WO2023087717A1 - 基于等值段识别的航班爬升阶段转换高度要素确定方法 - Google Patents

基于等值段识别的航班爬升阶段转换高度要素确定方法 Download PDF

Info

Publication number
WO2023087717A1
WO2023087717A1 PCT/CN2022/101833 CN2022101833W WO2023087717A1 WO 2023087717 A1 WO2023087717 A1 WO 2023087717A1 CN 2022101833 W CN2022101833 W CN 2022101833W WO 2023087717 A1 WO2023087717 A1 WO 2023087717A1
Authority
WO
WIPO (PCT)
Prior art keywords
mach
component
track
track point
speed
Prior art date
Application number
PCT/CN2022/101833
Other languages
English (en)
French (fr)
Inventor
肖英超
蒋伟煜
田云钢
Original Assignee
中国电子科技集团公司第二十八研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第二十八研究所 filed Critical 中国电子科技集团公司第二十八研究所
Priority to US17/814,119 priority Critical patent/US20220358846A1/en
Publication of WO2023087717A1 publication Critical patent/WO2023087717A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06311Scheduling, planning or task assignment for a person or group
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the invention belongs to the field of air traffic management, in particular to a method for determining an altitude element of a flight climb stage transition based on equivalent segment identification.
  • a large category is based on the aircraft dynamics model.
  • This type of method regards the aircraft as a particle, and constructs a differential equation based on the thrust, resistance, and information such as the speed, altitude, and temperature of the aircraft, and then predicts the future speed and altitude of the aircraft.
  • the model roughly divides the entire flight process of the aircraft into the climbing phase, the cruising phase and the descending phase. Due to the different physical performance of the aircraft in different phases, the corresponding equations of each phase are also different. In the climbing stage, it is further divided into constant surface speed climbing and constant Mach climbing. The formulas applicable to the two are different, so it is necessary to determine the transition point of the two stages, that is, the transition altitude.
  • the formula for climbing at constant speed is applicable below the transition altitude; above the transition altitude, the formula for climbing at constant Mach is applicable. It can be seen that the determination of the transformation height has an important influence on the application of the model.
  • the commonly used method for determining the transition altitude is to obtain the recommended values of the elements of the aircraft transition altitude (constant velocity value, constant Mach value) according to the aircraft type, and then calculate the transition altitude of the flight type based on these recommended values.
  • such methods do not take into account the actual flight conditions of the aircraft, and the recommended values of the elements obtained may not be realistic, so the conversion altitude obtained is not ideal.
  • the purpose of the present invention is to provide a method for determining the altitude elements of the flight climb stage based on the identification of the equivalent section, fully considering the identification of the constant speed section and the Mach section of the track, so as to better determine the flight altitude elements.
  • the technical solution that realizes the object of the present invention is: a kind of method for determining the height element of flight climbing stage conversion based on equivalent segment identification, comprising the following steps:
  • Step 2 Extend the first velocity component TR s_raw and the first Mach component TR m_raw by linear interpolation method to obtain the second velocity component TR s and the second Mach component TR m ;
  • Step 3 discretize the second velocity component TR s of the track to obtain the discrete velocity component TR sd ;
  • Step 4 Screen each discrete value in the discrete velocity component TR sd according to the threshold thr to obtain the velocity discrete value set SP;
  • Step 5 Identify the constant speed section of the flight according to the speed discrete value set SP, and obtain the maximum constant speed value sp c and its maximum time ts cs ;
  • Step 6 the track Mach component whose retention time is not less than ts cs in the second Mach component TR m is obtained to obtain the third Mach component TR m_cut ;
  • Step 7 Discretize the third Mach component TR m_cut of the track to obtain the discrete Mach component TR md ;
  • Step 8 Screen each discrete value in the discrete Mach component TR md according to the threshold thr to obtain the Mach discrete value set MA;
  • Step 9 Identify the equal Mach segment of the flight according to the Mach discrete value set MA, and obtain the equal Mach value ma c corresponding to the minimum moment;
  • Step 10 Calculate the flight transition altitude H trans according to the maximum constant speed value sp c and the corresponding Mach value ma c at the minimum moment.
  • n represents the total number of track points in the track data TR, and n is a positive integer.
  • step 2 the linear interpolation process is:
  • Step 2.1 arrange the track points in the first velocity component TR s_raw and the first Mach component TR m_raw in ascending order according to the time ts i of the track points, and the unit of the time ts i of the track points is second;
  • step 5 the process of obtaining the maximum constant velocity value sp c and its maximum time ts cs is as follows:
  • Step 5.1 arrange the elements in the speed discrete value set SP in descending order, and get
  • , let k 1;
  • Step 5.2 get the first set of track points
  • Step 5.3 the first track point set Trackpoints in Arranged in ascending order of ts idx , if the time difference between two consecutive track points is less than or equal to 4 seconds, it will be included in a track point group; if the time difference is greater than 4 seconds, the previous track point will be included in the current track point group, and divide the latter track point into the next track point group; in this way, the track point is divided into g k track point groups,
  • Step 5.4 detect each track point group, if the total duration of the track point group is less than 30 seconds or the standard deviation of the speed value of the track point group is greater than 0.3q, then discard the track point group; otherwise keep the track point group trace group;
  • Step 5.5 if the number of reserved track point groups is greater than or equal to 1, then And the maximum moment in the track point group is ts cs , go to step 6; if the number of reserved track point groups is 0, and k+1 ⁇
  • m idx ⁇ TR m , ts idx ⁇ ts cs , idx 1,2,...,N ⁇ , record the number of elements in the third Mach component TR m_cut as N cut ;
  • step 9 the process of obtaining the equal Mach value ma c corresponding to the minimum moment is:
  • Step 9.1 remember
  • Step 9.2 get the second set of track points
  • Step 9.3 the second set of track points Trackpoints in Arranged in ascending order of ts index , if the time difference between two consecutive track points is less than or equal to 4 seconds, it will be included in a track point group; if the time difference is greater than 4 seconds, the previous track point will be included in the current track point group, and divide the last track point into the next track point group; in this way, the track point is divided into g k1 track point groups,
  • Step 9.4 detect each track point group, if the total duration of the track point group is less than 100 seconds or the standard deviation of the Mach value of the track point group is greater than 0.3u, discard the track point group; otherwise keep the track point group trace group;
  • the conversion height calculation function provided by the basic BADA (base of aircraft data) is substituted into sp c and ma c values to calculate the conversion height.
  • the present invention obtains the real situation of the flight path for adjusting the flight parameters of the flight.
  • a kind of method for determining the height factor of flight climbing stage conversion based on equivalent segment identification of the present invention is loaded and operated in the processing server of ATFM system (ATFM system, air traffic flow management system), or the air traffic control automation system ( ATC system, air traffic control system) is the corresponding computer of the air traffic control system.
  • ATFM system air traffic flow management system
  • ATC system air traffic control system
  • the invention has the remarkable advantages of: using the equivalent section recognition method, the constant velocity section and the constant Mach section of the flight path are automatically identified, and then the constant velocity value and the constant Mach value are determined, and the conversion altitude of the flight climbing stage is obtained elements, which can better reflect the real situation of the track.
  • Fig. 1 is a flow chart of the method for determining the altitude elements of the flight climb phase transition based on the identification of the equal value segment in the present invention.
  • Fig. 2 is the flight speed profile and the Mach number profile of the embodiment of the present invention.
  • Fig. 3 is the result diagram of the constant speed section and the constant Mach section of the flight path climb obtained by the present invention.
  • a kind of flight climbing phase conversion altitude element determination method based on equivalent section identification of the present invention comprises the following steps:
  • Step 2 Extend the first velocity component TR s_raw and the first Mach component TR m_raw by linear interpolation method to obtain the second velocity component TR s and the second Mach component TR m ;
  • the linear interpolation process is:
  • Step 2.1 arrange the track points in the first velocity component TR s_raw and the first Mach component TR m_raw in ascending order according to the time ts i of the track points, and the unit of the time ts i of the track points is second;
  • Step 3 discretize the second velocity component TR s of the track to obtain the discrete velocity component TR sd ;
  • Step 4 Screen each discrete value in the discrete velocity component TR sd according to the threshold thr to obtain the velocity discrete value set SP;
  • Step 5 Identify the constant speed section of the flight according to the speed discrete value set SP, and obtain the maximum constant speed value sp c and its maximum time ts cs ;
  • Step 5.1 arrange the elements in the speed discrete value set SP in descending order, and get
  • , let k 1;
  • Step 5.2 get the first set of track points
  • Step 5.3 the first track point set Trackpoints in Arranged in ascending order of ts idx , if the time difference between two consecutive track points is less than or equal to 4 seconds, it will be included in a track point group; if the time difference is greater than 4 seconds, the previous track point will be included in the current track point group, and divide the latter track point into the next track point group; in this way, the track point is divided into g k track point groups,
  • Step 5.5 if the number of reserved track point groups is greater than or equal to 1, then And the maximum moment in the track point group is ts cs , go to step 6; if the number of reserved track point groups is 0, and k+1 ⁇
  • Step 6 the track Mach component whose retention time is not less than ts cs in the second Mach component TR m is obtained to obtain the third Mach component TR m_cut ;
  • TR m_cut ⁇ m idx
  • m idx ⁇ TR m , ts idx ⁇ ts cs , idx 1,2,...,N ⁇ , record the number of elements in the third Mach component TR m_cut as N cut ;
  • Step 7 Discretize the third Mach component TR m_cut of the track to obtain the discrete Mach component TR md ;
  • Step 8 Screen each discrete value in the discrete Mach component TR md according to the threshold thr to obtain the Mach discrete value set MA;
  • the Mach discrete value set in Indicates that the discrete Mach component TR md contains the number of .
  • Step 9 Identify the equal Mach segment of the flight according to the Mach discrete value set MA, and obtain the equal Mach value ma c corresponding to the minimum moment;
  • Step 9.1 remember
  • Step 9.2 get the second set of track points
  • Step 9.3 the second set of track points Trackpoints in Arranged in ascending order of ts index , if the time difference between two consecutive track points is less than or equal to 4 seconds, it will be included in a track point group; if the time difference is greater than 4 seconds, the previous track point will be included in the current track point group, and divide the last track point into the next track point group; in this way, the track point is divided into g k1 track point groups,
  • Step 10 Calculate the flight transition altitude H trans according to the maximum constant speed value sp c and the corresponding Mach value ma c at the minimum moment.
  • each two curves are the velocity profile and the Mach number profile of a flight track respectively.
  • the goal of the experiment is to determine the constant speed value and constant Mach value of the track through the identification method of the equal value segment, and then determine the conversion altitude.
  • Fig. 3 shows the results of the constant velocity value and constant Mach value obtained by the method of the present invention, and the two solid lines in the figure respectively represent the recognized constant velocity section and constant Mach section. The result shows that the method of the invention can accurately determine constant velocity values and constant Mach values, and obtain accurate conversion heights, and the inventive method performs well.
  • step 10 the real situation of the flight path is obtained, which is used to adjust the flight parameters of the flight.
  • a method for determining the altitude elements of flight climbing stage conversion based on equivalent segment identification is loaded and operated in the processing server of the air traffic flow management system (ATFM system, air traffic flow management system), or the air traffic control automation system (ATC) system, air traffic control system) is the corresponding computer of the air traffic control system.
  • ATFM system air traffic flow management system
  • ATC air traffic control automation system
  • the present application provides a computer storage medium and a corresponding data processing unit, wherein the computer storage medium can store a computer program, and when the computer program is executed by the data processing unit, it can run an equivalent segment based on the present invention.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (read-only memory, ROM) or a random access memory (random access memory, RAM), etc.
  • the present invention provides a method for determining the height elements of flight climb stage transition based on equivalent segment identification.
  • the above is only a specific embodiment of the present invention. Those of ordinary skill in the art can make some improvements and modifications without departing from the principle of the present invention, and these improvements and modifications should also be regarded as the protection scope of the present invention. All components that are not specified in this embodiment can be realized by existing technologies.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提出了一种基于等值段识别的航班爬升阶段转换高度要素确定方法。从航班航迹中拆分出速度分量和马赫分量,对二者分别线性插值;离散化插值后的速度分量,设定阈值筛选得到速度离散值集合;从中识别等速段,获取等速段的最大等速值及其最大时刻;保留时间不小于等速最大时刻的航迹马赫分量;对保留的马赫分量进行离散化,并筛选得到马赫离散值集合;从中识别等马赫段,获取等马赫段的最小时刻对应的等马赫值;根据得到的等速值和等马赫值这两个要素计算航班爬升阶段转换高度。本发明从航迹数据中,自动确定等速值和等马赫值,计算航班爬升阶段的转换高度,获得的结果更加符合实际情况。本发明在航班四维轨迹预测领域有广阔的应用前景。

Description

基于等值段识别的航班爬升阶段转换高度要素确定方法 技术领域
本发明属于空中交通管理领域,特别是一种基于等值段识别的航班爬升阶段转换高度要素确定方法。
背景技术
近年来,经济的发展促进了人们出行需求的迅速增加,导致交通流更加复杂,拥堵日益严重。为了解决这一问题,提高空中交通的效率,航空器的四维轨迹预测受到了越来越多的关注。提高航迹预测的准确性,有助于更好地预测空域流量,合理分配管制员负荷,进而在保证安全的前提下增加航班数量。
在航迹预测问题的解决方法中,一大类是基于航空器动力学模型的方法。此类方法将航空器视为质点,根据航空器受到的推力、阻力,以及所处位置的速度、高度、温度等信息,构建微分方程,进而预测航空器未来的速度和高度。该模型将航空器整个飞行过程大体分为爬升阶段、巡航阶段和下降阶段,由于航空器在不同阶段的物理表现不同,每个阶段对应方程也不同。在爬升阶段,又具体分为等表速爬升和等马赫爬升,二者适用的公式不同,因此需要确定两个阶段的转换点,即转换高度。在转换高度以下,适用等表速爬升的公式;在转换高度以上,适用等马赫爬升的公式。可见,转换高度的确定对于模型的适用有重要的影响。常用的转换高度的确定方法是,根据航空器机型获取航空器转换高度的要素(等速值、等马赫值)推荐值,进而根据这些推荐值计算得到该机型航班的转换高度。然而此类方法没有考虑航空器的实际飞行情况,得到要素推荐值不一定符合实际,因此得到的转换高度并不理想。
发明内容
本发明的目的在于提供一种基于等值段识别的航班爬升阶段转换高度要素确定方法,充分考虑航迹等速段和等马赫段的识别,从而更好地确定航班转换高度要素。
实现本发明目的的技术解决方案为:一种基于等值段识别的航班爬升阶段转换高度要素确定方法,包括以下步骤:
步骤1:对于一个航班的航迹数据TR={tp i,i=1,…,n},其中第i个航迹点tp i由一个向量表示,tp i=[ts i,sp i,ma i],ts i、sp i、ma i分别代表当前航迹点的时间、速度和马 赫数;从航迹TR中分别提取速度和马赫分量,记为第一速度分量TR s_raw和第一马赫分量TR m_raw
步骤2:采用线性插值方法扩展第一速度分量TR s_raw和第一马赫分量TR m_raw,得到第二速度分量TR s和第二马赫分量TR m
步骤3:将航迹第二速度分量TR s离散化,得到离散速度分量TR sd
步骤4:根据阈值thr筛选离散速度分量TR sd中每个离散值,获取速度离散值集合SP;
步骤5:根据速度离散值集合SP识别航班等速段,获取最大等速值sp c及其最大时刻ts cs
步骤6:第二马赫分量TR m中保留时间不小于ts cs的航迹马赫分量,得到第三马赫分量TR m_cut
步骤7:将航迹第三马赫分量TR m_cut离散化,得到离散马赫分量TR md
步骤8:根据阈值thr筛选离散马赫分量TR md中每个离散值,获取马赫离散值集合MA;
步骤9:根据马赫离散值集合MA识别航班等马赫段,获得最小时刻对应的等马赫值ma c
步骤10:根据最大等速值sp c和最小时刻对应的等马赫值ma c计算航班转换高度H trans
在一种实现方式中,步骤1中,提取速度和马赫分量过程为:第一速度分量TR s_raw={s i,i=1,…,n},其中s i=[ts i,sp i];第一马赫分量TR m_raw={m i,i=1,…,n},其中m i=[ts i,ma i];n表示航迹数据TR中航迹点总数,n为正整数。
在一种实现方式中,步骤2中,线性插值过程为:
步骤2.1,将第一速度分量TR s_raw和第一马赫分量TR m_raw中的航迹点按照航迹点的时间ts i升序排列,航迹点的时间ts i的单位是秒;
步骤2.2,如果ts i+1-ts i>1,则分别插入ts i+1-ts i-1个速度值和马赫值,其中第p个 插入的速度值为s interp_p=[ts i+p,sp i+p(sp i+1-sp i)/(ts i+1-ts i)],第p个插入的马赫值为m interp_p=[ts i+p,ma i+p(ma i+1-ma i)/(ts i+1-ts i)],其中p=1,2,…,ts i+1-ts i-1;
步骤2.3,如果ts i+1-ts i≤1,则不需插值;第一速度分量TR s_raw和第一马赫分量TR m_raw中的航迹点插值后,获得第二速度分量TR s={s idx,idx=1,…,N},s idx=[ts idx,sp idx]和第二马赫分量TR m={m idx,idx=1,…,N},m idx=[ts idx,ma idx],N表示航迹数据TR中航迹点总数和插值点总数的和。
在一种实现方式中,步骤3中,将航迹第二速度分量TR s离散化,过程为:对于第二速度分量TR s中任一速度sp idx,单位是节knot,如果其满足qj-0.5q≤sp idx<qj+0.5q,则其离散值为
Figure PCTCN2022101833-appb-000001
q为速度离散精度,q∈R +,j为索引变量,j=0,1,2,…;速度分量离散值为
Figure PCTCN2022101833-appb-000002
其中
Figure PCTCN2022101833-appb-000003
在一种实现方式中,步骤4中,获取速度离散值集合SP的过程为:设定阈值thr=0.01N,则速度离散值集合
Figure PCTCN2022101833-appb-000004
其中
Figure PCTCN2022101833-appb-000005
表示TR sd中含有
Figure PCTCN2022101833-appb-000006
的个数。
在一种实现方式中,步骤5中,得到最大等速值sp c及其最大时刻ts cs的过程为:
步骤5.1,将速度离散值集合SP中的元素降序排列,得
Figure PCTCN2022101833-appb-000007
|SP|表示速度离散值集合SP中元素的个数,1≤k≤|SP|,令k=1;
步骤5.2,获取第一航迹点集
Figure PCTCN2022101833-appb-000008
步骤5.3,将第一航迹点集
Figure PCTCN2022101833-appb-000009
中的航迹点
Figure PCTCN2022101833-appb-000010
按照ts idx升序排列,如果连续两个航迹点的时间差小于等于4秒,则将其划入一个航迹点组;如果时间差大于4秒,则将前一个航迹点划入当前航迹点组,将后一个航迹点划入下一个航迹点组;这样将航迹点划分为g k个航迹点组,
Figure PCTCN2022101833-appb-000011
步骤5.4,检测每一个航迹点组,如果该航迹点组的总时长小于30秒或该航迹点 组的速度值标准差大于0.3q,则舍弃该航迹点组;否则保留该航迹点组;
步骤5.5,如果保留航迹点组的个数大于等于1,则
Figure PCTCN2022101833-appb-000012
且航迹点组中的最大时刻即为ts cs,执行步骤6;如果保留航迹点组的个数为0,且k+1≤|SP|,则令k←k+1,跳转至步骤5.2,如果k+1>|SP|,则令sp c=-1,ts cs=0,执行步骤6。
在一种实现方式中,步骤6中,得到第三马赫分量TR m_cut的过程为,TR m_cut={m idx|m idx∈TR m,ts idx≥ts cs,idx=1,2,…,N},记第三马赫分量TR m_cut中元素的个数为N cut
步骤7中,将航迹第三马赫分量TR m_cut离散化,过程为:对于任一马赫数ma index,马赫数ma index无量纲,如果其满足uj-0.5u≤ma index<uj+0.5u,则其离散值为
Figure PCTCN2022101833-appb-000013
u表示马赫数离散精度,u∈R +,j为索引变量,j=0,1,2,…;马赫分量离散值为
Figure PCTCN2022101833-appb-000014
其中
Figure PCTCN2022101833-appb-000015
在一种实现方式中,步骤8中,获取马赫离散值集合MA的过程为:设定阈值thr=0.01N,则马赫离散值集合
Figure PCTCN2022101833-appb-000016
其中
Figure PCTCN2022101833-appb-000017
表示离散马赫分量TR md中含有
Figure PCTCN2022101833-appb-000018
的个数。
在一种实现方式中,步骤9中,获得最小时刻对应的等马赫值ma c的过程为:
步骤9.1,记
Figure PCTCN2022101833-appb-000019
|MA|表示马赫离散值集合MA中元素的个数,1≤k1≤|MA|,令ts cm=-∞,ma c=-1;令k1=1;
步骤9.2,获取第二航迹点集
Figure PCTCN2022101833-appb-000020
步骤9.3,将第二航迹点集
Figure PCTCN2022101833-appb-000021
中的航迹点
Figure PCTCN2022101833-appb-000022
按照ts index升序排列,如果连续两个航迹点的时间差小于等于4秒,则将其划入一个航迹点组;如果时间差大于4秒,则将前一个航迹点划入当前航迹点组,将后一个航迹点划入下一个航迹点组;这样将 航迹点划分为g k1个航迹点组,
Figure PCTCN2022101833-appb-000023
步骤9.4,检测每一个航迹点组,如果该航迹点组的总时长小于100秒或该航迹点组的马赫值标准差大于0.3u,则舍弃该航迹点组;否则保留该航迹点组;
步骤9.5,如果保留航迹点组的个数大于等于1,且航迹点组中的最小时刻ts min小于ts cm,则令ts cm=ts min
Figure PCTCN2022101833-appb-000024
执行步骤10;如果保留航迹点组的个数为0,且k1+1≤|MA|,则令k1←k1+1,跳转至步骤9.2,如果k1+1>|MA|,则令ma c=-1,ts cm=+∞,执行步骤10。
在一种实现方式中,步骤10中,计算航班转换高度的过程为:如果sp c=-1或ma c=-1,则表示未得到转换高度要素,不能计算转换高度;否则,根据飞机数据基础BADA(base of aircraft data)提供的转换高度计算函数,代入sp c和ma c值,计算转换高度。
本发明根据步骤10的结果,得到航班航迹真实情况,用于调整航班飞行参数。
本发明的一种基于等值段识别的航班爬升阶段转换高度要素确定方法,装载且运行于空中交通流量管理系统(ATFM system,air traffic flow management system)的处理服务器中,或者空管自动化系统(ATC system,air traffic control system)即空中交通管制系统的对应计算机中。
有益效果:
发明与现有技术相比,其显著优点为:利用等值段识别方法,自动识别航迹的等速段和等马赫段,进而确定等速值和等马赫值,得到航班爬升阶段的转换高度要素,更能反映航迹的真实情况。
附图说明
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/或其他方面的优点将会变得更加清楚。
图1为本发明基于等值段识别的航班爬升阶段转换高度要素确定方法的流程图。
图2为本发明实施实例的航班速度剖面和马赫数剖面图。
图3为本发明所得到的航迹爬升等速段、等马赫段结果图。
具体实施方式
下面将结合附图,对本发明的实施例进行描述。
结合图1,本发明的一种基于等值段识别的航班爬升阶段转换高度要素确定方法,包括以下步骤:
步骤1:对于一个航班的航迹数据TR={tp i,i=1,…,n},其中第i个航迹点tp i由一个向量表示,tp i=[ts i,sp i,ma i],ts i、sp i、ma i分别代表当前航迹点的时间、速度和马赫数;从航迹TR中分别提取速度和马赫分量,记为第一速度分量TR s_raw和第一马赫分量TR m_raw
提取速度和马赫分量过程为:第一速度分量TR s_raw={s i,i=1,…,n},其中s i=[ts i,sp i];第一马赫分量TR m_raw={m i,i=1,…,n},其中m i=[ts i,ma i];n表示航迹数据TR中航迹点总数,n为正整数。
步骤2:采用线性插值方法扩展第一速度分量TR s_raw和第一马赫分量TR m_raw,得到第二速度分量TR s和第二马赫分量TR m
线性插值过程为:
步骤2.1,将第一速度分量TR s_raw和第一马赫分量TR m_raw中的航迹点按照航迹点的时间ts i升序排列,航迹点的时间ts i的单位是秒;
步骤2.2,如果ts i+1-ts i>1,则分别插入ts i+1-ts i-1个速度值和马赫值,其中第p个插入的速度值为s interp_p=[ts i+p,sp i+p(sp i+1-sp i)/(ts i+1-ts i)],第p个插入的马赫值为m interp_p=[ts i+p,ma i+p(ma i+1-ma i)/(ts i+1-ts i)],其中p=1,2,…,ts i+1-ts i-1;
步骤2.3,如果ts i+1-ts i≤1,则不需插值;第一速度分量TR s_raw和第一马赫分量TR m_raw中的航迹点插值后,获得第二速度分量TR s={s idx,idx=1,…,N},s idx=[ts idx,sp idx]和第二马赫分量TR m={m idx,idx=1,…,N},m idx=[ts idx,ma idx],N表示航迹数据TR中航迹点总数和插值点总数的和。
步骤3:将航迹第二速度分量TR s离散化,得到离散速度分量TR sd
对于第二速度分量TR s中任一速度sp idx,单位是节knot,如果其满足 qj-0.5q≤sp idx<qj+0.5q,则其离散值为
Figure PCTCN2022101833-appb-000025
q为速度离散精度,q∈R +,本实施例中q=6,j为索引变量,j=0,1,2,…;速度分量离散值为
Figure PCTCN2022101833-appb-000026
其中
Figure PCTCN2022101833-appb-000027
步骤4:根据阈值thr筛选离散速度分量TR sd中每个离散值,获取速度离散值集合SP;
设定阈值thr=0.01N,则速度离散值集合
Figure PCTCN2022101833-appb-000028
其中
Figure PCTCN2022101833-appb-000029
表示TR sd中含有
Figure PCTCN2022101833-appb-000030
的个数。
步骤5:根据速度离散值集合SP识别航班等速段,获取最大等速值sp c及其最大时刻ts cs
步骤5.1,将速度离散值集合SP中的元素降序排列,得
Figure PCTCN2022101833-appb-000031
|SP|表示速度离散值集合SP中元素的个数,1≤k≤|SP|,令k=1;
步骤5.2,获取第一航迹点集
Figure PCTCN2022101833-appb-000032
步骤5.3,将第一航迹点集
Figure PCTCN2022101833-appb-000033
中的航迹点
Figure PCTCN2022101833-appb-000034
按照ts idx升序排列,如果连续两个航迹点的时间差小于等于4秒,则将其划入一个航迹点组;如果时间差大于4秒,则将前一个航迹点划入当前航迹点组,将后一个航迹点划入下一个航迹点组;这样将航迹点划分为g k个航迹点组,
Figure PCTCN2022101833-appb-000035
步骤5.4,检测每一个航迹点组,如果该航迹点组的总时长小于30秒或该航迹点组的速度值标准差大于0.3q,q=6,则舍弃该航迹点组;否则保留该航迹点组;
步骤5.5,如果保留航迹点组的个数大于等于1,则
Figure PCTCN2022101833-appb-000036
且航迹点组中的最大时刻即为ts cs,执行步骤6;如果保留航迹点组的个数为0,且k+1<|SP|,则令k←k+1,跳转至步骤5.2,如果k+1>|SP|,则令sp c=-1,ts cs=0,执行步骤6。
步骤6:第二马赫分量TR m中保留时间不小于ts cs的航迹马赫分量,得到第三马赫分量TR m_cut
TR m_cut={m idx|m idx∈TR m,ts idx≥ts cs,idx=1,2,…,N},记第三马赫分量TR m_cut中元素的个数为N cut
步骤7:将航迹第三马赫分量TR m_cut离散化,得到离散马赫分量TR md
对于任一马赫数ma index,马赫数ma index无量纲,如果其满足uj-0.5u≤ma index<uj+0.5u,则其离散值为
Figure PCTCN2022101833-appb-000037
u表示马赫数离散精度,u∈R +,本实施例中u=0.01,j为索引变量,j=0,1,2,…;马赫分量离散值为
Figure PCTCN2022101833-appb-000038
其中
Figure PCTCN2022101833-appb-000039
步骤8:根据阈值thr筛选离散马赫分量TR md中每个离散值,获取马赫离散值集合MA;
设定阈值thr=0.01N,则马赫离散值集合
Figure PCTCN2022101833-appb-000040
其中
Figure PCTCN2022101833-appb-000041
表示离散马赫分量TR md中含有
Figure PCTCN2022101833-appb-000042
的个数。
步骤9:根据马赫离散值集合MA识别航班等马赫段,获得最小时刻对应的等马赫值ma c
步骤9.1,记
Figure PCTCN2022101833-appb-000043
|MA|表示马赫离散值集合MA中元素的个数,1≤k1≤|MA|,令ts cm=+∞,ma c=-1;令k1=1;
步骤9.2,获取第二航迹点集
Figure PCTCN2022101833-appb-000044
步骤9.3,将第二航迹点集
Figure PCTCN2022101833-appb-000045
中的航迹点
Figure PCTCN2022101833-appb-000046
按照ts index升序排列,如果连续两个航迹点的时间差小于等于4秒,则将其划入一个航迹点组;如果时间差大于4秒,则将前一个航迹点划入当前航迹点组,将后一个航迹点划入下一个航迹点组;这样将航迹点划分为g k1个航迹点组,
Figure PCTCN2022101833-appb-000047
步骤9.4,检测每一个航迹点组,如果该航迹点组的总时长小于100秒或该航迹点组的马赫值标准差大于0.3u(u=0.01),则舍弃该航迹点组;否则保留该航迹点组;
步骤9.5,如果保留航迹点组的个数大于等于1,且航迹点组中的最小时刻ts min小 于ts cm,则令ts cm=ts min
Figure PCTCN2022101833-appb-000048
执行步骤10;如果保留航迹点组的个数为0,且k1+1≤|MA|,则令k1←k1+1,跳转至步骤9.2,如果k1+1>|MA|,则令ma c=-1,ts cm=+∞,执行步骤10。
步骤10:根据最大等速值sp c和最小时刻对应的等马赫值ma c计算航班转换高度H trans
如果sp c=-1或ma c=-1,则表示未得到转换高度要素,不能计算转换高度;否则,根据飞机数据基础BADA提供的转换高度计算函数,代入sp c和ma c值,计算转换高度。
下面结合图2至图3,通过仿真实验的实施例及其效果评价来进一步说明本发明。
在本实施例中,如图2中每两条曲线分别是一条航迹的速度剖面和马赫数剖面。实验目标就是通过等值段的识别方法确定该航迹的等速值和等马赫值,进而确定转换高度。图3给出了本发明方法得到等速值和等马赫值的结果,图中两段实线分别代表识别到的等速段和等马赫段。该结果表明本发明方法可以准确地确定等速值和等马赫值,得到准确的转换高度,发明方法表现良好。
根据步骤10的结果,得到航班航迹真实情况,用于调整航班飞行参数。
本实施例一种基于等值段识别的航班爬升阶段转换高度要素确定方法装载且运行于空中交通流量管理系统(ATFM system,air traffic flow management system)的处理服务器中,或者空管自动化系统(ATC system,air traffic control system)即空中交通管制系统的对应计算机中。
具体实现中,本申请提供计算机存储介质以及对应的数据处理单元,其中,该计算机存储介质能够存储计算机程序,所述计算机程序通过数据处理单元执行时可运行本发明提供的一种基于等值段识别的航班爬升阶段转换高度要素确定方法的发明内容以及各实施例中的部分或全部步骤。所述的存储介质可为磁碟、光盘、只读存储记忆体(read-only memory,ROM)或随机存储记忆体(random access memory,RAM)等。
本领域的技术人员可以清楚地了解到本发明实施例中的技术方案可借助计算机程序以及其对应的通用硬件平台的方式来实现。基于这样的理解,本发明实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机程序即软件产品的形式体现出来,该计算机程序软件产品可以存储在存储介质中,包括若干指令用以使得一 台包含数据处理单元的设备(可以是个人计算机,服务器,单片机,MUU或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
本发明提供了一种基于等值段识别的航班爬升阶段转换高度要素确定方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (10)

  1. 一种基于等值段识别的航班爬升阶段转换高度要素确定方法,其特征在于,包括以下步骤:
    步骤1:对于一个航班的航迹数据TR={tp i,i=1,…,n},其中第i个航迹点tp i由一个向量表示,tp i=[ts i,sp i,ma i],ts i、sp i、ma i分别代表当前航迹点的时间、速度和马赫数;从航迹TR中分别提取速度和马赫分量,记为第一速度分量TR s_raw和第一马赫分量TR m_raw;n表示航迹数据TR中航迹点总数,n为正整数;
    步骤2:采用线性插值方法扩展第一速度分量TR s_raw和第一马赫分量TR m_raw,得到第二速度分量TR s和第二马赫分量TR m
    步骤3:将航迹第二速度分量TR s离散化,得到离散速度分量TR sd
    步骤4:根据阈值thr筛选离散速度分量TR sd中每个离散值,获取速度离散值集合SP;
    步骤5:根据速度离散值集合SP识别航班等速段,获取最大等速值sp c及其最大时刻ts cs
    步骤6:第二马赫分量TR m中保留时间不小于ts cs的航迹马赫分量,得到第三马赫分量TR m_cut
    步骤7:将航迹第三马赫分量TR m_cut离散化,得到离散马赫分量TR md
    步骤8:根据阈值thr筛选离散马赫分量TR md中每个离散值,获取马赫离散值集合MA;
    步骤9:根据马赫离散值集合MA识别航班等马赫段,获得最小时刻对应的等马赫值ma c
    步骤10:根据最大等速值sp c和最小时刻对应的等马赫值ma c计算航班转换高度H trans
  2. 根据权利要求1所述的基于等值段识别的航班爬升阶段转换高度要素确定方法,其特征在于,步骤1中,提取速度和马赫分量过程为:第一速度分量TR s_raw={s i,i=1,…,n},其中s i=[ts i,sp i];第一马赫分量TR m_raw={m i,i=1,…,n},其中m i=[ts i,ma i]。
  3. 根据权利要求2所述的基于等值段识别的航班爬升阶段转换高度要素确定方法,其特征在于,步骤2中,线性插值过程为:
    步骤2.1,将第一速度分量TR s_raw和第一马赫分量TR m_raw中的航迹点按照航迹点的时间ts i升序排列,航迹点的时间ts i的单位是秒;
    步骤2.2,如果ts i+1-ts i>1,则分别插入ts i+1-ts i-1个速度值和马赫值,其中第p个插入的速度值为s interp_p=[ts i+p,sp i+p(sp i+1-sp i)/(ts i+1-ts i)],第p个插入的马赫值为m interp_p=[ts i+p,ma i+p(ma i+1-ma i)/(ts i+1-ts i)],其中p=1,2,…,ts i+1-ts i-1;
    步骤2.3,如果ts i+1-ts i≤1,则不需插值;第一速度分量TR s_raw和第一马赫分量TR m_raw中的航迹点插值后,获得第二速度分量TR s={s idx,idx=1,…,N},s idx=[ts idx,sp idx]和第二马赫分量TR m={m idx,idx=1,…,N},m idx=[ts idx,ma idx],N表示航迹数据TR中航迹点总数和插值点总数的和。
  4. 根据权利要求3所述的基于等值段识别的航班爬升阶段转换高度要素确定方法,其特征在于,步骤3中,将航迹第二速度分量TR s离散化,过程为:对于第二速度分量TR s中任一速度sp idx,单位是节knot,如果其满足qj-0.5q≤sp idx<qj+0.5q,则其离散值为
    Figure PCTCN2022101833-appb-100001
    q为速度离散精度,q∈R +,j为索引变量,j=0,1,2,…;速度分量离散值为
    Figure PCTCN2022101833-appb-100002
    其中
    Figure PCTCN2022101833-appb-100003
  5. 根据权利要求4所述的基于等值段识别的航班爬升阶段转换高度要素确定方法,其特征在于,步骤4中,获取速度离散值集合SP的过程为:设定阈值thr=0.01N,则速度离散值集合
    Figure PCTCN2022101833-appb-100004
    其中
    Figure PCTCN2022101833-appb-100005
    表示TR sd中含有
    Figure PCTCN2022101833-appb-100006
    的个数。
  6. 根据权利要求5所述的基于等值段识别的航班爬升阶段转换高度要素确定方法,其特征在于,步骤5中,得到最大等速值sp c及其最大时刻ts cs的过程为:
    步骤5.1,将速度离散值集合SP中的元素降序排列,得
    Figure PCTCN2022101833-appb-100007
    |SP|表示速度离散值集合SP中元素的个数,1≤k≤|SP|,令k=1;
    步骤5.2,获取第一航迹点集
    Figure PCTCN2022101833-appb-100008
    步骤5.3,将第一航迹点集
    Figure PCTCN2022101833-appb-100009
    中的航迹点
    Figure PCTCN2022101833-appb-100010
    按照ts idx升序排列,如果连续两个航迹点的时间差小于等于4秒,则将其划入一个航迹点组;如果时间差大于4秒,则将前一个航迹点划入当前航迹点组,将后一个航迹点划入下一个航迹点组;这样将航迹点划分为g k个航迹点组,
    Figure PCTCN2022101833-appb-100011
    步骤5.4,检测每一个航迹点组,如果该航迹点组的总时长小于30秒或该航迹点组的速度值标准差大于0.3q,则舍弃该航迹点组;否则保留该航迹点组;
    步骤5.5,如果保留航迹点组的个数大于等于1,则
    Figure PCTCN2022101833-appb-100012
    且航迹点组中的最大时刻即为ts cs,执行步骤6;如果保留航迹点组的个数为0,且k+1≤|SP|,则令k←k+1,跳转至步骤5.2,如果k+1>|SP|,则令sp c=-1,ts cs=0,执行步骤6。
  7. 根据权利要求6所述的基于等值段识别的航班爬升阶段转换高度要素确定方法,其特征在于,步骤6中,得到第三马赫分量TR m_cut的过程为,TR m_cut={m idx|m idx∈TR m,ts idx≥ts cs,idx=1,2,…,N},记第三马赫分量TR m_cut中元素的个数为N cut
    步骤7中,将航迹第三马赫分量TR m_cut离散化,过程为:对于任一马赫数ma index,马赫数ma index无量纲,如果其满足uj-0.5u≤ma index<uj+0.5u,则其离散值为
    Figure PCTCN2022101833-appb-100013
    u表示马赫数离散精度,u∈R +,j为索引变量,j=0,1,2,…;马赫分量离散值为
    Figure PCTCN2022101833-appb-100014
    其中
    Figure PCTCN2022101833-appb-100015
  8. 根据权利要求7所述的基于等值段识别的航班爬升阶段转换高度要素确定方法,其特征在于,步骤8中,获取马赫离散值集合MA的过程为:设定阈值thr=0.01N,则马赫离散值集合
    Figure PCTCN2022101833-appb-100016
    其中
    Figure PCTCN2022101833-appb-100017
    表示离散马赫分量TR md中含有
    Figure PCTCN2022101833-appb-100018
    的个数。
  9. 根据权利要求8所述的基于等值段识别的航班爬升阶段转换高度要素确定方法,其特征在于,步骤9中,获得最小时刻对应的等马赫值ma c的过程为:
    步骤9.1,记
    Figure PCTCN2022101833-appb-100019
    |MA|表示马赫离散值集合MA中元素的个数,1≤k1≤|MA|,令ts cm=+∞,ma c=-1;令k1=1;
    步骤9.2,获取第二航迹点集
    Figure PCTCN2022101833-appb-100020
    步骤9.3,将第二航迹点集
    Figure PCTCN2022101833-appb-100021
    中的航迹点
    Figure PCTCN2022101833-appb-100022
    按照ts index升序排列,如果连续两个航迹点的时间差小于等于4秒,则将其划入一个航迹点组;如果时间差大于4秒,则将前一个航迹点划入当前航迹点组,将后一个航迹点划入下一个航迹点组;这样将航迹点划分为g k1个航迹点组,
    Figure PCTCN2022101833-appb-100023
    步骤9.4,检测每一个航迹点组,如果该航迹点组的总时长小于100秒或该航迹点组的马赫值标准差大于0.3u,则舍弃该航迹点组;否则保留该航迹点组;
    步骤9.5,如果保留航迹点组的个数大于等于1,且航迹点组中的最小时刻ts min小于ts cm,则令
    Figure PCTCN2022101833-appb-100024
    执行步骤10;如果保留航迹点组的个数为0,且k1+1≤|MA|,则令k1←k1+1,跳转至步骤9.2,如果k1+1>|MA|,则令ma c=-1,ts cm=+∞,执行步骤10。
  10. 根据权利要求9所述的基于等值段识别的航班爬升阶段转换高度要素确定方法,其特征在于,步骤10中,计算航班转换高度的过程为:如果sp c=-1或ma c=-1,则表示未得到转换高度要素,不能计算转换高度;否则,根据飞机数据基础BADA提供的转换高度计算函数,代入sp c和ma c值,计算转换高度。
PCT/CN2022/101833 2021-11-18 2022-06-28 基于等值段识别的航班爬升阶段转换高度要素确定方法 WO2023087717A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/814,119 US20220358846A1 (en) 2021-11-18 2022-07-21 Method for determining transition height elements in flight climbing stage based on constant value segment identification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111367778.2 2021-11-18
CN202111367778.2A CN114066263B (zh) 2021-11-18 2021-11-18 基于等值段识别的航班爬升阶段转换高度要素确定方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/814,119 Continuation US20220358846A1 (en) 2021-11-18 2022-07-21 Method for determining transition height elements in flight climbing stage based on constant value segment identification

Publications (1)

Publication Number Publication Date
WO2023087717A1 true WO2023087717A1 (zh) 2023-05-25

Family

ID=80277759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101833 WO2023087717A1 (zh) 2021-11-18 2022-06-28 基于等值段识别的航班爬升阶段转换高度要素确定方法

Country Status (2)

Country Link
CN (1) CN114066263B (zh)
WO (1) WO2023087717A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114066263B (zh) * 2021-11-18 2023-01-31 中国电子科技集团公司第二十八研究所 基于等值段识别的航班爬升阶段转换高度要素确定方法
CN114912688B (zh) * 2022-05-18 2024-04-30 中国电子科技集团公司第二十八研究所 一种基于爬升段能量分享因子估算的航空器轨迹预测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150077274A1 (en) * 2013-09-13 2015-03-19 Honeywell International Inc. System and method for displaying in-trail procedure (itp) allocations on an aircraft cockpit display
CN110930770A (zh) * 2019-11-06 2020-03-27 南京莱斯信息技术股份有限公司 一种基于管制意图和飞机性能模型的四维航迹预测方法
CN111583724A (zh) * 2020-05-08 2020-08-25 中国电子科技集团公司第二十八研究所 一种面向四维航迹运行的预战术阶段间隔管理方法
CN112257152A (zh) * 2020-10-20 2021-01-22 南京航空航天大学 基于机载数据的民用航空器飞行阶段识别方法
CN114066263A (zh) * 2021-11-18 2022-02-18 中国电子科技集团公司第二十八研究所 基于等值段识别的航班爬升阶段转换高度要素确定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109493644B (zh) * 2018-11-16 2020-08-14 四川大学 一种基于历史航迹数据挖掘的四维航迹推测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150077274A1 (en) * 2013-09-13 2015-03-19 Honeywell International Inc. System and method for displaying in-trail procedure (itp) allocations on an aircraft cockpit display
CN110930770A (zh) * 2019-11-06 2020-03-27 南京莱斯信息技术股份有限公司 一种基于管制意图和飞机性能模型的四维航迹预测方法
CN111583724A (zh) * 2020-05-08 2020-08-25 中国电子科技集团公司第二十八研究所 一种面向四维航迹运行的预战术阶段间隔管理方法
CN112257152A (zh) * 2020-10-20 2021-01-22 南京航空航天大学 基于机载数据的民用航空器飞行阶段识别方法
CN114066263A (zh) * 2021-11-18 2022-02-18 中国电子科技集团公司第二十八研究所 基于等值段识别的航班爬升阶段转换高度要素确定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Master's Thesis", 1 March 2016, NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS, CN, article GU, JUNWEI: "Research on 4D Trajectory Planning Algorithm Based on Multi-source Data Fusion Method", pages: 1 - 86, XP009545474 *

Also Published As

Publication number Publication date
CN114066263B (zh) 2023-01-31
CN114066263A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2023087717A1 (zh) 基于等值段识别的航班爬升阶段转换高度要素确定方法
CN110930770B (zh) 一种基于管制意图和飞机性能模型的四维航迹预测方法
CN108710623B (zh) 基于时间序列相似性度量的机场离港延误时间预测方法
Wang et al. Study on evolution characteristics of air traffic situation complexity based on complex network theory
CN109191922A (zh) 一种大规模四维航迹动态预测方法及装置
CN104156594B (zh) 一种基于贝叶斯网的航班过站时间动态估计方法
CN108317670A (zh) 一种基于机器学习的制冷系统节能控制方法及系统
WO2021082394A1 (zh) 基于大数据深度学习的场面可变滑出时间预测系统
CN109191921B (zh) 一种基于4d轨迹预测的空管监视数据仿真方法
CN112927562B (zh) 一种基于指定高度限制的航空器飞行高度剖面计算方法
CN111724603B (zh) 基于交通轨迹数据的cav状态判定方法、装置、设备及介质
US11508254B2 (en) Training and/or assistance platform for air management via air traffic management electronic system, associated method
CN109977546B (zh) 一种基于无监督学习的四维航迹在线异常检测方法
CN111626366A (zh) 基于运行特征的区域扇区场景相似识别方法
CN111461292A (zh) 一种无人机实时轨迹预测方法
Li et al. Bus arrival time prediction based on mixed model
CN106127407B (zh) 基于多传感器信息融合的飞机行程打分方法及打分系统
CN101465066A (zh) 飞机垂直占有率的获取方法
CN116109212B (zh) 一种机场运行效率评价指标设计及监测方法
CN110751329B (zh) 一种机场安检通道的控制方法、装置、电子设备及存储介质
US20220358846A1 (en) Method for determining transition height elements in flight climbing stage based on constant value segment identification
CN113110558B (zh) 一种混合推进无人机需求功率预测方法
CN112348225B (zh) 航迹预测方法、电子设备、非瞬时性计算机可读存储介质
CN108563565A (zh) 飞行着陆引导系统可靠性定量分析模型建立方法
CN114912688B (zh) 一种基于爬升段能量分享因子估算的航空器轨迹预测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894260

Country of ref document: EP

Kind code of ref document: A1