WO2023087501A1 - 一种非能动余热排出装置及微小型卧式反应堆系统 - Google Patents

一种非能动余热排出装置及微小型卧式反应堆系统 Download PDF

Info

Publication number
WO2023087501A1
WO2023087501A1 PCT/CN2021/142862 CN2021142862W WO2023087501A1 WO 2023087501 A1 WO2023087501 A1 WO 2023087501A1 CN 2021142862 W CN2021142862 W CN 2021142862W WO 2023087501 A1 WO2023087501 A1 WO 2023087501A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
flow channel
pressure vessel
air inlet
reactor pressure
Prior art date
Application number
PCT/CN2021/142862
Other languages
English (en)
French (fr)
Inventor
董建华
张朔婷
堵树宏
李呼昂
贺楷
张成龙
朱思阳
姚红
Original Assignee
中国核电工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国核电工程有限公司 filed Critical 中国核电工程有限公司
Priority to CA3227760A priority Critical patent/CA3227760A1/en
Publication of WO2023087501A1 publication Critical patent/WO2023087501A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the disclosure belongs to the technical field of reactors, and in particular relates to a passive waste heat removal device and a miniature horizontal reactor system including the passive waste heat removal device.
  • the waste heat removal system of the reactor is one of the important systems of the nuclear power plant, and its reliable operation is directly related to the safety of the reactor after shutdown.
  • the R&D of advanced reactors has gradually adopted the design of passive devices, that is, no external active facilities are required, and only the waste heat of the core is discharged through the establishment of a stable natural circulation.
  • the existing design of the passive waste heat removal system mainly adopts air or water for cooling. When the air cooling design is adopted, it generally does not need to be equipped with additional auxiliary facilities.
  • a natural circulation flow channel can be constructed based on the reactor structure body, and the system structure is more simplified; When designing, it needs to be equipped with special facilities and devices for the flow and heat transfer of circulating cooling water.
  • an air-cooled passive waste heat removal device can be used, but the existing designs often have the following deficiencies:
  • the pressure vessel of the micro reactor is small in size and the heat dissipation area is limited, which directly restricts the heat removal capacity of the passive waste heat removal device;
  • the pressure vessel adopts a horizontal arrangement, and the direction of the surface temperature gradient is perpendicular to the direction of gravity, which is not conducive to the formation of natural circulation driving force;
  • the present disclosure provides a passive waste heat removal device and a miniature horizontal reactor system including the above-mentioned passive waste heat removal device.
  • the heat removal capacity can be greatly improved, and the size limit and capacity requirements of the passive waste heat removal device can be solved.
  • the present disclosure provides a passive waste heat removal device, the technical solution of which is as follows:
  • a passive waste heat discharge device comprising a shielding heat preservation shell and a flow diversion cover, the shield heat insulation shell is arranged outside the reactor pressure vessel;
  • the outside of the reactor pressure vessel so as to divide the flow space of the air in the shielding insulation shell into an inner flow channel and an outer flow channel, wherein the inner flow channel is between the flow deflector and the reactor pressure vessel, and the There is an outer flow channel between the air guide cover and the shielding heat preservation shell, and the air in the inner flow channel flows from the front and rear ends of the air guide cover to the outer flow channel;
  • An air inlet and an air outlet are provided on the shielding heat preservation shell, and the air inlet and the shroud are sealed and connected through an air inlet passage, and the cold air in the environment is introduced into the air inlet through the air inlet.
  • the inner flow channel is used to directly cool the reactor pressure vessel; the high-temperature air in the outer flow channel is discharged to the environment through the air outlet.
  • the present disclosure provides a micro-horizontal reactor system, the technical solution of which is as follows:
  • a miniature reactor system includes a reactor pressure vessel and the above-mentioned passive waste heat removal device.
  • the air flow path can be optimized, and a passive natural circulation air circulation flow path can be built in the original shielding shell structure of the reactor, which can drive the air flow by the high temperature of the reactor pressure vessel.
  • a passive natural circulation air circulation flow path can be built in the original shielding shell structure of the reactor, which can drive the air flow by the high temperature of the reactor pressure vessel.
  • natural air circulation is formed, so that the residual decay heat of the core is discharged under normal shutdown and accident conditions, and the temperature of the core is maintained within the safety limit requirements, thereby improving the safety of the reactor operation .
  • the multi-process design is adopted.
  • a shroud By adding a shroud, the large space between the original shielding insulation shell and the reactor pressure vessel becomes an inner and outer two-layer flow channel.
  • This device allows the cold air in the environment to pass through the inlet.
  • the channel can directly enter the inner flow channel constructed by the shroud.
  • the cold air first exchanges heat with the high-temperature reactor pressure vessel wall, then flows into the outer flow channel outside the shroud to exchange heat, and finally flows out.
  • the cold air in this process The air flows back and forth in the inner space of the shielding insulation shell, compared with the traditional process in the prior art that directly enters the large space between the shielding insulation shell and the reactor pressure vessel, diffuses and exchanges heat, and then directly flows out of the large space , which increases the flow stroke of the cold air entering the environment in the space between the shielding insulation shell and the pressure vessel, and can also greatly increase the heat exchange area in a limited space and improve the heat exchange efficiency, thereby greatly improving the reactor core.
  • the efficiency of waste heat removal solves the constraints of the structural size of the reactor body on the heat dissipation capacity and the restrictions on the size and capacity of the passive waste heat removal device, thereby simplifying the structure of the entire device as much as possible and reducing the size of the device to meet the needs of micro-horizontal Reactor Design Requirements.
  • FIG. 1 is a schematic structural view of a passive waste heat removal device in an embodiment of the present disclosure
  • Fig. 2 is A-A sectional view in Fig. 1;
  • Fig. 3 is a cross-sectional view of B-B in Fig. 1 .
  • Figure 1 is a schematic structural view of a passive waste heat removal device in an embodiment of the disclosure
  • Figure 2 is a sectional view of the A-A section in Figure 1 in an embodiment of the disclosure
  • Figure 3 is a section B-B in Figure 1 in an embodiment of the disclosure cutaway view.
  • this embodiment discloses a passive waste heat removal device.
  • the main body of the device is the original shielding insulation shell 6 of the reactor, and the shielding insulation shell 6 is arranged outside the reactor pressure vessel 7.
  • the body structure can be used to provide radiation shielding and high temperature protection for the reactor pressure vessel 7 under various operating conditions; at the same time, the shielding and heat preservation shell 6 is also used as the main structure of the passive waste heat removal device to build the natural circulation of air. the runner.
  • a shroud 3 is provided inside the shielding heat-insulating shell 6, and the shroud 3 is set on the outside of the reactor pressure vessel 7, so as to separate the flow space of the air in the shielding heat-insulating shell 6 into an inner flow channel and an outer flow channel, wherein, The inner flow channel is between the flow guide cover 3 and the reactor pressure vessel 7, and the outer flow channel is between the flow guide cover 3 and the shielding insulation shell 6, and the air in the inner flow channel flows from the front and rear ends of the flow guide cover 3 to the outer flow channel.
  • An air inlet 1 and an air outlet 5 are respectively opened on the shielding heat preservation shell 6, and the air inlet 1 and the shroud 3 are sealed and connected through the air inlet channel, and the cold air in the environment is introduced into the inner flow through the air inlet 1
  • the channel is used to directly cool the reactor pressure vessel 7, and the high-temperature air in the outer flow channel is discharged to the environment through the air outlet 5.
  • the shape of the shroud 3 is cylindrical, with openings at both ends for communicating with the inner flow channel and the outer flow channel.
  • a support rib 4 is provided between the air guide cover 3 and the shielding heat preservation shell 6, and the cylindrical air guide cover 3 is fixedly connected with the shield heat preservation shell 6 through the support rib plate 4, and does not need to be loaded.
  • the reactor can refer to a micro-miniature horizontal reactor, and its reactor pressure vessel 7 is arranged horizontally, and the reactor pressure vessel 7 is cylindrical, and the length of the shroud 3 can cover a part of the length of the middle section of the horizontally placed reactor pressure vessel 7, such as , the length of the cylindrical windshield 3 can be 1/3 of the length of the cylindrical reactor pressure vessel 7, and it is arranged concentrically and coaxially with the reactor pressure vessel 7, so that the supporting legs of the reactor pressure vessel 7 can be avoided, so that the The two ends of pressure vessel 7 reserve space, and the air in the inner space of convenient spinner 3 flows to the outer space of spinner 3 from both ends, and, because the reactor core of reactor is generally in and reactor pressure vessel 7 middle parts
  • the length of the windshield 3 can also be the length covering the whole section of the horizontal reactor pressure vessel 7, that is, the length of the cylindrical windshield 3 can also be the same as the length of the cylindrical reactor pressure vessel 7, or cover Other lengths of any end of the horizontal reactor pressure vessel 7 and part of the middle section, for example, the length of the cylindrical nozzle 3 can also be 2/3 of the length of the cylindrical reactor pressure vessel 7, and will not be repeated here. .
  • the shroud 3 is made of high temperature resistant metal material (for example, austenitic stainless steel of 316H, A800H, etc. can be used).
  • the remaining decay heat of the core core is mainly dissipated from the outer wall of the reactor pressure vessel 7 through convection and radiation.
  • the air inlet 1 can be arranged at the middle position near the lower part or the bottom of the shielding heat preservation shell 6, and corresponds to the position of the air guide cover, and it is chamfered at the connection part of the air intake passage and the air guide cover 3.
  • the air outlet 5 can be arranged on the upper part of the shielding heat preservation shell 6 .
  • the cold air in the environment will directly enter the inner flow channel constructed by the shroud 3 through the air inlet, flow and exchange heat around the wall of the cylindrical reactor pressure vessel 7, and then flow horizontally to the reactor pressure vessel 7
  • the front and rear ends of the front and back flow through the openings at both ends to the outer flow channel, and are mixed with cooler air in the outer flow channel to complete further heat exchange and then discharged from the air outlet 5 on the top of the shielding insulation shell 6 .
  • the wind deflector 3 the heat dissipation efficiency of the passive residual heat discharge of the horizontal reactor is improved.
  • the air inlet 1 and the air inlet channel can be made of the same high-temperature-resistant metal material as that of the shroud 3 , that is, austenitic stainless steels such as 316H and A800H can be used.
  • baffles 2 can also be set in the air inlet 1.
  • the number of baffles can be one, or two, three, etc., for fixing and supporting the air intake.
  • Port 1 to increase the stiffness of the air inlet and prevent the air inlet from being deformed.
  • the passive waste heat removal device adopts a passive design concept, and by adding a shroud, the air flow path can be optimized, and a passive natural circulation air circulation can be constructed in the original shielding and heat preservation shell structure of the reactor
  • the flow channel can drive the air flow by the high temperature of the reactor pressure vessel, and form a natural circulation of air without any external auxiliary facility control, so as to discharge the remaining decay heat of the core under normal shutdown and accident conditions, ensuring The core temperature is maintained within the safety limit requirements, thereby improving the safety of the reactor operation.
  • the cold air in the environment can directly enter the inner flow channel constructed by the shroud through the inlet channel.
  • the cold air first exchanges heat with the wall of the high-temperature reactor pressure vessel, which changes the way the air enters the large space first.
  • the traditional process of diffusion and heat exchange can also greatly increase the heat exchange area in a limited space, so that the heat transfer of natural convection heat exchange and radiation heat exchange will increase accordingly, thereby greatly improving the efficiency of waste heat removal from the reactor core, and solving the problem of
  • the structural size of the reactor body restricts the heat dissipation capacity and the size and capacity requirements of the passive waste heat removal device can further simplify the device structure and reduce the device size to meet the design requirements of micro-horizontal reactors.
  • This embodiment discloses a miniature horizontal reactor system, which includes a reactor pressure vessel and the passive waste heat removal device described in Embodiment 1.
  • the miniature horizontal reactor system of the embodiment of the present disclosure adopts the passive waste heat removal device described in Embodiment 1, which can effectively remove the waste heat of the core under normal shutdown and accident conditions, and improve the safety of the reactor operation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

一种非能动余热排出装置及微小型卧式反应堆系统,该装置包括屏蔽保温壳(6)、导流罩(3),屏蔽保温壳(6)布置在反应堆压力容器(7)的外侧;导流罩(3)设置在屏蔽保温壳(6)内部、并罩设在反应堆压力容器(7)的外侧,以将屏蔽保温壳(6)内空气的流动空间分为内侧流道和外侧流道,内侧流道内的空气由导流罩(3)的前后两端流向外侧流道;在屏蔽保温壳(6)上开设有进气口(1)和出气口(5),进气口(1)与导流罩(3)之间通过进气通道密封连接,通过进气口(1)将环境中的冷空气导入内侧流道,用于直接冷却反应堆压力容器(7);通过出气口(5)将外侧流道的高温空气排出至环境。通过优化流道的构建,在不增加辅助设施的情况下,能够大幅度提高排热能力,解决对于余热排出装置尺寸的限制和容量的要求。

Description

一种非能动余热排出装置及微小型卧式反应堆系统
本公开要求申请日为2021年11月17日、申请号为202111361226.0、名称为“一种微小型卧式反应堆的非能动余热排出装置”的中国专利申请的优先权。
技术领域
本公开属于反应堆技术领域,具体涉及一种非能动余热排出装置、以及包括上述非能动余热排出装置的微小型卧式反应堆系统。
背景技术
反应堆的余热排出系统是核电厂的重要系统之一,其可靠运行直接关系到反应堆停堆后的安全。为了进一步增强反应堆的固有安全性,先进堆型研发逐渐采用非能动装置设计,即不需配套外部能动设施,仅通过建立稳定的自然循环排出堆芯余热。现有非能动余热排出系统设计主要采用空气或者水进行冷却,采用空气冷却设计时,一般无需配备额外的辅助设施,可基于反应堆构筑物本体构建自然循环流道,系统结构更为简化;采用水冷却设计时,则需要配备专用设施、装置,用于循环冷却水的流动和传热。
对于微小型反应堆,为了进一步简化系统构造,可采用空气冷却的非能动余热排出装置,但是现有设计往往还存在如下不足:
1)微小型反应堆的压力容器尺寸较小,散热面积有限,直接制约了非能动余热排出装置的排热能力;
2)压力容器采用卧式的布置方式,表面温度梯度方向与重力方向垂直,不利于自然循环驱动力的形成;
3)微小型反应堆的建筑空间有限,限制了非能动余热排出装置的整体尺寸。
发明内容
为了解决现有技术中的上述缺陷,本公开提供一种非能动余热排出装置、以及包括上述非能动余热排出装置的微小型卧式反应堆系统,该装置通过优化流道的构建,在不增加辅助设施的情况下,能够大幅度提高排热能力,解决对非能动余热排出装置尺寸的限制和容量的要求。
第一方面,本公开提供一种非能动余热排出装置,其技术方案如下:
一种非能动余热排出装置,包括屏蔽保温壳、导流罩,所述屏蔽保温壳布置在反应堆压力容器的外侧;所述导流罩设置在所述屏蔽保温壳内部,并罩设在所述反应堆压力容器的外侧,以将所述屏蔽保温壳内空气的流动空间分为内侧流道和外侧流道,其中,所述导流罩与所述反应堆压力容器之间为内侧流道,所述导流罩与所述屏蔽保温壳之间为外侧流道,所述内侧流道内的空气由所述导流罩的前后两端流向所述外侧流道;
在所述屏蔽保温壳上开设有进气口和出气口,所述进气口与所述导流罩之间通过进气通道密封连接,通过所述进气口将环境中的冷空气导入所述内侧流道,用于直接冷却所述反应堆压力容器;通过所述出气口将所述外侧流道的高温空气排出至环境。
第二方面,本公开提供一种微小型卧式反应堆系统,其技术方案如下:
一种微小型反应堆系统,包括反应堆压力容器,还包括以上所述的非能动余热排出装置。
本公开相比现有技术的有益效果:
1、通过增设导流罩,能够优化空气流道,在反应堆原有的屏蔽保温壳结构内构建非能动自然循环的空气循环流道,可借由反应堆压力容器的高温驱动空气流动,在不需要任何外部辅助设施控制的情况下形成空气自然循环,从而在正常停堆以及事故工况下排出堆芯的剩余衰变热,保证堆芯温度维持在安全限值要求以内,进而提高反应堆运行的安全性。
2、采用了多流程设计,通过增设导流罩,使得原有的屏蔽保温壳与反应堆压力容器之间的大空间变为了内、外两层流道,本装置使环境中的冷空气 通过进口通道可以直接进入由导流罩构建的内侧流道,冷空气首先与高温的反应堆压力容器壁面进行换热,再流入到导流罩外部的外侧流道换热,最后流出,该过程中的冷空气是在屏蔽保温壳的内部空间中折返流动的,相比于现有技术中由原有的直接进入屏蔽保温壳与反应堆压力容器之间的大空间扩散换热后直接流出大空间的传统流程,增加了环境中进入的冷空气在屏蔽保温壳与压力容器之间的空间中的流动行程,以及,还能够在有限空间内大幅增加换热面积,提高换热效率,从而大幅提高反应堆堆芯余热排出效率,解决反应堆本体结构尺寸对于散热能力的制约和对非能动余热排出装置尺寸的限制和容量的要求,进而能够尽量简化整个装置的构造、减小装置尺寸,使之满足微小型卧式反应堆的设计需求。
附图说明
图1是本公开实施例中的一种非能动余热排出装置的结构示意图;
图2为图1中A-A截面剖视图;
图3为图1中B-B截面剖视图。
图中:1、进气口;2、隔板;3、导流罩;4、支撑肋板;5、出气口;6、屏蔽保温壳;7、反应堆压力容器。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和实施例对本公开作进一步详细描述。
实施例1
图1为本公开实施例中的一种非能动余热排出装置的结构示意图;图2为本公开实施例中的图1中A-A截面剖视图;图3为本公开实施例中的图1 中B-B截面剖视图。
如图1所示,本实施例公开一种非能动余热排出装置,该装置的主体为反应堆原有的屏蔽保温壳6,屏蔽保温壳6布置在反应堆压力容器7的外侧,屏蔽保温壳6的本体结构可用于在各种运行工况下为反应堆压力容器7提供辐射屏蔽以及高温防护等;同时,屏蔽保温壳6也作为非能动余热排出装置的主要构筑物,用以构建空气自然循环形成所需的流道。
在屏蔽保温壳6内部设有导流罩3,且导流罩3罩设在反应堆压力容器7外侧,以将屏蔽保温壳6内空气的流动空间分隔为内侧流道和外侧流道,其中,导流罩3与反应堆压力容器7之间为内侧流道,导流罩3与屏蔽保温壳6之间为外侧流道,内侧流道内的空气由导流罩3的前后两端流向外侧流道。
在屏蔽保温壳6上分别开有进气口1和出气口5,进气口1与导流罩3之间通过进气通道密封连接,通过进气口1将环境中的冷空气导入内侧流道,用于直接冷却反应堆压力容器7,通过出气口5将外侧流道的高温空气排出至环境。
接下来,对本实施例的非能动余热排出装置的细节进行进一步详细描述。
导流罩3的外形为圆筒型,两端均为开口,以用于连通内侧流道和外侧流道。导流罩3与屏蔽保温壳6之间设有支撑肋板4,该圆筒型导流罩3通过支撑肋板4与屏蔽保温壳6固定连接,不需承重。
反应堆可以是指微小型卧式反应堆,其反应堆压力容器7为横置设置,反应堆压力容器7呈圆柱形,导流罩3的长度可以是覆盖横置的反应堆压力容器7中段的部分长度,比如,圆筒型导流罩3的长度可以为圆柱形反应堆压力容器7长度的1/3,且与反应堆压力容器7同心同轴布置,这样可以避开反应堆压力容器7的支撑腿,使得在反应堆压力容器7的两端留出空间,方便导流罩3的内侧空间中的空气从两端流到导流罩3的外侧空间,并且,由于反应堆的堆芯一般处在与反应堆压力容器7中部区域相对应的位置,也就 是说,对应的最热的区域在反应堆压力容器7的中段,因此,将导流罩3设置在反应堆压力容器7的中段区域外的导热效率更高,导热效果更好。
当然,导流罩3的长度也可以是覆盖横置的反应堆压力容器7的全段的长度,即圆筒型导流罩3的长度也可以与圆柱形反应堆压力容器7长度相同,或者,覆盖横置的反应堆压力容器7的任意一端及部分的中段的其他长度,比如,圆筒型导流罩3的长度也可以为圆柱形反应堆压力容器7长度的2/3,这里不再一一赘述。
本实施例中,导流罩3采用耐高温的金属材料(例如具体可以采用316H、A800H等型号的奥氏体型不锈钢)。堆芯剩余衰变热主要通过对流和辐射两种方式由反应堆压力容器7外壁面向外散热,通过在屏蔽保温壳6内增设导流罩3,能够大幅度增大换热面积,从而增大散热量,解决微小型反应堆结构尺寸对于散热能力的制约。
进气口1可以设置在屏蔽保温壳6靠近其下部或底部的中间位置,并与导流罩的位置相对应,其通过进气通道与导流罩3密封连接的连接部位进行倒角处理。出气口5可以设置在屏蔽保温壳6的上部。在运行过程中,环境中的冷空气将通过进气口直接进入导流罩3构建的内侧流道,绕圆柱形反应堆压力容器7的壁面流动和换热,再沿水平方向流向反应堆压力容器7的前、后两端,通过两端的开口流向外侧流道,在外侧流道内与较冷的空气混合完成进一步的换热后由屏蔽保温壳6上部的出气口5排出。通过导流罩3,提高了卧式反应堆非能动余热排出的散热效率。
进气口1及进气通道可采用与导流罩3相同的耐高温金属材料,即,可以采用316H、A800H等型号的奥氏体型不锈钢。
在进气口1内还可以设置一定数量的隔板2,具体来说,隔板的数量可以为一个,也可以为两个、三个等任意数量的多个,用于固定和支撑进气口1,以增加进气口的刚度,防止进气口产生变形。
本公开实施例提供的非能动余热排出装置,采用了非能动的设计理念,通过增设导流罩,能够优化空气流道,在反应堆原有的屏蔽保温壳结构内构建非能动自然循环的空气循环流道,可借由反应堆压力容器的高温驱动空气流动,在不需要任何外部辅助设施控制的情况下形成空气自然循环,从而在正常停堆以及事故工况下排出堆芯的剩余衰变热,保证堆芯温度维持在安全限值要求以内,进而提高反应堆运行的安全性。并且,通过增设导流罩,使环境中的冷空气通过进口通道可以直接进入导流罩构建的内侧流道,冷空气首先与高温的反应堆压力容器壁面进行换热,改变了空气进入大空间先扩散再换热的传统流程,以及,还能够在有限空间内大幅增加换热面积,使自然对流换热和辐射换热的传热量随之增加,从而大幅提高反应堆堆芯余热排出效率,解决反应堆本体结构尺寸对于散热能力的制约和对非能动余热排出装置尺寸的限制和容量的要求,进而能够尽量简化装置构造、减小装置尺寸,使之满足微小型卧式反应堆的设计需求。
实施例2
本实施例公开一种微小型卧式反应堆系统,其包括反应堆压力容器、以及实施例1所述的非能动余热排出装置。
本公开实施例的微小型卧式反应堆系统,由于采用了实施例1所述的非能动余热排出装置,能够在正常停堆以及事故工况下有效导出堆芯余热,提高反应堆运行的安全性。
可以理解的是,以上实施例仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (10)

  1. 一种非能动余热排出装置,其特征在于,所述装置包括屏蔽保温壳(6)、导流罩(3),
    所述屏蔽保温壳(6)布置在反应堆压力容器(7)的外侧;
    所述导流罩(3)设置在所述屏蔽保温壳(6)内部、并罩设在所述反应堆压力容器(7)的外侧,以将所述屏蔽保温壳(6)内空气的流动空间分为内侧流道和外侧流道,所述导流罩(3)与所述反应堆压力容器(7)之间为内侧流道,所述导流罩(3)与所述屏蔽保温壳(6)之间为外侧流道,所述内侧流道内的空气由所述导流罩(3)的前后两端流向所述外侧流道;
    在所述屏蔽保温壳(6)上开设有进气口(1)和出气口(5),所述进气口(1)与所述导流罩(3)之间通过进气通道密封连接,通过所述进气口(1)将环境中的冷空气导入所述内侧流道,用于直接冷却所述反应堆压力容器(7);通过所述出气口(5)将所述外侧流道的高温空气排出至环境。
  2. 根据权利要求1所述的非能动余热排出装置,其特征在于,所述导流罩(3)的外形为圆筒型,两端开口。
  3. 根据权利要求2所述的非能动余热排出装置,其特征在于,所述导流罩(3)覆盖横置的所述反应堆压力容器(7)中段的部分长度。
  4. 根据权利要求3所述的非能动余热排出装置,其特征在于,所述导流罩(3)与所述反应堆压力容器(7)同轴布置。
  5. 根据权利要求1所述的非能动余热排出装置,其特征在于,所述导流罩(3)通过支撑肋板(4)与所述屏蔽保温壳(6)固定连接。
  6. 根据权利要求1所述的非能动余热排出装置,其特征在于,在所述进气口(1)内设置有多个隔板(2),用于固定和支撑进气口。
  7. 根据权利要求1所述的非能动余热排出装置,其特征在于,所述进气口设置在所述屏蔽保温壳(6)的下部,并与导流罩(3)的位置对应,所述出气口设置在所述屏蔽保温壳(6)的上部。
  8. 根据权利要求1-7任一项所述的非能动余热排出装置,其特征在于, 所述导流罩(3)的材质为耐高温金属材料。
  9. 根据权利要求8所述的非能动余热排出装置,其特征在于,所述进气口(1)及所述进气通道的材质与所述导流罩(3)相同。
  10. 一种微小型卧式反应堆系统,包括反应堆压力容器(7),其特征在于,还包括权利要求1-9任一项所述的非能动余热排出装置。
PCT/CN2021/142862 2021-11-17 2021-12-30 一种非能动余热排出装置及微小型卧式反应堆系统 WO2023087501A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3227760A CA3227760A1 (en) 2021-11-17 2021-12-30 Passive residual heat removal device and horizontal micro-reactor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111361226.0 2021-11-17
CN202111361226.0A CN114334192A (zh) 2021-11-17 2021-11-17 一种微小型卧式反应堆的非能动余热排出装置

Publications (1)

Publication Number Publication Date
WO2023087501A1 true WO2023087501A1 (zh) 2023-05-25

Family

ID=81045991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142862 WO2023087501A1 (zh) 2021-11-17 2021-12-30 一种非能动余热排出装置及微小型卧式反应堆系统

Country Status (3)

Country Link
CN (1) CN114334192A (zh)
CA (1) CA3227760A1 (zh)
WO (1) WO2023087501A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114334192A (zh) * 2021-11-17 2022-04-12 中国核电工程有限公司 一种微小型卧式反应堆的非能动余热排出装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130114778A1 (en) * 2010-04-21 2013-05-09 Kabushiki Kaisha Toshiba Liquid metal cooled nuclear reactor and heat removal method for the same
JP2015078948A (ja) * 2013-10-18 2015-04-23 日立Geニュークリア・エナジー株式会社 高速炉の原子炉施設
CN205230604U (zh) * 2015-11-06 2016-05-11 国核华清(北京)核电技术研发中心有限公司 核电安全壳冷热循环强化换热系统
CN105788673A (zh) * 2014-12-26 2016-07-20 国核华清(北京)核电技术研发中心有限公司 用于核电站压力容器的换热增强装置和方法、事故缓解设备
CN108520785A (zh) * 2018-06-19 2018-09-11 中国科学院上海应用物理研究所 用于熔盐堆的非能动余热排出系统及余热排出方法
CN113140337A (zh) * 2021-03-05 2021-07-20 国科中子能(青岛)研究院有限公司 多介质共用冷却通道的非能动冷却系统、方法及反应堆
CN114334192A (zh) * 2021-11-17 2022-04-12 中国核电工程有限公司 一种微小型卧式反应堆的非能动余热排出装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103295656B (zh) * 2012-02-29 2017-12-26 上海核工程研究设计院 用于核反应堆的多样化专设安全系统
KR101430314B1 (ko) * 2012-11-29 2014-08-13 한국원자력연구원 이동형 원자로 시스템
CN113053546A (zh) * 2021-03-12 2021-06-29 中国核电工程有限公司 一种卧式气冷微堆控制棒及卧式堆芯系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130114778A1 (en) * 2010-04-21 2013-05-09 Kabushiki Kaisha Toshiba Liquid metal cooled nuclear reactor and heat removal method for the same
JP2015078948A (ja) * 2013-10-18 2015-04-23 日立Geニュークリア・エナジー株式会社 高速炉の原子炉施設
CN105788673A (zh) * 2014-12-26 2016-07-20 国核华清(北京)核电技术研发中心有限公司 用于核电站压力容器的换热增强装置和方法、事故缓解设备
CN205230604U (zh) * 2015-11-06 2016-05-11 国核华清(北京)核电技术研发中心有限公司 核电安全壳冷热循环强化换热系统
CN108520785A (zh) * 2018-06-19 2018-09-11 中国科学院上海应用物理研究所 用于熔盐堆的非能动余热排出系统及余热排出方法
CN113140337A (zh) * 2021-03-05 2021-07-20 国科中子能(青岛)研究院有限公司 多介质共用冷却通道的非能动冷却系统、方法及反应堆
CN114334192A (zh) * 2021-11-17 2022-04-12 中国核电工程有限公司 一种微小型卧式反应堆的非能动余热排出装置

Also Published As

Publication number Publication date
CN114334192A (zh) 2022-04-12
CA3227760A1 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
US8744035B1 (en) Reactor vessel coolant deflector shield
US8472581B2 (en) Reactor vessel reflector with integrated flow-through
EP2852954B1 (en) Pressurizer surge-line separator for integral pressurized water reactors
JPH08160179A (ja) 液体金属冷却式原子炉
WO2023087501A1 (zh) 一种非能动余热排出装置及微小型卧式反应堆系统
US4101377A (en) Fast neutron reactor
JPH01105191A (ja) 一体型圧力容器構造の原子炉
JP2003139881A (ja) 超臨界圧水冷却炉、チャンネルボックス、水ロッドおよび燃料集合体
CN109883237B (zh) 一种池式钠冷快堆事故余热排出系统的独立热交换器
JP2531910B2 (ja) 沸騰水型原子炉内の寄生バイパス流を減少する装置
CN114220571A (zh) 一种自然循环余热排出系统及快中子反应堆
JPH04110694A (ja) 高速増殖炉
JPH1123773A (ja) 高速増殖炉の炉心冷却構造
JP2508538Y2 (ja) 高速増殖炉の冷却ユニット
CN116525153A (zh) 非能动堆芯热量导出装置、卧式高温气冷堆和冷却方法
JPH04307397A (ja) タンク型高速炉
JPH0749391A (ja) 原子炉
JPS62226089A (ja) 液体金属冷却型高速増殖炉
CN116072314A (zh) 用于非能动空气冷却的核电站双层安全壳结构及其核电站
JPH0244289A (ja) 沸騰水型原子炉用の燃料バンドル
JP2937423B2 (ja) タンク型高速増殖炉
CN115410727A (zh) 反应堆供热系统
JPH04294295A (ja) タンク型高速増殖炉
JPH046492A (ja) タンク型高速増殖炉
JPH1114781A (ja) 原子炉容器壁冷却機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964644

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3227760

Country of ref document: CA