(BP),并浸入到0.5mol/L的亲水单体2-甲基丙烯酰氧乙基磷酸胆碱(MPC)的水溶液中,通过紫外光辐照引发聚合60min,经过清洗干燥处理,最终得到表面具有PMPC层的超高分子量聚乙烯髋臼衬垫,PMPC层的厚度为50纳米,PMPC层通过表面化学接枝反应形成在超高分子量聚乙烯髋臼衬垫表面。
通过在不同厚度取样对溶胀度进行测试,得知髋臼衬垫2的表面溶胀度为3.21,中心部分的溶胀度为4.60,表明表面为高交联聚乙烯,而中心部分仍为普通超高分子量聚乙烯。其中,交联表层的厚度为髋臼衬垫总厚度的20.9%。
经测试,股骨头假体1在髋臼衬垫2内滑动形成摩擦副,摩擦副的滑动摩擦系数为0.05。
实施例2
该实施例与实施例1基本相同,区别仅在于:髋臼衬垫2中的PMPC层的制备步骤不相同;其制备步骤如下:
髋臼衬垫2形成一层50nm厚度的PMPC层,PMPC层的表面粗糙度Ra=0.09μm,PMPC层采用辐照引发接枝的方式。
具体步骤如下:采用电子束对交联的超高分子量聚乙烯进行辐照,辐照剂量为30kGy。而后将材料浸入到0.5mol/L的亲水单体MPC的水溶液中,加热到60℃,反应50min,经过清洗干燥处理,最终得到表面具有PMPC层的超高分子量聚乙烯髋臼衬垫,PMPC层的厚度为50纳米,PMPC层通过表面化学接枝反应形成在超高分子量聚乙烯髋臼衬垫表面。
实施例3
本实施例为用于膝关节假体的关节摩擦副,其结构如图2所示。该关节摩擦副包括股骨髁假体1和胫骨衬垫2。股骨髁假体1和胫骨衬垫2相互配合构成摩擦副。
其中,股骨髁假体1作为摩擦副的硬端。股骨髁假体1的制备方法如下:采用锆铌合金制成,再于锆铌合金的表面通过氧化工艺形成一层5μm厚度的硬质氧化层;该硬质氧化层的表面粗糙度Ra=0.008μm,水接触角为52°。
胫骨衬垫2作为摩擦副的软端。胫骨衬垫2的制备方法如下:采用超高分子量聚乙烯通过直接模压成型制成;对胫骨衬垫2表面施加75kGy的电子束辐照,基于电子束辐照穿透过程发生衰减,胫骨衬垫2表面接受辐照剂量较高,内部辐照剂量大幅度减少,形成表面交联度高于内部的梯度交联结构。
再于交联后的超高分子量聚乙烯的表面形成一层300nm厚度的聚乙烯吡咯烷酮层(PVP层)。聚乙烯吡咯烷酮层通过物理涂覆的方式形成。聚乙烯吡咯烷酮层的表面粗糙度Ra=0.08μm。
通过在不同厚度取样对溶胀度进行测试,得知胫骨衬垫2的表面溶胀度为2.89,中心部分的溶胀度为5.21,表明表面为高交联的超高分子量聚乙烯,而中心部分仍为普通的超高分子量聚乙烯,并且交联表层的厚度为胫骨衬垫总厚度的18.8%。
经测试,股骨髁假体1和胫骨衬垫2滑动配伍形成摩擦副,摩擦副的滑动摩擦系数为0.04。
实施例4
实施例4与实施例1均是制备用于髋关节假体的关节摩擦副,基本步骤相同,区别在于:
硬端采用锆铌合金制成,再于锆铌合金的表面通过氧化工艺形成一层15μm厚度的硬质氧化层,表面粗糙度Ra=0.007μm,水接触角为50°。
软端采用超高分子量聚乙烯通过直接模压成型制成,然后对超高分子量聚乙烯表面施加75kGy的电子束辐照,基于电子束辐照穿透过程发生衰减,超高分子量聚乙烯表面接受辐照剂量较高,内部辐照剂量大幅度减少,形成表面交联度高于内部交联度的梯度交联结构。再于交联后的超高分子量聚乙烯的表面通过化学反应接枝一层150nm厚度的PMPC层。PMPC层的表面粗糙度Ra=0.10μm。
通过在不同厚度取样对溶胀度进行测试,软端的表面溶胀度为3.49,中心部分溶胀度为4.73,表明表面为高交联的超高分子量聚乙烯,而中心部分仍为普通的超高分子量聚乙烯,并且交联表层的厚度为髋臼衬垫总厚度的22.0%。。
对比例1
对比例1制备用于髋关节假体的关节摩擦副,硬端和软端的尺寸、结构与实施例1基本相同,主要步骤如下:
硬端采用氧化铝氧化锆复合陶瓷,表面粗糙度Ra=0.006μm。
软端采用高交联的超高分子量聚乙烯棒料机加工制造,表面粗糙度Ra=0.69μm。
对比例2
对比例2制备用于髋关节假体的关节摩擦副,硬端和软端的尺寸、结构与实施例1基本相同,主要步骤如下:
硬端采用钴铬合金制成,表面粗糙度Ra=0.032μm。
软端采用高交联的超高分子量聚乙烯模压成型,表面粗糙度Ra=0.08μm。
对比例3
对比例3制备用于髋关节假体的关节摩擦副,硬端和软端的尺寸、结构与实施例1基本相同,主要步骤如下:
硬端采用钴铬合金制成,表面不做氧化工艺处理。
软端采用高交联的超高分子量聚乙烯直接模压成型制成,表面通过化学反应接枝一层100nm厚度的PMPC层;表面粗糙度Ra=0.09μm。
对比例4
对比例4制备用于髋关节假体的关节摩擦副,硬端和软端的尺寸、结构与实施例1基本相同,主要步骤如下:
硬端采用锆铌合金制成,表面通过氧化工艺形成一层10μm厚度的硬质氧化层,表面粗糙度Ra=0.007μm,水接触角为52°。
软端采用高交联的超高分子量聚乙烯模压成型,表面粗糙度Ra=0.08μm,表面不作亲水处理,未形成有亲水聚合物层。
对比例5
对比例5制备用于髋关节假体的关节摩擦副,硬端和软端的尺寸、结构与实施例1基本相同,主要步骤如下:
硬端采用氧化铝氧化锆复合陶瓷,表面粗糙度Ra=0.006μm。
软端采用超高分子量聚乙烯通过直接模压成型制成,然后对超高分子量聚乙烯表面施加75kGy的电子束辐照,基于电子束辐照穿透过程发生衰减,超高分子量聚乙烯表面接受辐照剂量较高,内部辐照剂量大幅度减少,形成表面交联度高于内部交联度的梯度交联结构。再于交联后的超高分子量聚乙烯的表面通过化学反应接枝一层100nm厚度的PMPC层,表面粗糙度Ra=0.09μm。
经测试,软端的表面溶胀度为3.01,中心部分溶胀度为5.33,表明表面为高交联的超高分子量聚乙烯,而中心部分仍为普通的超高分子量聚乙烯。
对比例6
对比例6制备用于髋关节假体的关节摩擦副,硬端和软端的尺寸、结构与实施例1基本相同,主要步骤如下:
硬端采用锆铌合金制成,表面通过氧化工艺形成20μm厚度的硬质氧化层,表面粗糙度Ra=0.008μm,水接触角为47°。
软端采用超高分子量聚乙烯(UHMWPE)通过直接模压成型制成,表面通过化学反应接枝一层150nm厚度的PMPC层,表面粗糙度Ra=0.10μm,无交联结构。
对比例7
其与对比例6基本相同,区别仅在于:软端采用高交联但无梯度的超高分子量聚乙烯(UHMWPE)。
上述溶胀度的测试条件和测试方法为:溶胀度测试参考YY/T 0813交联超高分子量聚乙烯(UHMWPE)分子网状结构参数的原位测定标准方法。采用切片机,逐层切片进行溶胀度测试,得到表层和内部的溶胀度。使用邻二甲苯作为溶剂,在130℃进行溶胀,直至溶胀平衡状态(±10μm),计算溶胀度。
以上各实施例和对比例的关键参数及测得的支承表面的表面粗糙度和水接触角数据,如下表1所示:
本文中,表面粗糙度的测试条件和测试方法为:使用英国泰勒公司电感式粗糙度轮廓仪Form Talysurf对样品表面进行粗糙度测试。将样品固定在测试台上,调整测针与待测表面接触,测针在样品表面滑行一段距离,读出表面粗糙度。
水接触角的测试条件和测试方法为:将纯水滴(2μL)滴在样品表面,并在每次滴加 30s后用广东北斗精密仪器有限公司的PT-705A水接触角仪直接测量水接触角大小。对每个样品进行重复测试10次,并对测得的水接触角值求平均值。
摩擦系数的测试条件和测试方法为:采用销盘式摩擦磨损试验机进行测试,室温,频率1.6Hz,磨损周期500万次,以小牛血清作为润滑介质。
表1
Figure PCTCN2022128987-appb-000001
(一)磨损性能测试
采用销盘磨损仪来模拟各实施例和对比例的关节摩擦副在体内的磨损情况。具体步骤 如下:以软端相同的材料制备直径6毫米的销,以硬端相同的材料制备直径50毫米的盘,销和盘均浸泡在小牛血清中。销受到60N的垂直载荷在盘上做行程为10毫米的往复运动,一次往复为一个循环。分别在50万次循环、500万次循环后观察销、盘的磨损情况,通过称量重量变化计算磨损率,结果如下表2所示。其中,磨损率=(样品初始质量-样品循环后的质量)/循环次数。
表2磨损性能测试结果
组别 50万次磨损率(毫克/百万次) 500万次磨损率(毫克/百万次)
实施例1 -4.94(增重,未测出磨损) -0.004(增重,未测出磨损)
实施例2 -4.17(增重,未测出磨损) -0.001(增重,未测出磨损)
实施例3 -4.35(增重,未测出磨损) 0.001
实施例4 -3.51(增重,未测出磨损) -0.07(增重,未测出磨损)
对比例1 5.38 3.83
对比例2 11.95 11.26
对比例3 -0.03(增重,未测出磨损) 8.45
对比例4 5.03 3.32
对比例5 -5.03(增重,未测出磨损) -0.012(增重,未测出磨损)
对比例6 -0.11(增重,未测出磨损) 2.25
对比例7 -3.91(增重,未测出磨损) 0.02
其中,磨损率为负值,代表增重,代表未测出无磨损;磨损率为正值,代表减重,有磨损。
对比例1的软端采用机加工的方式制造,由于高交联的超高分子量聚乙烯材料无法抛光,导致机加工刀纹存在,软端的表面粗糙度Ra较高,为0.69μm。对比例1的硬端和软端前期磨合磨损严重。
对比例2中的硬端的钴铬合金材质和软端的高交联聚乙烯都是疏水材料。在实际应用中,关节液不能完全浸润表面,导致在运动过程中,关节液不能充分发挥润滑隔离作用,发生干磨,导致关节面磨损严重。
对比例3通过降低软端表面粗糙度,可以降低关节假体的面前50万次~100万次的磨合磨损,但从500万次(1-2年)后的磨损率看,没有明显改善。关节假体作为目标使用寿命10年以上的长期植入物,既需要早期较小的磨合磨损降低磨屑造成的炎症与骨溶解,也需要长期保持较低的磨损水平以保证寿命。
对比例4的软端未作亲水改性。在长期磨损过程中,关节液不能完全浸润表面,导致 在运动过程中,关节液不能充分发挥润滑隔离作用,发生干磨,导致关节面磨损严重。
对比例5的软端为亲水梯度交联结构,有助于降低磨损。硬端为陶瓷结构,磨损结果与实施例1相近。但是陶瓷材料增加了脆性碎裂的风险。
对比例6的软端不是交联结构,在长期磨损中,未交联的UHMWPE的分子链抵抗磨损的能力弱于交联结构的UHMWPE。所以长期磨损依然严重。
对比例7的软端是全交联结构(非梯度交联),耐磨性能高于未交联的UHMWPE的分子链,但抗冲击性等力学性能弱于梯度交联的UHMWPE。故磨损结果与实施例1相近,但抗冲击性较差。
本申请实施例可以实现短期和长期都有较低磨损水平的关节面组合。
(二)失效风险测试
失效风险测试主要用于评价产品的力学性能。采用万能实验机与疲劳试验机对各实施例和对比例中的硬端、软端分别进行疲劳载荷测试、静态载荷测试,测试过程中不断提高载荷至80kN。
打分标准如下:
(1)疲劳载荷测试,以恒定载荷进行1000万次试验。疲劳寿命:0~500万次为1分,差;疲劳寿命:500万~1000万次为2分,中等;疲劳寿命:1000万~1200万次为3分,好(满足基本质量要求);疲劳寿命:1200万~1500万次为4分,优秀;疲劳寿命:1500万次以上为5分,极好。以上范围均包括左侧端点,不包括右侧端点。
(2)静态载荷测试,以0~80kN为基准。0~16kN为1分,差;16~32kN为2分,中等;32~48kN为3分,好;48~64kN为4分,优秀;64~80kN为5分,极好。以上范围均包括左侧端点,不包括右侧端点。
以疲劳载荷测试和静态载荷测试中较低的分值确定失效风险评定分值,给出最终打分。失效风险的统计结果如下表3所示。
表3失效风险分值
组别 失效风险(硬端) 失效风险(软端)
实施例1 5 5
实施例2 5 5
实施例3 5 5
实施例4 5 5
对比例1 4 4
对比例2 5 4
对比例3 5 4
对比例4 5 4
对比例5 4 5
对比例6 5 5
对比例7 5 4
实施例1~4的硬端采用锆铌合金,表层是氧化层,具有类陶瓷性质,能够降低磨损;基底是锆铌合金,能够避免碎裂风险。
实施例1~4的软端采用梯度交联的超高分子量聚乙烯,表层为交联结构提升了磨损性能,内部未交联,具有良好的韧性,避免了冲击碎裂、疲劳断裂等风险。
对比例1和对比例5的硬端采用陶瓷材料,虽然磨损降低,但增加了脆性碎裂的风险。对比例1~4和对比例7的软端采用高交联的超高分子量聚乙烯,在提升了磨损性能的同时却增加了冲击碎裂、疲劳断裂等风险。
本申请实施例在降低了硬端和软端之间的磨损率的同时,还保证了硬端与软端具有良好的抗冲击与抗疲劳性能,故而可以显著提高关节假体的适用性,其了广泛用于髋、膝、肩、肘、踝等关节假体,有效延长关节假体的寿命,降低关节假体的翻修率,提高使用者的满意度。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种关节摩擦副,其特征在于,包括:
    第一支承体,包括第一支承主体及形成于所述第一支承主体上的第一支承表面,
    所述第一支承主体的材质包括硬质金属材质或硬质合金材质;
    所述第一支承表面的表面粗糙度≤0.01μm,所述第一支承表面的水接触角≤60°;及第二支承体,包括第二支承主体及形成于所述第二支承主体上的第二支承表面,
    所述第二支承主体包括交联超高分子量聚乙烯材料,所述第二支承主体的交联度从表层至内部呈降低趋势;
    所述第二支承表面用于与所述第一支承表面配合,所述第二支承表面的表面粗糙度≤0.1μm,所述第二支承表面的水接触角≤30°。
  2. 如权利要求1所述的关节摩擦副,其特征在于,所述第一支承表面包括硬质金属氧化层。
  3. 如权利要求2所述的关节摩擦副,其特征在于,所述第一支承表面由所述第一支承主体的表面经氧化形成。
  4. 如权利要求3所述的关节摩擦副,其特征在于,所述第一支承主体的材质包括锆合金材质;
    所述第一支承表面包括锆合金材质形成的硬质氧化层。
  5. 如权利要求1~4任一项所述的关节摩擦副,其特征在于,所述第二支承主体通过超高分子量聚乙烯材料直接模压成型再经交联处理制得。
  6. 如权利要求5所述的关节摩擦副,其特征在于,所述交联处理采用电子束或γ射线辐照进行。
  7. 如权利要求6所述的关节摩擦副,其特征在于,所述交联处理采用电子束辐照,电子束辐照的辐照总剂量为50kGy~120kGy。
  8. 如权利要求1~7任一项所述的关节摩擦副,其特征在于,所述第二支承表面包括亲水聚合物层。
  9. 如权利要求8所述的关节摩擦副,其特征在于,通过化学接枝或物理涂敷的方法在所述第二支承主体的表面形成所述亲水聚合物层。
  10. 如权利要求8或9所述的关节摩擦副,其特征在于,所述第二支承表面的材质包括聚2-甲基丙烯酰氧乙基磷酸胆碱、聚乙烯吡咯烷酮和聚甲基丙烯酸羟乙酯中的至少一种。
  11. 如权利要求1~10任一项所述的关节摩擦副,其特征在于,所述第一支承表面的水 接触角≤53°。
  12. 如权利要求1~11任一项所述的关节摩擦副,其特征在于,所述第二支承表面的水接触角≤15°。
  13. 如权利要求1~12任一项所述的关节摩擦副,其特征在于,所述第一支承表面与所述第二支承表面之间的摩擦系数≤0.08。
  14. 如权利要求1~13任一项所述的关节摩擦副,其特征在于,所述第二支承主体靠近所述第二支承表面的表层的溶胀度≤3.5;所述第二支承主体的内部的溶胀度≥4.5;所述表层的厚度为所述第二支承主体的总厚度的10%~30%。
  15. 如权利要求1~14任一项所述的关节摩擦副,其特征在于,所述第一支承表面的厚度为5μm~30μm。
  16. 如权利要求1~15任一项所述的关节摩擦副,其特征在于,所述第二支承表面的厚度为50nm~300nm。
  17. 一种关节假体,其特征在于,包括如权利要求1~16任一项所述的关节摩擦副。
  18. 根据权利要求17所述的关节假体,其特征在于,所述关节假体包括髋关节、膝关节、肩关节、肘关节、踝关节、髁关节、腕关节或指关节。
PCT/CN2022/128987 2021-11-22 2022-11-01 关节摩擦副及关节假体 WO2023088085A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111384871.4 2021-11-22
CN202111384871.4A CN114209473A (zh) 2021-11-22 2021-11-22 关节摩擦副及关节假体

Publications (1)

Publication Number Publication Date
WO2023088085A1 true WO2023088085A1 (zh) 2023-05-25

Family

ID=80697802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128987 WO2023088085A1 (zh) 2021-11-22 2022-11-01 关节摩擦副及关节假体

Country Status (2)

Country Link
CN (1) CN114209473A (zh)
WO (1) WO2023088085A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114209473A (zh) * 2021-11-22 2022-03-22 苏州微创关节医疗科技有限公司 关节摩擦副及关节假体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871547A (en) * 1996-03-01 1999-02-16 Saint-Gobain/Norton Industrial Ceramics Corp. Hip joint prosthesis having a zirconia head and a ceramic cup
EP1449544A1 (en) * 2003-02-24 2004-08-25 Depuy Products, Inc. Metallic implants having roughened surfaces and methods for producing the same
CN1553967A (zh) * 2001-07-20 2004-12-08 史密夫和内修有限公司 表面氧化锆和锆合金的方法以及最终的产品
DE69728697T2 (de) * 1996-10-15 2005-04-14 University Of Southern California, Los Angeles Verschleissfestes vernetztes polyethylen mit oberflächengradienten
US20090306781A1 (en) * 2006-02-06 2009-12-10 Masayuki Kyomoto High Wear-Resistant Bearing Material and Artificial Joint Replacement Using the Same
CN102078227A (zh) * 2010-11-24 2011-06-01 南京理工大学 改善生物相容性与摩擦学性能的聚乙烯人工关节及其制备方法
US20190345316A1 (en) * 2017-03-21 2019-11-14 Kyocera Corporation Resin molded body and method for producing resin molded body
CN112770789A (zh) * 2020-06-25 2021-05-07 宽岳医疗器材(苏州)有限公司 超高分子量聚乙烯表面梯度交联方法及其应用
CN114209473A (zh) * 2021-11-22 2022-03-22 苏州微创关节医疗科技有限公司 关节摩擦副及关节假体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871547A (en) * 1996-03-01 1999-02-16 Saint-Gobain/Norton Industrial Ceramics Corp. Hip joint prosthesis having a zirconia head and a ceramic cup
DE69728697T2 (de) * 1996-10-15 2005-04-14 University Of Southern California, Los Angeles Verschleissfestes vernetztes polyethylen mit oberflächengradienten
CN1553967A (zh) * 2001-07-20 2004-12-08 史密夫和内修有限公司 表面氧化锆和锆合金的方法以及最终的产品
EP1449544A1 (en) * 2003-02-24 2004-08-25 Depuy Products, Inc. Metallic implants having roughened surfaces and methods for producing the same
US20090306781A1 (en) * 2006-02-06 2009-12-10 Masayuki Kyomoto High Wear-Resistant Bearing Material and Artificial Joint Replacement Using the Same
CN102078227A (zh) * 2010-11-24 2011-06-01 南京理工大学 改善生物相容性与摩擦学性能的聚乙烯人工关节及其制备方法
US20190345316A1 (en) * 2017-03-21 2019-11-14 Kyocera Corporation Resin molded body and method for producing resin molded body
CN112770789A (zh) * 2020-06-25 2021-05-07 宽岳医疗器材(苏州)有限公司 超高分子量聚乙烯表面梯度交联方法及其应用
CN114209473A (zh) * 2021-11-22 2022-03-22 苏州微创关节医疗科技有限公司 关节摩擦副及关节假体

Also Published As

Publication number Publication date
CN114209473A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
US20180147063A1 (en) Orthopedic paek-on-polymer bearings
Ghosh et al. Status of surface modification techniques for artificial hip implants
McKellop et al. The wear behavior of ion‐implanted Ti‐6Al‐4V against UHMW polyethylene
JP4963838B2 (ja) 低摩耗性摺動部材及びそれを用いた人工関節
JP5028080B2 (ja) 低摩耗性摺動部材及びそれを用いた人工関節
Brockett et al. Influence of contact pressure, cross-shear and counterface material on the wear of PEEK and CFR-PEEK for orthopaedic applications
EP2204197A1 (en) Biocompatible and low-wear material, artificial joint using the same and method of producing the same
WO2023088085A1 (zh) 关节摩擦副及关节假体
WO2007091521A1 (ja) 低摩耗性摺動部材及びそれを用いた人工関節
Moro et al. 2006 Frank Stinchfield Award: grafting of biocompatible polymer for longevity of artificial hip joints.
Hosseinzadeh et al. The bearing surfaces in total hip arthroplasty–options, material characteristics and selection
JPWO2011021642A1 (ja) 高潤滑性摺動部材およびそれを用いた人工関節
CN115093509B (zh) 一种具有自润滑和抗菌性能的超高分子量聚乙烯材料及其制备方法和应用
Kandemir et al. Wear behaviour of CFR PEEK articulated against CoCr under varying contact stresses: Low wear of CFR PEEK negated by wear of the CoCr counterface
Bell et al. Simulation of polyethylene wear in ankle joint prostheses
Medley et al. Hydrophilic polyurethane elastomers for hemiarthroplasty: a preliminary in vitro wear study
CN109662808B (zh) 一种髋关节假体
Chikkanna et al. Application of PEEK in total cervical disc arthroplasty: A review
Burger Failure analysis of ultra-high molecular weight polyethyelene acetabular cups
Thompson The design of a novel hip resurfacing prosthesis
Howcroft et al. (iv) Bearing surfaces in the young patient: out with the old and in with the new?
Brockett et al. Mechanical Behavior of Biomedical Materials
Kennedy et al. Tribological characteristics of polyethylene bearings of knee prostheses
Chacko Rajan Retrieval Analysis of Total, Unicompartmental and Patellofemoral Knee Prostheses
Radunovic et al. Contemporary Aspects of Joint Arthroplasties and Role of Ceramics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894622

Country of ref document: EP

Kind code of ref document: A1