WO2023085051A1 - Optical laminated sheet, optical article, lens, spectacles, and method for manufacturing optical laminated sheet - Google Patents

Optical laminated sheet, optical article, lens, spectacles, and method for manufacturing optical laminated sheet Download PDF

Info

Publication number
WO2023085051A1
WO2023085051A1 PCT/JP2022/039379 JP2022039379W WO2023085051A1 WO 2023085051 A1 WO2023085051 A1 WO 2023085051A1 JP 2022039379 W JP2022039379 W JP 2022039379W WO 2023085051 A1 WO2023085051 A1 WO 2023085051A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepolymer
optical
compound
active hydrogen
sheet
Prior art date
Application number
PCT/JP2022/039379
Other languages
French (fr)
Japanese (ja)
Inventor
力宏 森
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2023085051A1 publication Critical patent/WO2023085051A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers

Definitions

  • the present invention relates to an optical laminated sheet, an optical article, a lens, spectacles, and a method for producing an optical laminated sheet.
  • Plastic glasses are glasses that use plastic lenses.
  • a plastic lens is manufactured, for example, by subjecting a semi-finished lens, which is a semi-finished product, to various processes.
  • a functional layer such as a hard coat layer or an antireflection film is provided on the convex surface of the semi-finished lens.
  • cutting and polishing are applied to the back surface, which is the concave surface of the semi-finished lens.
  • a photochromic lens is obtained by applying a photochromic compound to a plastic lens.
  • a photochromic compound is a compound that can reversibly generate two or more isomers having different light absorption spectra by the action of light.
  • Conventional methods for producing photochromic lenses include a kneading method in which a photochromic compound is dispersed in the matrix of a semi-finished lens, and a lamination method in which a layer containing a photochromic compound is provided on the surface of a semi-finished lens. .
  • the binder sheet method is a method of manufacturing a semi-finished lens by integrating a binder sheet in which a resin layer containing a photochromic compound is sandwiched between two optical sheets with a lens substrate.
  • a semi-finished lens can be produced using a self-supporting article containing a photochromic compound. Therefore, compared to the kneading method and the lamination method, the production efficiency tends to be higher and mass production tends to be easier. .
  • JP 2013-033131 A WO2019/163728 WO2019/194281 WO2012/018070 Japanese Patent Application Publication No. 2018-514817 WO2017/115874
  • An object of the present invention is to provide an optical laminated sheet excellent in adhesion and appearance, a method for producing the same, and an optical article, lens, and spectacles including this optical laminated sheet.
  • an optical laminated sheet includes a first optical sheet, a second optical sheet, and a photochromic adhesive layer.
  • the first and second optical sheets contain polyvinyl alcohol resin.
  • the photochromic adhesive layer is interposed between and adheres the first optical sheet and the second optical sheet.
  • the photochromic adhesive layer contains a cured adhesive composition containing a photochromic compound and a polymerizable component.
  • the polymerized component includes any one of the second prepolymer, the first polymer and the second prepolymer, the first polymer and the third prepolymer, and the first polymer, the second prepolymer and the third prepolymer.
  • the second prepolymer is obtained by reacting the first prepolymer and the second polyfunctional active hydrogen compound.
  • the second prepolymer is a compound having two or more iso(thio)cyanate groups.
  • the second polyfunctional active hydrogen compound has two or more active hydrogen groups.
  • the first prepolymer is obtained by reacting the first polyfunctional active hydrogen compound and the first iso(thio)cyanate compound.
  • the first prepolymer is a compound having two or more iso(thio)cyanate groups.
  • the first polyfunctional active hydrogen compound has two or more active hydrogen groups.
  • the first iso(thio)cyanate compound has two or more iso(thio)cyanate groups.
  • the first polymer is a compound obtained by reacting the second prepolymer with a monofunctional active hydrogen compound. A monofunctional active hydrogen compound has one active hydrogen group.
  • the third prepolymer is obtained by reacting the first polyfunctional active hydrogen compound and the first iso(thio)cyanate compound.
  • the third prepolymer has two or more iso(thio)cyanate groups.
  • an optical article includes an optical laminate sheet according to an embodiment and an optical element substrate.
  • the optical element substrate covers the surface of at least one of the first optical sheet and the second optical sheet, and contains a resin.
  • lenses are provided that include optical articles according to other embodiments.
  • spectacles including lenses according to other embodiments are provided.
  • a first method for manufacturing an optical laminated sheet comprises reacting a first polyfunctional active hydrogen compound with a first iso(thio)cyanate compound to obtain a first prepolymer, and reacting the first prepolymer with a second polyfunctional active hydrogen compound. obtaining a second prepolymer; mixing the second prepolymer and a photochromic compound to obtain an adhesive composition; and coating the adhesive composition on at least one major surface of the first optical sheet. obtaining a coating film; and laminating a second optical sheet on the coating film.
  • a second method for manufacturing an optical laminate sheet comprises reacting a first polyfunctional active hydrogen compound with a first iso(thio)cyanate compound to obtain a first prepolymer, and reacting the first prepolymer with a second polyfunctional active hydrogen compound.
  • obtaining a second prepolymer by reacting the second prepolymer with a monofunctional active hydrogen compound to obtain a first polymer; mixing the first polymer, the second prepolymer, and the photochromic compound obtaining an adhesive composition; coating the adhesive composition on at least one main surface of a first optical sheet to obtain a coating film; and laminating a second optical sheet on the coating film.
  • an optical laminated sheet excellent in adhesion and appearance a method for producing the same, and an optical article, lens, and spectacles including this optical laminated sheet are provided.
  • Sectional drawing which shows an example of a 1st optical lamination sheet roughly.
  • Sectional drawing which shows an example of a 2nd optical lamination sheet roughly.
  • BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing which shows schematically an example of the optical article which concerns on embodiment.
  • BRIEF DESCRIPTION OF THE DRAWINGS The perspective view which shows schematically an example of the spectacles which concern on embodiment.
  • the photochromic adhesive layer of the optical laminate sheet is sometimes required to have high photochromic properties in addition to the adhesive ability to bond two optical sheets. That is, photochromic compounds exhibit photochromic properties by repeating structural changes between isomers.
  • the matrix of the adhesive layer containing the photochromic compound is required to have properties that do not interfere with this structural change.
  • (Thio)urethane resins, (thio)urea resins, or (thio)urethane urea resins are sometimes used to provide such matrices. Since these resins are reaction products of iso(thio)cyanate and compounds containing active hydrogen groups, resins having desired properties can be obtained by appropriately selecting each component. Furthermore, by using a chain extender having an active hydrogen group, it is possible to further bond the above-mentioned reaction product, so that the structure capable of exhibiting desired properties can be designed in more detail.
  • (thio)urethane resin means at least one of urethane resin and thiourethane resin.
  • (Thio)urea resin means at least one of urea resin and thiourea resin.
  • a (thio)urethane urea resin means at least one of a urethane urea resin and a thiourethane urea resin.
  • a (thio)urethane urea resin is a resin having both a (thio)urethane bond and a (thio)urea bond.
  • a (thio)urethane bond can be produced by a reaction between a compound having an iso(thio)cyanate group and a compound having a hydroxyl group (--OH).
  • a (thio)urea bond can result from a reaction between a compound having an iso(thio)cyanate group and a compound having an amine group (--NH 2 ).
  • a (thio)urethane urea resin can be obtained by reacting a compound having a (thio)urethane bond and an isocyanate group with an amine.
  • the photochromic adhesive layer is a cured adhesive composition containing a photochromic compound and a polymerizable component.
  • the polymerized component includes any one of the second prepolymer, the first polymer and the second prepolymer, the first polymer and the third prepolymer, and the first polymer, the second prepolymer and the third prepolymer.
  • the second prepolymer is obtained by reacting a first prepolymer obtained by reacting a first polyfunctional active hydrogen compound and a first iso(thio)cyanate compound with a second polyfunctional active hydrogen compound as a chain extender. It is an iso(thio)cyanate compound obtained by The first polyfunctional active hydrogen compound and the second polyfunctional active hydrogen compound may be the same compound or different compounds. Since the second prepolymer is composed of at least two or more components, a cured product in which the photochromic compound is susceptible to structural change can be produced.
  • the first polymer has a structure in which the iso(thio)cyanate group of the second prepolymer is bonded to a compound having a monofunctional active hydrogen group.
  • the first polymer does not react with iso(thio)cyanate groups at normal temperature and normal pressure, but reacts with the second prepolymer and/or the third prepolymer at high temperature to form two or more iso(thio)cyanate groups. and these are believed to polymerize to give a cured product. Since the first polymer is composed of at least three or more components and also reacts with the second prepolymer and/or the third prepolymer, it is thought that the photochromic compound produces a cured product that is susceptible to structural change.
  • the optical laminated sheet according to the embodiment two optical sheets containing polyvinyl alcohol (PVA) are adhered by an adhesive layer containing a photochromic compound.
  • PVA is a highly hydrophilic resin having —CH 2 CH(OH)— as a repeating unit, and has hydroxyl groups (—OH) on its surface.
  • the second prepolymer, the first polymer and the second prepolymer, the first polymer and the third prepolymer, and the first polymer are formed on the surface of the first optical sheet. and the second prepolymer and the third prepolymer, and then laminating the second optical sheet on the obtained coating film.
  • the iso(thio)cyanate groups of the second prepolymer chemically react with hydroxyl groups on the surface of PVA contained in the first and second optical sheets.
  • the iso(thio)cyanate groups contained in the reactants of the first polymer and the second prepolymer and/or the third prepolymer chemically react with the hydroxyl groups on the surface of the PVA contained in the first and second optical sheets. .
  • This increases the bonding strength between the photochromic adhesive layer and the first and second optical sheets. That is, in the optical laminated sheet according to the embodiment, high adhesiveness can be achieved without subjecting the surfaces of the first and second sheets to treatment for imparting hydroxyl groups or the like or using other adhesives or the like.
  • the optical laminated sheet according to the embodiment has excellent photochromic properties, high adhesion between the first and second optical sheets, and excellent appearance.
  • Such an optical laminated sheet is suitable for use in optical articles such as sunglasses.
  • the first optical laminate sheet includes a first optical sheet, a second optical sheet, and a photochromic adhesive layer.
  • the first optical sheet and the second optical sheet are adhered by a photochromic adhesive layer.
  • the photochromic adhesive layer is in direct contact with at least one major surface of the first and second optical sheets.
  • FIG. 1 is a cross-sectional view schematically showing an example of the first optical laminate sheet.
  • the optical laminated sheet 1 shown in FIG. 1 includes a first optical sheet 2, a second optical sheet 3, and a photochromic adhesive layer 4 interposed therebetween.
  • the photochromic adhesive layer 4 covers the entire one main surface of the first optical sheet 2 and the entire one main surface of the second optical sheet 3 .
  • the photochromic adhesive layer 4 may cover both the entire principal surfaces of the first optical sheet 2 and both the entire principal surfaces of the second optical sheet 3, or may cover only a portion of each principal surface. may
  • the first and second optical sheets contain polyvinyl alcohol (PVA) resin.
  • PVA polyvinyl alcohol
  • the first and second optical sheets may be composed only of PVA resin, or may contain other resins.
  • Other resins include aldehyde-modified polyvinyl formal, polyvinyl acetal, polyvinyl butyral, and the like.
  • the first and second optical sheets may be unstretched, uniaxially stretched, or biaxially stretched.
  • the stretching direction may be the machine direction (MD) of the unstretched film, the direction perpendicular thereto (TD), or the direction oblique to the machine direction.
  • the unstretched sheet is a sheet that is not stretched
  • the uniaxially stretched sheet is an unstretched sheet that is stretched in one of the above directions.
  • a biaxially stretched sheet is a sheet stretched in two of the stretching directions described above. It may be an axially stretched sheet. In the case of a biaxially stretched sheet, it is usually preferable to stretch it in MD or TD.
  • the draw ratio is preferably 2 to 8 times.
  • the average degree of polymerization of the PVA resin is, for example, 100 or more and 10000 or less, preferably 1500 or more and 8000 or less, more preferably 2000 or more and 5000 or less.
  • the average degree of polymerization of PVA resin is determined by a method based on Japanese Industrial Standards (JIS) K6726;1994.
  • the PVA resin may contain boric acid. Boric acid is used as a cross-linking agent for cross-linking PVA.
  • the boric acid content of the PVA resin is, for example, 1% by mass or more and 20% by mass or less, preferably 3% by mass or more and 18% by mass or less, and more preferably 5% by mass or more and 15% by mass or less. .
  • the boric acid content can be calculated by inductively coupled plasma (IPC) emission spectrometry. Specifically, first, the first or second optical sheet is dissolved in an aqueous nitric acid solution to obtain a solution. IPC analysis is performed using this solution to calculate the boron content. This boron content is converted to the boric acid content.
  • IPC inductively coupled plasma
  • At least one of the first and second optical sheets may be a polarizing film having polarizing properties.
  • the first and second polarizing optical sheets preferably have a luminous transmittance of 10% or more and 80% or less and a degree of polarization of 30% or more and 99.9% or less.
  • the polarizing first and second optical sheets contain a dichroic substance.
  • Dichroic substances include iodine and dichroic dyes.
  • the dichroic dye may be an azo dye or an anthraquinone dye. Specific examples of dichroic dyes are Chloranthin Fast Red (CI 28160), Congo Red (CI 22120), Brilliant Blue B (CI 24410), Benzopurpurine (CI 24410). 23500), Chlorazole Black BH (CI 22590), Direct Blue 2B (CI 22610), Diamine Green (CI 30295), Chrysophenine (CI 24895), Sirius Yellow (CI 24895).
  • the thickness of the first optical sheet is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the second optical sheet may be the same as or different from the thickness of the first optical sheet.
  • the photochromic adhesive layer is interposed between and adheres the first optical sheet and the second optical sheet.
  • the photochromic adhesive layer contains a cured adhesive composition, which will be described later.
  • the cured product contains at least one selected from the group consisting of polyurethane resins, polyurethane urea resins, polythiourethane resins, and polythiourethane urea resins, and a photochromic compound.
  • the thickness of the photochromic adhesive layer is, for example, 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the photochromic adhesive layer may be thinner than or thicker than the thicknesses of the first and second optical sheets.
  • the adhesive composition contains a photochromic compound and a polymerizable component.
  • the polymerized component becomes the matrix of the photochromic adhesive layer.
  • the polymerized component includes any one of the second prepolymer, the first polymer and the second prepolymer, the first polymer and the third prepolymer, and the first polymer, the second prepolymer and the third prepolymer.
  • the adhesive composition comprises a first combination of a polymerized component comprising the second prepolymer and the photochromic compound, a second combination of the polymerized component comprising the first polymer and the second prepolymer and the photochromic compound, a second A third combination of a polymerized component comprising a first polymer and a third prepolymer and a photochromic compound, and a fourth combination of a polymerized component comprising a first polymer, a second prepolymer and a third prepolymer and a photochromic compound.
  • Photochromic compound As the photochromic compound, for example, at least one selected from the group consisting of chromene compounds, fulgide compounds, and spirooxazine compounds is used. A chromene compound is preferably used as the photochromic compound. Chromene compounds include compounds having a 1-benzopyran skeleton. The following formula (I) shows a 2H-1-benzopyran skeleton.
  • Chromene compounds include spiropyran compounds containing a spiropyran skeleton and naphthopyran compounds having a naphthopyran skeleton.
  • a spiropyran skeleton is a 1-benzopyran skeleton containing a spiro atom.
  • the formula (II) below shows a naphthopyran skeleton.
  • Naphthopyran compounds include indenonaphthopyran compounds having an indenonaphthopyran skeleton.
  • the chromene compound preferably contains an indenonaphthopyran compound having an indeno[2,1-f]naphtho[1,2-b]pyran skeleton.
  • a resin composition containing a chromene compound having an indeno[2,1-f]naphtho[1,2-b]pyran skeleton tends to be more excellent in durability.
  • the following formula (III) shows an indeno[2,1-f]naphtho[1,2-b]pyran skeleton.
  • the indenonaphthopyran compound preferably contains a compound represented by the following formula (IIIa).
  • the Z ring is a substituted or unsubstituted spiro ring having a spiro atom at the 13-position carbon atom.
  • Z ring, together with the carbon atom at the 13-position, may form an aliphatic ring, may form a condensed polycyclic ring, may form a heterocyclic ring, or may form a heterocyclic aromatic ring. may be formed.
  • the number of ring member carbon atoms in the aliphatic ring is preferably 3 or more and 20 or less, more preferably 5 or more and 16 or less, and even more preferably 6 or more and 10 or less.
  • Specific examples of aliphatic rings include cyclopentane ring, cyclohexane ring, cyclooctane ring, cycloheptane ring, norbornane ring, bicyclononane ring, adamantane ring, and spirodicyclohexane ring.
  • the aliphatic ring is preferably a cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, cyclododecane ring, or spirodicyclohexane ring.
  • the number of ring member carbon atoms in the condensed polycyclic ring is preferably 3 or more and 20 or less, more preferably 5 or more and 10 or less.
  • a specific example of the condensed polycyclic ring includes a phenanthrene ring.
  • the number of ring member atoms of the heterocyclic ring is preferably 3 or more and 20 or less.
  • Specific examples of heterocyclic ring include thiophene ring, furan ring and pyridine ring.
  • the number of ring member atoms in the heterocyclic aromatic ring is preferably 3 or more and 20 or less.
  • Specific examples of heterocyclic aromatic rings include phenylfuran rings and biphenylthiophene rings.
  • substituents include an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an amino group, a substituted amino group, and at least one substituent selected from the group consisting of halogen atoms.
  • the substituent is preferably at least one substituent selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group, a haloalkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms.
  • the number of substituents on the Z ring is, for example, 0 or more and 10 or less, preferably 2 or more and 4 or less.
  • the Z ring is preferably an aliphatic ring having 5 to 16 ring member carbon atoms.
  • the first chromene compound having such a structure tends to have a high fading rate.
  • the aliphatic ring more preferably has an alkyl group having 1 to 3 carbon atoms as a substituent.
  • the aliphatic ring also includes an aliphatic condensed ring in which rings are bonded between two atoms.
  • the Z ring preferably has a structure represented by the following formulas (Ia), (Ib), (Ic), (Id), (Ie), (If), (Ig), or (Ih). Structures represented by (Ib), (Ig) or (Ih) are more preferred.
  • the carbon atom with the broken line bond is the carbon atom at the 13th position.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are each independently a hydrogen atom, a hydroxyl group, a methoxycarbonyl group, an ethoxycarbonyl group, an alkyl group, Cycloalkyl group, haloalkyl group, alkoxy group, amino group, substituted amino group, optionally substituted heterocyclic group, halogen atom, alkylthio group, optionally substituted arylthio group, nitro group, formyl group, hydroxycarbonyl group, alkylcarbonyl group, alkoxycarbonyl group, optionally substituted aralkyl group, optionally substituted aralkoxy group, optionally substituted aryloxy group, substituent , an optionally substituted heteroaryl group, a thiol group, an alkoxyalkylthio group, a haloalkylthio group, or an optionally substituted cycloalkyl
  • the number of carbon atoms in the alkyl group is preferably 1-10.
  • alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, and hexyl groups.
  • the haloalkyl group preferably has 1 to 10 carbon atoms.
  • an alkyl group substituted with a fluorine atom, a chlorine atom or a bromine atom is preferred.
  • suitable haloalkyl groups include trifluoromethyl, tetrafluoroethyl, chloromethyl, 2-chloroethyl and bromomethyl groups.
  • the number of ring member carbon atoms in the cycloalkyl group is preferably 3-8.
  • Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.
  • the cycloalkyl group may have a substituent, but the number of carbon atoms (3 to 8 carbon atoms) does not include the number of carbon atoms in the substituent.
  • the alkoxy group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms.
  • suitable alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, and tert-butoxy groups.
  • An amino group is a primary amino group (—NH 2 ) and a substituted amino group is a secondary or tertiary amino group in which one or two hydrogen atoms have been substituted.
  • Substituents possessed by the substituted amino group include alkyl groups having 1 to 6 carbon atoms, haloalkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, cycloalkyl groups having 3 to 7 carbon atoms, and 6 carbon atoms. to 14 aryl groups, and heteroaryl groups having 4 to 14 carbon atoms.
  • suitable amino groups include amino group, methylamino group, dimethylamino group, ethylamino group, diethylamino group, phenylamino group, diphenylamino group and the like.
  • the number of atoms in the heterocyclic group is preferably 3-10.
  • the heterocyclic group may be an aliphatic heterocyclic group or an aromatic heterocyclic group. Specific examples of aliphatic heterocyclic groups include morpholino, piperidino, pyrrolidinyl, piperazino and N-methylpiperazino groups. Specific examples of aromatic heterocyclic groups include indolinyl groups.
  • the heterocyclic group may have a substituent. Preferred substituents include alkyl groups having 1 to 10 carbon atoms. Suitable heterocyclic groups having substituents include, for example, 2,6-dimethylmorpholino group, 2,6-dimethylpiperidino group and 2,2,6,6-tetramethylpiperidino group.
  • Halogen atoms include, for example, fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms.
  • the number of carbon atoms in the alkylthio group is preferably 1-10.
  • alkylthio groups include methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, sec-butylthio, and t-butylthio groups.
  • the arylthio group preferably has 6 to 10 carbon atoms.
  • Examples of arylthio groups include phenylthio, 1-naphthylthio, and 2-naphthylthio groups.
  • the number of carbon atoms in the alkylcarbonyl group is preferably 2-10.
  • alkylcarbonyl groups include acetyl and ethylcarbonyl groups.
  • the alkoxycarbonyl group preferably has 2 to 10 carbon atoms.
  • Alkoxycarbonyl groups include methoxycarbonyl and ethoxycarbonyl groups.
  • the aralkyl group preferably has 7 to 11 carbon atoms.
  • aralkyl groups include benzyl, phenylethyl, phenylpropyl, phenylbutyl, and naphthylmethyl groups.
  • the aralkoxy group preferably has 7 to 11 carbon atoms.
  • Examples of aralkoxy groups include benzyloxy and naphthylmethoxy groups.
  • the aryl group preferably has 6 to 12 carbon atoms.
  • Examples of aryl groups include phenyl, 1-naphthyl, and 2-naphthyl groups.
  • the aryloxy group preferably has 6 to 12 carbon atoms.
  • Examples of aryloxy groups include phenyloxy and naphthyloxy groups.
  • the heteroaryl group preferably has 3 to 12 carbon atoms.
  • heteroaryl groups include thienyl, furyl, pyrrolinyl, pyridyl, benzothienyl, benzofuranyl, and benzopyrrolinyl groups.
  • the alkoxyalkylthio group preferably has 2 to 10 carbon atoms.
  • alkoxyalkylthio groups include methoxymethylthio, methoxyethylthio, methoxy n-propylthio, methoxy n-butylthio, ethoxyethylthio, n-propoxypropylthio and the like.
  • the haloalkylthio group preferably has 1 to 10 carbon atoms.
  • Examples of haloalkylthio groups include trifluoromethylthio, tetrafluoroethylthio, chloromethylthio, 2-chloroethylthio, and bromomethylthio groups.
  • the cycloalkylthio group preferably has 3 to 8 carbon atoms.
  • Examples of cycloalkylthio groups include cyclopropylthio, cyclobutylthio, cyclopentylthio, and cyclohexylthio groups.
  • the cycloalkylthio group may have a substituent, but the number of carbon atoms (3 to 8 carbon atoms) does not include the number of carbon atoms in the substituent.
  • cycloalkyl group, arylthio group, aralkyl group, aralkoxy group, aryloxy group, aryl group, heteroaryl group, and cycloalkylthio group described above may be unsubstituted or may have a substituent.
  • Substituents that the cycloalkyl group, arylthio group, aralkyl group, aralkoxy group, aryloxy group, aryl group, heteroaryl group and cycloalkylthio group may have are primary amino group, secondary amino group, tertiary class amino group, alkyl group having 1 to 10 carbon atoms, haloalkyl group having 1 to 10 carbon atoms, alkoxy group having 1 to 10 carbon atoms, haloalkoxy group having 1 to 10 carbon atoms, alkylthio group having 1 to 10 carbon atoms, A hydroxyl group, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkylaryl group having 1 to 20 carbon atoms, and a heteroatom having 1 to 5 carbon atoms having 1 to 8 carbon atoms.
  • a heterocycloalkyl group a heteroaryl group containing 1 to 5 heteroatoms and having 1 to 8 carbon atoms, an aryloxy group having 6 to 12 carbon atoms, an arylthio group having 6 to 12 carbon atoms, a cyano group, It may be selected from the group of substituents consisting of nitro groups and halogen atoms. The number of substituents may be one, or two or more.
  • R 3 and R 4 , R 4 and R 5 , and R 5 and R 6 are bonded to each other to form an aliphatic ring having 2 or more and 5 or less carbon atoms, or It may form an aliphatic heterocyclic ring, an aromatic ring having 4 or more and 12 or less carbon atoms, or an aromatic heterocyclic ring having 3 or more and 11 or less carbon atoms containing 1 or more and 6 or less hetero atoms.
  • An aliphatic ring, an aliphatic heterocyclic ring, an aromatic ring, and an aromatic heterocyclic ring may be unsubstituted or may have at least one substituent selected from the group of substituents described above.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are each independently an oligomer group represented by the following formula (IB) or an oligomer group represented by the following formula (IC) , an oligomer group represented by the following formula (ID), an oligomer group represented by the following formula (IE), or an oligomer group represented by the following formula (X).
  • substituents that R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 may have include an oligomer group represented by the following formula (IB) and a substituent represented by the following formula (IC).
  • an oligomer group represented by the following formula (ID), an oligomer group represented by the following formula (IE), and an oligomer group represented by the following formula (X) It may also be an oligomeric group of species.
  • X 1 is an oxygen atom, a sulfur atom, an amino group, a substituted amino group, a (thio)amide group, a (thio)ester group, or an alkylene group having 1 to 10 carbon atoms.
  • Y 1 and Y 2 are each an alkylene group having 1 to 20 carbon atoms.
  • W 1 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • c is 0 or 1; d and e are each 0 or an integer of 1 to 10; m is an integer of 3 or more and 200 or less.
  • X 1 , Y 1 , Y 2 , c, d, e, and m have the same meanings as in Formula (IB).
  • X2 is an oxygen atom, a sulfur atom, an amino group, a substituted amino group, a (thio)amide group, a (thio)ester group, or an alkylene group having 1 to 10 carbon atoms.
  • W2 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a photochromic moiety.
  • f is 0 or 1;
  • W3 is an alkyl group having 1 to 20 carbon atoms.
  • g is 0 or 1;
  • n is an integer of 3 or more and 200 or less.
  • W4 is an alkyl group having 1 to 20 carbon atoms or a photochromic moiety.
  • g and n have the same definitions as in formula (ID).
  • h is 0 or 1;
  • E is an oxygen atom or NR101 .
  • F is an oxygen atom or a sulfur atom.
  • G is an oxygen atom, a sulfur atom, or NR202 .
  • j is an integer of 0 or 1;
  • R 101 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 201 and R 202 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a carbon containing 1 to 5 hetero atoms It is a heteroaryl group having a number of 1 or more and 8 or less, and when G is an oxygen atom or a sulfur atom, R 201 is a group other than a hydrogen atom.
  • the naphthopyran compound preferably contains a compound represented by the following formula (IIa).
  • Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 , Q 7 and Q 8 are respectively R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and groups similar to R7 can be used.
  • the proportion of the photochromic compound in the solid content of the adhesive composition is, for example, 0.1% by mass or more and 10% by mass or less, preferably 1% by mass or more and 5% by mass or less.
  • the second prepolymer is obtained by reacting a first prepolymer obtained by reacting a first polyfunctional active hydrogen compound and a first iso(thio)cyanate compound with a second polyfunctional active hydrogen compound as a chain extender. Let it be obtained.
  • the second prepolymer has two or more iso(thio)cyanate groups.
  • the second prepolymer preferably has iso(thio)cyanate groups at both ends of the main chain.
  • the second prepolymer contains at least one selected from the group consisting of urethane prepolymers, urea prepolymers, urethane urea prepolymers, thiourethane prepolymers, thiourea prepolymers, and thiourethane urea prepolymers.
  • the second prepolymer is composed of (thio)urethane resin, (thio)urea resin, and (thio)urethaneurea resin chemically bonded to water in the atmosphere and hydroxyl groups on the surfaces of the first and second optical sheets. At least one selected from the group is produced.
  • the second prepolymer may contain a structure represented by formula (1) below.
  • I1 represents a portion other than the terminal of the first iso(thio)cyanate compound.
  • FA1 represents a portion other than the terminal of the first polyfunctional active hydrogen compound.
  • SA1 represents a portion other than the terminal of the second polyfunctional active hydrogen compound.
  • X and Y each represent a urethane bond, a urea bond, a thiourethane bond, or a thiourea bond.
  • X is preferably a urethane bond and Y is preferably a urea bond.
  • the number average molecular weight of the second prepolymer is preferably 5,000 or more, more preferably 10,000 or more, and even more preferably 13,000 or more.
  • the use of a second prepolymer having a large number average molecular weight tends to increase the peel strength of the optical laminated sheet. That is, the second prepolymer having a large number-average molecular weight is likely to be entangled with each other, so that the cohesive force is increased, and therefore the adhesive force is considered to be increased.
  • the number average molecular weight of the second prepolymer is preferably 50,000 or less, more preferably 40,000 or less, and even more preferably 30,000 or less. If the number average molecular weight of the second prepolymer is excessively large, the peel strength of the optical laminated sheet tends to decrease. That is, the second prepolymer having a large number-average molecular weight contains a small amount of iso(thio)cyanate groups per unit mass, and therefore tends to have weak adhesion.
  • the number average molecular weight of the second prepolymer can be measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • GPC analysis software "Empower Personal GPC Option" manufactured by Japan Waters Co., Ltd. is used.
  • the softening point of the second prepolymer is, for example, 90°C or higher, preferably 100°C or higher, more preferably 110°C or higher, and even more preferably 120°C or higher.
  • the softening point of the second prepolymer is high, the heat resistance of the optical laminated sheet tends to improve, and the adhesion tends to increase.
  • the softening point of the second prepolymer it is 200° C. or lower in one example, and 160° C. or lower in another example.
  • the softening point of the second prepolymer is measured, for example, by the following method.
  • the concentration of the second prepolymer in the solution is, for example, 34% by mass.
  • This solution is poured into a stainless container and dried at 40° C. for 10 hours, 60° C. for 10 hours, and further dried at 60° C. for 12 hours in a vacuum dryer to prepare a test piece with a thickness of 1 mm.
  • the resulting test piece is analyzed using a thermomechanical measuring device (manufactured by Seiko Instruments Inc., TMA120C) to obtain the softening point.
  • the measurement conditions are a temperature rise rate of 10° C./min, a measurement temperature range of 30 to 200° C., and a penetrating probe with a tip diameter of 0.5 mm.
  • the second prepolymer can occupy the main component in the solid content of the adhesive composition.
  • the proportion of the second prepolymer in the solid content of the adhesive composition is, for example, 90% by mass or more and 99% by mass or less.
  • the ratio of the second prepolymer to the solid content of the adhesive composition is, for example, 5% by mass or more and 50% by mass or less, preferably 10% by mass or more and 40% by mass or less.
  • the first prepolymer is obtained by reacting the first polyfunctional active hydrogen compound and the first iso(thio)cyanate compound.
  • the first prepolymer has two or more iso(thio)cyanate groups.
  • the first prepolymer preferably has iso(thio)cyanate groups at both ends of the main chain.
  • the first prepolymer contains at least one selected from the group consisting of urethane prepolymers, urea prepolymers, thiourethane prepolymers, and thiourea prepolymers.
  • the first prepolymer serves as a raw material for the second prepolymer.
  • the first prepolymer may contain a structure represented by the following formula (2).
  • the number average molecular weight of the first prepolymer is preferably 500 or more and 10000 or less, more preferably 1000 or more and 5000 or less.
  • the number average molecular weight of the first prepolymer can be measured in the same manner as for the second prepolymer.
  • the first iso(thio)cyanate compound has two or more iso(thio)cyanate groups.
  • the first iso(thio)cyanate compound preferably has two iso(thio)cyanate groups. More preferably, the first iso(thio)cyanate compound is a diisocyanate compound containing two isocyanate groups.
  • the molar mass of the first iso(thio)cyanate compound is preferably 100 or more and 500 or less. Using the first iso(thio)cyanate compound within this range tends to result in the desired number average molecular weight of the second prepolymer and the first polymer.
  • the molar mass of the first iso(thio)cyanate compound is more preferably 150 or more and 300 or less.
  • the first iso(thio)cyanate compound includes at least one selected from the group consisting of aliphatic iso(thio)cyanate compounds, alicyclic iso(thio)cyanate compounds, and aromatic iso(thio)cyanate compounds.
  • the first iso(thio)cyanate compound is preferably an alicyclic iso(thio)cyanate compound.
  • As the first iso(thio)cyanate compound a single type may be used, or a plurality of types may be mixed and used.
  • aliphatic isocyanate compounds include pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, 2,4,4-trimethylhexanemethylene diisocyanate, 1,2-bis(2-isocyanatoethylthio) ethane and the like.
  • alicyclic isocyanate compounds include isophorone diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, 1,4-bis(isocyanatomethyl)cyclohexane, dicyclohexylmethane-4,4′-diisocyanate (hydrogenated diphenylmethane diisocyanate), norbornane diisocyanate, 2,5-bis(isocyanatomethyl)-bicyclo[2,2,1]-heptane, 2,6-bis(isocyanatomethyl)-bicyclo[2,2,1]-heptane and the like. be done.
  • aromatic isocyanate compounds include xylene diisocyanate (o-, m-, p-), toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, 1,4-bis(isocyanatomethyl)cyclohexane, 4,4'-diphenylmethane diisocyanate and the like.
  • aliphatic isothiocyanate compounds include hexamethylene diisothiocyanate, 1,2-diisothiocyanatoethane, 1,3-diisothiocyanatopropane, 1,4-diisothiocyanatobutane, 1,6-diiso thiocyanatohexane, 2,4,4-trimethylhexanemethylene diisothiacinate, thiobis(3-isothiocyanatopropane), thiobis(2-isothiocyanatoethane), dithiobis(2-isothiocyanatoethane) and the like.
  • alicyclic isothiocyanate compounds include isophorone diisothiocyanate, cyclohexane diisothiocyanate, 2,4-bis(isothiocyanatomethyl)norbornane, 2,5-bis(isothiocyanatomethyl)norbornane, 2,6 -bis(isothiocyanatomethyl)norbornane, 3,5-bis(isothiocyanatomethyl)norbornane, norbornane diisocyanate, and the like.
  • aromatic isothiocyanate compounds include p-phenylenediisopropylidene diisothiocyanate, 1,2-diisothiocyanatobenzene, 1,3-diisothiocyanatobenzene, 1,4-diisothiocyanatobenzene, 2,4 -diisothiocyanatotoluene, xylene diisothiocyanate (o-, m-, p-), 2,4-tolylene diisothiocyanate, 2,6-tolylene diisothiocyanate, 1,1'-methylenebis(4-isothiocyanate) benzene), 1,1′-methylenebis(4-isothiocyanate-2-methylbenzene), 1,1′-methylenebis(4-isothiocyanate-3-methylbenzene), and the like.
  • the first polyfunctional active hydrogen compound has two or more active hydrogen groups.
  • the first polyfunctional active hydrogen compound preferably has two active hydrogen groups. Active hydrogen groups include at least one selected from the group consisting of hydroxyl groups, amino groups, carboxy groups, and thiol groups.
  • the first polyfunctional active hydrogen compound includes, for example, a polyol compound containing two or more hydroxyl groups, a polyamine compound containing two or more amino groups, a dicarboxylic acid containing two carboxy groups, and a polythiol compound containing two or more thiol groups. At least one selected from the group consisting of As the first polyfunctional active hydrogen compound, a single type may be used, or a plurality of types may be mixed and used.
  • the first polyfunctional active hydrogen compound preferably contains a polyol compound.
  • a polyol compound yields a first prepolymer having (thio)urethane bonds.
  • the repeating structural portion of the polyol compound can contribute to providing a matrix that does not easily hinder the structural change of the photochromic compound in the photochromic adhesive layer.
  • the use of a polyol compound tends to enhance the photochromic properties of the optical laminated sheet.
  • the number average molecular weight of the polyol compound is preferably 500 or more and 3000 or less. Using a polyol compound containing a number average molecular weight within this range tends to result in the desired number average molecular weight of the second prepolymer and the first polymer. More preferably, the number average molecular weight of the polyol compound is 800 or more and 2000 or less.
  • the polyol compound may contain at least one selected from the group consisting of polyether polyols, polyester polyols, polycarbonate polyols, and polycaprolactone polyols.
  • the polyol compound comprises a polycarbonate polyol.
  • the use of polycarbonate polyol tends to increase the adhesion of the optical laminated sheet.
  • Polycarbonate polyols can be obtained, for example, by monophosgenation of low-molecular-weight polyols, or transesterification of ethylene carbonate, diethyl carbonate, diphenyl carbonate, and the like.
  • low molecular polyols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 3-methyl-1,5- Pentanediol, 2-ethyl-4-butyl-1,3-propanediol, diethylene glycol, dipropylene glycol,
  • Polycarbonate polyols include "Duranol (registered trademark)” series manufactured by Asahi Kasei Corporation, “Kuraray Polyol (registered trademark)” series manufactured by Kuraray Co., Ltd., “Placcel (registered trademark)” series manufactured by Daicel Corporation, “ NIPPORUN (registered trademark)” series, UBE Corporation “ETERNACOLL (registered trademark)” series, and the like can be used.
  • Polycaprolactone polyol is obtained, for example, by ring-opening polymerization of ⁇ -caprolactone.
  • the polycaprolactone polyol the "Plaxel (registered trademark)" series manufactured by Daicel Corporation can be used.
  • a polyether polyol can be obtained, for example, by reacting a compound having two or more active hydrogen groups in its molecule with an alkylene oxide.
  • Compounds having two or more active hydrogen-containing groups include water, ethylene glycol, propylene glycol, butanediol, glycerin, trimethylolpropane, hexanetriol, triethanolamine, diglycerin, pentaerythritol, trimethylolpropane, hexanetriol, and the like. is mentioned.
  • Alkylene oxides include cyclic ether compounds such as ethylene oxide, propylene oxide, and tetrahydrofuran.
  • polyether polyols examples include the "Exenol (registered trademark)” series and “Emulstar (registered trademark)” series manufactured by AGC Co., Ltd., and the “ADEKA Polyether” series manufactured by ADEKA Corporation.
  • a polyester polyol is obtained, for example, by condensation reaction between a polyhydric alcohol and a polybasic acid.
  • Polyhydric alcohols include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 3, 3′-dimethylolheptane, 1,4-cyclohexanedimethanol, neopentyl glycol, 3,3-bis(hydroxymethyl)heptane, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane and the like.
  • polybasic acids examples include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, cyclopentanedicarboxylic acid, cyclohexanedicarboxylic acid, orthophthalic acid, isophthalic acid, terephthalic acid, and naphthalenedicarboxylic acid.
  • Polyester polyols include the "Polylight (registered trademark)” series manufactured by DIC Corporation, the “Nipporan (registered trademark)” series manufactured by Tosoh Corporation, and the “Maximol (registered trademark)” series manufactured by Air Water Performance Chemicals Co., Ltd. can be used.
  • the polythiol compound may contain at least one selected from the group consisting of aliphatic polythiols, aromatic polythiols, and polythiols containing sulfur atoms in addition to mercapto groups.
  • aliphatic polythiols examples include methanedithiol, 1,2-ethanedithiol, 1,1-propanedithiol, 1,2-propanedithiol, 1,3-propanedithiol, 2,2-propanedithiol, 1,6- Hexanedithiol, 1,2,3-propanetrithiol, tetrakis(mercaptomethyl)methane, 1,1-cyclohexanedithiol, 1,2-cyclohexanedithiol, 2,2-dimethylpropane-1,3-dithiol, 3,4 -dimethoxybutane-1,2-dithiol, 2-methylcyclohexane-2,3-dithiol, 1,1-bis(mercaptomethyl)cyclohexane, bis(2-mercaptoethyl ester) thiomalate, 2,3-dimercaptosuccinate acid (2-mercaptoethyl ester),
  • aromatic polythiols examples include 1,2-dimercaptobenzene, 1,3-dimercaptobenzene, 1,4-dimercaptobenzene, 1,2-bis(mercaptomethyl)benzene, 1,3-bis(mercapto methyl)benzene, 1,4-bis(mercaptomethyl)benzene, 1,3-bis(mercaptoethyl)benzene, 1,4-bis(mercaptoethyl)benzene, 1,2-bis(mercaptomethoxy)benzene, 1, 3-bis(mercaptomethoxy)benzene, 1,4-bis(mercaptomethoxy)benzene, 1,2-bis(mercaptoethoxy)benzene, 1,3-bis(mercaptoethoxy)benzene, 1,4-bis(mercaptoethoxy) ) benzene, 1,2,3-trimercaptobenzene, 1,2,4-trimercaptobenzene, 1,3,5-trimercaptobenzene, 1,2,3
  • polythiols containing sulfur atoms in addition to mercapto groups include bis(mercaptomethyl)sulfide, bis(mercaptoethyl)sulfide, bis(mercaptopropyl)sulfide, bis(mercaptomethylthio)methane, bis(2-mercaptoethylthio ) methane, bis(3-mercaptopropylthio)methane, 1,2-bis(mercaptomethylthio)ethane, 1,2-bis(2-mercaptoethylthio)ethane, 1,2-bis(3-mercaptopropylthio) Ethane, 1,3-bis(mercaptomethylthio)propane, 1,3-bis(2-mercaptoethylthio)propane, 1,3-bis(3-mercaptopropylthio)propane, 1,2-bis(2-mercapto ethylthio)-3-mercaptopropane, 2-mercaptoethylthio
  • the amount of the first polyfunctional active hydrogen compound is the molar amount M1 of the active hydrogen groups contained in the first polyfunctional active hydrogen compound and the molar amount M1 of the iso(thio)cyanate groups contained in the first iso(thio)cyanate compound.
  • the ratio M1/M2 to M2 is preferably adjusted to be 0.1 or more and 0.5 or less. When the ratio M1/M2 is within the above range, a sufficient amount of at least one of urethane bonds and urea bonds is formed in the first prepolymer, and a flexible photochromic adhesive layer that hardly inhibits structural changes of the photochromic compound. can be formed.
  • the ratio M1/M2 is preferably 0.30 or more and 0.50 or less, more preferably 0.5.
  • the ratio S1/S2 between the mass S1 of the first polyfunctional active hydrogen compound and the mass S2 of the first iso(thio)cyanate compound is preferably 0.1 or more and 10 or less.
  • the ratio S1/S2 is preferably 0.8 or more and 5 or less, more preferably 1 or more and 3 or less.
  • the second polyfunctional active hydrogen compound has two or more active hydrogen groups.
  • the second polyfunctional active hydrogen compound reacts with the first prepolymer to produce a second prepolymer.
  • the second polyfunctional active hydrogen compound functions as a chain extender that connects the first prepolymers.
  • the second polyfunctional active hydrogen compound preferably has two active hydrogen groups.
  • the compounds listed for the first polyfunctional active hydrogen compound can be used.
  • the second polyfunctional active hydrogen compound preferably contains polyamine.
  • a polyamine results in a second prepolymer with (thio)urethane urea linkages.
  • the use of such a second prepolymer tends to increase the adhesion of the optical laminated sheet.
  • the molar mass of the polyamine is preferably 50 or more and 500 or less.
  • Using a polyamine having a molar mass within this range tends to give the desired number average molecular weight of the second prepolymer. More preferably, the polyamine has a molar mass of 50 or more and 300 or less.
  • Polyamines include diamines and triamines, preferably diamines.
  • Polyamines include isophoronediamine, ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,2-diaminobutane, 1,3-diaminobutane, 1,4-diaminobutane, 1,5-diaminopentane , 1,6-diaminohexane, piperazine, N,N-bis-(2-aminoethyl)piperazine, bis-(4-aminocyclohexyl)methane, bis-(4-amino-3-butylcyclohexyl)methane, 1, 2-, 1,3- and 1,4-diaminocyclohexane, norbornanediamine, hydrazine, dihydrazine adipate, phenylenediamine, 4,4'-diphenylmethanediamine, N,N'-diethylethylenediamine, N,N'-dimethyl
  • the polyamine preferably contains at least one selected from the group consisting of isophoronediamine, ethylenediamine, bis-(4-aminocyclohexyl)methane, and 1,6-diaminohexane.
  • the amount of the second polyfunctional active hydrogen compound is the ratio of the molar amount M3 of the active hydrogen groups contained in the second polyfunctional active hydrogen compound to the molar amount M4 of the iso(thio)cyanate groups contained in the first prepolymer.
  • M3/M4 is adjusted to be 0.21 or more and 0.50 or less.
  • a sufficient amount of the second prepolymer is produced when the ratio M1/M2 is within the above range.
  • the ratio S3/S4 between the mass S3 of the second polyfunctional active hydrogen compound and the mass S4 of the first prepolymer is preferably 0.01 or more and 0.5 or less. When the ratio S3/S4 is within the above range, a second prepolymer having a sufficient amount of isocyanate groups per unit mass is obtained.
  • the ratio S3/S4 is more preferably 0.08 or more and 0.3 or less.
  • the first polymer is obtained by reacting the second prepolymer with a monofunctional active hydrogen compound having one active hydrogen group.
  • the first polymer typically does not have iso(thio)cyanate groups.
  • the ends of the first polymer are modified with non-reactive functional groups.
  • the first polymer contains at least one selected from the group consisting of urethane polymer, urea polymer, urethane urea polymer, thiourethane polymer, thiourea polymer, and thiourethane urea polymer.
  • the first polymer chemically bonds with hydroxyl groups on the surfaces of the second prepolymer and/or the third prepolymer and the first and second optical sheets at a high temperature to form (thio)urethane resin, (thio)urea At least one selected from the group consisting of resins and (thio)urethane urea resins is produced.
  • the number average molecular weight of the first polymer is preferably 5,000 or more, more preferably 10,000 or more, and even more preferably 13,000 or more. Using a first polymer having a large number average molecular weight tends to increase the peel strength of the optical laminated sheet.
  • the number average molecular weight of the first polymer is preferably 50,000 or less, more preferably 40,000 or less, even more preferably 30,000 or less. When the number average molecular weight of the first polymer is excessively large, the peel strength of the optical laminated sheet tends to decrease. This number average molecular weight can be measured by the same method as for the second prepolymer.
  • the softening point of the first polymer is, for example, 90°C or higher, preferably 100°C or higher, more preferably 110°C or higher, and even more preferably 120°C or higher.
  • the softening point of the first polymer is high, the heat resistance of the optical laminated sheet tends to improve, and the adhesion tends to increase.
  • the softening point of the first polymer it is 200° C. or lower in one example, and 160° C. or lower in another example.
  • the softening point of the mixture can be measured in the same manner as for the second prepolymer.
  • the first polymer can exist as a mixture with the second prepolymer.
  • a mixture of the first polymer and the second prepolymer is obtained by adjusting the amount of the monofunctional active hydrogen compound. That is, the ratio M5/M6 between the molar amount M5 of the iso(thio)cyanate groups contained in the second prepolymer and the molar amount M6 of the active hydrogen groups contained in the monofunctional active hydrogen compound is adjusted to be less than 1.
  • the ratio M5/M6 is preferably 0.75 or more and 0.95 or less.
  • the number average molecular weight of this mixture is preferably 5,000 or more, more preferably 10,000 or more, and even more preferably 13,000 or more.
  • the use of a mixture with a large number average molecular weight tends to increase the peel strength of the optical laminated sheet.
  • the number average molecular weight of the mixture is preferably 50,000 or less, more preferably 40,000 or less, even more preferably 30,000 or less. If the number average molecular weight of the mixture is excessively high, the peel strength of the optical laminated sheet tends to decrease. This number average molecular weight can be measured by the same method as for the second prepolymer.
  • the softening point of this mixture is, for example, 90°C or higher, preferably 100°C or higher, more preferably 110°C or higher, and even more preferably 120°C or higher.
  • the softening point of the mixture is high, the heat resistance of the optical laminated sheet tends to improve, and the adhesion tends to increase.
  • the softening point of the mixture is 200° C. or lower in one example, and 160° C. or lower in another example.
  • the softening point of the mixture can be measured in the same manner as for the second prepolymer.
  • the proportion of the first polymer in the solid content of the adhesive composition is, for example, 75% by mass or more and 95% by mass or less.
  • the mixture of the first polymer and the second prepolymer may contain the fourth prepolymer.
  • the fourth prepolymer is a compound in which a portion of the iso(thio)cyanate groups of the second prepolymer are protected with a monofunctional active hydrogen compound and the remainder are unprotected.
  • the fourth prepolymer may contain one iso(thio)cyanate group and one monofunctional active hydrogen compound protecting group. Since the fourth prepolymer has an iso(thio)cyanate group, it can enhance the adhesion of the optical laminated sheet, like the second prepolymer.
  • the ratio of the first polymer is, according to one example, 1% by mass or more and 40% by mass or less, and according to another example, 10% by mass. It is more than 30 mass % or less. In one example, the ratio of the second prepolymer in the mixture is 1% by mass or more and 40% by mass or less, and in another example, 10% by mass or more and 30% by mass or less. In one example, the proportion of the fourth prepolymer in the mixture is 1% by mass or more and 80% by mass or less, and according to another example, it is 40% by mass or more and 80% by mass or less.
  • the photochromic adhesive layer may be a cured adhesive composition containing a photochromic compound, a first polymer, a second prepolymer, and a fourth prepolymer, wherein the photochromic compound, the first polymer, and the fourth prepolymer are It may be a cured body of the adhesive composition containing.
  • a monofunctional active hydrogen compound has one active hydrogen group.
  • the monofunctional active hydrogen compound reacts with the iso(thio)cyanate groups of the second prepolymer to produce the first polymer and terminate further reaction.
  • Active hydrogen groups include at least one selected from the group consisting of hydroxyl groups, amino groups, carboxyl groups, and thiol groups.
  • the monofunctional active hydrogen compound is, for example, a monool compound containing one hydroxyl group, a monoamine compound containing one amino group, a carboxylic acid containing one carboxyl group, and a monothiol compound containing one thiol group. At least one selected is included.
  • a single type may be used, or a plurality of types may be mixed and used.
  • the monofunctional active hydrogen compound is preferably a monoamine compound. Using a monoamine compound results in a first polymer with (thio)urea linkages.
  • the monofunctional active hydrogen compound preferably contains an amine having a 2,2,6,6-pentamethyl-4-piperidyl moiety, as represented by the following formula (3).
  • Amines having 2,2,6,6-pentamethyl-4-piperidyl moieties can function as hindered amines, thus enhancing the photostability of the optical laminated sheet.
  • R 21 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 22 is an alkylene group having 1 to 3 carbon atoms.
  • a is 0 or 1;
  • the monofunctional active hydrogen compound is preferably 1,2,2,6,6-pentamethyl-4-aminopiperidine, wherein R 21 is a methyl group and a is 0.
  • the ratio S5/S6 between the mass S5 of the monofunctional active hydrogen compound and the mass S6 of the second prepolymer is preferably 0.001 or more and 0.100 or less. When the ratio S5/S6 is within the above range, a first polymer having a sufficient amount of isocyanate groups per unit mass is obtained.
  • the ratio S5/S6 is more preferably 0.010 or more and 0.030 or less.
  • the third prepolymer is a compound having two or more iso(thio)cyanate groups obtained by reacting the first polyfunctional active hydrogen compound and the first iso(thio)cyanate compound. That is, the third prepolymer is the same compound as the first prepolymer.
  • the third prepolymer chemically bonds with the hydroxyl groups on the surfaces of the first prepolymer and the first and second optical sheets at high temperature to form (thio)urethane resin, (thio)urea resin, and (thio)urethane. At least one selected from the group consisting of urea resins is produced.
  • the proportion of the third prepolymer in the solid content of the adhesive composition is For example, it is 5 mass % or more and 20 mass % or less.
  • the adhesive composition includes, for example, a polymerization catalyst, a polymerization initiator, an antistatic agent, an internal release agent, an antioxidant, a light stabilizer, an anti-coloring agent, a fluorescent dye, a dye, a pigment, a fragrance, a solvent, a leveling agent, At least one additive selected from the group consisting of resin modifiers, infrared absorbers, ultraviolet absorbers, and visible light absorbers may be included.
  • the adhesive composition preferably contains at least one of an antioxidant and a leveling agent.
  • IRGANOX245 ethylenebis(oxyethylene)bis[3,5-tert-butyl-4-hydroxy-m -toluyl] propionate], manufactured by BASF Japan Ltd.
  • IRGANOX1076 octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, manufactured by BASF Japan Ltd.
  • IRGANOX1010 pentaerythritol tetrakis [3-(3 ,5-di-tert-butyl-4-hydroxyphenyl)propionate], IRGANOX1035, 1075, 104, 3790, 5057, 565, etc. manufactured by BASF Japan Ltd. can be used.
  • a silicone surfactant As the leveling agent, a silicone surfactant, a fluorine-containing surfactant, or the like can be used. Specifically, L-7001, L-7002, L-7604, FZ-2123 manufactured by Dow Toray Co., Ltd., Megafac F-470 manufactured by DIC Corporation, Megafac F-1405, Megafac F-479, 3M Florad FC-430 manufactured by Japan Co., Ltd. can be used.
  • dyes and visible light absorbers include nitro-based compounds, azo-based compounds, anthraquinone-based compounds, threne-based compounds, porphyrin-based compounds, and rare earth metal compounds.
  • porphyrin compounds and rare earth compounds are preferred in view of the balance between antiglare properties and visibility. Furthermore, from the viewpoint of dispersion stability in plastic materials, porphyrin compounds are most preferable.
  • Examples of the rare earth metal compound include aquahydroxy(1-phenyl-1,3-butanedionato)neodymium, aquahydroxy(phenacylphenylketonato)neodymium, and aquahydroxy(1-phenyl-2-methyl-1,3-butanedionato)neodymium. , aquahydroxy(1-thiophenyl-1,3-butanedionato)neodymium, aquahydroxy(1-phenyl-1,3-butanedionato)erbium, and aquahydroxy(1-phenyl-1,3-butanedionato)holonium. I can.
  • the porphyrin-based compound is a compound that may have various substituents on the porphyrin skeleton.
  • JP-A-5-194616, JP-A-5-195446, JP-A-2003-105218, JP-A-2008-134618, JP-A-2013-61653, JP-A-2015-180942 Compounds described in WO2012/020570 pamphlet, Japanese Patent No. 5626081, Japanese Patent No. 5619472, Japanese Patent No. 5778109, etc. can be preferably used.
  • a hindered amine compound having a 2,2,6,6-tetramethyl-4-piperidyl skeleton it is preferable to use a hindered amine compound having a 2,2,6,6-tetramethyl-4-piperidyl skeleton, and a commercially available one can be used.
  • a commercially available one can be used.
  • ADEKA Co., Ltd. ADEKA STAB (registered trademark) LA series (LA-52, LA-57, LA-63P, LA-68, LA-72, LA-77Y, LA-81, LA-82, etc.) , BASF Japan Co., Ltd.
  • Tinubin (registered trademark) series (TinuVin 123, TinuVin 171, TinuVin249, TinuVin292, TinuVin665, TinuVin 622SF, etc.), CHIMASSORB (registered Trademark) Series (chimassorb2020FDL, chimassorb94444FDL), etc. are listed.
  • the proportion of the additive in the solid content of the adhesive composition is, for example, 0.1% by mass or more and 1% by mass or less.
  • the adhesive composition may contain an organic solvent in order to adjust its viscosity.
  • the organic solvent may contain at least one selected from the group consisting of tetrahydrofuran, diethylketone, t-butyl alcohol, isopropyl alcohol, propylene glycol monomethyl ether, toluene, ethyl acetate, and cyclohexanone.
  • the proportion of the organic solvent in the adhesive composition is, for example, 30% by mass or more and 80% by mass or less.
  • the adhesive composition is obtained, for example, by the following first to fourth manufacturing methods.
  • a first method for producing an adhesive composition comprises: obtaining a first prepolymer by reacting a first polyfunctional active hydrogen compound and a first iso(thio)cyanate compound; reacting with a functional active hydrogen compound to obtain a second prepolymer; and mixing the second prepolymer with the photochromic compound and optional additives.
  • a second method for producing an adhesive composition comprises: obtaining a first prepolymer by reacting a first polyfunctional active hydrogen compound and a first iso(thio)cyanate compound; reacting with a functional active hydrogen compound to obtain a second prepolymer; reacting the second prepolymer with a monofunctional active hydrogen compound to obtain a mixture of the first polymer and the second prepolymer; mixing the polymer, the second prepolymer, the photochromic compound and any additives.
  • a third method for producing an adhesive composition comprises reacting a first polyfunctional active hydrogen compound and a first iso(thio)cyanate compound to obtain a first prepolymer and a third prepolymer; reacting the polymer with a second polyfunctional active hydrogen compound to obtain a second prepolymer; reacting the second prepolymer with a monofunctional active hydrogen compound to obtain a first polymer; the first polymer; mixing the third prepolymer, the photochromic compound and any additives.
  • a fourth method for producing an adhesive composition includes: reacting a first polyfunctional active hydrogen compound and a first iso(thio)cyanate compound to obtain a first prepolymer; reacting with a functional active hydrogen compound to obtain a second prepolymer; and reacting the second prepolymer with a monofunctional active hydrogen compound to obtain a mixture of the first polymer, the second prepolymer and the fourth prepolymer. and mixing the first polymer, second prepolymer, fourth prepolymer, photochromic compound and optional additives.
  • a fifth method for producing an adhesive composition comprises reacting a first polyfunctional active hydrogen compound and a first iso(thio)cyanate compound to obtain a first prepolymer and a third prepolymer; reacting the polymer with a second polyfunctional active hydrogen compound to obtain a second prepolymer; reacting the second prepolymer with a monofunctional active hydrogen compound to obtain a first polymer; the first polymer; mixing the second prepolymer, the third prepolymer, the photochromic compound and any additives.
  • the reaction between the first polyfunctional active hydrogen compound and the first iso(thio)cyanate compound is preferably carried out in the presence of an organic solvent.
  • an organic solvent those mentioned above can be used.
  • This reaction is preferably carried out under a nitrogen atmosphere.
  • this reaction is carried out at a reaction temperature of, for example, 60° C. or higher and 150° C. or lower for 3 hours or longer and 10 hours or shorter.
  • the reaction is preferably carried out until the endpoint is confirmed by back titration of isocyanate groups.
  • the reaction between the first prepolymer and the second polyfunctional active hydrogen compound is preferably carried out in the presence of an organic solvent.
  • an organic solvent those mentioned above can be used.
  • This reaction is preferably carried out under a nitrogen atmosphere.
  • this reaction is performed at a reaction temperature of, for example, 10° C. or higher and 30° C. or lower for 0.1 hour or more and 5 hours.
  • the reaction between the second prepolymer and the monofunctional active hydrogen compound is preferably carried out in the presence of an organic solvent.
  • an organic solvent those mentioned above can be used.
  • This reaction is preferably carried out under a nitrogen atmosphere. Also, this reaction is carried out at a reaction temperature of, for example, ⁇ 10° C. or higher and 10° C. or lower for 0.1 hour or longer and 5 hours or shorter.
  • a method for producing an optical laminated sheet according to an embodiment includes: applying the adhesive composition described above to at least one main surface of a first optical sheet to obtain a coating film; and forming a second optical sheet on the coating film. and laminating.
  • a method for manufacturing the optical laminated sheet will be described in detail below.
  • first and second optical sheets prepare the first and second optical sheets.
  • commercially available unstretched sheets of polyvinyl alcohol resin may be used, or stretched and dyed sheets may be used.
  • an adhesive composition is applied on at least one main surface of the first optical sheet using, for example, a bar coater to form a coating film.
  • This coating film is dried, for example, at a temperature of 60° C. or higher and 150° C. for 1 minute or longer and 1 hour or shorter.
  • a second optical sheet is laminated on the dried coating film so as to face each other, and laminated using, for example, a lamination roll to obtain a structure.
  • the resulting structure is subjected to degassing treatment.
  • the structure In the degassing treatment, the structure is allowed to stand at a temperature of 40° C. or higher and 80° C. or lower under a vacuum of 500 Pa for 5 hours or longer and 20 hours or shorter.
  • the structure after degassing is subjected to heat treatment. During the heat treatment, the structure is heated, for example, at a temperature of 60° C. or higher and 150° C. or lower for 0.5 hours or more and 5 hours or less.
  • the adhesive composition contains the first polymer and the second prepolymer or the third polymer
  • the heat treatment forms a composite having iso(thio)cyanate groups, which is crosslinked with the first and second optical laminated sheets. Conceivable.
  • the structure after heat treatment may be left at room temperature for one week or more.
  • the photochromic adhesive layer contains a cured adhesive composition containing the second prepolymer or the first polymer and the second prepolymer or the third polymer. , excellent photochromic properties, and excellent adhesion and appearance.
  • the second optical laminate sheet includes a first optical sheet and a second optical sheet, a transparent support, a first adhesive layer, and a second adhesive layer.
  • a transparent support is located between the first optical sheet and the second optical sheet.
  • the first adhesive layer adheres the first optical sheet and the transparent support, and contains a photochromic compound.
  • the second adhesive layer adheres the transparent support and the second optical sheet.
  • the manufacturing process of a photochromic lens using an optical laminated sheet includes a step of integrating at least one main surface of the optical laminated sheet with the lens substrate.
  • a curved photochromic lens may be manufactured using an optical laminated sheet that has been processed into a curved shape along the intended lens shape.
  • the curved surface processing of the optical laminated sheet is performed, for example, by decompressing one main surface side of the heated optical laminated sheet, placing the optical laminated sheet along a mold having a curved surface shape, and then cooling the optical laminated sheet.
  • the curved surface processing of the optical laminated sheet is performed, for example, by decompressing one main surface side of the heated optical laminated sheet, placing the optical laminated sheet along a mold having a curved surface shape, and then cooling the optical laminated sheet.
  • the edge of the optical laminated sheet along the mold may be deformed.
  • An optical laminated sheet with deformed edges is not suitable for manufacturing a photochromic lens. Therefore, when such an optical laminated sheet is manufactured, the manufacturing efficiency of the photochromic lens is lowered.
  • the second optical laminated sheet has a transparent support between the first optical sheet and the second optical sheet.
  • the transparent support enhances the strength of the optical laminated sheet and enhances the self-standing. Therefore, the optical laminated sheet according to the embodiment is less likely to be deformed during curved surface processing. Therefore, the use of the second optical laminated sheet can increase the yield of optical articles.
  • FIG. 2 is a cross-sectional view schematically showing an example of the second optical laminated sheet.
  • the optical laminated sheet 1 a shown in FIG. 2 includes a first optical sheet 3 , a second optical sheet 2 , a first adhesive layer 4 , a transparent support 5 and a second adhesive layer 6 . At least part of one main surface of the transparent support 5 is covered with the first adhesive layer 4 . At least part of the other main surface of the transparent support 5 is covered with a second adhesive layer 6 .
  • the transparent support 5 is adhered to the first optical sheet 3 via the first adhesive layer 4 and adhered to the second optical sheet 2 via the second adhesive layer 6 .
  • the first adhesive layer may have the same structure as the photochromic adhesive layer.
  • the second adhesive layer preferably contains a resin.
  • the resin includes, for example, at least one selected from the group consisting of polyvinyl alcohol resins, (meth)acrylic resins, urethane acrylate resins, polyurethane resins, polyurethane urea resins, polythiourethane resins, and polythiourethane urea resins. is preferred.
  • the second adhesive layer may or may not contain a photochromic compound.
  • the second adhesive layer may contain a photochromic compound, its structure may be the same as or different from the photochromic compound contained in the first adhesive layer.
  • the second adhesive layer may contain a coloring agent such as a dye or a pigment.
  • the type of the coloring agent may be the same as or different from the coloring agent contained in the first adhesive layer.
  • the thickness of the second adhesive layer may be the same as that of the first adhesive layer, thicker, or thinner. When the second adhesive layer contains a photochromic compound, it is preferably as thick as the first adhesive layer. When the second adhesive layer does not contain a photochromic compound, it is preferably thinner than the first adhesive layer.
  • the thickness of the second adhesive layer is, for example, 0.1 ⁇ m or more and 100 ⁇ m or less, preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the second adhesive layer may be thinner or thicker than the thicknesses of the first and second optical sheets. The thickness of the second adhesive layer can be measured, for example, by the same method as the thickness of the PVA sheet.
  • the transparent support is, for example, a self-supporting film that can improve the strength of the optical laminated sheet.
  • the transparent support may be optically transparent.
  • the transparent support may be colorless and transparent, white and transparent, or colored and transparent.
  • the luminous transmittance of the transparent support is preferably 30% or more.
  • the luminous transmittance of the transparent support can be measured with a UV-Vis spectrophotometer.
  • the material of the transparent support is not particularly limited.
  • a transparent support is, for example, a resin film or a ceramic film.
  • the transparent support preferably contains at least one resin selected from the group consisting of polyethylene terephthalate, triacetyl cellulose, polyamide, polycarbonate sheet, cellulose acetate butyrate, and (meth)acryl. More preferably, it contains at least one resin selected from the group consisting of acetylcellulose, polyamide, and polycarbonate sheets.
  • the thickness of the transparent support is preferably thicker than the thickness of the first and second optical sheets.
  • the thickness of the transparent support is preferably 50 ⁇ m or more, preferably 100 ⁇ m or more, more preferably 200 ⁇ m or more.
  • a thick transparent support tends to increase the strength of the optical laminated sheet.
  • the thickness of the transparent support it is 1000 ⁇ m or less in one example, and 500 ⁇ m or less in another example.
  • the thickness of the transparent support can be measured, for example, by the same method as the thickness of the PVA sheet.
  • the transparent support preferably has a surface-modified region on its surface, like the other resin sheets described above.
  • the use of a transparent support having a surface-modified region tends to increase adhesion to the first and second adhesive layers.
  • Surface-modified regions are preferably provided on both major surfaces of the transparent support.
  • a second method for producing an optical laminated sheet comprises: applying the first adhesive composition described above to at least one main surface of the first optical sheet to obtain a first coating film; on at least one main surface of the second optical sheet to obtain a second coating; , laminating the first optical sheet, the transparent support, and the second optical sheet.
  • the first and second optical sheets are prepared.
  • Commercially available resin sheets can be used as the first and second optical sheets.
  • a non-stretched sheet may be used, or a stretched and dyed sheet may be used.
  • a surface modified region may be provided on each main surface of the first and second optical sheets by the method described above.
  • the first adhesive composition is applied on at least one main surface of the first optical sheet using, for example, a bar coater to form a first coating film.
  • This coating film is dried, for example, at a temperature of 60° C. or higher and 150° C. for 1 minute or longer and 1 hour or shorter.
  • the second adhesive composition is applied on at least one main surface of the second optical sheet using, for example, a bar coater to form a second coating film.
  • This coating film is dried, for example, at a temperature of 60° C. or higher and 150° C. for 1 minute or longer and 1 hour or shorter.
  • a transparent support is placed between the first coating film and the second coating film so as to be in contact with them to obtain a laminate.
  • This laminate is laminated using, for example, lamination rolls to obtain a structure.
  • a surface-modified region may be provided on at least one main surface of the transparent support by the method described above.
  • the resulting structure is subjected to degassing treatment.
  • the structure In the degassing treatment, the structure is allowed to stand at a temperature of 40° C. or higher and 80° C. or lower under a vacuum of 500 Pa for 5 hours or longer and 20 hours or shorter.
  • the structure after degassing is subjected to heat treatment. During the heat treatment, the structure is heated, for example, at a temperature of 60° C. or higher and 150° C. or lower for 0.5 hours or more and 5 hours or less.
  • the structure after heat treatment may be left at room temperature for one week or longer.
  • An optical article according to embodiments includes an optical laminated sheet according to embodiments.
  • An optical article according to an embodiment may include the optical laminate sheet according to the embodiment, and an optical element substrate that covers at least one surface of the first optical sheet and the second optical sheet and contains a resin.
  • the optical element substrate may cover the surfaces of both the first optical sheet and the second optical sheet that are not in contact with the photochromic adhesive layer.
  • the optical laminate sheet may be housed inside the optical element substrate.
  • Optical articles include lenses, window glass for houses and automobiles, liquid crystal displays, sun visors, and clocks. Lenses include semi-finished lenses and finished lenses.
  • FIG. 3 is a cross-sectional view schematically showing an example of the optical article according to the embodiment.
  • the optical article 10 shown in FIG. 3 includes a first optical element substrate 11, a second optical element substrate 12, and an optical laminated sheet 1 interposed therebetween.
  • the optical laminated sheet 1 is the first optical laminated sheet shown in FIG.
  • the second optical laminated sheet 1a shown in FIG. 2 may be used.
  • the optical article 10 has a concave-convex lens shape.
  • the optical laminated sheet 1 has a curved surface along the shape of the lens.
  • the first optical element substrate 11 is located on the concave side
  • the second optical element substrate 12 is located on the convex side.
  • the first optical element substrate 11 covers the entire surface of the first optical sheet (not shown) of the optical substrate sheet 1 .
  • the second optical element substrate 12 covers the entire surface of the second optical sheet (not shown) of the optical substrate sheet 1 .
  • the side surfaces of the optical substrate sheet 1 are not covered with the first and second optical substrates.
  • the side surfaces of the optical substrate sheet 1 may be covered with the first and second optical substrates.
  • FIG. 4 is a perspective view schematically showing an example of eyeglasses according to the embodiment.
  • Spectacles 100 shown in FIG. 4 include lenses 101 and a frame 102 that supports the lenses 101 .
  • Lens 101 includes an optical article according to embodiments.
  • the optical element substrate may contain a resin.
  • the resin is selected from the group consisting of polyester resins, polyamide resins, allyl resins, acrylic resins, methacrylic resins, polyurethane resins, polyurethane urea resins, polythiourethane resins, polythiourethane urea resins, polythioepoxy resins, and polycarbonate resins. At least one may be included.
  • the resin preferably contains at least one selected from the group consisting of polyurethane resins, polyurethane urea resins, polythiourethane resins, polythiourethane urea resins, and polythioepoxy resins. These resins tend to have high adhesion to the optical base sheet because the constituent monomers can chemically bond with the hydroxyl groups on the surfaces of the first and second optical sheets of the optical base sheet. More preferably, it is at least one selected from the group consisting of polythiourethane resins, polythioepoxy resins, and polyurethaneurea resins.
  • An optical article according to an embodiment is manufactured, for example, by the following method.
  • a curable composition for forming an optical element substrate is prepared.
  • a known composition corresponding to each resin can be used as the curable composition.
  • prepare the mold and gasket prepare the mold and gasket.
  • the mold includes an upper mold and a lower mold.
  • a hollow portion is formed inside by combining the upper mold and the lower mold.
  • a gasket is installed on the interface between the upper mold and the lower mold.
  • the inside of the gasket is provided with cuts for fixing the optical laminated sheet according to the embodiment.
  • the inside of the gasket may be provided with protrusions or recesses instead of cuts.
  • the molds and gaskets are, for example, known for molding plastic lenses.
  • the end of the optical laminate sheet according to the embodiment is inserted into the notch of the gasket and fixed.
  • This gasket is placed at the interface of the mold.
  • the optical laminate sheet is installed so as to extend over the inside of the hollow portion of the mold.
  • the hollow part of this mold is filled with a curable composition.
  • the mold filled with the curable composition is heat-treated to cure the curable composition.
  • the temperature is gradually raised from normal temperature to the curing temperature, and after reaching the curing temperature, the temperature is maintained for a certain period of time.
  • the curing temperature is, for example, 60° C. or higher and 200° C. or lower, although it varies depending on the type of resin of the optical element substrate.
  • the heating rate is, for example, 1° C./hour or more and 10° C./hour or less.
  • the retention time at the curing temperature is, for example, 0.1 hours or more and 10 hours or less.
  • an optical article according to an embodiment is obtained in which the surfaces of the first and second optical sheets of the optical laminated sheet are coated with the optical element substrate.
  • the optical article according to the embodiment may be obtained by the following method. First, part of the curable composition is filled into the lower mold of the mold. An optical laminate sheet is placed on the surface of the curable composition after filling. Next, an upper mold is installed so as to face the lower mold to form a hollow portion. The remainder of the curable composition is filled into this hollow portion. The resulting mold is heated in the same manner as above to obtain a cured product. In this way, an optical article according to an embodiment is obtained in which the main surface and the entire side surface of the optical laminated sheet are coated with the optical element base material.
  • the optical article according to the embodiment may be obtained by the following method.
  • First, an optical laminate sheet is placed along the upper surface of the mold.
  • the surface of the optical laminate sheet that does not come into contact with the upper surface of the mold, that is, the back side, is filled with the curable composition and heat-treated under the same conditions as above to obtain the first cured body.
  • the first cured body is a laminate in which an optical laminate sheet is laminated on one main surface of the first optical element substrate. This first cured body is placed in a mold.
  • the curable composition is filled toward the surface of the second optical sheet of the first cured body and heat-treated under the same conditions as above to obtain the second cured body.
  • the second cured body is a laminate in which an optical laminate sheet is laminated on one main surface of the first optical element substrate, and the second optical element substrate is laminated on this optical laminate sheet.
  • an optical article according to an embodiment is obtained in which the main surface and optionally the side surfaces of the optical laminate sheet are coated with the optical element substrate.
  • a curable composition for an allyl-based resin contains an allyl monomer having an allyl group and a polymerization initiator. Allyl monomers include, for example, at least one selected from the group consisting of diethylene glycol bisallyl carbonate, diallyl isophthalate, and diallyl terephthalate. Polymerization initiators include, for example, diisopropyl peroxycarbonate.
  • a curable composition for a (meth)acrylic resin contains a (meth)acrylic monomer having a (meth)acrylate group and a polymerization initiator.
  • (Meth)acrylic monomers include, for example, glycidyl (meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylolmethane tri(meth)acrylate, trimethylolpropane triethylene glycol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate ) acrylate, dipentaerythritol hexa (meth) acrylate, urethane acrylate, urethane oligomer tetra (meth) acrylate, urethane oligomer hexa (meth) acrylate, polyester oligomer hexa (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (
  • a curable composition for a urethane urea resin contains a prepolymer of a polyisocyanate compound and a polyol compound, and a diamine compound.
  • the polyisocyanate compound, the polyol compound, and the diamine compound those described above for the adhesive composition can be used.
  • the polyisocyanate compound preferably contains an isomeric mixture of 4,4'-methylenebis(cyclohexylisocyanate).
  • the polyol compound preferably contains a polyester polyol obtained by reacting 1,6-hexanediol with adipic acid.
  • Diamine compounds include 2,4-diamino-3,5-diethyl-toluene, 2,6-diamino-3,5-diethyl-toluene, 4,4′-methylenebis(3-chloro-2,6-diethylaniline) , paraphenylenediamine, metaphenylenediamine, 4,4′-diaminodiphenyl ether, diaminodiphenylmethane, bis-4-(4-aminophenoxy)phenylsulfone, bis-4-(3-aminophenoxy)phenylsulfone, 2,2- bis(4-(4-aminophenoxy)phenyl)propane, 2,2-bis(4-(4-aminophenoxy)phenyl)hexafluoropropane, 2,2-bis(4-aminophenoxy)hexafluoropropane, 1 , 3-bis(3-aminophenoxy)benzene, 1,4
  • the curable composition for thiourethane resin contains a polyisocyanate compound, a polythiol compound and a polymerization catalyst.
  • the polyisocyanate compound those mentioned above in the adhesive composition can be used.
  • Polyisocyanate compounds include dicyclohexylmethane-4,4'-diisocyanate, isophorone diisocyanate, 2,5-diisocyanatomethyl-1,4-dithiane, 2,5-bis(4-isocyanato-2-thiabutyl)-1 ,4-dithiane, 2,5-bis(3-isocyanatomethyl-4-isocyanato-2-thiabutyl)-1,4-dithiane, 2,5-bis(3-isocyanato-2-thiapropyl)-1 ,4-dithiane, 1,3,5-triisocyanatocyclohexane, 1,3,5-tris(isocyanatomethyl)cyclohexane, bis
  • Polythiol compounds include, for example, 1,2-dimercaptoethane, 1,2-dimercaptopropane, 2,2-dimercaptopropane, 1,3-dimercaptopropane, 1,2,3-trimercaptopropane, 1, 4-dimercaptobutane, 1,6-dimercaptohexane, bis(2-mercaptoethyl)sulfide, bis(2,3-dimercaptopropyl)sulfide, 1,2-bis(2-mercaptoethylthio)ethane, 1 ,5-dimercapto-3-oxapentane, 1,8-dimercapto-3,6-dioxaoctane, 2,2-dimethylpropane-1,3-dithiol, 3,4-dimethoxybutane-1,2-dithiol, 2-mercaptomethyl-1,3-dimercaptopropane, 2-mercaptomethyl-1,4-di
  • Polymerization catalysts include, for example, triethylenediamine, hexamethylenetetramine, N,N-dimethyloctylamine, N,N,N',N'-tetramethyl-1,6-diaminohexane, 4,4'-trimethylenebis ( 1-methylpiperidine), 1,8-diazabicyclo-(5,4,0)-7-undecene, dimethyltin dichloride, dimethyltin bis(isooctylthioglycolate), dibutyltin dichloride, dibutyltin dilaurate, dibutyltin maleate, Dibutyltin Maleate Polymer, Dibutyltin Diricinolate, Dibutyltin Bis (Dodecyl Mercaptide), Dibutyltin Bis (isooctylthioglycolate), Dioctyltin Dichloride, Dioctyltin Maleate, Dioct
  • a curable composition for a thioepoxy-based resin contains a monomer having a thioepoxy group, a curing agent, and a polymerization catalyst.
  • Monomers having a thioepoxy group include, for example, compounds having two or more ⁇ -epithiopropylthio groups, preferably bis( ⁇ -epithiopropylthio)methane, 1,2-bis( ⁇ -epithiopropyl thio)ethane, 1,3-bis( ⁇ -epithiopropylthio)propane, 1,2-bis( ⁇ -epithiopropylthio)propane, 1-( ⁇ -epithiopropylthio)-2-( ⁇ - epithiopropylthiomethyl)propane, 1,4-bis( ⁇ -epithiopropylthio)butane, 1,3-bis( ⁇ -epithiopropylthio)butane, 1-( ⁇ -e
  • first prepolymer FPP1 225 g of the first isocyanate compound FI1, 100 g of the first polyfunctional active hydrogen compound FA1, and 200 g of the organic solvent OS1 were charged into a 2 L reactor to obtain a mixture. Isophorone diisocyanate was used as the first isocyanate compound FI1.
  • a polyether diol having a number average molecular weight of 1000 (Exenol manufactured by AGC Inc.) was used.
  • Toluene was used as the organic solvent OS1.
  • This mixture was stirred at 1000 rpm at 100° C. for 7 hours under a nitrogen atmosphere to obtain a reaction liquid containing the first prepolymer.
  • this first prepolymer is also referred to as first prepolymer FPP1. The end point of the reaction was confirmed by back titration of isocyanate groups.
  • adhesive composition AC1 100 g reaction solution containing second prepolymer SPP1, 1.02 g photochromic compound PC1, 0.34 g ethylenebis(oxyethylene)bis[3-(5-tert-butyl-4-hydroxy-m-tolyl)propionate ], and 0.05 g of DOW CORNING TORAY L-7001 were mixed and stirred at room temperature to obtain an adhesive composition.
  • this adhesive composition is also referred to as adhesive composition AC1.
  • Adhesive composition AC1 was applied onto polyvinyl alcohol film PVF1 using a bar coater to form a coating film.
  • the thickness of the polyvinyl alcohol film PVF1 was 75 ⁇ m.
  • This coating film was dried at a temperature of 100° C. for 5 minutes.
  • the film thickness of the coating film after drying was 30 ⁇ m.
  • a polyvinyl alcohol film PVF1 was laminated on the dried coating film using a laminate roll to obtain a structure.
  • the structure was in the shape of a rectangular strip. One end of the structure in the long side direction was not coated with the adhesive composition, and was used as an uncoated portion.
  • optical laminated sheet OL1 This structure was degassed by leaving it at 60°C under a vacuum of 500 Pa for 12 hours. The degassed structure was heated at 90° C. for 2 hours. The structure after heating was left at room temperature for about one week to obtain an optical laminated sheet.
  • this optical laminated sheet is also referred to as optical laminated sheet OL1.
  • the optical laminated sheet OL1 was vacuum-dried under conditions of 80° C. and 13 Torr for 15 hours.
  • the vacuum-dried optical laminated sheet OL1 was placed in the notch on the inner side of the gasket.
  • This gasket was placed in a glass mold so that the optical laminated sheet OL1 was positioned inside the hollow portion.
  • the glass mold was set so that the lens power D was 0.00, the lens diameter was 70 mm, and the lens thickness was 3.0 mm.
  • a thiourethane-based curable composition was injected into the hollow portion of the glass mold.
  • the glass mold after the thiourethane-based curable composition was injected was gradually heated from 35° C. to 110° C.
  • lens LS1 this lens is also referred to as lens LS1.
  • the thiourethane-based curable composition includes 43.5 parts by mass of dicyclohexylmethane-4,4′-diisocyanate, 43.5 parts by mass of isophorone diisocyanate, 1,2-bis[(2-mercaptoethyl)thio]-3- A mixture of 63.0 parts by weight of mercaptopropane and 0.1 parts by weight of dibutyltin dilaurate was used.
  • Examples 2 to 11, and Examples 14, 16 to 19> An adhesive composition, an optical laminated sheet and a lens were obtained in the same manner as in Example 1, except that each component was changed as shown in Tables 1 and 2.
  • Example 12 (Production of mixture of first polymer FP1 and second prepolymer SPP12)
  • a reaction solution containing the second prepolymer SPP12 was obtained in the same manner as in Example 1, except that the amount of the second polyfunctional active hydrogen compound SA1 added was changed from 34 g to 31 g. 5 g of monofunctional active hydrogen compound MA1 was added to this reaction liquid and stirred to obtain a mixture of the first polymer and the second prepolymer.
  • the first polymer will also be referred to as the first polymer FP1
  • the second prepolymer will also be referred to as the second prepolymer SPP12.
  • An adhesive composition, an optical laminate sheet and a lens were prepared in the same manner as in Example 1, except that a mixture of the first polymer FP1 and the second prepolymer SPP12 was used instead of the reaction solution of the second prepolymer SPP1. Obtained.
  • Example 13 (Production of first polymer FP2)
  • a reaction solution containing the second prepolymer SPP13 was obtained in the same manner as described in Example 1, except that the amount of the organic solvent OS1 was changed from 500 g to 520 g. 8.5 g of monofunctional active hydrogen compound MA1 was added to this reaction liquid and stirred to obtain a reaction liquid containing the first polymer.
  • this first polymer is also referred to as first polymer FP2.
  • An adhesive composition, an optical laminated sheet and a lens were obtained in the same manner as in Example 1, except that the reaction liquid of the first polymer FP2 was used instead of the reaction liquid of the second prepolymer SPP1.
  • Example 15 Instead of 200 g of the reaction mixture of the second prepolymer SPP1, the reaction mixture of the first polymer FP2 obtained in the same manner as described in Example 13 and the reaction mixture of the first polymer FP2 obtained in the same manner as described in Example 14.
  • An adhesive composition, an optical laminate sheet, and a lens were obtained in the same manner as in Example 1, except that a mixed solution of the reaction solution of the second prepolymer SPP13 obtained above was used.
  • the amount of the reaction liquid of the first polymer FP2 in the mixed liquid was 70 g, and the amount of the reaction liquid of the second prepolymer SPP13 was 30 g.
  • Example 20 A lens was obtained in the same manner as in Example 1, except that an allyl-based curable composition was used as the curable composition and the heating conditions were changed.
  • a mixture of 3 parts by mass of diisopropyl peroxydicarbonate (polymerization initiator) and 100 parts by mass of diethylene glycol bisallyl carbonate was used as the allyl-based curable composition.
  • the glass mold after injection of the allyl-based curable composition was gradually heated from 30° C. to 90° C. over 20 hours using an air oven, and then held at 90° C. for 1 hour to obtain the curable composition. was cured. After heating, the cured body was taken out from the gasket and the glass mold, placed in an oven at 100° C. and heated for 2 hours.
  • Example 21 A lens was obtained in the same manner as in Example 1, except that an acrylic curable composition was used as the curable composition and the heating conditions were changed.
  • acrylic curable composition As the acrylic curable composition, first, 20 parts by mass of trimethylolpropane trimethacrylate, 40 parts by mass of polyethylene glycol diacrylate having an average molecular weight of 522, and 40 parts by mass of urethane acrylate (EBECRYL4858 manufactured by Daicel Corporation) are mixed to form radicals. A polymerizable monomer was obtained. 100 parts by mass of this radically polymerizable monomer was mixed with 1.0 parts by mass of t-butyl peroxyneodecanate to obtain an acrylic curable composition.
  • EBECRYL4858 manufactured by Daicel Corporation
  • the glass mold after injection of the acrylic curable composition was gradually heated from 33 ° C. to 90 ° C. over 17 hours using an air furnace, and then held at 90 ° C. for 2 hours to obtain a curable composition. was cured. After heating, the cured body was taken out from the gasket and the glass mold, placed in an oven at 110° C. and heated for 3 hours.
  • Example 22 A lens was obtained in the same manner as in Example 1, except that a thioepoxy-based curable composition was used as the curable composition and the heating conditions were changed.
  • the glass mold after injection of the thioepoxy-based curable composition was gradually heated from 20° C. to 90° C. over 20 hours using an air oven, and then held at 90° C. for 1 hour to obtain a curable composition. was cured. After heating, the cured body was taken out from the gasket and the glass mold, placed in an oven at 90° C. and heated for 1 hour.
  • Example 23 A lens was obtained in the same manner as in Example 1, except that a urethane urea-based curable composition was used as the curable composition and the heating conditions were changed.
  • a polyester polyol composed of adipic acid and 1,6-hexanediol and having a number average molecular weight of 1,000 and an isomer of 4,4'-methylenebis(cyclohexyl isocyanate) 78 parts by mass of the mixture were heated at 140° C. for 10 minutes under dry nitrogen to obtain a prepolymer.
  • the prepolymer was cooled to 70° C. and allowed to stand for 24 hours.
  • the glass mold after injection of the urethane urea-based curable composition was held at 120°C for 10 hours to cure the curable composition. After heating, the cured body was taken out from the gasket and the glass mold, placed in an oven at 110° C. and heated for 1 hour.
  • FI1 isophorone diisocyanate
  • FI2 hydrogenated diphenylmethane diisocyanate
  • FI4 toluene-2,4-diisocyanate
  • FI5 norbornane diisocyanate.
  • SA1 isophoronediamine
  • SA2 ethylenediamine
  • SA3 1,6-diaminohexane
  • SA4 bis-(4-aminocyclohexyl)methane.
  • PC2 A compound represented by the following formula.
  • PC3 A compound represented by the following formula.
  • OS1 toluene
  • OS2 diethyl ketone
  • OS3 isopropyl alcohol
  • OS4 ethyl acetate
  • OS5 cyclohexanone
  • OS6 tetrahydrofuran
  • HP ethylenebis(oxyethylene)bis[3-(5-tert-butyl-4-hydroxy-m-tolyl)propionate]
  • CF Dow Corning Toray L-7001
  • HA Bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate
  • DY Tetraazaporphyrin compound (manufactured by Yamada Kagaku Kogyo Co., Ltd.: FDG-007) (as a result of measurement in chloroform, the absorption peak (maximum The absorption wavelength) was 594 nm, and the absorption intensity at 594 nm was 1.5 ⁇ 10 5 ml/g ⁇ cm).
  • PVF1 polyvinyl alcohol film (thickness 75 ⁇ m)
  • PVF2 Polyvinyl alcohol film (thickness: 30 ⁇ m) with a draw ratio of 4 times and cross-linked with boric acid
  • PVF3 Polyvinyl alcohol polarizing film containing a dichroic dye with a luminous transmittance of 44%, a degree of polarization of 94.4%, and a gray tone (thickness: 27 ⁇ m)
  • a xenon lamp L-2480 (300 W) SHL-100 manufactured by Hamamatsu Photonics K.K. was irradiated for 120 seconds to develop the color of the photochromic compound.
  • the maximum absorption wavelength ( ⁇ max) after color development was determined using a spectrophotometer (instantaneous multi-channel photo director MCPD1000) manufactured by Otsuka Electronics Co., Ltd.
  • the absorbance ⁇ (0) of the maximum absorption wavelength of the optical laminated sheet was measured when the xenon lamp was not irradiated.
  • the optical laminated sheet was irradiated with a xenon lamp for 120 seconds at the above beam intensity, and the absorbance ⁇ (120) of the maximum absorption wavelength of the optical laminated sheet was measured.
  • a value obtained by subtracting ⁇ (0) from the absorbance ⁇ (120) was taken as the color density. It can be said that the higher this value, the better the photochromic properties.
  • the optical laminate sheets obtained in Examples 1 to 23 were cut into strips of 50 mm ⁇ 100 mm to obtain test pieces. At this time, it was cut out so as to include one long side end portion that did not include the coating film of the adhesive composition.
  • the portions of the first optical sheet and the second optical sheet of this test piece that were not coated with the adhesive composition were sandwiched between an upper jig and a lower jig, respectively. was installed in The upper jig was pulled at a crosshead speed of 100 mm/min to measure the maximum peel force. This maximum peel strength is shown in Table 4 as the peel strength.
  • n1/n2/n3 contains the first polyfunctional active hydrogen compound when the total molar amount (n2) of the isocyanate groups contained in the first isocyanate compound is 1.
  • the ratio of the total molar amount (n1) of active hydrogen groups and the ratio of the total molar amount (n3) of active hydrogen groups contained in the second polyfunctional active hydrogen compound are described.
  • Example 24 (Production of optical laminated sheet OL24)
  • the first adhesive composition AC1 was applied on one side of the first polyvinyl alcohol film PVF1 using a bar coater to form a first coating film.
  • the thickness of the polyvinyl alcohol film PVF1 was 75 ⁇ m.
  • This first coating film was dried at a temperature of 100° C. for 5 minutes.
  • the film thickness of the first coating film after drying was 30 ⁇ m.
  • the second adhesive composition AC2 was applied on one side of the second polyvinyl alcohol film PVF1 using a bar coater to form a second coating film.
  • This second coating was dried at a temperature of 100° C. for 5 minutes.
  • the film thickness of the second coating film after drying was 30 ⁇ m.
  • the first coating film was in contact with one main surface of the polyethylene terephthalate sheet PET, and the second coating film was in contact with the other main surface of the sheet PET, using lamination rolls to obtain a structure.
  • the structure was a rectangle of about 15 cm ⁇ 20 cm. One end of the structure in the long side direction was not coated with the adhesive composition, and was used as an uncoated portion.
  • This structure was degassed by leaving it at 60°C under a vacuum of 500 Pa for 12 hours.
  • the degassed structure was heated at 90° C. for 2 hours.
  • the structure after heating was left at room temperature for about one week to obtain an optical laminated sheet.
  • this optical laminated sheet is also referred to as an optical laminated sheet OL24.
  • Ten optical laminated sheets OL24 were produced.
  • both surfaces of the polyethylene terephthalate sheet PET were subjected to corona discharge treatment using Multidyne manufactured by Navitas.
  • the optical laminated sheet OL24 was vacuum-dried under conditions of 80° C. and 13 Torr for 15 hours.
  • the vacuum-dried optical laminated sheet OL1 was placed in a curved surface processing apparatus and subjected to curved surface processing.
  • the obtained optical laminated sheet was die-cut to obtain a disk-shaped sheet with a diameter of 80 mm.
  • the obtained disk-shaped sheet was processed into a spherical shape by vacuum suction processing (thermal bending processing).
  • This vacuum suction processing was carried out by placing a concave four-curve mold with a diameter of 90 mm in an atmosphere of 140° C. and performing vacuum suction from a hole in the center of the concave mold with a vacuum pump.
  • the processing time was about 2 minutes per sheet.
  • the optical laminated sheet OL24 after curved surface processing was placed in the notch inside the gasket.
  • This gasket was placed in a glass mold so that the optical laminated sheet OL24 was positioned inside the hollow portion.
  • the glass mold was set so that the lens power D was 0.00, the lens diameter was 70 mm, and the lens thickness was 3.0 mm.
  • a thiourethane-based curable composition was injected into the hollow portion of the glass mold.
  • the glass mold after the thiourethane-based curable composition was injected was gradually heated from 35° C. to 110° C. over 12 hours using an air furnace, and then held at 110° C. for 1 hour to obtain the curable composition. Hardened things.
  • the cured body was taken out from the gasket and the glass mold, placed in an oven at 110° C. and heated for 3 hours.
  • the outer periphery of the cured body after heating was polished with a lens grinder to obtain a lens having a diameter of 60 mm as shown in FIG. This operation was repeated to obtain a total of 10 lenses.
  • this lens is also referred to as lens LS24.
  • the thiourethane-based curable composition includes 43.5 parts by mass of dicyclohexylmethane-4,4′-diisocyanate, 43.5 parts by mass of isophorone diisocyanate, 1,2-bis[(2-mercaptoethyl)thio]-3- A mixture of 63.0 parts by weight of mercaptopropane and 0.1 parts by weight of dibutyltin dilaurate was used.
  • Example 25 to Example 34> An optical laminate sheet and a lens were obtained in the same manner as in Example 24, except that the first and second optical sheets or the transparent support was changed as shown in Table 5. The details of the abbreviations in Table 5 are as follows.
  • PVF1 polyvinyl alcohol film (thickness 75 ⁇ m)
  • PVF2 Polyvinyl alcohol film (thickness: 30 ⁇ m) with a draw ratio of 4 times and cross-linked with boric acid
  • PVF3 Polyvinyl alcohol polarizing film containing a dichroic dye with a luminous transmittance of 44%, a degree of polarization of 94.4%, and a gray tone (thickness: 27 ⁇ m)
  • PET 300 ⁇ m thick sheet made of polyethylene terephthalate
  • TAC 300 ⁇ m thick sheet made of triacetyl cellulose
  • APA1 300 ⁇ m thick alicyclic polyamide sheet sheet mainly composed of group polyamide)
  • APA2 Stretched alicyclic polyamide sheet with a thickness of 200 ⁇ m (a sheet mainly composed of alicyclic polyamide composed of 4,4′-diaminodicyclohexylmethane and 1,10-decanedicarboxylic acid)
  • a xenon lamp L-2480 (300 W) SHL-100 manufactured by Hamamatsu Photonics K.K. was irradiated for 120 seconds to develop the color of the photochromic compound.
  • the maximum absorption wavelength ( ⁇ max) after color development was determined using a spectrophotometer (instantaneous multi-channel photo director MCPD1000) manufactured by Otsuka Electronics Co., Ltd.
  • the absorbance ⁇ (0) of the maximum absorption wavelength of the optical laminated sheet was measured when the xenon lamp was not irradiated.
  • the optical laminated sheet was irradiated with a xenon lamp for 120 seconds at the above beam intensity, and the absorbance ⁇ (120) of the maximum absorption wavelength of the optical laminated sheet was measured.
  • a value obtained by subtracting ⁇ (0) from the absorbance ⁇ (120) was taken as the color density. It can be said that the higher this value, the better the photochromic properties.
  • the time required for the color density to decrease to 1/2 was measured, and this was defined as the fading rate [t1/2 (sec.). It can be said that the shorter this time, the better the photochromic properties.
  • the maximum absorption wavelength, color density, and fading speed of the lenses obtained in Examples 1 to 11 were measured under the same conditions as above. The results were the same as the values for the optical laminated sheets, respectively.
  • the optical laminate sheets obtained in Examples 24 to 34 were cut into strips of 50 mm ⁇ 100 mm to obtain test pieces. At this time, it was cut out so as to include one long side end portion that did not include the coating film of the adhesive composition.
  • the portions of the first optical sheet and the second optical sheet of this test piece that were not coated with the adhesive composition were sandwiched between an upper jig and a lower jig, respectively. was installed in The upper jig was pulled at a crosshead speed of 100 mm/min to measure the maximum peel force. This maximum peel strength is shown in Table 5 as the peel strength.
  • the optical laminated sheets according to Examples 24 to 34 were evaluated for yield after curved surface processing. For the evaluation, out of 10 optical laminated sheets that were processed, the number of optical laminated sheets that did not deform at the edges and had a curvature of 4 curves after being placed in an environment of 40°C and 60% RH for 4 hours was counted. , and its ratio was calculated as the yield (%). This value is shown in Table 5. , listed in Table 1.

Abstract

The purpose of the present invention is to provide an optical laminated sheet having excellent adhesion and appearance, a method for manufacturing the same, and an optical article, lens, and spectacles that include the optical laminated sheet. According to an embodiment of the present invention, an optical laminated sheet 1 is provided. The optical laminated sheet 1 includes a first optical sheet 2, a second optical sheet 3, and a photochromic adhesive layer 4. The first and second optical sheets include a polyvinyl alcohol resin. The photochromic adhesive layer 4 is interposed between the first optical sheet 2 and the second optical sheet 3, and bonds said sheets. The photochromic adhesive layer 4 includes a cured body of an adhesive composition including a photochromic compound, either a second prepolymer or a first polymer, and the second prepolymer or a third prepolymer.

Description

光学積層シート、光学物品、レンズ、眼鏡、及び光学積層シートの製造方法Optical laminated sheet, optical article, lens, spectacles, and method for producing optical laminated sheet
 本発明は、光学積層シート、光学物品、レンズ、眼鏡、及び光学積層シートの製造方法に関する。 The present invention relates to an optical laminated sheet, an optical article, a lens, spectacles, and a method for producing an optical laminated sheet.
 プラスチック眼鏡は、レンズにプラスチック製のレンズを用いた眼鏡である。プラスチックレンズは、例えば、半完成品であるセミフィニッシュドレンズに様々な加工を施すことにより製造される。セミフィニッシュドレンズの凸面である表面には、ハードコート層や反射防止膜等の機能層が設けられる。また、セミフィニッシュドレンズの凹面である裏面には、切削及び研磨加工が施される。  Plastic glasses are glasses that use plastic lenses. A plastic lens is manufactured, for example, by subjecting a semi-finished lens, which is a semi-finished product, to various processes. A functional layer such as a hard coat layer or an antireflection film is provided on the convex surface of the semi-finished lens. In addition, cutting and polishing are applied to the back surface, which is the concave surface of the semi-finished lens.
 近年、紫外線の量により色調が変化するフォトクロミック性を有する調光レンズが注目を集めている。調光レンズは、フォトクロミック化合物をプラスチックレンズに付与することにより得られる。フォトクロミック化合物は、光の作用により、互いに異なる光吸収スペクトルを有する2以上の異性体を可逆的に生成可能な化合物である。 In recent years, attention has been focused on photochromic lenses that change color depending on the amount of ultraviolet light. A photochromic lens is obtained by applying a photochromic compound to a plastic lens. A photochromic compound is a compound that can reversibly generate two or more isomers having different light absorption spectra by the action of light.
 フォトクロミックレンズの製造方法としては、従来、セミフィニッシュドレンズのマトリックスにフォトクロミック化合物を分散させる練り込み法、及び、セミフィニッシュドレンズの表面にフォトクロミック化合物を含む層を設ける積層法等が用いられてきた。 Conventional methods for producing photochromic lenses include a kneading method in which a photochromic compound is dispersed in the matrix of a semi-finished lens, and a lamination method in which a layer containing a photochromic compound is provided on the surface of a semi-finished lens. .
 バインダーシート法は、フォトクロミック化合物を含む樹脂層を2枚の光学シートで挟んだバインダーシートをレンズ基材と一体化させてセミフィニッシュドレンズを製造する方法である。バインダーシート法によると、フォトクロミック化合物を含む自立した物品を用いてセミフィニッシュドレンズを製造できるため、練り込み法及び積層法と比較して、生産効率が高まり、大量生産が容易となる傾向にある。 The binder sheet method is a method of manufacturing a semi-finished lens by integrating a binder sheet in which a resin layer containing a photochromic compound is sandwiched between two optical sheets with a lens substrate. According to the binder sheet method, a semi-finished lens can be produced using a self-supporting article containing a photochromic compound. Therefore, compared to the kneading method and the lamination method, the production efficiency tends to be higher and mass production tends to be easier. .
 フォトクロミック化合物を含む樹脂層のマトリックスとして、ポリウレタン樹脂又はポリウレタウレア樹脂を用いることが検討されている。また、光学シートとして、ポリビニルアルコール樹脂を用いることが検討されている。  The use of a polyurethane resin or a polyuretaurea resin as a matrix for a resin layer containing a photochromic compound is under study. Also, the use of polyvinyl alcohol resin as the optical sheet is being studied.
特開2013-033131号公報JP 2013-033131 A 国際公開第2019/163728号WO2019/163728 国際公開第2019/194281号WO2019/194281 国際公開第2012/018070号WO2012/018070 特表2018-514817号公報Japanese Patent Application Publication No. 2018-514817 国際公開第2017/115874号WO2017/115874
 本発明の目的は、密着性及び外観性に優れた光学積層シート及びその製造方法と、この光学積層シートを含む光学物品、レンズ及び眼鏡とを提供することにある。 An object of the present invention is to provide an optical laminated sheet excellent in adhesion and appearance, a method for producing the same, and an optical article, lens, and spectacles including this optical laminated sheet.
 実施形態によると、光学積層シートが提供される。光学積層シートは、第1光学シート及び第2光学シートとフォトクロミック接着層とを含む。第1及び第2光学シートは、ポリビニルアルコール樹脂を含む。フォトクロミック接着層は、第1光学シート及び第2光学シート間に介在し、これらを接着させる。フォトクロミック接着層は、フォトクロミック化合物及び重合成分を含む接着性組成物の硬化体を含む。重合成分は、第2プレポリマー、第1ポリマー及び第2プレポリマー、第1ポリマー及び第3プレポリマー、並びに第1ポリマー及び第2プレポリマー及び第3プレポリマー、のうち何れかを含む。第2プレポリマーは、第1プレポリマーと第2多官能活性水素化合物とを反応させて得られる。第2プレポリマーは、2以上のイソ(チオ)シアネート基を有する化合物である。第2多官能活性水素化合物は、2以上の活性水素基を有する。第1プレポリマーは、第1多官能活性水素化合物と、第1イソ(チオ)シアネート化合物とを反応させて得られる。第1プレポリマーは、2以上のイソ(チオ)シアネート基を有する化合物である。第1多官能活性水素化合物は、2以上の活性水素基を有する。第1イソ(チオ)シアネート化合物は、2以上のイソ(チオ)シアネート基を有する。第1ポリマーは、第2プレポリマーと単官能活性水素化合物とを反応させて得られる化合物である。単官能活性水素化合物は、1つの活性水素基を有する。第3プレポリマーは、第1多官能活性水素化合物と第1イソ(チオ)シアネート化合物とを反応させて得られる。第3プレポリマーは、2以上のイソ(チオ)シアネート基を有する。 According to embodiments, an optical laminated sheet is provided. The optical laminate sheet includes a first optical sheet, a second optical sheet, and a photochromic adhesive layer. The first and second optical sheets contain polyvinyl alcohol resin. The photochromic adhesive layer is interposed between and adheres the first optical sheet and the second optical sheet. The photochromic adhesive layer contains a cured adhesive composition containing a photochromic compound and a polymerizable component. The polymerized component includes any one of the second prepolymer, the first polymer and the second prepolymer, the first polymer and the third prepolymer, and the first polymer, the second prepolymer and the third prepolymer. The second prepolymer is obtained by reacting the first prepolymer and the second polyfunctional active hydrogen compound. The second prepolymer is a compound having two or more iso(thio)cyanate groups. The second polyfunctional active hydrogen compound has two or more active hydrogen groups. The first prepolymer is obtained by reacting the first polyfunctional active hydrogen compound and the first iso(thio)cyanate compound. The first prepolymer is a compound having two or more iso(thio)cyanate groups. The first polyfunctional active hydrogen compound has two or more active hydrogen groups. The first iso(thio)cyanate compound has two or more iso(thio)cyanate groups. The first polymer is a compound obtained by reacting the second prepolymer with a monofunctional active hydrogen compound. A monofunctional active hydrogen compound has one active hydrogen group. The third prepolymer is obtained by reacting the first polyfunctional active hydrogen compound and the first iso(thio)cyanate compound. The third prepolymer has two or more iso(thio)cyanate groups.
 実施形態によると、光学物品が提供される。光学物品は、実施形態に係る光学積層シートと、光学素子基材とを含む。光学素子基材は、第1光学シート及び第2光学シートの少なくとも一方の表面を被覆し、樹脂を含む。 According to embodiments, an optical article is provided. An optical article includes an optical laminate sheet according to an embodiment and an optical element substrate. The optical element substrate covers the surface of at least one of the first optical sheet and the second optical sheet, and contains a resin.
 実施形態によると、他の実施形態に係る光学物品を含むレンズが提供される。 According to embodiments, lenses are provided that include optical articles according to other embodiments.
 実施形態によると、他の実施形態に係るレンズを含む眼鏡が提供される。 According to embodiments, spectacles including lenses according to other embodiments are provided.
 実施形態によると、光学積層シートの第1の製造方法が提供される。この製造方法は、第1多官能活性水素化合物と第1イソ(チオ)シアネート化合物とを反応させて第1プレポリマーを得ることと、第1プレポリマーと第2多官能活性水素化合物とを反応させて第2プレポリマーを得ることと、第2プレポリマーとフォトクロミック化合物とを混合して接着性組成物を得ることと、接着性組成物を第1光学シートの少なくとも一方の主面上に塗布して塗膜を得ることと、塗膜上に第2光学シートを積層させることとを含む。 According to the embodiment, a first method for manufacturing an optical laminated sheet is provided. This production method comprises reacting a first polyfunctional active hydrogen compound with a first iso(thio)cyanate compound to obtain a first prepolymer, and reacting the first prepolymer with a second polyfunctional active hydrogen compound. obtaining a second prepolymer; mixing the second prepolymer and a photochromic compound to obtain an adhesive composition; and coating the adhesive composition on at least one major surface of the first optical sheet. obtaining a coating film; and laminating a second optical sheet on the coating film.
 実施形態によると、光学積層シートの第2の製造方法が提供される。この製造方法は、第1多官能活性水素化合物と第1イソ(チオ)シアネート化合物とを反応させて第1プレポリマーを得ることと、第1プレポリマーと第2多官能活性水素化合物とを反応させて第2プレポリマーを得ることと、第2プレポリマーと単官能活性水素化合物とを反応させて第1ポリマーを得ることと、第1ポリマー、第2プレポリマー、及びフォトクロミック化合物を混合して接着性組成物を得ることと、接着性組成物を第1光学シートの少なくとも一方の主面上に塗布して塗膜を得ることと、塗膜上に第2光学シートを積層させることとを含む。 According to the embodiment, a second method for manufacturing an optical laminate sheet is provided. This production method comprises reacting a first polyfunctional active hydrogen compound with a first iso(thio)cyanate compound to obtain a first prepolymer, and reacting the first prepolymer with a second polyfunctional active hydrogen compound. obtaining a second prepolymer by reacting the second prepolymer with a monofunctional active hydrogen compound to obtain a first polymer; mixing the first polymer, the second prepolymer, and the photochromic compound obtaining an adhesive composition; coating the adhesive composition on at least one main surface of a first optical sheet to obtain a coating film; and laminating a second optical sheet on the coating film. include.
 本発明によると、密着性及び外観性に優れた光学積層シート及びその製造方法と、この光学積層シートを含む光学物品、レンズ及び眼鏡とが提供される。 According to the present invention, an optical laminated sheet excellent in adhesion and appearance, a method for producing the same, and an optical article, lens, and spectacles including this optical laminated sheet are provided.
第1の光学積層シートの一例を概略的に示す断面図。Sectional drawing which shows an example of a 1st optical lamination sheet roughly. 第2の光学積層シートの一例を概略的に示す断面図。Sectional drawing which shows an example of a 2nd optical lamination sheet roughly. 実施形態に係る光学物品の一例を概略的に示す断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing which shows schematically an example of the optical article which concerns on embodiment. 実施形態に係る眼鏡の一例を概略的に示す斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The perspective view which shows schematically an example of the spectacles which concern on embodiment.
 光学積層シートのフォトクロミック接着層には、2枚の光学シートを接着させる接着能に加えて、高いフォトクロミック性が要求されることがある。すなわち、フォトクロミック化合物は、異性体間の構造変化を繰り返すことによりフォトクロミック性を示す。フォトクロミック化合物を含む接着層のマトリックスは、この構造変化を妨げにくい性質が求められる。このようなマトリックスを提供するために、(チオ)ウレタン樹脂、(チオ)ウレア樹脂、又は(チオ)ウレタンウレア樹脂が用いられることがある。これらの樹脂は、イソ(チオ)シアネートと、活性水素基を含有する化合物との反応生成物であるため、各成分を適宜選択することにより、所望の特性を有する樹脂を得られる。更には、活性水素基を有する鎖延長剤を用いることにより、上記反応生成物を更に結合させることも可能であるため、所望の特性を発揮できる構成をより詳細に設計できる。 The photochromic adhesive layer of the optical laminate sheet is sometimes required to have high photochromic properties in addition to the adhesive ability to bond two optical sheets. That is, photochromic compounds exhibit photochromic properties by repeating structural changes between isomers. The matrix of the adhesive layer containing the photochromic compound is required to have properties that do not interfere with this structural change. (Thio)urethane resins, (thio)urea resins, or (thio)urethane urea resins are sometimes used to provide such matrices. Since these resins are reaction products of iso(thio)cyanate and compounds containing active hydrogen groups, resins having desired properties can be obtained by appropriately selecting each component. Furthermore, by using a chain extender having an active hydrogen group, it is possible to further bond the above-mentioned reaction product, so that the structure capable of exhibiting desired properties can be designed in more detail.
 ここで、(チオ)ウレタン樹脂とは、ウレタン樹脂及びチオウレタン樹脂の少なくとも一方を意味する。(チオ)ウレア樹脂とは、ウレア樹脂及びチオウレア樹脂の少なくとも一方を意味する。(チオ)ウレタンウレア樹脂とは、ウレタンウレア樹脂及びチオウレタンウレア樹脂の少なくとも一方を意味する。イソ(チオ)シアネート基とは、イソシアネート基(-C=N=O)及びイソチオシアネート基(-C=N=S)の少なくとも一方を意味する。(チオ)ウレタンウレア樹脂は、(チオ)ウレタン結合及び(チオ)ウレア結合の双方を有する樹脂である。(チオ)ウレタン結合は、イソ(チオ)シアネート基を有する化合物と、水酸基(-OH)を有する化合物との反応により生じ得る。(チオ)ウレア結合は、イソ(チオ)シアネート基を有する化合物と、アミン基(-NH)を有する化合物との反応により生じ得る。(チオ)ウレタンウレア樹脂は、(チオ)ウレタン結合及びイソシアネート基を有する化合物と、アミンとを反応させることにより得られ得る。 Here, (thio)urethane resin means at least one of urethane resin and thiourethane resin. (Thio)urea resin means at least one of urea resin and thiourea resin. A (thio)urethane urea resin means at least one of a urethane urea resin and a thiourethane urea resin. An iso(thio)cyanate group means at least one of an isocyanate group (-C=N=O) and an isothiocyanate group (-C=N=S). A (thio)urethane urea resin is a resin having both a (thio)urethane bond and a (thio)urea bond. A (thio)urethane bond can be produced by a reaction between a compound having an iso(thio)cyanate group and a compound having a hydroxyl group (--OH). A (thio)urea bond can result from a reaction between a compound having an iso(thio)cyanate group and a compound having an amine group (--NH 2 ). A (thio)urethane urea resin can be obtained by reacting a compound having a (thio)urethane bond and an isocyanate group with an amine.
 実施形態に係る光学積層シートにおいて、フォトクロミック接着層は、フォトクロミック化合物と、重合成分とを含む接着性組成物の硬化体である。重合成分は、第2プレポリマー、第1ポリマー及び第2プレポリマー、第1ポリマー及び第3プレポリマー、並びに第1ポリマー及び第2プレポリマー及び第3プレポリマー、のうち何れかを含む。 In the optical laminate sheet according to the embodiment, the photochromic adhesive layer is a cured adhesive composition containing a photochromic compound and a polymerizable component. The polymerized component includes any one of the second prepolymer, the first polymer and the second prepolymer, the first polymer and the third prepolymer, and the first polymer, the second prepolymer and the third prepolymer.
 第2プレポリマーは、第1多官能活性水素化合物と第1イソ(チオ)シアネート化合物とを反応させて得られる第1プレポリマーと、鎖延長剤である第2多官能活性水素化合物とを反応させて得られるイソ(チオ)シアネート化合物である。第1多官能活性水素化合物と第2多官能活性水素化合物とは、同一の化合物であってもよく、異なる化合物であってもよい。第2プレポリマーは、少なくとも2種以上の成分により構成されているため、フォトクロミック化合物が構造変化し易い硬化体を生じ得る。 The second prepolymer is obtained by reacting a first prepolymer obtained by reacting a first polyfunctional active hydrogen compound and a first iso(thio)cyanate compound with a second polyfunctional active hydrogen compound as a chain extender. It is an iso(thio)cyanate compound obtained by The first polyfunctional active hydrogen compound and the second polyfunctional active hydrogen compound may be the same compound or different compounds. Since the second prepolymer is composed of at least two or more components, a cured product in which the photochromic compound is susceptible to structural change can be produced.
 また、第1ポリマーは、第2プレポリマーのイソ(チオ)シアネート基が、単官能活性水素基を有する化合物と結合した構造を有している。そして、第1ポリマーは、常温常圧下ではイソ(チオ)シアネート基と反応しないが、高温下において第2プレポリマー及び/又は第3プレポリマーと反応して、2以上のイソ(チオ)シアネート基を有する化合物を形成し、これらが重合して硬化体を生じると考えられる。第1ポリマーは、少なくとも3種以上の成分により構成されており、更に、第2プレポリマー及び/又は第3プレポリマーとも反応するため、フォトクロミック化合物が構造変化し易い硬化体を生じると考えられる。 Also, the first polymer has a structure in which the iso(thio)cyanate group of the second prepolymer is bonded to a compound having a monofunctional active hydrogen group. The first polymer does not react with iso(thio)cyanate groups at normal temperature and normal pressure, but reacts with the second prepolymer and/or the third prepolymer at high temperature to form two or more iso(thio)cyanate groups. and these are believed to polymerize to give a cured product. Since the first polymer is composed of at least three or more components and also reacts with the second prepolymer and/or the third prepolymer, it is thought that the photochromic compound produces a cured product that is susceptible to structural change.
 また、実施形態に係る光学積層シートにおいては、ポリビニルアルコール(PVA)を含む2枚の光学シートが、フォトクロミック化合物を含む接着層により接着されている。PVAは、-CHCH(OH)-を繰り返し単位とする親水性が高い樹脂であり、その表面に水酸基(-OH)を有している。実施形態に係る光学積層シートの製造方法においては、例えば、第1光学シートの表面上に第2プレポリマー、第1ポリマー及び第2プレポリマー、第1ポリマー及び第3プレポリマー、並びに第1ポリマー及び第2プレポリマー及び第3プレポリマー、のうち何れかを含む接着性組成物を塗布した後、得られた塗膜上に第2光学シートを積層させることにより得られる。この際、第2プレポリマーのイソ(チオ)シアネート基は、第1及び第2光学シートに含まれるPVA表面の水酸基と化学反応する。また、第1ポリマーと第2プレポリマー及び/又は第3プレポリマーとの反応物に含まれるイソ(チオ)シアネート基は、第1及び第2光学シートに含まれるPVA表面の水酸基と化学反応する。これにより、フォトクロミック接着層と第1及び第2光学シートとの接合強度が高められる。すなわち、実施形態に係る光学積層シートにおいては、第1及び第2シートの表面に水酸基等を付与する処理を行ったり、他の接着剤等を用いたりすることなく、高い密着性を実現できる。 Further, in the optical laminated sheet according to the embodiment, two optical sheets containing polyvinyl alcohol (PVA) are adhered by an adhesive layer containing a photochromic compound. PVA is a highly hydrophilic resin having —CH 2 CH(OH)— as a repeating unit, and has hydroxyl groups (—OH) on its surface. In the method for producing an optical laminated sheet according to the embodiment, for example, the second prepolymer, the first polymer and the second prepolymer, the first polymer and the third prepolymer, and the first polymer are formed on the surface of the first optical sheet. and the second prepolymer and the third prepolymer, and then laminating the second optical sheet on the obtained coating film. At this time, the iso(thio)cyanate groups of the second prepolymer chemically react with hydroxyl groups on the surface of PVA contained in the first and second optical sheets. In addition, the iso(thio)cyanate groups contained in the reactants of the first polymer and the second prepolymer and/or the third prepolymer chemically react with the hydroxyl groups on the surface of the PVA contained in the first and second optical sheets. . This increases the bonding strength between the photochromic adhesive layer and the first and second optical sheets. That is, in the optical laminated sheet according to the embodiment, high adhesiveness can be achieved without subjecting the surfaces of the first and second sheets to treatment for imparting hydroxyl groups or the like or using other adhesives or the like.
 以上のことから、実施形態に係る光学積層シートは、優れたフォトクロミック性とともに、第1及び第2光学シート間の密着性が高く、かつ、外観に優れている。このような光学積層シートは、例えば、サングラス等の光学物品用途に好適である。 As described above, the optical laminated sheet according to the embodiment has excellent photochromic properties, high adhesion between the first and second optical sheets, and excellent appearance. Such an optical laminated sheet is suitable for use in optical articles such as sunglasses.
[第1の光学積層シート]
 第1の光学積層シートは、第1光学シート及び第2光学シートとフォトクロミック接着層とを含む。第1光学シート及び第2光学シートは、フォトクロミック接着層により接着されている。フォトクロミック接着層は、第1及び第2光学シートの少なくとも一方の主面上に直に接している。
[First optical laminated sheet]
The first optical laminate sheet includes a first optical sheet, a second optical sheet, and a photochromic adhesive layer. The first optical sheet and the second optical sheet are adhered by a photochromic adhesive layer. The photochromic adhesive layer is in direct contact with at least one major surface of the first and second optical sheets.
 図1は、第1の光学積層シートの一例を概略的に示す断面図である。図1に示す光学積層シート1は、第1光学シート2と、第2光学シート3と、これらの間に介在するフォトクロミック接着層4とを含む。フォトクロミック接着層4は、第1光学シート2の一方の主面全体と、第2光学シート3の一方の主面全体とを被覆している。フォトクロミック接着層4は、第1光学シート2の両方の主面全体と、第2光学シート3の両方の主面全体とを被覆していてもよく、各主面の一部のみを被覆していてもよい。 FIG. 1 is a cross-sectional view schematically showing an example of the first optical laminate sheet. The optical laminated sheet 1 shown in FIG. 1 includes a first optical sheet 2, a second optical sheet 3, and a photochromic adhesive layer 4 interposed therebetween. The photochromic adhesive layer 4 covers the entire one main surface of the first optical sheet 2 and the entire one main surface of the second optical sheet 3 . The photochromic adhesive layer 4 may cover both the entire principal surfaces of the first optical sheet 2 and both the entire principal surfaces of the second optical sheet 3, or may cover only a portion of each principal surface. may
 (第1及び第2光学シート)
 第1及び第2光学シートは、ポリビニルアルコール(PVA)樹脂を含む。第1及び第2光学シートは、PVA樹脂のみから構成されていてもよく、その他の樹脂を含んでいてもよい。その他の樹脂としては、アルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラール等が挙げられる。
(First and second optical sheets)
The first and second optical sheets contain polyvinyl alcohol (PVA) resin. The first and second optical sheets may be composed only of PVA resin, or may contain other resins. Other resins include aldehyde-modified polyvinyl formal, polyvinyl acetal, polyvinyl butyral, and the like.
 第1及び第2光学シートは、未延伸、1軸延伸、又は2軸延伸のいずれであってもよい。延伸方向は、未延伸フィルムの機械流れ方向(MD)、これに直交する方向(TD)、機械流れ方向に斜交する方向の何れでもよい。ここで、未延伸シートとは、延伸されていない状態のシートのことであり、1軸延伸シートとは、上記方向のうち何れかの一方向に未延伸シートを延伸したものである。2軸延伸シートは、上述の延伸方向のうち2方向に延伸したものであり、同時に延伸する同時二軸延伸シートであっても、所定の方向に延伸した後で他の方向に延伸する逐次2軸延伸シートであってもよい。2軸延伸シートの場合、通常、MD、TDに延伸したものが好ましい。延伸倍率は、2~8倍であることが好ましい。 The first and second optical sheets may be unstretched, uniaxially stretched, or biaxially stretched. The stretching direction may be the machine direction (MD) of the unstretched film, the direction perpendicular thereto (TD), or the direction oblique to the machine direction. Here, the unstretched sheet is a sheet that is not stretched, and the uniaxially stretched sheet is an unstretched sheet that is stretched in one of the above directions. A biaxially stretched sheet is a sheet stretched in two of the stretching directions described above. It may be an axially stretched sheet. In the case of a biaxially stretched sheet, it is usually preferable to stretch it in MD or TD. The draw ratio is preferably 2 to 8 times.
 PVA樹脂の平均重合度は、例えば、100以上10000以下であり、好ましくは、1500以上8000以下であり、より好ましくは、2000以上5000以下である。PVA樹脂の平均重合度は、日本工業規格(JIS)K6726;1994に準拠した方法で求められる。
 PVA樹脂は、ホウ酸を含んでいてもよい。ホウ酸は、PVA同士を架橋させる架橋剤として用いられる。PVA樹脂のホウ酸含有率は、例えば、1質量%以上20質量%以下であり、好ましくは、3質量%以上18質量%以下であり、より好ましくは、5質量%以上15質量%以下である。このホウ酸含有量は、誘導結合プラズマ(Inductively Coupled Plasma;IPC)発光分析により算出できる。具体的には、先ず、第1又は第2光学シートを硝酸水溶液に溶解させて溶液を得る。この溶液を用いてIPC分析を行い、ホウ素含有量を算出する。このホウ素含有量からホウ酸含有率に換算する。
The average degree of polymerization of the PVA resin is, for example, 100 or more and 10000 or less, preferably 1500 or more and 8000 or less, more preferably 2000 or more and 5000 or less. The average degree of polymerization of PVA resin is determined by a method based on Japanese Industrial Standards (JIS) K6726;1994.
The PVA resin may contain boric acid. Boric acid is used as a cross-linking agent for cross-linking PVA. The boric acid content of the PVA resin is, for example, 1% by mass or more and 20% by mass or less, preferably 3% by mass or more and 18% by mass or less, and more preferably 5% by mass or more and 15% by mass or less. . The boric acid content can be calculated by inductively coupled plasma (IPC) emission spectrometry. Specifically, first, the first or second optical sheet is dissolved in an aqueous nitric acid solution to obtain a solution. IPC analysis is performed using this solution to calculate the boron content. This boron content is converted to the boric acid content.
 第1及び第2光学シートの少なくとも一方は、偏光性を有する偏光フィルムであってもよい。偏光性を有する第1及び第2光学シートは、視感透過率が10%以上80%以下であり、偏光度が30%以上99.9%以下であることが好ましい。 At least one of the first and second optical sheets may be a polarizing film having polarizing properties. The first and second polarizing optical sheets preferably have a luminous transmittance of 10% or more and 80% or less and a degree of polarization of 30% or more and 99.9% or less.
 偏光性を有する第1及び第2光学シートは、2色性物質を含む。2色性物質は、ヨウ素及び2色性染料を含む。2色性染料は、アゾ系であってもよく、アントラキノン系であってもよい。2色性染料の具体例は、クロランチンファストレッド(C.I.28160)、コンゴーレッド(C.I.22120)、ブリリアントブルーB(C.I.24410)、ベンゾパープリン(C.I.23500)、クロラゾールブラックBH(C.I.22590)、ダイレクトブルー2B(C.I.22610)、ジアミングリーン(C.I.30295)、クリソフェニン(C.I.24895)、シリウスイエロー(C.I.29000)、ダイレクトファーストレッド(C.I.23630)、アシドブラック(C.I.20470)、ダイレクトスカイブルー(C.I.24400)、ソロフェニルブルー4GL(C.I.34200)、ダイレクトコッパーブルー2B(C.I.24185)、及び、ニッポンブリリアントヴァイオレットBKconc(C.I.27885)を含む。 The polarizing first and second optical sheets contain a dichroic substance. Dichroic substances include iodine and dichroic dyes. The dichroic dye may be an azo dye or an anthraquinone dye. Specific examples of dichroic dyes are Chloranthin Fast Red (CI 28160), Congo Red (CI 22120), Brilliant Blue B (CI 24410), Benzopurpurine (CI 24410). 23500), Chlorazole Black BH (CI 22590), Direct Blue 2B (CI 22610), Diamine Green (CI 30295), Chrysophenine (CI 24895), Sirius Yellow (CI 24895). I.29000), Direct Fast Red (CI23630), Acid Black (CI20470), Direct Sky Blue (CI24400), Solophenyl Blue 4GL (CI34200), Direct Includes Copper Blue 2B (CI 24185) and Nippon Brilliant Violet BKconc (CI 27885).
 第1光学シートの厚みは、例えば、10μm以上100μm以下である。第2光学シートの厚みは、第1光学シートの厚みと同一でもよく、異なっていてもよい。 The thickness of the first optical sheet is, for example, 10 μm or more and 100 μm or less. The thickness of the second optical sheet may be the same as or different from the thickness of the first optical sheet.
 (フォトクロミック接着層)
 フォトクロミック接着層は、第1光学シート及び第2光学シート間に介在し、これらを接着させる。フォトクロミック接着層は、後述する接着性組成物の硬化体を含む。硬化体は、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリチオウレタン樹脂、及びポリチオウレタンウレア樹脂からなる群より選ばれる少なくとも1種と、フォトクロミック化合物とを含む。
(Photochromic adhesive layer)
The photochromic adhesive layer is interposed between and adheres the first optical sheet and the second optical sheet. The photochromic adhesive layer contains a cured adhesive composition, which will be described later. The cured product contains at least one selected from the group consisting of polyurethane resins, polyurethane urea resins, polythiourethane resins, and polythiourethane urea resins, and a photochromic compound.
 フォトクロミック接着層の厚みは、例えば、0.1μm以上100μm以下である。フォトクロミック接着層の厚みは、第1及び第2光学シートの厚みよりも薄くてもよく、より厚くてもよい。 The thickness of the photochromic adhesive layer is, for example, 0.1 μm or more and 100 μm or less. The thickness of the photochromic adhesive layer may be thinner than or thicker than the thicknesses of the first and second optical sheets.
 (接着性組成物)
 接着性組成物は、フォトクロミック化合物と重合成分とを含む。重合成分は、フォトクロミック接着層のマトリックスとなる。重合成分は、第2プレポリマー、第1ポリマー及び第2プレポリマー、第1ポリマー及び第3プレポリマー、並びに第1ポリマー及び第2プレポリマー及び第3プレポリマー、のうち何れかを含む。言い換えると、接着性組成物は、第2プレポリマーを含む重合成分とフォトクロミック化合物との第1の組み合わせ、第1ポリマー及び第2プレポリマーを含む重合成分とフォトクロミック化合物との第2の組み合わせ、第1ポリマー及び第3プレポリマーを含む重合成分とフォトクロミック化合物との第3の組み合わせ、並びに、第1ポリマー、第2プレポリマー、及び第3プレポリマーを含む重合成分とフォトクロミック化合物との第4の組み合わせを含み得る。
(Adhesive composition)
The adhesive composition contains a photochromic compound and a polymerizable component. The polymerized component becomes the matrix of the photochromic adhesive layer. The polymerized component includes any one of the second prepolymer, the first polymer and the second prepolymer, the first polymer and the third prepolymer, and the first polymer, the second prepolymer and the third prepolymer. In other words, the adhesive composition comprises a first combination of a polymerized component comprising the second prepolymer and the photochromic compound, a second combination of the polymerized component comprising the first polymer and the second prepolymer and the photochromic compound, a second A third combination of a polymerized component comprising a first polymer and a third prepolymer and a photochromic compound, and a fourth combination of a polymerized component comprising a first polymer, a second prepolymer and a third prepolymer and a photochromic compound. can include
 (フォトクロミック化合物)
 フォトクロミック化合物としては、例えば、クロメン化合物、フルギド化合物、及びスピロオキサジン化合物からなる群より選ばれる少なくとも1種を用いる。フォトクロミック化合物としては、クロメン化合物を用いることが好ましい。クロメン化合物は、1-ベンゾピラン骨格を有する化合物を含む。下記式(I)に、2H-1-ベンゾピラン骨格を示す。
(Photochromic compound)
As the photochromic compound, for example, at least one selected from the group consisting of chromene compounds, fulgide compounds, and spirooxazine compounds is used. A chromene compound is preferably used as the photochromic compound. Chromene compounds include compounds having a 1-benzopyran skeleton. The following formula (I) shows a 2H-1-benzopyran skeleton.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 クロメン化合物は、スピロピラン骨格を含むスピロピラン化合物、及び、ナフトピラン骨格を有するナフトピラン化合物を含む。スピロピラン骨格は、スピロ原子を含む1-ベンゾピラン骨格である。下記式(II)に、ナフトピラン骨格を示す。 Chromene compounds include spiropyran compounds containing a spiropyran skeleton and naphthopyran compounds having a naphthopyran skeleton. A spiropyran skeleton is a 1-benzopyran skeleton containing a spiro atom. The formula (II) below shows a naphthopyran skeleton.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 ナフトピラン化合物には、インデノナフトピラン骨格を有するインデノナフトピラン化合物が含まれる。クロメン化合物は、インデノ〔2,1-f〕ナフト〔1,2-b〕ピラン骨格を有するインデノナフトピラン化合物を含むことが好ましい。インデノ〔2,1-f〕ナフト〔1,2-b〕ピラン骨格を有するクロメン化合物を含む樹脂組成物は、耐久性により優れる傾向にある。下記式(III)に、インデノ〔2,1-f〕ナフト〔1,2-b〕ピラン骨格を示す。 Naphthopyran compounds include indenonaphthopyran compounds having an indenonaphthopyran skeleton. The chromene compound preferably contains an indenonaphthopyran compound having an indeno[2,1-f]naphtho[1,2-b]pyran skeleton. A resin composition containing a chromene compound having an indeno[2,1-f]naphtho[1,2-b]pyran skeleton tends to be more excellent in durability. The following formula (III) shows an indeno[2,1-f]naphtho[1,2-b]pyran skeleton.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 インデノナフトピラン化合物は、下記式(IIIa)に示す化合物を含むことが好ましい。 The indenonaphthopyran compound preferably contains a compound represented by the following formula (IIIa).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(IIIa)において、Z環は、13位の炭素原子をスピロ原子とする置換若しくは非置換のスピロ環である。Z環は、13位の炭素原子と共に、脂肪族環を形成していてもよく、縮合多環を形成していてもよく、複素環を形成していてもよく、複素環式芳香族環を形成していてもよい。 In formula (IIIa), the Z ring is a substituted or unsubstituted spiro ring having a spiro atom at the 13-position carbon atom. Z ring, together with the carbon atom at the 13-position, may form an aliphatic ring, may form a condensed polycyclic ring, may form a heterocyclic ring, or may form a heterocyclic aromatic ring. may be formed.
 脂肪族環の環員炭素数は、3以上20以下であることが好ましく、5以上16以下であることがより好ましく、6以上10以下であることが更に好ましい。脂肪族環の具体例には、シクロペンタン環、シクロヘキサン環、シクロオクタン環、シクロヘプタン環、ノルボルナン環、ビシクロノナン環、アダマンタン環、およびスピロジシクロヘキサン環が挙げられる。脂肪族環は、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環、シクロウンデカン環、シクロドデカン環、又は、スピロジシクロヘキサン環であることが好ましい。 The number of ring member carbon atoms in the aliphatic ring is preferably 3 or more and 20 or less, more preferably 5 or more and 16 or less, and even more preferably 6 or more and 10 or less. Specific examples of aliphatic rings include cyclopentane ring, cyclohexane ring, cyclooctane ring, cycloheptane ring, norbornane ring, bicyclononane ring, adamantane ring, and spirodicyclohexane ring. The aliphatic ring is preferably a cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, cyclododecane ring, or spirodicyclohexane ring.
 縮合多環の環員炭素数は、3以上20以下であることが好ましく、5以上10以下であることがより好ましい。縮合多環の具体例には、フェナントレン環が挙げられる。 The number of ring member carbon atoms in the condensed polycyclic ring is preferably 3 or more and 20 or less, more preferably 5 or more and 10 or less. A specific example of the condensed polycyclic ring includes a phenanthrene ring.
 複素環の環員原子数は、3以上20以下であることが好ましい。複素環の具体例には、チオフェン環、フラン環、ピリジン環が挙げられる。 The number of ring member atoms of the heterocyclic ring is preferably 3 or more and 20 or less. Specific examples of heterocyclic ring include thiophene ring, furan ring and pyridine ring.
 複素環式芳香族環の環員原子数は、3以上20以下であることが好ましい。複素環式芳香族環の具体例には、フェニルフラン環、ビフェニルチオフェン環が挙げられる。 The number of ring member atoms in the heterocyclic aromatic ring is preferably 3 or more and 20 or less. Specific examples of heterocyclic aromatic rings include phenylfuran rings and biphenylthiophene rings.
 これら脂肪族環、縮合多環、複素環、又は複素環式芳香族環は、置換基を有してもよい。この置換基としては、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、アミノ基、置換アミノ基、およびハロゲン原子からなる群より選ばれる少なくとも1種の置換基が挙げられる。置換基としては、炭素数1~6のアルキル基、シクロアルキル基、炭素数1~6のハロアルキル基、及び炭素数1~6のアルコキシ基からなる群より選ばれる少なくとも1種の置換基が好ましい。Z環が有する置換基の数は、例えば、0以上10以下であり、好ましくは、2以上4以下である。 These aliphatic rings, condensed polycyclic rings, heterocyclic rings, or heterocyclic aromatic rings may have substituents. Examples of the substituent include an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an amino group, a substituted amino group, and at least one substituent selected from the group consisting of halogen atoms. The substituent is preferably at least one substituent selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group, a haloalkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms. . The number of substituents on the Z ring is, for example, 0 or more and 10 or less, preferably 2 or more and 4 or less.
 Z環は、環員炭素数が5~16の脂肪族環であることが好ましい。このような構造を有する第1クロメン化合物は、退色速度が高い傾向にある。脂肪族環は、置換基として、炭素数1~3のアルキル基を有することが更に好ましい。なお、脂肪族環は、環同士が2原子間で結合した脂肪族縮環も含まれる。 The Z ring is preferably an aliphatic ring having 5 to 16 ring member carbon atoms. The first chromene compound having such a structure tends to have a high fading rate. The aliphatic ring more preferably has an alkyl group having 1 to 3 carbon atoms as a substituent. In addition, the aliphatic ring also includes an aliphatic condensed ring in which rings are bonded between two atoms.
 Z環は、下記式(Ia)、(Ib)、(Ic)、(Id)、(Ie)、(If)、(Ig)、又は(Ih)に表される構造を有することが好ましい。より好ましくは(Ib)、(Ig)又は(Ih)に表される構造である。なお、式中、破線の結合手を有する炭素原子が13位の炭素原子である。 The Z ring preferably has a structure represented by the following formulas (Ia), (Ib), (Ic), (Id), (Ie), (If), (Ig), or (Ih). Structures represented by (Ib), (Ig) or (Ih) are more preferred. In the formula, the carbon atom with the broken line bond is the carbon atom at the 13th position.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(IIIa)において、R、R、R、R、R、R、及びRは、それぞれ独立に、水素原子、ヒドロキシル基、メトキシカルボニル基、エトキシカルボニル基、アルキル基、シクロアルキル基、ハロアルキル基、アルコキシ基、アミノ基、置換アミノ基、置換基を有してもよい複素環基、ハロゲン原子、アルキルチオ基、置換基を有してもよいアリールチオ基、ニトロ基、ホルミル基、ヒドロキシカルボニル基、アルキルカルボニル基、アルコキシカルボニル基、置換基を有してもよいアラルキル基、置換基を有してもよいアラルコキシ基、置換基を有してもよいアリールオキシ基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基、チオール基、アルコキシアルキルチオ基、ハロアルキルチオ基、又は置換基を有してもよいシクロアルキルチオ基である。
 bは、0以上4以下の整数である。bが2以上4以下である場合、複数のRは互いに同一の構造を有していてもよく、異なる構造を有していてもよい。
In formula (IIIa), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are each independently a hydrogen atom, a hydroxyl group, a methoxycarbonyl group, an ethoxycarbonyl group, an alkyl group, Cycloalkyl group, haloalkyl group, alkoxy group, amino group, substituted amino group, optionally substituted heterocyclic group, halogen atom, alkylthio group, optionally substituted arylthio group, nitro group, formyl group, hydroxycarbonyl group, alkylcarbonyl group, alkoxycarbonyl group, optionally substituted aralkyl group, optionally substituted aralkoxy group, optionally substituted aryloxy group, substituent , an optionally substituted heteroaryl group, a thiol group, an alkoxyalkylthio group, a haloalkylthio group, or an optionally substituted cycloalkylthio group.
b is an integer of 0 to 4; When b is 2 or more and 4 or less, a plurality of R 7 may have the same structure or different structures.
 アルキル基の炭素数は1~10であることが好ましい。アルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、及びヘキシル基が挙げられる。 The number of carbon atoms in the alkyl group is preferably 1-10. Examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, and hexyl groups.
 ハロアルキル基の炭素数は1~10であることが好ましい。ハロアルキル基としては、フッ素原子、塩素原子もしくは臭素原子で置換されたアルキル基が好ましい。好適なハロアルキル基の例としては、トリフルオロメチル基、テトラフルオロエチル基、クロロメチル基、2-クロロエチル基、及びブロモメチル基が挙げられる。 The haloalkyl group preferably has 1 to 10 carbon atoms. As the haloalkyl group, an alkyl group substituted with a fluorine atom, a chlorine atom or a bromine atom is preferred. Examples of suitable haloalkyl groups include trifluoromethyl, tetrafluoroethyl, chloromethyl, 2-chloroethyl and bromomethyl groups.
 シクロアルキル基の環員炭素数は、3~8であることが好ましい。シクロアルキル基の例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、及びシクロヘキシル基等が挙げられる。なお、シクロアルキル基は、置換基を有してもよいが、炭素数の数(炭素数3~8)には、置換基の炭素数は含まれないものとする。 The number of ring member carbon atoms in the cycloalkyl group is preferably 3-8. Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like. The cycloalkyl group may have a substituent, but the number of carbon atoms (3 to 8 carbon atoms) does not include the number of carbon atoms in the substituent.
 アルコキシ基の炭素数は1~10であることが好ましく、1~6であることがより好ましい。好適なアルコキシ基の例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、及びtert-ブトキシ基が挙げられる。 The alkoxy group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms. Examples of suitable alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, and tert-butoxy groups.
 アミノ基は、1級アミノ基(-NH)であり、置換アミノ基は、1つまたは2つの水素原子が置換された2級または3級アミノ基である。置換アミノ基が有する置換基としては、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数3~7のシクロアルキル基、炭素数6~14のアリール基、炭素数4~14のヘテロアリール基等が挙げられる。好適なアミノ基の例としては、アミノ基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、フェニルアミノ基、ジフェニルアミノ基等を挙げることできる。 An amino group is a primary amino group (—NH 2 ) and a substituted amino group is a secondary or tertiary amino group in which one or two hydrogen atoms have been substituted. Substituents possessed by the substituted amino group include alkyl groups having 1 to 6 carbon atoms, haloalkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, cycloalkyl groups having 3 to 7 carbon atoms, and 6 carbon atoms. to 14 aryl groups, and heteroaryl groups having 4 to 14 carbon atoms. Examples of suitable amino groups include amino group, methylamino group, dimethylamino group, ethylamino group, diethylamino group, phenylamino group, diphenylamino group and the like.
 複素環基の原子数は3~10であることが好ましい。複素環基は、脂肪族複素環基であってもよく、芳香族複素環基であってもよい。脂肪族複素環基の具体例には、モルホリノ基、ピペリジノ基、ピロリジニル基、ピペラジノ基、N-メチルピペラジノ基が挙げられる。芳香族複素環基の具体例にはインドリニル基が挙げられる。複素環基は、置換基を有していてもよい。好ましい置換基としては、炭素数1~10のアルキル基が挙げられる。置換基を有する好適な複素環基としては、例えば2,6-ジメチルモルホリノ基、2,6-ジメチルピペリジノ基および2,2,6,6-テトラメチルピペリジノ基等が挙げられる。 The number of atoms in the heterocyclic group is preferably 3-10. The heterocyclic group may be an aliphatic heterocyclic group or an aromatic heterocyclic group. Specific examples of aliphatic heterocyclic groups include morpholino, piperidino, pyrrolidinyl, piperazino and N-methylpiperazino groups. Specific examples of aromatic heterocyclic groups include indolinyl groups. The heterocyclic group may have a substituent. Preferred substituents include alkyl groups having 1 to 10 carbon atoms. Suitable heterocyclic groups having substituents include, for example, 2,6-dimethylmorpholino group, 2,6-dimethylpiperidino group and 2,2,6,6-tetramethylpiperidino group.
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。 Halogen atoms include, for example, fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms.
 アルキルチオ基の炭素数は1~10であることが好ましい。アルキルチオ基の例としては、メチルチオ基、エチルチオ基、n-プロピルチオ基、イソプロピルチオ基、n-ブチルチオ基、sec-ブチルチオ基、及びt-ブチルチオ基が挙げられる。 The number of carbon atoms in the alkylthio group is preferably 1-10. Examples of alkylthio groups include methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, sec-butylthio, and t-butylthio groups.
 アリールチオ基の炭素数は6~10であることが好ましい。アリールチオ基の例としては、フェニルチオ基、1-ナフチルチオ基、及び2-ナフチルチオ基が挙げられる。 The arylthio group preferably has 6 to 10 carbon atoms. Examples of arylthio groups include phenylthio, 1-naphthylthio, and 2-naphthylthio groups.
 アルキルカルボニル基の炭素数は2~10であることが好ましい。アルキルカルボニル基の例としては、アセチル基及びエチルカルボニル基が挙げられる。 The number of carbon atoms in the alkylcarbonyl group is preferably 2-10. Examples of alkylcarbonyl groups include acetyl and ethylcarbonyl groups.
 アルコキシカルボニル基の炭素数は2~10であることが好ましい。アルコキシカルボニル基としては、メトキシカルボニル基及びエトキシカルボニル基が挙げられる。 The alkoxycarbonyl group preferably has 2 to 10 carbon atoms. Alkoxycarbonyl groups include methoxycarbonyl and ethoxycarbonyl groups.
 アラルキル基の炭素数は7~11であることが好ましい。アラルキル基の例としては、ベンジル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、及びナフチルメチル基が挙げられる。 The aralkyl group preferably has 7 to 11 carbon atoms. Examples of aralkyl groups include benzyl, phenylethyl, phenylpropyl, phenylbutyl, and naphthylmethyl groups.
 アラルコキシ基の炭素数は7~11であることが好ましい。アラルコキシ基の例としては、ベンジロキシ基及びナフチルメトキシ基が挙げられる。 The aralkoxy group preferably has 7 to 11 carbon atoms. Examples of aralkoxy groups include benzyloxy and naphthylmethoxy groups.
 アリール基の炭素数は6~12であることが好ましい。アリール基の例としては、フェニル基、1-ナフチル基、及び2-ナフチル基が挙げられる。 The aryl group preferably has 6 to 12 carbon atoms. Examples of aryl groups include phenyl, 1-naphthyl, and 2-naphthyl groups.
 アリールオキシ基の炭素数は6~12であることが好ましい。アリールオキシ基の例としては、フェニルオキシ基及びナフチルオキシ基が挙げられる。 The aryloxy group preferably has 6 to 12 carbon atoms. Examples of aryloxy groups include phenyloxy and naphthyloxy groups.
 ヘテロアリール基の炭素数は3~12であることが好ましい。ヘテロアリール基の例には、チエニル基、フリル基、ピロリニル基、ピリジル基、ベンゾチエニル基、ベンゾフラニル基、及びベンゾピロリニル基が挙げられる。 The heteroaryl group preferably has 3 to 12 carbon atoms. Examples of heteroaryl groups include thienyl, furyl, pyrrolinyl, pyridyl, benzothienyl, benzofuranyl, and benzopyrrolinyl groups.
 アルコキシアルキルチオ基の炭素数は2~10であることが好ましい。アルコキシアルキルチオ基の例としては、メトキシメチルチオ基、メトキシエチルチオ基、メトキシn-プロピルチオ基、メトキシn-ブチルチオ基、エトキシエチルチオ基、及びn-プロポキシプロピルチオ基等が挙げられる。 The alkoxyalkylthio group preferably has 2 to 10 carbon atoms. Examples of alkoxyalkylthio groups include methoxymethylthio, methoxyethylthio, methoxy n-propylthio, methoxy n-butylthio, ethoxyethylthio, n-propoxypropylthio and the like.
 ハロアルキルチオ基の炭素数は1~10であることが好ましい。ハロアルキルチオ基の例としては、トリフルオロメチルチオ基、テトラフルオロエチルチオ基、クロロメチルチオ基、2-クロロエチルチオ基、及びブロモメチルチオ基が挙げられる。 The haloalkylthio group preferably has 1 to 10 carbon atoms. Examples of haloalkylthio groups include trifluoromethylthio, tetrafluoroethylthio, chloromethylthio, 2-chloroethylthio, and bromomethylthio groups.
 シクロアルキルチオ基の炭素数は3~8であることが好ましい。シクロアルキルチオ基の例としては、シクロプロピルチオ基、シクロブチルチオ基、シクロペンチルチオ基、及びシクロヘキシルチオ基が挙げられる。なお、シクロアルキルチオ基は、置換基を有してもよいが、炭素数の数(炭素数3~8)には、置換基の炭素数は含まれないものとする。 The cycloalkylthio group preferably has 3 to 8 carbon atoms. Examples of cycloalkylthio groups include cyclopropylthio, cyclobutylthio, cyclopentylthio, and cyclohexylthio groups. The cycloalkylthio group may have a substituent, but the number of carbon atoms (3 to 8 carbon atoms) does not include the number of carbon atoms in the substituent.
 上述したシクロアルキル基、アリールチオ基、アラルキル基、アラルコキシ基、アリールオキシ基、アリール基、ヘテロアリール基、およびシクロアルキルチオ基は、非置換であってもよく、置換基を有していてもよい。 The cycloalkyl group, arylthio group, aralkyl group, aralkoxy group, aryloxy group, aryl group, heteroaryl group, and cycloalkylthio group described above may be unsubstituted or may have a substituent.
 シクロアルキル基、アリールチオ基、アラルキル基、アラルコキシ基、アリールオキシ基、アリール基、ヘテロアリール基、およびシクロアルキルチオ基が有し得る置換基は、第1級アミノ基、第2級アミノ基、第3級アミノ基、炭素数1~10のアルキル基、炭素数1~10のハロアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のハロアルコキシ基、炭素数1~10のアルキルチオ基、ヒドロキシル基、炭素数3~8のシクロアルキル基、炭素数6以上12以下のアリール基、炭素数1以上20以下のアルキルアリール基、1以上5以下のヘテロ原子を含む炭素数1以上8以下のヘテロシクロアルキル基、1以上5以下のヘテロ原子を含む、炭素数1以上8以下のヘテロアリール基、炭素数6以上12以下のアリールオキシ基、炭素数6以上12以下のアリールチオ基、シアノ基、ニトロ基、及び、ハロゲン原子からなる置換基群から選択され得る。置換基の数は、1つであってもよく、2以上であってもよい。 Substituents that the cycloalkyl group, arylthio group, aralkyl group, aralkoxy group, aryloxy group, aryl group, heteroaryl group and cycloalkylthio group may have are primary amino group, secondary amino group, tertiary class amino group, alkyl group having 1 to 10 carbon atoms, haloalkyl group having 1 to 10 carbon atoms, alkoxy group having 1 to 10 carbon atoms, haloalkoxy group having 1 to 10 carbon atoms, alkylthio group having 1 to 10 carbon atoms, A hydroxyl group, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkylaryl group having 1 to 20 carbon atoms, and a heteroatom having 1 to 5 carbon atoms having 1 to 8 carbon atoms. a heterocycloalkyl group, a heteroaryl group containing 1 to 5 heteroatoms and having 1 to 8 carbon atoms, an aryloxy group having 6 to 12 carbon atoms, an arylthio group having 6 to 12 carbon atoms, a cyano group, It may be selected from the group of substituents consisting of nitro groups and halogen atoms. The number of substituents may be one, or two or more.
 R及びR、R及びR、並びにR及びRは、互いに結合して、炭素数2以上5以下の脂肪族環、1以上3以下のヘテロ原子を含む炭素数1以上4以下の脂肪族複素環、炭素数4以上12以下の芳香族環、又は、1以上6以下のヘテロ原子を含む炭素数3以上11以下の芳香族複素環を形成していてもよい。脂肪族環、脂肪族複素環、芳香族環、及び、芳香族複素環は、非置換でもよく、上記の置換基群から選択される少なくとも1種の置換基を有していてもよい。 R 3 and R 4 , R 4 and R 5 , and R 5 and R 6 are bonded to each other to form an aliphatic ring having 2 or more and 5 or less carbon atoms, or It may form an aliphatic heterocyclic ring, an aromatic ring having 4 or more and 12 or less carbon atoms, or an aromatic heterocyclic ring having 3 or more and 11 or less carbon atoms containing 1 or more and 6 or less hetero atoms. An aliphatic ring, an aliphatic heterocyclic ring, an aromatic ring, and an aromatic heterocyclic ring may be unsubstituted or may have at least one substituent selected from the group of substituents described above.
 R、R、R、R、R、R、及びRは、それぞれ独立に、下記式(IB)に表されるオリゴマー基、下記式(IC)に表されるオリゴマー基、下記式(ID)に表されるオリゴマー基、下記式(IE)に表されるオリゴマー基、又は、下記式(X)に表されるオリゴマー基であってもよい。また、R、R、R、R、R、R、及びRが有し得る置換基は、下記式(IB)に表されるオリゴマー基、下記式(IC)に表されるオリゴマー基、下記式(ID)に表されるオリゴマー基、下記式(IE)に表されるオリゴマー基、及び、下記式(X)に表されるオリゴマー基からなる群より選ばれる少なくとも1種のオリゴマー基であってもよい。 R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are each independently an oligomer group represented by the following formula (IB) or an oligomer group represented by the following formula (IC) , an oligomer group represented by the following formula (ID), an oligomer group represented by the following formula (IE), or an oligomer group represented by the following formula (X). In addition, substituents that R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 may have include an oligomer group represented by the following formula (IB) and a substituent represented by the following formula (IC). at least one selected from the group consisting of an oligomer group represented by the following formula (ID), an oligomer group represented by the following formula (IE), and an oligomer group represented by the following formula (X) It may also be an oligomeric group of species.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(IB)において、Xは、酸素原子、硫黄原子、アミノ基、置換アミノ基、(チオ)アミド基、(チオ)エステル基、又は、炭素数1以上10以下のアルキレン基である。Y及びYは、それぞれ、炭素数1以上20以下のアルキレン基である。Wは、水素原子、又は、炭素数1以上20以下のアルキル基である。cは、0又は1である。d及びeは、それぞれ、0又は1以上10以下の整数である。mは、3以上200以下の整数である。 In Formula (IB), X 1 is an oxygen atom, a sulfur atom, an amino group, a substituted amino group, a (thio)amide group, a (thio)ester group, or an alkylene group having 1 to 10 carbon atoms. Y 1 and Y 2 are each an alkylene group having 1 to 20 carbon atoms. W 1 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. c is 0 or 1; d and e are each 0 or an integer of 1 to 10; m is an integer of 3 or more and 200 or less.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(IC)において、X、Y、Y、c、d、e、及びmは、それぞれ、式(IB)におけるものと同義である。Xは酸素原子、硫黄原子、アミノ基、置換アミノ基、(チオ)アミド基、(チオ)エステル基、又は、炭素数1以上10以下のアルキレン基である。Wは、水素原子、炭素数1以上20以下のアルキル基、又は、フォトクロミック部位である。fは、0又は1である。 In Formula (IC), X 1 , Y 1 , Y 2 , c, d, e, and m have the same meanings as in Formula (IB). X2 is an oxygen atom, a sulfur atom, an amino group, a substituted amino group, a (thio)amide group, a (thio)ester group, or an alkylene group having 1 to 10 carbon atoms. W2 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a photochromic moiety. f is 0 or 1;
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(ID)において、Wは、炭素数1以上20以下のアルキル基である。gは、0又は1である。nは、3以上200以下の整数である。 In formula (ID), W3 is an alkyl group having 1 to 20 carbon atoms. g is 0 or 1; n is an integer of 3 or more and 200 or less.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(IE)において、Wは、炭素数1以上20以下のアルキル基、又は、フォトクロミック部位である。g及びnは、式(ID)におけるものと同義である。hは、0又は1である。 In Formula (IE), W4 is an alkyl group having 1 to 20 carbon atoms or a photochromic moiety. g and n have the same definitions as in formula (ID). h is 0 or 1;
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(X)において、Eは酸素原子、又はNR101である。Fは酸素原子又は硫黄原子である。Gは酸素原子、硫黄原子、又はNR202である。jは0または1の整数である。R101は水素原子又は炭素数1~10のアルキル基である。 In formula (X), E is an oxygen atom or NR101 . F is an oxygen atom or a sulfur atom. G is an oxygen atom, a sulfur atom, or NR202 . j is an integer of 0 or 1; R 101 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
 R201及びR202は、水素原子、炭素数1~10のアルキル基、炭素数3~8のシクロアルキル基、炭素数6以上12以下のアリール基、又は1以上5以下のヘテロ原子を含む炭素数1以上8以下のヘテロアリール基であり、Gが酸素原子、又は硫黄原子となる場合には、R201は水素原子以外の基である。 R 201 and R 202 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a carbon containing 1 to 5 hetero atoms It is a heteroaryl group having a number of 1 or more and 8 or less, and when G is an oxygen atom or a sulfur atom, R 201 is a group other than a hydrogen atom.
 ナフトピラン化合物は、下記式(IIa)に表される化合物を含むことが好ましい。 The naphthopyran compound preferably contains a compound represented by the following formula (IIa).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(IIa)において、Q、Q、Q、Q、Q、Q、Q、及びQは、それぞれ、R、R、R、R、R、R、及びRと同様の基を用い得る。 In formula (IIa), Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 , Q 7 and Q 8 are respectively R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and groups similar to R7 can be used.
 接着性組成物の固形分において、フォトクロミック化合物が占める割合は、例えば、0.1質量%以上10質量%以下であり、好ましくは、1質量%以上5質量%以下である。 The proportion of the photochromic compound in the solid content of the adhesive composition is, for example, 0.1% by mass or more and 10% by mass or less, preferably 1% by mass or more and 5% by mass or less.
 (第2プレポリマー)
 第2プレポリマーは、第1多官能活性水素化合物と第1イソ(チオ)シアネート化合物とを反応させて得られる第1プレポリマーと、鎖延長剤である第2多官能活性水素化合物とを反応させて得られる。第2プレポリマーは、2以上のイソ(チオ)シアネート基を有する。第2プレポリマーは、主鎖の両末端にイソ(チオ)シアネート基を有することが好ましい。第2プレポリマーは、ウレタンプレポリマー、ウレアプレポリマー、ウレタンウレアプレポリマー、チオウレタンプレポリマー、チオウレアプレポリマー、及びチオウレタンウレアプレポリマーからなる群より選ばれる少なくとも1種を含む。第2プレポリマーは、大気中の水及び第1及び第2光学シートの表面上の水酸基と化学結合して、(チオ)ウレタン樹脂、(チオ)ウレア樹脂、及び(チオ)ウレタンウレア樹脂からなる群より選ばれる少なくとも1種を生成する。
(Second prepolymer)
The second prepolymer is obtained by reacting a first prepolymer obtained by reacting a first polyfunctional active hydrogen compound and a first iso(thio)cyanate compound with a second polyfunctional active hydrogen compound as a chain extender. Let it be obtained. The second prepolymer has two or more iso(thio)cyanate groups. The second prepolymer preferably has iso(thio)cyanate groups at both ends of the main chain. The second prepolymer contains at least one selected from the group consisting of urethane prepolymers, urea prepolymers, urethane urea prepolymers, thiourethane prepolymers, thiourea prepolymers, and thiourethane urea prepolymers. The second prepolymer is composed of (thio)urethane resin, (thio)urea resin, and (thio)urethaneurea resin chemically bonded to water in the atmosphere and hydroxyl groups on the surfaces of the first and second optical sheets. At least one selected from the group is produced.
 第2プレポリマーは、下記式(1)に表される構造を含み得る。 The second prepolymer may contain a structure represented by formula (1) below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(1)において、I1は、第1イソ(チオ)シアネート化合物の末端以外の部分を表す。FA1は、第1多官能活性水素化合物の末端以外の部分を表す。SA1は、第2多官能活性水素化合物の末端以外の部分を表す。X及びYは、それぞれ、ウレタン結合、ウレア結合、チオウレタン結合、又はチオウレア結合を表す。Xはウレタン結合であることが好ましく、Yはウレア結合であることが好ましい。 In formula (1), I1 represents a portion other than the terminal of the first iso(thio)cyanate compound. FA1 represents a portion other than the terminal of the first polyfunctional active hydrogen compound. SA1 represents a portion other than the terminal of the second polyfunctional active hydrogen compound. X and Y each represent a urethane bond, a urea bond, a thiourethane bond, or a thiourea bond. X is preferably a urethane bond and Y is preferably a urea bond.
 第2プレポリマーの数平均分子量は、5000以上であることが好ましく、10000以上であることがより好ましく、13000以上であることが更に好ましい。数平均分子量が大きい第2プレポリマーを用いると、光学積層シートの剥離強度が高まる傾向にある。すなわち、数平均分子量が大きい第2プレポリマーは、互いに絡み合い易いため、凝集力が高まり、それゆえ、接着力が高まると考えられる。 The number average molecular weight of the second prepolymer is preferably 5,000 or more, more preferably 10,000 or more, and even more preferably 13,000 or more. The use of a second prepolymer having a large number average molecular weight tends to increase the peel strength of the optical laminated sheet. That is, the second prepolymer having a large number-average molecular weight is likely to be entangled with each other, so that the cohesive force is increased, and therefore the adhesive force is considered to be increased.
 第2プレポリマーの数平均分子量は、50000以下であることが好ましく、40000以下であることがより好ましく、30000以下であることが更に好ましい。第2プレポリマーの数平均分子量が過剰に大きいと、光学積層シートの剥離強度が低まる傾向にある。すなわち、数平均分子量が大きい第2プレポリマーは、単位質量当たりに含まれるイソ(チオ)シアネート基の量が少なく、それゆえ、接着力が弱まる傾向にある。 The number average molecular weight of the second prepolymer is preferably 50,000 or less, more preferably 40,000 or less, and even more preferably 30,000 or less. If the number average molecular weight of the second prepolymer is excessively large, the peel strength of the optical laminated sheet tends to decrease. That is, the second prepolymer having a large number-average molecular weight contains a small amount of iso(thio)cyanate groups per unit mass, and therefore tends to have weak adhesion.
 第2プレポリマーの数平均分子量は、ゲル・パーミエイション・クロマトグラフ(GPC)により測定できる。測定に際しては、カラム:Shodex KD-806M(昭和電工株式会社製)を2本直列接続、溶離液:LiBr(10mmol/L)/DMF溶液、流速:1ml/min、検出器:RI検出器、第2プレポリマー試料溶液:1.0%ジメチルホルムアミド(DMF)溶液の条件にて測定する。解析ソフトとしては、日本ウォーターズ株式会社製GPC解析ソフト『Empower Personal GPC Option』を用いる。 The number average molecular weight of the second prepolymer can be measured by gel permeation chromatography (GPC). For measurement, two columns: Shodex KD-806M (manufactured by Showa Denko KK) were connected in series, eluent: LiBr (10 mmol/L)/DMF solution, flow rate: 1 ml/min, detector: RI detector, 2 Prepolymer sample solution: Measured under the condition of 1.0% dimethylformamide (DMF) solution. As analysis software, GPC analysis software "Empower Personal GPC Option" manufactured by Japan Waters Co., Ltd. is used.
 第2プレポリマーの軟化点は、例えば、90℃以上であり、100℃以上であることが好ましく、110℃以上であることがより好ましく、120℃以上であることが更に好ましい。第2プレポリマーの軟化点が高いと、光学積層シートの耐熱性が向上し、密着性がより高まる傾向にある。第2プレポリマーの軟化点に上限は特にないが、一例によると、200℃以下であり、他の例によると、160℃以下である。 The softening point of the second prepolymer is, for example, 90°C or higher, preferably 100°C or higher, more preferably 110°C or higher, and even more preferably 120°C or higher. When the softening point of the second prepolymer is high, the heat resistance of the optical laminated sheet tends to improve, and the adhesion tends to increase. Although there is no particular upper limit to the softening point of the second prepolymer, it is 200° C. or lower in one example, and 160° C. or lower in another example.
 第2プレポリマーの軟化点は、例えば、以下の方法で測定する。先ず、第2プレポリマーを有機溶剤に溶解させて溶液を得る。溶液中の第2プレポリマーの濃度は、例えば、34質量%とする。この溶液をステンレスの容器に流し込み、40℃で10時間、60℃で10時間、さらに真空乾燥機にて60℃で12時間にわたって乾燥させて、厚み1mmの試験片を作製する。得られた試験片について、熱機械測定装置(セイコーインスツル社製、TMA120C)を用いて分析を行い、軟化点を得る。測定条件は、昇温速度を10℃/分とし、測定温度範囲を30~200℃とし、先端径0.5mmの針入プローブを用いる。  The softening point of the second prepolymer is measured, for example, by the following method. First, the second prepolymer is dissolved in an organic solvent to obtain a solution. The concentration of the second prepolymer in the solution is, for example, 34% by mass. This solution is poured into a stainless container and dried at 40° C. for 10 hours, 60° C. for 10 hours, and further dried at 60° C. for 12 hours in a vacuum dryer to prepare a test piece with a thickness of 1 mm. The resulting test piece is analyzed using a thermomechanical measuring device (manufactured by Seiko Instruments Inc., TMA120C) to obtain the softening point. The measurement conditions are a temperature rise rate of 10° C./min, a measurement temperature range of 30 to 200° C., and a penetrating probe with a tip diameter of 0.5 mm.
 接着性組成物の固形分において、第2プレポリマーは主成分を占め得る。接着性組成物の固形分において第2プレポリマーが占める割合は、例えば、90質量%以上99質量%以下である。なお、接着性組成物が、第1ポリマー及び第2プレポリマーを含む重合成分とフォトクロミック化合物との第2若しくは第4の組み合わせの場合、接着性組成物の固形分において第2プレポリマーが占める割合は、例えば、5質量%以上50質量%以下であり、好ましくは、10質量%以上40質量%以下である。 The second prepolymer can occupy the main component in the solid content of the adhesive composition. The proportion of the second prepolymer in the solid content of the adhesive composition is, for example, 90% by mass or more and 99% by mass or less. In addition, when the adhesive composition is the second or fourth combination of the polymer component containing the first polymer and the second prepolymer and the photochromic compound, the ratio of the second prepolymer to the solid content of the adhesive composition is, for example, 5% by mass or more and 50% by mass or less, preferably 10% by mass or more and 40% by mass or less.
 (第1プレポリマー)
 第1プレポリマーは、第1多官能活性水素化合物と第1イソ(チオ)シアネート化合物とを反応させて得られる。第1プレポリマーは、2以上のイソ(チオ)シアネート基を有する。第1プレポリマーは、主鎖の両末端にイソ(チオ)シアネート基を有することが好ましい。第1プレポリマーは、ウレタンプレポリマー、ウレアプレポリマー、チオウレタンプレポリマー、及びチオウレアプレポリマーからなる群より選ばれる少なくとも1種を含む。第1プレポリマーは、第2プレポリマーの原料となる。
(First prepolymer)
The first prepolymer is obtained by reacting the first polyfunctional active hydrogen compound and the first iso(thio)cyanate compound. The first prepolymer has two or more iso(thio)cyanate groups. The first prepolymer preferably has iso(thio)cyanate groups at both ends of the main chain. The first prepolymer contains at least one selected from the group consisting of urethane prepolymers, urea prepolymers, thiourethane prepolymers, and thiourea prepolymers. The first prepolymer serves as a raw material for the second prepolymer.
 第1プレポリマーは、下記式(2)に表される構造を含み得る。 The first prepolymer may contain a structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(2)において、I1、FA1、及びXは、式(1)におけるものと同義である。 In formula (2), I1, FA1, and X are synonymous with those in formula (1).
 第1プレポリマーの数平均分子量は、500以上10000以下であることが好ましく、1000以上5000以下であることがより好ましい。第1プレポリマーの数平均分子量は、第2プレポリマーと同様の方法で測定できる。 The number average molecular weight of the first prepolymer is preferably 500 or more and 10000 or less, more preferably 1000 or more and 5000 or less. The number average molecular weight of the first prepolymer can be measured in the same manner as for the second prepolymer.
 (第1イソ(チオ)シアネート化合物)
 第1イソ(チオ)シアネート化合物は、2以上のイソ(チオ)シアネート基を有する。第1イソ(チオ)シアネート化合物は、2つのイソ(チオ)シアネート基を有することが好ましい。第1イソ(チオ)シアネート化合物は、2つのイソシアネート基を含むジイソシアネート化合物であることがより好ましい。
(First iso(thio)cyanate compound)
The first iso(thio)cyanate compound has two or more iso(thio)cyanate groups. The first iso(thio)cyanate compound preferably has two iso(thio)cyanate groups. More preferably, the first iso(thio)cyanate compound is a diisocyanate compound containing two isocyanate groups.
 第1イソ(チオ)シアネート化合物のモル質量は、好ましくは、100以上500以下である。この範囲内の第1イソ(チオ)シアネート化合物を用いると、所望の数平均分子量の第2プレポリマー及び第1ポリマーを得られる傾向にある。第1イソ(チオ)シアネート化合物のモル質量は、より好ましくは、150以上300以下である。 The molar mass of the first iso(thio)cyanate compound is preferably 100 or more and 500 or less. Using the first iso(thio)cyanate compound within this range tends to result in the desired number average molecular weight of the second prepolymer and the first polymer. The molar mass of the first iso(thio)cyanate compound is more preferably 150 or more and 300 or less.
 第1イソ(チオ)シアネート化合物は、脂肪族イソ(チオ)シアネート化合物、脂環族イソ(チオ)シアネート化合物、及び芳香族イソ(チオ)シアネート化合物からなる群より選ばれる少なくとも1種を含む。第1イソ(チオ)シアネート化合物は、脂環族イソ(チオ)シアネート化合物であることが好ましい。第1イソ(チオ)シアネート化合物としては、単一種類を用いてもよく、複数種類を混合して用いてもよい。 The first iso(thio)cyanate compound includes at least one selected from the group consisting of aliphatic iso(thio)cyanate compounds, alicyclic iso(thio)cyanate compounds, and aromatic iso(thio)cyanate compounds. The first iso(thio)cyanate compound is preferably an alicyclic iso(thio)cyanate compound. As the first iso(thio)cyanate compound, a single type may be used, or a plurality of types may be mixed and used.
 脂肪族イソシアネート化合物の例には、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、2,4,4,-トリメチルヘキサンメチレンジイソシアネート、1,2-ビス(2-イソシアナトエチルチオ)エタン等が挙げられる。 Examples of aliphatic isocyanate compounds include pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, 2,4,4-trimethylhexanemethylene diisocyanate, 1,2-bis(2-isocyanatoethylthio) ethane and the like.
 脂環族イソシアネート化合物の例には、イソホロンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン-4,4'-ジイソシアネート(水添ジフェニルメタンジイソシアネート)、ノルボルナンジイソシアネート、2,5-ビス(イソシアネートメチル)-ビシクロ〔2,2,1〕-ヘプタン、2,6-ビス(イソシアネートメチル)-ビシクロ〔2,2,1〕-ヘプタン等が挙げられる。 Examples of alicyclic isocyanate compounds include isophorone diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, 1,4-bis(isocyanatomethyl)cyclohexane, dicyclohexylmethane-4,4′-diisocyanate (hydrogenated diphenylmethane diisocyanate), norbornane diisocyanate, 2,5-bis(isocyanatomethyl)-bicyclo[2,2,1]-heptane, 2,6-bis(isocyanatomethyl)-bicyclo[2,2,1]-heptane and the like. be done.
 芳香族イソシアネート化合物の例には、キシレンジイソシアネート(o-,m-,p-)、トルエン-2,4-ジイソシアネート、トルエン-2,6-ジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、4,4'-ジフェニルメタンジイソシアネート等が挙げられる。 Examples of aromatic isocyanate compounds include xylene diisocyanate (o-, m-, p-), toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, 1,4-bis(isocyanatomethyl)cyclohexane, 4,4'-diphenylmethane diisocyanate and the like.
 脂肪族イソチオシアネート化合物の例としては、ヘキサメチレンジイソチアシネート、1,2-ジイソチオシアネートエタン、1,3-ジイソチオシアネートプロパン、1,4-ジイソチオシアネートブタン、1,6-ジイソチオシアネートヘキサン、2,4,4,-トリメチルヘキサンメチレンジイソチアシネート、チオビス(3-イソチオシアネートプロパン)、チオビス(2-イソチオシアネートエタン)、ジチオビス(2-イソチオシアネートエタン)等が挙げられる。 Examples of aliphatic isothiocyanate compounds include hexamethylene diisothiocyanate, 1,2-diisothiocyanatoethane, 1,3-diisothiocyanatopropane, 1,4-diisothiocyanatobutane, 1,6-diiso thiocyanatohexane, 2,4,4-trimethylhexanemethylene diisothiacinate, thiobis(3-isothiocyanatopropane), thiobis(2-isothiocyanatoethane), dithiobis(2-isothiocyanatoethane) and the like.
 脂環族イソチオシアネート化合物の例には、イソホロンジイソチオシアネート、シクロヘキサンジイソチオシアネート、2,4-ビス(イソチオシアナトメチル)ノルボルナン、2,5-ビス(イソチオシアナトメチル)ノルボルナン、2,6-ビス(イソチオシアナトメチル)ノルボルナン、3,5-ビス(イソチオシアナトメチル)ノルボルナン、ノルボルナンジイソチアネート等が挙げられる。 Examples of alicyclic isothiocyanate compounds include isophorone diisothiocyanate, cyclohexane diisothiocyanate, 2,4-bis(isothiocyanatomethyl)norbornane, 2,5-bis(isothiocyanatomethyl)norbornane, 2,6 -bis(isothiocyanatomethyl)norbornane, 3,5-bis(isothiocyanatomethyl)norbornane, norbornane diisocyanate, and the like.
 芳香族イソチオシアネート化合物の例には、p-フェニレンジイソプロピリデンジイソチオシアネート、1,2-ジイソチオシアネートベンゼン、1,3-ジイソチオシアネートベンゼン、1,4-ジイソチオシアネートベンゼン、2,4-ジイソチオシアネートトルエン、キシレンジイソチオシアネート(o-,m-,p-)、2,4-トリレンジイソチオシアネート、2,6-トリレンジイソチオシアネート、1,1’-メチレンビス(4-イソチオシアネートベンゼン)、1,1’-メチレンビス(4-イソチオシアネート2-メチルベンゼン)、1,1’-メチレンビス(4-イソチオシアネート3-メチルベンゼン)等が挙げられる。 Examples of aromatic isothiocyanate compounds include p-phenylenediisopropylidene diisothiocyanate, 1,2-diisothiocyanatobenzene, 1,3-diisothiocyanatobenzene, 1,4-diisothiocyanatobenzene, 2,4 -diisothiocyanatotoluene, xylene diisothiocyanate (o-, m-, p-), 2,4-tolylene diisothiocyanate, 2,6-tolylene diisothiocyanate, 1,1'-methylenebis(4-isothiocyanate) benzene), 1,1′-methylenebis(4-isothiocyanate-2-methylbenzene), 1,1′-methylenebis(4-isothiocyanate-3-methylbenzene), and the like.
 (第1多官能活性水素化合物)
 第1多官能活性水素化合物は、2以上の活性水素基を有する。第1多官能活性水素化合物は、2つの活性水素基を有することが好ましい。活性水素基は、水酸基、アミノ基、カルボキシ基、及びチオール基からなる群より選ばれる少なくとも1種を含む。第1多官能活性水素化合物は、例えば、2以上の水酸基を含むポリオール化合物、2以上のアミノ基を含むポリアミン化合物、2つのカルボキシ基を含むジカルボン酸、及び2以上のチオール基を含むポリチオール化合物からなる群より選択される少なくとも1種を含む。第1多官能活性水素化合物としては、単一種類を用いてもよく、複数種類を混合して用いてもよい。
(First polyfunctional active hydrogen compound)
The first polyfunctional active hydrogen compound has two or more active hydrogen groups. The first polyfunctional active hydrogen compound preferably has two active hydrogen groups. Active hydrogen groups include at least one selected from the group consisting of hydroxyl groups, amino groups, carboxy groups, and thiol groups. The first polyfunctional active hydrogen compound includes, for example, a polyol compound containing two or more hydroxyl groups, a polyamine compound containing two or more amino groups, a dicarboxylic acid containing two carboxy groups, and a polythiol compound containing two or more thiol groups. At least one selected from the group consisting of As the first polyfunctional active hydrogen compound, a single type may be used, or a plurality of types may be mixed and used.
 第1多官能活性水素化合物は、ポリオール化合物を含むことが好ましい。ポリオール化合物を用いると、(チオ)ウレタン結合を有する第1プレポリマーが得られる。ポリオール化合物の繰り返し構造部分は、フォトクロミック接着層において、フォトクロミック化合物の構造変化を妨げにくいマトリックスを提供することに寄与し得る。ポリオール化合物を用いると、光学積層シートのフォトクロミック性が高まる傾向にある。 The first polyfunctional active hydrogen compound preferably contains a polyol compound. Using a polyol compound yields a first prepolymer having (thio)urethane bonds. The repeating structural portion of the polyol compound can contribute to providing a matrix that does not easily hinder the structural change of the photochromic compound in the photochromic adhesive layer. The use of a polyol compound tends to enhance the photochromic properties of the optical laminated sheet.
 ポリオール化合物の数平均分子量は、500以上3000以下であることが好ましい。この範囲内の数平均分子量を含むポリオール化合物を用いると、所望の数平均分子量の第2プレポリマー及び第1ポリマーを得られる傾向にある。ポリオール化合物の数平均分子量は、800以上2000以下であることがより好ましい。 The number average molecular weight of the polyol compound is preferably 500 or more and 3000 or less. Using a polyol compound containing a number average molecular weight within this range tends to result in the desired number average molecular weight of the second prepolymer and the first polymer. More preferably, the number average molecular weight of the polyol compound is 800 or more and 2000 or less.
 ポリオール化合物は、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、及びポリカプロラクトンポリオールからなる群から選ばれる少なくとも1種を含み得る。ポリオール化合物は、ポリカーボネートポリオールを含むことが好ましい。ポリカーボネートポリオールを用いると、光学積層シートの密着性が高まる傾向にある。 The polyol compound may contain at least one selected from the group consisting of polyether polyols, polyester polyols, polycarbonate polyols, and polycaprolactone polyols. Preferably, the polyol compound comprises a polycarbonate polyol. The use of polycarbonate polyol tends to increase the adhesion of the optical laminated sheet.
 ポリカーボネートポリオールは、例えば、低分子ポリオール類の1ホスゲン化、あるいは、エチレンカーボネート、ジエチルカーボネート、及びジフェニルカーボネート等のエステル交換法により得られる。低分子ポリオールの例としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、3-メチル-1,5-ペンタンジオール、2-エチル-4-ブチル-1,3-プロパンジオール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、ビスフェノールAのエチレンオキサイドやプロピレンオキサイド付加物、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。 Polycarbonate polyols can be obtained, for example, by monophosgenation of low-molecular-weight polyols, or transesterification of ethylene carbonate, diethyl carbonate, diphenyl carbonate, and the like. Examples of low molecular polyols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 3-methyl-1,5- Pentanediol, 2-ethyl-4-butyl-1,3-propanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, bisphenol Examples include ethylene oxide and propylene oxide adducts of A, bis(β-hydroxyethyl)benzene, xylylene glycol, glycerin, trimethylolpropane, pentaerythritol and the like.
 ポリカーボネートポリオールとしては、旭化成株式会社製「デュラノール(登録商標)」シリーズ、株式会社クラレ製「クラレポリオール(登録商標)」シリーズ、株式会社ダイセル製「プラクセル(登録商標)」シリーズ、東ソー株式会社製「ニッポラン(登録商標)」シリーズ、UBE株式会社製「ETERNACOLL(登録商標)」シリーズなどを用い得る。 Polycarbonate polyols include "Duranol (registered trademark)" series manufactured by Asahi Kasei Corporation, "Kuraray Polyol (registered trademark)" series manufactured by Kuraray Co., Ltd., "Placcel (registered trademark)" series manufactured by Daicel Corporation, " NIPPORUN (registered trademark)" series, UBE Corporation "ETERNACOLL (registered trademark)" series, and the like can be used.
 ポリカプロラクトンポリオールは、例えば、ε-カプロラクトンの開環重合により得られる。ポリカプロラクトンポリオールとしては、株式会社ダイセル製「プラクセル(登録商標)」シリーズなどを用い得る。 Polycaprolactone polyol is obtained, for example, by ring-opening polymerization of ε-caprolactone. As the polycaprolactone polyol, the "Plaxel (registered trademark)" series manufactured by Daicel Corporation can be used.
 ポリエーテルポリオールは、例えば、分子中に活性水素基を2個以上有する化合物とアルキレンオキサイドとの反応により得られる。活性水素含有基を2個以上有する化合物としては、水、エチレングリコール、プロピレングリコール、ブタンジオール、グリセリン、トリメチロールプロパン、ヘキサントリオール、トリエタノールアミン、ジグリセリン、ペンタエリスリトール、トリメチロールプロパン、ヘキサントリオールなどが挙げられる。アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等の環状エーテル化合物が挙げられる。 A polyether polyol can be obtained, for example, by reacting a compound having two or more active hydrogen groups in its molecule with an alkylene oxide. Compounds having two or more active hydrogen-containing groups include water, ethylene glycol, propylene glycol, butanediol, glycerin, trimethylolpropane, hexanetriol, triethanolamine, diglycerin, pentaerythritol, trimethylolpropane, hexanetriol, and the like. is mentioned. Alkylene oxides include cyclic ether compounds such as ethylene oxide, propylene oxide, and tetrahydrofuran.
 ポリエーテルポリオールとしては、AGC株式会社製「エクセノール(登録商標)」シリーズ及び「エマルスター(登録商標)」シリーズ、株式会社ADEKA製「アデカポリエーテル」シリーズなどが挙げられる。 Examples of polyether polyols include the "Exenol (registered trademark)" series and "Emulstar (registered trademark)" series manufactured by AGC Co., Ltd., and the "ADEKA Polyether" series manufactured by ADEKA Corporation.
 ポリエステルポリオールは、例えば、多価アルコールと多塩基酸との縮合反応により得られる。多価アルコールとしては、エチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、3,3’-ジメチロールヘプタン、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、3,3-ビス(ヒドロキシメチル)ヘプタン、ジエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパンなどが挙げられる。多塩基酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、シクロペンタンジカルボン酸、シクロヘキサンジカルボン酸、オルトフタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸などが挙げられる。 A polyester polyol is obtained, for example, by condensation reaction between a polyhydric alcohol and a polybasic acid. Polyhydric alcohols include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 3, 3′-dimethylolheptane, 1,4-cyclohexanedimethanol, neopentyl glycol, 3,3-bis(hydroxymethyl)heptane, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane and the like. Examples of polybasic acids include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, cyclopentanedicarboxylic acid, cyclohexanedicarboxylic acid, orthophthalic acid, isophthalic acid, terephthalic acid, and naphthalenedicarboxylic acid.
 ポリエステルポリオールとしては、DIC株式会社製「ポリライト(登録商標)」シリーズ、東ソー株式会社製「ニッポラン(登録商標)」シリーズ、エア・ウォーター・パフォーマンスケミカル株式会社製「マキシモール(登録商標)」シリーズなどを用い得る。 Polyester polyols include the "Polylight (registered trademark)" series manufactured by DIC Corporation, the "Nipporan (registered trademark)" series manufactured by Tosoh Corporation, and the "Maximol (registered trademark)" series manufactured by Air Water Performance Chemicals Co., Ltd. can be used.
 ポリチオール化合物は、脂肪族ポリチオール、芳香族ポリチオール、及びメルカプト基以外に硫黄原子を含有するポリチオールからなる群より選択される少なくとも1種を含み得る。 The polythiol compound may contain at least one selected from the group consisting of aliphatic polythiols, aromatic polythiols, and polythiols containing sulfur atoms in addition to mercapto groups.
 脂肪族ポリチオールの例には、メタンジチオール、1,2-エタンジチオール、1,1-プロパンジチオール、1,2-プロパンジチオール、1,3-プロパンジチオール、2,2-プロパンジチオール、1,6-ヘキサンジチオール、1,2,3-プロパントリチオール、テトラキス(メルカプトメチル)メタン、1,1-シクロヘキサンジチオール、1,2-シクロヘキサンジチオール、2,2-ジメチルプロパン-1,3-ジチオール、3,4-ジメトキシブタン-1,2-ジチオール、2-メチルシクロヘキサン-2,3-ジチオール、1,1-ビス(メルカプトメチル)シクロヘキサン、チオリンゴ酸ビス(2-メルカプトエチルエステル)、2,3-ジメルカプトコハク酸(2-メルカプトエチルエステル)、2,3-ジメルカプト-1-プロパノール(2-メルカプトアセテート)、2,3-ジメルカプト-1-プロパノール(3-メルカプトアセテート)、ジエチレングリコールビス(2-メルカプトアセテート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、1,2-ジメルカプトプロピルメチルエーテル、2,3-ジメルカプトプロピルメチルエーテル、2,2-ビス(メルカプトメチル)-1,3-プロパンジチオール等が含まれる。 Examples of aliphatic polythiols include methanedithiol, 1,2-ethanedithiol, 1,1-propanedithiol, 1,2-propanedithiol, 1,3-propanedithiol, 2,2-propanedithiol, 1,6- Hexanedithiol, 1,2,3-propanetrithiol, tetrakis(mercaptomethyl)methane, 1,1-cyclohexanedithiol, 1,2-cyclohexanedithiol, 2,2-dimethylpropane-1,3-dithiol, 3,4 -dimethoxybutane-1,2-dithiol, 2-methylcyclohexane-2,3-dithiol, 1,1-bis(mercaptomethyl)cyclohexane, bis(2-mercaptoethyl ester) thiomalate, 2,3-dimercaptosuccinate acid (2-mercaptoethyl ester), 2,3-dimercapto-1-propanol (2-mercaptoacetate), 2,3-dimercapto-1-propanol (3-mercaptoacetate), diethylene glycol bis(2-mercaptoacetate), Diethylene glycol bis(3-mercaptopropionate), 1,2-dimercaptopropyl methyl ether, 2,3-dimercaptopropyl methyl ether, 2,2-bis(mercaptomethyl)-1,3-propanedithiol, etc. be
 芳香族ポリチオールの例には、1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,2-ビス(メルカプトメチル)ベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、1,3-ビス(メルカプトエチル)ベンゼン、1,4-ビス(メルカプトエチル)ベンゼン、1,2-ビス(メルカプトメトキシ)ベンゼン、1,3-ビス(メルカプトメトキシ)ベンゼン、1,4-ビス(メルカプトメトキシ)ベンゼン、1,2-ビス(メルカプトエトキシ)ベンゼン、1,3-ビス(メルカプトエトキシ)ベンゼン、1,4-ビス(メルカプトエトキシ)ベンゼン、1,2,3-トリメルカプトベンゼン、1,2,4-トリメルカプトベンゼン、1,3,5-トリメルカプトベンゼン、1,2,3-トリス(メルカプトメチル)ベンゼン、1,2,4-トリス(メルカプトメチル)ベンゼン、1,3,5-トリス(メルカプトメチル)ベンゼン、1,2,3-トリス(メルカプトエチル)ベンゼン、1,2,4-トリス(メルカプトエチル)ベンゼン、1,3,5-トリス(メルカプトエチル)ベンゼン、1,2,3-トリス(メルカプトメトキシ)ベンゼン、1,2,4-トリス(メルカプトメトキシ)ベンゼン、1,3,5-トリス(メルカプトメトキシ)ベンゼン、1,2,3-トリス(メルカプトエトキシ)ベンゼン、1,2,4-トリス(メルカプトエトキシ)ベンゼン、1,3,5-トリス(メルカプトエトキシ)ベンゼン、1,2,3,4-テトラメルカプトベンゼン、1,2,3,5-テトラメルカプトベンゼン、1,2,4,5-テトラメルカプトベンゼン、1,2,3,4-テトラキス(メルカプトメチル)ベンゼン等が含まれる。 Examples of aromatic polythiols include 1,2-dimercaptobenzene, 1,3-dimercaptobenzene, 1,4-dimercaptobenzene, 1,2-bis(mercaptomethyl)benzene, 1,3-bis(mercapto methyl)benzene, 1,4-bis(mercaptomethyl)benzene, 1,3-bis(mercaptoethyl)benzene, 1,4-bis(mercaptoethyl)benzene, 1,2-bis(mercaptomethoxy)benzene, 1, 3-bis(mercaptomethoxy)benzene, 1,4-bis(mercaptomethoxy)benzene, 1,2-bis(mercaptoethoxy)benzene, 1,3-bis(mercaptoethoxy)benzene, 1,4-bis(mercaptoethoxy) ) benzene, 1,2,3-trimercaptobenzene, 1,2,4-trimercaptobenzene, 1,3,5-trimercaptobenzene, 1,2,3-tris(mercaptomethyl)benzene, 1,2, 4-tris(mercaptomethyl)benzene, 1,3,5-tris(mercaptomethyl)benzene, 1,2,3-tris(mercaptoethyl)benzene, 1,2,4-tris(mercaptoethyl)benzene, 1, 3,5-tris(mercaptoethyl)benzene, 1,2,3-tris(mercaptomethoxy)benzene, 1,2,4-tris(mercaptomethoxy)benzene, 1,3,5-tris(mercaptomethoxy)benzene, 1,2,3-tris(mercaptoethoxy)benzene, 1,2,4-tris(mercaptoethoxy)benzene, 1,3,5-tris(mercaptoethoxy)benzene, 1,2,3,4-tetramercaptobenzene , 1,2,3,5-tetramercaptobenzene, 1,2,4,5-tetramercaptobenzene, 1,2,3,4-tetrakis(mercaptomethyl)benzene and the like.
 メルカプト基以外に硫黄原子を含有するポリチオールの例には、ビス(メルカプトメチル)スルフィド、ビス(メルカプトエチル)スルフィド、ビス(メルカプトプロピル)スルフィド、ビス(メルカプトメチルチオ)メタン、ビス(2-メルカプトエチルチオ)メタン、ビス(3-メルカプトプロピルチオ)メタン、1,2-ビス(メルカプトメチルチオ)エタン、1,2-ビス(2-メルカプトエチルチオ)エタン、1,2-ビス(3-メルカプトプロピルチオ)エタン、1,3-ビス(メルカプトメチルチオ)プロパン、1,3-ビス(2-メルカプトエチルチオ)プロパン、1,3-ビス(3-メルカプトプロピルチオ)プロパン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、2-メルカプトエチルチオ-1,3-プロパンジチオール、1,2,3-トリス(メルカプトメチルチオ)プロパン、1,2,3-トリス(2-メルカプトエチルチオ)プロパン等が含まれる。 Examples of polythiols containing sulfur atoms in addition to mercapto groups include bis(mercaptomethyl)sulfide, bis(mercaptoethyl)sulfide, bis(mercaptopropyl)sulfide, bis(mercaptomethylthio)methane, bis(2-mercaptoethylthio ) methane, bis(3-mercaptopropylthio)methane, 1,2-bis(mercaptomethylthio)ethane, 1,2-bis(2-mercaptoethylthio)ethane, 1,2-bis(3-mercaptopropylthio) Ethane, 1,3-bis(mercaptomethylthio)propane, 1,3-bis(2-mercaptoethylthio)propane, 1,3-bis(3-mercaptopropylthio)propane, 1,2-bis(2-mercapto ethylthio)-3-mercaptopropane, 2-mercaptoethylthio-1,3-propanedithiol, 1,2,3-tris(mercaptomethylthio)propane, 1,2,3-tris(2-mercaptoethylthio)propane etc. are included.
 第1多官能活性水素化合物の量は、第1多官能活性水素化合物に含まれる活性水素基のモル量M1と、第1イソ(チオ)シアネート化合物に含まれるイソ(チオ)シアネート基のモル量M2との比M1/M2が、0.1以上0.5以下となるように調整されることが好ましい。比M1/M2が上記の範囲内にあると、第1プレポリマーに十分な量のウレタン結合及びウレア結合の少なくとも一方が形成され、かつ、フォトクロミック化合物の構造変化を阻害しにくい柔軟なフォトクロミック接着層を形成できる。比M1/M2は、0.30以上0.50以下であることが好ましく、0.5であることがより好ましい。 The amount of the first polyfunctional active hydrogen compound is the molar amount M1 of the active hydrogen groups contained in the first polyfunctional active hydrogen compound and the molar amount M1 of the iso(thio)cyanate groups contained in the first iso(thio)cyanate compound. The ratio M1/M2 to M2 is preferably adjusted to be 0.1 or more and 0.5 or less. When the ratio M1/M2 is within the above range, a sufficient amount of at least one of urethane bonds and urea bonds is formed in the first prepolymer, and a flexible photochromic adhesive layer that hardly inhibits structural changes of the photochromic compound. can be formed. The ratio M1/M2 is preferably 0.30 or more and 0.50 or less, more preferably 0.5.
 第1多官能活性水素化合物の質量S1と、第1イソ(チオ)シアネート化合物の質量S2との比S1/S2は、0.1以上10以下であることが好ましい。比S1/S2が上記の範囲内にあると、単位質量当たりに十分な量のイソシアネート基を有する第2プレポリマーが得られる。比S1/S2は、0.8以上5以下であることが好ましく、1以上3以下であることがより好ましい。 The ratio S1/S2 between the mass S1 of the first polyfunctional active hydrogen compound and the mass S2 of the first iso(thio)cyanate compound is preferably 0.1 or more and 10 or less. When the ratio S1/S2 is within the above range, a second prepolymer having a sufficient amount of isocyanate groups per unit mass is obtained. The ratio S1/S2 is preferably 0.8 or more and 5 or less, more preferably 1 or more and 3 or less.
 (第2多官能活性水素化合物)
 第2多官能活性水素化合物は、2以上の活性水素基を有する。第2多官能活性水素化合物は、第1プレポリマーと反応し、第2プレポリマーを生成する。第2多官能活性水素化合物は、第1プレポリマー同士を連結する鎖延長剤として機能する。第2多官能活性水素化合物は、2つの活性水素基を有することが好ましい。第2多官能活性水素化合物としては、第1多官能活性水素化合物で挙げた化合物を用い得る。
(Second polyfunctional active hydrogen compound)
The second polyfunctional active hydrogen compound has two or more active hydrogen groups. The second polyfunctional active hydrogen compound reacts with the first prepolymer to produce a second prepolymer. The second polyfunctional active hydrogen compound functions as a chain extender that connects the first prepolymers. The second polyfunctional active hydrogen compound preferably has two active hydrogen groups. As the second polyfunctional active hydrogen compound, the compounds listed for the first polyfunctional active hydrogen compound can be used.
 第2多官能活性水素化合物は、ポリアミンを含むことが好ましい。ポリアミンを用いると、(チオ)ウレタンウレア結合を有する第2プレポリマーが得られる。このような第2プレポリマーを用いると、光学積層シートの密着性が高まる傾向にある。ポリアミンのモル質量は、50以上500以下であることが好ましい。モル質量がこの範囲内にあるポリアミンを用いると、所望の数平均分子量の第2プレポリマーを得られる傾向にある。ポリアミンのモル質量は、50以上300以下であることがより好ましい。ポリアミンは、ジアミン及びトリアミンを含み、ジアミンを含むことが好ましい。 The second polyfunctional active hydrogen compound preferably contains polyamine. Using a polyamine results in a second prepolymer with (thio)urethane urea linkages. The use of such a second prepolymer tends to increase the adhesion of the optical laminated sheet. The molar mass of the polyamine is preferably 50 or more and 500 or less. Using a polyamine having a molar mass within this range tends to give the desired number average molecular weight of the second prepolymer. More preferably, the polyamine has a molar mass of 50 or more and 300 or less. Polyamines include diamines and triamines, preferably diamines.
 ポリアミンとしては、イソホロンジアミン、エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,2-ジアミノブタン、1,3-ジアミノブタン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、ピペラジン、N,N-ビス-(2-アミノエチル)ピペラジン、ビス-(4-アミノシクロヘキシル)メタン、ビス-(4-アミノ-3-ブチルシクロヘキシル)メタン、1,2-、1,3-及び1,4-ジアミノシクロヘキサン、ノルボルナンジアミン、ヒドラジン、アジピン酸ジヒドラジン、フェニレンジアミン、4,4’-ジフェニルメタンジアミン、N,N’-ジエチルエチレンジアミン、N,N’-ジメチルエチレンジアミン、N,N’-ジプロピルエチレンジアミン、N,N’-ジブチルエチレンジアミン、N-メチルエチレンジアミン、N-エチルエチレンジアミン、ビス(ヘキサメチレン)トリアミン、1,2,5-ペンタントリアミン等が挙げられる。 Polyamines include isophoronediamine, ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,2-diaminobutane, 1,3-diaminobutane, 1,4-diaminobutane, 1,5-diaminopentane , 1,6-diaminohexane, piperazine, N,N-bis-(2-aminoethyl)piperazine, bis-(4-aminocyclohexyl)methane, bis-(4-amino-3-butylcyclohexyl)methane, 1, 2-, 1,3- and 1,4-diaminocyclohexane, norbornanediamine, hydrazine, dihydrazine adipate, phenylenediamine, 4,4'-diphenylmethanediamine, N,N'-diethylethylenediamine, N,N'-dimethyl ethylenediamine, N,N'-dipropylethylenediamine, N,N'-dibutylethylenediamine, N-methylethylenediamine, N-ethylethylenediamine, bis(hexamethylene)triamine, 1,2,5-pentanetriamine and the like.
 ポリアミンは、イソホロンジアミン、エチレンジアミン、ビス-(4-アミノシクロヘキシル)メタン、及び1,6-ジアミノヘキサンからなる群より選ばれる少なくとも1種を含むことが好ましい。 The polyamine preferably contains at least one selected from the group consisting of isophoronediamine, ethylenediamine, bis-(4-aminocyclohexyl)methane, and 1,6-diaminohexane.
 第2多官能活性水素化合物の量は、第2多官能活性水素化合物に含まれる活性水素基のモル量M3と、第1プレポリマーに含まれるイソ(チオ)シアネート基のモル量M4との比M3/M4が、0.21以上0.50以下となるように調整されることが好ましい。比M1/M2が上記の範囲内にあると、十分な量の第2プレポリマーが生成される。 The amount of the second polyfunctional active hydrogen compound is the ratio of the molar amount M3 of the active hydrogen groups contained in the second polyfunctional active hydrogen compound to the molar amount M4 of the iso(thio)cyanate groups contained in the first prepolymer. Preferably, M3/M4 is adjusted to be 0.21 or more and 0.50 or less. A sufficient amount of the second prepolymer is produced when the ratio M1/M2 is within the above range.
 第2多官能活性水素化合物の質量S3と、第1プレポリマーの質量S4との比S3/S4は、0.01以上0.5以下であることが好ましい。比S3/S4が上記の範囲内にあると、単位質量当たりに十分な量のイソシアネート基を有する第2プレポリマーが得られる。比S3/S4は、0.08以上0.3以下であることがより好ましい。 The ratio S3/S4 between the mass S3 of the second polyfunctional active hydrogen compound and the mass S4 of the first prepolymer is preferably 0.01 or more and 0.5 or less. When the ratio S3/S4 is within the above range, a second prepolymer having a sufficient amount of isocyanate groups per unit mass is obtained. The ratio S3/S4 is more preferably 0.08 or more and 0.3 or less.
 (第1ポリマー)
 第1ポリマーは、第2プレポリマーと1つの活性水素基を有する単官能活性水素化合物とを反応させて得られる。第1ポリマーは、典型的には、イソ(チオ)シアネート基を有さない。第1ポリマーの末端は、非反応性の官能基で修飾されている。第1ポリマーは、ウレタンポリマー、ウレアポリマー、ウレタンウレアポリマー、チオウレタンポリマー、チオウレアポリマー、及びチオウレタンウレアポリマーからなる群より選ばれる少なくとも1種を含む。
(first polymer)
The first polymer is obtained by reacting the second prepolymer with a monofunctional active hydrogen compound having one active hydrogen group. The first polymer typically does not have iso(thio)cyanate groups. The ends of the first polymer are modified with non-reactive functional groups. The first polymer contains at least one selected from the group consisting of urethane polymer, urea polymer, urethane urea polymer, thiourethane polymer, thiourea polymer, and thiourethane urea polymer.
 第1ポリマーは、高温下で、第2プレポリマー及び/又は第3プレポリマー、並びに第1及び第2光学シートの表面上の水酸基と化学結合して、(チオ)ウレタン樹脂、(チオ)ウレア樹脂、及び(チオ)ウレタンウレア樹脂からなる群より選ばれる少なくとも1種を生成する。 The first polymer chemically bonds with hydroxyl groups on the surfaces of the second prepolymer and/or the third prepolymer and the first and second optical sheets at a high temperature to form (thio)urethane resin, (thio)urea At least one selected from the group consisting of resins and (thio)urethane urea resins is produced.
 第1ポリマーの数平均分子量は、5000以上であることが好ましく、10000以上であることがより好ましく、13000以上であることが更に好ましい。数平均分子量が大きい第1ポリマーを用いると、光学積層シートの剥離強度が高まる傾向にある。第1ポリマーの数平均分子量は、50000以下であることが好ましく、40000以下であることがより好ましく、30000以下であることが更に好ましい。第1ポリマーの数平均分子量が過剰に大きいと、光学積層シートの剥離強度が低まる傾向にある。この数平均分子量は、第2プレポリマーと同様の方法で測定できる。 The number average molecular weight of the first polymer is preferably 5,000 or more, more preferably 10,000 or more, and even more preferably 13,000 or more. Using a first polymer having a large number average molecular weight tends to increase the peel strength of the optical laminated sheet. The number average molecular weight of the first polymer is preferably 50,000 or less, more preferably 40,000 or less, even more preferably 30,000 or less. When the number average molecular weight of the first polymer is excessively large, the peel strength of the optical laminated sheet tends to decrease. This number average molecular weight can be measured by the same method as for the second prepolymer.
 第1ポリマーの軟化点は、例えば、90℃以上であり、100℃以上であることが好ましく、110℃以上であることがより好ましく、120℃以上であることが更に好ましい。第1ポリマーの軟化点が高いと、光学積層シートの耐熱性が向上し、密着性がより高まる傾向にある。第1ポリマーの軟化点に上限は特にないが、一例によると、200℃以下であり、他の例によると、160℃以下である。混合物の軟化点は、第2プレポリマーと同様の方法で測定できる。 The softening point of the first polymer is, for example, 90°C or higher, preferably 100°C or higher, more preferably 110°C or higher, and even more preferably 120°C or higher. When the softening point of the first polymer is high, the heat resistance of the optical laminated sheet tends to improve, and the adhesion tends to increase. Although there is no particular upper limit to the softening point of the first polymer, it is 200° C. or lower in one example, and 160° C. or lower in another example. The softening point of the mixture can be measured in the same manner as for the second prepolymer.
 第1ポリマーは、第2プレポリマーとの混合物として存在し得る。第1ポリマーと第2プレポリマーとの混合物は、単官能活性水素化合物の量を調整することにより得られる。すなわち、第2プレポリマーに含まれるイソ(チオ)シアネート基のモル量M5と、単官能活性水素化合物に含まれる活性水素基のモル量M6との比M5/M6が、1を下回るように調整されることにより、第2プレポリマーと、第2プレポリマーのイソ(チオ)シアネート基が単官能活性水素化合物で保護された第1ポリマーとの混合物が生成される。比M5/M6は、0.75以上0.95以下であることが好ましい。 The first polymer can exist as a mixture with the second prepolymer. A mixture of the first polymer and the second prepolymer is obtained by adjusting the amount of the monofunctional active hydrogen compound. That is, the ratio M5/M6 between the molar amount M5 of the iso(thio)cyanate groups contained in the second prepolymer and the molar amount M6 of the active hydrogen groups contained in the monofunctional active hydrogen compound is adjusted to be less than 1. As a result, a mixture of the second prepolymer and the first polymer in which the iso(thio)cyanate group of the second prepolymer is protected with the monofunctional active hydrogen compound is produced. The ratio M5/M6 is preferably 0.75 or more and 0.95 or less.
 この混合物の数平均分子量は、5000以上であることが好ましく、10000以上であることがより好ましく、13000以上であることが更に好ましい。数平均分子量が大きい混合物を用いると、光学積層シートの剥離強度が高まる傾向にある。混合物の数平均分子量は、50000以下であることが好ましく、40000以下であることがより好ましく、30000以下であることが更に好ましい。混合物の数平均分子量が過剰に大きいと、光学積層シートの剥離強度が低まる傾向にある。この数平均分子量は、第2プレポリマーと同様の方法で測定できる。 The number average molecular weight of this mixture is preferably 5,000 or more, more preferably 10,000 or more, and even more preferably 13,000 or more. The use of a mixture with a large number average molecular weight tends to increase the peel strength of the optical laminated sheet. The number average molecular weight of the mixture is preferably 50,000 or less, more preferably 40,000 or less, even more preferably 30,000 or less. If the number average molecular weight of the mixture is excessively high, the peel strength of the optical laminated sheet tends to decrease. This number average molecular weight can be measured by the same method as for the second prepolymer.
 この混合物の軟化点は、例えば、90℃以上であり、100℃以上であることが好ましく、110℃以上であることがより好ましく、120℃以上であることが更に好ましい。混合物の軟化点が高いと、光学積層シートの耐熱性が向上し、密着性がより高まる傾向にある。混合物の軟化点に上限は特にないが、一例によると、200℃以下であり、他の例によると、160℃以下である。混合物の軟化点は、第2プレポリマーと同様の方法で測定できる。 The softening point of this mixture is, for example, 90°C or higher, preferably 100°C or higher, more preferably 110°C or higher, and even more preferably 120°C or higher. When the softening point of the mixture is high, the heat resistance of the optical laminated sheet tends to improve, and the adhesion tends to increase. Although there is no particular upper limit to the softening point of the mixture, it is 200° C. or lower in one example, and 160° C. or lower in another example. The softening point of the mixture can be measured in the same manner as for the second prepolymer.
 接着性組成物の固形分において、第1ポリマーが占める割合は、例えば、75質量%以上95質量%以下である。 The proportion of the first polymer in the solid content of the adhesive composition is, for example, 75% by mass or more and 95% by mass or less.
 第1ポリマーと第2プレポリマーとの混合物は、第4プレポリマーを含み得る。第4プレポリマーは、第2プレポリマーのイソ(チオ)シアネート基の一部が単官能活性水素化合物で保護され、残部が保護されていない化合物である。第4プレポリマーは、1つのイソ(チオ)シアネート基と、1つの単官能活性水素化合物保護基とを含み得る。第4プレポリマーは、イソ(チオ)シアネート基を有しているため、第2プレポリマーと同様に光学積層シートの密着性を高め得る。 The mixture of the first polymer and the second prepolymer may contain the fourth prepolymer. The fourth prepolymer is a compound in which a portion of the iso(thio)cyanate groups of the second prepolymer are protected with a monofunctional active hydrogen compound and the remainder are unprotected. The fourth prepolymer may contain one iso(thio)cyanate group and one monofunctional active hydrogen compound protecting group. Since the fourth prepolymer has an iso(thio)cyanate group, it can enhance the adhesion of the optical laminated sheet, like the second prepolymer.
 第1ポリマー、第2プレポリマー、及び第4プレポリマーの混合物において、第1ポリマーが占める割合は、一例によると、1質量%以上40質量%以下であり、他の例によると、10質量%以上30質量%以下である。上記混合物において、第2プレポリマーが占める割合は、一例によると、1質量%以上40質量%以下であり、他の例によると、10質量%以上30質量%以下である。上記混合物において、第4プレポリマーが占める割合は、一例によると、1質量%以上80質量%以下であり、他の例によると、40質量%以上80質量%以下である。 In the mixture of the first polymer, the second prepolymer, and the fourth prepolymer, the ratio of the first polymer is, according to one example, 1% by mass or more and 40% by mass or less, and according to another example, 10% by mass. It is more than 30 mass % or less. In one example, the ratio of the second prepolymer in the mixture is 1% by mass or more and 40% by mass or less, and in another example, 10% by mass or more and 30% by mass or less. In one example, the proportion of the fourth prepolymer in the mixture is 1% by mass or more and 80% by mass or less, and according to another example, it is 40% by mass or more and 80% by mass or less.
 フォトクロミック接着層は、フォトクロミック化合物、第1ポリマー、第2プレポリマー、及び第4プレポリマーを含む接着性組成物の硬化体であってもよく、フォトクロミック化合物、第1ポリマー、及び第4プレポリマーを含む接着性組成物の硬化体であってもよい。 The photochromic adhesive layer may be a cured adhesive composition containing a photochromic compound, a first polymer, a second prepolymer, and a fourth prepolymer, wherein the photochromic compound, the first polymer, and the fourth prepolymer are It may be a cured body of the adhesive composition containing.
 (単官能活性水素化合物)
 単官能活性水素化合物は、1つの活性水素基を有する。単官能活性水素化合物は、第2プレポリマーのイソ(チオ)シアネート基と反応し、第1ポリマーを生成して、更なる反応を停止させる。活性水素基は、水酸基、アミノ基、カルボキシル基、及びチオール基からなる群より選ばれる少なくとも1種を含む。
(Monofunctional active hydrogen compound)
A monofunctional active hydrogen compound has one active hydrogen group. The monofunctional active hydrogen compound reacts with the iso(thio)cyanate groups of the second prepolymer to produce the first polymer and terminate further reaction. Active hydrogen groups include at least one selected from the group consisting of hydroxyl groups, amino groups, carboxyl groups, and thiol groups.
 単官能活性水素化合物は、例えば、1つの水酸基を含むモノオール化合物、1つのアミノ基を含むモノアミン化合物、1つのカルボキシル基を含むカルボン酸、及び1つのチオール基を含むモノチオール化合物からなる群より選択される少なくとも1種を含む。単官能活性水素化合物としては、単一種類を用いてもよく、複数種類を混合して用いてもよい。 The monofunctional active hydrogen compound is, for example, a monool compound containing one hydroxyl group, a monoamine compound containing one amino group, a carboxylic acid containing one carboxyl group, and a monothiol compound containing one thiol group. At least one selected is included. As the monofunctional active hydrogen compound, a single type may be used, or a plurality of types may be mixed and used.
 単官能活性水素化合物は、モノアミン化合物であることが好ましい。モノアミン化合物を用いると、(チオ)ウレア結合を有する第1ポリマーが得られる。 The monofunctional active hydrogen compound is preferably a monoamine compound. Using a monoamine compound results in a first polymer with (thio)urea linkages.
 単官能活性水素化合物は、下記式(3)に表されるように、2,2,6,6-ペンタメチル-4-ピペリジル部位を有するアミンを含むことが好ましい。2,2,6,6-ペンタメチル-4-ピペリジル部位を有するアミンは、ヒンダードアミンとして機能し得るため、光学積層シートの光安定性を高められる。 The monofunctional active hydrogen compound preferably contains an amine having a 2,2,6,6-pentamethyl-4-piperidyl moiety, as represented by the following formula (3). Amines having 2,2,6,6-pentamethyl-4-piperidyl moieties can function as hindered amines, thus enhancing the photostability of the optical laminated sheet.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(3)において、R21は、水素原子又は炭素数1以上3以下のアルキル基である。R22は、炭素数1以上3以下のアルキレン基である。aは、0又は1である。 In formula (3), R 21 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. R 22 is an alkylene group having 1 to 3 carbon atoms. a is 0 or 1;
 単官能活性水素化合物は、R21がメチル基であり、aが0である1,2,2,6,6-ペンタメチル-4-アミノピペリジンであることが好ましい。 The monofunctional active hydrogen compound is preferably 1,2,2,6,6-pentamethyl-4-aminopiperidine, wherein R 21 is a methyl group and a is 0.
 単官能活性水素化合物の質量S5と、第2プレポリマーの質量S6との比S5/S6は、0.001以上0.100以下であることが好ましい。比S5/S6が上記の範囲内にあると、単位質量当たりに十分な量のイソシアネート基を有する第1ポリマーが得られる。比S5/S6は、0.010以上0.030以下であることがより好ましい。 The ratio S5/S6 between the mass S5 of the monofunctional active hydrogen compound and the mass S6 of the second prepolymer is preferably 0.001 or more and 0.100 or less. When the ratio S5/S6 is within the above range, a first polymer having a sufficient amount of isocyanate groups per unit mass is obtained. The ratio S5/S6 is more preferably 0.010 or more and 0.030 or less.
 (第3プレポリマー)
 第3プレポリマーは、第1多官能活性水素化合物と第1イソ(チオ)シアネート化合物とを反応させて得られる2以上のイソ(チオ)シアネート基を有する化合物である。すなわち、第3プレポリマーは、第1プレポリマーと同様の化合物である。第3プレポリマーは、高温下で、第1プレポリマー及び第1及び第2光学シートの表面上の水酸基と化学結合して、(チオ)ウレタン樹脂、(チオ)ウレア樹脂、及び(チオ)ウレタンウレア樹脂からなる群より選ばれる少なくとも1種を生成する。
(Third prepolymer)
The third prepolymer is a compound having two or more iso(thio)cyanate groups obtained by reacting the first polyfunctional active hydrogen compound and the first iso(thio)cyanate compound. That is, the third prepolymer is the same compound as the first prepolymer. The third prepolymer chemically bonds with the hydroxyl groups on the surfaces of the first prepolymer and the first and second optical sheets at high temperature to form (thio)urethane resin, (thio)urea resin, and (thio)urethane. At least one selected from the group consisting of urea resins is produced.
 接着性組成物が、第1ポリマー及び第3プレポリマーを含む重合成分とフォトクロミック化合物との第3若しくは第4の組み合わせの場合、接着性組成物の固形分において第3プレポリマーが占める割合は、例えば、5質量%以上20質量%以下である。 When the adhesive composition is the third or fourth combination of the polymerizable component containing the first polymer and the third prepolymer and the photochromic compound, the proportion of the third prepolymer in the solid content of the adhesive composition is For example, it is 5 mass % or more and 20 mass % or less.
 (添加剤)
 接着性組成物は、例えば、重合触媒、重合開始剤、帯電防止剤、内部離型剤、酸化防止剤、光安定剤、着色防止剤、蛍光染料、染料、顔料、香料、溶剤、レベリング剤、樹脂改質剤、赤外線吸収剤、紫外線吸収剤、及び可視光吸収剤からなる群より選択される少なくとも1種の添加剤を含んでいてもよい。接着性組成物は、酸化防止剤及びレベリング剤の少なくとも一方を含むことが好ましい。
(Additive)
The adhesive composition includes, for example, a polymerization catalyst, a polymerization initiator, an antistatic agent, an internal release agent, an antioxidant, a light stabilizer, an anti-coloring agent, a fluorescent dye, a dye, a pigment, a fragrance, a solvent, a leveling agent, At least one additive selected from the group consisting of resin modifiers, infrared absorbers, ultraviolet absorbers, and visible light absorbers may be included. The adhesive composition preferably contains at least one of an antioxidant and a leveling agent.
 酸化防止剤としては、2,6-ジ-t-ブチル-4-メチル-フェノール、BASFジャパン株式会社製IRGANOX245:エチレンビス(オキシエチレン)ビス[3,5-tert-ブチル-4-ヒドロキシ-m-トルイル]プロピオネート]、BASFジャパン株式会社製IRGANOX1076:オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、BASFジャパン株式会社製IRGANOX1010:ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、BASFジャパン株式会社製のIRGANOX1035、1075、104、3790、5057、565等を用い得る。 As an antioxidant, 2,6-di-t-butyl-4-methyl-phenol, manufactured by BASF Japan Ltd. IRGANOX245: ethylenebis(oxyethylene)bis[3,5-tert-butyl-4-hydroxy-m -toluyl] propionate], manufactured by BASF Japan Ltd. IRGANOX1076: octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, manufactured by BASF Japan Ltd. IRGANOX1010: pentaerythritol tetrakis [3-(3 ,5-di-tert-butyl-4-hydroxyphenyl)propionate], IRGANOX1035, 1075, 104, 3790, 5057, 565, etc. manufactured by BASF Japan Ltd. can be used.
 レベリング剤としては、シリコーン界面活性剤、フッ素含有界面活性剤等を用い得る。具体的には、ダウ・東レ株式会社製L-7001、L-7002、L-7604、FZ-2123、DIC株式会社製メガファックF-470、メガファックF-1405、メガファックF-479、スリーエムジャパン株式会社製フローラッドFC-430等を用い得る。 As the leveling agent, a silicone surfactant, a fluorine-containing surfactant, or the like can be used. Specifically, L-7001, L-7002, L-7604, FZ-2123 manufactured by Dow Toray Co., Ltd., Megafac F-470 manufactured by DIC Corporation, Megafac F-1405, Megafac F-479, 3M Florad FC-430 manufactured by Japan Co., Ltd. can be used.
 染料、可視光吸収剤としては、ニトロ系化合物、アゾ系化合物、アントラキノン系化合物、スレン系化合物、ポルフィリン系化合物、希土類金属化合物などが挙げられる。その中でも、防眩性と視認性の兼ね合いから、ポルフィリン系化合物、希土類系化合物が好ましい。更には、プラスチック材料中への分散安定性の観点から、ポルフィリン系化合物が最も好ましい。 Examples of dyes and visible light absorbers include nitro-based compounds, azo-based compounds, anthraquinone-based compounds, threne-based compounds, porphyrin-based compounds, and rare earth metal compounds. Among them, porphyrin compounds and rare earth compounds are preferred in view of the balance between antiglare properties and visibility. Furthermore, from the viewpoint of dispersion stability in plastic materials, porphyrin compounds are most preferable.
 前記希土類金属化合物としては、アクアヒドロキシ(1-フェニル1,3-ブタンジオナト)ネオジム、アクアヒドロキシ(フェナシルフェニルケトナト)ネオジム、アクアヒドロキシ(1-フェニル-2-メチル-1,3-ブタンジオナト)ネオジム、アクアヒドロキシ(1-チオフェニル-1,3-ブタンジオナト)ネオジム、アクアヒドロキシ(1-フェニル1,3-ブタンジオナト)エルビウム、アクアヒドロキシ(1-フェニル1,3-ブタンジオナト)ホロニウムなどの錯体を挙げることが出来る。 Examples of the rare earth metal compound include aquahydroxy(1-phenyl-1,3-butanedionato)neodymium, aquahydroxy(phenacylphenylketonato)neodymium, and aquahydroxy(1-phenyl-2-methyl-1,3-butanedionato)neodymium. , aquahydroxy(1-thiophenyl-1,3-butanedionato)neodymium, aquahydroxy(1-phenyl-1,3-butanedionato)erbium, and aquahydroxy(1-phenyl-1,3-butanedionato)holonium. I can.
 前記ポルフィリン系化合物としては、ポルフィリン骨格に種々の置換基を有していても良い化合物である。例えば、特開平5-194616号公報、特開平5-195446号公報、特開2003-105218号公報、特開2008-134618号公報、特開2013-61653号公報、特開2015-180942号公報、WO2012/020570号パンフレット、日本国特許第5626081号、日本国特許第5619472号、日本国特許第第5778109号等に記載されている化合物を好適に使用することができる。 The porphyrin-based compound is a compound that may have various substituents on the porphyrin skeleton. For example, JP-A-5-194616, JP-A-5-195446, JP-A-2003-105218, JP-A-2008-134618, JP-A-2013-61653, JP-A-2015-180942, Compounds described in WO2012/020570 pamphlet, Japanese Patent No. 5626081, Japanese Patent No. 5619472, Japanese Patent No. 5778109, etc. can be preferably used.
 光安定剤としては、2,2,6,6-テトラメチル-4-ピペリジル骨格を有するヒンダートアミン系の化合物を使用することが好ましく、市販のものを使用できる。例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1-オクチルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、1-[2-{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}エチル]-4-{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、メチル(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、1,2,2,6,6-ペンタメチル-4-ピペリジニルメタクリレート、2-[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]-2-ブチルプロパン二酸[1,2,2,6,6-ペンタメチル-4-ピペリジニル]、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート等が挙げられる。商品名としては、株式会社ADEKA製アデカスタブ(登録商標)LAシリーズ(LA-52,LA-57,LA-63P,LA-68,LA-72,LA-77Y,LA-81,LA-82など)、BASFジャパン株式会社製のTINUVIN(登録商標)シリーズ(TINUVIN123,TINUVIN171,TINUVIN249,TINUVIN292,TINUVIN765,TINUVIN622SFなど)、Chimassorb(登録商標)シリーズ(Chimassorb2020FDL,Chimassorb944FDL)等が挙げられる。 As the light stabilizer, it is preferable to use a hindered amine compound having a 2,2,6,6-tetramethyl-4-piperidyl skeleton, and a commercially available one can be used. For example, bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis(1-octyloxy-2, 2,6,6-tetramethyl-4-piperidyl) sebacate, 1-[2-{3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyloxy}ethyl]-4-{3- (3,5-di-t-butyl-4-hydroxyphenyl)propionyloxy}-2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, methyl (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, 1,2,2,6,6-pentamethyl-4-piperidinyl methacrylate, 2-[[3,5-bis(1, 1-dimethylethyl)-4-hydroxyphenyl]methyl]-2-butylpropanedioic acid [1,2,2,6,6-pentamethyl-4-piperidinyl], poly[{6-(1,1,3, 3-tetramethylbutyl)amino-1,3,5-triazine-2,4-diyl}{(2,2,6,6-tetramethyl-4-piperidyl)imino}hexamethylene {(2,2,6 ,6-tetramethyl-4-piperidyl)imino}], 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate and the like. As a product name, ADEKA Co., Ltd. ADEKA STAB (registered trademark) LA series (LA-52, LA-57, LA-63P, LA-68, LA-72, LA-77Y, LA-81, LA-82, etc.) , BASF Japan Co., Ltd. Tinubin (registered trademark) series (TinuVin 123, TinuVin 171, TinuVin249, TinuVin292, TinuVin665, TinuVin 622SF, etc.), CHIMASSORB (registered Trademark) Series (chimassorb2020FDL, chimassorb94444FDL), etc. are listed.
 接着性組成物の固形分において、添加剤が占める割合は、例えば、0.1質量%以上1質量%以下である。 The proportion of the additive in the solid content of the adhesive composition is, for example, 0.1% by mass or more and 1% by mass or less.
 (有機溶媒)
 接着性組成物は、その粘度を調整するために、有機溶媒を含んでいてもよい。有機溶媒は、テトラヒドロフラン、ジエチルケトン、t-ブチルアルコール、イソプロピルアルコール、プロピレングリコールモノメチルエーテル、トルエン、酢酸エチル、及びシクロヘキサノンからなる群より選ばれる少なくとも1種を含み得る。
(organic solvent)
The adhesive composition may contain an organic solvent in order to adjust its viscosity. The organic solvent may contain at least one selected from the group consisting of tetrahydrofuran, diethylketone, t-butyl alcohol, isopropyl alcohol, propylene glycol monomethyl ether, toluene, ethyl acetate, and cyclohexanone.
 接着性組成物において、有機溶媒が占める割合は、例えば、30質量%以上80質量%以下である。 The proportion of the organic solvent in the adhesive composition is, for example, 30% by mass or more and 80% by mass or less.
 (接着性組成物の製造方法)
 接着性組成物は、例えば、下記第1乃至第4の製造方法により得られる。
(Method for producing adhesive composition)
The adhesive composition is obtained, for example, by the following first to fourth manufacturing methods.
 接着性組成物の第1の製造方法は、第1多官能活性水素化合物と第1イソ(チオ)シアネート化合物とを反応させて第1プレポリマーを得ることと、第1プレポリマーと第2多官能活性水素化合物とを反応させて第2プレポリマーを得ることと、第2プレポリマーとフォトクロミック化合物と任意の添加剤とを混合することとを含む。 A first method for producing an adhesive composition comprises: obtaining a first prepolymer by reacting a first polyfunctional active hydrogen compound and a first iso(thio)cyanate compound; reacting with a functional active hydrogen compound to obtain a second prepolymer; and mixing the second prepolymer with the photochromic compound and optional additives.
 接着性組成物の第2の製造方法は、第1多官能活性水素化合物と第1イソ(チオ)シアネート化合物とを反応させて第1プレポリマーを得ることと、第1プレポリマーと第2多官能活性水素化合物とを反応させて第2プレポリマーを得ることと、第2プレポリマーと単官能活性水素化合物とを反応させて第1ポリマー及び第2プレポリマーの混合物を得ることと、第1ポリマー、第2プレポリマー、フォトクロミック化合物及び任意の添加剤を混合することとを含む。 A second method for producing an adhesive composition comprises: obtaining a first prepolymer by reacting a first polyfunctional active hydrogen compound and a first iso(thio)cyanate compound; reacting with a functional active hydrogen compound to obtain a second prepolymer; reacting the second prepolymer with a monofunctional active hydrogen compound to obtain a mixture of the first polymer and the second prepolymer; mixing the polymer, the second prepolymer, the photochromic compound and any additives.
 接着性組成物の第3の製造方法は、第1多官能活性水素化合物と第1イソ(チオ)シアネート化合物とを反応させて第1プレポリマー及び第3プレポリマーを得ることと、第1プレポリマーと第2多官能活性水素化合物とを反応させて第2プレポリマーを得ることと、第2プレポリマーと単官能活性水素化合物とを反応させて第1ポリマーを得ることと、第1ポリマー、第3プレポリマー、フォトクロミック化合物及び任意の添加剤を混合することとを含む。 A third method for producing an adhesive composition comprises reacting a first polyfunctional active hydrogen compound and a first iso(thio)cyanate compound to obtain a first prepolymer and a third prepolymer; reacting the polymer with a second polyfunctional active hydrogen compound to obtain a second prepolymer; reacting the second prepolymer with a monofunctional active hydrogen compound to obtain a first polymer; the first polymer; mixing the third prepolymer, the photochromic compound and any additives.
 接着性組成物の第4の製造方法は、第1多官能活性水素化合物と第1イソ(チオ)シアネート化合物とを反応させて第1プレポリマーを得ることと、第1プレポリマーと第2多官能活性水素化合物とを反応させて第2プレポリマーを得ることと、第2プレポリマーと単官能活性水素化合物とを反応させて第1ポリマー、第2プレポリマー及び第4プレポリマーの混合物を得ることと、第1ポリマー、第2プレポリマー、第4プレポリマー、フォトクロミック化合物及び任意の添加剤を混合することとを含む。 A fourth method for producing an adhesive composition includes: reacting a first polyfunctional active hydrogen compound and a first iso(thio)cyanate compound to obtain a first prepolymer; reacting with a functional active hydrogen compound to obtain a second prepolymer; and reacting the second prepolymer with a monofunctional active hydrogen compound to obtain a mixture of the first polymer, the second prepolymer and the fourth prepolymer. and mixing the first polymer, second prepolymer, fourth prepolymer, photochromic compound and optional additives.
 接着性組成物の第5の製造方法は、第1多官能活性水素化合物と第1イソ(チオ)シアネート化合物とを反応させて第1プレポリマー及び第3プレポリマーを得ることと、第1プレポリマーと第2多官能活性水素化合物とを反応させて第2プレポリマーを得ることと、第2プレポリマーと単官能活性水素化合物とを反応させて第1ポリマーを得ることと、第1ポリマー、第2プレポリマー、第3プレポリマー、フォトクロミック化合物及び任意の添加剤を混合することとを含む。 A fifth method for producing an adhesive composition comprises reacting a first polyfunctional active hydrogen compound and a first iso(thio)cyanate compound to obtain a first prepolymer and a third prepolymer; reacting the polymer with a second polyfunctional active hydrogen compound to obtain a second prepolymer; reacting the second prepolymer with a monofunctional active hydrogen compound to obtain a first polymer; the first polymer; mixing the second prepolymer, the third prepolymer, the photochromic compound and any additives.
 第1多官能活性水素化合物と第1イソ(チオ)シアネート化合物との反応は、有機溶媒存在下で行われることが好ましい。有機溶媒としては上述したものを用い得る。この反応は、窒素雰囲気下で行われることが好ましい。また、この反応は、例えば、60℃以上150℃以下の反応温度で、3時間以上10時間以下にわたって行われる。この反応は、イソシアネート基の逆滴定法により、終点が確認されるまで行われることが好ましい。 The reaction between the first polyfunctional active hydrogen compound and the first iso(thio)cyanate compound is preferably carried out in the presence of an organic solvent. As the organic solvent, those mentioned above can be used. This reaction is preferably carried out under a nitrogen atmosphere. Moreover, this reaction is carried out at a reaction temperature of, for example, 60° C. or higher and 150° C. or lower for 3 hours or longer and 10 hours or shorter. The reaction is preferably carried out until the endpoint is confirmed by back titration of isocyanate groups.
 第1プレポリマーと第2多官能活性水素化合物との反応は、有機溶媒存在下で行われることが好ましい。有機溶媒としては上述したものを用い得る。この反応は、窒素雰囲気下で行われることが好ましい。また、この反応は、例えば、10℃以上30℃以下の反応温度で、0.1時間以上5時間にわたって行われる。 The reaction between the first prepolymer and the second polyfunctional active hydrogen compound is preferably carried out in the presence of an organic solvent. As the organic solvent, those mentioned above can be used. This reaction is preferably carried out under a nitrogen atmosphere. Moreover, this reaction is performed at a reaction temperature of, for example, 10° C. or higher and 30° C. or lower for 0.1 hour or more and 5 hours.
 第2プレポリマーと単官能活性水素化合物との反応は、有機溶媒存在下で行われることが好ましい。有機溶媒としては上述したものを用い得る。この反応は、窒素雰囲気下で行われることが好ましい。また、この反応は、例えば、-10℃以上10℃以下の反応温度で、0.1時間以上5時間以下にわたって行われる。 The reaction between the second prepolymer and the monofunctional active hydrogen compound is preferably carried out in the presence of an organic solvent. As the organic solvent, those mentioned above can be used. This reaction is preferably carried out under a nitrogen atmosphere. Also, this reaction is carried out at a reaction temperature of, for example, −10° C. or higher and 10° C. or lower for 0.1 hour or longer and 5 hours or shorter.
 (光学積層シートの製造方法)
 実施形態に係る光学積層シートの製造方法は、上述した接着性組成物を第1光学シートの少なくとも一方の主面上に塗布して塗膜を得ることと、塗膜上に第2光学シートを積層させることとを含む。
 光学積層シートの製造方法について、以下、詳細に説明する。
(Manufacturing method of optical laminated sheet)
A method for producing an optical laminated sheet according to an embodiment includes: applying the adhesive composition described above to at least one main surface of a first optical sheet to obtain a coating film; and forming a second optical sheet on the coating film. and laminating.
A method for manufacturing the optical laminated sheet will be described in detail below.
 先ず、第1及び第2光学シートを準備する。第1及び第2光学シートとしては、市販のポリビニルアルコール樹脂の無延伸シートを用いてもよく、これに延伸処理及び染色処理を施したものを用いてもよい。 First, prepare the first and second optical sheets. As the first and second optical sheets, commercially available unstretched sheets of polyvinyl alcohol resin may be used, or stretched and dyed sheets may be used.
 次に、第1光学シートの少なくとも一方の主面上に接着性組成物を、例えば、バーコーターを用いて塗布して塗膜を形成する。この塗膜を、例えば、60℃以上150℃の温度で1分間以上1時間以下にわたって乾燥させる。乾燥後の塗膜上に正対するように第2光学シートを積層し、例えば、ラミネートロールを用いて張り合わせて、構造体を得る。 Next, an adhesive composition is applied on at least one main surface of the first optical sheet using, for example, a bar coater to form a coating film. This coating film is dried, for example, at a temperature of 60° C. or higher and 150° C. for 1 minute or longer and 1 hour or shorter. A second optical sheet is laminated on the dried coating film so as to face each other, and laminated using, for example, a lamination roll to obtain a structure.
 次に、得られた構造体を脱気処理に供する。脱気処理に際しては、構造体を、例えば、500Paの真空下、40℃以上80℃以下の温度で、5時間以上20時間以下にわたって静置する。脱気処理後の構造体を加熱処理に供する。加熱処理に際しては、例えば、60℃以上150℃以下の温度で、0.5時間以上5時間以下にわたって構造体を加熱する。接着性組成物が第1ポリマー及び第2プレポリマー若しくは第3ポリマーを含む場合、この加熱処理によりイソ(チオ)シアネート基を有する複合体が形成され、第1及び第2光学積層シートと架橋すると考えられる。加熱処理後の構造体を、室温で一週間以上静置してもよい。 Next, the resulting structure is subjected to degassing treatment. In the degassing treatment, the structure is allowed to stand at a temperature of 40° C. or higher and 80° C. or lower under a vacuum of 500 Pa for 5 hours or longer and 20 hours or shorter. The structure after degassing is subjected to heat treatment. During the heat treatment, the structure is heated, for example, at a temperature of 60° C. or higher and 150° C. or lower for 0.5 hours or more and 5 hours or less. When the adhesive composition contains the first polymer and the second prepolymer or the third polymer, the heat treatment forms a composite having iso(thio)cyanate groups, which is crosslinked with the first and second optical laminated sheets. Conceivable. The structure after heat treatment may be left at room temperature for one week or more.
 このようにして得られた実施形態に係る光学積層シートは、フォトクロミック接着層が、第2プレポリマー又は第1ポリマー及び第2プレポリマー若しくは第3ポリマーを含む接着性組成物の硬化体を含むため、フォトクロミック性に優れ、かつ、密着性及び外観に優れている。 In the optical laminated sheet according to the embodiment thus obtained, the photochromic adhesive layer contains a cured adhesive composition containing the second prepolymer or the first polymer and the second prepolymer or the third polymer. , excellent photochromic properties, and excellent adhesion and appearance.
 (第2の光学積層シート)
 第2の光学積層シートは、第1光学シート及び第2光学シートと、透明支持体と、第1接着層と、第2接着層とを含む。透明支持体は、第1光学シート及び第2光学シートの間に位置する。第1接着層は、第1光学シートと透明支持体とを接着させ、フォトクロミック化合物を含む。第2接着層は、透明支持体と第2光学シートとを接着させる。
(Second optical laminated sheet)
The second optical laminate sheet includes a first optical sheet and a second optical sheet, a transparent support, a first adhesive layer, and a second adhesive layer. A transparent support is located between the first optical sheet and the second optical sheet. The first adhesive layer adheres the first optical sheet and the transparent support, and contains a photochromic compound. The second adhesive layer adheres the transparent support and the second optical sheet.
 光学積層シートを用いたフォトクロミックレンズの製造工程においては、光学積層シートの少なくとも一方の主面とレンズ基材とを一体化させる工程を有する。この工程において、目的のレンズ形状に沿った曲面形状に加工された光学積層シートを用いて、曲面状のフォトクロミックレンズを製造することがある。 The manufacturing process of a photochromic lens using an optical laminated sheet includes a step of integrating at least one main surface of the optical laminated sheet with the lens substrate. In this process, a curved photochromic lens may be manufactured using an optical laminated sheet that has been processed into a curved shape along the intended lens shape.
 光学積層シートの曲面加工は、例えば、加熱した光学積層シートの一方の主面側を減圧し、曲面形状を有する金型に光学積層シートを沿わせた後、光学積層シートを冷却することにより行われる。この際、光学積層シートの厚みが薄く、強度が十分ではない場合、金型に沿わせた光学積層シートの縁部に変形が生じ得る。縁部に変形が生じた光学積層シートは、フォトクロミックレンズの製造に適さないため、このような光学積層シートが製造されると、フォトクロミックレンズの製造効率が低下する。 The curved surface processing of the optical laminated sheet is performed, for example, by decompressing one main surface side of the heated optical laminated sheet, placing the optical laminated sheet along a mold having a curved surface shape, and then cooling the optical laminated sheet. will be At this time, if the thickness of the optical laminated sheet is thin and the strength is not sufficient, the edge of the optical laminated sheet along the mold may be deformed. An optical laminated sheet with deformed edges is not suitable for manufacturing a photochromic lens. Therefore, when such an optical laminated sheet is manufactured, the manufacturing efficiency of the photochromic lens is lowered.
 第2の光学積層シートは、第1光学シート及び第2光学シートの間に、透明支持体が存在する。透明支持体は、光学積層シートの強度を高め、自立性を高める。したがって、実施形態に係る光学積層シートは、曲面加工時に変形が生じにくい。それゆえ、第2の光学積層シートを用いると、光学物品の歩留まりを高められる。 The second optical laminated sheet has a transparent support between the first optical sheet and the second optical sheet. The transparent support enhances the strength of the optical laminated sheet and enhances the self-standing. Therefore, the optical laminated sheet according to the embodiment is less likely to be deformed during curved surface processing. Therefore, the use of the second optical laminated sheet can increase the yield of optical articles.
 図2は、第2の光学積層シートの一例を概略的に示す断面図である。図2に示す光学積層シート1aは、第1光学シート3と、第2光学シート2と、第1接着層4と、透明支持体5と、第2接着層6とを含む。透明支持体5の一方の主面の少なくとも一部は、第1接着層4により被覆されている。透明支持体5の他方の主面の少なくとも一部は、第2接着層6により被覆されている。透明支持体5は、第1接着層4を介して第1光学シート3と接着され、また、第2接着層6を介して第2光学シート2と接着されている。 FIG. 2 is a cross-sectional view schematically showing an example of the second optical laminated sheet. The optical laminated sheet 1 a shown in FIG. 2 includes a first optical sheet 3 , a second optical sheet 2 , a first adhesive layer 4 , a transparent support 5 and a second adhesive layer 6 . At least part of one main surface of the transparent support 5 is covered with the first adhesive layer 4 . At least part of the other main surface of the transparent support 5 is covered with a second adhesive layer 6 . The transparent support 5 is adhered to the first optical sheet 3 via the first adhesive layer 4 and adhered to the second optical sheet 2 via the second adhesive layer 6 .
 (第1接着層)
 第1接着層は、上記フォトクロミック接着層と同一構造を有し得る。
(First adhesive layer)
The first adhesive layer may have the same structure as the photochromic adhesive layer.
 (第2接着層)
 第2接着層は、樹脂を含むことが好ましい。樹脂は、例えば、ポリビニルアルコール樹脂、(メタ)アクリル樹脂、ウレタンアクリレート系樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリチオウレタン樹脂、及びポリチオウレタンウレア樹脂からなる群より選ばれる少なくとも1種を含むことが好ましい。
(Second adhesive layer)
The second adhesive layer preferably contains a resin. The resin includes, for example, at least one selected from the group consisting of polyvinyl alcohol resins, (meth)acrylic resins, urethane acrylate resins, polyurethane resins, polyurethane urea resins, polythiourethane resins, and polythiourethane urea resins. is preferred.
 第2接着層は、フォトクロミック化合物を含んでもよく、含まなくてもよい。第2接着層がフォトクロミック化合物を含む場合、その構造は、第1接着層に含まれるフォトクロミック化合物と同一であってもよく、異なっていてもよい。また、第2接着層は、染料、顔料等の着色剤を含んでいてもよい。第2接着層が着色剤を含む場合、その種類は、第1接着層に含まれる着色剤と同一であってもよく、異なっていてもよい。 The second adhesive layer may or may not contain a photochromic compound. When the second adhesive layer contains a photochromic compound, its structure may be the same as or different from the photochromic compound contained in the first adhesive layer. Also, the second adhesive layer may contain a coloring agent such as a dye or a pigment. When the second adhesive layer contains a coloring agent, the type of the coloring agent may be the same as or different from the coloring agent contained in the first adhesive layer.
 第2接着層の厚みは、第1接着層と同一でもよく、厚くてもよく、薄くてもよい。第2接着層がフォトクロミック化合物を含む場合、その厚みは、第1接着層と同一程度に厚いことが好ましい。第2接着層がフォトクロミック化合物を含まない場合、その厚みは、第1接着層よりも薄いことが好ましい。第2接着層の厚みは、例えば、0.1μm以上100μm以下であり、好ましくは、10μm以上50μm以下である。第2接着層の厚みは、第1及び第2光学シートの厚みよりも薄くてもよく、厚くてもよい。第2接着層の厚みは、例えば、PVAシートの厚みと同様の方法で測定できる。 The thickness of the second adhesive layer may be the same as that of the first adhesive layer, thicker, or thinner. When the second adhesive layer contains a photochromic compound, it is preferably as thick as the first adhesive layer. When the second adhesive layer does not contain a photochromic compound, it is preferably thinner than the first adhesive layer. The thickness of the second adhesive layer is, for example, 0.1 μm or more and 100 μm or less, preferably 10 μm or more and 50 μm or less. The thickness of the second adhesive layer may be thinner or thicker than the thicknesses of the first and second optical sheets. The thickness of the second adhesive layer can be measured, for example, by the same method as the thickness of the PVA sheet.
 (透明支持体)
 透明支持体は、例えば、光学積層シートの強度を向上可能な自立膜である。透明支持体は、光学的に透明であればよい。透明支持体は、無色透明であってもよく、白色透明であってもよく、有色透明であってもよい。透明支持体の視感透過率は、30%以上であることが好ましい。透明支持体の視感透過率は、UV-Vis分光光度計により測定できる。
(Transparent support)
The transparent support is, for example, a self-supporting film that can improve the strength of the optical laminated sheet. The transparent support may be optically transparent. The transparent support may be colorless and transparent, white and transparent, or colored and transparent. The luminous transmittance of the transparent support is preferably 30% or more. The luminous transmittance of the transparent support can be measured with a UV-Vis spectrophotometer.
 透明支持体の材質は特に限定されない。透明支持体は、例えば、樹脂フィルム、又は、セラミックフィルムである。透明支持体は、ポリエチレンテレフタレート、トリアセチルセルロース、ポリアミド、ポリカーボネートシート、セルロースアセテートブチレート、及び、(メタ)アクリルからなる群より選択される少なくとも1種の樹脂を含むことが好ましく、ポリエチレンテレフタレート、トリアセチルセルロース、ポリアミド、及びポリカーボネートシートからなる群より選択される少なくとも1種の樹脂を含むことがより好ましい。 The material of the transparent support is not particularly limited. A transparent support is, for example, a resin film or a ceramic film. The transparent support preferably contains at least one resin selected from the group consisting of polyethylene terephthalate, triacetyl cellulose, polyamide, polycarbonate sheet, cellulose acetate butyrate, and (meth)acryl. More preferably, it contains at least one resin selected from the group consisting of acetylcellulose, polyamide, and polycarbonate sheets.
 透明支持体の厚みは、第1及び第2光学シートの厚みよりも厚いことが好ましい。透明支持体の厚みは、50μm以上であることが好ましく、100μm以上であることが好ましく、200μm以上であることがより好ましい。透明支持体の厚みが厚いと、光学積層シートの強度がより高まる傾向にある。透明支持体の厚みに上限は特にないが、一例によると、1000μm以下であり、他の例によると、500μm以下である。透明支持体の厚みは、例えば、PVAシートの厚みと同様の方法で測定できる。 The thickness of the transparent support is preferably thicker than the thickness of the first and second optical sheets. The thickness of the transparent support is preferably 50 μm or more, preferably 100 μm or more, more preferably 200 μm or more. A thick transparent support tends to increase the strength of the optical laminated sheet. Although there is no particular upper limit to the thickness of the transparent support, it is 1000 μm or less in one example, and 500 μm or less in another example. The thickness of the transparent support can be measured, for example, by the same method as the thickness of the PVA sheet.
 透明支持体は、上述したその他の樹脂シートと同様に、その表面に表面改質領域を備えることが好ましい。表面改質領域を有する透明支持体を用いると、第1及び第2接着層との密着性が高まる傾向にある。表面改質領域は、透明支持体の両方の主面上に設けられていることが好ましい。 The transparent support preferably has a surface-modified region on its surface, like the other resin sheets described above. The use of a transparent support having a surface-modified region tends to increase adhesion to the first and second adhesive layers. Surface-modified regions are preferably provided on both major surfaces of the transparent support.
 (第2の光学積層シートの製造方法)
 第2の光学積層シートの製造方法は、上述した第1接着性組成物を第1光学シートの少なくとも一方の主面上に塗布して第1塗膜を得ることと、第2接着性組成物を第2光学シートの少なくとも一方の主面上に塗布して第2塗膜を得ることと、第1塗膜と第2塗膜との間に透明支持体が位置し、これらと接するように、第1光学シート、透明支持体、及び第2光学シートを積層させることとを含む。
(Method for producing second optical laminated sheet)
A second method for producing an optical laminated sheet comprises: applying the first adhesive composition described above to at least one main surface of the first optical sheet to obtain a first coating film; on at least one main surface of the second optical sheet to obtain a second coating; , laminating the first optical sheet, the transparent support, and the second optical sheet.
 光学積層シートの製造方法について、以下、詳細に説明する。
 先ず、第1及び第2光学シートを準備する。第1及び第2光学シートとしては、市販の樹脂シートを用いることができる。樹脂シートは、無延伸シートを用いてもよく、これに延伸処理及び染色処理を施したものを用いてもよい。第1及び第2光学シートの各主面上には、上述した方法により表面改質領域を設けてもよい。
A method for manufacturing the optical laminated sheet will be described in detail below.
First, the first and second optical sheets are prepared. Commercially available resin sheets can be used as the first and second optical sheets. As the resin sheet, a non-stretched sheet may be used, or a stretched and dyed sheet may be used. A surface modified region may be provided on each main surface of the first and second optical sheets by the method described above.
 次に、第1光学シートの少なくとも一方の主面上に第1接着性組成物を、例えば、バーコーターを用いて塗布して第1塗膜を形成する。この塗膜を、例えば、60℃以上150℃の温度で1分間以上1時間以下にわたって乾燥させる。 Next, the first adhesive composition is applied on at least one main surface of the first optical sheet using, for example, a bar coater to form a first coating film. This coating film is dried, for example, at a temperature of 60° C. or higher and 150° C. for 1 minute or longer and 1 hour or shorter.
 次に、第2光学シートの少なくとも一方の主面上に第2接着性組成物を、例えば、バーコーターを用いて塗布して第2塗膜を形成する。この塗膜を、例えば、60℃以上150℃の温度で1分間以上1時間以下にわたって乾燥させる。 Next, the second adhesive composition is applied on at least one main surface of the second optical sheet using, for example, a bar coater to form a second coating film. This coating film is dried, for example, at a temperature of 60° C. or higher and 150° C. for 1 minute or longer and 1 hour or shorter.
 次に、第1塗膜と第2塗膜との間に、これらと接するように透明支持体を設置して積層体を得る。この積層体を、例えば、ラミネートロールを用いて張り合わせて構造体を得る。透明支持体の少なくとも一方の主面上には、上述した方法により表面改質領域を設けてもよい。 Next, a transparent support is placed between the first coating film and the second coating film so as to be in contact with them to obtain a laminate. This laminate is laminated using, for example, lamination rolls to obtain a structure. A surface-modified region may be provided on at least one main surface of the transparent support by the method described above.
 次に、得られた構造体を脱気処理に供する。脱気処理に際しては、構造体を、例えば、500Paの真空下、40℃以上80℃以下の温度で、5時間以上20時間以下にわたって静置する。脱気処理後の構造体を加熱処理に供する。加熱処理に際しては、例えば、60℃以上150℃以下の温度で、0.5時間以上5時間以下にわたって構造体を加熱する。加熱処理後の構造体を、室温で一週間以上静置してもよい。以上の方法により、実施形態に係る光学積層シートを得る。 Next, the resulting structure is subjected to degassing treatment. In the degassing treatment, the structure is allowed to stand at a temperature of 40° C. or higher and 80° C. or lower under a vacuum of 500 Pa for 5 hours or longer and 20 hours or shorter. The structure after degassing is subjected to heat treatment. During the heat treatment, the structure is heated, for example, at a temperature of 60° C. or higher and 150° C. or lower for 0.5 hours or more and 5 hours or less. The structure after heat treatment may be left at room temperature for one week or longer. By the above method, the optical laminated sheet according to the embodiment is obtained.
[光学物品]
 実施形態に係る光学物品は、実施形態に係る光学積層シートを含む。実施形態に係る光学物品は、実施形態に係る光学積層シートと、第1光学シート及び第2光学シートの少なくとも一方の表面を被覆し、樹脂を含む光学素子基材とを含み得る。光学素子基材は、第1光学シート及び第2光学シートの両方のフォトクロミック接着層と接しない表面を被覆していてもよい。光学積層シートは、光学素子基材内部に収容されていてもよい。
[Optical article]
An optical article according to embodiments includes an optical laminated sheet according to embodiments. An optical article according to an embodiment may include the optical laminate sheet according to the embodiment, and an optical element substrate that covers at least one surface of the first optical sheet and the second optical sheet and contains a resin. The optical element substrate may cover the surfaces of both the first optical sheet and the second optical sheet that are not in contact with the photochromic adhesive layer. The optical laminate sheet may be housed inside the optical element substrate.
 光学物品としては、レンズ、家屋や自動車の窓ガラス、液晶ディスプレイ、サンバイザー、時計等が挙げられる。レンズは、セミフィニッシュドレンズ及びフィニッシュドレンズを含む。 Optical articles include lenses, window glass for houses and automobiles, liquid crystal displays, sun visors, and clocks. Lenses include semi-finished lenses and finished lenses.
 図3は、実施形態に係る光学物品の一例を概略的に示す断面図である。図3に示す光学物品10は、第1光学素子基材11と、第2光学素子基材12と、これらの間に介在する光学積層シート1とを含む。光学積層シート1は、図1に示す第1の光学積層シートである。光学積層シート1は、図2に示す第2の光学積層シート1aを用いてもよい。光学物品10は、凹凸レンズ形状を有している。光学積層シート1は、レンズの形状に沿った曲面を有している。第1光学素子基材11は凹面側に位置し、第2光学素子基材12は凸面側に位置している。第1光学素子基材11は、光学基材シート1の図示しない第1光学シートの表面全体を被覆している。第2光学素子基材12は、光学基材シート1の図示しない第2光学シートの表面全体を被覆している。光学基材シート1の側面は、第1及び第2光学基材により被覆されていない。光学基材シート1の側面は、第1及び第2光学基材により被覆されていてもよい。 FIG. 3 is a cross-sectional view schematically showing an example of the optical article according to the embodiment. The optical article 10 shown in FIG. 3 includes a first optical element substrate 11, a second optical element substrate 12, and an optical laminated sheet 1 interposed therebetween. The optical laminated sheet 1 is the first optical laminated sheet shown in FIG. As the optical laminated sheet 1, the second optical laminated sheet 1a shown in FIG. 2 may be used. The optical article 10 has a concave-convex lens shape. The optical laminated sheet 1 has a curved surface along the shape of the lens. The first optical element substrate 11 is located on the concave side, and the second optical element substrate 12 is located on the convex side. The first optical element substrate 11 covers the entire surface of the first optical sheet (not shown) of the optical substrate sheet 1 . The second optical element substrate 12 covers the entire surface of the second optical sheet (not shown) of the optical substrate sheet 1 . The side surfaces of the optical substrate sheet 1 are not covered with the first and second optical substrates. The side surfaces of the optical substrate sheet 1 may be covered with the first and second optical substrates.
 図4は、実施形態に係る眼鏡の一例を概略的に示す斜視図である。図4に示す眼鏡100は、レンズ101と、このレンズ101を支持するフレーム102とを含む。レンズ101は、実施形態に係る光学物品を含む。 FIG. 4 is a perspective view schematically showing an example of eyeglasses according to the embodiment. Spectacles 100 shown in FIG. 4 include lenses 101 and a frame 102 that supports the lenses 101 . Lens 101 includes an optical article according to embodiments.
 (光学素子基材)
 光学素子基材は、樹脂を含み得る。樹脂は、ポリエステル樹脂、ポリアミド樹脂、アリル樹脂、アクリル樹脂、メタクリル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリチオウレタン樹脂、ポリチオウレタンウレア樹脂、ポリチオエポキシ樹脂、及びポリカーボネート樹脂よりなる群から選ばれる少なくとも1種を含み得る。
(Optical element substrate)
The optical element substrate may contain a resin. The resin is selected from the group consisting of polyester resins, polyamide resins, allyl resins, acrylic resins, methacrylic resins, polyurethane resins, polyurethane urea resins, polythiourethane resins, polythiourethane urea resins, polythioepoxy resins, and polycarbonate resins. At least one may be included.
 樹脂は、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリチオウレタン樹脂、ポリチオウレタンウレア樹脂、及びポリチオエポキシ樹脂からなる群より選ばれる少なくとも1種を含むことが好ましい。これらの樹脂は、構成するモノマーが光学基材シートの第1及び第2光学シートの表面の水酸基と化学結合し得るため、光学基材シートとの密着性が高い傾向にある。より好ましくは、ポリチオウレタン樹脂、ポリチオエポキシ樹脂、及びポリウレタンウレア樹脂からなる群より選ばれる少なくとも1種である。 The resin preferably contains at least one selected from the group consisting of polyurethane resins, polyurethane urea resins, polythiourethane resins, polythiourethane urea resins, and polythioepoxy resins. These resins tend to have high adhesion to the optical base sheet because the constituent monomers can chemically bond with the hydroxyl groups on the surfaces of the first and second optical sheets of the optical base sheet. More preferably, it is at least one selected from the group consisting of polythiourethane resins, polythioepoxy resins, and polyurethaneurea resins.
 (光学物品の製造方法)
 実施形態に係る光学物品は、例えば、以下の方法で製造される。
 先ず、光学素子基材を形成するための硬化性組成物を準備する。硬化性組成物は、各樹脂に対応した公知の組成物を使用し得る。次に、鋳型及びガスケットを準備する。鋳型は、上型と下型とを含む。上型と下型とを組み合わせることにより、内部に中空部が形成される。ガスケットは、この上型と下型との境界面に設置される。ガスケットの内側には、実施形態に係る光学積層シートを固定するための切込みが設けられている。ガスケットの内側には、切込みの代わりに、凸部又は凹部が設けられていてもよい。鋳型及びガスケットは、例えば、公知のプラスチックレンズ成型用のものである。
(Method for manufacturing optical article)
An optical article according to an embodiment is manufactured, for example, by the following method.
First, a curable composition for forming an optical element substrate is prepared. A known composition corresponding to each resin can be used as the curable composition. Next, prepare the mold and gasket. The mold includes an upper mold and a lower mold. A hollow portion is formed inside by combining the upper mold and the lower mold. A gasket is installed on the interface between the upper mold and the lower mold. The inside of the gasket is provided with cuts for fixing the optical laminated sheet according to the embodiment. The inside of the gasket may be provided with protrusions or recesses instead of cuts. The molds and gaskets are, for example, known for molding plastic lenses.
 次に、ガスケットの切込みに実施形態に係る光学積層シートの端部を差し込み固定する。このガスケットを、鋳型の境界面に設置する。これにより、鋳型の中空部内にまたがるように光学積層シートが設置される。次に、この鋳型の中空部内に、硬化性組成物を充填する。硬化性組成物充填後の鋳型を、熱処理して、硬化性組成物を硬化させる。熱処理に際しては、例えば、常温から硬化温度まで徐々に昇温し、硬化温度に達した後、一定時間保持する。硬化温度は、光学素子基材の樹脂の種類により異なるが、例えば、60℃以上200℃以下である。昇温速度は、例えば、1℃/時間以上10℃/時間以下である。硬化温度での保持時間は、例えば、0.1時間以上10時間以下である。 Next, the end of the optical laminate sheet according to the embodiment is inserted into the notch of the gasket and fixed. This gasket is placed at the interface of the mold. As a result, the optical laminate sheet is installed so as to extend over the inside of the hollow portion of the mold. Next, the hollow part of this mold is filled with a curable composition. The mold filled with the curable composition is heat-treated to cure the curable composition. During the heat treatment, for example, the temperature is gradually raised from normal temperature to the curing temperature, and after reaching the curing temperature, the temperature is maintained for a certain period of time. The curing temperature is, for example, 60° C. or higher and 200° C. or lower, although it varies depending on the type of resin of the optical element substrate. The heating rate is, for example, 1° C./hour or more and 10° C./hour or less. The retention time at the curing temperature is, for example, 0.1 hours or more and 10 hours or less.
 熱処理終了後、鋳型から硬化体を取り出す。取り出した硬化体を、上記硬化温度の範囲内で更に上記保持時間にわたって加熱する。このようにして、光学積層シートの第1及び第2光学シートの表面が、光学素子基材により被覆された実施形態に係る光学物品が得られる。 After the heat treatment is completed, the hardened body is removed from the mold. The cured body taken out is further heated within the range of the above-mentioned curing temperature for the above-mentioned holding time. Thus, an optical article according to an embodiment is obtained in which the surfaces of the first and second optical sheets of the optical laminated sheet are coated with the optical element substrate.
 実施形態に係る光学物品は、以下の方法により得てもよい。先ず、上記の鋳型の下型に、硬化性組成物の一部を充填する。充填後の硬化性組成物の表面に、光学積層シートを設置する。次に、下型と向き合うように上型を設置して中空部を形成する。この中空部内に硬化性組成物の残りを充填する。得られた鋳型を上記と同様の方法で加熱し、硬化体を得る。このようにして、光学積層シートの主面及び側面の全面が、光学素子基材により被覆された実施形態に係る光学物品が得られる。 The optical article according to the embodiment may be obtained by the following method. First, part of the curable composition is filled into the lower mold of the mold. An optical laminate sheet is placed on the surface of the curable composition after filling. Next, an upper mold is installed so as to face the lower mold to form a hollow portion. The remainder of the curable composition is filled into this hollow portion. The resulting mold is heated in the same manner as above to obtain a cured product. In this way, an optical article according to an embodiment is obtained in which the main surface and the entire side surface of the optical laminated sheet are coated with the optical element base material.
 また、実施形態に係る光学物品は、以下の方法により得てもよい。先ず、鋳型の上面に沿うように光学積層シートを設置する。光学積層シートの鋳型の上面と接しない面、すなわち、裏面側に向けて硬化性組成物を充填し、上記と同様の条件で熱処理し、第1硬化体を得る。第1硬化体は、第1光学素子基材の一方の主面上に光学積層シートが積層された積層体である。この第1硬化体を、鋳型内に設置する。第1硬化体の第2光学シートの表面に向けて硬化性組成物を充填し、上記と同様の条件で熱処理し、第2硬化体を得る。第2硬化体は、第1光学素子基材の一方の主面上に光学積層シートが積層され、この光学積層シート状に第2光学素子基材が積層された積層体である。このようにして、光学積層シートの主面と任意に側面とが、光学素子基材により被覆された実施形態に係る光学物品が得られる。 Also, the optical article according to the embodiment may be obtained by the following method. First, an optical laminate sheet is placed along the upper surface of the mold. The surface of the optical laminate sheet that does not come into contact with the upper surface of the mold, that is, the back side, is filled with the curable composition and heat-treated under the same conditions as above to obtain the first cured body. The first cured body is a laminate in which an optical laminate sheet is laminated on one main surface of the first optical element substrate. This first cured body is placed in a mold. The curable composition is filled toward the surface of the second optical sheet of the first cured body and heat-treated under the same conditions as above to obtain the second cured body. The second cured body is a laminate in which an optical laminate sheet is laminated on one main surface of the first optical element substrate, and the second optical element substrate is laminated on this optical laminate sheet. In this way, an optical article according to an embodiment is obtained in which the main surface and optionally the side surfaces of the optical laminate sheet are coated with the optical element substrate.
 以下、光学素子基材の各樹脂用の硬化性組成物について詳細に記述する。
 アリル系樹脂用の硬化性組成物は、アリル基を有するアリルモノマーと重合開始剤とを含む。アリルモノマーは、例えば、ジエチレングリコールビスアリルカーボネート、ジアリルイソフタレート、及びジアリルテレフタレートからなる群より選ばれる少なくとも1種を含む。重合開始剤は、例えば、ジイソプロピルパーオキシカーボネートを含む。
The curable composition for each resin of the optical element substrate is described in detail below.
A curable composition for an allyl-based resin contains an allyl monomer having an allyl group and a polymerization initiator. Allyl monomers include, for example, at least one selected from the group consisting of diethylene glycol bisallyl carbonate, diallyl isophthalate, and diallyl terephthalate. Polymerization initiators include, for example, diisopropyl peroxycarbonate.
 (メタ)アクリル系樹脂用の硬化性組成物は、(メタ)アクリレート基を有する(メタ)アクリルモノマーと重合開始剤とを含む。(メタ)アクリルモノマーは、例えば、グリシジル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、トリメチロールプロパントリエチレングリコールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ウレタンアクリレート、ウレタンオリゴマーテトラ(メタ)アクリレート、ウレタンオリゴマーヘキサ(メタ)アクリレート、ポリエステルオリゴマーヘキサ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロイルオキシエトキシフェニル)プロパン、平均分子量776の2,2-ビス(4-(メタ)アクリロイルオキシポリエチレングリコールフェニル)プロパン、平均分子量475のメチルエーテルポリエチレングリコール(メタ)アクリレート、平均分子量522のポリエチレングリコールジアクリレート、メチル(メタ)アクリレート等の少なくとも一つの(メタ)アクリレート基を分子中に有する(メタ)アクリレートモノマーからなる群より選ばれる少なくとも1種を含む。重合開始剤は、例えば、t-ブチルパーオキシネオデカネートを含む。 A curable composition for a (meth)acrylic resin contains a (meth)acrylic monomer having a (meth)acrylate group and a polymerization initiator. (Meth)acrylic monomers include, for example, glycidyl (meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylolmethane tri(meth)acrylate, trimethylolpropane triethylene glycol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate ) acrylate, dipentaerythritol hexa (meth) acrylate, urethane acrylate, urethane oligomer tetra (meth) acrylate, urethane oligomer hexa (meth) acrylate, polyester oligomer hexa (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth)acrylate, tetraethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, bisphenol A di(meth)acrylate, 2,2-bis(4-(meth)acryloyloxyethoxyphenyl)propane, average 2,2-bis(4-(meth)acryloyloxypolyethylene glycol phenyl)propane with a molecular weight of 776, methyl ether polyethylene glycol (meth)acrylate with an average molecular weight of 475, polyethylene glycol diacrylate with an average molecular weight of 522, methyl (meth)acrylate, etc. contains at least one selected from the group consisting of (meth)acrylate monomers having at least one (meth)acrylate group in the molecule. Polymerization initiators include, for example, t-butyl peroxyneodecanate.
 ウレタンウレア系樹脂用の硬化性組成物は、ポリイソシアネート化合物とポリオール化合物とのプレポリマー、及び、ジアミン化合物を含む。ポリイソシアネート化合物、ポリオール化合物、及びジアミン化合物としては、それぞれ、接着性組成物において上述したものを用い得る。ポリイソシアネート化合物は、4,4’-メチレンビス(シクロヘキシルイソシアネート)の異性体混合物を含むことが好ましい。ポリオール化合物は、1,6-ヘキサンジオールとアジピン酸と反応させて得られるポリエステルポリオールを含むことが好ましい。ジアミン化合物は、2,4-ジアミノ-3,5-ジエチル-トルエン、2,6-ジアミノ-3,5-ジエチル-トルエン、4,4’-メチレンビス(3-クロロ-2,6-ジエチルアニリン)、パラフェニレンジアミン、メタフェニレンジアミン、4,4’-ジアミノジフェニルエーテル、ジアミノジフェニルメタン、ビス-4-(4-アミノフェノキシ)フェニルスルフォン、ビス-4-(3-アミノフェノキシ)フェニルスルフォン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェノキシ)ヘキサフルオロプロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、及び4,4’-ビス(4-アミノフェノキシ)ビフェニルからなる群より選択される少なくとも1種を含むことが好ましい。 A curable composition for a urethane urea resin contains a prepolymer of a polyisocyanate compound and a polyol compound, and a diamine compound. As the polyisocyanate compound, the polyol compound, and the diamine compound, those described above for the adhesive composition can be used. The polyisocyanate compound preferably contains an isomeric mixture of 4,4'-methylenebis(cyclohexylisocyanate). The polyol compound preferably contains a polyester polyol obtained by reacting 1,6-hexanediol with adipic acid. Diamine compounds include 2,4-diamino-3,5-diethyl-toluene, 2,6-diamino-3,5-diethyl-toluene, 4,4′-methylenebis(3-chloro-2,6-diethylaniline) , paraphenylenediamine, metaphenylenediamine, 4,4′-diaminodiphenyl ether, diaminodiphenylmethane, bis-4-(4-aminophenoxy)phenylsulfone, bis-4-(3-aminophenoxy)phenylsulfone, 2,2- bis(4-(4-aminophenoxy)phenyl)propane, 2,2-bis(4-(4-aminophenoxy)phenyl)hexafluoropropane, 2,2-bis(4-aminophenoxy)hexafluoropropane, 1 , 3-bis(3-aminophenoxy)benzene, 1,4-bis(3-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 1,4-bis(3-aminophenoxy)benzene , and 4,4′-bis(4-aminophenoxy)biphenyl.
 チオウレタン系樹脂用の硬化性組成物は、ポリイソシアネート化合物とポリチオール化合物と重合触媒とを含む。ポリイソシアネート化合物としては、接着性組成物において上述したものを用い得る。ポリイソシアネート化合物は、ジシクロヘキシルメタン-4,4'-ジイソシアネート、イソホロンジイソシアネート、2,5-ジイソシアナートメチル-1,4-ジチアン、2,5-ビス(4-イソシアナート-2-チアブチル)-1,4-ジチアン、2,5-ビス(3-イソシアナートメチル-4-イソシアナート-2-チアブチル)-1,4-ジチアン、2,5-ビス(3-イソシアナート-2-チアプロピル)-1,4-ジチアン、1,3,5-トリイソシアナートシクロヘキサン、1,3,5-トリス(イソシアナートメチル)シクロヘキサン、ビス(イソシアネートメチルチオ)メタン、1,5-ジイソシアネート-2-イソシアネートメチル-3-チアペンタン、1,2,3-トリス(イソシアネートエチルチオ)プロパン、1,2,3-トリス(イソシアネートメチルチオ)プロパン、1,1,6,6-テトラキス(イソシアネートメチル)-2,5-ジチアヘキサン、1,1,5,5 -テトラキス(イソシアネートメチル)-2,4-ジチアペンタン、1,2-ビス(イソシアネートメチルチオ)エタン、1,5-ジイソシアネート-3-イソシアネートメチル-2,4-ジチアペンタンからなる群より選択される少なくとも1種を含むことが好ましい。 The curable composition for thiourethane resin contains a polyisocyanate compound, a polythiol compound and a polymerization catalyst. As the polyisocyanate compound, those mentioned above in the adhesive composition can be used. Polyisocyanate compounds include dicyclohexylmethane-4,4'-diisocyanate, isophorone diisocyanate, 2,5-diisocyanatomethyl-1,4-dithiane, 2,5-bis(4-isocyanato-2-thiabutyl)-1 ,4-dithiane, 2,5-bis(3-isocyanatomethyl-4-isocyanato-2-thiabutyl)-1,4-dithiane, 2,5-bis(3-isocyanato-2-thiapropyl)-1 ,4-dithiane, 1,3,5-triisocyanatocyclohexane, 1,3,5-tris(isocyanatomethyl)cyclohexane, bis(isocyanatomethylthio)methane, 1,5-diisocyanato-2-isocyanatomethyl-3- Thiapentane, 1,2,3-tris(isocyanatoethylthio)propane, 1,2,3-tris(isocyanatomethylthio)propane, 1,1,6,6-tetrakis(isocyanatomethyl)-2,5-dithiahexane, 1 , 1,5,5-tetrakis(isocyanatomethyl)-2,4-dithiapentane, 1,2-bis(isocyanatomethylthio)ethane, 1,5-diisocyanate-3-isocyanatomethyl-2,4-dithiapentane It is preferable to include at least one selected.
 ポリチオール化合物は、例えば、1,2-ジメルカプトエタン、1,2-ジメルカプトプロパン、2,2-ジメルカプトプロパン、1,3-ジメルカプトプロパン、1,2,3-トリメルカプトプロパン、1,4-ジメルカプトブタン、1,6-ジメルカプトヘキサン、ビス(2-メルカプトエチル)スルフィド、ビス(2,3-ジメルカプトプロピル)スルフィド、1,2-ビス(2-メルカプトエチルチオ)エタン、1,5-ジメルカプト-3-オキサペンタン、1,8-ジメルカプト-3,6-ジオキサオクタン、2,2-ジメチルプロパン-1,3-ジチオール、3,4-ジメトキシブタン-1,2-ジチオール、2-メルカプトメチル-1,3-ジメルカプトプロパン、2-メルカプトメチル-1,4-ジメルカプトブタン、2-(2-メルカプトエチルチオ)-1,3-ジメルカプトプロパン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、2,4-ビス(メルカプトメチル)-1,5-ジメルカプト-3-チアペンタン、4,8-ビス(メルカプトメチル)-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ビス(メルカプトメチル)-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ビス(メルカプトメチル)-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,2,7-トリメルカプト-4,6-ジチアヘプタン、1,2,9-トリメルカプト-4,6,8-トリチアノナン、1,2,8,9-テトラメルカプト-4,6-ジチアノナン、1,2,10,11-テトラメルカプト-4,6,8-トリチアウンデカン、1,2,12,13-テトラメルカプト- 4,6,8,10-テトラチアトリデカン、1,1,1-トリス(メルカプトメチル)プロパン、テトラキス(メルカプトメチル)メタン、テトラキス(4-メルカプト-2-チアブチル)メタン、テトラキス(7-メルカプト-2,5-ジチアヘプチル)メタン、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(2-メルカプトアセテート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、1,1-ジメルカプトシクロヘキサン、1,4-ジメルカプトシクロヘキサン、1,3-ジメルカプトシクロヘキサン、1,2-ジメルカプトシクロヘキサン、1,4-ビス(メルカプトメチル)シクロヘキサン、1,3-ビス(メルカプトメチル)シクロヘキサン、2,5-ビス(メルカプトメチル)-1,4-ジチアン、2,5-ビス(2-メルカプトエチル)-1,4-ジチアン、2,5-ビス(メルカプトメチル)-1-チアン、2,5-ビス(2-メルカプトエチル)-1-チアン、1,4-ビス(メルカプトメチル)ベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、ビス(4-メルカプトフェニル)スルフィド、ビス(4-メルカプトフェニル)エーテル、ビス(4-メルカプトメチルフェニル)メタン、2,2-ビス(4-メルカプトフェニル)プロパン、ビス(4-メルカプトメチルフェニル)スルフィド、ビス(4-メルカプトメチルフェニル)エーテル、2,2-ビス(4-メルカプトメチルフェニル)プロパン、2,5-ジメルカプト-1,3,4-チアジアゾール、3,4-チオフェンジチオール、1,2 -ジメルカプト-3-プロパノール、1,3-ジメルカプト-2-プロパノール、グリセリルジチオグリコーレート、1,1,2,2-テトラキス(メルカプトメチルチオ) エタン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、及び3-メルカプトメチル-1,5-ジメルカプト-2,4-ジチアペンタンからなる群より選択される少なくとも1種を含む。 Polythiol compounds include, for example, 1,2-dimercaptoethane, 1,2-dimercaptopropane, 2,2-dimercaptopropane, 1,3-dimercaptopropane, 1,2,3-trimercaptopropane, 1, 4-dimercaptobutane, 1,6-dimercaptohexane, bis(2-mercaptoethyl)sulfide, bis(2,3-dimercaptopropyl)sulfide, 1,2-bis(2-mercaptoethylthio)ethane, 1 ,5-dimercapto-3-oxapentane, 1,8-dimercapto-3,6-dioxaoctane, 2,2-dimethylpropane-1,3-dithiol, 3,4-dimethoxybutane-1,2-dithiol, 2-mercaptomethyl-1,3-dimercaptopropane, 2-mercaptomethyl-1,4-dimercaptobutane, 2-(2-mercaptoethylthio)-1,3-dimercaptopropane, 1,2-bis( 2-mercaptoethylthio)-3-mercaptopropane, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 2,4-bis(mercaptomethyl)-1,5-dimercapto-3-thiapentane, 4 ,8-bis(mercaptomethyl)-1,11-dimercapto-3,6,9-trithiundecane, 4,7-bis(mercaptomethyl)-1,11-dimercapto-3,6,9-trithiundecane , 5,7-bis(mercaptomethyl)-1,11-dimercapto-3,6,9-trithiundecane, 1,2,7-trimercapto-4,6-dithiaheptane, 1,2,9-trimercapto -4,6,8-trithianone, 1,2,8,9-tetramercapto-4,6-dithianone, 1,2,10,11-tetramercapto-4,6,8-trithiundecane, 1,2 , 12,13-tetramercapto-4,6,8,10-tetrathiatridecane, 1,1,1-tris(mercaptomethyl)propane, tetrakis(mercaptomethyl)methane, tetrakis(4-mercapto-2-thiabutyl ) methane, tetrakis (7-mercapto-2,5-dithiaheptyl) methane, ethylene glycol bis (2-mercaptoacetate), ethylene glycol bis (3-mercaptopropionate), 1,4-butanediol bis (2-mercapto acetate), 1,4-butanediol bis(3-mercaptopropionate), trimethylolpropane tris(2-mercaptoacetate), trimethylolpropane tris(3-mercaptopropionate), pentaerythritol tetrakis(2-mercapto acetate), pentaerythritol tetrakis(3-mercaptopropionate), 1,1-dimercaptocyclohexane, 1,4-dimercaptocyclohexane, 1,3-dimercaptocyclohexane, 1,2-dimercaptocyclohexane, 1,4 -bis(mercaptomethyl)cyclohexane, 1,3-bis(mercaptomethyl)cyclohexane, 2,5-bis(mercaptomethyl)-1,4-dithiane, 2,5-bis(2-mercaptoethyl)-1,4 -dithiane, 2,5-bis(mercaptomethyl)-1-thiane, 2,5-bis(2-mercaptoethyl)-1-thiane, 1,4-bis(mercaptomethyl)benzene, 1,3-bis( mercaptomethyl)benzene, bis(4-mercaptophenyl)sulfide, bis(4-mercaptophenyl)ether, bis(4-mercaptomethylphenyl)methane, 2,2-bis(4-mercaptophenyl)propane, bis(4- mercaptomethylphenyl)sulfide, bis(4-mercaptomethylphenyl)ether, 2,2-bis(4-mercaptomethylphenyl)propane, 2,5-dimercapto-1,3,4-thiadiazole, 3,4-thiophenedithiol , 1,2-dimercapto-3-propanol, 1,3-dimercapto-2-propanol, glyceryl dithioglycolate, 1,1,2,2-tetrakis(mercaptomethylthio) ethane, 1,1,3,3-tetrakis At least one selected from the group consisting of (mercaptomethylthio)propane and 3-mercaptomethyl-1,5-dimercapto-2,4-dithiapentane.
 重合触媒は、例えば、トリエチレンジアミン、ヘキサメチレンテトラミン、N,N-ジメチルオクチルアミン、N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン、4,4’-トリメチレンビス(1-メチルピペリジン)、1,8-ジアザビシクロ-(5,4,0)-7-ウンデセン、ジメチルスズジクロライド、ジメチルスズビス(イソオクチルチオグリコレート)、ジブチルスズジクロライド、ジブチルチンジラウレート、ジブチルスズマレエート、ジブチルスズマレエートポリマー、ジブチルスズジリシノレート、ジブチルスズビス(ドデシルメルカプチド)、ジブチルスズビス(イソオクチルチオグリコレート)、ジオクチルスズジクロライド、ジオクチルスズマレエート、ジオクチルスズマレエートポリマー、ジオクチルスズビス(ブチルマレエート)、ジオクチルスズジラウレート、ジオクチルスズジリシノレート、ジオクチルスズジオレエート、ジオクチルスズジ(6-ヒドロキシ)カプロエート、ジオクチルスズビス(イソオクチルチオグリコレート)、及びジドデシルスズジリシノレートからなる群より選ばれる少なくとも1種を含む。 Polymerization catalysts include, for example, triethylenediamine, hexamethylenetetramine, N,N-dimethyloctylamine, N,N,N',N'-tetramethyl-1,6-diaminohexane, 4,4'-trimethylenebis ( 1-methylpiperidine), 1,8-diazabicyclo-(5,4,0)-7-undecene, dimethyltin dichloride, dimethyltin bis(isooctylthioglycolate), dibutyltin dichloride, dibutyltin dilaurate, dibutyltin maleate, Dibutyltin Maleate Polymer, Dibutyltin Diricinolate, Dibutyltin Bis (Dodecyl Mercaptide), Dibutyltin Bis (isooctylthioglycolate), Dioctyltin Dichloride, Dioctyltin Maleate, Dioctyltin Maleate Polymer, Dioctyltin Bis(butyl maleate) ), dioctyltin dilaurate, dioctyltin diricinolate, dioctyltin dioleate, dioctyltin di(6-hydroxy)caproate, dioctyltin bis(isooctylthioglycolate), and didodecyltin diricinolate At least one selected is included.
 チオエポキシ系樹脂用の硬化性組成物は、チオエポキシ基を有するモノマーと硬化剤と重合触媒とを含む。チオエポキシ基を有するモノマーは、例えば、2以上のβ-エピチオプロピルチオ基を有する化合物を含み、好ましくは、ビス(β-エピチオプロピルチオ)メタン、1,2-ビス(β-エピチオプロピルチオ)エタン、1,3-ビス(β-エピチオプロピルチオ)プロパン、1,2-ビス(β-エピチオプロピルチオ)プロパン、1-(β-エピチオプロピルチオ)-2-(β-エピチオプロピルチオメチル)プロパン、1,4-ビス(β-エピチオプロピルチオ)ブタン、1,3-ビス(β-エピチオプロピルチオ)ブタン、1-(β-エピチオプロピルチオ)-3-(β-エピチオプロピルチオメチル)ブタン、1,5-ビス(β-エピチオプロピルチオ)ペンタン、1-(β-エピチオプロピルチオ)-4-(β-エピチオプロピルチオメチル)ペンタン、1,6-ビス(β-エピチオプロピルチオ)ヘキサン、1-(β-エピチオプロピルチオ)-5-(β-エピチオプロピルチオメチル)ヘキサン、1-(β-エピチオプロピルチオ)-2-〔(2-β-エピチオプロピルチオエチル)チオ〕エタン、及び1-(β-エピチオプロピルチオ)-2-[〔2-(2-β-エピチオプロピルチオエチル)チオエチル〕チオ]エタンからなる群より選ばれる少なくとも1種を含む。硬化剤は、例えば、チオール基を有する化合物を含み、好ましくは、2-メルカプトエタノールを含む。重合触媒は、例えば、テトラブチルアンモニウムブロミドを含む。 A curable composition for a thioepoxy-based resin contains a monomer having a thioepoxy group, a curing agent, and a polymerization catalyst. Monomers having a thioepoxy group include, for example, compounds having two or more β-epithiopropylthio groups, preferably bis(β-epithiopropylthio)methane, 1,2-bis(β-epithiopropyl thio)ethane, 1,3-bis(β-epithiopropylthio)propane, 1,2-bis(β-epithiopropylthio)propane, 1-(β-epithiopropylthio)-2-(β- epithiopropylthiomethyl)propane, 1,4-bis(β-epithiopropylthio)butane, 1,3-bis(β-epithiopropylthio)butane, 1-(β-epithiopropylthio)-3 -(β-epithiopropylthiomethyl)butane, 1,5-bis(β-epithiopropylthio)pentane, 1-(β-epithiopropylthio)-4-(β-epithiopropylthiomethyl)pentane , 1,6-bis(β-epithiopropylthio)hexane, 1-(β-epithiopropylthio)-5-(β-epithiopropylthiomethyl)hexane, 1-(β-epithiopropylthio) -2-[(2-β-epithiopropylthioethyl)thio]ethane and 1-(β-epithiopropylthio)-2-[[2-(2-β-epithiopropylthioethyl)thioethyl] thio] ethane at least one selected from the group consisting of. The curing agent includes, for example, a compound having a thiol group, preferably 2-mercaptoethanol. Polymerization catalysts include, for example, tetrabutylammonium bromide.
 以下に例示するいくつかの実施例によって、本発明をさらに詳しく説明する。これらの実施例は、単に、本発明を説明するためのものであり、本発明の精神及び範囲は、これら実施例に限定されるものではない。 The present invention will be explained in more detail by some examples illustrated below. These examples are merely illustrative of the invention, and the spirit and scope of the invention are not limited to these examples.
 <例1>
 (第1プレポリマーFPP1の製造)
 2Lの反応容器に、225gの第1イソシアネート化合物FI1、100gの第1多官能活性水素化合物FA1、及び200gの有機溶媒OS1を投入して混合物を得た。第1イソシアネート化合物FI1としては、イソホロンジイソシアネートを用いた。第1多官能活性水素化合物FA1としては、数平均分子量1000のポリエーテルジオール(AGC株式会社製エクセノール)を用いた。有機溶媒OS1としては、トルエンを用いた。窒素雰囲気下、100℃で7時間にわたってこの混合物を1000rpmで攪拌して、第1プレポリマーを含む反応液を得た。以下、この第1プレポリマーを、第1プレポリマーFPP1とも称する。反応の終点は、イソシアネート基の逆滴定法により確認した。
<Example 1>
(Production of first prepolymer FPP1)
225 g of the first isocyanate compound FI1, 100 g of the first polyfunctional active hydrogen compound FA1, and 200 g of the organic solvent OS1 were charged into a 2 L reactor to obtain a mixture. Isophorone diisocyanate was used as the first isocyanate compound FI1. As the first polyfunctional active hydrogen compound FA1, a polyether diol having a number average molecular weight of 1000 (Exenol manufactured by AGC Inc.) was used. Toluene was used as the organic solvent OS1. This mixture was stirred at 1000 rpm at 100° C. for 7 hours under a nitrogen atmosphere to obtain a reaction liquid containing the first prepolymer. Hereinafter, this first prepolymer is also referred to as first prepolymer FPP1. The end point of the reaction was confirmed by back titration of isocyanate groups.
 (第2プレポリマーSPP1の製造)
 第1プレポリマーFPP1を含む10℃の反応液に、500gの有機溶媒OS2を加えた後、液温を15℃に保持した。有機溶媒OS2としては、ジエチルケトンを用いた。この反応液に、34gの第2多官能活性水素化合物SA1を滴下し、15℃で1時間反応させることにより、第2プレポリマーを含む反応液を得た。第2多官能活性水素化合物SA1としては、イソホロンジアミンを用いた。以下、この第2プレポリマーを、第2プレポリマーSPP1とも称する。なお、第2プレポリマーSPP1を含む反応液において、固形分濃度は33.9質量%であった。
(Production of second prepolymer SPP1)
After adding 500 g of organic solvent OS2 to the reaction liquid containing the first prepolymer FPP1 at 10°C, the liquid temperature was kept at 15°C. Diethyl ketone was used as the organic solvent OS2. 34 g of the second polyfunctional active hydrogen compound SA1 was added dropwise to this reaction liquid, and reacted at 15° C. for 1 hour to obtain a reaction liquid containing a second prepolymer. Isophoronediamine was used as the second polyfunctional active hydrogen compound SA1. Hereinafter, this second prepolymer is also referred to as second prepolymer SPP1. In addition, in the reaction liquid containing the second prepolymer SPP1, the solid content concentration was 33.9% by mass.
 (接着性組成物AC1の調製)
 第2プレポリマーSPP1を含む100gの反応液、1.02gのフォトクロミック化合物PC1、0.34gのエチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、及び0.05gのDOW CORNING TORAY L-7001を混合し、室温で攪拌して接着剤組成物を得た。以下、この接着剤組成物を接着性組成物AC1とも称する。
(Preparation of adhesive composition AC1)
100 g reaction solution containing second prepolymer SPP1, 1.02 g photochromic compound PC1, 0.34 g ethylenebis(oxyethylene)bis[3-(5-tert-butyl-4-hydroxy-m-tolyl)propionate ], and 0.05 g of DOW CORNING TORAY L-7001 were mixed and stirred at room temperature to obtain an adhesive composition. Hereinafter, this adhesive composition is also referred to as adhesive composition AC1.
 (光学積層シートOL1の作製)
 接着性組成物AC1を、バーコーターを用いて、ポリビニルアルコールフィルムPVF1上に塗工して塗膜を形成した。ポリビニルアルコールフィルムPVF1の厚みは、75μmであった。この塗膜を100℃の温度で5分間乾燥させた。乾燥後の塗膜の膜厚は、30μmであった。乾燥後の塗膜上にポリビニルアルコールフィルムPVF1をラミネートロールを用いて貼り合わせて構造体を得た。なお、構造体は長方形の短冊状であった。構造体の長辺方向の一方の端部には、接着性組成物を塗工せず、未塗工部分とした。
(Production of optical laminated sheet OL1)
Adhesive composition AC1 was applied onto polyvinyl alcohol film PVF1 using a bar coater to form a coating film. The thickness of the polyvinyl alcohol film PVF1 was 75 μm. This coating film was dried at a temperature of 100° C. for 5 minutes. The film thickness of the coating film after drying was 30 μm. A polyvinyl alcohol film PVF1 was laminated on the dried coating film using a laminate roll to obtain a structure. The structure was in the shape of a rectangular strip. One end of the structure in the long side direction was not coated with the adhesive composition, and was used as an uncoated portion.
 この構造体を、60℃、500Paの真空下で12時間静置して脱気した。脱気後の構造体を、90℃で2時間加熱した。加熱後の構造体を室温で約1週間放置して、光学積層シートを得た。以下、この光学積層シートを光学積層シートOL1とも称する。 This structure was degassed by leaving it at 60°C under a vacuum of 500 Pa for 12 hours. The degassed structure was heated at 90° C. for 2 hours. The structure after heating was left at room temperature for about one week to obtain an optical laminated sheet. Hereinafter, this optical laminated sheet is also referred to as optical laminated sheet OL1.
 (レンズLS1の製造)
 先ず、光学積層シートOL1を、80℃、13Torrの条件下で15時間真空乾燥させた。真空乾燥後の光学積層シートOL1を、ガスケットの内側の切込み部に設置した。このガスケットを、中空部内に光学積層シートOL1が位置するようにガラスモールド内に設置した。ガラスモールドは、レンズの度数Dは0.00となり、レンズ径は70mmとなり、レンズ厚みは3.0mmとなるように設定した。このガラスモールドの中空部内に、チオウレタン系硬化性組成物を注入した。チオウレタン系硬化性組成物を注入後のガラスモールドを、空気炉を用いて、35℃から110℃まで12時間かけて徐々に昇温した後、110℃で1時間保持して、硬化性組成物を硬化させた。加熱後、ガスケット及びガラスモールド内から硬化体を取り出し、これを110℃のオーブンに入れ3時間加熱した。加熱後の硬化体の外周を玉摺機にて研磨して、直径60mmの図2に示すレンズを得た。この操作を繰り返し、合計10枚のレンズを得た。以下、このレンズをレンズLS1とも称する。
(Manufacture of lens LS1)
First, the optical laminated sheet OL1 was vacuum-dried under conditions of 80° C. and 13 Torr for 15 hours. The vacuum-dried optical laminated sheet OL1 was placed in the notch on the inner side of the gasket. This gasket was placed in a glass mold so that the optical laminated sheet OL1 was positioned inside the hollow portion. The glass mold was set so that the lens power D was 0.00, the lens diameter was 70 mm, and the lens thickness was 3.0 mm. A thiourethane-based curable composition was injected into the hollow portion of the glass mold. The glass mold after the thiourethane-based curable composition was injected was gradually heated from 35° C. to 110° C. over 12 hours using an air furnace, and then held at 110° C. for 1 hour to obtain the curable composition. Hardened things. After heating, the cured body was taken out from the gasket and the glass mold, placed in an oven at 110° C. and heated for 3 hours. The outer periphery of the cured product after heating was polished with a lens grinder to obtain a lens having a diameter of 60 mm as shown in FIG. This operation was repeated to obtain a total of 10 lenses. Hereinafter, this lens is also referred to as lens LS1.
 チオウレタン系硬化性組成物としては、ジシクロヘキシルメタン-4,4’-ジイソシアネート43.5質量部、イソホロンジイソシアネート43.5質量部、1,2-ビス〔(2-メルカプトエチル)チオ〕-3-メルカプトプロパン63.0質量部、及びジブチルチンジラウレート0.1質量部の混合物を用いた。 The thiourethane-based curable composition includes 43.5 parts by mass of dicyclohexylmethane-4,4′-diisocyanate, 43.5 parts by mass of isophorone diisocyanate, 1,2-bis[(2-mercaptoethyl)thio]-3- A mixture of 63.0 parts by weight of mercaptopropane and 0.1 parts by weight of dibutyltin dilaurate was used.
 <例2~例11、及び例14、16~19>
 各成分を表1及び2に記載のように変更したこと以外は、例1と同様の方法で、接着性組成物、光学積層シート及びレンズを得た。
<Examples 2 to 11, and Examples 14, 16 to 19>
An adhesive composition, an optical laminated sheet and a lens were obtained in the same manner as in Example 1, except that each component was changed as shown in Tables 1 and 2.
 <例12>
 (第1ポリマーFP1及び第2プレポリマーSPP12の混合物の製造)
 先ず、第2多官能活性水素化合物SA1の添加量を、34gから31gに変更したこと以外は、例1に記載したのと同様の方法で、第2プレポリマーSPP12を含む反応液を得た。この反応液に、5gの単官能活性水素化合物MA1を添加して攪拌し、第1ポリマー及び第2プレポリマーの混合物を得た。以下、第1ポリマーを第1ポリマーFP1とも称し、第2プレポリマーを第2プレポリマーSPP12とも称する。
<Example 12>
(Production of mixture of first polymer FP1 and second prepolymer SPP12)
First, a reaction solution containing the second prepolymer SPP12 was obtained in the same manner as in Example 1, except that the amount of the second polyfunctional active hydrogen compound SA1 added was changed from 34 g to 31 g. 5 g of monofunctional active hydrogen compound MA1 was added to this reaction liquid and stirred to obtain a mixture of the first polymer and the second prepolymer. Hereinafter, the first polymer will also be referred to as the first polymer FP1, and the second prepolymer will also be referred to as the second prepolymer SPP12.
 第2プレポリマーSPP1の反応液の代わりに、第1ポリマーFP1及び第2プレポリマーSPP12の混合物を用いたこと以外は、例1と同様の方法で、接着性組成物、光学積層シート及びレンズを得た。 An adhesive composition, an optical laminate sheet and a lens were prepared in the same manner as in Example 1, except that a mixture of the first polymer FP1 and the second prepolymer SPP12 was used instead of the reaction solution of the second prepolymer SPP1. Obtained.
 <例13>
 (第1ポリマーFP2の製造)
 先ず、有機溶媒OS1の量を500gから520gに変更したこと以外は、例1に記載したのと同様の方法で、第2プレポリマーSPP13を含む反応液を得た。この反応液に、8.5gの単官能活性水素化合物MA1を添加して攪拌し、第1ポリマーを含む反応液を得た。以下、この第1ポリマーを第1ポリマーFP2とも称する。
<Example 13>
(Production of first polymer FP2)
First, a reaction solution containing the second prepolymer SPP13 was obtained in the same manner as described in Example 1, except that the amount of the organic solvent OS1 was changed from 500 g to 520 g. 8.5 g of monofunctional active hydrogen compound MA1 was added to this reaction liquid and stirred to obtain a reaction liquid containing the first polymer. Hereinafter, this first polymer is also referred to as first polymer FP2.
 第2プレポリマーSPP1の反応液の代わりに、第1ポリマーFP2の反応液を用いたこと以外は、例1と同様の方法で、接着性組成物、光学積層シート及びレンズを得た。 An adhesive composition, an optical laminated sheet and a lens were obtained in the same manner as in Example 1, except that the reaction liquid of the first polymer FP2 was used instead of the reaction liquid of the second prepolymer SPP1.
 <例15>
 第2プレポリマーSPP1の200gの反応液の代わりに、例13に記載したのと同一の方法で得られた第1ポリマーFP2の反応液、及び、例14に記載したのと同一の方法で得られた第2プレポリマーSPP13の反応液の混合液を用いたこと以外は、例1と同様の方法で、接着性組成物、光学積層シート及びレンズを得た。なお、混合液における第1ポリマーFP2の反応液の量は70gであり、第2プレポリマーSPP13の反応液の量は30gとした。
<Example 15>
Instead of 200 g of the reaction mixture of the second prepolymer SPP1, the reaction mixture of the first polymer FP2 obtained in the same manner as described in Example 13 and the reaction mixture of the first polymer FP2 obtained in the same manner as described in Example 14. An adhesive composition, an optical laminate sheet, and a lens were obtained in the same manner as in Example 1, except that a mixed solution of the reaction solution of the second prepolymer SPP13 obtained above was used. The amount of the reaction liquid of the first polymer FP2 in the mixed liquid was 70 g, and the amount of the reaction liquid of the second prepolymer SPP13 was 30 g.
 <例20>
 硬化性組成物として、アリル系硬化性組成物を用いたこと及び加熱条件を変更したこと以外は、例1と同様の方法で、レンズを得た。
<Example 20>
A lens was obtained in the same manner as in Example 1, except that an allyl-based curable composition was used as the curable composition and the heating conditions were changed.
 アリル系硬化性組成物としては、ジイソプロピルパーオキシジカーボネート(重合開始剤)3質量部及びジエチレングリコールビスアリルカーボネート100質量部の混合物を用いた。 A mixture of 3 parts by mass of diisopropyl peroxydicarbonate (polymerization initiator) and 100 parts by mass of diethylene glycol bisallyl carbonate was used as the allyl-based curable composition.
 アリル系硬化性組成物を注入後のガラスモールドを、空気炉を用いて、30℃から90℃まで20時間かけて徐々に昇温した後、90℃で1時間保持して、硬化性組成物を硬化させた。加熱後、ガスケット及びガラスモールド内から硬化体を取り出し、これを100℃のオーブンに入れ2時間加熱した。 The glass mold after injection of the allyl-based curable composition was gradually heated from 30° C. to 90° C. over 20 hours using an air oven, and then held at 90° C. for 1 hour to obtain the curable composition. was cured. After heating, the cured body was taken out from the gasket and the glass mold, placed in an oven at 100° C. and heated for 2 hours.
 <例21>
 硬化性組成物として、アクリル系硬化性組成物を用いたこと及び加熱条件を変更したこと以外は、例1と同様の方法で、レンズを得た。
<Example 21>
A lens was obtained in the same manner as in Example 1, except that an acrylic curable composition was used as the curable composition and the heating conditions were changed.
 アクリル系硬化性組成物としては、先ず、トリメチロールプロパントリメタクリレート 20質量部、平均分子量522のポリエチレングリコールジアクリレート 40質量部、ウレタンアクリレート(株式会社ダイセル製EBECRYL4858) 40質量部を混合して、ラジカル重合性単量体を得た。このラジカル重合性単量体100質量部に対し、t-ブチルパーオキシネオデカネート1.0質量部を混合して、アクリル系硬化性組成物を得た。 As the acrylic curable composition, first, 20 parts by mass of trimethylolpropane trimethacrylate, 40 parts by mass of polyethylene glycol diacrylate having an average molecular weight of 522, and 40 parts by mass of urethane acrylate (EBECRYL4858 manufactured by Daicel Corporation) are mixed to form radicals. A polymerizable monomer was obtained. 100 parts by mass of this radically polymerizable monomer was mixed with 1.0 parts by mass of t-butyl peroxyneodecanate to obtain an acrylic curable composition.
 アクリル系硬化性組成物を注入後のガラスモールドを、空気炉を用いて、33℃から90℃まで17時間かけて徐々に昇温した後、90℃で2時間保持して、硬化性組成物を硬化させた。加熱後、ガスケット及びガラスモールド内から硬化体を取り出し、これを110℃のオーブンに入れ3時間加熱した。 The glass mold after injection of the acrylic curable composition was gradually heated from 33 ° C. to 90 ° C. over 17 hours using an air furnace, and then held at 90 ° C. for 2 hours to obtain a curable composition. was cured. After heating, the cured body was taken out from the gasket and the glass mold, placed in an oven at 110° C. and heated for 3 hours.
 <例22>
 硬化性組成物として、チオエポキシ系硬化性組成物を用いたこと及び加熱条件を変更したこと以外は、例1と同様の方法で、レンズを得た。
<Example 22>
A lens was obtained in the same manner as in Example 1, except that a thioepoxy-based curable composition was used as the curable composition and the heating conditions were changed.
 チオエポキシ系硬化性組成物としては、ビス(β-エピチオプロピルチオ)エタン95質量部、2-メルカプトエタノール5質量部、及び重合触媒としてテトラブチルアンモニウムブロミド0.1重量部の混合物を用いた。 A mixture of 95 parts by weight of bis(β-epithiopropylthio)ethane, 5 parts by weight of 2-mercaptoethanol, and 0.1 parts by weight of tetrabutylammonium bromide as a polymerization catalyst was used as the thioepoxy-based curable composition.
 チオエポキシ系硬化性組成物を注入後のガラスモールドを、空気炉を用いて、20℃から90℃まで20時間かけて徐々に昇温した後、90℃で1時間保持して、硬化性組成物を硬化させた。加熱後、ガスケット及びガラスモールド内から硬化体を取り出し、これを90℃のオーブンに入れ1時間加熱した。 The glass mold after injection of the thioepoxy-based curable composition was gradually heated from 20° C. to 90° C. over 20 hours using an air oven, and then held at 90° C. for 1 hour to obtain a curable composition. was cured. After heating, the cured body was taken out from the gasket and the glass mold, placed in an oven at 90° C. and heated for 1 hour.
 <例23>
 硬化性組成物として、ウレタンウレア系硬化性組成物を用いたこと及び加熱条件を変更したこと以外は、例1と同様の方法で、レンズを得た。
<Example 23>
A lens was obtained in the same manner as in Example 1, except that a urethane urea-based curable composition was used as the curable composition and the heating conditions were changed.
 ウレタンウレア系硬化性組成物の調製に際しては、先ず、アジピン酸と1,6-ヘキサンジオールからなる数平均分子量1000のポリエステルポリオール 100質量部と、4,4’-メチレンビス(シクロヘキシルイソシアネート)の異性体混合物78質量部とを、乾燥窒素下で140℃で10分間加熱してプレポリマーを得た。このプレポリマーを70℃まで冷却して24時間静置した。静置後のプレポリマーに、2,4-ジアミノ-3,5-ジエチル-トルエン及び2,6-ジアミノ-3,5-ジエチル-トルエンの混合物17質量部を混合して、ウレタンウレア系硬化性組成物を得た。 In the preparation of the urethane urea-based curable composition, first, 100 parts by mass of a polyester polyol composed of adipic acid and 1,6-hexanediol and having a number average molecular weight of 1,000 and an isomer of 4,4'-methylenebis(cyclohexyl isocyanate) 78 parts by mass of the mixture were heated at 140° C. for 10 minutes under dry nitrogen to obtain a prepolymer. The prepolymer was cooled to 70° C. and allowed to stand for 24 hours. 17 parts by mass of a mixture of 2,4-diamino-3,5-diethyl-toluene and 2,6-diamino-3,5-diethyl-toluene was mixed with the prepolymer after standing to obtain a urethane urea curability. A composition was obtained.
 ウレタンウレア系硬化性組成物を注入後のガラスモールドを、120℃で10時間保持して、硬化性組成物を硬化させた。加熱後、ガスケット及びガラスモールド内から硬化体を取り出し、これを110℃のオーブンに入れ1時間加熱した。 The glass mold after injection of the urethane urea-based curable composition was held at 120°C for 10 hours to cure the curable composition. After heating, the cured body was taken out from the gasket and the glass mold, placed in an oven at 110° C. and heated for 1 hour.
 <原料>
 (第1多官能活性水素化合物)
 FA1:AGC株式会社製エクセノール(ポリエーテルジオール、数平均分子量1000)
 FA2:AGC株式会社製エクセノール(ポリエーテルジオール、数平均分子量2000)
 FA3:旭化成株式会社製デュラノール(ポリカーボネートジオール、数平均分子量500)
 FA4:旭化成株式会社製デュラノール(ポリカーボネートジオール、数平均分子量800)
 FA5:旭化成株式会社製デュラノール(ポリカーボネートジオール、数平均分子量1000)
 FA6:旭化成株式会社製デュラノール(ポリカーボネートジオール、数平均分子量3000)
 FA7:DIC株式会社製ポリライト(ポリエステルジオール、数平均分子量1000)
 FA8:UBE株式会社製ETERNACOLL(1,4-シクロヘキサンジメタノールを原料とするポリカーボネートジオール、数平均分子量1000)。
<raw materials>
(First polyfunctional active hydrogen compound)
FA1: Exenol manufactured by AGC Co., Ltd. (polyether diol, number average molecular weight 1000)
FA2: Exenol manufactured by AGC Corporation (polyether diol, number average molecular weight 2000)
FA3: Duranol manufactured by Asahi Kasei Corporation (polycarbonate diol, number average molecular weight 500)
FA4: Duranol manufactured by Asahi Kasei Corporation (polycarbonate diol, number average molecular weight 800)
FA5: Duranol manufactured by Asahi Kasei Corporation (polycarbonate diol, number average molecular weight 1000)
FA6: Duranol manufactured by Asahi Kasei Corporation (polycarbonate diol, number average molecular weight 3000)
FA7: Polylight manufactured by DIC Corporation (polyester diol, number average molecular weight 1000)
FA8: ETERNACOLL manufactured by UBE Corporation (polycarbonate diol made from 1,4-cyclohexanedimethanol, number average molecular weight 1000).
 (第1イソシアネート化合物)
 FI1:イソホロンジイソシアネート
 FI2:水添ジフェニルメタンジイソシアネート
 FI4:トルエン-2,4-ジイソシアネート
 FI5:ノルボルナンジイソシアネート。
(First isocyanate compound)
FI1: isophorone diisocyanate FI2: hydrogenated diphenylmethane diisocyanate FI4: toluene-2,4-diisocyanate FI5: norbornane diisocyanate.
 (第2多官能活性水素化合物:鎖延長剤)
 SA1:イソホロンジアミン
 SA2:エチレンジアミン
 SA3:1,6-ジアミノヘキサン
 SA4:ビス-(4-アミノシクロヘキシル)メタン。
(Second polyfunctional active hydrogen compound: chain extender)
SA1: isophoronediamine SA2: ethylenediamine SA3: 1,6-diaminohexane SA4: bis-(4-aminocyclohexyl)methane.
 (単官能活性水素化合物)
 HA1;1,2,2,6,6-ペンタメチル-4-アミノピペリジン。
(Monofunctional active hydrogen compound)
HA1; 1,2,2,6,6-pentamethyl-4-aminopiperidine.
 (フォトクロミック化合物)
 PC1:下記式で示される化合物。
(Photochromic compound)
PC1: A compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 PC2:下記式で示される化合物。 PC2: A compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 PC3:下記式で示される化合物。  PC3: A compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 (有機溶媒)
 OS1:トルエン
 OS2:ジエチルケトン
 OS3:イソプロピルアルコール
 OS4:酢酸エチル
 OS5:シクロヘキサノン
 OS6:テトラヒドロフラン
(organic solvent)
OS1: toluene OS2: diethyl ketone OS3: isopropyl alcohol OS4: ethyl acetate OS5: cyclohexanone OS6: tetrahydrofuran
 (その他添加剤)
 HP:エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]
 CF:DOW CORNING TORAY L-7001
 HA:ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート
 DY:テトラアザポルフィリン化合物(山田化学工業社製:FDG-007)(クロロホルム中で測定した結果、吸収ピーク(極大吸収波長)は594nmであり、594nmにおける吸収強度は1.5×10ml/g・cmであった)
(Other additives)
HP: ethylenebis(oxyethylene)bis[3-(5-tert-butyl-4-hydroxy-m-tolyl)propionate]
CF: Dow Corning Toray L-7001
HA: Bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate DY: Tetraazaporphyrin compound (manufactured by Yamada Kagaku Kogyo Co., Ltd.: FDG-007) (as a result of measurement in chloroform, the absorption peak (maximum The absorption wavelength) was 594 nm, and the absorption intensity at 594 nm was 1.5×10 5 ml/g·cm).
 (ポリビニルアルコールフィルム)
 PVF1:ポリビニルアルコールフィルム(厚み75μm)
(polyvinyl alcohol film)
PVF1: polyvinyl alcohol film (thickness 75 μm)
 PVF2:延伸倍率4倍であり、ホウ酸架橋を実施したポリビニルアルコールフィルム(厚み30μm)
 PVF3:視感透過率は44%、偏光度は94.4%、であり色調がグレーである2色性染料を含むポリビニルアルコール性偏光フィルム(厚み27μm)
PVF2: Polyvinyl alcohol film (thickness: 30 μm) with a draw ratio of 4 times and cross-linked with boric acid
PVF3: Polyvinyl alcohol polarizing film containing a dichroic dye with a luminous transmittance of 44%, a degree of polarization of 94.4%, and a gray tone (thickness: 27 μm)
 <評価試験>
 (第2プレポリマー及び第1ポリマーの数平均分子量の測定)
 上述した方法で、例1~例14で得られた第2プレポリマー、第1ポリマー、及び第2プレポリマーと第1ポリマーとの混合物の数平均分子量を測定した。その結果を表2に示す。
<Evaluation test>
(Measurement of number average molecular weight of second prepolymer and first polymer)
The number average molecular weights of the second prepolymer, the first polymer, and the mixture of the second prepolymer and the first polymer obtained in Examples 1 to 14 were measured by the method described above. Table 2 shows the results.
 (第2プレポリマー及び第1ポリマーの軟化点の測定)
 上述した方法で、例1~例14で得られた第2プレポリマー、第1ポリマー、及び第2プレポリマーと第1ポリマーとの混合物の軟化点を測定した。その結果を表2に示す。
(Measurement of softening points of second prepolymer and first polymer)
The softening points of the second prepolymer, the first polymer, and the mixture of the second prepolymer and the first polymer obtained in Examples 1 to 14 were measured by the method described above. Table 2 shows the results.
 (光学積層シート及びレンズのフォトクロミック性の測定)
 以下の方法で、例1~例23で得られた光学積層シートの最大吸収波長、発色濃度、及び退色速度を測定した。
(Measurement of photochromic property of optical laminated sheet and lens)
The maximum absorption wavelength, color density, and fading rate of the optical laminated sheets obtained in Examples 1 to 23 were measured by the following methods.
 具体的には、先ず、23℃の温度下で、浜松ホトニクス株式会社製のキセノンランプL-2480(300W)SHL-100を、エアロマスフィルター(コーニング社製)を介して、光学積層シートの一方の光学シート側に、120秒間照射して、フォトクロミック化合物を発色させた。ビーム強度は、365nm=2.4mW/cm、245nm=24μW/cmとした。 Specifically, first, at a temperature of 23° C., a xenon lamp L-2480 (300 W) SHL-100 manufactured by Hamamatsu Photonics K.K. was irradiated for 120 seconds to develop the color of the photochromic compound. The beam intensity was 365 nm=2.4 mW/cm 2 and 245 nm=24 μW/cm 2 .
 発色後の最大吸収波長(λmax)を、大塚電子株式会社製の分光光度計(瞬間マルチチャンネルフォトディレクターMCPD1000)により求めた。 The maximum absorption wavelength (λmax) after color development was determined using a spectrophotometer (instantaneous multi-channel photo director MCPD1000) manufactured by Otsuka Electronics Co., Ltd.
 キセノンランプ未照射時の光学積層シートの最大吸収波長の吸光度ε(0)を測定した。次に、上記ビーム強度で120秒間にわたって光学積層シートにキセノンランプを照射して、光学積層シートの最大吸収波長の吸光度ε(120)を測定した。吸光度ε(120)からε(0)を差し引いた値を、発色濃度とした。この値が高いほどフォトクロミック性が優れていると言える。 The absorbance ε(0) of the maximum absorption wavelength of the optical laminated sheet was measured when the xenon lamp was not irradiated. Next, the optical laminated sheet was irradiated with a xenon lamp for 120 seconds at the above beam intensity, and the absorbance ε (120) of the maximum absorption wavelength of the optical laminated sheet was measured. A value obtained by subtracting ε(0) from the absorbance ε(120) was taken as the color density. It can be said that the higher this value, the better the photochromic properties.
 発色濃度が1/2まで低下するのに要する時間を測定し、これを退色速度〔t1/2(sec.)とした。この時間が短いほどフォトクロミック性が優れているといえる。 The time required for the color density to decrease to 1/2 was measured, and this was defined as the fading speed [t1/2 (sec.). It can be said that the shorter this time, the better the photochromic properties.
 例1~例23で得られたレンズの最大吸収波長、発色濃度、及び退色速度を、上記と同様の条件で測定した。その結果は、光学積層シートの値とそれぞれ同一であった。 The maximum absorption wavelength, color density, and fading speed of the lenses obtained in Examples 1 to 23 were measured under the same conditions as above. The results were the same as the values for the optical laminated sheets, respectively.
 (光学積層シートの剥離強度の測定)
 例1~例23で得られた光学積層シートを、50mm×100mmの短冊状となるように切り出して試験片を得た。この際、接着剤組成物の塗膜を含まない、一方の長辺端部を含むように切り出した。この試験片の第1光学シート及び第2光学シートの接着剤組成物が塗工されていない部分を、それぞれ上部治具及び下部治具に挟み、試験機:オートグラフAGS-500NX、島津製作所製に設置した。クロスヘッドスピード100mm/minで、上部治具を引張り、最大剥離力を測定した。この最大剥離力を剥離強度として、表4に記載した。
(Measurement of peel strength of optical laminated sheet)
The optical laminate sheets obtained in Examples 1 to 23 were cut into strips of 50 mm×100 mm to obtain test pieces. At this time, it was cut out so as to include one long side end portion that did not include the coating film of the adhesive composition. The portions of the first optical sheet and the second optical sheet of this test piece that were not coated with the adhesive composition were sandwiched between an upper jig and a lower jig, respectively. was installed in The upper jig was pulled at a crosshead speed of 100 mm/min to measure the maximum peel force. This maximum peel strength is shown in Table 4 as the peel strength.
 (レンズの密着性評価)
 以下の方法により、例1~例23に係るレンズについて、光学積層シートと光学素子基材との密着性を評価した。先ず、レンズを目視により確認し、光学積層シートの剥がれが見られるかどうかを確認し、以下の評価基準に従って評価した。結果を表4に記載した。
(Lens adhesion evaluation)
The adhesion between the optical laminated sheet and the optical element substrate was evaluated for the lenses according to Examples 1 to 23 by the following method. First, the lens was visually checked to see if any peeling of the optical laminate sheet was observed, and evaluated according to the following evaluation criteria. The results are listed in Table 4.
 <評価基準>
 0:各層間で全くハガレが見られない。
 1:フォトクロミック積層体と樹脂層間で、5%未満の部位でハガレが見られる。
 2:フォトクロミック積層体と樹脂層間で、10%未満の部位でハガレが見られる。
 3:フォトクロミック積層体と樹脂層間で、10%以上の部位でハガレが見られる。
<Evaluation Criteria>
0: No peeling observed between layers.
1: Peeling is observed in less than 5% of the area between the photochromic laminate and the resin layer.
2: Peeling is observed in less than 10% of the area between the photochromic laminate and the resin layer.
3: Peeling is observed in 10% or more portions between the photochromic laminate and the resin layer.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表2において、「n1/n2/n3」と表記した列には、第1イソシアネート化合物に含まれるイソシアネート基の総モル量(n2)を1としたときの第1多官能活性水素化合物に含まれる活性水素基の総モル量(n1)の比と、第2多官能活性水素化合物に含まれる活性水素基の総モル量(n3)の比とを記載している。 In Table 2, the column labeled "n1/n2/n3" contains the first polyfunctional active hydrogen compound when the total molar amount (n2) of the isocyanate groups contained in the first isocyanate compound is 1. The ratio of the total molar amount (n1) of active hydrogen groups and the ratio of the total molar amount (n3) of active hydrogen groups contained in the second polyfunctional active hydrogen compound are described.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表1~表4から明らかなとおり、第2プレポリマー若しくは第2プレポリマー及び第1ポリマーを含む接着性組成物を用いた例1~例12及び例14~例23に係る光学積層シートの剥離強度は、第1ポリマーのみを含む接着性組成物を用いた例13に係る光学積層シートの剥離強度よりも優れていた。 As is clear from Tables 1 to 4, peeling of the optical laminated sheets according to Examples 1 to 12 and Examples 14 to 23 using the adhesive composition containing the second prepolymer or the second prepolymer and the first polymer The strength was superior to the peel strength of the optical laminate sheet according to Example 13 using an adhesive composition containing only the first polymer.
 <例24>
 (光学積層シートOL24の作製)
 第1接着性組成物AC1を、バーコーターを用いて、第1のポリビニルアルコールフィルムPVF1の片面上に塗工して第1塗膜を形成した。ポリビニルアルコールフィルムPVF1の厚みは75μmであった。この第1塗膜を100℃の温度で5分間乾燥させた。乾燥後の第1塗膜の膜厚は、30μmであった。
<Example 24>
(Production of optical laminated sheet OL24)
The first adhesive composition AC1 was applied on one side of the first polyvinyl alcohol film PVF1 using a bar coater to form a first coating film. The thickness of the polyvinyl alcohol film PVF1 was 75 μm. This first coating film was dried at a temperature of 100° C. for 5 minutes. The film thickness of the first coating film after drying was 30 μm.
 また、第2接着性組成物AC2を、バーコーターを用いて、第2のポリビニルアルコールフィルムPVF1の片面上に塗工して第2塗膜を形成した。この第2塗膜を100℃の温度で5分間乾燥させた。乾燥後の第2塗膜の膜厚は、30μmであった。 Also, the second adhesive composition AC2 was applied on one side of the second polyvinyl alcohol film PVF1 using a bar coater to form a second coating film. This second coating was dried at a temperature of 100° C. for 5 minutes. The film thickness of the second coating film after drying was 30 μm.
 次いで、ポリエチレンテレフタレート製シートPETの一方の主面に、第1塗膜が接し、シートPETの他方の主面に第2塗膜が接する様にラミネートロールを用いて貼り合わせて構造体を得た。なお、構造体は15cm×20cm程度の長方形であった。構造体の長辺方向の一方の端部には、接着性組成物を塗工せず、未塗工部分とした。 Next, the first coating film was in contact with one main surface of the polyethylene terephthalate sheet PET, and the second coating film was in contact with the other main surface of the sheet PET, using lamination rolls to obtain a structure. . The structure was a rectangle of about 15 cm×20 cm. One end of the structure in the long side direction was not coated with the adhesive composition, and was used as an uncoated portion.
 この構造体を、60℃、500Paの真空下で12時間静置して脱気した。脱気後の構造体を、90℃で2時間加熱した。加熱後の構造体を室温で約1週間放置して、光学積層シートを得た。以下、この光学積層シートを光学積層シートOL24とも称する。光学積層シートOL24は、10枚作製した。 This structure was degassed by leaving it at 60°C under a vacuum of 500 Pa for 12 hours. The degassed structure was heated at 90° C. for 2 hours. The structure after heating was left at room temperature for about one week to obtain an optical laminated sheet. Hereinafter, this optical laminated sheet is also referred to as an optical laminated sheet OL24. Ten optical laminated sheets OL24 were produced.
 なお、ポリエチレンテレフタレート製シートPETは、使用前に両表面をナビタス社製マルチダインを用いて、コロナ放電処理を実施した。 Before use, both surfaces of the polyethylene terephthalate sheet PET were subjected to corona discharge treatment using Multidyne manufactured by Navitas.
 (レンズLS24の製造)
 先ず、光学積層シートOL24を、80℃、13Torrの条件下で15時間真空乾燥させた。真空乾燥後の光学積層シートOL1を、曲面加工装置に設置して、曲面加工を施した。具体的には、得られた光学積層シートの型抜きを行い、径が80mmの円板状シートを取得した。得られた円板状シートを、減圧吸引加工(熱曲げ加工)により、球面形状へ加工した。この減圧吸引加工は、直径90mmの凹型4カーブの金型を140℃雰囲気中に設置し、凹型の金型の中心部の穴から、真空ポンプにて減圧吸引を行うことにより実施した。加工時間は、1枚当たり約2分間とした。
(Manufacture of lens LS24)
First, the optical laminated sheet OL24 was vacuum-dried under conditions of 80° C. and 13 Torr for 15 hours. The vacuum-dried optical laminated sheet OL1 was placed in a curved surface processing apparatus and subjected to curved surface processing. Specifically, the obtained optical laminated sheet was die-cut to obtain a disk-shaped sheet with a diameter of 80 mm. The obtained disk-shaped sheet was processed into a spherical shape by vacuum suction processing (thermal bending processing). This vacuum suction processing was carried out by placing a concave four-curve mold with a diameter of 90 mm in an atmosphere of 140° C. and performing vacuum suction from a hole in the center of the concave mold with a vacuum pump. The processing time was about 2 minutes per sheet.
 曲面加工後の光学積層シートOL24を、ガスケットの内側の切込み部に設置した。このガスケットを、中空部内に光学積層シートOL24が位置するようにガラスモールド内に設置した。ガラスモールドは、レンズの度数Dは0.00となり、レンズ径は70mmとなり、レンズ厚みは3.0mmとなるように設定した。このガラスモールドの中空部内に、チオウレタン系硬化性組成物を注入した。チオウレタン系硬化性組成物を注入後のガラスモールドを、空気炉を用いて、35℃から110℃まで12時間かけて徐々に昇温した後、110℃で1時間保持して、硬化性組成物を硬化させた。加熱後、ガスケット及びガラスモールド内から硬化体を取り出し、これを110℃のオーブンに入れ3時間加熱した。加熱後の硬化体の外周を玉摺機にて研磨して、直径60mmの図3に示すレンズを得た。この操作を繰り返し、合計10枚のレンズを得た。以下、このレンズをレンズLS24とも称する。 The optical laminated sheet OL24 after curved surface processing was placed in the notch inside the gasket. This gasket was placed in a glass mold so that the optical laminated sheet OL24 was positioned inside the hollow portion. The glass mold was set so that the lens power D was 0.00, the lens diameter was 70 mm, and the lens thickness was 3.0 mm. A thiourethane-based curable composition was injected into the hollow portion of the glass mold. The glass mold after the thiourethane-based curable composition was injected was gradually heated from 35° C. to 110° C. over 12 hours using an air furnace, and then held at 110° C. for 1 hour to obtain the curable composition. Hardened things. After heating, the cured body was taken out from the gasket and the glass mold, placed in an oven at 110° C. and heated for 3 hours. The outer periphery of the cured body after heating was polished with a lens grinder to obtain a lens having a diameter of 60 mm as shown in FIG. This operation was repeated to obtain a total of 10 lenses. Hereinafter, this lens is also referred to as lens LS24.
 チオウレタン系硬化性組成物としては、ジシクロヘキシルメタン-4,4’-ジイソシアネート43.5質量部、イソホロンジイソシアネート43.5質量部、1,2-ビス〔(2-メルカプトエチル)チオ〕-3-メルカプトプロパン63.0質量部、及びジブチルチンジラウレート0.1質量部の混合物を用いた。 The thiourethane-based curable composition includes 43.5 parts by mass of dicyclohexylmethane-4,4′-diisocyanate, 43.5 parts by mass of isophorone diisocyanate, 1,2-bis[(2-mercaptoethyl)thio]-3- A mixture of 63.0 parts by weight of mercaptopropane and 0.1 parts by weight of dibutyltin dilaurate was used.
 <例25~例34>
 第1及び第2光学シート、又は、透明支持体を表5に記載のように変更したこと以外は、例24と同様の方法で、光学積層シート及びレンズを得た。なお、表5の略称の詳細は下記のとおりである。
<Example 25 to Example 34>
An optical laminate sheet and a lens were obtained in the same manner as in Example 24, except that the first and second optical sheets or the transparent support was changed as shown in Table 5. The details of the abbreviations in Table 5 are as follows.
 PVF1:ポリビニルアルコールフィルム(厚み75μm)
 PVF2:延伸倍率4倍であり、ホウ酸架橋を実施したポリビニルアルコールフィルム(厚み30μm)
 PVF3:視感透過率は44%、偏光度は94.4%、であり色調がグレーである2色性染料を含むポリビニルアルコール性偏光フィルム(厚み27μm)
 PET:厚み300μmのポリエチレンテレフタレート製シート
 TAC:厚み300μmのトリアセチルセルロース製シート
 APA1:厚み300μmの脂環族ポリアミドシート(4,4’-ジアミノジシクロヘキシルメタンと1,10-デカンジカルボン酸からなる脂環族ポリアミドを主成分とするシート)
 APA2:厚み200μmの延伸した脂環族ポリアミドシート(4,4’-ジアミノジシクロヘキシルメタンと1,10-デカンジカルボン酸からなる脂環族ポリアミドを主成分とするシート)
 PC1:厚み200μmのポリカーボネートシート
 PC2:厚み125μmの延伸ポリカーボネートシート
PVF1: polyvinyl alcohol film (thickness 75 μm)
PVF2: Polyvinyl alcohol film (thickness: 30 μm) with a draw ratio of 4 times and cross-linked with boric acid
PVF3: Polyvinyl alcohol polarizing film containing a dichroic dye with a luminous transmittance of 44%, a degree of polarization of 94.4%, and a gray tone (thickness: 27 μm)
PET: 300 μm thick sheet made of polyethylene terephthalate TAC: 300 μm thick sheet made of triacetyl cellulose APA1: 300 μm thick alicyclic polyamide sheet sheet mainly composed of group polyamide)
APA2: Stretched alicyclic polyamide sheet with a thickness of 200 μm (a sheet mainly composed of alicyclic polyamide composed of 4,4′-diaminodicyclohexylmethane and 1,10-decanedicarboxylic acid)
PC1: Polycarbonate sheet with a thickness of 200 μm PC2: Stretched polycarbonate sheet with a thickness of 125 μm
 <評価試験>
 (光学積層シート及びレンズのフォトクロミック性の測定)
 以下の方法で、例24~例34で得られた光学積層シートの最大吸収波長、発色濃度、及び退色速度を測定した。
<Evaluation test>
(Measurement of photochromic property of optical laminated sheet and lens)
The maximum absorption wavelength, color density, and fading rate of the optical laminated sheets obtained in Examples 24 to 34 were measured by the following methods.
 具体的には、先ず、23℃の温度下で、浜松ホトニクス株式会社製のキセノンランプL-2480(300W)SHL-100を、エアロマスフィルター(コーニング社製)を介して、光学積層シートの一方の光学シート側に、120秒間照射して、フォトクロミック化合物を発色させた。ビーム強度は、365nm=2.4mW/cm、245nm=24μW/cmとした。 Specifically, first, at a temperature of 23° C., a xenon lamp L-2480 (300 W) SHL-100 manufactured by Hamamatsu Photonics K.K. was irradiated for 120 seconds to develop the color of the photochromic compound. The beam intensity was 365 nm=2.4 mW/cm 2 and 245 nm=24 μW/cm 2 .
 発色後の最大吸収波長(λmax)を、大塚電子株式会社製の分光光度計(瞬間マルチチャンネルフォトディレクターMCPD1000)により求めた。 The maximum absorption wavelength (λmax) after color development was determined using a spectrophotometer (instantaneous multi-channel photo director MCPD1000) manufactured by Otsuka Electronics Co., Ltd.
 キセノンランプ未照射時の光学積層シートの最大吸収波長の吸光度ε(0)を測定した。次に、上記ビーム強度で120秒間にわたって光学積層シートにキセノンランプを照射して、光学積層シートの最大吸収波長の吸光度ε(120)を測定した。吸光度ε(120)からε(0)を差し引いた値を、発色濃度とした。この値が高いほどフォトクロミック性が優れていると言える。 The absorbance ε(0) of the maximum absorption wavelength of the optical laminated sheet was measured when the xenon lamp was not irradiated. Next, the optical laminated sheet was irradiated with a xenon lamp for 120 seconds at the above beam intensity, and the absorbance ε (120) of the maximum absorption wavelength of the optical laminated sheet was measured. A value obtained by subtracting ε(0) from the absorbance ε(120) was taken as the color density. It can be said that the higher this value, the better the photochromic properties.
 発色濃度が1/2まで低下するのに要する時間を測定し、これを退色速度〔t1/2(sec.)とした。この時間が短いほどフォトクロミック性が優れているといえる。
 例1~例11で得られたレンズの最大吸収波長、発色濃度、及び退色速度を、上記と同様の条件で測定した。その結果は、光学積層シートの値とそれぞれ同一であった。
The time required for the color density to decrease to 1/2 was measured, and this was defined as the fading rate [t1/2 (sec.). It can be said that the shorter this time, the better the photochromic properties.
The maximum absorption wavelength, color density, and fading speed of the lenses obtained in Examples 1 to 11 were measured under the same conditions as above. The results were the same as the values for the optical laminated sheets, respectively.
 (光学積層シートの剥離強度の測定)
 例24~例34で得られた光学積層シートを、50mm×100mmの短冊状となるように切り出して試験片を得た。この際、接着剤組成物の塗膜を含まない、一方の長辺端部を含むように切り出した。この試験片の第1光学シート及び第2光学シートの接着剤組成物が塗工されていない部分を、それぞれ上部治具及び下部治具に挟み、試験機:オートグラフAGS-500NX、島津製作所製に設置した。クロスヘッドスピード100mm/minで、上部治具を引張り、最大剥離力を測定した。この最大剥離力を剥離強度として、表5に記載した。
(Measurement of peel strength of optical laminated sheet)
The optical laminate sheets obtained in Examples 24 to 34 were cut into strips of 50 mm×100 mm to obtain test pieces. At this time, it was cut out so as to include one long side end portion that did not include the coating film of the adhesive composition. The portions of the first optical sheet and the second optical sheet of this test piece that were not coated with the adhesive composition were sandwiched between an upper jig and a lower jig, respectively. was installed in The upper jig was pulled at a crosshead speed of 100 mm/min to measure the maximum peel force. This maximum peel strength is shown in Table 5 as the peel strength.
 (曲面加工後の光学積層シートの歩留まり評価)
 例24~例34に係る光学積層シートについて、曲面加工後の歩留まり評価を行った。評価は、10枚の加工した光学積層シートのうち、40℃60%RHの環境下に4時間置いた後に、縁部に変形が生じず、4カーブの曲率を有する光学積層シートの枚数を数え、その割合を歩留まり(%)として算出した。この値を表5に示す。
、表1に記載した。
(Yield evaluation of optical laminated sheet after curved surface processing)
The optical laminated sheets according to Examples 24 to 34 were evaluated for yield after curved surface processing. For the evaluation, out of 10 optical laminated sheets that were processed, the number of optical laminated sheets that did not deform at the edges and had a curvature of 4 curves after being placed in an environment of 40°C and 60% RH for 4 hours was counted. , and its ratio was calculated as the yield (%). This value is shown in Table 5.
, listed in Table 1.
 (レンズの密着性評価)
 以下の方法により、例24~例34に係るレンズについて、光学積層シートと光学素子基材との密着性を評価した。先ず、レンズを目視により確認し、光学積層シートの剥がれが見られるかどうかを確認し、以下の評価基準に従って評価した。結果を表5に記載した。
(Lens adhesion evaluation)
The adhesion between the optical laminated sheet and the optical element substrate was evaluated for the lenses according to Examples 24 to 34 by the following method. First, the lens was visually checked to see if any peeling of the optical laminate sheet was observed, and evaluated according to the following evaluation criteria. The results are listed in Table 5.
 <評価基準>
 0:各層間で全くハガレが見られない。
 1:フォトクロミック積層体と樹脂層間で、5%未満の部位でハガレが見られる。
 2:フォトクロミック積層体と樹脂層間で、10%未満の部位でハガレが見られる。
 3:フォトクロミック積層体と樹脂層間で、10%以上の部位でハガレが見られる。
<Evaluation Criteria>
0: No peeling observed between layers.
1: Peeling is observed in less than 5% of the area between the photochromic laminate and the resin layer.
2: Peeling is observed in less than 10% of the area between the photochromic laminate and the resin layer.
3: Peeling is observed in 10% or more portions between the photochromic laminate and the resin layer.
Figure JPOXMLDOC01-appb-T000022

 
Figure JPOXMLDOC01-appb-T000022

 

Claims (14)

  1.  ポリビニルアルコール樹脂を含む第1光学シート及び第2光学シートと、
     前記第1光学シート及び前記第2光学シート間に介在し、これらを接着させるフォトクロミック接着層と、を含み、
     前記フォトクロミック接着層は、フォトクロミック化合物及び重合成分を含む接着性組成物の硬化体を含み、
     前記重合成分は、第2プレポリマー、第1ポリマー及び前記第2プレポリマー、前記第1ポリマー及び第3プレポリマー、並びに前記第1ポリマー及び前記第2プレポリマー及び前記第3プレポリマー、のうち何れかを含み、
     前記第2プレポリマーは、第1プレポリマーと2以上の活性水素基を有する第2多官能活性水素化合物とを反応させて得られる2以上のイソ(チオ)シアネート基を有する化合物であり、前記第1プレポリマーは、2以上の活性水素基を有する第1多官能活性水素化合物と、2以上のイソ(チオ)シアネート基を有する第1イソ(チオ)シアネート化合物とを反応させて得られる2以上のイソ(チオ)シアネート基を有する化合物であり、
     前記第1ポリマーは、前記第2プレポリマーと1つの活性水素基を有する単官能活性水素化合物とを反応させて得られる化合物であり、前記第3プレポリマーは、前記第1多官能活性水素化合物と前記第1イソ(チオ)シアネート化合物とを反応させて得られる2以上のイソ(チオ)シアネート基を有する化合物である、
    光学積層シート。
    a first optical sheet and a second optical sheet containing polyvinyl alcohol resin;
    a photochromic adhesive layer interposed between the first optical sheet and the second optical sheet to bond them together;
    The photochromic adhesive layer comprises a cured adhesive composition containing a photochromic compound and a polymerizable component,
    The polymerized component is selected from the second prepolymer, the first polymer and the second prepolymer, the first polymer and the third prepolymer, and the first polymer, the second prepolymer and the third prepolymer. including any
    The second prepolymer is a compound having two or more iso(thio)cyanate groups obtained by reacting the first prepolymer with a second polyfunctional active hydrogen compound having two or more active hydrogen groups, The first prepolymer is obtained by reacting a first polyfunctional active hydrogen compound having two or more active hydrogen groups with a first iso(thio)cyanate compound having two or more iso(thio)cyanate groups. A compound having an iso (thio) cyanate group above,
    The first polymer is a compound obtained by reacting the second prepolymer with a monofunctional active hydrogen compound having one active hydrogen group, and the third prepolymer is the first polyfunctional active hydrogen compound. A compound having two or more iso(thio)cyanate groups obtained by reacting the first iso(thio)cyanate compound with
    Optical laminate sheet.
  2.  前記接着性組成物は、前記第2プレポリマーを含む請求項1に記載の光学積層シート。 The optical laminated sheet according to claim 1, wherein the adhesive composition contains the second prepolymer.
  3.  前記第1多官能活性水素化合物は、数平均分子量500以上3000以下のポリオール化合物を含む請求項1又は2に記載の光学積層シート。 The optical laminated sheet according to claim 1 or 2, wherein the first polyfunctional active hydrogen compound contains a polyol compound having a number average molecular weight of 500 or more and 3000 or less.
  4.  前記第1イソ(チオ)シアネート化合物は、モル質量100以上500以下のイソ(チオ)シアネートを含む請求項1又は2に記載の光学積層シート。 The optical laminated sheet according to claim 1 or 2, wherein the first iso(thio)cyanate compound contains an iso(thio)cyanate having a molar mass of 100 or more and 500 or less.
  5.  前記第2多官能活性水素化合物は、モル質量50以上500以下のポリアミンを含む請求項1又は2に記載の光学積層シート。 The optical laminated sheet according to claim 1 or 2, wherein the second polyfunctional active hydrogen compound contains a polyamine having a molar mass of 50 or more and 500 or less.
  6.  前記単官能活性水素化合物は、2,2,6,6-ペンタメチル-4-ピペリジル部位を有するアミンを含む請求項1又は2に記載の光学積層シート。 The optical laminate sheet according to claim 1 or 2, wherein the monofunctional active hydrogen compound contains an amine having a 2,2,6,6-pentamethyl-4-piperidyl moiety.
  7.  前記第1光学シート及び前記第2光学シートの間に位置する透明支持体を更に含む請求項1に記載の光学積層シート。 The optical laminated sheet according to claim 1, further comprising a transparent support positioned between the first optical sheet and the second optical sheet.
  8.  前記透明支持体は、ポリエチレンテレフタレート、トリアセチルセルロース、ポリアミド、及びポリカーボネートシートからなる群より選択される少なくとも1種類の樹脂を含む請求項7に記載の光学積層シート。 The optical laminated sheet according to claim 7, wherein the transparent support contains at least one resin selected from the group consisting of polyethylene terephthalate, triacetylcellulose, polyamide, and polycarbonate sheets.
  9.  請求項1又は2に記載の光学積層シートと、
     前記第1光学シート及び前記第2光学シートの少なくとも一方の表面を被覆し、樹脂を含む光学素子基材と
    を含む光学物品。
    An optical laminated sheet according to claim 1 or 2;
    An optical article comprising: an optical element base material covering at least one surface of the first optical sheet and the second optical sheet and containing a resin.
  10.  前記光学素子基材は、前記第1光学シート及び前記第2光学シートの両方の表面を被覆する請求項9に記載の光学物品。 The optical article according to claim 9, wherein the optical element substrate covers both surfaces of the first optical sheet and the second optical sheet.
  11.  請求項9に記載の光学物品を含むレンズ。 A lens comprising the optical article according to claim 9.
  12.  請求項11に記載のレンズを含む眼鏡。 Glasses including the lens according to claim 11.
  13.  前記接着性組成物として、前記第2プレポリマーを含む、請求項1又は2に記載の光学積層シートの製造方法であって、
     前記第1多官能活性水素化合物と前記第1イソ(チオ)シアネート化合物とを反応させて前記第1プレポリマーを得ることと、
     前記第1プレポリマーと前記第2多官能活性水素化合物とを反応させて前記第2プレポリマーを得ることと、
     前記第2プレポリマーと前記フォトクロミック化合物とを混合して前記接着性組成物を得ることと、
     前記接着性組成物を前記第1光学シートの少なくとも一方の主面上に塗布して塗膜を得ることと、
     前記塗膜上に前記第2光学シートを積層させることと、
    を含む、光学積層シートの製造方法。
    3. The method for producing an optical laminated sheet according to claim 1, wherein the adhesive composition contains the second prepolymer,
    obtaining the first prepolymer by reacting the first polyfunctional active hydrogen compound and the first iso(thio)cyanate compound;
    obtaining the second prepolymer by reacting the first prepolymer with the second polyfunctional active hydrogen compound;
    mixing the second prepolymer and the photochromic compound to obtain the adhesive composition;
    obtaining a coating film by coating the adhesive composition on at least one main surface of the first optical sheet;
    laminating the second optical sheet on the coating film;
    A method for producing an optical laminated sheet, comprising:
  14.  前記接着性組成物として、前記第1ポリマー及び前記第2プレポリマーを含む、請求項1又は2に記載の光学積層シートの製造方法であって、
     前記第1多官能活性水素化合物と前記第1イソ(チオ)シアネート化合物とを反応させて前記第1プレポリマーを得ることと、
     前記第1プレポリマーと前記第2多官能活性水素化合物とを反応させて前記第2プレポリマーを得ることと、
     前記第2プレポリマーと前記単官能活性水素化合物とを反応させて前記第1ポリマーを得ることと、
     前記第1ポリマー、前記第2プレポリマー、及び前記フォトクロミック化合物を混合して前記接着性組成物を得ることと、
     前記接着性組成物を前記第1光学シートの少なくとも一方の主面上に塗布して塗膜を得ることと、
     前記塗膜上に前記第2光学シートを積層させることと
    を含む光学積層シートの製造方法。
    3. The method for producing an optical laminated sheet according to claim 1, wherein the adhesive composition contains the first polymer and the second prepolymer,
    obtaining the first prepolymer by reacting the first polyfunctional active hydrogen compound and the first iso(thio)cyanate compound;
    obtaining the second prepolymer by reacting the first prepolymer with the second polyfunctional active hydrogen compound;
    reacting the second prepolymer with the monofunctional active hydrogen compound to obtain the first polymer;
    mixing the first polymer, the second prepolymer, and the photochromic compound to obtain the adhesive composition;
    obtaining a coating film by coating the adhesive composition on at least one main surface of the first optical sheet;
    and laminating the second optical sheet on the coating film.
PCT/JP2022/039379 2021-11-10 2022-10-21 Optical laminated sheet, optical article, lens, spectacles, and method for manufacturing optical laminated sheet WO2023085051A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021183702 2021-11-10
JP2021-183702 2021-11-10
JP2021-203477 2021-12-15
JP2021203477 2021-12-15

Publications (1)

Publication Number Publication Date
WO2023085051A1 true WO2023085051A1 (en) 2023-05-19

Family

ID=86335707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039379 WO2023085051A1 (en) 2021-11-10 2022-10-21 Optical laminated sheet, optical article, lens, spectacles, and method for manufacturing optical laminated sheet

Country Status (1)

Country Link
WO (1) WO2023085051A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018514817A (en) * 2015-04-29 2018-06-07 トライアペックス カンパニー リミテッド Polarizing film, method for producing the same, and polarizing lens including the same
WO2019163728A1 (en) * 2018-02-23 2019-08-29 株式会社トクヤマ Functional multilayer body and functional lens using functional multilayer body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018514817A (en) * 2015-04-29 2018-06-07 トライアペックス カンパニー リミテッド Polarizing film, method for producing the same, and polarizing lens including the same
WO2019163728A1 (en) * 2018-02-23 2019-08-29 株式会社トクヤマ Functional multilayer body and functional lens using functional multilayer body

Similar Documents

Publication Publication Date Title
EP3653615B1 (en) Chromene compound, curable composition comprising same, and optical article comprising cured product formed of curable composition
JP2008105225A (en) Antidazzle laminate, coated antidazzle laminate, antidazzle material and manufacturing method of antidazzle material
JP5832128B2 (en) Photochromic lens
JP6755887B2 (en) Laminated body and optical articles using the laminated body
TWI541336B (en) A photochromic composition, and an optical article using the composition
US9377664B2 (en) Photocromic composition
KR20200020711A (en) Curable composition containing a photochromic polyrotaxane compound and this photochromic polyrotaxane compound
KR20090012353A (en) Polarizing optical elements and method for preparing polyurethane-containing films
CN110914322B (en) Polymerizable composition for optical material, and use thereof
JP6788729B2 (en) Polymerizable composition and molded article
JP2005215640A (en) Photochromic lens and its manufacturing method
JP5762130B2 (en) Photochromic lens and manufacturing method thereof
CN108884209B (en) Polymerizable composition for optical material, optical material obtained from the composition, and plastic lens
WO2023085051A1 (en) Optical laminated sheet, optical article, lens, spectacles, and method for manufacturing optical laminated sheet
JP5956726B2 (en) Photochromic lens and manufacturing method thereof
WO2024018902A1 (en) Layered body, optical article, lens, and spectacles
WO2023210447A1 (en) Method for manufacturing optical layered sheet and method for manufacturing optical article
WO2023210448A1 (en) Curable composition, cured body, laminate, optical article, lens, and spectacles
TW202408813A (en) Laminated bodies, optical articles, lenses and glasses
WO2019117305A1 (en) Polymerizable composition for optical materials and application of same
JP2017211547A (en) Lens and method of producing the same
CA3069389A1 (en) Chromene compound, curable composition comprising the compound, and optical article including a cured body of the curable composition
JP2018059014A (en) Thietanyl compound, polymerizable composition comprising that compound, and applications thereof
WO2024080103A1 (en) Optical material composition, cured body, optical article, lens, and spectacles
JP2022151409A (en) photochromic optical article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892551

Country of ref document: EP

Kind code of ref document: A1