WO2019223209A1 - 一种500MPa级工程机械用钢及其制造方法 - Google Patents

一种500MPa级工程机械用钢及其制造方法 Download PDF

Info

Publication number
WO2019223209A1
WO2019223209A1 PCT/CN2018/108992 CN2018108992W WO2019223209A1 WO 2019223209 A1 WO2019223209 A1 WO 2019223209A1 CN 2018108992 W CN2018108992 W CN 2018108992W WO 2019223209 A1 WO2019223209 A1 WO 2019223209A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
rolling
temperature
steel plate
engineering machinery
Prior art date
Application number
PCT/CN2018/108992
Other languages
English (en)
French (fr)
Inventor
冯勇
吴俊平
谯明亮
李明
霍松波
刘继宏
翟冬雨
潘中德
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to MYPI2020006044A priority Critical patent/MY194384A/en
Publication of WO2019223209A1 publication Critical patent/WO2019223209A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • the invention relates to an alloy steel technology, in particular to a 500MPa-grade engineering machinery steel and a manufacturing method thereof.
  • Q235B and SS400 are basically used as steel for construction machinery, such as excavating manipulator arm and loading manipulator arm. Its yield strength is 235 MPa, which meets the impact performance at room temperature, and its service life is within 30,000 hours. Its yield strength and fatigue life are obviously insufficient.
  • the present invention provides a 500 MPa-grade engineering machinery steel, which has a yield strength exceeding 500 MPa and has a high fatigue life.
  • Another object of the present invention is to provide a method for manufacturing a 500 MPa-grade engineering machinery steel, which can produce a 500 MPa-grade engineering machinery steel with high fatigue life.
  • a 500MPa-grade engineering machinery steel according to the present invention includes the following mass percentage components: C: 0.12 to 0.23%,
  • the balance is Fe and inevitable impurities.
  • the metallographic structure of the 500MPa-grade engineering machinery steel is a uniform and fine martensite high-temperature tempering structure.
  • the element C can significantly increase the strength of the matrix through solid solution strengthening. At the same time, the content of C element is too low to be beneficial to the formation of quenched martensite, but the content of C element is not good to the welding performance of the material. Therefore, the present invention controls the C content to a level of 0.12 to 0.23%.
  • Si is a deoxidizing element in the steelmaking process.
  • a proper amount of Si can inhibit the segregation of Mn and P, while excessive O content and segregation of Mn and P will damage the toughness.
  • Si can also produce solid solution strengthening and appropriate Si element. Conducive to the stable improvement of tempered tissue performance. However, if the Si content is too high, inclusions are formed.
  • Si is controlled to be 0.10 to 0.60%.
  • Mn is a ferrite strengthening element. If the content is too small, the alloying and quenching effects will not be achieved, but if the content is too large, the welding performance will be very unfavorable and not economical. Therefore, Mn is controlled to 0.80 to 1.90%.
  • P and S are harmful elements in molten steel. Too much P and S will be harmful to the toughness of the steel, affect the welding performance, and easily form cracks. Theoretically, the less these two elements are, the better.
  • the present invention controls P to be less than 0.018% and S to be less than 0.010%.
  • the present invention limits C, Si, Mn, P, and S from Cr: 0 to 0.50%, Ni: 0 to 0.60%, Mo: 0 to 0.45%, Cu: 0 to 0.40%, Nb, based on alloying action.
  • One or more elements are selected from 0 to 0.060%, V to 0 to 0.15%, Ti: 0 to 0.12%, B: 0 to 0.0030%, Al: 0.010 to 0.050%, etc., and can be matched reasonably.
  • the method for manufacturing a 500 MPa-grade engineering machinery steel according to the present invention includes the following steps:
  • casting slab heating heating the casting slab uniformly at 1100-1220 ° C for 3.5-4.5 hours;
  • Controlled cooling After the residual water at the steel plate at the exit of the accelerated cooling zone is cleaned, the anti-red temperature of the steel plate is measured at 650 to 690 ° C;
  • Shot blasting remove the oxide scale on the surface of the steel plate
  • the molten steel prepared in step (1) complies with the composition requirements includes the following steps:
  • the heat treatment is to first heat the steel plate to 880-920 ° C by using a nitrogen-protected non-oxidized roller hearth furnace; then, perform rolling waterjet quenching on the steel plate; and then perform high-temperature tempering treatment at 550-660 ° C.
  • the 500 MPa-grade engineering machinery steel according to the present invention has a reasonable composition design, secondary refining outside the furnace, and adopts a unique manufacturing process to make the steel clean and fine-grained, and improve its toughness.
  • the metallographic structure of this steel grade is uniform and fine martensite high temperature tempering structure, so as to obtain good mechanical properties and fatigue properties.
  • the yield strength of the steel grade is above 500MPa, and the tensile strength is above 600MPa.
  • This steel grade is suitable for The fatigue life of construction machinery is more than 30% higher than that of existing construction machinery steel grades, which meets the requirements of construction machinery's low-temperature toughness of minus 40 ° C.
  • the alloy elements of the steel type can be selected according to the alloy action to effectively control the production cost of the steel type.
  • the present invention proposes a 500 MPa grade construction machinery steel.
  • the composition of this steel grade is based on quality Percentage, including C: 0.12 to 0.23%, Si: 0.10 to 0.60%, Mn: 0.80 to 1.90%, P: ⁇ 0.018%, S: ⁇ 0.010%; and selected from Cr: 0 to 0.50%, Ni: 0 to 0.60%, Mo: 0 to 0.45%, Cu: 0 to 0.40%, Nb: 0 to 0.060%, V: 0 to 0.15%, Ti: 0 to 0.12%, B: 0 to 0.0030%, Al: 0.010 One or more of ⁇ 0.050%; the balance is Fe and inevitable impurities.
  • the metallographic structure of this steel is a uniform and fine martensite high temperature tempering structure, so as to obtain good
  • the method for manufacturing a 500 MPa-grade engineering machinery steel according to the present invention includes the following technical steps:
  • the RH bottom blowing argon is properly stirred and floated to remove non-metallic inclusions, reduce the nitrogen and oxygen content, control the molten steel nitrogen content not higher than 38ppm, and the hydrogen content is not high.
  • the oxygen content is not higher than 20ppm; then feed the calcium wire to purify the molten steel, so that the long MnS non-metallic inclusions are dispersed and shortened and spheroidized to obtain the molten steel that meets the requirements.
  • Controlled cooling After the residual water at the steel plate at the exit of the accelerated cooling zone is cleaned, the anti-red temperature of the steel plate is measured at 650 to 690 ° C;
  • Shot blasting remove the oxide scale on the surface of the steel plate
  • Example 1 A 75mm Q500E steel plate includes the following mass percentages of component C: 0.18%, Si: 0.27%, Mn: 1.53%, P: 0.011%, S: 0.006%, Cr: 0.25%, V: 0.035% , Ti: 0.019%, B: 0.0009%, the balance is Fe and inevitable impurities.
  • Example 2 A 10mm Q500E steel sheet includes the following mass percentages of component C: 0.15%, Si: 0.23%, Mn: 1.49%, P: 0.013%, S: 0.005%, Cr: 0.17%, and V: 0.033% , Ti: 0.016%, B: 0.0011%, the balance is Fe and unavoidable impurities.
  • Example 3 22mm Q500E, including the following mass percentages of component C: 0.16%, Si: 0.20%, Mn: 1.33%, P: 0.013%, S: 0.005%, Ni: 0.20%, Nb: 0.026%, Ti: 0.016%, B: 0.0011%, the balance is Fe and unavoidable impurities.
  • Example 4 8mm Q500E, including the following mass percentages of component C: 0.15%, Si: 0.23%, Mn: 1.26%, P: 0.013%, S: 0.005%, Mo: 0.17%, Al: 0.027%, The balance is Fe and inevitable impurities.
  • Example 5 18mm Q500E, including the following mass percentage of component C: 0.17%, Si: 0.26%, Mn: 1.50%, P: 0.012%, S: 0.003%, Cr: 0.15%, Cu: 0.016%, Al: 0.027%, Ti: 0.022%, B: 0.0015%, and the balance is Fe and unavoidable impurities.
  • Example 6 A 50mm Q500E steel plate includes the following mass percentages of component C: 0.12%, Si: 0.6%, Mn: 0.8%, P: 0.017%, S: 0.006%, Cr: 0.50%, and the balance is Fe And inevitable impurities.
  • Example 7 A 10mm Q500E steel sheet includes the following mass percentages of component C: 0.23%, Si: 0.10%, Mn: 1.9%, P: 0.013%, S: 0.009%, V: 0.15%, Ti: 0.025wt .%, B: 0.003 wt.%, The balance is Fe and inevitable impurities.
  • Example 8 22mm Q500E, including the following mass percentages of component C: 0.12%, Si: 0.53%, Mn: 1.56%, P: 0.012%, S: 0.003%, Ni: 0.60%, and the balance is Fe and Inevitable impurities.
  • Example 10 30mm Q500E, including the following mass percentages of component C: 0.12%, Si: 0.17%, Mn: 1.21%, P: 0.010%, S: 0.003%, Cu: 0.40%, Al: 0.010%, The balance is Fe and inevitable impurities.
  • a 20mm Q500E steel sheet includes the following mass percentages of component C: 0.23%, Si: 0.46%, Mn: 0.95%, P: 0.016%, S: 0.009%, Nb: 0.06%, and the balance is Fe and unavoidable impurities.
  • Example 12 A 10mm Q500E steel plate includes the following mass percentages of component C: 0.17%, Si: 0.10%, Mn: 1.10%, P: 0.013%, S: 0.003%, Ti: 0.12%, and B: 0.0030. %, The balance is Fe and unavoidable impurities.
  • the 500 MPa grade engineering machinery steel of the present invention has good mechanical properties and fatigue performance, can improve the service life of the engineering machinery, and also meets the requirements of the engineering machinery's minus 40 °C low temperature toughness.
  • the steel for construction machinery can perfectly replace the Q235B ordinary material with a yield strength of only 235 MPa, which promotes the upgrading of product quality in the metallurgical and engineering machinery industries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种500MPa级工程机械用钢及其制造方法,该钢种包括以下质量百分比的成分:C:0.12~0.23%、Si:0.10~0.60%、Mn:0.80~1.90%、P:<0.018%、S:<0.010%;以及选自Cr:0~0.50%、Ni:0~0.60%、Mo:0~0.45%、Cu:0~0.40%、Nb:0~0.060%、V:0~0.15%、Ti:0~0.12%、B:0~0.0030%、Al:0.010~0.050%中的一种或多种;余量为Fe和不可避免的杂质。该钢种的制备方法包括冶炼、浇铸、加热、轧制、控制冷却、矫直、喷丸处理、热处理。其金相组织为均匀细小的马氏体高温回火组织,具有良好的力学性能以及疲劳性能。

Description

一种500MPa级工程机械用钢及其制造方法 技术领域
本发明涉及一种合金钢技术,具体涉及一种500MPa级工程机械用钢及其制造方法。
背景技术
目前,工程机械用钢基本采用Q235B和SS400两种,例如挖掘机动臂斗杆,装载机动臂等。其屈服强度在235MPa,满足常温冲击性能,使用寿命在30000h以内。其屈服强度和疲劳寿命均明显不足。
申请号为201310289099.7,名称为“一种500MPa级超细晶工程机械用钢及制造方法”的中国专利,公开了一种屈服强度超过500MPa的工程机械用钢,其C含量为0.04~0.08%,不利于淬火马氏体形成。该钢板存在合金成本高,板形不良,性能不稳定,下料变形较大等问题。
发明内容
发明目的:为了克服现有技术的缺陷,本发明提供了一种500MPa级工程机械用钢,该钢种的屈服强度超过500MPa,具有较高的疲劳寿命。
本发明的另一目的是提供一种500MPa级工程机械用钢的制造方法,该方法能够生产具有较高疲劳寿命的500MPa级工程机械用钢。
技术方案:本发明所述的一种500MPa级工程机械用钢,包括以下质量百分比的成分:C:0.12~0.23%、
Si:0.10~0.60%、
Mn:0.80~1.90%、
P:<0.018%、
S:<0.010%;
以及选自Cr:0~0.50%、Ni:0~0.60%、Mo:0~0.45%、Cu:0~0.40%、Nb:0~0.060%、V:0~0.15%、Ti:0~0.12%、B:0~0.0030%、Al:0.010~0.050%中的一种或多种;
余量为Fe和不可避免的杂质。
该500MPa级工程机械用钢的金相组织为均匀细小的马氏体高温回火组织。
该500MPa级工程机械用钢中各化学组分质量百分比含量的限定理由如下:
C元素能够通过固溶强化显著增加基体强度,同时其含量过低不利于淬火马氏体的形成,但是C含量过高也不利于材料的焊接性能。因此,本发明将C含量控制在0.12~0.23%的水平。
Si在炼钢过程中为脱氧元素,适量Si能够抑制Mn和P的偏聚,而O含量过高、Mn和P偏聚都会损害韧性,此外,Si还能够产生固溶强化,适当的Si元素有利于回火组织性能稳定改善。但是,Si含量过高会形成夹杂物。本发明将Si控制在0.10~0.60%。
Mn作为本发明所述钢板的主要合金元素,是铁素体强化元素,含量过少起不到合金化和淬火作用,但是含量过多又会对焊接性能非常不利,且不太经济。因此,将Mn控制在0.80~1.90%。
P、S属于钢水中的有害元素,过多的P、S会对钢的韧性有害,对焊接性能造成影响,容易形成裂纹。理论上这两种元素越少越好,本发明将P控制在<0.018%,S控制在<0.010%;
Cr、Ni、Mo、Cu、Nb、V、Ti、B、Al等元素在本钢种中均为非主导元素,其中少量加入Cr、Ni、Mo等元素有利于钢种的合金化和淬火,适当的加入Ti、B、Al等能够改进淬透性。但是,过多加入这些元素一方面不够经济,另一方面还会形成不必要的非金属夹杂物。所以根据合金作用配合取舍,既能满足设计,更有利于节约合金资源和改善焊接弯曲等加工性能。本发明在限定C、Si、Mn、P、S的基础上,根据合金作用从Cr:0~0.50%、Ni:0~0.60%、Mo:0~0.45%、Cu:0~0.40%、Nb:0~0.060%、V:0~0.15%、Ti:0~0.12%、B:0~0.0030%、Al:0.010~0.050%等元素中选取一种或多种,合理匹配即可。
本发明所述的一种500MPa级工程机械用钢的制造方法,所采用的技术方案包括下述步骤:
(1)冶炼钢水:制备符合成分组成的钢水;
(2)浇铸成坯:将钢水送入连铸机全程氩气保护浇注,同时电磁搅拌,拉速0.75~1.2m/min,得铸坯;
(3)铸坯加热:将铸坯在1100~1220℃下均匀加热3.5~4.5小时;
(4)轧制:采用四辊可逆轧机两阶段轧制,粗轧轧制压下率大于60%,粗 轧开轧温度1070~1180℃,二阶段开轧温度890~950℃,终轧温度820~900℃,得钢板;
(5)控制冷却:加速冷区出口钢板残留水吹扫干净后,测量钢板反红温度650~690℃;
(6)矫直:对钢板进行矫直,控制矫直不平度3~6mm/m;
(7)喷丸处理:去除钢板表面氧化铁皮;
(8)对去除氧化铁皮的钢板热处理,即得。
其中,步骤(1)中制备成分组成符合要求的钢水,包括下述步骤:
(1.1)铁水预处理,使铁水中的S:<0.010%;
(1.2)将预处理后的铁水加入转炉,采用BOF法冶炼并进行脱氧合金化,加入的合金为设计钢水成分中合金配加量的90%;
(1.3)LF炉精炼15~30min,微调合金成分使合金成分满足要求,并提升钢水温度;
(1.4)RH真空脱气处理15-30分钟,RH底吹氩合理搅拌并上浮去除非金属夹杂物,减少氮氢氧含量;
(1.5)喂入钙线净化钢水,使长条状MnS非金属夹杂物变分散,变短球形化,即得。
所述步骤(8)中热处理是先采用氮气保护无氧化辊底式炉将钢板加热至880~920℃;然后对钢板进行辊压式水刀淬火;再在550~660℃高温回火处理。
有益效果:本发明所述的500MPa级工程机械用钢,通过合理的成分设计,炉外二次精炼,并采用独特的制造工艺,使钢质洁净、晶粒细化,提高强韧性。该钢种的金相组织为均匀细小的马氏体高温回火组织,从而获得良好的力学性能以及疲劳性能,钢种的屈服强度达到500MPa以上,抗拉强度达到600MPa以上,该钢种适用于工程机械,其疲劳寿命较现有的工程机械钢种提升30%以上,满足工程机械零下40℃低温韧性需求。并且该钢种的合金元素可根据合金作用配合取舍,有效控制钢种的生产成本。
具体实施方式
下面,结合实施例对本发明做进一步详细说明。
为了将现有的工程机械用钢从屈服强度235MPa的Q235B升级到屈服强度 超过500MPa的新一代耐疲劳工程机械材料,本发明提出了一种500MPa级工程机械用钢,该钢种的成分以质量百分计,包括C:0.12~0.23%、Si:0.10~0.60%、Mn:0.80~1.90%、P:<0.018%、S:<0.010%;以及选自Cr:0~0.50%、Ni:0~0.60%、Mo:0~0.45%、Cu:0~0.40%、Nb:0~0.060%、V:0~0.15%、Ti:0~0.12%、B:0~0.0030%、Al:0.010~0.050%中的一种或多种;余量为Fe和不可避免的杂质。经过特殊的制造工艺,该钢种的金相组织为均匀细小的马氏体高温回火组织,从而获得良好的力学性能以及疲劳性能。
而本发明所述的一种500MPa级工程机械用钢的制造方法,所采用的技术方案包括下述步骤:
(1)首先采用下述步骤冶炼符合成分组成的钢水:先进行铁水预处理,使铁水中的S:<0.010%,紧接着将预处理后的铁水加入转炉,采用BOF法冶炼并进行脱氧合金化,期间,加入的合金为设计钢水成分中合金配加量的90%;然后将上述钢水送入LF炉精炼15~30min,脱氧、微调合金成分使合金成分满足要求,并按工艺提升钢水温度;将钢水送入RH精炼炉真空脱气处理15-30分钟,RH底吹氩合理搅拌并上浮去除非金属夹杂物,减少氮氢氧含量,控制钢水氮含量不高于38ppm,氢含量不高于1.5ppm,氧含量不高于20ppm;然后喂入钙线净化钢水,使长条状MnS非金属夹杂物变分散,变短球形化,即得符合要求的钢水。
(2)浇铸成坯:将钢水送入连铸机全程氩气保护浇注,同时电磁搅拌减轻低倍偏析,并控制连铸拉速0.75~1.2m/min,得铸坯;
(3)铸坯加热:将铸坯在1100~1220℃下均匀加热3.5~4.5小时,防止加热时间过短导致铸坯中心加热不透,同时,在适宜轧制的情况下合理控制轧制时间,防止加热时间过长造成能源的浪费;
(4)轧制:采用四辊可逆轧机两阶段轧制,粗轧轧制压下率大于60%,粗轧开轧温度1070~1180℃,二阶段开轧温度890~950℃,终轧温度820~900℃,得钢板;
(5)控制冷却:加速冷区出口钢板残留水吹扫干净后,测量钢板反红温度650~690℃;
(6)矫直:对钢板进行矫直,控制矫直不平度3~6mm/m;
(7)喷丸处理:去除钢板表面氧化铁皮;
(8)对去除氧化铁皮的钢板热处理,具体的,先采用氮气保护无氧化辊底式炉将钢板加热至880~920℃;然后对钢板进行辊压式水刀淬火;再在550~660℃高温回火处理,即得。
实施例一,75mm规格Q500E钢板,包括下述质量百分比的成分C:0.18%,Si:0.27%,Mn:1.53%,P:0.011%,S:0.006%,Cr:0.25%,V:0.035%,Ti:0.019%,B:0.0009%,余量为Fe和不可避免的杂质。炼钢合金化脱氧后,LF精炼25分钟,RH真空精炼脱气30分钟,使钢水氮含量不高于38ppm,氢含量不高于1.5ppm,氧含量不高于20ppm;板坯连铸,拉速0.75m/min;再加热3.8h使铸坯中心温度达到1170℃,开轧温度1120℃,二段轧制890℃,终轧温度830℃,压下率61%;钢板返红温度650℃;矫直3mm/m;淬火温度890℃,回火温度650℃。力学性能屈服强度530MPa,抗拉强度620MPa,延伸率21%,-40℃冲击功186J,191J,197J(10*10mm)。
实施例二,10mm规格Q500E钢板,包括下述质量百分比的成分C:0.15%,Si:0.23%,Mn:1.49%,P:0.013%,S:0.005%,Cr:0.17%,V:0.033%,Ti:0.016%,B:0.0011%,余量为Fe和不可避免的杂质。炼钢合金化脱氧后,LF精炼30分钟,RH真空精炼脱气25分钟,使钢水氮含量不高于38ppm,氢含量不高于1.5ppm,氧含量不高于20ppm;板坯连铸,拉速1.2m/min;再加热4.0h使铸坯中心温度达到1180℃,开轧温度1140℃,二段轧制900℃,终轧温度850℃,压下率65%;钢板返红温度680℃;矫直5mm/m;淬火温度900℃,回火温度650℃。力学性能屈服强度545MPa,抗拉强度650MPa,延伸率20%,-40℃冲击功97J,99J,93J(5*10mm)。
实施例三,22mm规格Q500E,包括下述质量百分比的成分C:0.16%,Si:0.20%,Mn:1.33%,P:0.013%,S:0.005%,Ni:0.20%,Nb:0.026%,Ti:0.016%,B:0.0011%,余量为Fe和不可避免的杂质。炼钢合金化脱氧后,LF精炼26分钟,RH真空精炼脱气29分钟,使钢水氮含量不高于38ppm,氢含量不高于1.5ppm,氧含量不高于20ppm;板坯连铸,拉速1.2m/min;再加热4.2h使铸坯中心温度达到1190℃,开轧温度1140℃,二段轧制950℃,终轧温度850℃,压下率65%;钢板返红温度690℃;矫直6mm/m;淬火温度900℃,回火温度640℃。 力学性能屈服强度530MPa,抗拉强度645MPa,延伸率22%,-40℃冲击功192J,190J,192J(10*10mm)。
实施例四,8mm规格Q500E,包括下述质量百分比的成分C:0.15%,Si:0.23%,Mn:1.26%,P:0.013%,S:0.005%,Mo:0.17%,Al:0.027%,余量为Fe和不可避免的杂质。炼钢合金化脱氧后,LF精炼28分钟,RH真空精炼脱气28分钟,使钢水氮含量不高于38ppm,氢含量不高于1.5ppm,氧含量不高于20ppm;板坯连铸,拉速1.0m/min;再加热4.0h使铸坯中心温度达到1175℃,开轧温度1130℃,二段轧制920℃,终轧温度870℃,压下率76%;钢板返红温度690℃;矫直6mm/m;淬火温度910℃,回火温度640℃。力学性能屈服强度540MPa,抗拉强度660MPa,延伸率19%,-40℃冲击功86J,86J,83J(5*10mm)。
实施例五,18mm规格Q500E,包括下述质量百分比的成分C:0.17%,Si:0.26%,Mn:1.50%,P:0.012%,S:0.003%,Cr:0.15%,Cu:0.016%,Al:0.027%,Ti:0.022%,B:0.0015%,余量为Fe和不可避免的杂质。炼钢合金化脱氧后,LF精炼26分钟,RH真空精炼脱气15分钟,使钢水氮含量不高于38ppm,氢含量不高于1.5ppm,氧含量不高于20ppm;板坯连铸,拉速1.0m/min;再加热4.0h使铸坯中心温度达到1180℃,开轧温度1135℃,二段轧制920℃,终轧温度870℃,压下率73%;钢板返红温度690℃;矫直6mm/m;淬火温度910℃,回火温度630℃。力学性能屈服强度543MPa,抗拉强度659MPa,延伸率21%,-40℃冲击功126J,123J,129J(10*10mm)。
实施例六,50mm规格Q500E钢板,包括下述质量百分比的成分C:0.12%,Si:0.6%,Mn:0.8%,P:0.017%,S:0.006%,Cr:0.50%,余量为Fe和不可避免的杂质。炼钢合金化脱氧后,LF精炼15分钟,RH真空精炼脱气30分钟,使钢水氮含量不高于38ppm,氢含量不高于1.5ppm,氧含量不高于20ppm;板坯连铸,拉速0.75m/min;再加热3.5h使铸坯中心温度达到1100℃,开轧温度1070℃,二段轧制890℃,终轧温度820℃,压下率75%;钢板返红温度650℃;矫直4mm/m;淬火温度880℃,回火温度620℃。力学性能屈服强度542MPa,抗拉强度629MPa,延伸率21%,-40℃冲击功132J,139J,130J(10*10mm)。
实施例七,10mm规格Q500E钢板,包括下述质量百分比的成分C:0.23%,Si:0.10%,Mn:1.9%,P:0.013%,S:0.009%,V:0.15%,Ti:0.025wt.%, B:0.003wt.%,余量为Fe和不可避免的杂质。炼钢合金化脱氧后,LF精炼15分钟,RH真空精炼脱气25分钟,使钢水氮含量不高于38ppm,氢含量不高于1.5ppm,氧含量不高于20ppm;板坯连铸,拉速0.9m/min;再加热4.5h使铸坯中心温度达到1220℃,开轧温度1180℃,二段轧制950℃,终轧温度900℃,压下率63%;钢板返红温度690℃;矫直5mm/m;淬火温度920℃,回火温度660℃。力学性能屈服强度548MPa,抗拉强度646MPa,延伸率20%,-40℃冲击功55J,69J,78J(5*10mm)。
实施例八,22mm规格Q500E,包括下述质量百分比的成分C:0.12%,Si:0.53%,Mn:1.56%,P:0.012%,S:0.003%,Ni:0.60%,余量为Fe和不可避免的杂质。炼钢合金化脱氧后,LF精炼20分钟,RH真空精炼脱气25分钟,使钢水氮含量不高于38ppm,氢含量不高于1.5ppm,氧含量不高于20ppm;板坯连铸,拉速1.1m/min;再加热3.5h使铸坯中心温度达到1130℃,开轧温度1100℃,二段轧制910℃,终轧温度820℃,压下率61%;钢板返红温度650℃;矫直6mm/m;淬火温度880℃,回火温度620℃。力学性能屈服强度539MPa,抗拉强度642MPa,延伸率22%,-40℃冲击功191J,195J,193J(10*10mm)。
实施例九,8mm规格Q500E,包括下述质量百分比的成分C:0.16%,Si:0.13%,Mn:0.90%,P:0.011%,S:0.001%,Mo:0.45%,Al:0.05%,余量为Fe和不可避免的杂质。炼钢合金化脱氧后,LF精炼26分钟,RH真空精炼脱气28分钟,使钢水氮含量不高于38ppm,氢含量不高于1.5ppm,氧含量不高于20ppm;板坯连铸,拉速1.0m/min;再加热4.3h使铸坯中心温度达到1210℃,开轧温度1180℃,二段轧制940℃,终轧温度900℃,压下率89%;钢板返红温度690℃;矫直3mm/m;淬火温度910℃,回火温度640℃。力学性能屈服强度556MPa,抗拉强度662MPa,延伸率20%,-40℃冲击功58J,47J,48J(5*10mm)。
实施例十,30mm规格Q500E,包括下述质量百分比的成分C:0.12%,Si:0.17%,Mn:1.21%,P:0.010%,S:0.003%,Cu:0.40%,Al:0.010%,余量为Fe和不可避免的杂质。炼钢合金化脱氧后,LF精炼21分钟,RH真空精炼脱气25分钟,使钢水氮含量不高于38ppm,氢含量不高于1.5ppm,氧含量不高于20ppm;板坯连铸,拉速0.85m/min;再加热4.0h使铸坯中心温度达到1150℃,开轧温度1130℃,二段轧制900℃,终轧温度820℃,压下率61%;钢板返红温 度650℃;矫直3mm/m;淬火温度920℃,回火温度620℃。力学性能屈服强度546MPa,抗拉强度655MPa,延伸率21%,-40℃冲击功217J,219J,221J(10*10mm)。
实施例十一,20mm规格Q500E钢板,包括下述质量百分比的成分C:0.23%,Si:0.46%,Mn:0.95%,P:0.016%,S:0.009%,Nb:0.06%,余量为Fe和不可避免的杂质。炼钢合金化脱氧后,LF精炼30分钟,RH真空精炼脱气30分钟,使钢水氮含量不高于38ppm,氢含量不高于1.5ppm,氧含量不高于20ppm;板坯连铸,拉速0.9m/min;再加热3.9h使铸坯中心温度达到1200℃,开轧温度1180℃,二段轧制950℃,终轧温度900℃,压下率66%;钢板返红温度680℃;矫直3mm/m;淬火温度920℃,回火温度600℃。力学性能屈服强度545MPa,抗拉强度636MPa,延伸率21%,-40℃冲击功188J,193J,199J(10*10mm)。
实施例十二,10mm规格Q500E钢板,包括下述质量百分比的成分C:0.17%,Si:0.10%,Mn:1.10%,P:0.013%,S:0.003%,Ti:0.12%,B:0.0030%,余量为Fe和不可避免的杂质。炼钢合金化脱氧后,LF精炼25分钟,RH真空精炼脱气25分钟,使钢水氮含量不高于38ppm,氢含量不高于1.5ppm,氧含量不高于20ppm;板坯连铸,拉速0.95m/min;再加热4.2h使铸坯中心温度达到1210℃,开轧温度1170℃,二段轧制940℃,终轧温度890℃,压下率64%;钢板返红温度690℃;矫直4mm/m;淬火温度910℃,回火温度550℃。力学性能屈服强度551MPa,抗拉强度643MPa,延伸率20%,-40℃冲击功57J,58J,63J(5*10mm)。
通过上述实施例,可知本发明的500MPa级工程机械用钢具有较好的力学性能以及疲劳性能,能够提高工程机械的使用寿命,并且也满足了工程机械零下40℃低温韧性需求。在工程机械用钢上可以完美替代屈服强度仅有235MPa的Q235B普通材料,推动冶金和工程机械行业产品质量升级换代。
以上所述仅是本发明的优选实施方式,应当指出在不脱离本发明的构思的前提下,还可以做出若干推演或替代,这些推演或替代都应视为本发明的保护范围。

Claims (6)

  1. 一种500MPa级工程机械用钢,其特征在于,包括以下质量百分比的成分:C:0.12~0.23%、
    Si:0.10~0.60%、
    Mn:0.80~1.90%、
    P:<0.018%、
    S:<0.010%;
    以及选自Cr:0~0.50%、Ni:0~0.60%、Mo:0~0.45%、Cu:0~0.40%、Nb:0~0.060%、V:0~0.15%、Ti:0~0.12%、B:0~0.0030%、Al:0.010~0.050%中的一种或多种;
    余量为Fe和不可避免的杂质。
  2. 根据权利要求1所述的500MPa级工程机械用钢,其特征在于,金相组织为均匀细小的马氏体高温回火组织。
  3. 一种如权利要求1~2任一所述的500MPa级工程机械用钢的制造方法,其特征在于,步骤如下包括:
    (1)冶炼钢水:制备符合成分组成的钢水;
    (2)浇铸成坯:将钢水送入连铸机全程氩气保护浇注,同时电磁搅拌,拉速0.75~1.2m/min,得铸坯;
    (3)铸坯加热:将铸坯在1100~1220℃下均匀加热3.5~4.5小时;
    (4)轧制:采用四辊可逆轧机两阶段轧制,粗轧轧制压下率大于60%,粗轧开轧温度1070~1180℃,二阶段开轧温度890~950℃,终轧温度820~900℃,得钢板;
    (5)控制冷却:加速冷区出口钢板残留水吹扫干净后,测量钢板反红温度650~690℃;
    (6)矫直:对钢板进行矫直,控制矫直不平度3~6mm/m;
    (7)喷丸处理:去除钢板表面氧化铁皮;
    (8)对去除氧化铁皮的钢板热处理,即得。
  4. 根据权利要求3所述的500MPa级工程机械用钢的制造方法,其特征在于,所述步骤(1)中制备成分组成符合要求的钢水,包括下述步骤:
    (1.1)铁水预处理,使铁水中的S:<0.010%;
    (1.2)将预处理后的铁水加入转炉,采用BOF法冶炼并进行脱氧合金化,加入的合金为设计钢水成分中合金配加量的90%;
    (1.3)LF炉精炼15~30min,微调合金成分使合金成分满足要求,并提升钢水温度;
    (1.4)RH真空脱气处理15-30分钟,RH底吹氩合理搅拌并上浮去除非金属夹杂物,减少氮氢氧含量;
    (1.5)喂入钙线净化钢水,使长条状MnS非金属夹杂物变分散,变短球形化,即得。
  5. 根据权利要求3所述的500MPa级工程机械用钢的制造方法,其特征在于,所述步骤(8)中热处理是先采用氮气保护无氧化辊底式炉将钢板加热至880~920℃;然后对钢板进行辊压式水刀淬火;再在550~660℃进行高温回火处理。
  6. 根据权利要求4所述的500MPa级工程机械用钢的制造方法,其特征在于,所述步骤(1.4)中控制钢水的氮含量≤38ppm,氢含量≤1.5ppm,氧含量≤20ppm。
PCT/CN2018/108992 2018-05-24 2018-09-30 一种500MPa级工程机械用钢及其制造方法 WO2019223209A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MYPI2020006044A MY194384A (en) 2018-05-24 2018-09-30 500mpa grade steel for construction machinery and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810513565.8A CN108531816B (zh) 2018-05-24 2018-05-24 一种500MPa级工程机械用钢及其制造方法
CN201810513565.8 2018-05-24

Publications (1)

Publication Number Publication Date
WO2019223209A1 true WO2019223209A1 (zh) 2019-11-28

Family

ID=63472672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108992 WO2019223209A1 (zh) 2018-05-24 2018-09-30 一种500MPa级工程机械用钢及其制造方法

Country Status (3)

Country Link
CN (1) CN108531816B (zh)
MY (1) MY194384A (zh)
WO (1) WO2019223209A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111958188A (zh) * 2020-08-20 2020-11-20 本钢板材股份有限公司 一种开铁口机花键套的制备方法
CN113843283A (zh) * 2021-09-28 2021-12-28 成都先进金属材料产业技术研究院股份有限公司 一种大规格冷作模具钢坯的制备方法
CN114570897A (zh) * 2022-02-14 2022-06-03 包头钢铁(集团)有限责任公司 一种nm450铸坯生产方法
CN115449716A (zh) * 2022-10-08 2022-12-09 包头钢铁(集团)有限责任公司 一种桥梁结构用q420级热轧h型钢的冶炼连铸方法
CN116287957A (zh) * 2023-04-11 2023-06-23 攀枝花学院 一种含钒热镀锌钢及其冶炼方法
CN116287957B (zh) * 2023-04-11 2024-05-17 攀枝花学院 一种含钒热镀锌钢及其冶炼方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108531816B (zh) * 2018-05-24 2019-12-10 南京钢铁股份有限公司 一种500MPa级工程机械用钢及其制造方法
CN109023114A (zh) * 2018-09-29 2018-12-18 南京钢铁股份有限公司 一种超高钢q960e厚板及制造方法
KR102209547B1 (ko) * 2018-12-19 2021-01-28 주식회사 포스코 취성균열개시 저항성이 우수한 구조용 극후물 강재 및 그 제조방법
CN110423938A (zh) * 2019-07-24 2019-11-08 舞阳钢铁有限责任公司 TMCP型屈服500MPa级结构钢板及其生产方法
CN110656285A (zh) * 2019-09-10 2020-01-07 南京钢铁股份有限公司 一种一钢多级用结构钢坯料生产方法
CN110724878A (zh) * 2019-10-30 2020-01-24 鞍钢股份有限公司 一种0.5Ni低温钢及其制造方法
CN110964978B (zh) * 2019-12-04 2021-11-09 山东钢铁股份有限公司 一种工程机械用钢板及其制备方法
CN111534751B (zh) * 2020-01-11 2021-05-18 武钢集团昆明钢铁股份有限公司 一种hrb400e超细晶高强韧直条抗震钢筋及其制备方法
CN111270136A (zh) * 2020-02-17 2020-06-12 本钢板材股份有限公司 500MPa级工程机械用钢材及其制备方法
CN111394653A (zh) * 2020-04-17 2020-07-10 南京钢铁股份有限公司 一种420MPa低碳易焊接海工结构钢板及其制造方法
CN111455256A (zh) * 2020-04-17 2020-07-28 南京钢铁股份有限公司 一种690MPa易焊接耐蚀高强钢及其制造方法
CN113462975A (zh) * 2021-06-29 2021-10-01 莱芜钢铁集团银山型钢有限公司 一种690MPa级高强钢及其制造方法
CN115354223B (zh) * 2022-08-10 2023-01-24 南通洪源地质工程材料有限公司 一种高强度耐磨无缝钢管及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942616A (zh) * 2010-09-15 2011-01-12 北京科技大学 一种高延伸率高强度低碳贝氏体钢板及其生产方法
CN102943213A (zh) * 2012-11-28 2013-02-27 钢铁研究总院 一种低合金超高强度工程机械用耐磨钢及其制备方法
CN104831185A (zh) * 2015-04-16 2015-08-12 河北钢铁股份有限公司 低成本高强度工程机械用钢板及其生产方法
CN107760998A (zh) * 2017-10-12 2018-03-06 河钢股份有限公司 低成本调质型690MPa级工程机械用钢板及生产方法
CN108531816A (zh) * 2018-05-24 2018-09-14 南京钢铁股份有限公司 一种500MPa级工程机械用钢及其制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451553B (zh) * 2013-08-29 2016-03-16 莱芜钢铁集团有限公司 一种超低温环境用钢筋及其制备方法
CN105779899A (zh) * 2016-03-09 2016-07-20 山东钢铁股份有限公司 极寒环境下工程机械用800MPa级高强韧钢板及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942616A (zh) * 2010-09-15 2011-01-12 北京科技大学 一种高延伸率高强度低碳贝氏体钢板及其生产方法
CN102943213A (zh) * 2012-11-28 2013-02-27 钢铁研究总院 一种低合金超高强度工程机械用耐磨钢及其制备方法
CN104831185A (zh) * 2015-04-16 2015-08-12 河北钢铁股份有限公司 低成本高强度工程机械用钢板及其生产方法
CN107760998A (zh) * 2017-10-12 2018-03-06 河钢股份有限公司 低成本调质型690MPa级工程机械用钢板及生产方法
CN108531816A (zh) * 2018-05-24 2018-09-14 南京钢铁股份有限公司 一种500MPa级工程机械用钢及其制造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111958188A (zh) * 2020-08-20 2020-11-20 本钢板材股份有限公司 一种开铁口机花键套的制备方法
CN113843283A (zh) * 2021-09-28 2021-12-28 成都先进金属材料产业技术研究院股份有限公司 一种大规格冷作模具钢坯的制备方法
CN114570897A (zh) * 2022-02-14 2022-06-03 包头钢铁(集团)有限责任公司 一种nm450铸坯生产方法
CN115449716A (zh) * 2022-10-08 2022-12-09 包头钢铁(集团)有限责任公司 一种桥梁结构用q420级热轧h型钢的冶炼连铸方法
CN115449716B (zh) * 2022-10-08 2023-12-08 包头钢铁(集团)有限责任公司 一种桥梁结构用q420级热轧h型钢的冶炼连铸方法
CN116287957A (zh) * 2023-04-11 2023-06-23 攀枝花学院 一种含钒热镀锌钢及其冶炼方法
CN116287957B (zh) * 2023-04-11 2024-05-17 攀枝花学院 一种含钒热镀锌钢及其冶炼方法

Also Published As

Publication number Publication date
CN108531816B (zh) 2019-12-10
MY194384A (en) 2022-11-30
CN108531816A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
CN108531816B (zh) 一种500MPa级工程机械用钢及其制造方法
CN101451212B (zh) 一种高强度钢板及其制备方法
JP6466582B2 (ja) 降伏強度800MPa級高強度鋼及びその製造方法
CN103160729B (zh) 中碳微合金化工程机械履带链片用钢及其生产工艺
WO2016095721A1 (zh) 一种屈服强度900~1000MPa级调质高强钢及制造方法
CN111455256A (zh) 一种690MPa易焊接耐蚀高强钢及其制造方法
CN110846555B (zh) 一种大规格高强韧对称球扁钢及其生产方法
CN101153371B (zh) 高强度冷成型热连轧钢板及其生产方法
JP2023528422A (ja) 極地海洋工事用鋼板及びその製造方法
CN101619419B (zh) 一种低碳高铌高强度焊接结构用钢板及其制造方法
CN109609845A (zh) 一种500MPa级耐候钢及其生产方法
CN112030071A (zh) 510MPa级高韧性汽车大梁钢及其制备方法
CN102199727A (zh) 400MPa级高强度高成形性能冷轧钢板及其生产方法
CN104131238A (zh) 高成型高耐候极薄规格热轧钢板及其csp生产工艺
CN113751679B (zh) 一种无钴马氏体时效钢冷轧薄带的制造方法
CN113957359A (zh) 高强度汽车车轮用钢及其制备方法
CN111270169A (zh) 一种具有优异低温韧性的含Ni合金钢板及其生产方法
CN113337663A (zh) 一种解决弹簧钢盘条表面微缺陷的方法
CN114293093B (zh) 一种600MPa级钒钛微合金化热轧钢筋及其生产方法
CN113604736B (zh) 一种屈服强度800MPa级高强度中厚板及其制备方法
CN111286669A (zh) 屈服强度≥900Mpa的马氏体热轧态高强钢及制备方法
CN111187988A (zh) 一种低成本高强韧性压力容器钢板及其生产方法
CN117248167B (zh) 耐腐蚀工字钢及其生产方法
CN113604748B (zh) 一种厚规格耐候耐腐蚀的Cr系合金钢板及其生产方法
CN114769939B (zh) 一种低成本超高强钢激光焊用焊丝

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919587

Country of ref document: EP

Kind code of ref document: A1