WO2023087610A1 - 一种正流量系统负载突变掉速控制方法、系统及挖掘机 - Google Patents

一种正流量系统负载突变掉速控制方法、系统及挖掘机 Download PDF

Info

Publication number
WO2023087610A1
WO2023087610A1 PCT/CN2022/086530 CN2022086530W WO2023087610A1 WO 2023087610 A1 WO2023087610 A1 WO 2023087610A1 CN 2022086530 W CN2022086530 W CN 2022086530W WO 2023087610 A1 WO2023087610 A1 WO 2023087610A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
speed
main pump
change rate
rate
Prior art date
Application number
PCT/CN2022/086530
Other languages
English (en)
French (fr)
Inventor
李水聪
张马永
李乾坤
殷马丁
Original Assignee
江苏徐工工程机械研究院有限公司
徐州徐工挖掘机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏徐工工程机械研究院有限公司, 徐州徐工挖掘机械有限公司 filed Critical 江苏徐工工程机械研究院有限公司
Publication of WO2023087610A1 publication Critical patent/WO2023087610A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention belongs to the technical field of hydraulic control, and in particular relates to a control method, system and excavator for sudden load drop in a positive flow system.
  • the outlet pressure of the main pump is detected by installing the main pump pressure sensor, and the product operation is performed according to the set flow rate and the collected main pump pressure, and then the power of the system is obtained. After the electric control power is set , limiting the outlet displacement of the main pump. In terms of engine stall control, the electronically controlled power limit adopted is delayed due to pressure acquisition and real-time control, which is not enough to solve engine stall control.
  • the disadvantages of the prior art include: (1) The drop-off value is relatively large: the prior art uses the engine speed and load rate as reference information on the basis of electronically controlled constant power, and the engine changes passively when the load changes suddenly, and its corresponding speed And the load rate is transmitted through the bus, and then through the speed drop control calculation of the control system to the control signal output to change the swing angle of the pump, the time lag is more than 40ms, and then the engine produces a large speed drop value; (2)
  • the object of the present invention is to provide a method, system and excavator for controlling sudden change in load of a positive flow system, so as to solve the technical problems of excessive engine speed drop and large fluctuations in rotational speed of the positive flow system under sudden load changes in the prior art.
  • a method for controlling load sudden change and speed drop of a positive flow system including: collecting the outlet pressure value of the main pump unit; calculating the load change rate according to the outlet pressure value of the main pump unit; when the load change rate reaches the set value value, output feed-forward compensation current matching the current load change rate, used to reduce the power of the main pump unit to the set power; when the engine speed change rate and load rate change rate meet the given speed drop serious When one of the grades is selected, the speed drop compensation current matching the current speed change rate and load rate change rate is output.
  • outputting a feed-forward compensation current matching the current load change rate to reduce the power of the main pump unit to the set power includes: according to the load change rate The size is divided into several load mutation levels, the minimum level is 0, which means that the load change rate is lower than the set value, and the generated feedforward compensation current is 0; when the load change rate meets a set load mutation level range, then Generate a matching feed-forward compensation current.
  • the speed drop compensation current matching the current speed change rate and load rate change rate is output, Including: according to the rate of change of the engine speed and the rate of change of the load rate, it is divided into several serious levels of speed drop, the minimum level is 0, which means that the engine speed is not lower than the set speed, and the generated speed drop compensation current is 0; when the engine When the rotation speed is lower than the set speed and the speed change rate and load rate change rate meet a certain set speed drop severity level range, it is considered that a corresponding level of speed drop has occurred, and the output is consistent with the current speed change rate and load rate change rate. Matching drop-speed compensation current.
  • a system for controlling a sudden change in load of a positive flow system including: a main valve unit, a main pump unit, a vehicle controller, and an engine ECM; the engine ECM is communicatively connected to the vehicle controller; The oil outlet of the main pump unit is connected with the oil inlet of the main valve unit, and the oil inlet of the main pump unit is connected with the hydraulic oil tank; the oil pressure sensor and the electromagnetic proportional valve of the main pump unit are respectively connected with the The whole vehicle controller is electrically connected; the whole vehicle controller is used to execute the method for controlling the sudden change of load and speed drop of the positive flow system according to any one of claims 1-3.
  • the vehicle controller includes: a data acquisition module, used to collect the outlet pressure value of the main pump unit through the oil pressure sensor of the main pump unit; a signal processing module, used to calculate according to the outlet pressure value of the main pump unit Obtain the load change rate; the feedforward compensation module is used to output the feedforward compensation current matching the current load change rate when the load change rate reaches the set value, and is used to reduce the power of the main pump unit to the set power ; The speed drop control module is used to output the speed drop matching the current speed change rate and load rate change rate when the speed change rate and load rate change rate of the engine meet a certain level in the given speed drop severity level compensation current.
  • the vehicle controller also includes: a current conversion module, used to convert the flow into a corresponding control current according to the displacement characteristics of the main pump unit; a flow feedback module, used to convert the fed back control current into a corresponding traffic.
  • the vehicle controller also includes a power control module, which is used to calculate and detect the output power of the hydraulic system in real time.
  • the engine ECM includes a speed drop control module, which is used to judge whether to generate a speed drop compensation current according to the engine speed drop severity level when the engine speed is lower than a set value.
  • the main pump unit includes a first main pump, and the first main pump is equipped with a first oil pressure sensor and a first electromagnetic proportional valve; the main valve unit includes a first reversing valve and a second reversing valve. valve; the oil outlet of the first main pump communicates with the oil inlets of the first reversing valve and the second reversing valve respectively.
  • the main pump unit also includes a second main pump, and the second main pump is equipped with a second oil pressure sensor and a second electromagnetic proportional valve;
  • the main valve unit also includes a third reversing valve, a fourth reversing valve and the fifth reversing valve;
  • the oil outlet of the second main pump communicates with the oil inlets of the third reversing valve and the fourth reversing valve respectively;
  • the oil outlet of the first main pump communicates with the oil inlet of the fourth reversing valve
  • the oil outlet of the second main pump communicates through the third reversing valve.
  • an excavator is provided, and the excavator is configured with the load mutation and speed drop control system of the positive flow system described in the second aspect.
  • the present invention is used to reduce the power of the main pump unit to the set power by outputting a feed-forward compensation current matching the current load change rate when the load change rate reaches the set value; when the engine speed changes
  • the output speed drop compensation current matching the current rate of change of speed and load rate change is used to increase the power of the main pump unit to Set the power; can effectively reduce the engine speed drop value
  • the vehicle control of the present invention adopts feed-forward compensation and speed drop control, which can effectively improve the stability of the engine speed
  • Fig. 1 is a schematic diagram of the hydraulic and electrical system of a positive flow system load sudden change speed drop control system provided by an embodiment of the present invention
  • Fig. 2 is a schematic diagram of a load sudden drop control system for a positive flow system provided by an embodiment of the present invention
  • Fig. 3 is a second schematic diagram of the hydraulic and electrical system of a control system for load sudden change and speed drop of a positive flow system provided by an embodiment of the present invention.
  • a method for controlling load sudden change and speed drop of a positive flow system including collecting the outlet pressure value of a main pump unit; calculating the load change rate according to the outlet pressure value of the main pump unit; when the load change rate reaches a set value, the output and the current
  • the feed-forward compensation current matching the load change rate is used to reduce the power of the main pump unit to the set power; when the engine speed change rate and load rate change rate meet a certain level in the given speed drop severity level
  • the speed drop compensation current is output, which is used to increase the power of the main pump unit to the set power.
  • the speed drop compensation current matching the current speed change rate and load rate change rate to increase the main From the power of the pump unit to the set power, it is divided into several speed drop severity levels according to the engine speed change rate and load rate change rate.
  • the minimum level is 0, which means that the engine speed is not lower than the set speed.
  • the speed compensation current is 0; when the engine speed is lower than the set speed and the speed change rate and load rate change rate meet a certain set speed drop severity level range, it is considered that a corresponding level of speed drop has occurred, and the output is the same as the current The speed drop compensation current matching the speed change rate and load rate change rate.
  • the feed-forward compensation current matching the rate of change of the current load is output to reduce the power of the main pump unit to the set power; when the rate of change of the engine speed and When the change rate of the load rate conforms to a certain level of the given speed drop severity level, the output speed drop compensation current matching the current speed change rate and load rate change rate is used to increase the power of the main pump unit to the set value Power; can effectively reduce the engine speed drop value.
  • this embodiment provides a control system for sudden load drop in positive flow system, including a main valve unit, a main pump unit, a vehicle controller and an engine ECM; the engine ECM communicates with the vehicle controller; the oil outlet of the main pump unit communicates with the oil inlet of the main valve unit, and the oil inlet of the main pump unit communicates with the hydraulic oil tank; the oil pressure sensor of the main pump unit, the electromagnetic The proportional valves are respectively electrically connected to the vehicle controller; the vehicle controller is used to implement the method for controlling sudden change in load and speed drop of the positive flow system described in Embodiment 1.
  • the system power is the difference between the pressure of the first main pump 21 multiplied by the flow of the first main pump 21 and the pressure of the second main pump 22 multiplied by the flow of the second main pump 22
  • this process control is called electronically controlled constant power control.
  • the oil pressure sensor of the main pump is used to measure the sudden change of the load, and combined with the engine's operating status information, it is fed back to the control unit in advance to solve the problem of engine speed drop.
  • This link is called load feedforward compensation. , which will be written in the technical terms of feed-forward compensation in the subsequent description.
  • the main valve unit is composed of the first reversing valve 11, the second reversing valve 12, the third reversing valve 13 and the fourth reversing valve 14.
  • the reversing mode of each reversing valve is oil pressure control; the main valve unit Port P1 communicates with the oil outlet of the first main pump 21, port P2 of the main valve unit communicates with the oil outlet of the second main pump 22, port T1 of the main valve unit, the oil inlet of the first main pump 21, the The oil inlets of the two main pumps 22 are respectively connected to the oil tank 3, and the third reversing valve 13 is used for the confluence control of the first main pump 21 and the second main pump 22.
  • the first main pump 21 and the second main pump 22 supply oil to the actuator at the same time through the reversing of the third reversing valve 13 .
  • the main pump unit is composed of a first main pump 21 and a second main pump 22, the first main pump 21 is equipped with a first oil pressure sensor 212 and a first electromagnetic proportional valve 211, and the second main pump 22 is equipped with a second oil pressure sensor 222 and the second electromagnetic proportional valve 221, the first oil pressure sensor 212 and the second oil pressure sensor 222 are respectively connected with the vehicle controller through the analog signal ports AI1 and AI2; the first main pump 21 and the second main pump 22 are respectively controlled by The first electromagnetic proportional valve 211 and the second electromagnetic proportional valve 221 perform displacement control.
  • the first electromagnetic proportional valve 211 and the second electromagnetic proportional valve 221 are respectively connected to the vehicle controller through the PWM1 and PWM2 ports.
  • the main pump unit is provided with a pilot
  • the oil supply port Pi is used to supply oil to the first electromagnetic proportional valve 211 and the second electromagnetic proportional valve 221 .
  • the main valve unit is connected with the main pump unit through a hydraulic pipeline;
  • the spool opening displacements of the reversing valves (the first reversing valve 11, the second reversing valve 12, the third reversing valve 13 and the fourth reversing valve 14) of the main valve unit are directly controlled by the hydraulic handle or controlled by the whole valve.
  • the car controller controls the corresponding proportional valve output pressure according to the signal of the electric control handle;
  • the main pump unit is connected with the vehicle controller unit through the electric wiring harness, the displacement of the first main pump 21 is controlled by the first electromagnetic proportional valve 211, and the displacement of the second main pump 22 is controlled by the second electromagnetic proportional valve 221.
  • the vehicle controller is connected to the first electromagnetic proportional valve 211 and the second electromagnetic proportional valve 221 through the PWM1 and PWM2 ports respectively, and the current I1_r and I2_r after the flow required by the actuator has undergone current conversion, feedforward and speed drop compensation, and I1_r is assigned I2_r is assigned to the PWM1 port to control the first electromagnetic proportional valve 211 of the first main pump 21 , and I2_r is assigned to the PWM2 port to control the second electromagnetic proportional valve 221 of the second main pump 22 .
  • the first oil pressure sensor 212 and the second oil pressure sensor 222 are respectively connected to the vehicle controller through analog signal ports AI1 and AI2.
  • the vehicle controller has the analog pressure signal input of AI1 and AI2, the CAN bus signal input of the accelerator knob on the panel, the CAN bus signal output of the instrument panel, and the control output pressure of the first and second electromagnetic proportional valves.
  • the current signal is PWM; the vehicle controller is connected to the engine ECM through the CAN bus, and the vehicle controller sends the throttle opening information request to the engine ECM through the CAN bus, and receives the status and operation information of the engine.
  • control system is mainly composed of the engine ECM and the vehicle controller, and the engine request information and engine status information are transmitted between the two through the CAN bus.
  • Engine ECM Use the throttle opening control method to set the engine speed through the gear request, set the corresponding drop rate, and perform fuel injection control according to the engine drop rate; when the actual engine speed is lower than the set drop speed, the engine will Stall control intervenes to increase the fuel injection volume.
  • the engine ECM includes a drop rate control module, which is used to judge whether to generate the first main pump drop compensation current ⁇ I1d and the second main pump drop compensation current ⁇ I2d according to the severity level of the engine drop when the engine speed is lower than the set value;
  • the ECM includes a speed drop control module, which is used to perform speed drop control according to the engine speed n and the load rate T, and analyze the change rate of the engine speed drop and the load rate change rate through an algorithm, and is used when the engine speed n is lower than the requested speed drop rate.
  • Engine fuel injection quantity control the engine ECM also includes a throttle control module, which is used to control the corresponding throttle opening according to the gear switch, and then set the engine speed.
  • the vehicle controller includes a data acquisition module, which is used to collect the outlet pressure value of the main pump unit through the oil pressure sensor of the main pump unit;
  • the signal processing module is used to calculate the load change rate according to the outlet pressure value of the main pump unit; specifically, analyze the corresponding load change rate of the first main pump according to the pressure P1 of the first main pump and the pressure P2 of the second main pump ⁇ p1 and the second main pump load change rate ⁇ p2; specifically, the signal processing module is used to filter and differentially calculate the input pressure signals P1 and P2, and then judge the change trend of the load FL. When the change trend of the load FL is large, then Will produce comparative ⁇ p1 and ⁇ p2;
  • the feed-forward compensation module is used to output a compensation current that matches the current load change rate when the load change rate reaches the set value, and is used to reduce the power of the main pump unit to the set power; specifically, according to the input ⁇ p1, ⁇ p2, engine speed n and engine load rate T are used for logical arithmetic operations.
  • engine speed n and engine load rate T are used for logical arithmetic operations.
  • a large ⁇ p1 or ⁇ p2 is detected, it is judged according to the load mutation level whether to generate the first main pump feedforward compensation current ⁇ I1f and the second main pump forward compensation current ⁇ I1f and the second main pump forward compensation current.
  • Feedback compensation current ⁇ I2f; the feedforward compensation module is used for feedforward compensation of load signals.
  • the speed drop control module is used to output the speed drop compensation matching the current speed change rate and load rate change rate when the engine speed change rate and load rate change rate meet a certain level in the given speed drop severity level Specifically, the speed drop control is carried out according to the engine speed n and the load rate T, and the engine speed drop change rate and the load rate change rate are analyzed through an algorithm. When the engine speed is lower than the set value, the speed drop control module is based on the engine speed drop The severity level judges whether to generate the speed drop compensation current ⁇ I1d and ⁇ I2d; the speed drop control module is used for the speed drop control when the engine speed is lower than the set value.
  • the load rate change rate determines the severity level of the engine's speed drop (level 0-5), and generates different speed drop currents ⁇ I1d and ⁇ I2d (0-150 mA) according to the severity level of the speed drop.
  • level 1 the resulting speed drop compensation current ⁇ I1d is equal to 30 mA, and ⁇ I2d is equal to 30 mA.
  • the speed drop severity level reaches level 5
  • the generated speed drop compensation current ⁇ I1d is equal to 150 mA
  • ⁇ I2d is equal to 150 mA.
  • the vehicle controller also includes a power control module, which is used to limit the output power of the hydraulic system so that the output of the hydraulic system does not exceed the corresponding set value.
  • the corresponding signal input includes the first main pump request flow Q1, the second main pump request The flow rate Q2, the pressure P1 of the first main pump 21 and the pressure P2 of the second main pump 22.
  • Q1_p first main pump power limited flow
  • Q2_p first main pump power limited flow
  • the power control module calculates and detects the output power of the hydraulic system in real time.
  • the power control module calculates the power of the first main pump (P1 ⁇ Q1/60) and the power of the second main pump (P1 ⁇ Q1/60) in real time.
  • the hydraulic system The total output power is the sum of the power of the first main pump and the power of the second main pump. When the total output power of the hydraulic system is lower than the set power, Q1_p is equal to the input flow Q1, and Q2_p is equal to the input flow Q2.
  • the corresponding overflow power is the total output power of the hydraulic system minus the set power
  • the corresponding overflow flow is the sum of the overflow power divided by the first main pump pressure P1 and the second main pump pressure P2
  • Q1_p is equal to the input flow Q1 minus the overflow flow
  • Q2_p is equal to the input flow Q2 minus the overflow flow
  • the vehicle controller also includes a current conversion module, which converts the flow rate into a corresponding control current according to the displacement characteristics of the main pump.
  • the vehicle controller also includes a flow feedback module.
  • the flow feedback module converts the corresponding flow according to the current fed back by the controller; the flow feedback module is used to detect the actual flow output of the main pump. If the actual flow is higher than the power limit flow Q1_p and Q2_p When setting, deviation flow compensation will be generated, and finally the actual output flow of the main pump will be equal to the power limit flow.
  • the specific control process of this embodiment is as follows: when the engine is started, when the vehicle controller receives the information of the throttle knob on the panel through the CAN bus, according to the throttle opening control of the engine, the throttle opening request is sent to the engine ECM through the CAN bus, and the engine passes the CAN bus to control the throttle opening.
  • the bus receives the accelerator opening information from the vehicle controller, controls the accelerator opening to a certain opening, and then sets the engine speed n target value.
  • XA1 of the first reversing valve 11 (XA1 is the pilot control signal) and XA3 of the fourth reversing valve 14 (XA3 is the pilot control signal), and the program internally requests the corresponding flows Q1 and Q2 according to the size of XA1 and XA3, and externally
  • Q1_p is equal to the input flow Q1
  • Q2_p is equal to the input flow Q2
  • the feedforward compensation module does not detect a large load mutation
  • the feedforward compensation current ⁇ I1f and ⁇ I2f are equal to 0
  • the speed drop control module does not detect that the engine speed n and the load rate T have a large change
  • the speed drop compensation current ⁇ I1d and ⁇ I2d are equal to 0
  • I1_r (I1_r represents the first main pump 21 request current) is equal to I1 (I1 represents the first main pump 21 input current), I2_r (I2_r represents the second main
  • the feed-forward compensation current matching the current load change rate is output to reduce the power of the main pump unit to the set power;
  • the output matches the rate of change of the current speed of change and the rate of change of the load rate.
  • the speed drop compensation current is used to reduce the power of the main pump unit to the set power; it can effectively reduce the engine speed drop value; in this embodiment, the vehicle control adopts feedforward compensation and speed drop control, which can effectively increase the engine speed Stability:
  • the electronically controlled constant rate and stable engine speed control adopted in this embodiment can effectively reduce the fuel consumption of the system.
  • this embodiment adopts a single pump and single circuit, that is, in this embodiment, the main pump unit includes a first main pump 21 and a first oil pressure pump configured on the first main pump 21.
  • the ports are connected to the oil inlets of the first reversing valve 11 and the second reversing valve 12 respectively;
  • the engine ECM is connected with the vehicle controller in communication;
  • the first oil pressure sensor 212 and the first electromagnetic proportional valve 211 are respectively connected with the vehicle controller Electrical connections; as shown in Figure 3.
  • this embodiment Based on a positive flow system load mutation and speed drop control system described in Embodiment 2 and Embodiment 3, this embodiment provides an excavator, and the excavator is configured with the positive flow system described in Embodiment 2 or Embodiment 3. System load sudden drop speed control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

本发明公开了液压控制技术领域的一种正流量系统负载突变掉速控制方法、系统及挖掘机,正流量系统负载突变掉速控制方法包括:采集主泵单元的出口压力值;根据出口压力值,得到负载变化率;当负载变化率达到设定值时,输出与当前负载变化率相匹配的前馈补偿电流,用于减小主泵单元的的功率至设定功率;当发动机的转速变化率和负荷率变化率符合给定的掉速严重等级中的某一个等级时,输出与当前转速变化率和负荷率变化率相匹配的掉速补偿电流,用于增大主泵单元的功率至设定功率。本发明可以有效地减小发动机掉速值;整车控制采用前馈补偿与掉速控制,可有效提升发动机转速稳定性;采用的电控恒率与发动机转速稳定控制,可以有效地降低系统的油耗。

Description

一种正流量系统负载突变掉速控制方法、系统及挖掘机 技术领域
本发明属于液压控制技术领域,具体涉及一种正流量系统负载突变掉速控制方法、系统及挖掘机。
背景技术
在工程机械产品中,随着主机产品的电控化、节能化,以挖掘机为代表的土方机械逐步切换成正流量控制系统。而正流量系统的切换使得传统负载敏感系统、负流量系统的控制策略及硬件配置方案已满足不了正流量系统的使用要求,典型的差异主要体现在主泵的控制上,正流量系统选用的电控泵不仅与输入信号成正比,在结构上也省去了机械恒功率控制机构,因此传统采用的机械恒功率控制系统的功率及掉速在正流量系统上只能控制电控的控制策略来实现。正流量控制系统采用电控实现恒功率,通过安装主泵压力传感器检测主泵出口压力,根据设定流量与采集的主泵压力进行乘积运算,进而得到系统的功率,在电控功率设定后,限制了主泵的出口排量。在发动机掉速控制上,采用的电控功率限制因压力采集及控制的实时性存在延迟,不足以解决发动机掉速控制。现有技术的缺点包括:(1)掉速值偏大:现有技术在电控恒功率基础上以发动机的转速及负荷率为参照信息,在负载突变时发动机被动发生变化,其相应的转速及负荷率经过总线传输,再经过控制系统的掉速控制运算到控制信号输出改变泵的摆角,时间上滞后40ms以上,进而使发动机产生较大的掉速值;(2)转速波动大:在上述缺点1掉速值偏大情况下,掉速控制条件下产生较大的掉速控制电流,使泵的排量减小过多;发动机轴端扭矩变小,发动机转速上扬且幅值较大;在发动机转速上扬超过允许掉速率时,关闭发动机掉速控制,主泵压力回升,发动机转速又下降,经过2-3个环节发动机转速才稳定;(3)油耗较高:发动机ECM内部有掉速率喷油控制环节,由于存在的发动机的转速掉速值及转速波动性大,在不需要发动机增加喷油条件下易激活发动机喷油,从而造成不必要的浪费。
发明内容
本发明的目的在于提供一种正流量系统负载突变掉速控制方法、系统及挖掘机,以解决现有技术中正流量系统在负载突变下的发动机掉速过大和转速波动大的技术问题。
为达到上述目的,本发明所采用的技术方案是:
第一方面,提供一种正流量系统负载突变掉速控制方法,包括:采集主泵单元的出口压力值;根据主泵单元的出口压力值,计算得到负载变化率;当负载变化率达到设定值时,输出与当前负载变化率相匹配的前馈补偿电流,用于减小主泵单元的的功率至设定功率;当发动机的转速变化率和负荷率变化率符合给定的掉速严重等级中的某一个等级时,输出与当前转速变化率和负荷率变化率相匹配的掉速补偿电流。
进一步地,所述当负载变化率达到设定值时,输出与当前负载变化率相匹配的前馈补偿电流,用于减小主泵单元的的功率至设定功率,包括:根据负载变化率大小划分成若干个负载突变等级,最小等级为0,表示负载变化率低于设定值,产生的前馈补偿电流为0;当负载变化率满足某一设定的负载突变等级区间时,则产生相匹配的前馈补偿电流。
进一步地,所述当发动机的转速变化率和负荷率变化率符合给定的掉速严重等级中的某一个等级时,输出与当前转速变化率和负荷率变化率相匹配的掉速补偿电流,包括:根据发动机的转速变化率和负荷率变化率的大小划分成若干个掉速严重等级,最小等级为0,表示发动机转速未低于设定转速,产生的掉速补偿电流为0;当发动机的转速低于设定转速且转速变化率和负荷率变化率满足某一设定的掉速严重等级区间时,则认为发生了相应等级的掉速,输出与当前转速变化率和负荷率变化率相匹配的掉速补偿电流。
第二方面,提供一种正流量系统负载突变掉速控制系统,包括:主阀单元、主泵单元、整车控制器和发动机ECM;所述发动机ECM与所述整车控制器通信连接;所述主泵单元的出油口与所述主阀单元的进油口连通,所述主泵单元的进油口与液压油箱连通;所述主泵单元的油压传感器、电磁比例阀分别与所述整车控制器电连接;所述整车控制器用于执行权利要求1~3任一项所述的正流量系统负载突变掉速控制方法。
进一步地,所述整车控制器包括:数据采集模块,用于通过主泵单元的油压传感器采集主泵单元的出口压力值;信号处理模块,用于根据主泵单元的出口压力值,计算得到负载变化率;前馈补偿模块,用于当负载变化率达到设定值时,输出与当前负载变化率相匹配的前馈补偿电流,用于减小主泵单元的的功率至设定功率;掉速控制模块,用于当发动机的转速变化率和负荷率变化率符合给定的掉速严重等级中的某一个等级时,输出与当前转速变化率和负荷率变化率相匹配的掉速补偿电流。
进一步地,所述整车控制器还包括:电流转化模块,用于根据主泵单元的排量特性将流量转成对应的控制电流;流量反馈模块,用于将反馈回来的控制电流转化成对应的流量。
进一步地,所述整车控制器还包括功率控制模块,用于对液压系统的输出功率进行实时计算与检测。
进一步地,所述发动机ECM包括掉速率控制模块,用于当发动机转速低于设定值时,根据发动机掉速严重等级判断是否产生掉速补偿电流。
进一步地,所述主泵单元包括第一主泵、所述第一主泵配置有第一油压传感器和第一电磁比例阀;所述主阀单元包括第一换向阀和第二换向阀;所述第一主泵的出油口分别与第一换向阀和第二换向阀的进油口连通。
进一步地,所述主泵单元还包括第二主泵,所述第二主泵配置有第二油压传感器和第二电磁比例阀;所述主阀单元还包括第三换向阀、第四换向阀和第五换向阀;所述第二主泵的出油口分别与第三换向阀和第四换向阀的进油口连通;所述第一主泵的出油口与所述第二主泵的出油口通过所述第三换向阀连通。
第三方面,提供一种挖掘机,所述挖掘机配置有第二方面所述的正流量系统负载突变掉速控制系统。
与现有技术相比,本发明所达到的有益效果:
(1)本发明通过当负载变化率达到设定值时,输出与当前负载变化率相匹配的前馈补偿电流,用于减小主泵单元的的功率至设定功率;当发动机的转速变化率和负荷率变化率符合给定的掉速严重等级中的某一个等级时,输出与当前转速变化率和负荷率变化率相匹配的掉速补偿电流,用于增大主泵单元的功 率至设定功率;可以有效地减小发动机掉速值;
(2)本发明整车控制采用前馈补偿与掉速控制,可有效提升发动机转速稳定性;
(3)本发明采用的电控恒率与发动机转速稳定控制,可以有效地降低系统的油耗。
附图说明
图1是本发明实施例提供的一种正流量系统负载突变掉速控制系统的液压电气系统原理示意图一;
图2是本发明实施例提供的一种正流量系统负载突变掉速控制系统的原理图;
图3是本发明实施例提供的一种正流量系统负载突变掉速控制系统的液压电气系统原理示意图二。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例一:
一种正流量系统负载突变掉速控制方法,包括采集主泵单元的出口压力值;根据主泵单元的出口压力值,计算得到负载变化率;当负载变化率达到设定值时,输出与当前负载变化率相匹配的前馈补偿电流,用于减小主泵单元的的功率至设定功率;当发动机的转速变化率和负荷率变化率符合给定的掉速严重等级中的某一个等级时,输出与当前转速变化率和负荷率变化率相匹配的掉速补偿电流,用于增大主泵单元的功率至设定功率。
当负载变化率达到设定值时,输出与当前负载变化率相匹配的前馈补偿电流,用于减小主泵单元的的功率至设定功率,包括根据负载变化率大小划分成若干个负载突变等级,最小等级为0,表示负载变化率低于设定值,产生的前馈补偿电流为0;当负载变化率满足某一设定的负载突变等级区间时,则产生相匹配的前馈补偿电流。
当发动机的转速变化率和负荷率变化率符合给定的掉速严重等级中的某一 个等级时,输出与当前转速变化率和负荷率变化率相匹配的掉速补偿电流,用于增大主泵单元的功率至设定功率,包括根据发动机的转速变化率和负荷率变化率的大小划分成若干个掉速严重等级,最小等级为0,表示发动机转速未低于设定转速,产生的掉速补偿电流为0;当发动机的转速低于设定转速且转速变化率和负荷率变化率满足某一设定的掉速严重等级区间时,则认为发生了相应等级的掉速,输出与当前转速变化率和负荷率变化率相匹配的掉速补偿电流。
本实施例通过当负载变化率达到设定值时,输出与当前负载变化率相匹配的前馈补偿电流,用于减小主泵单元的的功率至设定功率;当发动机的转速变化率和负荷率变化率符合给定的掉速严重等级中的某一个等级时,输出与当前转速变化率和负荷率变化率相匹配的掉速补偿电流,用于增大主泵单元的功率至设定功率;可以有效地减小发动机掉速值。
实施例二:
基于实施例一所述的一种正流量系统负载突变掉速控制方法,本实施例提供一种正流量系统负载突变掉速控制系统,包括主阀单元、主泵单元、整车控制器和发动机ECM;发动机ECM与整车控制器通信连接;主泵单元的出油口与主阀单元的进油口连通,主泵单元的进油口与液压油箱连通;主泵单元的油压传感器、电磁比例阀分别与整车控制器电连接;整车控制器用于执行实施例一所述的正流量系统负载突变掉速控制方法。
如图1所示,在正流量系统工作时,系统功率为第一主泵21的压力乘以第一主泵21的流量与第二主泵22的压力乘以第二主泵22的流量之和,当把液压系统功率进行限制时,即对第一主泵21的压力乘以第一主泵21的流量与第二主泵22的压力乘以第二主泵22的流量之和进行限制,此过程控制称之为电控恒功率控制。在负载突变情况下,通过采用主泵的油压传感器来衡量负载的突变情况,并结合发动机的运行状态信息提前反馈至控制单元,进而解决发动机掉速问题,该环节称之为负载前馈补偿,在后续的描述中将以前馈补偿专业术语进行书写。
主阀单元由第一换向阀11、第二换向阀12、第三换向阀13和第四换向阀14组成,各换向阀的换向方式为油压控制;主阀单元的P1口与第一主泵21的 出油口连通,主阀单元的P2口与第二主泵22的出油口连通,主阀单元的T1口、第一主泵21的进油口、第二主泵22的进油口分别与油箱3连接,第三换向阀13用于第一主泵21与第二主泵22的合流控制,当换向阀所控制的执行机构需要大流量时,通过第三换向阀13的换向实现第一主泵21与第二主泵22同时向执行机构供油。主泵单元由第一主泵21和第二主泵22组成,第一主泵21配置有第一油压传感器212和第一电磁比例阀211,第二主泵22配置有第二油压传感器222和第二电磁比例阀221,第一油压传感器212、第二油压传感器222分别通过模拟信号端口AI1和AI2与整车控制器连接;第一主泵21和第二主泵22分别由第一电磁比例阀211和第二电磁比例阀221进行排量控制,第一电磁比例阀211和第二电磁比例阀221分别通过PWM1和PWM2端口与整车控制器连接,主泵单元设有先导供油口Pi,用于给第一电磁比例阀211和第二电磁比例阀221供油。
主阀单元与主泵单元通过液压管路连接;
主阀单元的各换向阀(第一换向阀11、第二换向阀12、第三换向阀13和第四换向阀14)的阀芯开口位移由液压手柄直接控制或者由整车控制器根据电控手柄信号进行对应的比例阀输出压力控制;
主泵单元通过电气线束与整车控制器单元连接,第一主泵21的排量由第一电磁比例阀211进行控制,第二主泵22的排量由第二电磁比例阀221进行控制,整车控制器分别通过PWM1和PWM2端口与第一电磁比例阀211和第二电磁比例阀221连接,执行机构所需流量经过电流转换、前馈和掉速补偿后的电流I1_r及I2_r,I1_r赋值给PWM1端口,进而控制第一主泵21的第一电磁比例阀211,I2_r赋值给PWM2端口进而控制第二主泵22的第二电磁比例阀221。第一油压传感器212、第二油压传感器222分别通过模拟信号端口AI1和AI2与整车控制器连接。
整车控制器有AI1和AI2的模拟压力信号输入,有面板的油门旋钮CAN总线信号输入,有仪表盘的整机状态CAN总线信号输出,有用于控制第一、第二电磁比例阀输出压力的电流信号PWM;整车控制器通过CAN总线与发动机ECM相连,整车控制器通过CAN总线向发动机ECM发送油门开度信息请求, 并接收发动机的状态运行信息。
如图2所示,控制系统主要由发动机ECM和整车控制器组成,两者之间通过CAN总线传输发动机请求信息和发动机状态信息。
发动机ECM:采用油门开度控制方式通过挡位请求设定发动机的转速,设置相应的掉速率,并根据发动机的掉速率进行喷油控制;当发动机实际转速低于设定的掉速时,发动机掉速控制介入,增大喷油量。发动机ECM包括掉速率控制模块,用于当发动机转速低于设定值时,根据发动机掉速严重等级判断是否产生第一主泵掉速补偿电流ΔI1d和第二主泵掉速补偿电流ΔI2d;发动机ECM包括掉速控制模块,用于根据发动机转速n及负荷率T进行掉速控制,通过算法分析发动机掉速变化率及负荷率变化率,用于当发动机转速n低于请求的掉速率时的发动机喷油量控制;发动机ECM还包括油门控制模块,用于根据挡位开关进行对应的油门开口控制,进而设定发动机的转速。
整车控制器包括数据采集模块,用于通过主泵单元的油压传感器采集主泵单元的出口压力值;
信号处理模块,用于根据主泵单元的出口压力值,计算得到负载变化率;具体地,根据第一主泵的压力P1和第二主泵的压力P2分析对应的第一主泵负载变化率Δp1和第二主泵负载变化率Δp2;具体地,信号处理模块用于对输入的压力信号P1和P2进行滤波及微分计算,进而判断负载FL的变化趋势,当负载FL变化趋势大时,则会产生比较的Δp1和Δp2;
前馈补偿模块,用于当负载变化率达到设定值时,输出与当前负载变化率相匹配的补偿电流,用于减小主泵单元的的功率至设定功率;具体地,根据输入的Δp1、Δp2、发动机转速n和发动机负荷率T进行逻辑算法运算,当检测到较大的Δp1或Δp2时,根据负载突变等级判断是否产生第一主泵前馈补偿电流ΔI1f和第二主泵前馈补偿电流ΔI2f;前馈补偿模块用于负载信号的前馈补偿,在发动机转速未掉速时提前根据负载Δp1和Δp2的变化产生适当的补偿电流ΔI1f和ΔI2f以减小主泵的排量,进而防止发动机掉速值过大,在运算过程中根据Δp1和Δp2的变化情况分为负载突变等级(0-5级),并根据负载突变等级产生不同的前馈补偿电流ΔI1f和Δ2f(0-100毫安);
掉速控制模块,用于当发动机的转速变化率和负荷率变化率符合给定的掉速严重等级中的某一个等级时,输出与当前转速变化率和负荷率变化率相匹配的掉速补偿电流,具体地,根据发动机转速n及负荷率T进行掉速控制,通过算法分析发动机掉速变化率及负荷率变化率,当发动机转速低于设定值时,掉速控制模块根据发动机掉速严重等级判断是否产生掉速补偿电流ΔI1d和ΔI2d;掉速控制模块用于发动机转速低于设定值的掉速控制,当检测到发动机转速低于设定值时,根据发动机的转速变化率和负荷率变化率判别发动机的掉速严重等级(0-5级),并根据掉速严重等级产生不同的掉速电流ΔI1d和ΔI2d(0-150毫安),当掉速严重等级为1级时,产生掉速补偿电流ΔI1d等于30毫安,ΔI2d等于30毫安,当掉速严重等级达到5级时,产生掉速补偿电流ΔI1d等于150毫安,ΔI2d等于150毫安。
整车控制器还包括功率控制模块,用于限制液压系统的输出功率,使液压系统的输出不超过对应的设定值,对应的信号输入有第一主泵请求流量Q1、第二主泵请求流量Q2、第一主泵21压力P1及第二主泵22压力P2。当液压系统的输出功率低于设定功率时,Q1_p(第一主泵功率限制流量)等于Q1,Q2_p(第一主泵功率限制流量)等于Q2;当液压系统输出功率高于设定功率时,Q1_p小于Q1,Q2_p小于Q2。
功率控制模块对液压系统的输出功率进行实时计算与检测,功率控制模块实时计算第一主泵的功率(P1×Q1/60)与第二主泵的功率(P1×Q1/60),液压系统输出总功率为第一主泵的功率与第二主泵的功率之和,当液压系统的输出总功率低于设定功率时,Q1_p等于输入流量Q1,Q2_p等于输入流量Q2,当液压系统的输出总功率高于设定功率时,对应的溢出功率为液压系统输出总功率减去设定功率,对应的溢出流量为溢出功率除以第一主泵压力P1与第二主泵压力P2之和,Q1_p等于输入流量Q1减去溢出流量,Q2_p等于输入流量Q2减去溢出流量,通过该计算限制了液压系统输出总功率不高于设定功率。
整车控制器还包括电流转化模块,电流转化模块根据主泵的排量特性将流量转成对应的控制电流。
整车控制器还包括流量反馈模块,流量反馈模块根据控制器反馈回来的电 流转化成对应的流量;流量反馈模块用于检测主泵的实际流量输出,若实际流量高于功率限制流量Q1_p和Q2_p设定时,将产生偏差流量补偿,最终使主泵实际输出流量与功率限制流量相等。
本实施例的具体控制流程为:发动机启动,整车控制器通过CAN总线接收到面板油门旋钮信息时,根据发动机的油门开度控制,通过CAN总线向发动机ECM发送油门开度请求,发动机通过CAN总线收到整车控制器的油门开度信息,将油门开度控制到一定的开口,进而设定发动机转速n目标值。激活第一换向阀11的XA1(XA1是先导控制信号)和第四换向阀14的XA3(XA3是先导控制信号),程序内部根据XA1和XA3的大小请求相应的流量Q1和Q2,在外负载比较低时,液压系统输出功率低于设定功率,Q1_p等于输入流量Q1,Q2_p等于输入流量Q2,前馈补偿模块未检测到有大的负载突变,前馈补偿电流ΔI1f和ΔI2f等于0,掉速控制模块未检测到发动机转速n及负荷率T有大的变化,掉速补偿电流ΔI1d和ΔI2d等于0,I1_r(I1_r表示第一主泵21请求电流)等于I1(I1表示第一主泵21输入电流),I2_r(I2_r表示第二主泵22请求电流)等于I2(I2表示第二主泵22输入电流),此处的第一主泵输入电流I1与第一主泵请求电流I1_r的关系为:I1_r=I1-ΔI1f-ΔI1d;当外负载FL急剧增大,前馈补偿模块检测到负载突变等级为3级,产生前馈补偿电流ΔI1f和ΔI2f为60毫安,则I1_r等于I1减去ΔI1f,I2_r等于I2减去ΔI2f,当产生的前馈补偿电流不足以维持当前发动机的转速,发动机转速开始掉速,当发动机转速低于允许的设定值时,掉速控制模块根据当前发动机的掉速情况判定为3级严重等级,产生掉速补偿电流ΔI1d和ΔI2d为90毫安,则I1_r等于I1减去ΔI1f再减去ΔI1d,I2_r等于I2减去ΔI2f再减去ΔI2d,当外负载FL恢复到正常负载,发动机也工作在正常工作转速之内,对应的前馈补偿电流ΔI1f、ΔI2f和掉速补偿电流ΔI1d、ΔI2d恢复为0,I1_r等于I1,I2_r等于I2。
本实施例通过采用负载信号前馈补偿,当负载变化率达到设定值时,输出与当前负载变化率相匹配的前馈补偿电流,用于减小主泵单元的的功率至设定功率;当发动机工作转速低于设定值时,根据发动机转速变化率和负荷率变化率符合给定的掉速严重等级中的某一个等级时,输出与当前转速变化率和负荷 率变化率相匹配的掉速补偿电流,用于减小主泵单元的的功率至设定功率;可以有效地减小发动机掉速值;本实施例整车控制采用前馈补偿与掉速控制,可有效提升发动机转速稳定性;本实施例采用的电控恒率与发动机转速稳定控制,可以有效地降低系统的油耗。
实施例三:
本实施例与实施例二的区别仅在于:本实施例采用单泵单回路,即本实施例中,主泵单元包括第一主泵21、配置在第一主泵21上的第一油压传感器212和第一电磁比例阀211;主阀单元包括第一换向阀11和第二换向阀12;第一主泵21的进油口连通液压邮箱3,第一主泵21的出油口分别连通第一换向阀11和第二换向阀12的进油口;发动机ECM与整车控制器通信连接;第一油压传感器212、第一电磁比例阀211分别与整车控制器电连接;如图3所示。
实施例四:
基于实施例二、实施例三所述的一种正流量系统负载突变掉速控制系统,本实施例提供一种挖掘机,所述挖掘机配置有实施例二或实施例三所述的正流量系统负载突变掉速控制系统。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (11)

  1. 一种正流量系统负载突变掉速控制方法,其特征是,包括:
    采集主泵单元的出口压力值;
    根据主泵单元的出口压力值,计算得到负载变化率;
    当负载变化率达到设定值时,输出与当前负载变化率相匹配的前馈补偿电流,用于减小主泵单元的的功率至设定功率;
    当发动机的转速变化率和负荷率变化率符合给定的掉速严重等级中的某一个等级时,输出与当前转速变化率和负荷率变化率相匹配的掉速补偿电流。
  2. 根据权利要求1所述的正流量系统负载突变掉速控制方法,其特征是,所述当负载变化率达到设定值时,输出与当前负载变化率相匹配的前馈补偿电流,用于减小主泵单元的的功率至设定功率,包括:
    根据负载变化率大小划分成若干个负载突变等级,最小等级为0,表示负载变化率低于设定值,产生的前馈补偿电流为0;
    当负载变化率满足某一设定的负载突变等级区间时,则产生相匹配的前馈补偿电流。
  3. 根据权利要求1所述的正流量系统负载突变掉速控制方法,其特征是,所述当发动机的转速变化率和负荷率变化率符合给定的掉速严重等级中的某一个等级时,输出与当前转速变化率和负荷率变化率相匹配的掉速补偿电流,包括:
    根据发动机的转速变化率和负荷率变化率的大小划分成若干个掉速严重等级,最小等级为0,表示发动机转速未低于设定转速,产生的掉速补偿电流为0;
    当发动机的转速低于设定转速且转速变化率和负荷率变化率满足某一设定的掉速严重等级区间时,则认为发生了相应等级的掉速,输出与当前转速变化率和负荷率变化率相匹配的掉速补偿电流。
  4. 一种正流量系统负载突变掉速控制系统,其特征是,包括:主阀单元、主泵单元、整车控制器和发动机ECM;所述发动机ECM与所述整车控制器通信连接;所述主泵单元的出油口与所述主阀单元的进油口连通,所述主泵单元的进油口与液压油箱连通;所述主泵单元的油压传感器、电磁比例阀分别与所述 整车控制器电连接;所述整车控制器用于执行权利要求1~3任一项所述的正流量系统负载突变掉速控制方法。
  5. 根据权利要求4所述的正流量系统负载突变掉速控制系统,其特征是,所述整车控制器包括:
    数据采集模块,用于通过主泵单元的油压传感器采集主泵单元的出口压力值;
    信号处理模块,用于根据主泵单元的出口压力值,计算得到负载变化率;
    前馈补偿模块,用于当负载变化率达到设定值时,输出与当前负载变化率相匹配的前馈补偿电流,用于减小主泵单元的的功率至设定功率;
    掉速控制模块,用于当发动机的转速变化率和负荷率变化率符合给定的掉速严重等级中的某一个等级时,输出与当前转速变化率和负荷率变化率相匹配的掉速补偿电流。
  6. 根据权利要求5所述的正流量系统负载突变掉速控制系统,其特征是,所述整车控制器还包括:
    电流转化模块,用于根据主泵单元的排量特性将流量转成对应的控制电流;
    流量反馈模块,用于将反馈回来的控制电流转化成对应的流量。
  7. 根据权利要求6所述的正流量系统负载突变掉速控制系统,其特征是,所述整车控制器还包括功率控制模块,用于对液压系统的输出功率进行实时计算与检测。
  8. 根据权利要求7所述的正流量系统负载突变掉速控制系统,其特征是,所述发动机ECM包括掉速率控制模块,用于当发动机转速低于设定值时,根据发动机掉速严重等级判断是否产生掉速补偿电流。
  9. 根据权利要求4所述的正流量系统负载突变掉速控制系统,其特征是,所述主泵单元包括第一主泵、所述第一主泵配置有第一油压传感器和第一电磁比例阀;所述主阀单元包括第一换向阀和第二换向阀;所述第一主泵的出油口分别与第一换向阀和第二换向阀的进油口连通。
  10. 根据权利要求9所述的正流量系统负载突变掉速控制系统,其特征是,所述主泵单元还包括第二主泵,所述第二主泵配置有第二油压传感器和第二电 磁比例阀;所述主阀单元还包括第三换向阀、第四换向阀和第五换向阀;所述第二主泵的出油口分别与第三换向阀和第四换向阀的进油口连通;所述第一主泵的出油口与所述第二主泵的出油口通过所述第三换向阀连通。
  11. 一种挖掘机,其特征是,所述挖掘机配置有权利要求5~10任一项所述的正流量系统负载突变掉速控制系统。
PCT/CN2022/086530 2021-11-17 2022-04-13 一种正流量系统负载突变掉速控制方法、系统及挖掘机 WO2023087610A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111358867.0 2021-11-17
CN202111358867.0A CN114045897B (zh) 2021-11-17 2021-11-17 一种正流量系统负载突变掉速控制方法、系统及挖掘机

Publications (1)

Publication Number Publication Date
WO2023087610A1 true WO2023087610A1 (zh) 2023-05-25

Family

ID=80209689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086530 WO2023087610A1 (zh) 2021-11-17 2022-04-13 一种正流量系统负载突变掉速控制方法、系统及挖掘机

Country Status (2)

Country Link
CN (1) CN114045897B (zh)
WO (1) WO2023087610A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114045897B (zh) * 2021-11-17 2023-06-02 江苏徐工工程机械研究院有限公司 一种正流量系统负载突变掉速控制方法、系统及挖掘机
CN115506426A (zh) * 2022-08-25 2022-12-23 中联重科土方机械有限公司 正流量挖掘机及其控制方法、控制装置和控制器
CN115596038B (zh) * 2022-10-19 2024-04-26 广西柳工机械股份有限公司 装载机的功率分配系统、装载机的功率分配方法及装载机
CN115478581B (zh) * 2022-10-27 2024-04-16 潍柴动力股份有限公司 一种液压系统的控制方法、控制装置和工程车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102677714A (zh) * 2012-06-11 2012-09-19 上海三一重机有限公司 挖掘机转速控制装置及方法及包括该装置的挖掘机
CN202627059U (zh) * 2012-05-10 2012-12-26 徐州徐工挖掘机械有限公司 新型防止液压挖掘机发动机瞬间掉速的装置
CN106542450A (zh) * 2016-03-02 2017-03-29 徐工集团工程机械有限公司 旋挖钻机及其防掉速控制方法、装置和系统
WO2018122982A1 (ja) * 2016-12-27 2018-07-05 川崎重工業株式会社 発電システム、及びその制御方法
CA3150007A1 (en) * 2019-09-11 2021-03-18 Zhike SONG Hydraulic excavator control system and method
CN114045897A (zh) * 2021-11-17 2022-02-15 江苏徐工工程机械研究院有限公司 一种正流量系统负载突变掉速控制方法、系统及挖掘机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101818508A (zh) * 2010-04-19 2010-09-01 三一重机有限公司 挖掘机功率控制系统和方法
KR101871508B1 (ko) * 2011-12-09 2018-06-28 두산인프라코어 주식회사 건설기계의 작업 부하에 따른 엔진회전 속도 및 펌프 파워의 설정 방법
CN105402039B (zh) * 2015-12-21 2018-05-11 徐州燕大传动与控制技术有限公司 一种基于扭矩与转速复合控制的旋挖钻机功率匹配方法
CN110131058B (zh) * 2019-06-03 2021-12-21 潍柴动力股份有限公司 功率匹配控制方法及装置
CN112228326B (zh) * 2020-10-09 2023-01-06 潍柴动力股份有限公司 静压驱动车辆的控制方法、装置、驱动车辆以及介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202627059U (zh) * 2012-05-10 2012-12-26 徐州徐工挖掘机械有限公司 新型防止液压挖掘机发动机瞬间掉速的装置
CN102677714A (zh) * 2012-06-11 2012-09-19 上海三一重机有限公司 挖掘机转速控制装置及方法及包括该装置的挖掘机
CN106542450A (zh) * 2016-03-02 2017-03-29 徐工集团工程机械有限公司 旋挖钻机及其防掉速控制方法、装置和系统
WO2018122982A1 (ja) * 2016-12-27 2018-07-05 川崎重工業株式会社 発電システム、及びその制御方法
CA3150007A1 (en) * 2019-09-11 2021-03-18 Zhike SONG Hydraulic excavator control system and method
CN114045897A (zh) * 2021-11-17 2022-02-15 江苏徐工工程机械研究院有限公司 一种正流量系统负载突变掉速控制方法、系统及挖掘机

Also Published As

Publication number Publication date
CN114045897B (zh) 2023-06-02
CN114045897A (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
WO2023087610A1 (zh) 一种正流量系统负载突变掉速控制方法、系统及挖掘机
KR101507646B1 (ko) 하이브리드 건설 기계의 제어 시스템
CN103397678B (zh) 一种发动机和液压泵的功率匹配节能系统及方法
US8467934B2 (en) Controller of hybrid construction machine
KR101568441B1 (ko) 하이브리드 건설기계의 제어장치
US9026297B2 (en) Control system for hybrid construction machine
KR101612972B1 (ko) 하이브리드 건설기계의 제어장치
KR101595584B1 (ko) 하이브리드 건설기계의 제어장치
CN103898940B (zh) 回转控制装置及具备该回转控制装置的工程机械
US9068321B2 (en) Hybrid driven hydraulic work machine
CN108331064B (zh) 一种液压挖掘机负载自适应智能控制装置及控制系统
US9255385B2 (en) Hybrid construction machine
JP2011241539A (ja) ハイブリッド建設機械
KR101522061B1 (ko) 하이브리드 건설기계의 제어장치
US9032722B2 (en) Hybrid operating machine
WO2016017674A1 (ja) ショベル
CN105473874A (zh) 工程机械
JP2011226491A (ja) 油圧ショベルの旋回油圧回路
US20150184364A1 (en) Control system for hybrid construction machine
KR101504407B1 (ko) 건설 기계의 충전 장치
CN104790457A (zh) 一种正流量系统的电液控制方法及其在液压抓斗上的应用
CN111706563B (zh) 一种基于液压马达-发电机压力补偿器的三通调速阀
US20220002975A1 (en) Excavator
JP5213524B2 (ja) ハイブリッド建設機械の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894156

Country of ref document: EP

Kind code of ref document: A1