WO2023087732A1 - 一种定位凝汽器泄漏换热管位置的系统和方法 - Google Patents
一种定位凝汽器泄漏换热管位置的系统和方法 Download PDFInfo
- Publication number
- WO2023087732A1 WO2023087732A1 PCT/CN2022/103072 CN2022103072W WO2023087732A1 WO 2023087732 A1 WO2023087732 A1 WO 2023087732A1 CN 2022103072 W CN2022103072 W CN 2022103072W WO 2023087732 A1 WO2023087732 A1 WO 2023087732A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling water
- condenser
- heat exchange
- sampling
- exchange tube
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000000498 cooling water Substances 0.000 claims abstract description 91
- 238000005070 sampling Methods 0.000 claims abstract description 74
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 70
- 238000001514 detection method Methods 0.000 claims abstract description 43
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000001257 hydrogen Substances 0.000 claims abstract description 38
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 38
- 238000005259 measurement Methods 0.000 claims abstract description 20
- 238000004458 analytical method Methods 0.000 claims abstract description 11
- 239000007788 liquid Substances 0.000 claims description 26
- 238000012423 maintenance Methods 0.000 description 6
- 238000007689 inspection Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009440 infrastructure construction Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/16—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
- G01M3/18—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/06—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the present application relates to the field of on-line chemical meter measurement, and in particular to a system and method for locating the leaking heat exchange tube of a condenser.
- the condenser is an important cooling equipment in a power plant, and its operating status directly affects the safe and economical operation of the entire unit.
- the cooling water with high salt content flows in the heat exchange tube of the condenser, and the pure steam with almost no impurities flows outside the tube.
- the high content of cooling water will leak into the The pure condensed water will quickly pollute the condensed water, causing the water vapor quality of the unit to deteriorate, especially for seawater cooling power plants. Therefore, the condenser is equipped with a heat exchange tube leak detection device during the infrastructure construction stage.
- the existing leak detection device can only diagnose which water chamber is leaking, but specifically which heat exchange tube is leaking, the leak detection device is powerless.
- the condenser leak detection device is a preliminary inspection, which is a rough inspection. Generally, there are 4 water chambers in the condenser, and the condenser leak detection device can only determine which water chamber has occurred. Leakage, that is, narrow the search range to 1/4, and specifically which pipes in the water chamber have leaked, there is nothing you can do.
- the leaking heat exchange tube can be located more accurately and the scope of leak detection can be further narrowed, not only can the leak detection time be shortened, the damage of cooling water leakage to the unit can be avoided or reduced to the greatest extent, and the number of maintenance personnel can also be greatly reduced. workload and reduce security risks.
- each condenser water chamber has about 174 rows of heat exchange tubes, each row has an average of about 60 heat exchange tubes, and the height of each row of heat exchange tubes is 2.5cm. If the positioning accuracy is 5cm, the scope of leak detection can be reduced to 2 rows, and the workload of leak detection can be reduced to 1/87; if the positioning accuracy is less than 2.5, the scope can be reduced to 1 row, and the workload of leak detection can be reduced to 1/174 . This is very meaningful for leak detection.
- the purpose of this application is to provide a system and method specially used for locating the leaking heat exchange tube of the condenser, which can be used in conjunction with the existing condenser leak detection device to further narrow the scope of leak detection.
- a system for locating the leaking heat exchange tube of a condenser including a cooling water level measurement and control system, a condensate sampling measurement system, and a data acquisition and analysis system;
- the cooling water level measurement and control system includes an air valve for the cooling water inlet chamber, a liquid level gauge, a drain valve for the cooling water inlet chamber, an air valve for the cooling water outlet chamber, and a drain valve for the cooling water outlet chamber arranged on the condenser ;
- the condensed water sampling measurement system includes a sampling device, a sampling valve, a sampling flowmeter, and a hydrogen conductivity detection system; the sampling device, a sampling valve, a sampling flowmeter, and a hydrogen conductivity detection system are connected in sequence;
- the data acquisition and analysis system includes a condenser leakage heat exchange tube positioning module, and the hydrogen conductivity detection system, cooling water level measurement and control system are all electrically connected to the condenser leakage heat exchange tube positioning module.
- the sampling device is arranged below the water level of the hot well of the condenser.
- the liquid level gauge adopts at least one of the liquid level gauge in the cooling water inlet chamber and the liquid level gauge in the cooling water outlet chamber, and the "0" line of the liquid level gauge is based on the bottom plate of the water chamber.
- the benchmark the highest water level is not lower than the height of the top row of heat exchange tubes in the condenser, and the display accuracy is not less than 1cm.
- a hot well sampling pump is further arranged between the sampling valve and the sampling flowmeter; the hot well sampling pump is connected to the condenser leakage heat exchange tube positioning module.
- a method for locating a system for locating the leaking heat exchange tube of a condenser comprising the following steps:
- the condenser leakage heat exchange tube positioning module controls the air valve of the cooling water inlet room and the air valve of the cooling water outlet room to open. Adjust the opening of the drain valve of the cooling water inlet chamber and the drain valve of the cooling water outlet chamber;
- the condenser leakage heat exchange tube location module collects the hydrogen conductivity data measured by the hydrogen conductivity detection system in real time, records the sudden change point of the hydrogen conductivity of the condensed water and the time t 2 at this time, and the location of the leaking condenser heat exchange tube
- the corresponding liquid level height is the height h at which the cooling water liquid level is located at time t 2 -t 1 , and then the online rapid judgment of the leakage pipe row position of the condenser is obtained.
- the water level drop rate of the cooling water chamber is controlled to be 10-30 mm/min.
- the condenser leakage heat exchange tube positioning module is also drawn as a time-cooling water level in the condenser water chamber-condensed water hydrogen conductivity double-axis curve, and is inferred based on the mutation point of the hydrogen conductivity curve The cooling water level of the condenser water chamber corresponding to the leaked condenser tube.
- This application can locate the leaking heat exchange tube without the maintenance personnel entering the water chamber of the condenser, greatly reducing the workload of leak detection, reducing the work intensity of the maintenance personnel, improving work efficiency, and reducing safety risks; Apply for online real-time detection, saving time for leak detection. All the existing methods for locating the leaking heat exchange tubes of the condenser require the maintenance personnel to enter the water room to check for leaks after the cooling water in the water chamber is emptied. If it is reduced to a certain row or several rows, the leak checking workload for subsequent maintenance personnel entering the water chamber has been greatly reduced, so the leak checking time can be greatly saved.
- the positioning method of this method makes full use of the leak detection device supporting the condenser, and only needs to add a cooling water level control system and a data acquisition and analysis system to realize the positioning of the heat exchange tube of the leaking condenser, which is low in cost and easy to locate. accomplish.
- Fig. 1 is a schematic diagram of a system for locating the position of the leaking heat exchange tube of the condenser in the present application
- Figure 2 is the time-cooling water level in the condenser water chamber-condensed water hydrogen conductivity dual-axis curve.
- the present application is a system for locating the position of the leaking heat exchange tube of the condenser.
- the system includes a cooling water level measurement and control system, a condensate sampling measurement system, and a data acquisition and analysis system;
- the cooling water level control system includes cooling water inlet chamber air valve 1, cooling water inlet chamber liquid level gauge 2, cooling water inlet chamber drain valve 3, cooling water outlet chamber air valve 2, cooling water outlet chamber liquid level Meter 11, cooling water outlet chamber discharge valve 10; cooling water inlet chamber air valve 1, cooling water inlet chamber liquid level gauge 2, cooling water inlet chamber drain valve 3, cooling water outlet chamber air valve 12, cooling water outlet The chamber liquid level gauge 11 and the cooling water outlet chamber drain valve 10 are arranged on the condenser.
- the condensed water sampling measurement system comprises a sampling device 4, a sampling valve 5, a hot well sampling pump 6, a sampling flowmeter 7, a hydrogen conductivity detection system; a sampling device 4, a sampling valve 5, a hot well sampling pump 6 and a sampling flowmeter 7 are connected in sequence; the sampling flowmeter 7 is connected with the hydrogen conductivity detection system 8; the sampling device 4 is arranged at the bottom of the condenser.
- the data acquisition and analysis system includes a condenser leakage heat exchange tube positioning module 9 and related data transmission lines.
- the data acquisition and analysis system includes a condenser leakage heat exchange tube positioning module 9, and the hydrogen conductivity detection system 8 is connected to the condenser leakage heat exchange tube positioning module 9.
- the application system After determining the water chamber where the leaking heat exchange tube is located, the application system reduces the load of the unit, drains the cooling water in the leaking water chamber, and closely monitors the hydrogen conductivity of the condensed water and the water level of the cooling water in the water chamber during the water release process. , to establish the corresponding relationship between cooling water level and time.
- the cooling water level corresponding to the current time minus the water sample sampling lag time is the height of the leaking heat exchange tube.
- the position of the leaking heat exchange tubes is located in a certain row, which greatly reduces the scope of leak detection and reduces the workload of leak detection.
- the application method has the characteristics of quickness, accuracy, low cost, easy implementation and high reliability, and can provide a reliable decision-making basis for non-stop treatment of condenser leakage in power plants.
- the liquid level gauge 2 of the cooling water inlet chamber and the liquid level gauge 11 of the cooling water outlet chamber in the cooling water level control system can display the water level of the water chamber in real time, and have a water level signal transmission function.
- the "0" of the water level gauge is based on the bottom plate of the water chamber, the highest water level is not lower than the height of the top row of heat exchange tubes, and the display accuracy is not less than 1cm.
- the condensed water sample is opened by opening the sampling valve 5, and the hot well sampling pump 6 is started.
- the hot well condensed water is extracted by the sampling device 4, and reaches the hydrogen conductivity detection system 8 through the sampling flowmeter 7.
- the condenser leakage heat exchange tube positioning module 9 in the data acquisition and analysis system can respectively control the valve components in the cooling water level control system and the condensate sampling measurement system, and collect real-time data from the liquid level gauge in the cooling water inlet chamber. 2.
- the liquid level gauge 13 in the cooling water outlet chamber and the cooling water level in the condenser water chamber and the hydrogen conductivity of the condensed water of the hydrogen conductivity detection system 8 are plotted as time-cooling water level in the condenser water chamber-condensed water hydrogen Conductivity dual-axis curve, and deduce the cooling water level of the condenser water chamber corresponding to the leaking condenser tube according to the mutation point of the hydrogen conductivity curve.
- the second purpose of the present application is to provide a systematic positioning method for locating the position of the leaking heat exchange tube of the condenser, including the following steps:
- the condenser leakage heat exchange tube positioning module 9 controls the air valve 1 and the air valve 1 of the cooling water inlet chamber.
- the air valve 14 of the cooling water outlet chamber is automatically opened, the opening of the cooling water inlet valve 3 and the cooling water outlet valve 12 are adjusted, and the water level drop rate of the cooling water chamber is controlled at 10-30mm/min;
- the condenser leakage heat exchange tube positioning module 9 collects the hydrogen conductivity data measured by the hydrogen conductivity detection system 8 in real time, and records the sudden point where the hydrogen conductivity of the condensed water changes from poor to good and the time t2 at this time, then the leaked condensate
- the liquid level height corresponding to the position of the heat exchange tube of the condenser is the height h of the liquid level of the cooling water at the time t 2 -t 1. This method can quickly determine the position of the condenser leakage tube row online.
- the pipe positioning module 9 controls the air valve 1 of the cooling water inlet chamber and the air valve 14 of the cooling water outlet chamber to open automatically, adjusts the opening of the water discharge valve 3 of the cooling water inlet chamber and the water discharge valve 12 of the cooling water outlet chamber, and controls the water level of the cooling water chamber
- the descending speed is about 20mm/min;
- Condenser leakage heat exchange tube positioning module 9 collects the hydrogen conductivity data measured by the hydrogen conductivity detection system 8 in real time, and records the sudden point where the hydrogen conductivity of the condensed water changes from poor to good and the time t 2 at this time, then the leakage
- the liquid level height corresponding to the position of the heat exchange tube of the condenser is the height h of the liquid level of the cooling water at the time t 2 -t 1.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Examining Or Testing Airtightness (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
本申请公开了一种定位凝汽器泄漏换热管位置的系统和方法,该系统包括冷却水水位测量及控制系统、凝结水取样测量系统、数据采集及分析系统;冷却水水位测量及控制系统包括设置在凝汽器上的冷却水进水室空气阀、冷却水进水室液位计、冷却水进水室放水阀、冷却水出水室空气阀、冷却水出水室液位计和冷却水出水室放水阀;凝结水取样测量系统包括依次连接的取样装置、取样阀、取样流量计、氢电导率检测系统;数据采集及分析系统包括凝汽器泄漏换热管定位模块。各系统间协同工作,可将发生泄漏的换热管定位在某一排,大幅缩小查漏范围。本申请具有快速、准确、成本低、易实施、可靠性高的特点,可为发电厂不停机处理凝汽器泄漏提供可靠的决策依据。
Description
相关申请的交叉引用
本申请要求在2021年11月19日提交中国专利局、申请号为202111401518.2、发明名称为“一种定位凝汽器泄漏换热管位置的系统和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及在线化学仪表测量领域,尤其涉及一种定位凝汽器泄漏换热管位置的系统和方法。
凝汽器是发电厂重要的冷却设备,其运行状态直接影响整台机组的安全经济运行。凝汽器换热管中流动的是含盐量很高的冷却水,管外是几乎没有杂质的纯净蒸汽,一旦运行中凝汽器换热管发生泄漏,高含量的冷却水就会漏入纯净的凝结水中,快速污染凝结水,造成机组的水汽品质恶化,尤其是海水冷却电厂。因此,凝汽器在基建阶段均配备了换热管泄漏检漏装置。但是,现有的检漏装置仅能诊断出是哪一个水室发生了泄漏,而具体是哪根换热管发生了泄漏,检漏装置就无能为力。
对于凝汽器查漏来说,凝汽器检漏装置是初检,属于粗检,一般凝汽器共有4个水室,凝汽器检漏装置只能确定出是哪一个水室发生了泄漏,即把查找范围缩小至1/4,而具体是这个水室的哪几根管子发生了泄漏,就无能为力了。对于600MW机组,每个水室有大约10000根换热管,检修人员需要通过薄膜覆盖法、泡沫法、蜡烛火焰法、氦质谱法等检漏方法对每一根换热管进行详细检测,以确定是哪几根管子发生了泄漏,工作量很大,费时费力,而且运行中检漏时凝汽器内处于高温高湿的有限空间,条件非常恶劣,人员安全存在较大隐患。
因此,如果能对发生泄漏的换热管进行更准确的定位,进一步缩小查漏范围,不仅可以缩短检漏时间,最大限度避免或减少冷却水泄漏对机组的危 害,也可以大大减小检修人员的工作量,降低安全风险。
对于典型的600MW机组,每个凝汽器水室大约有174排换热管,每排平均约有60根换热管,每排换热管高度2.5cm。如果定位精度为5cm,则可以将查漏范围缩小至2排,查漏工作量缩小至1/87;如果定位精度小于2.5则可以把范围缩小至1排,查漏工作量缩小至1/174。这对于查漏来说,是非常有意义的。
发明内容
本申请的目的在于提供一种专门用于定位凝汽器泄漏换热管位置的系统和方法,可以与现有的凝汽器检漏装置配套使用,以进一步缩小查漏范围。
为了实现上述目的,本申请发明提供了如下的技术方案。
一种定位凝汽器泄漏换热管位置的系统,包括冷却水水位测量及控制系统、凝结水取样测量系统、数据采集及分析系统;
所述冷却水水位测量及控制系统包括设置在凝汽器上的冷却水进水室空气阀、液位计、冷却水进水室放水阀、冷却水出水室空气阀和冷却水出水室放水阀;
所述凝结水取样测量系统包括取样装置、取样阀、取样流量计、氢电导率检测系统;取样装置、取样阀、取样流量计、氢电导率检测系统依次连接;
所述数据采集及分析系统包括凝汽器泄漏换热管定位模块,所述氢电导率检测系统、冷却水水位测量及控制系统均与凝汽器泄漏换热管定位模块电连接。
作为本申请的可选改进,所述取样装置设置在凝汽器热井的水位线以下。
作为本申请的可选改进,所述液位计采用冷却水进水室液位计和冷却水出水室液位计中的至少一个,液位计的“0”位线以水室的底板为基准,最高水位不低于凝汽器最顶排换热管的高度,显示精度不低于1cm。
作为本申请的可选改进,所述取样阀和取样流量计之间还设置有热井取样泵;热井取样泵与凝汽器泄漏换热管定位模块连接。
一种定位凝汽器泄漏换热管位置的系统的定位方法,包括以下步骤:
若凝汽器发生泄漏,在确定发生泄漏的换热管所在水室后,降低机组负 荷,凝汽器泄漏换热管定位模块控制冷却水进水室空气阀和冷却水出水室空气阀打开,调节冷却水进水室放水阀及冷却水出水室放水阀的开度;
打开取样阀,启动取样泵,取样流量计测得取样流量S
1,已知由取样装置到氢电导率检测系统的管路容积为V
1,取样滞后时间t
1=V
1/S
1;
凝汽器泄漏换热管定位模块实时采集氢电导率检测系统测得的氢电导率数据,记录凝结水氢电导率突变点以及此时的时间t
2,泄漏的凝汽器换热管所在位置对应的液位高度为t
2-t
1时间冷却水液位所在的高度h,进而得到在线快速判断凝汽器泄漏管管排位置。
作为本申请的可选改进,调节冷却水进水室放水阀及冷却水出水室放水阀的开度时,控制冷却水室水位下降速度在10~30mm/min。
作为本申请的可选改进,凝汽器泄漏换热管定位模块还绘制成时间-凝汽器水室冷却水水位-凝结水氢电导率双坐标轴曲线,并根据氢电导率曲线突变点推断出泄漏凝汽器管对应的凝汽器水室冷却水水位。
与现有技术相比,本申请发明具有以下有益效果:
本申请可以在检修人员不进入凝汽器水室的前提下,对发生泄漏的换热管进行定位,大幅缩小查漏工作量,减轻检修人员的工作强度,提高工作效率,降低安全风险;本申请通过在线实时检测,节省查漏时间。现有所有凝汽器泄漏换热管的定位方法,都需要将水室冷却水放空后由检修人员进入水室进行查漏,而本方法是在放水过程中就可以将泄漏换热管的位置缩小至某一排或某几排,后续检修人员进入水室的查漏工作量已大幅缩小,因此,可以大幅节省查漏时间。
本方法的定位方法充分利用凝汽器配套的检漏装置,只需要再增加冷却水水位控制系统和数据采集分析系统,就可实现对泄漏凝汽器换热管的定位,成本较低,易于实现。
在此描述的附图仅用于解释目的,而不意图以任何方式来限制本申请公开的范围。另外,图中的各部件的形状和比例尺寸等仅为示意性的,用于帮助对本申请的理解,并不是具体限定本申请各部件的形状和比例尺寸。在附图中:
图1是本申请一种定位凝汽器泄漏换热管位置的系统示意图;
图2是时间-凝汽器水室冷却水水位-凝结水氢电导率双坐标轴曲线。
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示,本申请一种定位凝汽器泄漏换热管位置的系统,该系统包括冷却水水位测量及控制系统、凝结水取样测量系统、数据采集及分析系统;
所述冷却水水位控制系统包括冷却水进水室空气阀1、冷却水进水室液位计2、冷却水进水室放水阀3、冷却水出水室空气阀2、冷却水出水室液位计11、冷却水出水室放水阀10;冷却水进水室空气阀1、冷却水进水室液位计2、冷却水进水室放水阀3、冷却水出水室空气阀12、冷却水出水室液位计11和冷却水出水室放水阀10设置在凝汽器上。
所述凝结水取样测量系统包括取样装置4、取样阀5、热井取样泵6、取样流量计7、氢电导率检测系统;取样装置4、取样阀5、热井取样泵6及取样流量计7依次连接;取样流量计7与氢电导率检测系统8连接;取样装置4设置在凝汽器底部。
所述数据采集及分析系统包括凝汽器泄漏换热管定位模块9以及相关数 据传输线路。所述数据采集及分析系统包括凝汽器泄漏换热管定位模块9,所述氢电导率检测系统8与凝汽器泄漏换热管定位模块9连接。
本申请系统在确定发生泄漏的换热管所在水室后,降低机组负荷,放掉发生泄漏水室中的冷却水,在放水过程中密切监测凝结水的氢电导率和水室内冷却水的水位,建立冷却水水位与时间的对应关系,当凝结水的氢电导率突然降低时,当前时间减去水样取样滞后时间所对应的冷却水水位就是发生泄漏的换热管所在位置高度,从而将发生泄漏的换热管位置定位在某一排,大幅缩小查漏范围,降低查漏工作量。本申请方法具有快速、准确、成本低、易实施、可靠性高的特点,可为发电厂不停机处理凝汽器泄漏提供可靠的决策依据。
具体的,冷却水水位控制系统中冷却水进水室液位计2及冷却水出水室液位计11可以实时显示所在水室的水位,并具有水位信号传输功能。水位计的“0”以水室的底板为基准,最高水位不低于最顶排换热管的高度,显示精度不低于1cm。
所述的凝结水取样测量系统中凝结水水样通过打开取样阀5,启动热井取样泵6,热井凝结水由取样装置4抽出,经过取样流量计7到达氢电导率检测系统8。
所述的数据采集及分析系统中凝汽器泄漏换热管定位模块9可分别控制冷却水水位控制系统及凝结水取样测量系统中各阀门元件,实时采集来自于冷却水进水室液位计2、冷却水出水室液位计13和氢电导率检测系统8的凝汽器水室冷却水水位和凝结水氢电导率,并绘制成时间-凝汽器水室冷却水水位-凝结水氢电导率双坐标轴曲线,并根据氢电导率曲线突变点推断出泄漏凝汽器管对应的凝汽器水室冷却水水位。
本申请第二个目的是提供一种定位凝汽器泄漏换热管位置的系统的定位方法,包括以下步骤:
凝汽器发生泄漏,在通过凝汽器检漏装置确定发生泄漏的换热管所在水室后,降低机组负荷,凝汽器泄漏换热管定位模块9控制冷却水进水室空气阀1和冷却水出水室空气阀14自动打开,调节冷却水进水室放水阀3及冷却水出水室放水阀12的开度,控制冷却水室水位下降速度在10~30mm/min;
打开取样阀5,启动热井取样泵6,取样流量计7采集取样速度S
1,已 知由取样装置4到氢电导率检测系统8的管路容积为V
1,那么取样滞后时间t
1=V
1/S
1。
凝汽器泄漏换热管定位模块9实时采集氢电导率检测系统8测得的氢电导率数据,记录凝结水氢电导率由差变好的突变点以及此时的时间t2,那么泄漏的凝汽器换热管所在位置对应的液位高度为t
2-t
1时间冷却水液位所在的高度h,通过该方法可在线快速判断凝汽器泄漏管排位置。
以下结合附图和具体实施方式对本申请做进一步详细说明。
实施例
以600MW超临界机组为例,当凝汽器发生泄漏时,在通过凝汽器检漏装置确定发生泄漏的换热管所在水室后,降低机组负荷至70%以下,凝汽器泄漏换热管定位模块9控制冷却水进水室空气阀1和冷却水出水室空气阀14自动打开,调节冷却水进水室放水阀3及冷却水出水室放水阀12的开度,控制冷却水室水位下降速度在20mm/min左右;
打开取样阀5,启动热井取样泵6,取样流量计7采集取样速度S
1,已知由取样装置4到氢电导率检测系统8的管路容积为V
1,那么取样滞后时间t
1=V
1/S
1;
凝汽器泄漏换热管定位模块9实时采集氢电导率检测系统8测得的氢电导率数据,记录凝结水氢电导率由差变好的突变点以及此时的时间t
2,那么泄漏的凝汽器换热管所在位置对应的液位高度为t
2-t
1时间冷却水液位所在的高度h,通过该方法可在线快速判断凝汽器泄漏管排位置。
需要说明的是,在本申请的描述中,术语“第一”、“第二”等仅用于描述目的和区别类似的对象,两者之间并不存在先后顺序,也不能理解为指示或暗示相对重要性。此外,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施例和许多应用对本领域技术人员来说都将是显而易见的。因此,本教导的范围不应该参照上述描述来确定,而是应该参照前述权利要求以及这些权利要求所拥有的等价物的全部范围来确定。出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。在前述权利要求中省略这里公开的主题的任何方面并 不是为了放弃该主体内容,也不应该认为申请人没有将该主题考虑为所公开的发明主题的一部分。
Claims (7)
- 一种定位凝汽器泄漏换热管位置的系统,其特征在于,包括冷却水水位测量及控制系统、凝结水取样测量系统、数据采集及分析系统;所述冷却水水位测量及控制系统包括设置在凝汽器上的冷却水进水室空气阀(1)、液位计、冷却水进水室放水阀(3)、冷却水出水室空气阀(12)和冷却水出水室放水阀(10);所述凝结水取样测量系统包括取样装置(4)、取样阀(5)、取样流量计(7)、氢电导率检测系统(8);取样装置(4)、取样阀(5)、取样流量计(7)、氢电导率检测系统(8)依次连接;所述数据采集及分析系统包括凝汽器泄漏换热管定位模块(9),所述氢电导率检测系统(8)、冷却水水位测量及控制系统均与凝汽器泄漏换热管定位模块(9)电连接。
- 根据权利要求1所述的一种定位凝汽器泄漏换热管位置的系统,其特征在于,所述取样装置(4)设置在凝汽器热井的水位线以下。
- 根据权利要求1所述的一种定位凝汽器泄漏换热管位置的系统,其特征在于,所述液位计采用冷却水进水室液位计(2)和冷却水出水室液位计(11)中的至少一个,液位计的“0”位线以水室的底板为基准,最高水位不低于凝汽器最顶排换热管的高度,显示精度不低于1cm。
- 根据权利要求1所述的一种定位凝汽器泄漏换热管位置的系统,其特征在于,所述取样阀(5)和取样流量计(7)之间还设置有热井取样泵(6);热井取样泵(6)与凝汽器泄漏换热管定位模块(9)连接。
- 权利要求1至4任一项所述的一种定位凝汽器泄漏换热管位置的系统的定位方法,其特征在于,包括以下步骤:若凝汽器发生泄漏,在确定发生泄漏的换热管所在水室后,降低机组负荷,凝汽器泄漏换热管定位模块(9)控制冷却水进水室空气阀(1)和冷却水出水室空气阀(12)打开,调节冷却水进水室放水阀(3)及冷却水出水室放水 阀(10)的开度;打开取样阀(5),启动取样泵(6),取样流量计(7)测得取样流量S1,已知由取样装置(4)到氢电导率检测系统(8)的管路容积为V1,取样滞后时间t 1=V 1/S 1;凝汽器泄漏换热管定位模块(9)实时采集氢电导率检测系统(8)测得的氢电导率数据,记录凝结水氢电导率突变点以及此时的时间t2,泄漏的凝汽器换热管所在位置对应的液位高度为t 2-t 1时间冷却水液位所在的高度h,进而得到在线快速判断凝汽器泄漏管管排位置。
- 根据权利要求5所述的一种定位凝汽器泄漏换热管位置的系统的定位方法,其特征在于,调节冷却水进水室放水阀(3)及冷却水出水室放水阀(10)的开度时,控制冷却水室水位下降速度在10~30mm/min。
- 根据权利要求5所述的一种定位凝汽器泄漏换热管位置的系统的定位方法,其特征在于,凝汽器泄漏换热管定位模块(9)还绘制成时间-凝汽器水室冷却水水位-凝结水氢电导率双坐标轴曲线,并根据氢电导率曲线突变点推断出泄漏凝汽器管对应的凝汽器水室冷却水水位。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111401518.2A CN114088303B (zh) | 2021-11-19 | 2021-11-19 | 一种定位凝汽器泄漏换热管位置的系统和方法 |
CN202111401518.2 | 2021-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023087732A1 true WO2023087732A1 (zh) | 2023-05-25 |
Family
ID=80303958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/103072 WO2023087732A1 (zh) | 2021-11-19 | 2022-06-30 | 一种定位凝汽器泄漏换热管位置的系统和方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114088303B (zh) |
WO (1) | WO2023087732A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114088303B (zh) * | 2021-11-19 | 2023-03-21 | 西安热工研究院有限公司 | 一种定位凝汽器泄漏换热管位置的系统和方法 |
CN114739593A (zh) * | 2022-04-11 | 2022-07-12 | 华能国际电力股份有限公司德州电厂 | 一种凝汽器半侧隔离示踪查漏装置及方法 |
CN114778031A (zh) * | 2022-05-31 | 2022-07-22 | 华能国际电力股份有限公司德州电厂 | 一种基于凝汽器真空度检测的凝汽器在线查漏设备及方法 |
CN114791339A (zh) * | 2022-05-31 | 2022-07-26 | 华能国际电力股份有限公司德州电厂 | 一种基于凝结水溶解氧检测的凝汽器在线查漏设备及方法 |
CN114935437A (zh) * | 2022-06-01 | 2022-08-23 | 华能国际电力股份有限公司德州电厂 | 一种基于薄膜压力传感器的凝汽器泄漏管查漏装置及方法 |
CN114935117A (zh) * | 2022-06-01 | 2022-08-23 | 华能国际电力股份有限公司德州电厂 | 一种凝汽器换热管管板分区隔离堵漏装置及隔离堵漏方法 |
CN115014664A (zh) * | 2022-06-08 | 2022-09-06 | 华能国际电力股份有限公司德州电厂 | 一种凝汽器换热管充气自动查漏装置及查漏方法 |
CN114993578A (zh) * | 2022-06-23 | 2022-09-02 | 西安热工研究院有限公司 | 一种基于气体检测的凝汽器泄漏管在线定位系统及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09222375A (ja) * | 1996-02-17 | 1997-08-26 | Japan Organo Co Ltd | 海水リークの検出方法及びその装置 |
CN106969885A (zh) * | 2017-04-21 | 2017-07-21 | 西安热工研究院有限公司 | 一种发电厂凝汽器泄漏检测系统及检测方法 |
CN112268468A (zh) * | 2020-11-13 | 2021-01-26 | 华润电力(唐山曹妃甸)有限公司 | 海水直冷凝汽器查漏方法及凝汽器 |
CN114088303A (zh) * | 2021-11-19 | 2022-02-25 | 西安热工研究院有限公司 | 一种定位凝汽器泄漏换热管位置的系统和方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101995316A (zh) * | 2009-08-18 | 2011-03-30 | 华东电力试验研究院有限公司 | 适用于凝汽器微量泄漏的判别方法 |
CN206670982U (zh) * | 2017-04-21 | 2017-11-24 | 西安热工研究院有限公司 | 一种用于凝汽器检漏的凝结水取样装置 |
CN206740328U (zh) * | 2017-04-21 | 2017-12-12 | 西安热工研究院有限公司 | 一种发电厂凝汽器泄漏检测系统 |
CN106969946B (zh) * | 2017-04-21 | 2023-06-23 | 西安热工研究院有限公司 | 一种用于凝汽器检漏的凝结水取样方法及装置 |
CN212674377U (zh) * | 2020-05-31 | 2021-03-09 | 南京华天科技发展股份有限公司 | 一种在线凝汽器检漏测量装置 |
CN112484521B (zh) * | 2020-11-19 | 2022-04-01 | 西安热工研究院有限公司 | 一种凝汽器换热管泄漏原位巡检方法及装置 |
-
2021
- 2021-11-19 CN CN202111401518.2A patent/CN114088303B/zh active Active
-
2022
- 2022-06-30 WO PCT/CN2022/103072 patent/WO2023087732A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09222375A (ja) * | 1996-02-17 | 1997-08-26 | Japan Organo Co Ltd | 海水リークの検出方法及びその装置 |
CN106969885A (zh) * | 2017-04-21 | 2017-07-21 | 西安热工研究院有限公司 | 一种发电厂凝汽器泄漏检测系统及检测方法 |
CN112268468A (zh) * | 2020-11-13 | 2021-01-26 | 华润电力(唐山曹妃甸)有限公司 | 海水直冷凝汽器查漏方法及凝汽器 |
CN114088303A (zh) * | 2021-11-19 | 2022-02-25 | 西安热工研究院有限公司 | 一种定位凝汽器泄漏换热管位置的系统和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114088303A (zh) | 2022-02-25 |
CN114088303B (zh) | 2023-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023087732A1 (zh) | 一种定位凝汽器泄漏换热管位置的系统和方法 | |
US11397147B2 (en) | Test device and method for top-of-the-line corrosion of high-temperature high-pressure wet gas pipeline | |
CN207007527U (zh) | 一种凝汽器 | |
CN113720555B (zh) | 一种油气管道球阀内漏的检测装置及方法 | |
CN113865810A (zh) | 一种基于压力检测的凝汽器泄漏换热管定位系统及定位方法 | |
CN113847554A (zh) | 一种凝汽器泄漏管排定位设备及相应泄漏管排定位方法 | |
CN107063734B (zh) | 一种凝汽器、凝汽器监测系统、凝汽器耗差分析方法 | |
CN103383296A (zh) | 一种凝汽器检漏系统 | |
CN108534412A (zh) | 一种用于最大似然估计法的主机监测装置及估计法 | |
CN110146403B (zh) | 一种高温高压蒸汽湿度测量装置 | |
CN213423155U (zh) | 一种纯蒸汽在线toc检测装置 | |
CN108362329A (zh) | 汽轮机组凝汽器端差异常诊断系统及方法 | |
CN110749625A (zh) | 一种放射性气体在线分析集成装置 | |
CN216113435U (zh) | 一种凝汽器泄漏管排定位设备 | |
CN106680006B (zh) | 一种分体管壳式余热锅炉实验系统及实验方法 | |
CN211234865U (zh) | 一种在线检漏仪 | |
CN210511077U (zh) | 一种供热机组换热管泄漏在线诊断装置 | |
CN211478122U (zh) | 一种凝汽式汽轮机组凝结水过冷度在线监测装置 | |
CN211741144U (zh) | 一种放射性气体分析集成装置 | |
CN203443734U (zh) | 一种凝汽器检漏装置 | |
CN111007112B (zh) | 一种基于电导率法的在线测量蒸汽湿度的系统及方法 | |
CN210153562U (zh) | 一种热网换热管及管板泄漏的快速检测装置 | |
CN106441461A (zh) | 实时测量太阳能热水系统循环流量和集热量的装置及方法 | |
CN207673377U (zh) | 一种汽轮机蒸汽在线监测装置 | |
CN116928886B (zh) | 基于多变量的化工导热油炉安全监管系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22894275 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |