WO2023087883A1 - 一种含稀土的超高强度宽厚钢板及其制备方法 - Google Patents

一种含稀土的超高强度宽厚钢板及其制备方法 Download PDF

Info

Publication number
WO2023087883A1
WO2023087883A1 PCT/CN2022/119352 CN2022119352W WO2023087883A1 WO 2023087883 A1 WO2023087883 A1 WO 2023087883A1 CN 2022119352 W CN2022119352 W CN 2022119352W WO 2023087883 A1 WO2023087883 A1 WO 2023087883A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
steel plate
rolling
strength
wide
Prior art date
Application number
PCT/CN2022/119352
Other languages
English (en)
French (fr)
Inventor
闫强军
刘承军
张波
靳建锋
葛昕
黄彪凯
李庆春
雷晓荣
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Publication of WO2023087883A1 publication Critical patent/WO2023087883A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of iron and steel production, in particular to a rare earth-containing ultra-high-strength wide-thick steel plate and a preparation method thereof.
  • Patent CN103614626 discloses a rare-earth-treated high-strength steel plate for construction machinery. Its yield strength reaches 500 MPa, and its low-temperature impact energy at -20°C is greater than 200 J. method.
  • Patent CN109234633 discloses a low preheating temperature 690MPa high-strength steel plate treated with rare earth and its preparation method. The patent reduces the welding preheating temperature of the 690MPa high-strength steel plate through rare earth treatment. The patent also provides the steel plate composition and rolling process. The production and heat treatment system only briefly lists the smelting process, which is not practical.
  • Patent CN103834870 discloses a rare earth-containing steel plate and its production process.
  • Patent CN111519096 discloses a rare earth-containing Q890CF high-strength steel plate and its manufacturing method.
  • the yield strength of the invented steel plate reaches 890 MPa.
  • the patent uses high-quality scrap steel as raw material to smelt and cast steel ingots in a vacuum smelting furnace. The method is not suitable for large-scale chemical production.
  • the above patents all add rare earth alloys to high-strength steels to improve mechanical properties, but the yield strength levels of the invented steel plates are all below 1000MPa.
  • Patent CN102888558 discloses a high-strength steel plate containing rare earth La and its heat treatment process.
  • the yield strength of the steel plate reaches 1100-1300 MPa, and the elongation reaches 7-15%.
  • the patent does not disclose the smelting process and low-temperature impact toughness of the steel plate.
  • the thickness of the steel plate is only 5-25mm, which belongs to the thin plate. Compared with the thick plate, the uniformity of product performance is easier to guarantee.
  • the present invention aims at the above-mentioned technical problems, overcomes the shortcomings of the prior art, and provides a rare-earth-containing ultra-high-strength wide-thick steel plate, whose chemical composition and mass percentage are as follows: C: 0.10%-0.18%, Mn: 0.55%-1.35%, Si: 0.15%-0.35%, Cr: 0.20%-0.70%, Mo: 0.25%-0.65%, Ni: 0.85%-1.25%, Nb: 0.016%-0.044%, V: 0.025%-0.065%, Ti ⁇ 0.010%, Al: 0.025%-0.070%, B: 0.001%-0.003%, P ⁇ 0.015%, S ⁇ 0.002%, T.O ⁇ 0.0010%, N ⁇ 0.0055%, Ceq ⁇ 0.0050ppm, the balance is iron and not Avoid impurities.
  • the aforementioned rare earth-containing ultra-high-strength wide-thick steel plate has the following chemical composition and mass percentage: C: 0.14%-0.16%, Mn: 1.35%-1.55%, Si: 0.15%-0.35%, Cr: 0.50 %-0.70%, Mo: 0.45%-0.65%, Ni: 0.85%-1.25%, Nb: 0.016%-0.044%, V: 0.025%-0.065%, Ti ⁇ 0.010%, Al: 0.055%-0.070%, B: 0.001%-0.003%, P ⁇ 0.015%, S ⁇ 0.002%, T.O ⁇ 0.0010%, N ⁇ 0.0055%, Ceq ⁇ 0.0050ppm, the balance is iron and unavoidable impurities.
  • the aforementioned rare earth-containing ultra-high-strength wide-thick steel plate has the following chemical composition and mass percentage: C: 0.15%-0.17%, Mn: 1.05%-1.35%, Si: 0.15%-0.35%, Cr: 0.30 %-0.40%, Mo: 0.25%-0.45%, Ni: 0.45%-0.75%, Nb: 0.016%-0.044%, V: 0.025%-0.065%, Ti ⁇ 0.010%, Al: 0.025%-0.070%, B: 0.001%-0.003%, P ⁇ 0.015%, S ⁇ 0.002%, T.O ⁇ 0.0010%, N ⁇ 0.0055%, Ceq ⁇ 0.0050ppm, the balance is iron and unavoidable impurities.
  • Another object of the present invention is to provide a method for preparing rare earth-containing ultra-high-strength wide-thick steel plates, including molten iron pretreatment ⁇ converter blowing ⁇ LF refining ⁇ RH refining ⁇ continuous casting ⁇ controlled rolling and controlled cooling ⁇ heat treatment,
  • Hot metal pretreatment requires S ⁇ 0.0030% in hot metal after slag removal
  • Converter blowing requires aluminum deoxidation after tapping, and total oxygen in molten steel is ⁇ 0.0600%;
  • LF refining requires that the mass fraction of total oxygen in molten steel after deoxidation be ⁇ 0.0020%;
  • RH refining requires vacuum treatment for 10-20 minutes, adding rare earth iron alloy through the silo, or using bottom blowing argon to blow off the slag layer after vacuum treatment and then feeding rare earth wire; after RH is finished, adding ferroboron or feeding boron wire, Static stirring time ⁇ 15min;
  • Strict argon sealing is implemented for continuous casting long nozzles and submerged nozzles, and the temperature of molten steel in the tundish is controlled at 1510-1560°C;
  • Controlled rolling and controlled cooling require that the casting slab be heated to 1200-1240°C, and two-stage controlled rolling is adopted. After the first stage of rolling, wait until the temperature reaches ⁇ 900°C for the second stage of rolling, and then air cooling after rolling; the cumulative reduction ratio of the two stages is respectively ⁇ 60% and ⁇ 70%;
  • Heat treatment includes quenching and tempering, the heating temperature for quenching is 860-950°C, and the heating temperature for tempering is 150-220°C.
  • the width of the steel plate is ⁇ 2000 mm, and the thickness is 25-40 mm.
  • the metallographic structure of the steel plate is tempered martensite.
  • the present invention effectively improves the ductility and plasticity of ultra-high-strength wide-thick plates with a yield strength above 1200 MPa by adding inclusions in the metamorphic steel of rare earth alloys, and realizing the refinement of grains and the homogenization of structures;
  • the present invention adds Ce element, which is relatively abundant in China, and uses it to modify the Al 2 O 3 inclusions in molten steel that are easy to aggregate and grow into CeAlO 3 , Ce 2 O 2 S, CeS, etc. Containing rare earth inclusions, the above inclusions are close to the elastic modulus of steel and are not easy to aggregate and grow. At the same time, the solid solution of rare earth in MnS inclusions can change them from strips to spindles. The above effects on the modification of inclusions It can greatly reduce its harm to the performance of the steel plate;
  • the solid solution rare earth in the steel of the present invention can effectively purify the grain boundary, and the segregation of the rare earth at the grain boundary can also play a role in strengthening the grain boundary, hindering the growth of the crystal, and reducing segregation;
  • the present invention can realize refinement of steel plate grains and homogenization of structure, reduce anisotropy, and achieve improved The purpose of ductility;
  • the tensile strength of the steel plate of the present invention is 1400-1470MPa, the yield strength is 1200-1300MPa, the elongation is 10.0%-12.5%, the impact toughness at -40°C is 90-150J, and the flatness is 3mm/m, 5mm/2m.
  • the rare earth-containing ultra-high-strength wide-thick steel plate provided in this embodiment has a width of 2200mm, a thickness of 25mm, and a flatness of 3mm/m, 5mm/2m.
  • Its chemical composition and mass percentage are: C: 0.10%, Mn: 1.24%, Si: 0.28%, Cr: 0.44%, Mo: 0.37%, Ni: 0.95%, Nb: 0.028%, V: 0.065%, Al: 0.048%, P: 0.008%, S: 0.0018%, N: 0.0043%, Ce: 0.0007ppm, and the balance is iron and unavoidable impurities.
  • the preparation method comprises the following steps: molten iron pretreatment ⁇ converter blowing ⁇ LF refining ⁇ RH refining ⁇ continuous casting ⁇ controlled rolling and controlled cooling ⁇ heat treatment.
  • the mass fraction of S in the molten iron after the pretreatment of the molten iron is 0.0028%.
  • Aluminum is added for deoxidation after the steel is blown out of the converter, and the mass fraction of total oxygen in the molten steel is 0.0550%.
  • the mass fraction of total oxygen in molten steel after LF refining and deoxidation is 0.0017%.
  • RH refining vacuum treatment for 10min Add rare earth iron alloy through the silo. After the end of RH, add ferroboron and stir for 18 minutes.
  • the continuous casting long nozzle and submerged nozzle are strictly sealed with argon, and the temperature of molten steel in the tundish is controlled at 1525°C.
  • Controlled rolling and controlled cooling require that the billet be heated to 1220°C, and two-stage controlled rolling is adopted. After the first stage of rolling, the second stage of rolling is carried out after the temperature is reached to 840°C, and then air-cooled after rolling. The cumulative reduction rates of the two stages are 65% and 72% respectively.
  • Heat treatment includes quenching and tempering, the heating temperature for quenching is 860°C, and the heating temperature for tempering is 150°C.
  • the mechanical properties of the steel plate are shown in Table 1. Compared with Comparative Example 1 without rare earth obtained by the same preparation method, the tensile strength and yield strength of Example 1 are basically equivalent, while the elongation after fracture and low temperature impact toughness at -40°C are obvious. improve.
  • the rare earth-containing ultra-high-strength wide-thick steel plate provided in this embodiment has a width of 2000mm, a thickness of 30mm, and a flatness of 3mm/m, 5mm/2m.
  • Its chemical composition is: C: 0.10%, Mn: 1.14%, Si: 0.35%, Cr: 0.33%, Mo: 0.25%, Ni: 0.85%, Nb: 0.030%, V: 0.055%, Al: 0.056%, P: 0.011%, S: 0.0012%, N: 0.0053%, Ceq: 0.0026ppm, and the balance is iron and unavoidable impurities.
  • the preparation method comprises the following steps: molten iron pretreatment ⁇ converter blowing ⁇ LF refining ⁇ RH refining ⁇ continuous casting ⁇ controlled rolling and controlled cooling ⁇ heat treatment.
  • the mass fraction of S in the molten iron after the slag removal in the molten iron pretreatment is 0.0020%.
  • Aluminum is added for deoxidation after the steel is blown out of the converter, and the mass fraction of total oxygen in the molten steel is 0.0480%.
  • the mass fraction of total oxygen in molten steel after LF refining and deoxidation is 0.0016%.
  • RH refining vacuum treatment for 20min Add rare earth iron alloy through the silo. After the end of RH, feed boron wire and stir for 15 minutes.
  • the continuous casting long nozzle and submerged nozzle are strictly sealed with argon, and the temperature of molten steel in the tundish is controlled at 1510°C.
  • Controlled rolling and controlled cooling requires that the billet be heated to 1240°C, and two-stage controlled rolling is adopted. After the first stage of rolling, the second stage of rolling is carried out at a temperature of 900°C, and then air-cooled after rolling. The cumulative reduction rates of the two stages are 65% and 70% respectively.
  • Heat treatment includes quenching and tempering, the heating temperature for quenching is 940°C, and the heating temperature for tempering is 210°C.
  • the mechanical properties of the steel plate are shown in Table 1. Compared with the comparative example 2 without rare earth obtained by the same preparation method, the tensile strength and yield strength of Example 2 are basically equivalent, while the elongation after fracture and low temperature impact toughness at -40°C are obvious. improve.
  • the rare earth-containing ultra-high-strength wide-thick steel plate provided in this embodiment has a width of 3200mm, a thickness of 40mm, and a flatness of 3mm/m, 5mm/2m.
  • Its chemical composition is: C: 0.18%, Mn: 0.56%, Si: 0.15%, Cr: 0.64%, Mo: 0.61%, Ni: 1.25%, Nb: 0.042%, V: 0.038%, Al: 0.035%, P: 0.005%, S: 0.0016%, N: 0.0046%, Ceq: 0.0050ppm, and the balance is iron and unavoidable impurities.
  • the preparation method comprises the following steps: molten iron pretreatment ⁇ converter blowing ⁇ LF refining ⁇ RH refining ⁇ continuous casting ⁇ controlled rolling and controlled cooling ⁇ heat treatment.
  • the mass fraction of S in the molten iron after the pretreatment of the molten iron is 0.0030%.
  • Aluminum is added for deoxidation after the steel is blown out of the converter, and the mass fraction of total oxygen in the molten steel is 0.0500%.
  • the mass fraction of total oxygen in molten steel after LF refining and deoxidation is 0.0020%.
  • After the RH refining vacuum treatment use bottom blowing argon to blow off the slag layer, then feed rare earth wire, then add ferroboron, and stir statically for 20 minutes.
  • the continuous casting long nozzle and submerged nozzle are strictly sealed with argon, and the temperature of molten steel in the tundish is controlled at 1560°C.
  • Controlled rolling and controlled cooling require that the billet be heated to 1200°C, and two-stage controlled rolling is adopted. After the first stage of rolling, the second stage of rolling is carried out after the temperature is reached to 880°C, and then air-cooled after rolling. The cumulative reduction rates of the two stages are 60% and 74% respectively.
  • Heat treatment includes quenching and tempering, the heating temperature for quenching is 950°C, and the heating temperature for tempering is 220°C.
  • the mechanical properties of the steel plate are shown in Table 1. Compared with Comparative Example 3 without rare earth obtained by the same preparation method, the tensile strength and yield strength of Example 3 are basically equivalent, while the elongation after fracture and low temperature impact toughness at -40°C are obvious. improve.
  • the present invention can also have other implementations. All technical solutions formed by equivalent replacement or equivalent transformation fall within the scope of protection required by the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

一种含稀土的超高强度宽厚钢板及其制备方法,涉及钢铁生产技术领域,其化学成分及质量百分比如下:C:0.10%-0.18%,Mn:0.55%-1.35%,Si:0.15%-0.35%,Cr:0.20%-0.70%,Mo:0.25%-0.65%,Ni:0.85%-1.25%,Nb:0.016%-0.044%,V:0.025%-0.065%,Ti≤0.010%,Al:0.025%-0.070%,B:0.001%-0.003%,P≤0.015%,S≤0.002%,T.O≤0.0010%,N≤0.0055%,Ce≤0.0050ppm,余量为铁和不可避免的杂质。钢板的抗拉强度为1400-1470MPa、屈服强度为1200-1300MPa、延伸率为10.0%-12.5%、-40℃低温冲击韧性为90-150J、平整度为3mm/m和5mm/2m。

Description

一种含稀土的超高强度宽厚钢板及其制备方法 技术领域
本发明涉及钢铁生产技术领域,特别是涉及一种含稀土的超高强度宽厚钢板及其制备方法。
背景技术
具有较高强度的低合金宽厚钢板广泛应用于建筑及桥梁、工程及矿山机械、车辆结构、集装箱等制造行业。伴随着工程机械的日趋大型化和高效化,进一步开发具有超高屈服强度的宽厚钢板的需求日趋强烈。与此同时,工程机械的服役条件也日趋苛刻,因此对钢板的韧塑性也提出了更高的要求。尤其对于厚度≥25mm的宽厚板而言,在钢板整个厚度截面获得均匀的马氏体组织,通常需要向钢中添加多种合金元素,不仅增加了合金化成本,还对钢板的韧塑性和焊接性产生不利影响。
专利CN103614626公开了一种稀土处理的高强度工程机械用钢板,其屈服强度达到500MPa,-20℃低温冲击功大于200J,该专利仅给出了钢板的成分和轧制及热处理制度,未指明冶炼方法。专利CN109234633公开了一种稀土处理的低预热温度690MPa级高强钢板及其制备方法,该专利通过稀土处理降低了690MPa级高强钢板的焊接预热温度,该专利也给出了钢板的成分和轧制及热处理制度,仅简单列举了冶炼工序,不具备实用性。专利CN103834870公开了一种含稀土钢板及其生产工艺,所发明钢板的屈服强度达到700MPa级别,该专利同样给出了钢板的成分和轧制及热处理制度,且列举了冶炼工序,其中稀土在连铸过程中加入不利于稀土夹杂物的上浮去除和稀土元素在钢种均匀分布,会严重影响钢材质量。专利CN111519096公开了一种含稀土的Q890CF高强钢板及其制造方法,所发明钢板的屈服强度达到890MPa级别,该专利以优质废钢为原料利用真空冶炼炉冶炼并浇铸钢锭,所述方法不适用于规模化生产。以上专利均在高强度钢中添加了稀土合金以改善力学性能,但所发明钢板的屈服强度级 别均在1000MPa以下。专利CN102888558公开了一种含稀土La的高强度钢板及其热处理工艺,钢板的屈服强度达到1100-1300MPa,延伸率达到7-15%,但是该专利并未公开钢板的冶炼工艺及低温冲击韧性,且钢板厚度仅为5-25mm,属于薄板,相较于厚板其产品性能的均匀性更易于保证。随着工程机械对钢板强度和韧塑性要求的不断增高,如何在提高强度的同时改善厚度在25mm以上的宽厚钢板的韧塑性,成为开发超高强度宽厚钢板的技术瓶颈。
发明内容
本发明针对上述技术问题,克服现有技术的缺点,提供一种含稀土的超高强度宽厚钢板,其化学成分及质量百分比如下:C:0.10%-0.18%,Mn:0.55%-1.35%,Si:0.15%-0.35%,Cr:0.20%-0.70%,Mo:0.25%-0.65%,Ni:0.85%-1.25%,Nb:0.016%-0.044%,V:0.025%-0.065%,Ti≤0.010%,Al:0.025%-0.070%,B:0.001%-0.003%,P≤0.015%,S≤0.002%,T.O≤0.0010%,N≤0.0055%,Ceq≤0.0050ppm,余量为铁和不可避免的杂质。
本发明进一步限定的技术方案是:
前所述的一种含稀土的超高强度宽厚钢板,其化学成分及质量百分比如下:C:0.14%-0.16%,Mn:1.35%-1.55%,Si:0.15%-0.35%,Cr:0.50%-0.70%,Mo:0.45%-0.65%,Ni:0.85%-1.25%,Nb:0.016%-0.044%,V:0.025%-0.065%,Ti≤0.010%,Al:0.055%-0.070%,B:0.001%-0.003%,P≤0.015%,S≤0.002%,T.O≤0.0010%,N≤0.0055%,Ceq≤0.0050ppm,余量为铁和不可避免的杂质。
前所述的一种含稀土的超高强度宽厚钢板,其化学成分及质量百分比如下:C:0.15%-0.17%,Mn:1.05%-1.35%,Si:0.15%-0.35%,Cr:0.30%-0.40%,Mo:0.25%-0.45%,Ni:0.45%-0.75%,Nb:0.016%-0.044%,V:0.025%-0.065%,Ti≤0.010%,Al:0.025%-0.070%,B:0.001%-0.003%,P≤0.015%,S≤0.002%,T.O≤0.0010%,N≤0.0055%,Ceq≤0.0050ppm,余量为铁和不可避免的杂质。
本发明的另一目的在于提供一种含稀土的超高强度宽厚钢板制备方法,包 括铁水预处理→转炉吹炼→LF精炼→RH精炼→连铸→控轧控冷→热处理,
铁水预处理要求扒渣后铁水中S≤0.0030%;
转炉吹炼要求出钢后加铝脱氧,钢液中全氧≤0.0600%;
LF精炼要求脱氧后钢液中全氧的质量分数≤0.0020%;
RH精炼要求真空处理10-20min,通过料仓加入稀土铁合金,或真空处理结束后利用底吹氩气吹开渣层后喂入稀土丝;RH结束后,加入硼铁或喂入硼丝后,静搅时间≥15min;
连铸长水口和浸入式水口实行严格的氩封,中间包钢液温度控制在1510-1560℃;
控轧控冷要求将铸坯加热至1200-1240℃,采用两阶段控轧,第一阶段轧后待温至≤900℃进行第二阶段轧制,轧后空冷;两阶段累积压下率分别为≥60%和≥70%;
热处理包括淬火和回火,淬火加热温度为860-950℃,回火加热温度为150-220℃。
前所述的一种含稀土的超高强度宽厚钢板制备方法,钢板的宽度≥2000mm,厚度为25-40mm。
前所述的一种含稀土的超高强度宽厚钢板制备方法,钢板的金相组织为回火马氏体。
本发明的有益效果是:
(1)本发明通过加入稀土合金变质钢中夹杂物,并实现晶粒的细化和组织的均匀化,有效改善了屈服强度在1200MPa以上的超高强度宽厚板的韧塑性;
(2)本发明在钢液精炼过程中加入我国储量较为丰富的Ce元素,利用其将钢液中易于聚集长大的Al 2O 3夹杂物变质为CeAlO 3、Ce 2O 2S、CeS等含稀土夹杂 物,以上夹杂物与钢的弹性模量等性质接近且不易聚合长大,同时稀土固溶于MnS夹杂物中可以将其由条状变为纺锤状,以上对于夹杂物的变质作用可大大降低其对钢板性能的危害;
(3)本发明钢中的固溶稀土可以有效净化晶界,稀土在晶界的偏聚还可起到强化晶界的作用,阻碍晶体的长大,减少偏析;
(4)本发明在稀土元素的变质夹杂和微合金化作用下,配合科学合理的轧制及热处理制度可以实现钢板晶粒的细化和组织的均匀化,减小各向异性,从而达到改善韧塑性的目的;
(5)本发明钢板的抗拉强度1400-1470MPa、屈服强度1200-1300MPa、延伸率10.0%-12.5%、-40℃低温冲击韧性90-150J、平整度3mm/m,5mm/2m。
具体实施方式
实施例1
本实施例提供的一种含稀土的超高强度宽厚钢板,宽度为2200mm,厚度为25mm,平整度为3mm/m,5mm/2m。其化学成分及质量百分比为:C:0.10%,Mn:1.24%,Si:0.28%,Cr:0.44%,Mo:0.37%,Ni:0.95%,Nb:0.028%,V:0.065%,Al:0.048%,P:0.008%,S:0.0018%,N:0.0043%,Ce:0.0007ppm,余量为铁和不可避免的杂质。
制备方法包括以下步骤:铁水预处理→转炉吹炼→LF精炼→RH精炼→连铸→控轧控冷→热处理。铁水预处理扒渣后铁水中S的质量分数为0.0028%。转炉吹炼出钢后加铝脱氧,钢液中全氧的质量分数为0.0550%。LF精炼脱氧后钢液中全氧的质量分数为0.0017%。RH精炼真空处理10min通过料仓加入稀土铁合金。RH结束后,加入硼铁,静搅时间18min。连铸长水口和浸入式水口实行严格的氩封,中间包钢液温度控制在1525℃。控轧控冷要求将铸坯加热至1220℃,采用两阶段控轧,第一阶段轧后待温至840℃进行第二阶段轧制,轧后空冷。两 阶段累积压下率分别为65%和72%。热处理包括淬火和回火,淬火加热温度为860℃,回火加热温度为150℃。
该钢板的力学性能见表1,与采用相同制备方法得到不含稀土的对比例1相比,实施例1的抗拉强度和屈服强度基本相当,而断后延伸率和-40℃低温冲击韧性明显改善。
实施例2
本实施例提供的一种含稀土的超高强度宽厚钢板,宽度为2000mm,厚度为30mm,平整度为3mm/m,5mm/2m。其化学成分按照质量百分比为:C:0.10%,Mn:1.14%,Si:0.35%,Cr:0.33%,Mo:0.25%,Ni:0.85%,Nb:0.030%,V:0.055%,Al:0.056%,P:0.011%,S:0.0012%,N:0.0053%,Ceq:0.0026ppm,余量为铁和不可避免的杂质。
制备方法包括以下步骤:铁水预处理→转炉吹炼→LF精炼→RH精炼→连铸→控轧控冷→热处理。铁水预处理扒渣后铁水中S的质量分数为0.0020%。转炉吹炼出钢后加铝脱氧,钢液中全氧的质量分数为0.0480%。LF精炼脱氧后钢液中全氧的质量分数为0.0016%。RH精炼真空处理20min通过料仓加入稀土铁合金。RH结束后,喂入硼丝,静搅15min。连铸长水口和浸入式水口实行严格的氩封,中间包钢液温度控制在1510℃。控轧控冷要求将铸坯加热至1240℃,采用两阶段控轧,第一阶段轧后待温至900℃进行第二阶段轧制,轧后空冷。两阶段累积压下率分别为65%和70%。热处理包括淬火和回火,淬火加热温度为940℃,回火加热温度为210℃。
该钢板的力学性能见表1,与采用相同制备方法得到不含稀土的对比例2相比,实施例2的抗拉强度和屈服强度基本相当,而断后延伸率和-40℃低温冲击韧性明显改善。
实施例3
本实施例提供的一种含稀土的超高强度宽厚钢板,宽度为3200mm,厚度为40mm,平整度为3mm/m,5mm/2m。其化学成分按照质量百分比为:C:0.18%,Mn:0.56%,Si:0.15%,Cr:0.64%,Mo:0.61%,Ni:1.25%,Nb:0.042%,V:0.038%,Al:0.035%,P:0.005%,S:0.0016%,N:0.0046%,Ceq:0.0050ppm,余量为铁和不可避免的杂质。
制备方法包括以下步骤:铁水预处理→转炉吹炼→LF精炼→RH精炼→连铸→控轧控冷→热处理。铁水预处理扒渣后铁水中S的质量分数为0.0030%。转炉吹炼出钢后加铝脱氧,钢液中全氧的质量分数为0.0500%。LF精炼脱氧后钢液中全氧的质量分数为0.0020%。RH精炼真空处理结束后利用底吹氩气吹开渣层后喂入稀土丝,随后加入硼铁,静搅20min。连铸长水口和浸入式水口实行严格的氩封,中间包钢液温度控制在1560℃。控轧控冷要求将铸坯加热至1200℃,采用两阶段控轧,第一阶段轧后待温至880℃进行第二阶段轧制,轧后空冷。两阶段累积压下率分别为60%和74%。热处理包括淬火和回火,淬火加热温度为950℃,回火加热温度为220℃。
该钢板的力学性能见表1,与采用相同制备方法得到不含稀土的对比例3相比,实施例3的抗拉强度和屈服强度基本相当,而断后延伸率和-40℃低温冲击韧性明显改善。
表1实施例钢板力学性能
Figure PCTCN2022119352-appb-000001
Figure PCTCN2022119352-appb-000002
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (6)

  1. 一种含稀土的超高强度宽厚钢板,其特征在于:其化学成分及质量百分比如下:C:0.10%-0.18%,Mn:0.55%-1.35%,Si:0.15%-0.35%,Cr:0.20%-0.70%,Mo:0.25%-0.65%,Ni:0.85%-1.25%,Nb:0.016%-0.044%,V:0.025%-0.065%,Ti≤0.010%,Al:0.025%-0.070%,B:0.001%-0.003%,P≤0.015%,S≤0.002%,T.O≤0.0010%,N≤0.0055%,Ceq≤0.0050ppm,余量为铁和不可避免的杂质。
  2. 根据权利要求1所述的一种含稀土的超高强度宽厚钢板,其特征在于:其化学成分及质量百分比如下:C:0.14%-0.16%,Mn:1.35%-1.55%,Si:0.15%-0.35%,Cr:0.50%-0.70%,Mo:0.45%-0.65%,Ni:0.85%-1.25%,Nb:0.016%-0.044%,V:0.025%-0.065%,Ti≤0.010%,Al:0.055%-0.070%,B:0.001%-0.003%,P≤0.015%,S≤0.002%,T.O≤0.0010%,N≤0.0055%,Ceq≤0.0050ppm,余量为铁和不可避免的杂质。
  3. 根据权利要求1所述的一种含稀土的超高强度宽厚钢板,其特征在于:其化学成分及质量百分比如下:C:0.15%-0.17%,Mn:1.05%-1.35%,Si:0.15%-0.35%,Cr:0.30%-0.40%,Mo:0.25%-0.45%,Ni:0.45%-0.75%,Nb:0.016%-0.044%,V:0.025%-0.065%,Ti≤0.010%,Al:0.025%-0.070%,B:0.001%-0.003%,P≤0.015%,S≤0.002%,T.O≤0.0010%,N≤0.0055%,Ceq≤0.0050ppm,余量为铁和不可避免的杂质。
  4. 一种含稀土的超高强度宽厚钢板制备方法,其特征在于:应用于权利要求1-3任意一项,包括铁水预处理→转炉吹炼→LF精炼→RH精炼→连铸→控轧控冷→热处理,
    铁水预处理要求扒渣后铁水中S≤0.0030%;
    转炉吹炼要求出钢后加铝脱氧,钢液中全氧≤0.0600%;
    LF精炼要求脱氧后钢液中全氧的质量分数≤0.0020%;
    RH精炼要求真空处理10-20min,通过料仓加入稀土铁合金,或真空处理结束后利用底吹氩气吹开渣层后喂入稀土丝;RH结束后,加入硼铁或喂入硼丝后, 静搅时间≥15min;
    连铸长水口和浸入式水口实行严格的氩封,中间包钢液温度控制在1510-1560℃;
    控轧控冷要求将铸坯加热至1200-1240℃,采用两阶段控轧,第一阶段轧后待温至≤900℃进行第二阶段轧制,轧后空冷;两阶段累积压下率分别为≥60%和≥70%;
    热处理包括淬火和回火,淬火加热温度为860-950℃,回火加热温度为150-220℃。
  5. 根据权利要求4所述的一种含稀土的超高强度宽厚钢板制备方法,其特征在于:所述钢板的宽度≥2000mm,厚度为25-40mm。
  6. 根据权利要求4所述的一种含稀土的超高强度宽厚钢板制备方法,其特征在于:所述钢板的金相组织为回火马氏体。
PCT/CN2022/119352 2021-11-19 2022-09-16 一种含稀土的超高强度宽厚钢板及其制备方法 WO2023087883A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111381840.3 2021-11-19
CN202111381840.3A CN114182168B (zh) 2021-11-19 2021-11-19 一种含稀土的超高强度宽厚钢板及其制备方法

Publications (1)

Publication Number Publication Date
WO2023087883A1 true WO2023087883A1 (zh) 2023-05-25

Family

ID=80541098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119352 WO2023087883A1 (zh) 2021-11-19 2022-09-16 一种含稀土的超高强度宽厚钢板及其制备方法

Country Status (2)

Country Link
CN (1) CN114182168B (zh)
WO (1) WO2023087883A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182168B (zh) * 2021-11-19 2023-04-11 南京钢铁股份有限公司 一种含稀土的超高强度宽厚钢板及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3299486A1 (en) * 2015-05-22 2018-03-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thick steel sheet and welded joint
CN109750228A (zh) * 2019-03-04 2019-05-14 内蒙金属材料研究所 一种稀土抗冲击钢板及其制备方法
CN110512151A (zh) * 2019-09-18 2019-11-29 包头钢铁(集团)有限责任公司 一种稀土nm450宽厚钢板及其生产方法
CN113061815A (zh) * 2021-03-24 2021-07-02 宝武集团鄂城钢铁有限公司 一种800MPa级全截面冲击性能稳定的调质态高强钢及其生产方法
CN113637900A (zh) * 2021-07-27 2021-11-12 包头钢铁(集团)有限责任公司 一种1100MPa级重型机械吊臂用厚钢板的生产方法
CN114182168A (zh) * 2021-11-19 2022-03-15 南京钢铁股份有限公司 一种含稀土的超高强度宽厚钢板及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1132958C (zh) * 2001-10-17 2003-12-31 武汉钢铁(集团)公司 高性能耐火耐候建筑用钢及其生产方法
CN102168229B (zh) * 2010-02-25 2013-04-24 宝山钢铁股份有限公司 耐候钢板及其制造方法
CN105506450A (zh) * 2015-12-10 2016-04-20 南京钢铁股份有限公司 一种抗震耐候桥梁钢及其制造工艺
CN105624553B (zh) * 2015-12-31 2017-05-03 江西理工大学 一种改善低温冲击韧性的高强度钢板及其制造方法
CN108179350B (zh) * 2017-12-25 2019-12-31 南京钢铁股份有限公司 一种耐磨钢低成本短生产周期制备方法
CN108914006B (zh) * 2018-08-10 2020-12-29 宝武集团鄂城钢铁有限公司 一种厚度方向性能优良的超高强度调质钢板及其制造方法
CN110129508A (zh) * 2019-05-23 2019-08-16 包头钢铁(集团)有限责任公司 一种提高稀土高强钢冲击韧性的工艺
CN113046635B (zh) * 2021-03-05 2022-07-26 天津理工大学 一种高强韧耐腐蚀海洋工程用钢及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3299486A1 (en) * 2015-05-22 2018-03-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thick steel sheet and welded joint
CN109750228A (zh) * 2019-03-04 2019-05-14 内蒙金属材料研究所 一种稀土抗冲击钢板及其制备方法
CN110512151A (zh) * 2019-09-18 2019-11-29 包头钢铁(集团)有限责任公司 一种稀土nm450宽厚钢板及其生产方法
CN113061815A (zh) * 2021-03-24 2021-07-02 宝武集团鄂城钢铁有限公司 一种800MPa级全截面冲击性能稳定的调质态高强钢及其生产方法
CN113637900A (zh) * 2021-07-27 2021-11-12 包头钢铁(集团)有限责任公司 一种1100MPa级重型机械吊臂用厚钢板的生产方法
CN114182168A (zh) * 2021-11-19 2022-03-15 南京钢铁股份有限公司 一种含稀土的超高强度宽厚钢板及其制备方法

Also Published As

Publication number Publication date
CN114182168B (zh) 2023-04-11
CN114182168A (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
JP6466573B2 (ja) 降伏強度800MPa級高靱性熱間圧延高強度鋼およびその製造方法
CN101363101B (zh) 一种大厚度调质高强度钢板及其生产方法
WO2019223209A1 (zh) 一种500MPa级工程机械用钢及其制造方法
CN108220766B (zh) 一种Cr-V系热作模具钢及其制备方法
CN108866444B (zh) 耐腐蚀镜面模具钢及其制备方法
CN101773929B (zh) 一种生产30CrMo热轧钢板的方法
CN111088451A (zh) 一种钢筋混凝土用600MPa级钢筋及其生产方法
WO2012075919A1 (zh) 一种大型球磨机衬板及其热处理方法
CN103540838A (zh) 一种低温容器用钢板及生产方法
CN108950432B (zh) 一种高强度、高韧性低合金耐磨钢的制造方法
CN103194687A (zh) 一种低温用低合金高强铸钢及其制备方法
CN102409233A (zh) 一种低温工程机械用钢及其生产方法
WO2018176364A1 (zh) 薄规格耐磨钢板及其制造方法
CN113073272A (zh) 一种高强度q690d钢板及其生产方法
KR20230059825A (ko) 저원가 고성능 q500 교량강 및 생산 방법
WO2023155447A1 (zh) 一种煤炭采运用高耐磨性用钢及其生产方法
CN110628993A (zh) 一种HB460MPa级高强度高韧性抗火切裂纹耐磨钢及其生产方法
WO2023087882A1 (zh) 一种含稀土的nm600耐磨钢板及其制备方法
WO2023087883A1 (zh) 一种含稀土的超高强度宽厚钢板及其制备方法
CN102337458B (zh) 抗拉强度≥1100Mpa的工程机械用钢及其生产方法
CN113046641B (zh) 一种低钒含氮热作模具钢及其制备方法
WO2019222988A1 (zh) 一种屈服强度1100MPa级超细晶高强钢板及其制造方法
CN103014522A (zh) 一种新型低成本耐磨高强钢q550d钢板及其生产方法
CN112831715A (zh) 一种含稀土超高纯净度的超高锰钢冶炼方法
CN110284058B (zh) 一种高硬度碳素模架用钢

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894421

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2022389604

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022894421

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022894421

Country of ref document: EP

Effective date: 20240619