WO2023085094A1 - Brake system and brake pedal device - Google Patents

Brake system and brake pedal device Download PDF

Info

Publication number
WO2023085094A1
WO2023085094A1 PCT/JP2022/039931 JP2022039931W WO2023085094A1 WO 2023085094 A1 WO2023085094 A1 WO 2023085094A1 JP 2022039931 W JP2022039931 W JP 2022039931W WO 2023085094 A1 WO2023085094 A1 WO 2023085094A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
output signal
sensor output
electronic control
sensors
Prior art date
Application number
PCT/JP2022/039931
Other languages
French (fr)
Japanese (ja)
Inventor
孝範 犬塚
和弘 吉田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023085094A1 publication Critical patent/WO2023085094A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • B60T8/92Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means automatically taking corrective action
    • B60T8/96Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means automatically taking corrective action on speed responsive control means

Definitions

  • the present disclosure relates to a brake system and a brake pedal device mounted on a vehicle.
  • an electronic control unit detects the amount of operation of the brake pedal based on the output signal of a sensor that outputs a signal corresponding to the amount of operation of the brake pedal by the driver, and drives and controls the brake circuit to brake the vehicle.
  • the electronic control unit may be called “ECU”
  • the brake pedal operation amount may be called “pedal operation amount”
  • the brake-by-wire system may be called “brake system”.
  • ECU is an abbreviation for Electronic Control Unit.
  • An ECU that drives and controls the brake circuit is sometimes called a BCU.
  • BCU is an abbreviation for Brake Control Unit.
  • the brake system described in Patent Literature 1 includes six sensors that detect the amount of operation of the brake pedal, two ECUs, and two power supply units.
  • the six sensors consist of four position sensors and two force sensors.
  • one of the two power supplies supplies power to three sensors (specifically, two position sensors and one force sensor), and the other power supply supplies power to three sensors. Another three sensors are powered.
  • output signals from three sensors are transmitted to one of the two ECUs.
  • output signals from the other three sensors are transmitted to the other ECU.
  • the brake system can be operated by the other three sensors, which are powered by the other power supply device, by transmitting the output signals to the other ECU.
  • the brake circuit can be driven and controlled by the ECU. In this manner, this brake system has redundancy against failure of the power supply and failure of the ECU.
  • Patent Literature 1 has a large number of sensors, 6, although redundancy is provided against power supply failure and ECU failure. Therefore, there is a problem that the size of the brake pedal device in which the many sensors are arranged is increased, and the manufacturing cost is also increased.
  • the present disclosure provides a necessary and sufficient system configuration that can ensure redundancy for brake pedal sensing in a brake-by-wire system by optimizing the number of sensors and an optimal routing method for sensor information.
  • the four sensors generate and output sensor output signals corresponding to the amount of operation of the brake pedal operated by the driver.
  • At least two electronic controllers control driving of the brake circuit based on sensor output signals output from the sensors.
  • the four sensors are arbitrarily called the first sensor, the second sensor, the third sensor and the fourth sensor.
  • a first sensor transmits a sensor output signal to a predetermined one of the at least two electronic controllers.
  • the second sensor transmits the sensor output signal to an electronic control device other than the predetermined electronic control device of the at least two electronic control devices.
  • the third sensor and fourth sensor have at least one of a sensor output signal transmission function and a sensor output signal reception function. Then, of the third sensor and the fourth sensor, the other sensor that has received the sensor output signal transmitted from one of the sensors generates a predetermined synthesized signal obtained by synthesizing the sensor output signal generated by itself and the received sensor output signal.
  • the sensor output signal of one of the first sensor and the second sensor and the synthesized signal of the third sensor and the fourth sensor are input to at least one of the predetermined electronic control device and the other electronic control device. be done. That is, the sensor output signals of the three sensors are input to at least one of the predetermined electronic control device and another electronic control device. Therefore, the electronic control device to which the sensor output signals of the three sensors are input can identify the failed sensor by majority decision when one of the three sensors fails. At the same time, the electronic control unit can detect the correct pedal operation amount based on the normal sensor output signal except for the faulty sensor.
  • this brake system a sensor output signal from one of the four sensors is input to both a predetermined electronic control device and another electronic control device. Therefore, even if one of the predetermined electronic control device or another electronic control device fails, the other electronic control device can drive and control the brake circuit. Therefore, this brake system can ensure redundancy against failure of the electronic control unit.
  • this brake system can be constructed by a routing method using four sensors to identify the failed sensor by majority decision and ensure redundancy against failure of the electronic control unit. be. Therefore, this brake system can reduce manufacturing costs and reduce the size of the brake pedal device by optimizing the number of sensors.
  • the predetermined electronic control device and the another electronic control device do not require communication between the predetermined electronic control device and the another electronic control device regarding the sensor output signals of the four sensors. Therefore, this brake system can reduce the control processing load of the electronic control unit.
  • the brake pedal device is used in a brake system that includes at least two electronic controllers that drive and control a brake circuit that brakes the vehicle.
  • a brake pedal device includes a brake pedal operated by a driver, and four sensors that generate and output sensor output signals according to the amount of operation of the brake pedal.
  • the four sensors are arbitrarily called the first sensor, the second sensor, the third sensor and the fourth sensor.
  • a first sensor transmits a sensor output signal to a predetermined one of the at least two electronic controllers.
  • the second sensor transmits the sensor output signal to an electronic control device other than the predetermined electronic control device of the at least two electronic control devices.
  • the third sensor and fourth sensor have at least one of a sensor output signal transmission function and a sensor output signal reception function.
  • the other sensor that has received the sensor output signal transmitted from one of the sensors generates a predetermined synthesized signal obtained by synthesizing the sensor output signal generated by itself and the received sensor output signal.
  • electronic control unit or another electronic control unit is another electronic control unit.
  • the brake pedal device from another point of view can also achieve the same effect as the brake system from one point of view.
  • FIG. 1 A brake system according to a first embodiment will be described with reference to FIGS. 1 and 2.
  • FIG. The brake system of the first embodiment is a brake-by-wire system in which electronic control units (hereinafter referred to as "ECUs") 21 and 22 drive and control a brake circuit 40 based on the amount of operation of a brake pedal 31 to brake the vehicle.
  • ECUs electronice control units
  • the ECU that drives and controls the brake circuit 40 is sometimes called a BCU.
  • the brake system of the first embodiment includes four sensors 11-14 and two ECUs 21,22.
  • the four sensors 11-14 are provided, for example, in a brake pedal device 30 as shown in FIG.
  • FIG. 2 shows an organ-type brake pedal device 30 as an example.
  • the organ-type brake pedal device 30 is one in which a portion 32 of the brake pedal 31 that is stepped on by the driver is arranged above the oscillation axis CL in the vertical direction when mounted on the vehicle.
  • the coordinates shown in FIG. 2 indicate the vertical direction and the front-rear direction when the brake pedal device 30 is mounted on the vehicle.
  • the brake pedal device 30 includes a housing 33, a brake pedal 31 and the like.
  • the housing 33 is fixed to the floor or dash panel of the vehicle with bolts (not shown) or the like.
  • the brake pedal 31 is formed in a plate shape and arranged obliquely with respect to the floor of the vehicle. Specifically, the brake pedal 31 is obliquely arranged so that the upper end thereof faces the front of the vehicle and the lower end thereof faces the rear of the vehicle.
  • the upper part of the brake pedal 31 is provided with a thick portion as a part 32 to be stepped on by the driver.
  • a connecting member 34 fixed to the brake pedal 31 is fixed to a rotating shaft (not shown) provided inside the housing 33 . Therefore, the brake pedal 31 is provided swingably around a predetermined axis CL provided in the housing 33 .
  • the term "oscillation” refers to rotational movement in a forward direction and a reverse direction within a predetermined angle range around a predetermined axis CL.
  • the inside of the housing 33 includes a reaction force generating mechanism that generates a reaction force against the force applied to the brake pedal 31 by the driver, four sensors 11 to 14, and the like. is provided. In FIG. 2, illustration of the reaction force generating mechanism and the four sensors 11 to 14 is omitted.
  • the four sensors 11 to 14 shown in FIG. 1 are provided in the brake pedal device 30, and generate and output sensor output signals according to the amount of operation of the brake pedal 31 depressed by the driver.
  • the four sensors 11 to 14 may employ sensors that detect the same physical quantity, or may employ sensors that detect different physical quantities.
  • the four sensors 11 to 14 detect two types of physical quantities (for example, the pedal swing angle and the pedal stroke amount) as the pedal operation amount using different detection principles.
  • a sensor is employed to detect Specifically, a magnetic sensor using, for example, a Hall element or a magnetoresistive element is employed as a sensor for detecting the pedal swing angle.
  • An inductive sensor for example, is employed as a sensor that detects the amount of pedal stroke.
  • the types of the four sensors 11 to 14 are not limited to those described above, and various types such as pressure sensors and photoelectric sensors can be used.
  • the sensor output signals generated by the four sensors 11-14 are transmitted to the two ECUs 21 and 22.
  • the transmission method will be described later.
  • the two ECUs 21 and 22 are composed of a processor that performs control processing and arithmetic processing, a microcomputer that includes storage units such as ROM and RAM that store programs and data, and peripheral circuits thereof.
  • the storage unit is composed of a non-transitional physical storage medium.
  • the ECUs 21 and 22 perform various control processing and arithmetic processing based on programs stored in the storage unit, and control the operation of each device connected to the output port. Specifically, the ECUs 21 and 22 detect an accurate pedal operation amount based on sensor output signals generated by the four sensors 11 to 14, and control the driving of the brake circuit 40.
  • the brake circuit 40 may employ an electric brake that brakes each wheel by driving an electric motor according to commands from the ECUs 21 and 22 and pressing a brake pad against a disc brake rotor.
  • the brake circuit 40 may employ a configuration in which the hydraulic pressure of the brake fluid is increased by operating the master cylinder or the hydraulic pump to drive the wheel cylinders arranged for each wheel and operate the brake pads. good.
  • the brake circuit 40 can also perform normal control, ABS control, VSC control, etc. according to control signals from the ECUs 21 and 22 .
  • ABS stands for Anti-lock Braking System
  • VSC Vehicle Stability Control.
  • the four sensors 11 to 14 are referred to as the first sensor 11, the second sensor 12, the third sensor 13, and the fourth sensor 14 in order from the upper side to the lower side of the paper surface of FIG. call.
  • the two ECUs 21 and 22 the one on the upper side of the paper surface of FIG.
  • the first ECU 21 corresponds to the "predetermined electronic control unit”
  • the second ECU 22 corresponds to "another electronic control unit”.
  • the wiring shown in FIG. 1 will be referred to as first to sixth wirings 51 to 56 for convenience of explanation.
  • the names of the first to fourth sensors 11 to 14 do not limit the positions and types of sensors mounted on the brake pedal device 30 .
  • the names of the 1ECU21 and the 2ECU22 do not limit the mounting position or the like. These are the same in the description of the second embodiment, which will be described later.
  • the first sensor 11 transmits the sensor output signal generated within its own sensor from the transmitter 111 of the first sensor 11 to the first receiver 211 of the first ECU 21 via the first wiring 51 .
  • the second sensor 12 transmits the sensor output signal generated within its own sensor from the transmitter 121 of the second sensor 12 to the first receiver 221 of the 2ECU 22 via the second wiring 52 .
  • both the third sensor 13 and the fourth sensor 14 have a transmitting function and a receiving function. That is, in the first embodiment, the third sensor 13 and the fourth sensor 14 respectively have the transmitting/receiving units 132 and 142 that mutually transmit and receive sensor output signals.
  • the third sensor 13 and the fourth sensor 14 receive the sensor output signal transmitted from one of the sensors, and the other sensor generates a synthesized signal obtained by synthesizing its own sensor output signal and the received sensor output signal to the first ECU 21 . Or it is configured to transmit to the second ECU22.
  • the third sensor 13 transmits the sensor output signal generated within its own sensor from its own transmitter/receiver 132 to the transmitter/receiver 142 of the fourth sensor 14 via the sixth wiring 56 .
  • the fourth sensor 14 receives the sensor output signal from the third sensor 13 with its own transmission/reception unit 142, the sensor output signal generated by itself using the signal aggregation function of the integrated circuit in the sensor and the third sensor 13 generates a composite signal that is combined with the sensor output signal received from.
  • ASIC abbreviation for application specific integrated circuit
  • the 4th sensor 14 transmits the synthetic signal to the 2nd receiving part 222 of 2ECU22 via the 4th wiring 54 from the transmission part 141 of itself. Further, the fourth sensor 14 transmits the sensor output signal generated in its own sensor from its own transmitter/receiver 142 to the transmitter/receiver 132 of the third sensor 13 via the fifth wiring 55 .
  • the third sensor 13 When the third sensor 13 receives the sensor output signal from the fourth sensor 14 with its own transmitting/receiving unit 132, it uses the signal aggregation function of the integrated circuit in the sensor to generate the self-generated sensor output signal and the fourth sensor 14 generates a composite signal that is combined with the sensor output signal received from. And the 3rd sensor 13 transmits the combined signal to the 2nd receiving part 212 of 1ECU21 via the 3rd wiring 53 from the transmission part 131 of itself.
  • analog communication, digital communication, digital bus communication, or the like can be adopted.
  • digital communication examples include SPI, I2C, UART, and SENT.
  • SPI stands for Serial Peripheral Interface.
  • I2C is an abbreviation for Inter-Integrated Circuit.
  • UART is an abbreviation for Universal Asynchronous Receiver/Transmitter.
  • SENT is an abbreviation for Single Edge Nibble Transmission.
  • analog communication, digital communication, optical communication, etc. can be adopted as communication methods between the sensors 11 to 14 and the ECUs 21 and 22.
  • Examples of digital communication include SPI, I2C, UART, and SENT. Note that when SENT is employed, the transmitter is the driver and the receiver is the receiver. Also, when SENT is employed, each wiring includes a supply voltage line, a signal line, and a ground line.
  • the transmitter and receiver are terminals, wires, or connectors.
  • the sensor output signal transmitted from the first sensor 11 and the combined signal transmitted from the third sensor 13 are input to the first ECU 21 . That is, sensor output signals of the first sensor 11, the third sensor 13, and the fourth sensor 14 are input to the first ECU21.
  • the sensor output signal transmitted from the second sensor 12 and the synthesized signal transmitted from the fourth sensor 14 are input to the second 2ECU22. That is, the sensor output signals of the second sensor 12, the third sensor 13 and the fourth sensor 14 are input to the second 2ECU22. Therefore, when one of the three sensors fails, the 1ECU21 and the 2ECU22 can identify the failed sensor by majority decision. At the same time, the 1ECU21 and the 2ECU22 can detect an accurate pedal operation amount based on a normal sensor output signal excluding the failed sensor.
  • the sensor output signal of one of the four sensors 11 to 14 is input to both the 1ECU21 and the 2ECU22. Therefore, even if one of the first ECU 21 and the second ECU 22 fails, the brake circuit 40 can be driven and controlled by the other ECU. Therefore, this brake system can ensure redundancy against failure of the ECUs 21 and 22 .
  • the brake system of the first embodiment has functions such as identifying a failed sensor by majority decision and ensuring redundancy against failure of the ECUs 21 and 22 by a routing method using the four sensors 11 to 14. It is possible to construct by Therefore, this brake system can reduce manufacturing costs and reduce the size of the brake pedal device 30 by optimizing the number of sensors.
  • the first ECU 21 and the second ECU 22 do not require communication between the first ECU 21 and the second ECU 22 regarding the sensor output signals of the four sensors 11-14. Therefore, this brake system can reduce the control processing load of the ECUs 21 and 22 .
  • the brake system of the first embodiment employs a plurality of non-contact sensors, such as magnetic sensors and inductive sensors, having different detection principles for the four sensors 11-14. Therefore, even if the output signal of one sensor becomes abnormal due to the proximity of magnetic or conductive foreign matter, which each sensor is not good at, the output signals of the other sensors can be maintained normal. Therefore, this brake system can ensure redundancy of the output signals of the sensors by preventing simultaneous failure of the sensors.
  • the second embodiment differs from the first embodiment in the method of transmitting sensor output signals from the four sensors 11 to 14 to the two ECUs 21 and 22, and the rest is the same as in the first embodiment. , only differences from the first embodiment will be described.
  • the first sensor 11 transmits the sensor output signal generated within its own sensor from the transmitter 111 of the first sensor 11 to the first receiver 211 of the first ECU 21 via the first wiring 51 .
  • the second sensor 12 transmits the sensor output signal generated within its own sensor from the transmitter 121 of the second sensor 12 to the first receiver 221 of the 2ECU 22 via the second wiring 52 .
  • the third sensor 13 in the communication function between the third sensor 13 and the fourth sensor 14, the third sensor 13 has a function of receiving a sensor output signal, and the fourth sensor 14 has a function of receiving a sensor output signal. It has a transmission function of
  • the fourth sensor 14 transmits the sensor output signal generated within its own sensor from its own transmitter 143 to the receiver 133 of the third sensor 13 via the fifth wiring 55 .
  • the fourth sensor 14 transmits the sensor output signal generated in its own sensor from the transmitter 141 of the fourth sensor 14 to the second receiver 222 of the second ECU 22 via the fourth wiring 54 .
  • the third sensor 13 When the third sensor 13 receives the sensor output signal from the fourth sensor 14 with its own receiving unit 133, it uses the signal aggregation function of the integrated circuit in the sensor to generate the self-generated sensor output signal and the fourth sensor 14 generates a composite signal that is combined with the sensor output signal received from.
  • an ASIC is used as an integrated circuit in the sensor.
  • the 3rd sensor 13 transmits the combined signal to the 2nd receiving part 212 of 1ECU21 via the 3rd wiring 53 from the transmission part 131 of the 3rd sensor 13.
  • analog communication, digital communication, digital bus communication, or the like can be adopted. Further, analog communication, digital communication, optical communication, or the like can be adopted as a communication method between the sensors 11 to 14 and the ECUs 21 and 22.
  • FIG. Examples of digital communication include SPI, I2C, UART, and SENT.
  • the sensor output signal transmitted from the first sensor 11 and the combined signal transmitted from the third sensor 13 are input to the first ECU 21 . That is, sensor output signals of the first sensor 11, the third sensor 13, and the fourth sensor 14 are input to the first ECU21. Therefore, when one of the three sensors fails, the first ECU 21 can identify the failed sensor by majority decision. At the same time, the first ECU 21 can detect an accurate pedal operation amount based on normal sensor output signals excluding the malfunctioning sensor.
  • two or more sensor output signals out of the four sensors 11 to 14 are input to the 1ECU21 and the 2ECU22. Therefore, even if one of the first ECU 21 and the second ECU 22 fails, the brake circuit 40 can be driven and controlled by the other ECU. Therefore, this brake system can ensure redundancy against failure of the ECUs 21 and 22 .
  • the functions of specifying a failed sensor by majority decision by the first ECU 21 and ensuring redundancy against failures of the ECUs 21 and 22 are performed using the four sensors 11 to 14. It can be constructed by routing methods. Therefore, this brake system can reduce manufacturing costs and reduce the size of the brake pedal device 30 by optimizing the number of sensors.
  • the first ECU 21 and the second ECU 22 do not require communication between the first ECU 21 and the second ECU 22 regarding the sensor output signals of the four sensors 11-14. Therefore, this brake system can reduce the control processing load of the ECUs 21 and 22 .
  • a pendant-type brake pedal device is one in which the portion of the brake pedal 31 that is stepped on by the driver is arranged below the swing axis CL in the vertical direction when the brake pedal is mounted on the vehicle.
  • the brake system has two ECUs 21 and 22, but the brake system may have three ECUs. In other words, the brake system should have at least two ECUs 21 and 22 .
  • the present disclosure is not limited to the above-described embodiments, and can be modified as appropriate. Moreover, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above-described embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential, unless it is explicitly stated that they are essential, or they are clearly considered essential in principle. stomach. In addition, in each of the above-described embodiments, when numerical values such as the number, numerical value, amount, range, etc. of the constituent elements of the embodiment are mentioned, when it is explicitly stated that they are particularly essential, and when they are clearly limited to a specific number in principle is not limited to that particular number. In addition, in each of the above-described embodiments, when referring to the shape, positional relationship, etc. of the constituent elements, the shape, It is not limited to the positional relationship or the like.
  • the controller and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by the computer program.
  • the controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control units and techniques described in this disclosure can be implemented by a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured.
  • the computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Regulating Braking Force (AREA)

Abstract

A brake system comprises four sensors (11 to 14) and at least two electronic control devices (21, 22). The four sensors may be referred to as a first sensor (11), a second sensor (12), a third sensor (13), and a fourth sensor (14). The first sensor transmits a sensor output signal to a prescribed electronic control device (21) among the at least two electronic control devices. The second sensor transmits a sensor output signal to another electronic control device (22) that is not the prescribed electronic control device among the at least two electronic control devices. The third and fourth sensors have sensor output signal transmission functions (132, 142, 143) and/or reception functions (132, 142, 133). Among the third sensor and the fourth sensor, one sensor that has received a sensor output signal transmitted from the other sensor transmits, to the prescribed electronic control device or to another electronic control device, a composite signal obtained by combining a sensor output signal generated by the one sensor and the sensor output signal received by the one sensor.

Description

ブレーキシステムおよびブレーキペダル装置Brake system and brake pedal device 関連出願への相互参照Cross-references to related applications
 本出願は、2021年11月10日に出願された日本特許出願番号2021-183589号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2021-183589 filed on November 10, 2021, the contents of which are incorporated herein by reference.
 本開示は、車両に搭載されるブレーキシステムおよびブレーキペダル装置に関するものである。 The present disclosure relates to a brake system and a brake pedal device mounted on a vehicle.
 従来、運転者によるブレーキペダルの操作量に応じた信号を出力するセンサの出力信号に基づいて電子制御装置がブレーキペダルの操作量を検出し、ブレーキ回路を駆動制御して車両を制動するブレーキバイワイヤシステムが知られている。なお、以下の説明では、電子制御装置を「ECU」といい、ブレーキペダルの操作量を「ペダル操作量」といい、ブレーキバイワイヤシステムを「ブレーキシステム」ということがある。ECUは、Electronic Control Unitの略である。なお、ブレーキ回路を駆動制御するECUは、BCUと呼ばれることもある。BCUは、Brake Control Unitの略である。
 特許文献1に記載のブレーキシステムは、各実施例において、ブレーキペダルの操作量を検出する6個のセンサと、2個のECUと、2個の電源装置を備えている。なお、6個のセンサの内訳は、4個の位置センサと、2個の力センサである。このブレーキシステムでは、2個の電源装置のうち一方の電源装置から3個のセンサ(具体的には、2個の位置センサと1個の力センサ)に電力が供給され、他方の電源装置から別の3個のセンサに電力が供給される構成である。また、このブレーキシステムでは、2個のECUのうち一方のECUに対し3個のセンサ(具体的には、上記と同じ2個の位置センサと1個の力センサ)からの出力信号が送信され、他方のECUに対し別の3個のセンサからの出力信号が送信される構成である。これにより、このブレーキシステムは、一方の電源装置が故障した場合でも、他方の電源装置から電力が供給される別の3個のセンサの出力信号が他方のECUに送信されるので、その他方のECUによってブレーキ回路を駆動制御することが可能である。このように、このブレーキシステムは、電源装置の故障、およびECUの故障に対し、冗長性が図られている。
Conventionally, an electronic control unit detects the amount of operation of the brake pedal based on the output signal of a sensor that outputs a signal corresponding to the amount of operation of the brake pedal by the driver, and drives and controls the brake circuit to brake the vehicle. system is known. In the following description, the electronic control unit may be called "ECU", the brake pedal operation amount may be called "pedal operation amount", and the brake-by-wire system may be called "brake system". ECU is an abbreviation for Electronic Control Unit. An ECU that drives and controls the brake circuit is sometimes called a BCU. BCU is an abbreviation for Brake Control Unit.
In each embodiment, the brake system described in Patent Literature 1 includes six sensors that detect the amount of operation of the brake pedal, two ECUs, and two power supply units. The six sensors consist of four position sensors and two force sensors. In this braking system, one of the two power supplies supplies power to three sensors (specifically, two position sensors and one force sensor), and the other power supply supplies power to three sensors. Another three sensors are powered. Further, in this brake system, output signals from three sensors (specifically, two position sensors and one force sensor as described above) are transmitted to one of the two ECUs. , and output signals from the other three sensors are transmitted to the other ECU. As a result, even if one of the power supply devices fails, the brake system can be operated by the other three sensors, which are powered by the other power supply device, by transmitting the output signals to the other ECU. The brake circuit can be driven and controlled by the ECU. In this manner, this brake system has redundancy against failure of the power supply and failure of the ECU.
国際公開第2021/185611号WO2021/185611
 しかしながら、特許文献1に記載のブレーキシステムは、電源装置の故障およびECUの故障に対して冗長性が図られているが、6個という多数のセンサを備えている。そのため、その多数のセンサが配置されるブレーキペダル装置の体格が大型化すると共に、製造コストも増加するといった問題がある。 However, the brake system described in Patent Literature 1 has a large number of sensors, 6, although redundancy is provided against power supply failure and ECU failure. Therefore, there is a problem that the size of the brake pedal device in which the many sensors are arranged is increased, and the manufacturing cost is also increased.
 本開示は、ブレーキバイワイヤシステムにおけるブレーキペダルのセンシングに対し、センサ個数の最適化とセンサ情報の最適なルーティング方法により、冗長性を確保できる必要十分なシステム構成を提供するものである。 The present disclosure provides a necessary and sufficient system configuration that can ensure redundancy for brake pedal sensing in a brake-by-wire system by optimizing the number of sensors and an optimal routing method for sensor information.
 本開示の1つの観点によれば、車両を制動するブレーキ回路を駆動制御するブレーキシステムは、4個のセンサと、少なくとも2個の電子制御装置を備える。4個のセンサは、運転者に操作されるブレーキペダルの操作量に応じたセンサ出力信号を生成し出力する。少なくとも2個の電子制御装置は、センサから出力されるセンサ出力信号に基づいてブレーキ回路の駆動を制御する。ここで、4個のセンサを任意に第1センサ、第2センサ、第3センサ、第4センサと呼ぶ。第1センサは、少なくとも2個の電子制御装置のうち所定の電子制御装置にセンサ出力信号を送信する。第2センサは、少なくとも2個の電子制御装置のうち所定の電子制御装置とは別の電子制御装置にセンサ出力信号を送信する。第3センサおよび第4センサは、センサ出力信号の送信機能および受信機能の少なくとも一方を有している。そして、第3センサおよび第4センサのうち、一方のセンサから送信されたセンサ出力信号を受信した他方のセンサは、自ら生成したセンサ出力信号と受信したセンサ出力信号とを合成した合成信号を所定の電子制御装置または別の電子制御装置に送信するように構成されている。 According to one aspect of the present disclosure, a brake system that drives and controls a brake circuit that brakes a vehicle includes four sensors and at least two electronic controllers. The four sensors generate and output sensor output signals corresponding to the amount of operation of the brake pedal operated by the driver. At least two electronic controllers control driving of the brake circuit based on sensor output signals output from the sensors. Here, the four sensors are arbitrarily called the first sensor, the second sensor, the third sensor and the fourth sensor. A first sensor transmits a sensor output signal to a predetermined one of the at least two electronic controllers. The second sensor transmits the sensor output signal to an electronic control device other than the predetermined electronic control device of the at least two electronic control devices. The third sensor and fourth sensor have at least one of a sensor output signal transmission function and a sensor output signal reception function. Then, of the third sensor and the fourth sensor, the other sensor that has received the sensor output signal transmitted from one of the sensors generates a predetermined synthesized signal obtained by synthesizing the sensor output signal generated by itself and the received sensor output signal. electronic control unit or another electronic control unit.
 これによれば、所定の電子制御装置または別の電子制御装置のうち少なくとも一方に、第1センサまたは第2センサのうち一方のセンサ出力信号と、第3センサと第4センサの合成信号が入力される。すなわち、所定の電子制御装置または別の電子制御装置のうち少なくとも一方には、3個のセンサのセンサ出力信号が入力される。したがって、3個のセンサのセンサ出力信号が入力される電子制御装置は、その3個のセンサのうち1個のセンサが故障した場合に、多数決判定により、その故障したセンサを特定できる。それと共に、その電子制御装置は、故障したセンサを除いた、正常なセンサ出力信号に基づいて、正確なペダル操作量を検出できる。 According to this, the sensor output signal of one of the first sensor and the second sensor and the synthesized signal of the third sensor and the fourth sensor are input to at least one of the predetermined electronic control device and the other electronic control device. be done. That is, the sensor output signals of the three sensors are input to at least one of the predetermined electronic control device and another electronic control device. Therefore, the electronic control device to which the sensor output signals of the three sensors are input can identify the failed sensor by majority decision when one of the three sensors fails. At the same time, the electronic control unit can detect the correct pedal operation amount based on the normal sensor output signal except for the faulty sensor.
 また、このブレーキシステムは、所定の電子制御装置と別の電子制御装置の両方に対し、4個のセンサのうちいずれかのセンサ出力信号が入力される。そのため、所定の電子制御装置または別の電子制御装置の一方が故障した場合でも、他方の電子制御装置によりブレーキ回路を駆動制御することが可能である。したがって、このブレーキシステムは、電子制御装置の故障に対し、冗長性を確保できる。 Also, in this brake system, a sensor output signal from one of the four sensors is input to both a predetermined electronic control device and another electronic control device. Therefore, even if one of the predetermined electronic control device or another electronic control device fails, the other electronic control device can drive and control the brake circuit. Therefore, this brake system can ensure redundancy against failure of the electronic control unit.
 このように、このブレーキシステムは、多数決判定による故障したセンサの特定、及び、電子制御装置の故障に対する冗長性の確保といった機能を、4個のセンサを用いたルーティング方法により構築することが可能である。したがって、このブレーキシステムは、センサ個数の最適化により、製造コストを低減するとともに、ブレーキペダル装置の体格を小型化することができる。 In this way, this brake system can be constructed by a routing method using four sensors to identify the failed sensor by majority decision and ensure redundancy against failure of the electronic control unit. be. Therefore, this brake system can reduce manufacturing costs and reduce the size of the brake pedal device by optimizing the number of sensors.
 さらに、所定の電子制御装置と別の電子制御装置は、4個のセンサのセンサ出力信号に関し、所定の電子制御装置と別の電子制御装置との間の通信を必要としない。したがって、このブレーキシステムは、電子制御装置の制御処理の負荷を低減することができる。 Further, the predetermined electronic control device and the another electronic control device do not require communication between the predetermined electronic control device and the another electronic control device regarding the sensor output signals of the four sensors. Therefore, this brake system can reduce the control processing load of the electronic control unit.
 別の観点によれば、ブレーキペダル装置は、車両を制動するブレーキ回路を駆動制御する少なくとも2個の電子制御装置を備えるブレーキシステムに用いられる。ブレーキペダル装置は、運転者に操作されるブレーキペダルと、ブレーキペダルの操作量に応じたセンサ出力信号を生成し出力する4個のセンサとを備える。ここで、4個のセンサを任意に第1センサ、第2センサ、第3センサ、第4センサと呼ぶ。第1センサは、少なくとも2個の電子制御装置のうち所定の電子制御装置にセンサ出力信号を送信する。第2センサは、少なくとも2個の電子制御装置のうち所定の電子制御装置とは別の電子制御装置にセンサ出力信号を送信する。第3センサおよび第4センサは、センサ出力信号の送信機能および受信機能の少なくとも一方を有している。そして、第3センサおよび第4センサのうち、一方のセンサから送信されたセンサ出力信号を受信した他方のセンサは、自ら生成したセンサ出力信号と受信したセンサ出力信号とを合成した合成信号を所定の電子制御装置または別の電子制御装置に送信するように構成されている。 From another point of view, the brake pedal device is used in a brake system that includes at least two electronic controllers that drive and control a brake circuit that brakes the vehicle. A brake pedal device includes a brake pedal operated by a driver, and four sensors that generate and output sensor output signals according to the amount of operation of the brake pedal. Here, the four sensors are arbitrarily called the first sensor, the second sensor, the third sensor and the fourth sensor. A first sensor transmits a sensor output signal to a predetermined one of the at least two electronic controllers. The second sensor transmits the sensor output signal to an electronic control device other than the predetermined electronic control device of the at least two electronic control devices. The third sensor and fourth sensor have at least one of a sensor output signal transmission function and a sensor output signal reception function. Then, of the third sensor and the fourth sensor, the other sensor that has received the sensor output signal transmitted from one of the sensors generates a predetermined synthesized signal obtained by synthesizing the sensor output signal generated by itself and the received sensor output signal. electronic control unit or another electronic control unit.
 これによれば、別の観点によるブレーキペダル装置も、1つの観点によるブレーキシステムと同一の作用効果を奏することができる。 According to this, the brake pedal device from another point of view can also achieve the same effect as the brake system from one point of view.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 It should be noted that the reference numerals in parentheses attached to each component etc. indicate an example of the correspondence relationship between the component etc. and the specific component etc. described in the embodiment described later.
第1実施形態に係るブレーキシステムの概略構成を示すブロック図である。It is a block diagram showing a schematic structure of a brake system concerning a 1st embodiment. 第1実施形態に係るブレーキシステムが備えるブレーキペダル装置の側面図である。It is a side view of a brake pedal device with which a brake system concerning a 1st embodiment is provided. 第2実施形態に係るブレーキシステムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the brake system which concerns on 2nd Embodiment.
 以下、本開示の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In addition, in each of the following embodiments, the same or equivalent portions are denoted by the same reference numerals, and description thereof will be omitted.
 (第1実施形態)
 第1実施形態に係るブレーキシステムについて、図1および図2を参照しつつ説明する。第1実施形態のブレーキシステムは、ブレーキペダル31の操作量に基づいて電子制御装置(以下、「ECU」という)21、22がブレーキ回路40を駆動制御して車両を制動するブレーキバイワイヤシステムである。なお、ブレーキ回路40を駆動制御するECUは、BCUと呼ばれることもある。
(First embodiment)
A brake system according to a first embodiment will be described with reference to FIGS. 1 and 2. FIG. The brake system of the first embodiment is a brake-by-wire system in which electronic control units (hereinafter referred to as "ECUs") 21 and 22 drive and control a brake circuit 40 based on the amount of operation of a brake pedal 31 to brake the vehicle. . The ECU that drives and controls the brake circuit 40 is sometimes called a BCU.
 図1に示すように、第1実施形態のブレーキシステムは、4個のセンサ11~14と2個のECU21、22を備えている。4個のセンサ11~14は、例えば図2に示すようなブレーキペダル装置30に設けられる。 As shown in FIG. 1, the brake system of the first embodiment includes four sensors 11-14 and two ECUs 21,22. The four sensors 11-14 are provided, for example, in a brake pedal device 30 as shown in FIG.
 図2では、ブレーキペダル装置30の一例として、オルガン式のものを示している。オルガン式のブレーキペダル装置30とは、ブレーキペダル31のうち運転者に踏込操作される部位32が搖動の軸心CLに対して車両搭載時の天地方向における上方に配置されるものである。なお、図2に記載した座標は、ブレーキペダル装置30が車両に搭載された状態の上下方向、前後方向を示すものである。 FIG. 2 shows an organ-type brake pedal device 30 as an example. The organ-type brake pedal device 30 is one in which a portion 32 of the brake pedal 31 that is stepped on by the driver is arranged above the oscillation axis CL in the vertical direction when mounted on the vehicle. The coordinates shown in FIG. 2 indicate the vertical direction and the front-rear direction when the brake pedal device 30 is mounted on the vehicle.
 ブレーキペダル装置30は、ハウジング33、ブレーキペダル31などを備えている。ハウジング33は、不図示のボルトなどにより車両のフロアまたはダッシュパネルに固定される。ブレーキペダル31は、板状に形成され、車両のフロアに対して斜めに配置されている。具体的には、ブレーキペダル31は、その上端部が車両前方となり、下端部が車両後方となるように斜めに配置されている。ブレーキペダル31のうち上側の部位には、運転者に踏込操作される部位32として厚肉部が設けられている。 The brake pedal device 30 includes a housing 33, a brake pedal 31 and the like. The housing 33 is fixed to the floor or dash panel of the vehicle with bolts (not shown) or the like. The brake pedal 31 is formed in a plate shape and arranged obliquely with respect to the floor of the vehicle. Specifically, the brake pedal 31 is obliquely arranged so that the upper end thereof faces the front of the vehicle and the lower end thereof faces the rear of the vehicle. The upper part of the brake pedal 31 is provided with a thick portion as a part 32 to be stepped on by the driver.
 ブレーキペダル31に固定された接続部材34は、ハウジング33の内側に設けられた不図示の回転軸に固定されている。そのため、ブレーキペダル31は、ハウジング33に設けられた所定の軸心CLまわりに搖動可能に設けられる。なお、本明細書において、搖動とは、所定の軸心CLまわりに所定角度範囲で正方向および逆方向に回転動作することをいう。 A connecting member 34 fixed to the brake pedal 31 is fixed to a rotating shaft (not shown) provided inside the housing 33 . Therefore, the brake pedal 31 is provided swingably around a predetermined axis CL provided in the housing 33 . In this specification, the term "oscillation" refers to rotational movement in a forward direction and a reverse direction within a predetermined angle range around a predetermined axis CL.
 なお、図2において図示は省略するが、ハウジング33の内側には、運転者がブレーキペダル31に印加する踏力に対する反力を発生させる反力発生機構、および、4個のセンサ11~14などが設けられている。図2では、反力発生機構および4個のセンサ11~14の図示を省略している。 Although not shown in FIG. 2, the inside of the housing 33 includes a reaction force generating mechanism that generates a reaction force against the force applied to the brake pedal 31 by the driver, four sensors 11 to 14, and the like. is provided. In FIG. 2, illustration of the reaction force generating mechanism and the four sensors 11 to 14 is omitted.
 図1に示す4個のセンサ11~14は、ブレーキペダル装置30に設けられ、運転者に踏込操作されるブレーキペダル31の操作量に応じたセンサ出力信号を生成し、出力する。 The four sensors 11 to 14 shown in FIG. 1 are provided in the brake pedal device 30, and generate and output sensor output signals according to the amount of operation of the brake pedal 31 depressed by the driver.
 4個のセンサ11~14は、全て同一の物理量を検出するセンサを採用してもよく、或いは、それぞれ異なる物理量を検出するセンサを採用してもよい。なお、第1実施形態では、冗長性の観点から、4個のセンサ11~14は、ペダル操作量として、2種の物理量(例えば、ペダル揺動角とペダルストローク量)をそれぞれ異なる検出原理で検出するセンサが採用されている。具体的には、ペダル揺動角を検出するセンサとして、例えば、ホール素子または磁気抵抗素子などを用いた磁気センサが採用される。ペダルストローク量を検出するセンサとして、例えば、インダクティブセンサが採用される。なお、4個のセンサ11~14の種類は、上記のものに限らず、例えば、圧力センサ、光電センサなど、種々のものを採用することが可能である。 The four sensors 11 to 14 may employ sensors that detect the same physical quantity, or may employ sensors that detect different physical quantities. In the first embodiment, from the viewpoint of redundancy, the four sensors 11 to 14 detect two types of physical quantities (for example, the pedal swing angle and the pedal stroke amount) as the pedal operation amount using different detection principles. A sensor is employed to detect Specifically, a magnetic sensor using, for example, a Hall element or a magnetoresistive element is employed as a sensor for detecting the pedal swing angle. An inductive sensor, for example, is employed as a sensor that detects the amount of pedal stroke. The types of the four sensors 11 to 14 are not limited to those described above, and various types such as pressure sensors and photoelectric sensors can be used.
 4個のセンサ11~14が生成したセンサ出力信号は、2個のECU21、22に伝送される。なお、その伝送方法については後述する。 The sensor output signals generated by the four sensors 11-14 are transmitted to the two ECUs 21 and 22. The transmission method will be described later.
 2個のECU21、22は、制御処理や演算処理を行うプロセッサ、プログラムやデータ等を記憶するROM、RAM等の記憶部を含むマイクロコンピュータ、およびその周辺回路で構成されている。記憶部は、非遷移的実体的記憶媒体で構成されている。ECU21、22は、記憶部に記憶されたプログラムに基づいて各種制御処理および演算処理を行い、出力ポートに接続された各機器の作動を制御する。具体的には、ECU21、22は、4個のセンサ11~14で生成されたセンサ出力信号に基づいて正確なペダル操作量を検出し、ブレーキ回路40の駆動を制御する。 The two ECUs 21 and 22 are composed of a processor that performs control processing and arithmetic processing, a microcomputer that includes storage units such as ROM and RAM that store programs and data, and peripheral circuits thereof. The storage unit is composed of a non-transitional physical storage medium. The ECUs 21 and 22 perform various control processing and arithmetic processing based on programs stored in the storage unit, and control the operation of each device connected to the output port. Specifically, the ECUs 21 and 22 detect an accurate pedal operation amount based on sensor output signals generated by the four sensors 11 to 14, and control the driving of the brake circuit 40. FIG.
 ブレーキ回路40として、種々の機構を採用することができる。例えば、ブレーキ回路40として、ECU21、22からの指令により電動モータが駆動してブレーキパッドをディスクブレーキロータに押し付けることで各車輪を制動する電動ブレーキを採用してもよい。または、例えば、ブレーキ回路40として、マスターシリンダまたは液圧ポンプの動作によりブレーキ液の液圧を増加させ、各車輪に配置されたホイールシリンダを駆動し、ブレーキパッドを動作させる構成を採用してもよい。また、ブレーキ回路40は、ECU21、22からの制御信号に応じて、通常制御、ABS制御およびVSC制御などを行うことも可能である。ABSはAnti-lock Braking Systemの略であり、VSCはVehicle Stability Controlの略である。 Various mechanisms can be employed as the brake circuit 40 . For example, the brake circuit 40 may employ an electric brake that brakes each wheel by driving an electric motor according to commands from the ECUs 21 and 22 and pressing a brake pad against a disc brake rotor. Alternatively, for example, the brake circuit 40 may employ a configuration in which the hydraulic pressure of the brake fluid is increased by operating the master cylinder or the hydraulic pump to drive the wheel cylinders arranged for each wheel and operate the brake pads. good. Further, the brake circuit 40 can also perform normal control, ABS control, VSC control, etc. according to control signals from the ECUs 21 and 22 . ABS stands for Anti-lock Braking System, and VSC stands for Vehicle Stability Control.
 次に、4個のセンサ11~14から2個のECU21、22へのセンサ出力信号の伝送方法について説明する。 Next, a method of transmitting sensor output signals from the four sensors 11 to 14 to the two ECUs 21 and 22 will be described.
 なお、以下の説明では説明の便宜上、4個のセンサ11~14を、図1の紙面上側から下側へ順に、第1センサ11、第2センサ12、第3センサ13、第4センサ14と呼ぶ。また、以下の説明では説明の便宜上、2個のECU21、22のうち、図1の紙面上側のものを第1ECU21と呼び、紙面下側のものを第2ECU22と呼ぶ。第1ECU21は「所定の電子制御装置」に対応し、第2ECU22は「別の電子制御装置」に対応している。また、以下の説明では説明の便宜上、図1に記載された配線を、第1~第6配線51~56と呼ぶ。なお、第1~第4センサ11~14の呼称は、ブレーキペダル装置30への搭載位置や種類などを限定するものではない。第1ECU21、第2ECU22の呼称も、搭載位置などを限定するものではない。これらのことは、後述する第2実施形態の説明でも同じである。 In the following description, for convenience of explanation, the four sensors 11 to 14 are referred to as the first sensor 11, the second sensor 12, the third sensor 13, and the fourth sensor 14 in order from the upper side to the lower side of the paper surface of FIG. call. Further, in the following description, for convenience of explanation, of the two ECUs 21 and 22, the one on the upper side of the paper surface of FIG. The first ECU 21 corresponds to the "predetermined electronic control unit", and the second ECU 22 corresponds to "another electronic control unit". Further, in the following description, the wiring shown in FIG. 1 will be referred to as first to sixth wirings 51 to 56 for convenience of explanation. Note that the names of the first to fourth sensors 11 to 14 do not limit the positions and types of sensors mounted on the brake pedal device 30 . The names of the 1ECU21 and the 2ECU22 do not limit the mounting position or the like. These are the same in the description of the second embodiment, which will be described later.
 第1センサ11は、自身のセンサ内で生成されたセンサ出力信号を、第1センサ11の送信部111から第1配線51を経由して第1ECU21の第1受信部211に送信する。 The first sensor 11 transmits the sensor output signal generated within its own sensor from the transmitter 111 of the first sensor 11 to the first receiver 211 of the first ECU 21 via the first wiring 51 .
 第2センサ12は、自身のセンサ内で生成されたセンサ出力信号を、第2センサ12の送信部121から第2配線52を経由して第2ECU22の第1受信部221に送信する。 The second sensor 12 transmits the sensor output signal generated within its own sensor from the transmitter 121 of the second sensor 12 to the first receiver 221 of the 2ECU 22 via the second wiring 52 .
 第1実施形態では、第3センサ13と第4センサ14との間の通信機能において、第3センサ13と第4センサ14はいずれも送信機能と受信機能を有している。すなわち、第1実施形態では、第3センサ13と第4センサ14はそれぞれ、センサ出力信号の送信および受信を相互に行う送受信部132、142を有している。第3センサ13と第4センサ14は、その一方のセンサから送信されたセンサ出力信号を受信した他方のセンサが、自らのセンサ出力信号と受信したセンサ出力信号とを合成した合成信号を第1ECU21または第2ECU22に送信するように構成されている。 In the first embodiment, in the communication function between the third sensor 13 and the fourth sensor 14, both the third sensor 13 and the fourth sensor 14 have a transmitting function and a receiving function. That is, in the first embodiment, the third sensor 13 and the fourth sensor 14 respectively have the transmitting/receiving units 132 and 142 that mutually transmit and receive sensor output signals. The third sensor 13 and the fourth sensor 14 receive the sensor output signal transmitted from one of the sensors, and the other sensor generates a synthesized signal obtained by synthesizing its own sensor output signal and the received sensor output signal to the first ECU 21 . Or it is configured to transmit to the second ECU22.
 具体的には、第3センサ13は、自身のセンサ内で生成されたセンサ出力信号を、自身の送受信部132から第6配線56を経由して第4センサ14の送受信部142に送信する。第4センサ14は、自身の送受信部142で第3センサ13からのセンサ出力信号を受信すると、センサ内の集積回路の信号集約機能を用いて、自ら生成したセンサ出力信号と、第3センサ13から受信したセンサ出力信号とを合成した合成信号を生成する。なお、センサ内の集積回路として、例えばASIC(application specific integrated circuit の略)が用いられる。そして、第4センサ14は、その合成信号を、自身の送信部141から第4配線54を経由して第2ECU22の第2受信部222に送信する。さらに、第4センサ14は、自身のセンサ内で生成されたセンサ出力信号を、自身の送受信部142から第5配線55を経由して第3センサ13の送受信部132に送信する。 Specifically, the third sensor 13 transmits the sensor output signal generated within its own sensor from its own transmitter/receiver 132 to the transmitter/receiver 142 of the fourth sensor 14 via the sixth wiring 56 . When the fourth sensor 14 receives the sensor output signal from the third sensor 13 with its own transmission/reception unit 142, the sensor output signal generated by itself using the signal aggregation function of the integrated circuit in the sensor and the third sensor 13 generates a composite signal that is combined with the sensor output signal received from. As an integrated circuit in the sensor, for example, ASIC (abbreviation for application specific integrated circuit) is used. And the 4th sensor 14 transmits the synthetic signal to the 2nd receiving part 222 of 2ECU22 via the 4th wiring 54 from the transmission part 141 of itself. Further, the fourth sensor 14 transmits the sensor output signal generated in its own sensor from its own transmitter/receiver 142 to the transmitter/receiver 132 of the third sensor 13 via the fifth wiring 55 .
 第3センサ13は、自身の送受信部132で第4センサ14からのセンサ出力信号を受信すると、センサ内の集積回路の信号集約機能を用いて、自ら生成したセンサ出力信号と、第4センサ14から受信したセンサ出力信号とを合成した合成信号を生成する。そして、第3センサ13は、その合成信号を、自身の送信部131から第3配線53を経由して第1ECU21の第2受信部212に送信する。 When the third sensor 13 receives the sensor output signal from the fourth sensor 14 with its own transmitting/receiving unit 132, it uses the signal aggregation function of the integrated circuit in the sensor to generate the self-generated sensor output signal and the fourth sensor 14 generates a composite signal that is combined with the sensor output signal received from. And the 3rd sensor 13 transmits the combined signal to the 2nd receiving part 212 of 1ECU21 via the 3rd wiring 53 from the transmission part 131 of itself.
 なお、第3センサ13と第4センサ14との通信方式として、アナログ通信、デジタル通信、デジタルバス通信などを採用することができる。デジタル通信として、SPI、I2C、UART、SENTなどが例示される。SPIは、Serial Peripheral Interface の略である。I2Cは、Inter-Integrated Circuit の略である。UARTは、Universal Asynchronous Receiver/Transmitter の略である。SENTは、Single Edge Nibble Transmission の略である。 As a communication method between the third sensor 13 and the fourth sensor 14, analog communication, digital communication, digital bus communication, or the like can be adopted. Examples of digital communication include SPI, I2C, UART, and SENT. SPI stands for Serial Peripheral Interface. I2C is an abbreviation for Inter-Integrated Circuit. UART is an abbreviation for Universal Asynchronous Receiver/Transmitter. SENT is an abbreviation for Single Edge Nibble Transmission.
 また、各センサ11~14と各ECU21、22との通信方式として、アナログ通信、デジタル通信、光通信などを採用することができる。デジタル通信として、SPI、I2C、UART、SENTなどが例示される。なお、SENTが採用される場合、送信部はドライバであり、受信部はレシーバである。また、SENTが採用される場合、各配線は、供給電圧線、信号線、接地線を含んでいる。 Also, analog communication, digital communication, optical communication, etc. can be adopted as communication methods between the sensors 11 to 14 and the ECUs 21 and 22. Examples of digital communication include SPI, I2C, UART, and SENT. Note that when SENT is employed, the transmitter is the driver and the receiver is the receiver. Also, when SENT is employed, each wiring includes a supply voltage line, a signal line, and a ground line.
 一方、通信方式として、アナログ通信が採用される場合、送信部および受信部は、端子、配線またはコネクタである。 On the other hand, when analog communication is adopted as the communication method, the transmitter and receiver are terminals, wires, or connectors.
 以上説明したように、第1実施形態のブレーキシステムでは、第1ECU21に対し、第1センサ11から送信されるセンサ出力信号と、第3センサ13から送信される合成信号が入力される。すなわち、第1ECU21には、第1センサ11と第3センサ13と第4センサ14のセンサ出力信号が入力される。一方、第2ECU22に対し、第2センサ12から送信されるセンサ出力信号と、第4センサ14から送信される合成信号が入力される。すなわち、第2ECU22には、第2センサ12と第3センサ13と第4センサ14のセンサ出力信号が入力される。したがって、第1ECU21と第2ECU22は、3個のセンサのうち1個のセンサが故障した場合に、多数決判定により、その故障したセンサを特定できる。それと共に、第1ECU21と第2ECU22は、故障したセンサを除いた、正常なセンサ出力信号に基づいて、正確なペダル操作量を検出できる。 As described above, in the brake system of the first embodiment, the sensor output signal transmitted from the first sensor 11 and the combined signal transmitted from the third sensor 13 are input to the first ECU 21 . That is, sensor output signals of the first sensor 11, the third sensor 13, and the fourth sensor 14 are input to the first ECU21. On the other hand, the sensor output signal transmitted from the second sensor 12 and the synthesized signal transmitted from the fourth sensor 14 are input to the second 2ECU22. That is, the sensor output signals of the second sensor 12, the third sensor 13 and the fourth sensor 14 are input to the second 2ECU22. Therefore, when one of the three sensors fails, the 1ECU21 and the 2ECU22 can identify the failed sensor by majority decision. At the same time, the 1ECU21 and the 2ECU22 can detect an accurate pedal operation amount based on a normal sensor output signal excluding the failed sensor.
 尚、ECU21、22に対して3個のセンサ出力信号が入力された場合に、多数決判定により故障したセンサを特定すると共に、正確なペダル操作量を検出する方法の具体例は、本開示と同一出願人による日本特許出願番号2021-142749号を参照されたい。 Incidentally, when three sensor output signals are input to the ECUs 21 and 22, a specific example of a method of identifying a malfunctioning sensor by majority decision and detecting an accurate pedal operation amount is the same as in the present disclosure. See Applicant's Japanese Patent Application No. 2021-142749.
 また、第1実施形態では、第1ECU21と第2ECU22の両方に対し4個のセンサ11~14のうちいずれかのセンサ出力信号が入力される。そのため、第1ECU21または第2ECU22の一方が故障した場合でも、他方のECUによりブレーキ回路40を駆動制御することが可能である。したがって、このブレーキシステムは、ECU21、22の故障に対し、冗長性を確保できる。 Further, in the first embodiment, the sensor output signal of one of the four sensors 11 to 14 is input to both the 1ECU21 and the 2ECU22. Therefore, even if one of the first ECU 21 and the second ECU 22 fails, the brake circuit 40 can be driven and controlled by the other ECU. Therefore, this brake system can ensure redundancy against failure of the ECUs 21 and 22 .
 このように、第1実施形態のブレーキシステムは、多数決判定による故障したセンサの特定、及び、ECU21、22の故障に対する冗長性の確保といった機能を、4個のセンサ11~14を用いたルーティング方法により構築することが可能である。したがって、このブレーキシステムは、センサ個数の最適化により、製造コストを低減するとともに、ブレーキペダル装置30の体格を小型化することができる。 As described above, the brake system of the first embodiment has functions such as identifying a failed sensor by majority decision and ensuring redundancy against failure of the ECUs 21 and 22 by a routing method using the four sensors 11 to 14. It is possible to construct by Therefore, this brake system can reduce manufacturing costs and reduce the size of the brake pedal device 30 by optimizing the number of sensors.
 さらに、第1実施形態のブレーキシステムでは、第1ECU21と第2ECU22は、4個のセンサ11~14のセンサ出力信号に関し、第1ECU21と第2ECU22との間の通信を必要としない。したがって、このブレーキシステムは、ECU21、22の制御処理の負荷を低減することができる。 Furthermore, in the brake system of the first embodiment, the first ECU 21 and the second ECU 22 do not require communication between the first ECU 21 and the second ECU 22 regarding the sensor output signals of the four sensors 11-14. Therefore, this brake system can reduce the control processing load of the ECUs 21 and 22 .
 また、第1実施形態では、冗長性の観点から、4個のセンサ11~14のうち少なくとも1つのセンサは磁気センサが採用され、その他のセンサはインダクティブセンサが採用される。これによれば、第1実施形態のブレーキシステムは、4個のセンサ11~14について、磁気センサとインダクティブセンサといった検出原理の異なる複数の非接触センサを採用する構成である。そのため、各々のセンサが苦手とする磁性異物または導体異物の近接により、仮に、1つのセンサの出力信号が異常になったとしても、その他のセンサの出力信号は正常を保つことが可能である。したがって、このブレーキシステムは、センサの同時故障を防止することで、センサの出力信号の冗長性を確保することができる。 Also, in the first embodiment, from the viewpoint of redundancy, at least one of the four sensors 11 to 14 employs a magnetic sensor, and the other sensors employ inductive sensors. According to this, the brake system of the first embodiment employs a plurality of non-contact sensors, such as magnetic sensors and inductive sensors, having different detection principles for the four sensors 11-14. Therefore, even if the output signal of one sensor becomes abnormal due to the proximity of magnetic or conductive foreign matter, which each sensor is not good at, the output signals of the other sensors can be maintained normal. Therefore, this brake system can ensure redundancy of the output signals of the sensors by preventing simultaneous failure of the sensors.
 (第2実施形態)
 第2実施形態について説明する。第2実施形態は、第1実施形態に対して、4個のセンサ11~14から2個のECU21、22へのセンサ出力信号の伝送方法を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second embodiment)
A second embodiment will be described. The second embodiment differs from the first embodiment in the method of transmitting sensor output signals from the four sensors 11 to 14 to the two ECUs 21 and 22, and the rest is the same as in the first embodiment. , only differences from the first embodiment will be described.
 第2実施形態において、4個のセンサ11~14から2個のECU21、22へのセンサ出力信号の伝送方法について、図3を参照しつつ説明する。 A method of transmitting sensor output signals from the four sensors 11 to 14 to the two ECUs 21 and 22 in the second embodiment will be described with reference to FIG.
 第1センサ11は、自身のセンサ内で生成されたセンサ出力信号を、第1センサ11の送信部111から第1配線51を経由して第1ECU21の第1受信部211に送信する。 The first sensor 11 transmits the sensor output signal generated within its own sensor from the transmitter 111 of the first sensor 11 to the first receiver 211 of the first ECU 21 via the first wiring 51 .
 第2センサ12は、自身のセンサ内で生成されたセンサ出力信号を、第2センサ12の送信部121から第2配線52を経由して第2ECU22の第1受信部221に送信する。 The second sensor 12 transmits the sensor output signal generated within its own sensor from the transmitter 121 of the second sensor 12 to the first receiver 221 of the 2ECU 22 via the second wiring 52 .
 第2実施形態では、第3センサ13と第4センサ14との間の通信機能において、第3センサ13は、センサ出力信号の受信機能を有しており、第4センサ14は、センサ出力信号の送信機能を有している。 In the second embodiment, in the communication function between the third sensor 13 and the fourth sensor 14, the third sensor 13 has a function of receiving a sensor output signal, and the fourth sensor 14 has a function of receiving a sensor output signal. It has a transmission function of
 第4センサ14は、自身のセンサ内で生成されたセンサ出力信号を、自身の送信部143から第5配線55を経由して第3センサ13の受信部133に送信する。また、第4センサ14は、自身のセンサ内で生成されたセンサ出力信号を、第4センサ14の送信部141から第4配線54を経由して第2ECU22の第2受信部222に送信する。 The fourth sensor 14 transmits the sensor output signal generated within its own sensor from its own transmitter 143 to the receiver 133 of the third sensor 13 via the fifth wiring 55 . In addition, the fourth sensor 14 transmits the sensor output signal generated in its own sensor from the transmitter 141 of the fourth sensor 14 to the second receiver 222 of the second ECU 22 via the fourth wiring 54 .
 第3センサ13は、自身の受信部133で第4センサ14からのセンサ出力信号を受信すると、センサ内の集積回路の信号集約機能を用いて、自ら生成したセンサ出力信号と、第4センサ14から受信したセンサ出力信号とを合成した合成信号を生成する。なお、センサ内の集積回路として、例えばASICが用いられる。そして、第3センサ13は、その合成信号を、第3センサ13の送信部131から第3配線53を経由して第1ECU21の第2受信部212に送信する。 When the third sensor 13 receives the sensor output signal from the fourth sensor 14 with its own receiving unit 133, it uses the signal aggregation function of the integrated circuit in the sensor to generate the self-generated sensor output signal and the fourth sensor 14 generates a composite signal that is combined with the sensor output signal received from. For example, an ASIC is used as an integrated circuit in the sensor. And the 3rd sensor 13 transmits the combined signal to the 2nd receiving part 212 of 1ECU21 via the 3rd wiring 53 from the transmission part 131 of the 3rd sensor 13. FIG.
 なお、第3センサ13と第4センサ14との通信方式として、アナログ通信、デジタル通信、デジタルバス通信などを採用することができる。また、各センサ11~14と各ECU21、22との通信方式として、アナログ通信、デジタル通信、光通信などを採用することができる。デジタル通信として、SPI、I2C、UART、SENTなどが例示される。 As a communication method between the third sensor 13 and the fourth sensor 14, analog communication, digital communication, digital bus communication, or the like can be adopted. Further, analog communication, digital communication, optical communication, or the like can be adopted as a communication method between the sensors 11 to 14 and the ECUs 21 and 22. FIG. Examples of digital communication include SPI, I2C, UART, and SENT.
 以上説明したように、第2実施形態のブレーキシステムでは、第1ECU21に対し、第1センサ11から送信されるセンサ出力信号と、第3センサ13から送信される合成信号が入力される。すなわち、第1ECU21には、第1センサ11と第3センサ13と第4センサ14のセンサ出力信号が入力される。したがって、第1ECU21は、3個のセンサのうち1個のセンサが故障した場合に、多数決判定により、その故障したセンサを特定できる。それと共に、第1ECU21は、故障したセンサを除いた、正常なセンサ出力信号に基づいて、正確なペダル操作量を検出できる。 As described above, in the brake system of the second embodiment, the sensor output signal transmitted from the first sensor 11 and the combined signal transmitted from the third sensor 13 are input to the first ECU 21 . That is, sensor output signals of the first sensor 11, the third sensor 13, and the fourth sensor 14 are input to the first ECU21. Therefore, when one of the three sensors fails, the first ECU 21 can identify the failed sensor by majority decision. At the same time, the first ECU 21 can detect an accurate pedal operation amount based on normal sensor output signals excluding the malfunctioning sensor.
 また、第2実施形態では、第1ECU21と第2ECU22に対し4個のセンサ11~14のうち2つ以上のセンサ出力信号が入力される。そのため、第1ECU21または第2ECU22の一方が故障した場合でも、他方のECUによりブレーキ回路40を駆動制御することが可能である。したがって、このブレーキシステムは、ECU21、22の故障に対し、冗長性を確保できる。 Further, in the second embodiment, two or more sensor output signals out of the four sensors 11 to 14 are input to the 1ECU21 and the 2ECU22. Therefore, even if one of the first ECU 21 and the second ECU 22 fails, the brake circuit 40 can be driven and controlled by the other ECU. Therefore, this brake system can ensure redundancy against failure of the ECUs 21 and 22 .
 このように、第2実施形態の構成においても、第1ECU21による多数決判定による故障したセンサの特定、及びECU21、22の故障に対する冗長性の確保といった機能を、4個のセンサ11~14を用いたルーティング方法により構築することが可能である。したがって、このブレーキシステムは、センサ個数の最適化により、製造コストを低減するとともに、ブレーキペダル装置30の体格を小型化することができる。 Thus, in the configuration of the second embodiment as well, the functions of specifying a failed sensor by majority decision by the first ECU 21 and ensuring redundancy against failures of the ECUs 21 and 22 are performed using the four sensors 11 to 14. It can be constructed by routing methods. Therefore, this brake system can reduce manufacturing costs and reduce the size of the brake pedal device 30 by optimizing the number of sensors.
 さらに、第2実施形態のブレーキシステムでも、第1ECU21と第2ECU22は、4個のセンサ11~14のセンサ出力信号に関し、第1ECU21と第2ECU22との間の通信を必要としない。したがって、このブレーキシステムは、ECU21、22の制御処理の負荷を低減することができる。 Furthermore, even in the brake system of the second embodiment, the first ECU 21 and the second ECU 22 do not require communication between the first ECU 21 and the second ECU 22 regarding the sensor output signals of the four sensors 11-14. Therefore, this brake system can reduce the control processing load of the ECUs 21 and 22 .
 (他の実施形態)
 (1)上記各実施形態では、ブレーキペダル装置30の一例として、オルガン式のブレーキペダル装置30について説明したが、それに限らず、ブレーキペダル装置30は、例えばペンダント式のブレーキペダル装置であってもよい。ペンダント式のブレーキペダル装置とは、ブレーキペダル31のうち運転者に踏まれる部位が搖動の軸心CLに対して車両搭載時の天地方向における下方に配置されるものである。
(Other embodiments)
(1) In each of the above-described embodiments, the organ-type brake pedal device 30 was described as an example of the brake pedal device 30. good. A pendant-type brake pedal device is one in which the portion of the brake pedal 31 that is stepped on by the driver is arranged below the swing axis CL in the vertical direction when the brake pedal is mounted on the vehicle.
 (2)上記各実施形態では、ブレーキシステムは、2個のECU21、22を備えるものとして説明したが、それに限らず、ブレーキシステムは、3個のECUを備えていてもよい。言い換えれば、ブレーキシステムは、少なくとも2個のECU21、22を備えていればよい。 (2) In each of the above embodiments, the brake system has two ECUs 21 and 22, but the brake system may have three ECUs. In other words, the brake system should have at least two ECUs 21 and 22 .
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。 The present disclosure is not limited to the above-described embodiments, and can be modified as appropriate. Moreover, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above-described embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential, unless it is explicitly stated that they are essential, or they are clearly considered essential in principle. stomach. In addition, in each of the above-described embodiments, when numerical values such as the number, numerical value, amount, range, etc. of the constituent elements of the embodiment are mentioned, when it is explicitly stated that they are particularly essential, and when they are clearly limited to a specific number in principle is not limited to that particular number. In addition, in each of the above-described embodiments, when referring to the shape, positional relationship, etc. of the constituent elements, the shape, It is not limited to the positional relationship or the like.
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The controller and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by the computer program. may be Alternatively, the controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control units and techniques described in this disclosure can be implemented by a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured. The computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.

Claims (7)

  1.  車両を制動するブレーキ回路(40)を駆動制御するブレーキシステムにおいて、
     運転者に操作されるブレーキペダル(31)の操作量に応じたセンサ出力信号を生成し出力する4個のセンサ(11~14)と、
     前記センサから出力されるセンサ出力信号に基づいて前記ブレーキ回路の駆動を制御する少なくとも2個の電子制御装置(21、22)と、を備え、
     4個の前記センサを任意に第1センサ(11)、第2センサ(12)、第3センサ(13)、第4センサ(14)と呼ぶとき、
     前記第1センサは、少なくとも2個の前記電子制御装置のうち所定の前記電子制御装置(21)にセンサ出力信号を送信し、
     前記第2センサは、少なくとも2個の前記電子制御装置のうち所定の前記電子制御装置とは別の前記電子制御装置(22)にセンサ出力信号を送信し、
     前記第3センサおよび前記第4センサは、センサ出力信号の送信機能(132、142、143)および受信機能(132、142、133)の少なくとも一方を有しており、
     前記第3センサおよび前記第4センサのうち、一方のセンサから送信されたセンサ出力信号を受信した他方のセンサは、自ら生成したセンサ出力信号と受信したセンサ出力信号とを合成した合成信号を所定の前記電子制御装置または別の前記電子制御装置に送信するように構成されている、ブレーキシステム。
    In a brake system that drives and controls a brake circuit (40) that brakes a vehicle,
    four sensors (11 to 14) for generating and outputting sensor output signals corresponding to the amount of operation of a brake pedal (31) operated by the driver;
    At least two electronic control units (21, 22) that control the driving of the brake circuit based on the sensor output signal output from the sensor,
    When the four sensors are arbitrarily called first sensor (11), second sensor (12), third sensor (13), fourth sensor (14),
    The first sensor transmits a sensor output signal to a predetermined electronic control unit (21) of the at least two electronic control units;
    said second sensor sending a sensor output signal to said electronic control unit (22) other than a predetermined one of said at least two electronic control units;
    The third sensor and the fourth sensor have at least one of sensor output signal transmission functions (132, 142, 143) and reception functions (132, 142, 133),
    Of the third sensor and the fourth sensor, the other sensor that has received the sensor output signal transmitted from one of the sensors generates a predetermined synthesized signal obtained by synthesizing the sensor output signal generated by itself and the received sensor output signal. or another said electronic controller.
  2.  前記第3センサは、自ら生成したセンサ出力信号を前記送信機能により前記第4センサに送信し、さらに前記第4センサから送信されたセンサ出力信号を前記受信機能により受信し、自ら生成したセンサ出力信号と受信したセンサ出力信号とを合成した合成信号を所定の前記電子制御装置に送信し、
     前記第4センサは、自ら生成したセンサ出力信号を前記送信機能により前記第3センサに送信し、さらに前記第3センサから送信されたセンサ出力信号を前記受信機能により受信し、自ら生成したセンサ出力信号と受信したセンサ出力信号とを合成した合成信号を別の前記電子制御装置に送信するように構成されている、請求項1に記載のブレーキシステム。
    The third sensor transmits the sensor output signal generated by itself to the fourth sensor by the transmission function, further receives the sensor output signal transmitted from the fourth sensor by the reception function, and generates the sensor output by itself sending a synthesized signal obtained by synthesizing the signal and the received sensor output signal to the predetermined electronic control device;
    The fourth sensor transmits the sensor output signal generated by itself to the third sensor by the transmission function, receives the sensor output signal transmitted from the third sensor by the reception function, and generates the sensor output 2. The braking system of claim 1, configured to transmit a composite signal combining the signal and the received sensor output signal to another of the electronic controllers.
  3.  前記第3センサおよび前記第4センサのうち一方のセンサは、他方のセンサが送信したセンサ出力信号を前記受信機能により受信し、自ら生成したセンサ出力信号と受信したセンサ出力信号とを合成した合成信号を所定の前記電子制御装置に送信し、
     前記第3センサおよび前記第4センサのうち他方のセンサは、自ら生成したセンサ出力信号を前記送信機能により一方のセンサに送信し、さらに自ら生成したセンサ出力信号を別の前記電子制御装置に送信するように構成されている、請求項1に記載のブレーキシステム。
    One of the third sensor and the fourth sensor receives the sensor output signal transmitted by the other sensor by the receiving function, and synthesizes the sensor output signal generated by itself and the received sensor output signal. sending a signal to a predetermined electronic control unit;
    The other of the third sensor and the fourth sensor transmits the sensor output signal generated by itself to one of the sensors by the transmission function, and further transmits the sensor output signal generated by itself to the other electronic control device. 2. The braking system of claim 1, wherein the braking system is configured to:
  4.  前記第3センサと前記第4センサとの通信方式として、アナログ通信、デジタル通信、デジタルバス通信のうちいずれか1つが採用される、請求項1ないし3のいずれか1つに記載のブレーキシステム。 The brake system according to any one of claims 1 to 3, wherein any one of analog communication, digital communication, and digital bus communication is adopted as a communication method between the third sensor and the fourth sensor.
  5.  前記センサと前記電子制御装置との通信方式として、アナログ通信、デジタル通信、光通信のうちいずれか1つが採用される、請求項1ないし4のいずれか1つに記載のブレーキシステム。 The brake system according to any one of claims 1 to 4, wherein any one of analog communication, digital communication, and optical communication is adopted as a communication method between the sensor and the electronic control device.
  6.  4個の前記センサのうち少なくとも1つの前記センサは磁気センサであり、その他の前記センサはインダクティブセンサである、請求項1ないし5のいずれか1つに記載のブレーキシステム。 The brake system according to any one of claims 1 to 5, wherein at least one of the four sensors is a magnetic sensor and the other sensors are inductive sensors.
  7.  車両を制動するブレーキ回路(40)を駆動制御する少なくとも2個の電子制御装置(21、22)を備えるブレーキシステムに用いられるブレーキペダル装置において、
     運転者に操作されるブレーキペダル(31)と、
     前記ブレーキペダルの操作量に応じたセンサ出力信号を生成し出力する4個のセンサ(11~14)と、を備え、
     4個の前記センサを任意に第1センサ(11)、第2センサ(12)、第3センサ(13)、第4センサ(14)と呼ぶとき、
     前記第1センサは、少なくとも2個の前記電子制御装置のうち所定の前記電子制御装置(21)にセンサ出力信号を送信し、
     前記第2センサは、少なくとも2個の前記電子制御装置のうち所定の前記電子制御装置とは別の前記電子制御装置(22)にセンサ出力信号を送信し、
     前記第3センサおよび前記第4センサは、センサ出力信号の送信機能(132、142、143)および受信機能(132、142、133)の少なくとも一方を有しており、
     前記第3センサおよび前記第4センサのうち、一方のセンサから送信されたセンサ出力信号を受信した他方のセンサは、自ら生成したセンサ出力信号と受信したセンサ出力信号とを合成した合成信号を所定の前記電子制御装置または別の前記電子制御装置に送信するように構成されている、ブレーキペダル装置。
    A brake pedal device used in a brake system comprising at least two electronic controllers (21, 22) for driving and controlling a brake circuit (40) for braking a vehicle,
    a brake pedal (31) operated by a driver;
    four sensors (11 to 14) that generate and output sensor output signals corresponding to the amount of operation of the brake pedal,
    When the four sensors are arbitrarily called first sensor (11), second sensor (12), third sensor (13), fourth sensor (14),
    The first sensor transmits a sensor output signal to a predetermined electronic control unit (21) of the at least two electronic control units;
    said second sensor sending a sensor output signal to said electronic control unit (22) other than a predetermined one of said at least two electronic control units;
    The third sensor and the fourth sensor have at least one of sensor output signal transmission functions (132, 142, 143) and reception functions (132, 142, 133),
    Of the third sensor and the fourth sensor, the other sensor that has received the sensor output signal transmitted from one of the sensors generates a predetermined synthesized signal obtained by synthesizing the sensor output signal generated by itself and the received sensor output signal. or another said electronic control device.
PCT/JP2022/039931 2021-11-10 2022-10-26 Brake system and brake pedal device WO2023085094A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-183589 2021-11-10
JP2021183589A JP2023071024A (en) 2021-11-10 2021-11-10 Brake system and brake pedal device

Publications (1)

Publication Number Publication Date
WO2023085094A1 true WO2023085094A1 (en) 2023-05-19

Family

ID=86335777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039931 WO2023085094A1 (en) 2021-11-10 2022-10-26 Brake system and brake pedal device

Country Status (2)

Country Link
JP (1) JP2023071024A (en)
WO (1) WO2023085094A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029416A (en) * 2007-07-27 2009-02-12 Robert Bosch Gmbh Brake device
JP2017009352A (en) * 2015-06-18 2017-01-12 矢崎総業株式会社 Earth connection device for vehicle
WO2020104277A1 (en) * 2018-11-22 2020-05-28 Robert Bosch Gmbh Operating method for a redundant sensor assembly of a vehicle system and corresponding redundant sensor assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029416A (en) * 2007-07-27 2009-02-12 Robert Bosch Gmbh Brake device
JP2017009352A (en) * 2015-06-18 2017-01-12 矢崎総業株式会社 Earth connection device for vehicle
WO2020104277A1 (en) * 2018-11-22 2020-05-28 Robert Bosch Gmbh Operating method for a redundant sensor assembly of a vehicle system and corresponding redundant sensor assembly

Also Published As

Publication number Publication date
JP2023071024A (en) 2023-05-22

Similar Documents

Publication Publication Date Title
US20220169222A1 (en) Method for operating a braking system of a vehicle, and braking system
US6189981B1 (en) Brake system for a motor vehicle
CN107792032B (en) Brake-by-wire system
CN107792033B (en) BRAKE-BY-WIRE (BRAKE-BY-WIRE) system
US6349996B1 (en) Electrically controlled decentralized control system in a vehicle
JP6997332B2 (en) Redundant architecture for highly automated systems
CN107792042B (en) Brake-by-wire system
JP4598245B2 (en) Electrically controlled brake device
WO2023085094A1 (en) Brake system and brake pedal device
CN110573394B (en) Vehicle brake system
WO2023085095A1 (en) Braking system and brake pedal device
JP7117290B2 (en) vehicle braking system
JP2010501411A (en) Vehicle data processing system
WO2018181805A1 (en) Vehicular brake system
US20220340114A1 (en) Braking system for a vehicle
JP6905848B2 (en) Vehicle braking system
JP6893109B2 (en) Vehicle braking system
JP6920857B2 (en) Vehicle braking system
WO2023210766A1 (en) Brake system
US20230278534A1 (en) Brake system, vehicle and method for operating a brake system
JP2019026004A (en) Vehicle brake system
US11993179B2 (en) Brake assist for an inoperable electronic booster brake system
JP2005067243A (en) Brake controlling device
JP2018172033A (en) Vehicular brake system
US20230356701A1 (en) Electronic brake system and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892594

Country of ref document: EP

Kind code of ref document: A1