WO2023087413A1 - 燃气轮机超速保护方法、装置、电子设备及可读存储介质 - Google Patents

燃气轮机超速保护方法、装置、电子设备及可读存储介质 Download PDF

Info

Publication number
WO2023087413A1
WO2023087413A1 PCT/CN2021/135089 CN2021135089W WO2023087413A1 WO 2023087413 A1 WO2023087413 A1 WO 2023087413A1 CN 2021135089 W CN2021135089 W CN 2021135089W WO 2023087413 A1 WO2023087413 A1 WO 2023087413A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas turbine
generator
reduce
speed
eddy current
Prior art date
Application number
PCT/CN2021/135089
Other languages
English (en)
French (fr)
Inventor
田德坤
寇涛
查万春
刘志杰
李鑫
邹江磊
周立宾
刘旭
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Publication of WO2023087413A1 publication Critical patent/WO2023087413A1/zh
Priority to US18/353,342 priority Critical patent/US20230358127A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/50Control of fuel supply conjointly with another control of the plant with control of working fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/02Purpose of the control system to control rotational speed (n)
    • F05D2270/021Purpose of the control system to control rotational speed (n) to prevent overspeed

Definitions

  • the invention relates to the technical field of gas turbine safety monitoring, in particular to a gas turbine overspeed protection method, device, electronic equipment and readable storage medium.
  • Gas turbine generator sets have the advantages of large output power, high energy density, low noise, and low emissions, and are widely used.
  • gas turbine overspeed is a problem faced by gas turbine generator sets.
  • the load of the gas turbine generator set suddenly disappears during normal operation, and the sudden load shedding of the generator will cause the speed of the gas turbine and generator to rise suddenly.
  • the speed exceeds about 5% of the rated value set by the gas turbine when the speed exceeds about 5% of the rated value set by the gas turbine, a trip will occur.
  • the maximum allowable speed of the gas turbine will damage the gas turbine.
  • Large gas turbines and steam turbines also have the same problem and must be returned to the factory for repairs. The same generator will also face the risk of generator overspeed.
  • the current solution is to reduce Gas turbine fuel supply, control the switch of the relief valve on the gas turbine, discharge the high-pressure gas of the compressor to reduce the air supply or discharge the high-pressure and high-temperature gas at the inlet of the power turbine to reduce the power input to prevent the gas turbine from overspeeding.
  • the purpose of the embodiment of the present invention is to provide a gas turbine overspeed protection method, device, electronic equipment and readable storage medium, so as to solve the technical problem of gas turbine overspeed in the gas turbine generating set to a certain extent.
  • the first aspect of the present invention provides the following technical solutions:
  • a gas turbine overspeed protection method comprising: acquiring the electrical load of a generator collected by a sensor, and the speed values of the gas turbine and the generator monitored by the sensor;
  • the controller controls the eddy current retarder to simulate the electrical load to provide braking torque to the generator;
  • the controller controls the gas turbine to reduce fuel supply, and simultaneously opens the compressor discharge valve to discharge high-pressure gas to reduce the power output and speed of the gas turbine.
  • after the step of controlling the gas turbine to reduce the fuel supply through the controller and simultaneously opening the compressor discharge valve to discharge high-pressure gas to reduce the power output and speed of the gas turbine includes:
  • the controller to control the electric eddy current retarder to simulate the electrical load to provide braking torque to the generator; or control the gas turbine to reduce the fuel supply through the controller , while opening the compressor discharge valve to discharge high-pressure gas to reduce the power output and speed of the gas turbine.
  • the step of controlling the gas turbine to reduce the fuel supply through the controller and simultaneously opening the compressor discharge valve to discharge the high-pressure gas to reduce the power output and speed of the gas turbine it further includes:
  • the controller sends an instruction to control the eddy current retarder to reduce the braking torque to the generator, and at this time the sensor transmits the monitored rotational speed value to the controller again for judgment , if the rotational speed value is stable within the set speed range, the eddy current retarder stops working;
  • the steps include:
  • the controller controls the electric eddy current retarder again to simulate the electric load to provide braking torque to the generator; or the controller controls the gas turbine to reduce the fuel supply, At the same time, opening the discharge valve of the compressor to discharge high-pressure gas reduces the power output and rotational speed of the gas turbine.
  • the step of stopping the eddy current retarder includes:
  • the controller controls the electric eddy current retarder again to simulate the electric load to provide braking torque to the generator; or the controller controls the gas turbine to reduce the fuel supply, At the same time, opening the discharge valve of the compressor to discharge high-pressure gas reduces the power output and rotational speed of the gas turbine.
  • the step further includes:
  • the gas turbine is controlled by the controller to reduce fuel supply, and at the same time, the discharge valve of the compressor is opened to discharge high-pressure gas to reduce the power output and rotational speed of the gas turbine.
  • the gas turbine overspeed protection method further includes:
  • the power take-off port is used for the installation of other driving equipment
  • the hydraulic pump and hydraulic motor can be directly installed on the multi-functional transmission box to drive the lubricating oil cooling system and hydraulic system.
  • the second aspect of the present invention provides the following technical solutions:
  • a gas turbine overspeed protection device includes: an acquisition module, used to acquire the electrical load of the generator collected by the sensor, and the speed value of the gas turbine and the generator monitored by the sensor;
  • a judging module configured to judge whether the electrical load suddenly decreases or disappears, and judges whether the rotational speed value exceeds a set speed range
  • the control module is used to control the electric eddy current retarder to simulate the electrical load to provide braking torque to the generator, and control the gas turbine to reduce the fuel supply, and at the same time open the discharge valve of the compressor to discharge high-pressure gas to reduce the power output of the gas turbine and speed.
  • control module controls the gas turbine to reduce the fuel supply through the controller, and at the same time opens the compressor discharge valve to discharge high-pressure gas. After the step of reducing the power output and speed of the gas turbine, it includes:
  • control module to control the eddy current retarder to simulate the electrical load to provide braking torque to the generator; or control the gas turbine to reduce the fuel supply through the control module , while opening the compressor discharge valve to discharge high-pressure gas to reduce the power output and speed of the gas turbine.
  • control module controls the gas turbine to reduce fuel supply through the controller, and at the same time opens the compressor discharge valve to discharge high-pressure gas.
  • control module controls the gas turbine to reduce fuel supply through the controller, and at the same time opens the compressor discharge valve to discharge high-pressure gas.
  • control module sends an instruction to control the eddy current retarder to reduce the braking torque to the generator, and at this time the sensor transmits the monitored rotational speed value to the control module again for judgment , if the rotational speed value is stable within the set speed range, the eddy current retarder stops working;
  • the steps include:
  • the step of stopping the eddy current retarder includes:
  • the step further includes:
  • control module to control the eddy current retarder to simulate the electrical load to provide braking torque to the generator
  • the gas turbine is controlled by the control module to reduce fuel supply, and at the same time, the discharge valve of the compressor is opened to discharge high-pressure gas to reduce the power output and speed of the gas turbine.
  • the gas turbine overspeed protection device further includes:
  • the power take-off port is used for the installation of other driving equipment
  • the hydraulic pump and hydraulic motor can be directly installed on the multi-functional transmission box to drive the lubricating oil cooling system and hydraulic system.
  • the third aspect of the present invention also provides the following technical solutions:
  • An electronic device comprising a processor and memory, wherein:
  • the memory is used to store computer programs
  • the processor is configured to implement the method steps in any one of the first aspect or the second aspect when executing the program stored in the memory.
  • the fourth aspect of the present invention also provides the following technical solutions:
  • a computer-readable storage medium A computer program is stored in the computer-readable storage medium. When the computer program is executed by a processor, the method steps described in any one of the first aspect or the second aspect are implemented.
  • An embodiment of the present invention provides a gas turbine overspeed protection method, device, electronic equipment, and readable storage medium, wherein the gas turbine overspeed protection method includes: acquiring the electrical load of the generator collected by the sensor, and the gas turbine and generator monitored by the sensor Speed value, to judge whether the electric load suddenly decreases or disappears, if there is a sudden decrease or disappearance, the controller controls the eddy current retarder to simulate the electric load to provide braking torque to the generator; or judges whether the speed value exceeds the set speed range, if there is a speed exceeding the set speed range, the controller controls the gas turbine to reduce the fuel supply, and at the same time opens the compressor discharge valve to discharge high-pressure gas to reduce the power output and speed of the gas turbine.
  • Embodiments of the present invention provide a gas turbine overspeed protection method, device, electronic equipment, and readable storage medium. By adding a multifunctional transmission box for speed change, the high speed of the gas turbine can be reduced to match the rated low speed of the generator, and at the same time, the Multiple power take-offs are provided for the installation of other driving equipment.
  • the above scheme provided in this case can reduce the use of motors, and can directly install hydraulic pumps and hydraulic motors to drive lubricating oil cooling systems and hydraulic systems, and can change lubrication through flow control
  • the heat dissipation power of the oil cooling system, the adaptability of the equipment is better.
  • Fig. 1 is a schematic flow sheet of a gas turbine overspeed protection method in an embodiment of the present invention
  • Fig. 2 is a schematic structural view of a gas turbine overspeed protection device in an embodiment of the present invention
  • FIG. 3 is a schematic layout diagram of a gas turbine overspeed protection device in an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the control logic of the gas turbine overspeed protection device in an embodiment of the present invention.
  • gas turbine generator sets have the advantages of large output power, high energy density, low noise, and low emissions, and are widely used.
  • gas turbine overspeed is a problem faced by gas turbine generator sets.
  • the current solution is to reduce the fuel supply of the gas turbine, control the switch of the relief valve on the gas turbine, discharge the high-pressure gas of the compressor to reduce the air supply, or discharge the high-pressure and high-temperature gas at the inlet of the power turbine to reduce the power input to prevent the gas turbine from overspeeding.
  • the driving motor needs to use explosion-proof motors to increase the design difficulty. Therefore, how to effectively solve or improve to a certain extent the gas turbine overspeed in the gas turbine generator set, and how to reduce the lubricating oil cooling system and hydraulic system of the motor-driven gas turbine generator set have become technical problems that people urgently need to solve.
  • FIG. 1 shows a schematic flow chart of a gas turbine overspeed protection method in this embodiment.
  • this embodiment provides a gas turbine overspeed protection method
  • the gas turbine overspeed protection method include:
  • the embodiment of the present invention effectively solves or improves to a certain extent the technical problem of gas turbine overspeed in the gas turbine generating set.
  • the way to obtain the speed range of the gas turbine can be obtained from the user manual given by the manufacturer during production, and can also be obtained from the maximum limit and speed range given by the manufacturer according to different types of gas turbines during production. , specifically because the manufacturers will distinguish the models during production, and the rotation speed ranges that different types of gas turbines can withstand are also different.
  • the speed range of conventional gas turbines is controlled at about 3000r/min, which will not be described in detail here.
  • the eddy current retarder is a device that uses the eddy current generated by the rotating metal disk under the action of the magnetic field to obtain retardation.
  • the front rotor and rear rotor of the eddy current retarder are connected to the input flange of the main reducer through the transition plate Connection, the stator housing is fixed on the main reducer housing through the bracket, and the excitation coil is installed on the stator.
  • a magnetic field is generated by the current from the car battery, which causes an eddy current in the rotor, and the eddy current magnetic field generates a braking torque on the rotor, and its value is related to the magnitude of the excitation current (controlled by the selector) and the rotor speed.
  • the cooling air channel is cast in the rotor interlayer, so that the heat generated by the eddy current can be dissipated by forced convection.
  • S3 includes: S3a, if the rotational speed value has not decreased to the set range, repeat the controller to control the eddy current retarder to simulate the use of The electrical load provides braking torque to the generator; or the controller controls the gas turbine to reduce fuel supply, and at the same time opens the discharge valve of the compressor to discharge high-pressure gas to reduce the power output and speed of the gas turbine. And after S3, it also includes: S3b, if the speed value drops to the set range, the controller sends an instruction to control the eddy current retarder to reduce the braking torque to the generator, and at this time the sensor will monitor the The rotation speed value is transmitted to the controller again for judgment. If the rotation speed value is stable within the set speed range, the eddy current retarder stops working;
  • the step of the sensor in S3b after the step of the sensor in S3b retransmitting the monitored rotational speed value to the controller for judgment, it includes: if the rotational speed value does not exceed the set speed range, repeating the steps to send the speed value through the controller commanding an eddy current retarder to reduce braking torque to said generator; and
  • the step of stopping the eddy current retarder after the speed value in S3b is stabilized within the set speed range, after the step of stopping the eddy current retarder, it includes: if the speed of the gas turbine and generator is not stabilized within the set range , then judge whether the speed value exceeds the set speed range;
  • the steps are repeated again through the controller to send instructions to control the eddy current retarder to reduce the braking torque to the generator;
  • the step of stopping the eddy current retarder after the speed value in S3b is stabilized within the set speed range, after the step of stopping the eddy current retarder, it further includes: if the speed of the gas turbine and the generator is not stabilized at the set speed range, range, then repeat the steps again through the controller to control the eddy current retarder to simulate the electric load to provide braking torque to the generator; or
  • the gas turbine is controlled by the controller to reduce fuel supply, and at the same time, the discharge valve of the compressor is opened to discharge high-pressure gas to reduce the power output and rotational speed of the gas turbine.
  • the overspeeding of the gas turbine and the generator can be effectively prevented.
  • the braking torque can effectively stabilize the gas turbine speed, prevent the gas turbine from overspeeding, and make up for the hysteresis of the gas turbine fuel system and compressor discharge system on the gas turbine speed control, and the large amount of electric energy required by the eddy current retarder is provided by the generator , which increases the load of the generator, and can also play a role in stabilizing the gas turbine power consumption and stabilizing the gas turbine speed.
  • the lubricating oil cooling system and hydraulic system of conventional gas turbine generator sets are driven by motors. If they are used in well site operations or other operating areas with explosion-proof requirements, the driving motor needs to use explosion-proof motors to increase the design difficulty.
  • a multifunctional transmission box is added in the middle, and the multifunctional transmission box is used for speed change, which can reduce the high speed of the gas turbine to match the rated low speed of the generator, and can provide multiple power outlets for the installation of other driving equipment. It is also possible to directly install hydraulic pumps and hydraulic motors to drive the lubricating oil cooling system and hydraulic system, which can avoid the use of explosion-proof motors, and can change the heat dissipation power of the lubricating oil cooling system through flow control.
  • Function The transmission box is equipped with a hydraulic pump and a hydraulic motor to drive the lubricating oil cooling system and the hydraulic system.
  • FIG. 2 shows a schematic structural diagram of a gas turbine overspeed protection device in this embodiment
  • Fig. 3 shows a layout diagram of a gas turbine overspeed protection device in this embodiment
  • Fig. 4 shows a gas turbine overspeed protection device in this embodiment
  • the schematic diagram of the control logic is shown in Figure 2- Figure 4.
  • the gas turbines used at this stage are divided into multi-shaft and single-shaft. It is only used for power transmission and provides a power take-off. If the multi-functional transmission box is removed for arrangement, the power take-off cannot be provided to drive other equipment.
  • the scheme shown in Figure 3 can be installed at present.
  • the multi-functional transmission box is used for speed change, which can reduce the high speed of the gas turbine to match the rated low speed of the generator, and can provide multiple power take-offs at the same time
  • the port can be used for the installation of other drive equipment.
  • the above solution provided in this case can reduce the use of motors, and can directly install hydraulic pumps and hydraulic motors on the multifunctional transmission box to drive the lubricating oil cooling system and hydraulic system.
  • the gas turbine overspeed protection device includes: a gas turbine, an eddy current retarder, a multifunctional transmission box, and a generator; The gas turbine, eddy current retarder, multifunctional transmission box and generator are connected, and when the equipment is in normal operation, the gas turbine overspeed protection device also includes:
  • the obtaining module 101 is used to obtain the electric load of the generator collected by the sensor B, and obtain the rotational speed values of the gas turbine and the generator monitored by the sensor A;
  • a judging module 102 configured to judge whether the electrical load suddenly decreases or disappears, and judges whether the rotational speed value exceeds a set speed range
  • the control module 103 is used to control the eddy current retarder to simulate the electrical load to provide braking torque to the generator, reduce the speed of the gas turbine, suppress the increase of the speed of the gas turbine, generator and the entire shaft system, and reduce the speed of the eddy current retarder.
  • the electric energy required by the generator comes to the generator.
  • the eddy current retarder not only provides braking torque to the system but also acts as a generator load, slowing down the overspeed of the generator caused by the sudden drop or disappearance of the load; and controlling the gas turbine to reduce the fuel supply, At the same time, opening the discharge valve of the compressor to discharge high-pressure gas reduces the power output and rotational speed of the gas turbine.
  • control module 103 controls the gas turbine to reduce the fuel supply through the controller, and at the same time opens the compressor discharge valve to discharge high-pressure gas. After the step of reducing the power output and speed of the gas turbine, it includes:
  • control module 103 to control the electric eddy current retarder to simulate the electrical load to provide braking torque to the generator; or control the gas turbine to reduce Fuel supply, while opening the compressor discharge valve to discharge high-pressure gas reduces the power output and speed of the gas turbine.
  • control module 103 controls the gas turbine to reduce fuel supply through the controller, and simultaneously opens the compressor discharge valve to discharge high-pressure gas to reduce the power output and speed of the gas turbine, it also includes:
  • control module 103 sends an instruction to control the eddy current retarder to reduce the braking torque to the generator, and at this time the sensor transmits the monitored speed value to the control module 103 again Judging, if the speed value is stable within the set speed range, the eddy current retarder stops working; and if the speed of the gas turbine and the generator is stable within the set range, then end.
  • the step that the sensor transmits the monitored rotational speed value to the control module 103 for judgment includes:
  • the rotational speed value is stable within the set speed range, after the step of stopping the eddy current retarder, it includes:
  • control module 103 to control the eddy current retarder to simulate the electrical load to provide braking torque to the generator;
  • the gas turbine is controlled by the control module 103 to reduce fuel supply, and at the same time, the discharge valve of the compressor is opened to discharge high-pressure gas to reduce the power output and speed of the gas turbine.
  • the embodiment of the present invention further provides an electronic device, which includes a processor and a memory.
  • the memory is used to store computer programs.
  • the processor is used to execute the program stored in the memory, the method steps described in the embodiment of the gas turbine overload protection method are realized.
  • the above server may also include known structural components such as a communication interface and a communication bus.
  • the processor, the communication interface and the memory complete the mutual communication through the communication bus.
  • Above-mentioned processor can be central processing unit (Central Processing Unit, be called for short CPU), network processor (Network Processor, NP) etc. for example; Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • Central Processing Unit be called for short CPU
  • network processor Network Processor, NP
  • NP Network Processor
  • FPGA Field Programmable Gate Array
  • other programmable logic devices discrete gate or transistor logic devices, discrete hardware components.
  • the above-mentioned memory may include a random access memory (Random Access Memory, RAM), and may also include a non-volatile memory (non-volatile memory, NVM), such as at least one disk memory.
  • RAM Random Access Memory
  • NVM non-volatile memory
  • the memory may also be at least one storage device located far away from the aforementioned processor.
  • the embodiment of the present invention further provides a computer-readable storage medium.
  • a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the method steps described in the embodiment of the gas turbine overload protection method are realized.
  • the above-mentioned computer-readable storage medium may include, but not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read-only memory (ROM), programmable read-only memory ( PROM), Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory (for example, NOR-type flash memory or NAND-type flash memory), Content Addressable Memory (CAM), Polymer memory (for example, ferroelectric polymer memory), phase change memory, bidirectional switch semiconductor memory, silicon-oxide-silicon nitride-silicon oxide-silicon (Silicon-Oxide-Nitride-Oxide-Silicon, SONOS) memory, A magnetic or optical card, or any other suitable type of computer-readable storage medium.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • each component or each step can be decomposed and/or reassembled. These decompositions and/or recombinations should be considered equivalents of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Turbines (AREA)

Abstract

本发明实施例提供了一种燃气轮机超速保护方法、装置、电子设备及可读存储介质,其中,燃气轮机超速保护方法包括:获取传感器采集的发电机的用电负载,以及传感器监测的燃气轮机及发电机的转速值,判断用电负载是否突减或消失,若存在突减或消失则通过控制器控制电涡流缓速器模拟用电负载向发电机提供制动力矩;或者判断转速值是否超过设定速度范围,若存在超过设定速度范围则通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低燃气轮机的功率输出以及转速,本发明实施例通过采取该技术方案,有效解决或者在一定程度上改善了燃气轮机发电机组中的燃机超速的技术问题。

Description

燃气轮机超速保护方法、装置、电子设备及可读存储介质 技术领域
本发明涉及燃气轮机安全监控技术领域,特别是涉及一种燃气轮机超速保护方法、装置、电子设备及可读存储介质。
背景技术
燃气轮机发电机组具有输出功率大、能量密度高、低噪声、低排放等优点应用广泛,但是燃机超速是燃气轮机发电机组面临着一个难题。目前燃气轮机发电机组正常工作中负载突然消失,发电机突然甩负荷会导致燃气轮机及发电机转速突然上升,对于轻型燃机转速超过燃机设定的额定值5%左右时会出现跳机,转速超过燃机最大允许转速会损坏燃机,大型的燃气轮机及蒸汽轮机也存在同样的问题,必须返厂进行维修,同样的发电机也会面临发电机超速带来的风险,目前的解决方案是通过减少燃机燃料的供应,控制燃机上的泄放阀的开关,排放压气机的高压气体减少空气供应或者排放动力涡轮进口高压高温气体减少动力输入来防止燃机超速。
但是这种方法存在很多弊端,高压高温的气体排放处理困难,燃料的减小及高压气体的排放有滞后性,在发电机组甩负荷后不能很好的防止燃机超速的发生。而且发电机组的整个轴系存在非常大的惯性,特别是重型发电机组负载突减或消失在惯性力的作用下转速会突然上升,单纯的降低燃机的转速和功率不能及时有效的稳定转速。目前常规燃气轮机发电机组的润滑油冷却系统及液压系统采用的是电机驱动的方式,如果用于井场作业或者其他有防爆要求的作业区域时,驱动电机需要采用防爆电机增加设计难度,因此,如何有效的防止燃气轮机发电机组中的燃机超速,以及如何减少电机驱动燃气轮机发电机组的润滑油冷却系统和液压系统成为了人们迫切需要解决的技术问题。
发明内容
本发明实施例的目的在于提供一种燃气轮机超速保护方法、装置、电子设备及可读存储介质,以在一定程度上解决燃气轮机发电机组中的燃机超速的技术问题。
为了实现上述目的,本发明的第一方面,提供了以下技术方案:
一种燃气轮机超速保护方法,所述燃气轮机超速保护方法包括:获取传感器采集的发电机的用电负载,以及传感器监测的燃气轮机及发电机的转速值;
判断所述用电负载是否突减或消失,若存在突减或消失则通过控制器控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者
判断所述转速值是否超过设定速度范围,若存在超过所述设定速度范围则通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
在一些实施方式中,所述通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速的步骤之后,包括:
若所述转速值并未降低至设定范围,则再次重复通过控制器控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
在一些实施方式中,所述通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速的步骤之后,还包括:
若所述转速值降低至设定范围,则所述控制器发送指令控制电涡流缓速器向所述发电机减少制动力矩,则此时传感器将监测的转速值再次传输至控制器进行判断,若所述转速值稳定在设定速度范围,则电涡流缓速器停止工作;以及
若燃气轮机及发电机转速稳定在设定范围,则结束。
在一些实施方式中,传感器将监测的转速值再次传输至控制器进行判断的步骤之后,包括:
若所述转速值并未超出设定速度范围,则再次重复通过控制器发送指令控制电涡流缓速器向所述发电机减少制动力矩;以及
若所述转速值超出了设定速度范围,则再次重复通过控制器控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
在一些实施方式中,所述转速值稳定在设定速度范围,则电涡流缓速器停止工作的步骤之后,包括:
若所述燃气轮机及发电机转速并未稳定在设定范围,则判断转速值是否超出设定速度范围;
若所述转速值并未超出设定速度范围,则再次重复通过控制器发送指令控制电涡流缓速器向所述发电机减少制动力矩;以及
若所述转速值超出了设定速度范围,则再次重复通过控制器控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制器控制燃气轮机减少燃料供应, 同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
在一些实施方式中,所述转速值稳定在设定速度范围,则电涡流缓速器停止工作的步骤之后,还包括:
若所述燃气轮机及发电机转速并未稳定在设定范围,则再次重复通过控制器控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者
通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
在一些实施方式中,所述燃气轮机超速保护方法还包括:
设置于所述电涡流缓速器与发电机之间的多功能传动箱,所述多功能传动箱用于变速,可将燃气轮机高转速降低为匹配发电机额定的低转速,同时可以提供多个取力口,用于其他驱动设备的安装,
其中,可直接在多功能传动箱上安装液压泵及液压马达驱动润滑油冷却系统及液压系统。
为了实现上述目的,本发明的第二方面,提供了以下技术方案:
一种燃气轮机超速保护装置,所述燃气轮机超速保护装置包括:获取模块,用于获取传感器采集的发电机的用电负载,以及传感器监测的燃气轮机及发电机的转速值;
判断模块,用于判断所述用电负载是否突减或消失,以及判断所述转速值是否超过设定速度范围;
其中,若存在突减或消失,以及若存在超过设定速度范围;
控制模块,用于控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩,以及控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
在一些实施方式中,所述控制模块通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速的步骤之后,包括:
若所述转速值并未降低至设定范围,则再次重复通过控制模块控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制模块控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
在一些实施方式中,所述控制模块通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速的步骤之后,还包括:
若所述转速值降低至设定范围,则所述控制模块发送指令控制电涡流缓速器向所述 发电机减少制动力矩,则此时传感器将监测的转速值再次传输至控制模块进行判断,若所述转速值稳定在设定速度范围,则电涡流缓速器停止工作;以及
若燃气轮机及发电机转速稳定在设定范围,则结束。
在一些实施方式中,传感器将监测的转速值再次传输至控制模块进行判断的步骤之后,包括:
若所述转速值并未超出设定速度范围,则再次重复通过控制模块发送指令控制电涡流缓速器向所述发电机减少制动力矩;以及
若所述转速值超出了设定速度范围,则再次重复通过控制模块控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制模块控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
在一些实施方式中,所述转速值稳定在设定速度范围,则电涡流缓速器停止工作的步骤之后,包括:
若所述燃气轮机及发电机转速并未稳定在设定范围,则判断转速值是否超出设定速度范围;
若所述转速值并未超出设定速度范围,则再次重复通过控制模块发送指令控制电涡流缓速器向所述发电机减少制动力矩;以及
若所述转速值超出了设定速度范围,则再次重复通过控制模块控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制模块控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
在一些实施方式中,所述转速值稳定在设定速度范围,则电涡流缓速器停止工作的步骤之后,还包括:
若所述燃气轮机及发电机转速并未稳定在设定范围,则再次重复通过控制模块控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者
通过控制模块控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
在一些实施方式中,所述燃气轮机超速保护装置还包括:
设置于所述电涡流缓速器与发电机之间的多功能传动箱,所述多功能传动箱用于变速,可将燃气轮机高转速降低为匹配发电机额定的低转速,同时可以提供多个取力口,用于其他驱动设备的安装,
其中,可直接在多功能传动箱上安装液压泵及液压马达驱动润滑油冷却系统及液压系统。
为了实现上述目的,本发明的第三方面,还提供了以下技术方案:
一种电子设备,其包括处理器和存储器,其中:
所述存储器,用于存放计算机程序;
所述处理器,用于执行所述存储器上所存放的程序时,实现第一方面或第二方面中任一所述的方法步骤。
为了实现上述目的,本发明的第四方面,还提供了以下技术方案:
一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现第一方面或第二方面中任一所述的方法步骤。
与现有技术相比,本申请实施例的有益效果是:
本发明实施例提供一种燃气轮机超速保护方法、装置、电子设备及可读存储介质,其中,燃气轮机超速保护方法包括:获取传感器采集的发电机的用电负载,以及传感器监测的燃气轮机及发电机的转速值,判断用电负载是否突减或消失,若存在突减或消失则通过控制器控制电涡流缓速器模拟用电负载向发电机提供制动力矩;或者判断转速值是否超过设定速度范围,若存在超过设定速度范围则通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低燃气轮机的功率输出以及转速,本发明实施例通过采取该技术方案,有效解决或者在一定程度上改善了燃气轮机发电机组中的燃机超速的技术问题。
另一方面,常规燃气轮机发电机组的润滑油冷却系统及液压系统采用的是电机驱动的方式,如果用于井场作业或者其他有防爆要求的作业区域时,驱动电机需要采用防爆电机增加设计难度,本发明实施例提供一种燃气轮机超速保护方法、装置、电子设备及可读存储介质,通过增加用于变速的多功能传动箱,可将燃机高转速降低为匹配发电机额定低转速,同时可以提供多个取力口可用于其他驱动设备的安装,本案例提供的上述方案可以减少电机的使用,可以直接安装液压泵及液压马达驱动润滑油冷却系统及液压系统,而且可以通过流量控制改变润滑油冷却系统的散热功率,设备的适应性能更好。
为了能更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而得以体现。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例中燃气轮机超速保护方法的流程示意图;
图2为本发明一个实施例中燃气轮机超速保护装置的结构示意图;
图3为本发明一个实施例中燃气轮机超速保护装置的布局示意图;
图4为本发明一个实施例中燃气轮机超速保护装置的控制逻辑示意图。
具体实施方式
下面通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本发明,所属领域的技术人员应了解,本文中所描述的一个方面可与任何其它方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说,可使用本文中所阐述的任何数目个方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其它结构及/或功能性实施此设备及/或实践此方法。
还需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
另外,在以下描述中,提供具体细节是为了便于透彻理解实例。然而,所属领域的 技术人员将理解,可在没有这些特定细节的情况下实践所述方面。
目前,燃气轮机发电机组具有输出功率大、能量密度高、低噪声、低排放等优点应用广泛,但是燃机超速是燃气轮机发电机组面临着一个难题。目前的解决方案是通过减少燃机燃料的供应,控制燃机上的泄放阀的开关,排放压气机的高压气体减少空气供应或者排放动力涡轮进口高压高温气体减少动力输入来防止燃机超速。但是上述方式存在很多弊端,高压高温的气体排放处理困难,燃料的减小及高压气体的排放有滞后性,在发电机组甩负荷后不能很好的防止燃机超速的发生。而且发电机组的整个轴系存在非常大的惯性,特别是重型发电机组负载突减或消失在惯性力的作用下转速会突然上升,单纯的降低燃机的转速和功率不能及时有效的稳定转速;以及常规发燃气轮机发电机组的润滑油冷却系统及液压系统采用的是电机驱动的方式,如果用于井场作业或者其他有防爆要求的作业区域时,驱动电机需要采用防爆电机增加设计难度。因此,需要设计一种如何有效解决或者在一定程度上改善燃气轮机发电机组中的燃机超速,以及如何减少电机驱动燃气轮机发电机组的润滑油冷却系统和液压系统成为了人们迫切需要解决的技术问题。
因此,为了解决或者有效改善上述问题,图1示出了本实施例中燃气轮机超速保护方法的流程示意图,如图1所示,本实施例提供一种燃气轮机超速保护方法,所述燃气轮机超速保护方法包括:
S1,获取传感器B采集的发电机的用电负载,以及获取传感器A监测的燃气轮机及发电机的转速值;
S2,判断所述用电负载是否突减或消失,若存在突减或消失会导致燃气轮机、发电机及整个轴系转速将会突然上升,则通过控制器控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩,降低燃机转速,抑制燃机、发电机及整个轴系转速上升,电涡流缓速器需要的电能来至发电机,此时电涡流缓速器不仅给系统提供制动力矩而且可以作为发电机负载,减缓发电机因负载突减或消失导致的超速;或者
S3,判断所述转速值是否超过设定速度范围,若存在超过设定速度范围则通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。本发明实施例通过采取该技术方案,有效解决或者在一定程度上改善了燃气轮机发电机组中的燃机超速的技术问题。其中,需要说明的是,燃气轮机的转度范围的获取方式可以通过厂家生产时给予的使用手册中获取,以及还可以从厂家生产时根据不同型号的燃气轮机所给出的最高限值和转速范围获取,具体为在厂家生产时 会区分型号,不同型号的燃气轮机所能承受的转度范围也不尽相同,例如常规的燃气轮机转速范围控制在3000r/min左右,这里不在详细赘述。作为扩展,电涡流缓速器是利用旋转金属盘在磁场作用下所产生的电涡流而获得缓速的装置,电涡流缓速器的前转子和后转子通过过渡盘与主减速器输入凸缘连接,定子壳体通过支架固定在主减速器壳上,定子上装有励磁线圈。工作时由汽车蓄电池通入电流而产生磁场,在转子中引起电涡流,涡流磁场对转子产生制动转矩,其值与励磁电流的大小(由选择器控制)和转子转速有关。在转子夹层中铸出冷却风道,使电涡流产生的热通过强制对流散出。
其中,为了进一步确定转速值是否降低至设定范围,在S3之后包括:S3a,若所述转速值并未降低至设定范围,则再次重复通过控制器控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。以及在S3之后还包括:S3b,若所述转速值降低至设定范围,则所述控制器发送指令控制电涡流缓速器向所述发电机减少制动力矩,则此时传感器将监测的转速值再次传输至控制器进行判断,若所述转速值稳定在设定速度范围,则电涡流缓速器停止工作;以及若燃气轮机及发电机转速稳定在设定范围,则结束。
在一些实施方式中,在S3b中的传感器将监测的转速值再次传输至控制器进行判断的步骤之后,包括:若所述转速值并未超出设定速度范围,则再次重复步骤通过控制器发送指令控制电涡流缓速器向所述发电机减少制动力矩;以及
若所述转速值超出了设定速度范围,则再次重复步骤通过控制器控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
在一些实施方式中,在S3b中的所述转速值稳定在设定速度范围,则电涡流缓速器停止工作的步骤之后,包括:若所述燃气轮机及发电机转速并未稳定在设定范围,则判断转速值是否超出设定速度范围;
若所述转速值并未超出设定速度范围,则再次重复步骤通过控制器发送指令控制电涡流缓速器向所述发电机减少制动力矩;以及
若所述转速值超出了设定速度范围,则再次重复步骤通过控制器控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
在一些实施方式中,在S3b中的所述转速值稳定在设定速度范围,则电涡流缓速器 停止工作的步骤之后,还包括:若所述燃气轮机及发电机转速并未稳定在设定范围,则再次重复步骤通过控制器控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者
通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。本案例通过在燃气轮机和发电机之间增加电涡流缓速器,可以有效的防止燃气轮机及发电机超速,电涡流缓速器的反映迅速,能够快速反映,模拟负载产生的力矩及时给发电机组提供制动力矩,有效的稳定燃机转速,防止燃机超速,弥补了燃机燃料系统及压气机排放系统对燃机转速控制的滞后性,而且电涡流缓速器需要的大量电能由发电机提供,增加了发电机的负载,也能起到燃机功率消耗稳定燃机转速的作用。另外,常规发燃气轮机发电机组的润滑油冷却系统及液压系统采用的是电机驱动的方式,如果用于井场作业或者其他有防爆要求的作业区域时,驱动电机需要采用防爆电机增加设计难度,本案中增加多功能传动箱,所述多功能传动箱用于变速,可将燃机高转速降低为匹配发电机额定低转速,同时可以提供多个取力口用于其他驱动设备的安装。也可以直接安装液压泵及液压马达驱动润滑油冷却系统及液压系统,可以避免防爆电机的使用,而且可以通过流量控制改变润滑油冷却系统的散热功率,设备的适应性能更好,可以直接在多功能传动箱上安装液压泵及液压马达驱动润滑油冷却系统及液压系统。
相应的,图2示出了本实施例中燃气轮机超速保护装置的结构示意图,图3示出了本实施例中燃气轮机超速保护装置的布局示意图,图4示出了本实施例中燃气轮机超速保护装置的控制逻辑示意图,如图2-图4所示,现阶段使用的燃气轮机分为多轴及单轴,多轴燃机发电机组不需要变速,采用图3所示的方案布置时多功能传动箱仅用于动力传递并提供取力口,如果采用去掉多功能传动箱进行布置,无法提供取力口驱动其他设备。对于单轴燃机目前只能安装图3所示的方案进行布置,此时多功能传动箱用于变速,可将燃机高转速降低为匹配发电机额定低转速,同时可以提供多个取力口可用于其他驱动设备的安装。本案例提供的上述方案可以减少电机的使用,可以直接在多功能传动箱上安装液压泵及液压马达驱动润滑油冷却系统及液压系统。具体的,燃气轮机超速保护装置包括:燃气轮机、电涡流缓速器、多功能传动箱以及发电机;电涡流缓速器与多功能传动箱集成在一起布置,也可以分开布置,使用联轴器将燃气轮机、电涡流缓速器、多功能传动箱及发电机连接,设备正常运行时,所述燃气轮机超速保护装置还包括:
获取模块101,用于获取传感器B采集的发电机的用电负载,以及获取传感器A监测的燃气轮机及发电机的转速值;
判断模块102,用于判断所述用电负载是否突减或消失,以及判断所述转速值是否超过设定速度范围;
其中,若存在突减或消失,会导致燃气轮机、发电机及整个轴系转速将会突然上升,以及若存在超过设定速度范围;
控制模块103,用于控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩,降低燃机转速,抑制燃机、发电机及整个轴系转速上升,电涡流缓速器需要的电能来至发电机,此时电涡流缓速器不仅给系统提供制动力矩而且可以作为发电机负载,减缓发电机因负载突减或消失导致的超速;以及控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
在一些实施方式中,其中,控制模块103通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速的步骤之后,包括:
若所述转速值并未降低至设定范围,则再次重复通过控制模块103控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制模块103控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
进一步的,控制模块103通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速的步骤之后,还包括:
若所述转速值降低至设定范围,则所述控制模块103发送指令控制电涡流缓速器向所述发电机减少制动力矩,则此时传感器将监测的转速值再次传输至控制模块103进行判断,若所述转速值稳定在设定速度范围,则电涡流缓速器停止工作;以及若燃气轮机及发电机转速稳定在设定范围,则结束。
进一步的,传感器将监测的转速值再次传输至控制模块103进行判断的步骤之后,包括:
若所述转速值并未超出设定速度范围,则再次重复通过控制模块103发送指令控制电涡流缓速器向所述发电机减少制动力矩;以及
若所述转速值超出了设定速度范围,则再次重复通过控制模块103控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制模块103控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
在一些实施方式中,其中,所述转速值稳定在设定速度范围,则电涡流缓速器停止工作的步骤之后,包括:
若所述燃气轮机及发电机转速并未稳定在设定范围,则判断转速值是否超出设定速度范围;
若所述转速值并未超出设定速度范围,则再次重复通过控制模块103发送指令控制电涡流缓速器向所述发电机减少制动力矩;以及
若所述转速值超出了设定速度范围,则再次重复通过控制模块103控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制模块103控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
进一步的,所述转速值稳定在设定速度范围,则电涡流缓速器停止工作的步骤之后,还包括:
若所述燃气轮机及发电机转速并未稳定在设定范围,则再次重复通过控制模块103控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者
通过控制模块103控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
基于与上述燃气轮机超度保护方法实施例相同的技术构思,本发明实施例还提供一种电子设备,其包括处理器和存储器。其中,存储器用于存放计算机程序。处理器用于执行存储器上所存放的程序时,实现燃气轮机超度保护方法实施例所述的方法步骤。
当然,本领域技术人员应能理解,上述服务器还可以包括通信接口、通信总线等公知的结构部件。其中,处理器、通信接口和存储器通过通信总线完成相互间的通信。上述处理器例如可以为中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
上述存储器可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(non-volatile memory,NVM),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。
有关本实施例的工作原理、所解决的技术问题、所实现的技术效果等可以参考前述 方法实施例中的相关说明,在此不再赘述。
基于与上述燃气轮机超度保护方法实施例相同的技术构思,本发明实施例还提供一种计算机可读存储介质。该计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现燃气轮机超度保护方法实施例所述的方法步骤。
上述计算机可读存储介质可以包括但不限于随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、可编程只读存储器(PROM)、可擦写可编程只读存储器(EPROM)、电可擦写可编程只读存储器(EEPROM)、闪存(例如,NOR型闪存或NAND型闪存)、内容可寻址存储器(CAM)、聚合物存储器(例如,铁电聚合物存储器)、相变存储器、双向开关半导体存储器、硅-氧化物-氮化硅-氧化硅-硅(Silicon-Oxide-Nitride-Oxide-Silicon,SONOS)存储器、磁卡或者光卡,亦或是其他任意适当类型的计算机可读存储介质。
有关本实施例的工作原理、所解决的技术问题、所实现的技术效果等可以参考前述方法实施例中的相关说明,在此不再赘述。
以上结合具体实施例描述了本公开的基本原理,但是,需要指出的是,在本公开中提及的优点、优势、效果等仅是示例而非限制,不能认为这些优点、优势、效果等是本公开的各个实施例必须具备的。另外,上述公开的具体细节仅是为了示例的作用和便于理解的作用,而非限制,上述细节并不限制本公开为必须采用上述具体的细节来实现。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
还需要指出的是,在本公开的系统和方法中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。
本说明书中的各个实施例均采用相关的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。可以不脱离由所 附权利要求定义的教导的技术而进行对在此所述的技术的各种改变、替换和更改。此外,本公开的权利要求的范围不限于以上所述的处理、机器、制造、事件的组成、手段、方法和动作的具体方面。可以利用与在此所述的相应方面进行基本相同的功能或者实现基本相同的结果的当前存在的或者稍后要开发的处理、机器、制造、事件的组成、手段、方法或动作。因而,所附权利要求包括在其范围内的这样的处理、机器、制造、事件的组成、手段、方法或动作。
最后应当说明的是,以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均包含在申请待批的本发明的权利要求范围之内。

Claims (16)

  1. 一种燃气轮机超速保护方法,其特征在于,所述燃气轮机超速保护方法包括:
    获取传感器采集的发电机的用电负载,以及传感器监测的燃气轮机及发电机的转速值;
    判断所述用电负载是否突减或消失,若存在突减或消失则通过控制器控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者
    判断所述转速值是否超过设定速度范围,若存在超过所述设定速度范围则通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
  2. 根据权利要求1所述的燃气轮机超速保护方法,其特征在于,所述通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速的步骤之后,包括:
    若所述转速值并未降低至设定范围,则再次重复通过控制器控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
  3. 根据权利要求1或2中任意一项所述的燃气轮机超速保护方法,其特征在于,所述通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速的步骤之后,还包括:
    若所述转速值降低至设定范围,则所述控制器发送指令控制电涡流缓速器向所述发电机减少制动力矩,则此时传感器将监测的转速值再次传输至控制器进行判断,若所述转速值稳定在设定速度范围,则电涡流缓速器停止工作;以及
    若燃气轮机及发电机转速稳定在设定范围,则结束。
  4. 根据权利要求3所述的燃气轮机超速保护方法,其特征在于,传感器将监测的转速值再次传输至控制器进行判断的步骤之后,包括:
    若所述转速值并未超出设定速度范围,则再次重复通过控制器发送指令控制电涡流缓速器向所述发电机减少制动力矩;以及
    若所述转速值超出了设定速度范围,则再次重复通过控制器控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
  5. 根据权利要求3所述的燃气轮机超速保护方法,其特征在于,所述转速值稳定在设定速度范围,则电涡流缓速器停止工作的步骤之后,包括:
    若所述燃气轮机及发电机转速并未稳定在设定范围,则判断转速值是否超出设定速度范围;
    若所述转速值并未超出设定速度范围,则再次重复通过控制器发送指令控制电涡流缓速器向所述发电机减少制动力矩;以及
    若所述转速值超出了设定速度范围,则再次重复通过控制器控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
  6. 根据权利要求3所述的燃气轮机超速保护方法,其特征在于,所述转速值稳定在设定速度范围,则电涡流缓速器停止工作的步骤之后,还包括:
    若所述燃气轮机及发电机转速并未稳定在设定范围,则再次重复通过控制器控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者
    通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
  7. 根据权利要求1所述的燃气轮机超速保护方法,其特征在于,所述燃气轮机超速保护方法还包括:
    设置于所述电涡流缓速器与发电机之间的多功能传动箱,所述多功能传动箱用于变速,可将燃气轮机高转速降低为匹配发电机额定的低转速,同时可以提供多个取力口,用于其他驱动设备的安装,
    其中,可直接在多功能传动箱上安装液压泵及液压马达驱动润滑油冷却系统及液压系统。
  8. 一种燃气轮机超速保护装置,其特征在于,所述燃气轮机超速保护装置包括:
    获取模块,用于获取传感器采集的发电机的用电负载,以及传感器监测的燃气轮机及发电机的转速值;
    判断模块,用于判断所述用电负载是否突减或消失,以及判断所述转速值是否超过设定速度范围;
    其中,若存在突减或消失,以及若存在超过设定速度范围;
    控制模块,用于控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩,以及控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
  9. 根据权利要求8所述的燃气轮机超速保护装置,其特征在于,所述控制模块通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气 轮机的功率输出以及转速的步骤之后,包括:
    若所述转速值并未降低至设定范围,则再次重复通过控制模块控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制模块控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
  10. 根据权利要求8或9中任意一项所述的燃气轮机超速保护装置,其特征在于,所述控制模块通过控制器控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速的步骤之后,还包括:
    若所述转速值降低至设定范围,则所述控制模块发送指令控制电涡流缓速器向所述发电机减少制动力矩,则此时传感器将监测的转速值再次传输至控制模块进行判断,若所述转速值稳定在设定速度范围,则电涡流缓速器停止工作;以及
    若燃气轮机及发电机转速稳定在设定范围,则结束。
  11. 根据权利要求10所述的燃气轮机超速保护装置,其特征在于,传感器将监测的转速值再次传输至控制模块进行判断的步骤之后,包括:
    若所述转速值并未超出设定速度范围,则再次重复通过控制模块发送指令控制电涡流缓速器向所述发电机减少制动力矩;以及
    若所述转速值超出了设定速度范围,则再次重复通过控制模块控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制模块控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
  12. 根据权利要求10所述的燃气轮机超速保护装置,其特征在于,所述转速值稳定在设定速度范围,则电涡流缓速器停止工作的步骤之后,包括:
    若所述燃气轮机及发电机转速并未稳定在设定范围,则判断转速值是否超出设定速度范围;
    若所述转速值并未超出设定速度范围,则再次重复通过控制模块发送指令控制电涡流缓速器向所述发电机减少制动力矩;以及
    若所述转速值超出了设定速度范围,则再次重复通过控制模块控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者通过控制模块控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
  13. 根据权利要求10所述的燃气轮机超速保护装置,其特征在于,所述转速值稳定在设定速度范围,则电涡流缓速器停止工作的步骤之后,还包括:
    若所述燃气轮机及发电机转速并未稳定在设定范围,则再次重复通过控制模块控制电涡流缓速器模拟所述用电负载向所述发电机提供制动力矩;或者
    通过控制模块控制燃气轮机减少燃料供应,同时开启压气机排放阀排放高压气体降低所述燃气轮机的功率输出以及转速。
  14. 根据权利要求8所述的燃气轮机超速保护装置,其特征在于,所述燃气轮机超速保护装置还包括:
    设置于所述电涡流缓速器与发电机之间的多功能传动箱,所述多功能传动箱用于变速,可将燃气轮机高转速降低为匹配发电机额定的低转速,同时可以提供多个取力口,用于其他驱动设备的安装,
    其中,可直接在多功能传动箱上安装液压泵及液压马达驱动润滑油冷却系统及液压系统。
  15. 一种电子设备,其特征在于,包括处理器和存储器,其中:
    所述存储器,用于存放计算机程序;
    所述处理器,用于执行所述存储器上所存放的程序时,实现权利要求1-7中任意一所述的方法步骤。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-7中任意一所述的方法步骤。
PCT/CN2021/135089 2021-01-26 2021-12-02 燃气轮机超速保护方法、装置、电子设备及可读存储介质 WO2023087413A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/353,342 US20230358127A1 (en) 2021-01-26 2023-07-17 Gas turbine overspeed protection method and apparatus, electronic device and storage medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202111326282 2021-11-10
CN202111363408.1 2021-11-17
CN202111363408.1A CN114382597B (zh) 2021-11-10 2021-11-17 燃气轮机超速保护方法、装置、电子设备及可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/353,342 Continuation-In-Part US20230358127A1 (en) 2021-01-26 2023-07-17 Gas turbine overspeed protection method and apparatus, electronic device and storage medium

Publications (1)

Publication Number Publication Date
WO2023087413A1 true WO2023087413A1 (zh) 2023-05-25

Family

ID=81195643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135089 WO2023087413A1 (zh) 2021-01-26 2021-12-02 燃气轮机超速保护方法、装置、电子设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN114382597B (zh)
WO (1) WO2023087413A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112190A (zh) * 1993-12-28 1995-11-22 株式会社日立制作所 燃气轮机装置及操作它的方法
US6230479B1 (en) * 1998-05-14 2001-05-15 Hitachi, Ltd. Method of controlling load on power plant and load control system for carrying out the same
CN101268266A (zh) * 2005-10-20 2008-09-17 川崎成套设备股份有限公司 燃气轮机的控制系统及控制方法
CN103558031A (zh) * 2013-11-11 2014-02-05 沈阳黎明航空发动机(集团)有限责任公司 一种燃气轮机甩负荷试验方法
CN112879168A (zh) * 2021-01-26 2021-06-01 三一汽车起重机械有限公司 一种发动机超速保护控制方法、控制装置及车辆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7188475B2 (en) * 2003-12-18 2007-03-13 Honeywell International, Inc. Starting and controlling speed of a two spool gas turbine engine
CN202413454U (zh) * 2012-01-11 2012-09-05 江西波星机械泵阀制造有限公司 缓速器控制系统
EP2848772A1 (de) * 2013-09-17 2015-03-18 Siemens Aktiengesellschaft Verfahren zum Testen einer Überdrehzahlschutzeinrichtung einer Einwellenanlage
CN205779233U (zh) * 2016-06-21 2016-12-07 张文斌 电动废气涡轮增压器装置
US10491145B2 (en) * 2017-08-11 2019-11-26 Rolls-Royce North American Technologies Inc. Gas turbine generator speed DC to DC converter control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112190A (zh) * 1993-12-28 1995-11-22 株式会社日立制作所 燃气轮机装置及操作它的方法
US6230479B1 (en) * 1998-05-14 2001-05-15 Hitachi, Ltd. Method of controlling load on power plant and load control system for carrying out the same
CN101268266A (zh) * 2005-10-20 2008-09-17 川崎成套设备股份有限公司 燃气轮机的控制系统及控制方法
CN103558031A (zh) * 2013-11-11 2014-02-05 沈阳黎明航空发动机(集团)有限责任公司 一种燃气轮机甩负荷试验方法
CN112879168A (zh) * 2021-01-26 2021-06-01 三一汽车起重机械有限公司 一种发动机超速保护控制方法、控制装置及车辆

Also Published As

Publication number Publication date
CN114382597A (zh) 2022-04-22
CN114382597B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
CN1977115B (zh) 带机械损耗补偿的转矩控制的泵保护
US9963995B2 (en) Method of operating a turbine engine after flame off
JP5221612B2 (ja) 電動オイルポンプ用モータ制御装置及び制御方法
EP3282106B1 (en) Generation of electricity from exhaust gas
JPWO2013080321A1 (ja) 再生エネルギー型発電装置およびその制御方法
KR20120022997A (ko) 전동 과급기
WO2019050860A1 (en) VARIABLE SPEED CONTROL OF A WIND GENERATOR BASED ON AN ESTIMATED COUPLE
DE102016102789A1 (de) Motorbetriebener Verdichter
WO2023087413A1 (zh) 燃气轮机超速保护方法、装置、电子设备及可读存储介质
CN105024405A (zh) 三机组传动变频发电系统
WO2014012581A1 (en) Voltage regulator system for a genset
CN205206971U (zh) 用于发动机的怠速转速控制器、控制系统及工程机械
CN110905672A (zh) 一种适应发动机不同转速的液压系统功率实时匹配方法
CN101075796A (zh) 电动机软起动装置
CN204835552U (zh) 三机组传动变频发电系统
JP2612369B2 (ja) 動力源装置
US4220868A (en) Method of and system for controllably connecting load to generator
Swamy et al. Typical problems encountered with variable frequency drives in the industry
CN116696571A (zh) 用于工程车辆的控制方法、控制器、系统及工程车辆
US10175672B2 (en) Control system for turbomachine complex and method of operating the same
Selvaganesan et al. Fuzzy Fault Detection for Permanent Magnet Synchronous Generator
Gong Research on Compressor Oil System Based on Frequency Conversion Governor
CN104386584A (zh) 一种起重设备的动力控制方法、动力控制系统
CN203984290U (zh) 转速补偿式发电机稳压装置及工频永磁发电机组
JP2019132220A (ja) スクリュー圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964558

Country of ref document: EP

Kind code of ref document: A1