WO2023085045A1 - Temperature detection device, temperature detection method, and computer program - Google Patents

Temperature detection device, temperature detection method, and computer program Download PDF

Info

Publication number
WO2023085045A1
WO2023085045A1 PCT/JP2022/039280 JP2022039280W WO2023085045A1 WO 2023085045 A1 WO2023085045 A1 WO 2023085045A1 JP 2022039280 W JP2022039280 W JP 2022039280W WO 2023085045 A1 WO2023085045 A1 WO 2023085045A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
resistor
resistance value
value
variable resistor
Prior art date
Application number
PCT/JP2022/039280
Other languages
French (fr)
Japanese (ja)
Inventor
凌兵 澤田
康太 小田
弘紀 榊原
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2023085045A1 publication Critical patent/WO2023085045A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • G01K7/25Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit for modifying the output characteristic, e.g. linearising

Definitions

  • the present disclosure relates to a temperature detection device, a temperature detection method, and a computer program.
  • This application claims priority based on Japanese application No. 2021-183472 filed on November 10, 2021, and incorporates all the descriptions described in the Japanese application.
  • Patent Document 1 discloses a configuration for detecting temperature using a thermistor.
  • the resistance value of the thermistor changes according to the temperature of the thermistor.
  • a thermistor is arranged in the vicinity of a semiconductor switch chip mounted on a vehicle. The temperature of the chip of the semiconductor switch is detected by calculating the temperature of the thermistor.
  • a temperature detection device is a temperature detection device mounted on a vehicle, comprising: a variable resistor connected to a temperature resistor whose resistance value changes according to temperature; A voltage application unit that applies a constant voltage to a series circuit including a variable resistor, a conversion unit that converts the divided voltage divided by the temperature resistor and the variable resistor into a digital value, and a processing unit that executes processing.
  • the temperature is the temperature of the temperature resistor
  • the processing unit adjusts the resistance value of the variable resistor according to the resistance value of the temperature resistor, and adjusts the resistance value of the variable resistor to The temperature of the temperature resistor is specified based on the digital value converted by the conversion unit after the adjustment.
  • a computer program adjusts a resistance value of a variable resistor connected to a temperature resistor according to a resistance value of the temperature resistor whose resistance value changes according to temperature; determining the temperature based on a digital value of a divided voltage obtained by dividing a constant voltage by the temperature resistor and the variable resistor after the resistance value of the variable resistor is adjusted; Used to run a computer, said temperature is the temperature of said temperature resistor.
  • the present disclosure can be realized not only as a temperature detection device having such a characteristic processing unit, but also as a temperature detection method including such characteristic processing as steps, or as a temperature detection method in which such steps are executed by a computer. It can be implemented as a computer program for execution. Further, the present disclosure can be implemented as a semiconductor integrated circuit that implements part or all of the temperature detection device, or as a temperature detection system that includes the temperature detection device.
  • FIG. 2 is a block diagram showing the configuration of main parts of the temperature detection system according to Embodiment 1.
  • FIG. It is a graph which shows the temperature characteristic of a temperature resistor.
  • It is a circuit diagram of a variable resistor.
  • 3 is a block diagram showing the configuration of main parts of a microcomputer;
  • FIG. FIG. 4 is an explanatory diagram of conversion into digital values;
  • FIG. 4 is an explanatory diagram of resolution according to the resistance value of a variable resistor;
  • FIG. 4 is an explanatory diagram of timing for changing the resistance value of a variable resistor;
  • 4 is a chart showing contents of a temperature table;
  • 5 is a flow chart showing a procedure of temperature detection processing;
  • 10 is a flow chart showing the procedure of temperature detection processing according to the second embodiment.
  • FIG. 11 is a circuit diagram of a variable resistor according to Embodiment 3;
  • Patent Document 1 does not consider the accuracy of temperature detection.
  • An object of the present disclosure is to provide a temperature detection device, a temperature detection method, and a computer program that can accurately detect temperature.
  • a temperature detection device is a temperature detection device mounted on a vehicle, comprising: a variable resistor connected to a temperature resistor whose resistance value changes according to temperature; A voltage application unit that applies a constant voltage to a series circuit including a resistor and a variable resistor; a conversion unit that converts the divided voltage divided by the temperature resistor and the variable resistor into a digital value; wherein the temperature is the temperature of the temperature resistor, the processing unit adjusts the resistance value of the variable resistor according to the resistance value of the temperature resistor, and After adjusting the resistance value, the temperature of the temperature resistor is specified based on the digital value converted by the conversion unit.
  • the variable resistor includes a first resistor and a second resistor, a series switch connected in series with the first resistor, and turning on or turning on the series switch. a switching circuit for switching off, wherein the second resistor is connected in parallel to a series circuit including the first resistor and a series switch, and the processing unit switches on or off the series switch. The resistance value of the variable resistor is adjusted by instructing the switching circuit.
  • the processing unit increases the resistance value of the variable resistor to a first predetermined value when the resistance value of the temperature resistor exceeds a threshold value, The resistance value of the variable resistor is decreased to a second predetermined value when the resistance value of the temperature resistor decreases to a value less than the threshold value, and the first predetermined value exceeds the second predetermined value.
  • a temperature detection device includes a temperature storage unit that stores a plurality of first temperatures and second temperatures corresponding to a plurality of digital values, and the processing unit stores the variable
  • the resistance value of the resistor is the first predetermined value
  • the temperature of the temperature resistor is identified as the first temperature corresponding to the digital value converted by the conversion unit among the plurality of first temperatures.
  • the resistance value of the variable resistor is the second predetermined value
  • the temperature of the temperature resistor is a second temperature corresponding to the digital value converted by the conversion unit among the plurality of second temperatures. value.
  • a temperature detection device includes a calculation formula storage unit that stores a first calculation formula and a second calculation formula for calculating temperature using voltage as a variable, and the processing unit , when the resistance value of the variable resistor is the first predetermined value, the temperature is calculated by substituting the divided voltage indicated by the digital value converted by the conversion unit into the variable of the first calculation formula, and When the resistance value of the variable resistor is the second predetermined value, the temperature is calculated by substituting the divided voltage indicated by the digital value converted by the conversion unit into the variable of the second calculation formula, and the temperature resistance The temperature of the vessel is specified as the calculated temperature.
  • the resistance value of the temperature resistor decreases when the temperature of the temperature resistor increases.
  • the resistance value of the variable resistor connected to the temperature resistor is adjusted according to the resistance value of the temperature resistor whose resistance value changes according to temperature. and determining the temperature based on the digital value of the divided voltage obtained by dividing the constant voltage by the temperature resistor and the variable resistor after the resistance value of the variable resistor is adjusted. and wherein the temperature is the temperature of the temperature resistor.
  • a computer program adjusts the resistance value of a variable resistor connected to the temperature resistor according to the resistance value of the temperature resistor whose resistance value changes according to temperature. and determining the temperature based on the digital value of the divided voltage obtained by dividing the constant voltage by the temperature resistor and the variable resistor after the resistance value of the variable resistor is adjusted. and the temperature is the temperature of the temperature resistor.
  • the resistance value of the variable resistor is adjusted according to the resistance value of the temperature resistor.
  • a plurality of voltages are associated with each of the plurality of digital values.
  • the divided voltage is, for example, converted into a digital value of the closest voltage among the plurality of voltages. If the difference between the resistance values of the variable resistor and the temperature resistor is sufficiently large, the divided voltage hardly changes due to the change in the resistance value of the temperature resistor. In this case, the digital value does not change.
  • the resistance value of the temperature resistor decreases, the resistance value of the variable resistor is decreased.
  • the resistance value of the variable resistor increases, the resistance value of the variable resistor is increased. Therefore, the difference between the resistance values of the variable resistor and the temperature resistor is prevented from increasing to a large value. As a result, since the divided voltage changes greatly, the temperature can be detected with high accuracy.
  • the resistance value of the second resistor is greater than the resistance value of the parallel circuit of the first resistor and the second resistor.
  • the resistance of the variable resistor increases from the resistance of the parallel circuit to the resistance of the second resistor.
  • the resistance of the variable resistor drops from the resistance of the second resistor to the resistance of the parallel circuit.
  • the resistance value of the temperature resistor exceeds the resistance threshold value, the resistance value is increased from the second predetermined value to the first predetermined value. If the resistance of the thermal resistor drops below the resistance threshold, it is lowered from the first predetermined value to the second predetermined value. As a result, the accuracy of a certain value or more is maintained.
  • the temperature of the temperature resistor is specified using pre-stored memory contents. Therefore, it is possible to specify the temperature of the temperature resistor with a simple configuration.
  • the temperature of the temperature resistor is specified using the first calculation formula and the second calculation formula.
  • accurate temperature determination of the temperature resistor is achieved.
  • the temperature resistor has, for example, an NTC (Negative Temperature Coefficient) thermistor.
  • FIG. 1 is a block diagram showing the main configuration of a temperature detection system 1 according to Embodiment 1.
  • a temperature detection system 1 is mounted on a vehicle C.
  • a temperature detection system 1 includes a DC power supply 10 , a temperature detection device 11 and a temperature resistor 12 .
  • DC power supply 10 is, for example, a battery.
  • the negative electrode of DC power supply 10 is grounded. Grounding is realized by connection to the body of the vehicle C, for example.
  • a positive electrode of the DC power supply 10 and one end and the other end of the temperature resistor 12 are connected to the temperature detection device 11 .
  • the temperature sensing device 11 is also grounded.
  • a DC power supply 10 supplies power to the temperature detection device 11 .
  • FIG. 2 is a graph showing temperature characteristics of the temperature resistor 12.
  • FIG. FIG. 2 shows the relationship between the resistance value of the temperature resistor 12 and temperature.
  • the resistance of temperature resistor 12 decreases when the temperature of temperature resistor 12 increases. Specifically, in a range where the temperature of the temperature resistor 12 is low, when the temperature of the temperature resistor 12 rises, the resistance value of the temperature resistor 12 drops rapidly. In the range where the temperature of the temperature resistor 12 is high, when the temperature of the temperature resistor 12 rises, the resistance value of the temperature resistor 12 gradually decreases.
  • the temperature detection device 11 detects the temperature of the temperature resistor 12 based on the voltage that varies according to the resistance value of the temperature resistor 12 .
  • Temperature resistors 12 are placed at various locations. When the temperature inside the vehicle C is to be detected, the temperature resistor 12 is placed inside the vehicle C. As shown in FIG. When sensing the temperature of a semiconductor switch, the temperature resistor 12 is arranged in the vicinity of the semiconductor switch.
  • the temperature range to be detected includes a temperature range in which the resistance value of the temperature resistor 12 drops rapidly and a temperature range in which the resistance value of the temperature resistor 12 drops gradually.
  • temperature resistor 12 has an NTC thermistor 20 .
  • NTC is an abbreviation for Negative Temperature Coefficient.
  • the resistance value of NTC thermistor 20 changes according to the temperature of NTC thermistor 20 .
  • the resistance value and temperature of temperature resistor 12 are the resistance value and temperature of NTC thermistor 20, respectively.
  • the temperature characteristics shown in FIG. 2 are the temperature characteristics of the NTC thermistor 20.
  • the temperature resistor 12 may be implemented using a circuit element different from the NTC thermistor 20, such as a resistance temperature detector.
  • a resistance temperature detector An example in which the temperature resistor 12 is implemented using an NTC thermistor 20 will be described below.
  • the temperature detection device 11 has a regulator 30 , a variable resistor 31 and a microcomputer (hereinafter referred to as microcomputer) 32 .
  • Regulator 30 is connected to the positive electrode of DC power supply 10 and variable resistor 31 .
  • a variable resistor 31 is connected to one end of the NTC thermistor 20 of the temperature resistor 12 . The other end of NTC thermistor 20 is grounded.
  • a connection node between the regulator 30 and the variable resistor 31 and a connection node between the variable resistor 31 and the temperature resistor 12 are connected to the microcomputer 32 .
  • the variable resistor 31 is also connected to the microcomputer 32 .
  • the regulator 30 and microcomputer 32 are grounded.
  • the DC power supply 10 supplies power to one or a plurality of in-vehicle devices (not shown) mounted in the vehicle C.
  • FIG. The power supply voltage of the DC power supply 10 fluctuates according to the operating state of one or more in-vehicle devices.
  • the regulator 30 steps down the power supply voltage to a constant target voltage.
  • the target voltage is a voltage below the minimum value of the power supply voltage.
  • the power supply voltage varies, for example, within a range from 8V to 14V.
  • the target voltage is, for example, 5V. Since the target voltage is a voltage equal to or lower than the minimum value of the power supply voltage, the regulator 30 stably outputs the target voltage regardless of fluctuations in the power supply voltage.
  • the regulator 30 applies a constant target voltage generated by stepping down to the microcomputer 32 .
  • the current flows from the positive electrode of the DC power supply 10 to the regulator 30 , the microcomputer 32 and the negative electrode of the DC power supply 10 in this order.
  • power is supplied from the DC power supply 10 to the microcomputer 32 .
  • the regulator 30 also applies a constant target voltage to the series circuit including the variable resistor 31 and the temperature resistor 12 . Therefore, the regulator 30 functions as a voltage applying section.
  • a variable resistor 31 and a temperature resistor 12 divide the target voltage.
  • a divided voltage obtained by dividing the voltage by the variable resistor 31 and the temperature resistor 12 is input to the microcomputer 32 .
  • the divided voltage is the voltage across temperature resistor 12 .
  • Vg A target voltage is described as Vg.
  • the resistance values of the variable resistor 31 and the temperature resistor 12 are denoted as Rv and Rt, respectively.
  • a divided voltage obtained by voltage division by the variable resistor 31 and the temperature resistor 12 is denoted as Vd.
  • the divided voltage Vd increases as the resistance value Rt of the temperature resistor 12 increases.
  • the microcomputer 32 detects the temperature of the temperature resistor 12 based on the divided voltage Vd.
  • the microcomputer 32 increases the resistance value of the variable resistor 31 to a first predetermined value when the resistance value of the temperature resistor 12 increases to a value equal to or higher than the resistance threshold value.
  • the microcomputer 32 reduces the resistance value of the variable resistor 31 to a second predetermined value when the resistance value of the temperature resistor 12 has decreased to a value less than the resistance threshold value. As a result, as will be described later, the accuracy of temperature detection is maintained at a certain value or higher.
  • the first predetermined value exceeds the second predetermined value.
  • FIG. 3 is a circuit diagram of the variable resistor 31.
  • the variable resistor 31 has a series switch 40 , a first resistor 41 , a second resistor 42 and a switching circuit 43 .
  • the series switch 40 is connected in series with the first resistor 41 .
  • a second resistor 42 is connected in parallel with a series circuit including the series switch 40 and the first resistor 41 .
  • the series switch 40 is arranged on the regulator 30 side of the first resistor 41 .
  • the series switch 40 may be arranged on the temperature resistor 12 side of the first resistor 41 .
  • a connection node between the series switch 40 and the second resistor 42 is connected to the regulator 30 .
  • a connection node between the first resistor 41 and the second resistor 42 is connected to one end of the NTC thermistor 20 of the temperature resistor 12 .
  • the switching circuit 43 is connected to the microcomputer 32 .
  • the resistance values of the first resistor 41 and the second resistor 42 are denoted as R1 and R2, respectively.
  • the resistance value Rv of the variable resistor 31 is the resistance value R2 of the second resistor 42 when the series switch 40 is off.
  • the resistance value Rv of the variable resistor 31 is the resistance value of a parallel circuit in which the first resistor 41 and the second resistor 42 are connected in parallel. Therefore, the resistance value Rv of the variable resistor 31 when the series switch 40 is on is represented by the following formula.
  • Rv R1 ⁇ R2/(R1+R2)
  • the microcomputer 32 outputs a high level voltage or a low level voltage to the switching circuit 43 .
  • the switching circuit 43 switches the serial switch 40 from off to on.
  • R2 is greater than R1 ⁇ R2/(R1+R2). Therefore, when the series switch 40 is switched from off to on, the resistance value Rv of the variable resistor 31 decreases.
  • the microcomputer 32 When the microcomputer 32 switches the output voltage from the high level voltage to the low level voltage, the switching circuit 43 switches the series switch 40 from on to off. As a result, the resistance value Rv of the variable resistor 31 increases. As described above, the microcomputer 32 adjusts the resistance value of the variable resistor 31 to the first predetermined value or the second predetermined value.
  • the first predetermined value is R2.
  • the second predetermined value is R1 ⁇ R2/(R1+R2).
  • FIG. 4 is a block diagram showing the main configuration of the microcomputer 32.
  • the microcomputer 32 has an output section 50 , an A/D conversion section 51 , a storage section 52 and a control section 53 . These are connected to the internal bus 54 .
  • the output section 50 is further connected to the switching circuit 43 of the variable resistor 31 .
  • the A/D converter 51 is connected to a connection node between the variable resistor 31 and the temperature resistor 12 .
  • the output unit 50 outputs a high level voltage or a low level voltage to the switching circuit 43 of the variable resistor 31.
  • the output voltage of the output section 50 is the output voltage of the microcomputer 32 described above.
  • the output unit 50 switches the output voltage to a high level voltage or a low level voltage according to instructions from the control unit 53 .
  • a divided voltage divided by the variable resistor 31 and the temperature resistor 12 is input to the A/D converter 51 .
  • the A/D converter 51 converts the divided voltage obtained by dividing the voltage by the variable resistor 31 and the temperature resistor 12 into a digital value.
  • FIG. 5 is an explanatory diagram of conversion into digital values.
  • the A/D converter 51 converts the divided voltage into an n-bit digital value.
  • n is an integer of 2 or more.
  • 2 n scales from 0 V to the target voltage are set at intervals of this division value.
  • 2 n digital values are assigned to each of the 2 n graduations. The digital value corresponding to a scale with a large value is large.
  • FIG. 5 shows decimal digital values and voltages corresponding to 2 n digital values expressed in binary. The unit of voltage is volts.
  • FIG. 5 shows an example where n is 3 and the target voltage is 5V.
  • Eight digital values from 0 to 7 are assigned to each of the eight graduations. "000” is assigned to 0V. "111" is assigned to 5V.
  • the A/D converter 51 converts the input divided voltage into a digital value with a scale closest to the input divided voltage.
  • the A/D converter 51 converts the divided voltage near 5V into "111".
  • the A/D converter 51 converts the divided voltage near 2.86V to "100”.
  • the A/D converter 51 converts the divided voltage near 0.71V to "001".
  • a control unit 53 of the microcomputer 32 shown in FIG. 4 acquires the digital value converted by the A/D conversion unit 51 .
  • the storage unit 52 is composed of, for example, a volatile memory and a nonvolatile memory.
  • a computer program P is stored in the storage unit 52 .
  • the control unit 53 has a processing element that executes processing, such as a CPU (Central Processing Unit).
  • the control unit 53 functions as a processing unit.
  • a processing element (computer) of the control unit 53 executes a computer program P to perform temperature detection processing for detecting the temperature of the temperature resistor 12 and the like.
  • the computer program P may be provided to the microcomputer 32 using a non-temporary storage medium A that stores the computer program P in a readable manner.
  • Storage medium A is, for example, a portable memory. Examples of portable memory include CD-ROM, USB (Universal Serial Bus) memory, SD card, micro SD card, compact flash (registered trademark), and the like.
  • the processing element of the control unit 53 may read the computer program P from the storage medium A using a reading device (not shown). The read computer program P is written in the storage unit 52 .
  • the computer program P may be provided to the microcomputer 32 by a communication section (not shown) of the microcomputer 32 communicating with an external device. In this case, the processing element of the control unit 53 acquires the computer program P through the communication unit. The acquired computer program P is written in the storage unit 52 .
  • the number of processing elements that the control unit 53 has is not limited to one, and may be two or more.
  • the plurality of processing elements may cooperate to perform temperature detection processing and the like.
  • the control unit 53 instructs the output unit 50 to switch the output voltage to a high level voltage or a low level voltage. Thereby, the controller 53 adjusts the resistance value of the variable resistor 31 to the first predetermined value or the second predetermined value. As a result, the accuracy of temperature detection is maintained above a certain value. The reason for this is explained.
  • FIG. 6 is an explanatory diagram of the resolution according to the resistance value of the variable resistor 31.
  • FIG. 6 shows a voltage graph showing the relationship between the divided voltage and the temperature of the temperature resistor 12, and a resolution graph showing the relationship between the resolution and the temperature of the temperature resistor 12.
  • FIG. In each graph multiple scales of temperature are provided at intervals of constant temperature, eg, 1 degree.
  • a plurality of scales of the divided voltage correspond to each of the 2 n digital values mentioned above. As described above, the scale interval is (target voltage Vg)/(2 n -1).
  • FIG. 6 shows an example in which the A/D converter 51 converts the divided voltage into a 3-bit digital value. Therefore, the number of division voltage scales is eight.
  • the resolution is the difference between the decimal digital values corresponding to the two temperatures.
  • the resolution of 10 degrees is the difference value between the decimal digital value corresponding to 9 degrees and the decimal digital value corresponding to 10 degrees. The larger the difference value, the more clearly the temperature difference of the temperature resistor 12 can be indicated.
  • the resistance value of the temperature resistor 12 is large (see FIG. 2).
  • the resistance value of the temperature resistor 12 is small (see FIG. 2).
  • the first predetermined value exceeds the second predetermined value.
  • the divided voltage drops rapidly as the temperature of the temperature resistor 12 rises in the range where the temperature of the temperature resistor 12 is low. In the range where the temperature of the temperature resistor 12 is low, the difference between the resistance value of the temperature resistor 12 and the first predetermined value is small. Therefore, the change in the divided voltage in accordance with the change in the resistance value of the temperature resistor 12 is large. As a result, the divided voltage drops rapidly as the temperature of the temperature resistor 12 rises. Therefore, the resolution is high in the range where the temperature of the temperature resistor 12 is low.
  • the digital value converted by the A/D converter 51 also changes.
  • the divided voltage gradually decreases as the temperature of the temperature resistor 12 rises in the range where the temperature of the temperature resistor 12 is high.
  • the resistance value of the temperature resistor 12 is sufficiently smaller than the first predetermined value. Therefore, the change in the divided voltage corresponding to the change in the resistance value of the temperature resistor 12 is small.
  • the divided voltage gradually decreases as the temperature of the temperature resistor 12 rises. Therefore, the resolution is low in the range where the temperature of the temperature resistor 12 is high.
  • the digital value converted by the A/D converter 51 does not change. For example, two divided voltages corresponding to 99 degrees and 100 degrees are converted to the same digital value.
  • the divided voltage gradually decreases as the temperature of the temperature resistor 12 rises in the range where the temperature of the temperature resistor 12 is low.
  • the resistance value of the temperature resistor 12 is sufficiently higher than the second predetermined value. Therefore, the change in the divided voltage corresponding to the change in the resistance value of the temperature resistor 12 is small.
  • the divided voltage gradually decreases as the temperature of the temperature resistor 12 rises. Therefore, the resolution is low in the range where the temperature of the temperature resistor 12 is low.
  • the digital value that the A/D converter 51 changes does not change. For example, two divided voltages corresponding to -20 degrees and -19 degrees are converted to the same digital value.
  • the divided voltage drops rapidly as the temperature of the temperature resistor 12 rises in the range where the temperature of the temperature resistor 12 is high.
  • the difference value between the resistance value of the temperature resistor 12 and the second predetermined value is small. Therefore, the change in the divided voltage in accordance with the change in the resistance value of the temperature resistor 12 is large.
  • the divided voltage drops rapidly as the temperature of the temperature resistor 12 rises. Therefore, the resolution is high in the range where the temperature of the temperature resistor 12 is high.
  • the digital value converted by the A/D converter 51 also changes.
  • the control unit 53 of the microcomputer 32 adjusts the resistance value of the variable resistor 31 to the first predetermined value when the temperature of the temperature resistor 12 is low, that is, when the resistance value of the temperature resistor 12 is high.
  • the controller 53 adjusts the resistance value of the variable resistor 31 to the second predetermined value. Thereby, the accuracy of temperature detection is maintained at a certain value or higher.
  • FIG. 7 is an explanatory diagram of the timing of changing the resistance value of the variable resistor 31.
  • FIG. 7 shows the temperature characteristics of the temperature resistor 12 (see FIG. 2), voltage graph and resolution graph.
  • the resolution graphs corresponding to the first predetermined value and the second predetermined value are indicated by solid lines and broken lines, respectively.
  • the resolution graphs corresponding to the first predetermined value and the second predetermined value are indicated by dashed lines and solid lines.
  • the resistance value of the variable resistor corresponding to the intersection of the two resolution graphs (the temperature of the temperature resistor 12) is indicated by Rth.
  • Rth is the resistance threshold.
  • V1 is represented by V1 is the first voltage threshold.
  • V2 is a second voltage threshold.
  • the microcomputer 32 controls when the resistance value of the temperature resistor 12 decreases to a value less than the resistance threshold value Rth, that is, when the divided voltage is the first voltage.
  • the resistance value of the variable resistor 31 is lowered to the second predetermined value.
  • the microcomputer 32 detects when the resistance value of the temperature resistor 12 exceeds the resistance threshold value Rth, that is, when the divided voltage exceeds the second voltage threshold value V2. If exceeded, the resistance value of the variable resistor 31 is increased to the first predetermined value. Thereby, the accuracy of temperature detection is maintained at a certain value or higher.
  • ⁇ Temperature table T> In the temperature detection process, the controller 53 shown in FIG. 4 identifies the temperature of the temperature resistor 12 based on the digital value acquired from the A/D converter 51 . A temperature table T is used to specify the temperature of the temperature resistor 12 . A temperature table T is stored in the storage unit 52 .
  • FIG. 8 is a table showing contents of the temperature table T.
  • the temperature table T shows 2 n first temperatures and second temperatures corresponding to 2 n digital values.
  • the units for the first temperature and the second temperature are degrees.
  • the storage unit 52 functions as a temperature storage unit.
  • n 10 is shown. Therefore, a decimal digital value is an integer in the range 0-1023.
  • the microcomputer 32 refers to the first temperature corresponding to the digital value converted by the A/D converter 51 . As shown in FIG. 7, the lower the divided voltage, the smaller the decimal digital value and the higher the temperature of the temperature resistor 12 . Therefore, the higher the temperature of the temperature resistor 12, the smaller the decimal digital value.
  • the resistance value of the variable resistor 31 is the first predetermined value and the temperature of the temperature resistor 12 is high, the resolution is small. Therefore, when the decimal digital value is small, the plurality of first temperatures corresponding to the plurality of digital values are the same.
  • the microcomputer 32 refers to the second temperature corresponding to the digital value converted by the A/D converter 51 .
  • the higher the divided voltage the higher the decimal digital value and the lower the temperature of the temperature resistor 12 . Therefore, the lower the temperature of the temperature resistor 12, the larger the decimal digital value.
  • the resolution is small when the temperature of the temperature resistor 12 is low. Therefore, when the decimal digital value is large, the plurality of second temperatures corresponding to the plurality of digital values are the same.
  • FIG. 9 is a flow chart showing the procedure of temperature detection processing.
  • the control unit 53 of the microcomputer 32 repeatedly executes the temperature detection process.
  • the storage unit 52 of the microcomputer 32 stores flag values.
  • the flag value is changed to 1 or 2 by the control unit 53 .
  • “1" indicates that the resistance value of the variable resistor 31 is the first predetermined value.
  • “2" indicates that the resistance value of the variable resistor 31 is the second predetermined value.
  • the control unit 53 first acquires a digital value converted by the A/D conversion unit 51 (step S1). Next, the control unit 53 determines whether or not the value of the flag is 1 (step S2). If the value of the flag is not 1, the value of the flag is 2. When determining that the value of the flag is 1 (S2: YES), the control unit 53 determines whether the resistance value of the temperature resistor 12 is less than the resistance threshold (step S3). In the example of FIG. 7, when the divided voltage corresponding to the digital value acquired in step S1 by the control unit 53 is equal to or less than the first voltage threshold value V1, the resistance value of the temperature resistor 12 is determined to be less than the resistance threshold value Rth. do. When the divided voltage corresponding to the digital value acquired in step S1 by the controller 53 exceeds the first voltage threshold V1, the resistance value of the temperature resistor 12 is determined to be equal to or greater than the resistance threshold Rth.
  • step S4 When the control unit 53 determines that the resistance value of the temperature resistor 12 is less than the resistance threshold value (S3: YES), the control unit 53 instructs the output unit 50 to switch the output voltage to a high level voltage, so that the variable resistance The resistance value of the device 31 is lowered to a second predetermined value (step S4). Instructing the output section 50 to switch the output voltage to the high level voltage corresponds to instructing the switching circuit 43 to switch the series switch 40 to ON. After executing step S4, the control unit 53 changes the value of the flag to 2 (step S5). Next, the control unit 53 acquires again the digital value converted by the A/D conversion unit 51 after the resistance value of the variable resistor 31 is adjusted to the second predetermined value (step S6).
  • step S7 determines whether the resistance value of the temperature resistor 12 exceeds the resistance threshold.
  • the control unit 53 determines whether the resistance value of the temperature resistor 12 exceeds the resistance threshold.
  • the resistance value of the temperature resistor 12 exceeds the resistance threshold value Rth. I judge.
  • the resistance value of the temperature resistor 12 is determined to be equal to or less than the resistance threshold Rth.
  • step S8 When the control unit 53 determines that the resistance value of the temperature resistor 12 exceeds the resistance threshold value (S7: YES), the control unit 53 instructs the output unit 50 to switch the output voltage to a low level voltage, thereby making the variable The resistance value of the resistor 31 is raised to the first predetermined value (step S8). Instructing the output unit 50 to switch the output voltage to the low level voltage corresponds to instructing the switching circuit 43 to switch the series switch 40 off. After executing step S8, the control unit 53 changes the value of the flag to 1 (step S9). Next, the control unit 53 acquires again the digital value converted by the A/D conversion unit 51 after the resistance value of the variable resistor 31 is adjusted to the first predetermined value (step S10).
  • the temperature table T stores 2 n first temperatures.
  • the first temperature corresponding to the digital value acquired in step S1 or step S10 is read (step S11).
  • Step S11 is executed when the resistance value of the variable resistor 31 is the first predetermined value.
  • the controller 53 reads out the first temperature corresponding to the digital value acquired in step S1.
  • the controller 53 reads the first temperature corresponding to the digital value acquired in step S10.
  • the controller 53 identifies the temperature of the temperature resistor 12 (step S12).
  • the controller 53 identifies that the temperature of the temperature resistor 12 is the first temperature read at step S11. After executing step S12, the control unit 53 terminates the temperature detection process.
  • step S6 After executing step S6, or when determining that the resistance value of the temperature resistor 12 is equal to or lower than the resistance threshold value (S7: NO), the control unit 53 stores 2 n second temperature values in the temperature table T.
  • the second temperature corresponding to the digital value acquired in step S1 or step S6 is read out (step S13).
  • Step S13 is executed when the resistance value of the variable resistor 31 is the second predetermined value.
  • the controller 53 reads the second temperature corresponding to the digital value acquired in step S6.
  • step S13 immediately after executing step S7 the controller 53 reads the second temperature corresponding to the digital value acquired in step S1.
  • the controller 53 identifies the temperature of the temperature resistor 12 (step S14).
  • step S14 the controller 53 identifies that the temperature of the temperature resistor 12 is the second temperature read at step S13. After executing step S12, the control unit 53 terminates the temperature detection process. After completing the temperature detection process, the control unit 53 executes the temperature detection process again.
  • the control unit 53 of the microcomputer 32 sets the resistance value of the variable resistor 31 to the second predetermined value when the resistance value of the temperature resistor 12 drops below the resistance threshold value. Lower.
  • the control section 53 increases the resistance value of the variable resistor 31 to the first predetermined value. Therefore, the difference between the resistance values of the temperature resistor 12 and the variable resistor 31 is prevented from increasing to a large value.
  • the divided voltage changes greatly, the temperature can be detected with high accuracy. Also, the accuracy of a certain value or more is maintained.
  • the control unit 53 of the microcomputer 32 identifies the temperature of the temperature resistor 12 based on the temperature table T stored in advance in the storage unit 52. Therefore, the temperature of the temperature resistor 12 can be specified with a simple configuration.
  • the controller 53 of the microcomputer 32 uses the temperature table T to identify the temperature of the temperature resistor 12 .
  • the method of specifying the first temperature and the second temperature is not limited to the method using the temperature table T.
  • the points of the second embodiment that are different from the first embodiment will be described. Configurations other than those described later are common to those of the first embodiment. For this reason, the same reference numerals as in Embodiment 1 are given to the components that are common to Embodiment 1, and the description of those components is omitted.
  • the storage unit 52 stores the first calculation formula and the second calculation formula.
  • the first calculation formula is used to calculate the first temperature using the voltage as the first variable.
  • the control unit 53 calculates the first temperature by substituting the divided voltage corresponding to the digital value for the first variable.
  • the second calculation formula is used to calculate the second temperature using the voltage as the second variable.
  • the control unit 53 calculates the second temperature by substituting the divided voltage corresponding to the digital value for the second variable.
  • the storage unit 52 functions as a calculation formula storage unit. The first calculation formula is different from the second calculation formula.
  • FIG. 10 is a flow chart showing the procedure of temperature detection processing according to the second embodiment.
  • the controller 53 of the microcomputer 32 executes temperature detection processing.
  • the control unit 53 executes steps S1 to S10, S12, and S14 of the temperature detection process in the same manner as in the first embodiment. Therefore, detailed description of steps S1 to S10, S12, and S14 is omitted.
  • step S21 is executed when the resistance value of the variable resistor 31 is the first predetermined value.
  • step S21 immediately after step S3 is executed the control unit 53 uses the divided voltage corresponding to the digital value acquired in step S1.
  • step S21 immediately after step S10 is executed the control unit 53 uses the divided voltage corresponding to the digital value acquired in step S10.
  • step S21 the control unit 53 executes step S12.
  • step S12 the controller 53 determines that the temperature of the temperature resistor 12 is the first temperature calculated at step S21.
  • step S6 the control unit 53 controls the digital value acquired in step S1 or step S6.
  • a second temperature is calculated by substituting the divided voltage corresponding to the second variable of the second calculation formula (step S22).
  • step S22 is executed when the resistance value of the variable resistor 31 is the second predetermined value.
  • step S22 immediately after step S6 is executed the control unit 53 uses the divided voltage corresponding to the digital value acquired in step S6.
  • step S22 immediately after step S7 is executed the control unit 53 uses the divided voltage corresponding to the digital value acquired in step S1.
  • step S14 the controller 53 determines that the temperature of the temperature resistor 12 is the second temperature calculated at step S22.
  • the controller 53 of the microcomputer 32 identifies the temperature of the temperature resistor 12 using the first calculation formula and the second calculation formula. Therefore, accurate temperature determination of the temperature resistor 12 is achieved.
  • the temperature detection device 11 according to the second embodiment has the same effects as those of the temperature detection device 11 according to the first embodiment except for the effect obtained by reading the first temperature and the second temperature from the temperature table T. play to
  • the variable resistor 31 may have any configuration as long as the resistance value can be adjusted. Therefore, the configuration of the variable resistor 31 is not limited to the configuration in which the second resistor 42 is connected in parallel to the series circuit including the series switch 40 and the first resistor 41 .
  • the points of the third embodiment that are different from the first embodiment will be described. Configurations other than those described later are common to those of the first embodiment. For this reason, the same reference numerals as in Embodiment 1 are given to the components that are common to Embodiment 1, and the description of those components is omitted.
  • FIG. 11 is a circuit diagram of the variable resistor 31 according to the third embodiment.
  • a variable resistor 31 in the third embodiment has a switching circuit 43 as in the first embodiment.
  • the variable resistor 31 in Embodiment 3 further has a connector 44 and u fixed resistors E1, E2, . . . Eu.
  • u is an integer of 2 or more.
  • Connector 44 is connected to regulator 30 .
  • the connector 44 is further connected to one end of u fixed resistors E1, E2, . . . , Eu. , Eu are connected to one end of the NTC thermistor 20 of the temperature resistor 12 .
  • the switching circuit 43 changes the connection destination of the regulator 30 to one of u fixed resistors E1, E2, .
  • the output section 50 outputs a connection destination signal indicating the connection destination of the regulator 30 to the switching circuit 43 according to the instruction of the control section 53 .
  • the switching circuit 43 changes the connection destination of the regulator 30 to the connection destination indicated by the input connection destination signal.
  • the resistance values of the fixed resistors E1, E2, . . . , Eu are different from each other.
  • the controller 53 executes the temperature detection process as in the first embodiment.
  • the resistance values of the fixed resistors E1 and E2 are a first predetermined value and a second predetermined value.
  • the control unit 53 instructs the output unit 50 to cause the switching circuit 43 to output a connection destination signal indicating the fixed resistor E2 as the connection destination of the regulator 30, thereby changing the resistance value of the variable resistor 31 to 2 Decrease to a predetermined value.
  • step S8 the control unit 53 instructs the output unit 50 to cause the switching circuit 43 to output a connection destination signal indicating the fixed resistor E1 as the connection destination of the regulator 30, thereby increasing the resistance of the variable resistor 31. Raise the value to a first predetermined value.
  • the controller 53 adjusts the resistance value of the variable resistor 31 according to the resistance value of the temperature resistor 12 .
  • the temperature table T stores the relationship between digital values and temperatures for each of the fixed resistors E1, E2, . . . Eu.
  • An integer greater than or equal to 1 and less than or equal to u is represented by i.
  • the controller 53 reads from the temperature table T the temperature corresponding to the digital value acquired from the A/D converter 51 for the fixed resistor Ei.
  • the controller 53 determines that the temperature of the temperature resistor 12 is the read temperature.
  • the integer u is 3 or more, the temperature of the temperature resistor 12 can be detected with higher accuracy.
  • the temperature detection device 11 according to the third embodiment has the same effects as the temperature detection device 11 according to the first embodiment.
  • the controller 53 of the microcomputer 32 may specify the temperature of the temperature resistor 12 using a calculation formula as in the second embodiment.
  • the storage unit 52 stores u calculation formulas corresponding to the fixed resistors E1, E2, . . . Eu. They are different from each other.
  • the calculation formula is used to calculate the temperature using the voltage as a variable.
  • the control unit 53 converts the divided voltage corresponding to the digital value acquired from the A/D conversion unit 51 to the calculation formula corresponding to the fixed resistor Ei. Calculate the temperature by substituting in the variables of The control unit 53 specifies that the temperature of the temperature resistor 12 is the calculated temperature.
  • the configuration of the variable resistor 31 in Embodiment 3 may be any configuration as long as the resistance value can be adjusted. Therefore, the variable resistor 31 may have a variable resistor instead of the connector 44 and u fixed resistors E1, E2, . . . , Eu.
  • a variable resistor is connected between the regulator 30 and the temperature resistor 12 .
  • a voltage is applied to the variable resistor from the output section 50 of the microcomputer 32, for example.
  • the resistance value of the variable resistor is adjusted according to the output voltage of the output section 50 .
  • the control unit 53 adjusts the resistance value of the variable resistor 31 by causing the output unit 50 to change the output voltage.
  • the configuration of the temperature resistor 12 is not limited to a configuration in which the resistance value decreases when the temperature of the temperature resistor 12 rises.
  • the configuration of the temperature resistor 12 may be, for example, a configuration in which the resistance value increases when the temperature of the temperature resistor 12 increases.
  • temperature resistor 12 has, for example, a PTC thermistor instead of NTC thermistor 20 .
  • PTC is an abbreviation for Positive Temperature Coefficient.
  • the control unit 53 causes the variable resistance
  • the resistance value of the device 31 is increased by a first predetermined value.
  • the control unit 53 reduces the resistance value of the variable resistor 31 to a second predetermined value when the resistance value of the temperature resistor 12 has decreased to a value less than the resistance threshold value.
  • the place where the temperature resistor 12 is arranged is not limited to the outside of the temperature detection device 11, and may be inside the temperature detection device 11.
  • the temperature sensing device 11 has a temperature resistor 12 .
  • the divided voltage in Embodiments 1 to 3 is not limited to the voltage across the temperature resistor 12 and may be the voltage across the variable resistor 31 . In this case, the higher the resistance value of the temperature resistor 12, the lower the divided voltage.
  • the temperature resistor 12 may be connected between the regulator 30 and the variable resistor 31.
  • variable resistor 31 is grounded.
  • the divided voltage is the voltage across the temperature resistor 12 or the variable resistor 31 .
  • Reference Signs List 1 temperature detection system 10 DC power supply 11 temperature detection device 12 temperature resistor 20 NTC thermistor 30 regulator (voltage application unit) 31 Variable Resistor 32 Microcomputer 40 Series Switch 41 First Resistor 42 Second Resistor 43 Switching Circuit 44 Connector 50 Output Unit 51 A/D Converter 52 Storage Unit (Temperature Storage Unit, Calculation Formula Storage Unit) 53 control unit (processing unit) 54 internal bus A storage medium C vehicle E1, E2, ..., Eu fixed resistor P computer program T temperature table

Abstract

In this temperature detection device, a regulator applies a constant voltage to a series circuit that includes a temperature resistor and a variable resistor. The temperature resistor and the variable resistor divide the constant voltage. The resistance value of the temperature resistor changes in accordance with the temperature of the temperature resistor. A microcomputer adjusts the resistance value of the variable resistor in accordance with the resistance value of the temperature resistor. After adjusting the resistance value of the variable resistor, the microcomputer converts, into a digital value, the divided voltage divided by the temperature resistor and the variable resistor, and determines the temperature of the temperature resistor on the basis of the digital value thus converted.

Description

温度検知装置、温度検知方法及びコンピュータプログラムTEMPERATURE DETECTION DEVICE, TEMPERATURE DETECTION METHOD AND COMPUTER PROGRAM
 本開示は、温度検知装置、温度検知方法及びコンピュータプログラムに関する。
 本出願は、2021年11月10日出願の日本出願第2021-183472号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to a temperature detection device, a temperature detection method, and a computer program.
This application claims priority based on Japanese application No. 2021-183472 filed on November 10, 2021, and incorporates all the descriptions described in the Japanese application.
 特許文献1には、サーミスタを用いて温度を検知する構成が開示されている。サーミスタの抵抗値は、サーミスタの温度に応じて変化する。車両に搭載されている半導体スイッチのチップの近傍にサーミスタを配置する。サーミスタの温度を算出することによって、半導体スイッチのチップの温度を検知する。 Patent Document 1 discloses a configuration for detecting temperature using a thermistor. The resistance value of the thermistor changes according to the temperature of the thermistor. A thermistor is arranged in the vicinity of a semiconductor switch chip mounted on a vehicle. The temperature of the chip of the semiconductor switch is detected by calculating the temperature of the thermistor.
特開2019-192950号公報JP 2019-192950 A
 本開示の一態様に係る温度検知装置は、車両に搭載される温度検知装置であって、温度に応じて抵抗値が変化する温度抵抗器に接続される可変抵抗器と、前記温度抵抗器及び可変抵抗器を含む直列回路に一定の電圧を印加する電圧印加部と、前記温度抵抗器及び可変抵抗器が分圧した分圧電圧をデジタル値に変換する変換部と、処理を実行する処理部とを備え、前記温度は前記温度抵抗器の温度であり、前記処理部は、前記温度抵抗器の抵抗値に応じて前記可変抵抗器の抵抗値を調整し、前記可変抵抗器の抵抗値を調整した後に前記変換部が変換したデジタル値に基づいて前記温度抵抗器の温度を特定する。 A temperature detection device according to an aspect of the present disclosure is a temperature detection device mounted on a vehicle, comprising: a variable resistor connected to a temperature resistor whose resistance value changes according to temperature; A voltage application unit that applies a constant voltage to a series circuit including a variable resistor, a conversion unit that converts the divided voltage divided by the temperature resistor and the variable resistor into a digital value, and a processing unit that executes processing. wherein the temperature is the temperature of the temperature resistor, the processing unit adjusts the resistance value of the variable resistor according to the resistance value of the temperature resistor, and adjusts the resistance value of the variable resistor to The temperature of the temperature resistor is specified based on the digital value converted by the conversion unit after the adjustment.
 本開示の一態様に係る温度検知方法では、温度に応じて抵抗値が変化する温度抵抗器の抵抗値に応じて、前記温度抵抗器に接続される可変抵抗器の抵抗値を調整するステップと、前記可変抵抗器の抵抗値が調整された後、前記温度抵抗器及び可変抵抗器が一定の電圧を分圧することによって得られる分圧電圧のデジタル値に基づいて、前記温度を特定するステップとをコンピュータが実行し、前記温度は前記温度抵抗器の温度である。 In a temperature detection method according to an aspect of the present disclosure, adjusting a resistance value of a variable resistor connected to a temperature resistor according to a resistance value of the temperature resistor whose resistance value changes according to temperature; determining the temperature based on the digital value of the divided voltage obtained by dividing the constant voltage by the temperature resistor and the variable resistor after the resistance value of the variable resistor is adjusted; is executed by the computer, and the temperature is the temperature of the temperature resistor.
 本開示の一態様に係るコンピュータプログラムは、温度に応じて抵抗値が変化する温度抵抗器の抵抗値に応じて、前記温度抵抗器に接続される可変抵抗器の抵抗値を調整するステップと、前記可変抵抗器の抵抗値が調整された後、前記温度抵抗器及び可変抵抗器が一定の電圧を分圧することによって得られる分圧電圧のデジタル値に基づいて、前記温度を特定するステップとをコンピュータに実行させるために用いられ、前記温度は前記温度抵抗器の温度である。 A computer program according to an aspect of the present disclosure adjusts a resistance value of a variable resistor connected to a temperature resistor according to a resistance value of the temperature resistor whose resistance value changes according to temperature; determining the temperature based on a digital value of a divided voltage obtained by dividing a constant voltage by the temperature resistor and the variable resistor after the resistance value of the variable resistor is adjusted; Used to run a computer, said temperature is the temperature of said temperature resistor.
 なお、本開示を、このような特徴的な処理部を備える温度検知装置として実現することができるだけでなく、かかる特徴的な処理をステップとする温度検知方法として実現したり、かかるステップをコンピュータに実行させるためのコンピュータプログラムとして実現したりすることができる。また、本開示を、温度検知装置の一部又は全部を実現する半導体集積回路として実現したり、温度検知装置を含む温度検知システムとして実現したりすることができる。 The present disclosure can be realized not only as a temperature detection device having such a characteristic processing unit, but also as a temperature detection method including such characteristic processing as steps, or as a temperature detection method in which such steps are executed by a computer. It can be implemented as a computer program for execution. Further, the present disclosure can be implemented as a semiconductor integrated circuit that implements part or all of the temperature detection device, or as a temperature detection system that includes the temperature detection device.
実施形態1における温度検知システムの要部構成を示すブロック図である。2 is a block diagram showing the configuration of main parts of the temperature detection system according to Embodiment 1. FIG. 温度抵抗器の温度特性を示すグラフである。It is a graph which shows the temperature characteristic of a temperature resistor. 可変抵抗器の回路図である。It is a circuit diagram of a variable resistor. マイコンの要部構成を示すブロック図である。3 is a block diagram showing the configuration of main parts of a microcomputer; FIG. デジタル値への変換の説明図である。FIG. 4 is an explanatory diagram of conversion into digital values; 可変抵抗器の抵抗値に応じた分解能の説明図である。FIG. 4 is an explanatory diagram of resolution according to the resistance value of a variable resistor; 可変抵抗器の抵抗値を変更するタイミングの説明図である。FIG. 4 is an explanatory diagram of timing for changing the resistance value of a variable resistor; 温度テーブルの内容を示す図表である。4 is a chart showing contents of a temperature table; 温度検知処理の手順を示すフローチャートである。5 is a flow chart showing a procedure of temperature detection processing; 実施形態2における温度検知処理の手順を示すフローチャートである。10 is a flow chart showing the procedure of temperature detection processing according to the second embodiment. 実施形態3における可変抵抗器の回路図である。FIG. 11 is a circuit diagram of a variable resistor according to Embodiment 3;
[本開示が解決しようとする課題]
 特許文献1では、温度検知の精度について考慮されていない。
[Problems to be Solved by the Present Disclosure]
Patent Document 1 does not consider the accuracy of temperature detection.
 本開示の目的は、精度よく温度を検知することができる温度検知装置、温度検知方法及びコンピュータプログラムを提供することにある。 An object of the present disclosure is to provide a temperature detection device, a temperature detection method, and a computer program that can accurately detect temperature.
[本開示の効果]
 本開示によれば、精度よく温度を検知することができる。
[Effect of the present disclosure]
According to the present disclosure, temperature can be detected with high accuracy.
[本開示の実施形態の説明]
 最初に本開示の実施態様を列挙して説明する。以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
[Description of Embodiments of the Present Disclosure]
First, embodiments of the present disclosure are enumerated and described. At least some of the embodiments described below may be combined arbitrarily.
(1)本開示の一態様に係る温度検知装置は、車両に搭載される温度検知装置であって、温度に応じて抵抗値が変化する温度抵抗器に接続される可変抵抗器と、前記温度抵抗器及び可変抵抗器を含む直列回路に一定の電圧を印加する電圧印加部と、前記温度抵抗器及び可変抵抗器が分圧した分圧電圧をデジタル値に変換する変換部と、処理を実行する処理部とを備え、前記温度は前記温度抵抗器の温度であり、前記処理部は、前記温度抵抗器の抵抗値に応じて前記可変抵抗器の抵抗値を調整し、前記可変抵抗器の抵抗値を調整した後に前記変換部が変換したデジタル値に基づいて前記温度抵抗器の温度を特定する。 (1) A temperature detection device according to an aspect of the present disclosure is a temperature detection device mounted on a vehicle, comprising: a variable resistor connected to a temperature resistor whose resistance value changes according to temperature; A voltage application unit that applies a constant voltage to a series circuit including a resistor and a variable resistor; a conversion unit that converts the divided voltage divided by the temperature resistor and the variable resistor into a digital value; wherein the temperature is the temperature of the temperature resistor, the processing unit adjusts the resistance value of the variable resistor according to the resistance value of the temperature resistor, and After adjusting the resistance value, the temperature of the temperature resistor is specified based on the digital value converted by the conversion unit.
(2)本開示の一態様に係る温度検知装置では、前記可変抵抗器は、第1抵抗及び第2抵抗と、前記第1抵抗に直列に接続される直列スイッチと、前記直列スイッチをオン又はオフに切替える切替え回路とを有し、前記第1抵抗及び直列スイッチを含む直列回路に前記第2抵抗が並列に接続されており、前記処理部は、前記直列スイッチのオン又はオフへの切替えを前記切替え回路に指示することによって、前記可変抵抗器の抵抗値を調整する。 (2) In the temperature detection device according to an aspect of the present disclosure, the variable resistor includes a first resistor and a second resistor, a series switch connected in series with the first resistor, and turning on or turning on the series switch. a switching circuit for switching off, wherein the second resistor is connected in parallel to a series circuit including the first resistor and a series switch, and the processing unit switches on or off the series switch. The resistance value of the variable resistor is adjusted by instructing the switching circuit.
(3)本開示の一態様に係る温度検知装置では、前記処理部は、前記温度抵抗器の抵抗値が閾値を超えた場合に前記可変抵抗器の抵抗値を第1所定値に上昇させ、前記温度抵抗器の抵抗値が前記閾値未満の値に低下した場合に前記可変抵抗器の抵抗値を第2所定値に低下させ、前記第1所定値は前記第2所定値を超えている。 (3) In the temperature detection device according to an aspect of the present disclosure, the processing unit increases the resistance value of the variable resistor to a first predetermined value when the resistance value of the temperature resistor exceeds a threshold value, The resistance value of the variable resistor is decreased to a second predetermined value when the resistance value of the temperature resistor decreases to a value less than the threshold value, and the first predetermined value exceeds the second predetermined value.
(4)本開示の一態様に係る温度検知装置は、複数のデジタル値それぞれに対応する複数の第1温度及び第2温度が記憶されている温度記憶部を備え、前記処理部は、前記可変抵抗器の抵抗値が前記第1所定値である場合、前記温度抵抗器の温度は、前記複数の第1温度の中で前記変換部が変換したデジタル値に対応する第1温度であると特定し、前記可変抵抗器の抵抗値が前記第2所定値である場合、前記温度抵抗器の温度は、前記複数の第2温度の中で前記変換部が変換したデジタル値に対応する第2温度値であると特定する。 (4) A temperature detection device according to an aspect of the present disclosure includes a temperature storage unit that stores a plurality of first temperatures and second temperatures corresponding to a plurality of digital values, and the processing unit stores the variable When the resistance value of the resistor is the first predetermined value, the temperature of the temperature resistor is identified as the first temperature corresponding to the digital value converted by the conversion unit among the plurality of first temperatures. and when the resistance value of the variable resistor is the second predetermined value, the temperature of the temperature resistor is a second temperature corresponding to the digital value converted by the conversion unit among the plurality of second temperatures. value.
(5)本開示の一態様に係る温度検知装置は、電圧を変数として温度を算出するための第1算出式及び第2算出式が記憶されている算出式記憶部を備え、前記処理部は、前記可変抵抗器の抵抗値が前記第1所定値である場合、前記変換部が変換したデジタル値が示す分圧電圧を前記第1算出式の変数に代入することによって温度を算出し、前記可変抵抗器の抵抗値が前記第2所定値である場合、前記変換部が変換したデジタル値が示す分圧電圧を前記第2算出式の変数に代入することによって温度を算出し、前記温度抵抗器の温度は、算出した温度であると特定する。 (5) A temperature detection device according to an aspect of the present disclosure includes a calculation formula storage unit that stores a first calculation formula and a second calculation formula for calculating temperature using voltage as a variable, and the processing unit , when the resistance value of the variable resistor is the first predetermined value, the temperature is calculated by substituting the divided voltage indicated by the digital value converted by the conversion unit into the variable of the first calculation formula, and When the resistance value of the variable resistor is the second predetermined value, the temperature is calculated by substituting the divided voltage indicated by the digital value converted by the conversion unit into the variable of the second calculation formula, and the temperature resistance The temperature of the vessel is specified as the calculated temperature.
(6)本開示の一態様に係る温度検知装置では、前記温度抵抗器の抵抗値は、前記温度抵抗器の温度が上昇した場合に低下する。 (6) In the temperature detection device according to one aspect of the present disclosure, the resistance value of the temperature resistor decreases when the temperature of the temperature resistor increases.
(7)本開示の一態様に係る温度検知方法では、温度に応じて抵抗値が変化する温度抵抗器の抵抗値に応じて、前記温度抵抗器に接続される可変抵抗器の抵抗値を調整するステップと、前記可変抵抗器の抵抗値が調整された後、前記温度抵抗器及び可変抵抗器が一定の電圧を分圧することによって得られる分圧電圧のデジタル値に基づいて、前記温度を特定するステップとをコンピュータが実行し、前記温度は前記温度抵抗器の温度である。 (7) In the temperature detection method according to one aspect of the present disclosure, the resistance value of the variable resistor connected to the temperature resistor is adjusted according to the resistance value of the temperature resistor whose resistance value changes according to temperature. and determining the temperature based on the digital value of the divided voltage obtained by dividing the constant voltage by the temperature resistor and the variable resistor after the resistance value of the variable resistor is adjusted. and wherein the temperature is the temperature of the temperature resistor.
(8)本開示の一態様に係るコンピュータプログラムは、温度に応じて抵抗値が変化する温度抵抗器の抵抗値に応じて、前記温度抵抗器に接続される可変抵抗器の抵抗値を調整するステップと、前記可変抵抗器の抵抗値が調整された後、前記温度抵抗器及び可変抵抗器が一定の電圧を分圧することによって得られる分圧電圧のデジタル値に基づいて、前記温度を特定するステップとをコンピュータに実行させるために用いられ、前記温度は前記温度抵抗器の温度である。 (8) A computer program according to an aspect of the present disclosure adjusts the resistance value of a variable resistor connected to the temperature resistor according to the resistance value of the temperature resistor whose resistance value changes according to temperature. and determining the temperature based on the digital value of the divided voltage obtained by dividing the constant voltage by the temperature resistor and the variable resistor after the resistance value of the variable resistor is adjusted. and the temperature is the temperature of the temperature resistor.
 上記の態様に係る温度検知装置、温度検知方法及びコンピュータプログラムにあっては、温度抵抗器の抵抗値に応じて可変抵抗器の抵抗値が調整される。複数のデジタル値それぞれに複数の電圧が対応付けられている。分圧電圧は、例えば、複数の電圧の中で最も近い電圧のデジタル値に変換される。可変抵抗器及び温度抵抗器の抵抗値の差分値が十分に大きい場合、温度抵抗器の抵抗値の変化によって、分圧電圧は殆ど変化することはない。この場合、デジタル値が変化することはない。 In the temperature detection device, temperature detection method, and computer program according to the above aspects, the resistance value of the variable resistor is adjusted according to the resistance value of the temperature resistor. A plurality of voltages are associated with each of the plurality of digital values. The divided voltage is, for example, converted into a digital value of the closest voltage among the plurality of voltages. If the difference between the resistance values of the variable resistor and the temperature resistor is sufficiently large, the divided voltage hardly changes due to the change in the resistance value of the temperature resistor. In this case, the digital value does not change.
 しかしながら、上記の態様では、例えば、温度抵抗器の抵抗値が低下した場合、可変抵抗器の抵抗値を低下させる。温度抵抗器の抵抗値が上昇した場合、可変抵抗器の抵抗値を上昇させる。このため、可変抵抗器及び温度抵抗器の抵抗値の差分値が大きい値に上昇することが防止される。結果、分圧電圧が大きく変化するので、精度よく温度を検知することができる。 However, in the above aspect, for example, when the resistance value of the temperature resistor decreases, the resistance value of the variable resistor is decreased. When the resistance value of the temperature resistor increases, the resistance value of the variable resistor is increased. Therefore, the difference between the resistance values of the variable resistor and the temperature resistor is prevented from increasing to a large value. As a result, since the divided voltage changes greatly, the temperature can be detected with high accuracy.
 上記の態様に係る温度検知装置にあっては、第2抵抗の抵抗値は、第1抵抗及び第2抵抗の並列回路の抵抗値よりも大きい。直列スイッチがオンからオフに切替わった場合、可変抵抗器の抵抗値は、並列回路の抵抗値から第2抵抗の抵抗値に上昇する。直列スイッチがオンからオフに切替わった場合、可変抵抗器の抵抗値は、第2抵抗の抵抗値から並列回路の抵抗値に低下する。 In the temperature detection device according to the above aspect, the resistance value of the second resistor is greater than the resistance value of the parallel circuit of the first resistor and the second resistor. When the series switch switches from on to off, the resistance of the variable resistor increases from the resistance of the parallel circuit to the resistance of the second resistor. When the series switch switches from on to off, the resistance of the variable resistor drops from the resistance of the second resistor to the resistance of the parallel circuit.
 上記の態様に係る温度検知装置にあっては、温度抵抗器の抵抗値が抵抗閾値を超えた場合、第2所定値から第1所定値に上昇させる。温度抵抗器の抵抗値が抵抗閾値未満の値に低下した場合、第1所定値から第2所定値に低下させる。これにより、一定値以上の精度が維持される。 In the temperature detection device according to the above aspect, when the resistance value of the temperature resistor exceeds the resistance threshold value, the resistance value is increased from the second predetermined value to the first predetermined value. If the resistance of the thermal resistor drops below the resistance threshold, it is lowered from the first predetermined value to the second predetermined value. As a result, the accuracy of a certain value or more is maintained.
 上記の態様に係る温度検知装置にあっては、予め記憶されている記憶内容を用いて温度抵抗器の温度が特定される。このため、簡単な構成で温度抵抗器の温度の特定が実現される。 In the temperature detection device according to the above aspect, the temperature of the temperature resistor is specified using pre-stored memory contents. Therefore, it is possible to specify the temperature of the temperature resistor with a simple configuration.
 上記の態様に係る温度検知装置にあっては、第1算出式及び第2算出式を用いて温度抵抗器の温度が特定される。このため、温度抵抗器の正確な温度の特定が実現される。 In the temperature detection device according to the above aspect, the temperature of the temperature resistor is specified using the first calculation formula and the second calculation formula. Thus, accurate temperature determination of the temperature resistor is achieved.
 上記の態様に係る温度検知装置にあっては、温度抵抗器は、例えば、NTC(Negative Temperature Coefficient)サーミスタを有する。 In the temperature detection device according to the above aspect, the temperature resistor has, for example, an NTC (Negative Temperature Coefficient) thermistor.
[本開示の実施形態の詳細]
 本開示の実施形態に係る温度検知システムの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present disclosure]
A specific example of the temperature detection system according to the embodiment of the present disclosure will be described below with reference to the drawings. The present invention is not limited to these exemplifications, but is indicated by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
(実施形態1)
<温度検知システムの構成>
 図1は、実施形態1における温度検知システム1の要部構成を示すブロック図である。温度検知システム1は車両Cに搭載されている。温度検知システム1は、直流電源10、温度検知装置11及び温度抵抗器12を備える。直流電源10は例えばバッテリである。直流電源10の負極は接地されている。接地は、例えば車両Cのボディへの接続によって実現される。直流電源10の正極と、温度抵抗器12の一端及び他端とは、温度検知装置11に接続されている。温度検知装置11は、更に接地されている。直流電源10は、温度検知装置11に電力を供給する。
(Embodiment 1)
<Configuration of temperature detection system>
FIG. 1 is a block diagram showing the main configuration of a temperature detection system 1 according to Embodiment 1. As shown in FIG. A temperature detection system 1 is mounted on a vehicle C. As shown in FIG. A temperature detection system 1 includes a DC power supply 10 , a temperature detection device 11 and a temperature resistor 12 . DC power supply 10 is, for example, a battery. The negative electrode of DC power supply 10 is grounded. Grounding is realized by connection to the body of the vehicle C, for example. A positive electrode of the DC power supply 10 and one end and the other end of the temperature resistor 12 are connected to the temperature detection device 11 . The temperature sensing device 11 is also grounded. A DC power supply 10 supplies power to the temperature detection device 11 .
 図2は温度抵抗器12の温度特性を示すグラフである。図2には、温度抵抗器12の抵抗値及び温度の関係が示されている。図2に示すように、温度抵抗器12の抵抗値は、温度抵抗器12の温度が上昇した場合に低下する。具体的には、温度抵抗器12の温度が低い範囲では、温度抵抗器12の温度が上昇した場合、温度抵抗器12の抵抗値は急速に低下する。温度抵抗器12の温度が高い範囲では、温度抵抗器12の温度が上昇した場合、温度抵抗器12の抵抗値は徐々に低下する。 FIG. 2 is a graph showing temperature characteristics of the temperature resistor 12. FIG. FIG. 2 shows the relationship between the resistance value of the temperature resistor 12 and temperature. As shown in FIG. 2, the resistance of temperature resistor 12 decreases when the temperature of temperature resistor 12 increases. Specifically, in a range where the temperature of the temperature resistor 12 is low, when the temperature of the temperature resistor 12 rises, the resistance value of the temperature resistor 12 drops rapidly. In the range where the temperature of the temperature resistor 12 is high, when the temperature of the temperature resistor 12 rises, the resistance value of the temperature resistor 12 gradually decreases.
 温度検知装置11は、温度抵抗器12の抵抗値に応じて変動する電圧に基づいて温度抵抗器12の温度を検知する。温度抵抗器12は種々の場所に配置される。車両Cの室内の温度を検知する場合、温度抵抗器12は車両Cの室内に配置される。半導体スイッチの温度を検知する場合、温度抵抗器12は半導体スイッチの近傍に配置される。検知する温度の範囲には、温度抵抗器12の抵抗値が急速に低下する温度の範囲と、温度抵抗器12の抵抗値が徐々に低下する温度の範囲とが含まれている。 The temperature detection device 11 detects the temperature of the temperature resistor 12 based on the voltage that varies according to the resistance value of the temperature resistor 12 . Temperature resistors 12 are placed at various locations. When the temperature inside the vehicle C is to be detected, the temperature resistor 12 is placed inside the vehicle C. As shown in FIG. When sensing the temperature of a semiconductor switch, the temperature resistor 12 is arranged in the vicinity of the semiconductor switch. The temperature range to be detected includes a temperature range in which the resistance value of the temperature resistor 12 drops rapidly and a temperature range in which the resistance value of the temperature resistor 12 drops gradually.
<温度抵抗器12の構成>
 図1に示すように、温度抵抗器12はNTCサーミスタ20を有する。NTCはNegative Temperature Coefficientの略語である。NTCサーミスタ20の抵抗値は、NTCサーミスタ20の温度に応じて変化する。温度抵抗器12の抵抗値及び温度それぞれは、NTCサーミスタ20の抵抗値及び温度である。図2に示す温度特性は、NTCサーミスタ20の温度特性である。
<Configuration of temperature resistor 12>
As shown in FIG. 1, temperature resistor 12 has an NTC thermistor 20 . NTC is an abbreviation for Negative Temperature Coefficient. The resistance value of NTC thermistor 20 changes according to the temperature of NTC thermistor 20 . The resistance value and temperature of temperature resistor 12 are the resistance value and temperature of NTC thermistor 20, respectively. The temperature characteristics shown in FIG. 2 are the temperature characteristics of the NTC thermistor 20. FIG.
 なお、温度抵抗器12は、NTCサーミスタ20とは異なる回路素子、例えば測温抵抗体を用いて実現されてもよい。以下では、温度抵抗器12がNTCサーミスタ20を用いて実現される例を説明する。 Note that the temperature resistor 12 may be implemented using a circuit element different from the NTC thermistor 20, such as a resistance temperature detector. An example in which the temperature resistor 12 is implemented using an NTC thermistor 20 will be described below.
<温度検知装置11の構成>
 温度検知装置11は、レギュレータ30、可変抵抗器31及びマイクロコンピュータ(以下、マイコンという)32を有する。レギュレータ30は、直流電源10の正極と、可変抵抗器31とに接続されている。可変抵抗器31は、温度抵抗器12のNTCサーミスタ20の一端に接続されている。NTCサーミスタ20の他端は接地されている。
<Configuration of temperature detection device 11>
The temperature detection device 11 has a regulator 30 , a variable resistor 31 and a microcomputer (hereinafter referred to as microcomputer) 32 . Regulator 30 is connected to the positive electrode of DC power supply 10 and variable resistor 31 . A variable resistor 31 is connected to one end of the NTC thermistor 20 of the temperature resistor 12 . The other end of NTC thermistor 20 is grounded.
 レギュレータ30及び可変抵抗器31間の接続ノードと、可変抵抗器31及び温度抵抗器12間の接続ノードとは、マイコン32に接続されている。可変抵抗器31は、更に、マイコン32に接続されている。レギュレータ30及びマイコン32は接地されている。 A connection node between the regulator 30 and the variable resistor 31 and a connection node between the variable resistor 31 and the temperature resistor 12 are connected to the microcomputer 32 . The variable resistor 31 is also connected to the microcomputer 32 . The regulator 30 and microcomputer 32 are grounded.
 電流は、直流電源10の正極から、レギュレータ30及び直流電源10の負極の順に流れる。これにより、直流電源10からレギュレータ30に電力が供給される。接地電位を基準とした直流電源10の正極の電圧を電源電圧と記載する。直流電源10は、車両Cに搭載されている図示しない一又は複数の車載機器に電力を供給する。一又は複数の車載機器の動作状態に応じて、直流電源10の電源電圧は変動する。 Current flows from the positive electrode of the DC power supply 10 to the regulator 30 and the negative electrode of the DC power supply 10 in this order. Thus, power is supplied from the DC power supply 10 to the regulator 30 . The positive electrode voltage of the DC power supply 10 with respect to the ground potential is referred to as the power supply voltage. The DC power supply 10 supplies power to one or a plurality of in-vehicle devices (not shown) mounted in the vehicle C. FIG. The power supply voltage of the DC power supply 10 fluctuates according to the operating state of one or more in-vehicle devices.
 レギュレータ30は、電源電圧を一定の目標電圧に降圧する。目標電圧は電源電圧の最小値以下の電圧である。電源電圧は、例えば、8Vから14Vまでの範囲内で変動する。目標電圧は例えば5Vである。目標電圧は電源電圧の最小値以下の電圧であるので、レギュレータ30は、電源電圧の変動に無関係に目標電圧を安定して出力する。 The regulator 30 steps down the power supply voltage to a constant target voltage. The target voltage is a voltage below the minimum value of the power supply voltage. The power supply voltage varies, for example, within a range from 8V to 14V. The target voltage is, for example, 5V. Since the target voltage is a voltage equal to or lower than the minimum value of the power supply voltage, the regulator 30 stably outputs the target voltage regardless of fluctuations in the power supply voltage.
 レギュレータ30は、降圧によって生成された一定の目標電圧をマイコン32に印加する。これにより、電流は、直流電源10の正極から、レギュレータ30、マイコン32及び直流電源10の負極の順に流れる。これにより、直流電源10からマイコン32に電力が供給される。 The regulator 30 applies a constant target voltage generated by stepping down to the microcomputer 32 . As a result, the current flows from the positive electrode of the DC power supply 10 to the regulator 30 , the microcomputer 32 and the negative electrode of the DC power supply 10 in this order. As a result, power is supplied from the DC power supply 10 to the microcomputer 32 .
 レギュレータ30は、更に、一定の目標電圧を、可変抵抗器31及び温度抵抗器12を含む直列回路に印加する。従って、レギュレータ30は電圧印加部として機能する。可変抵抗器31及び温度抵抗器12は、目標電圧を分圧する。可変抵抗器31及び温度抵抗器12が分圧した分圧電圧はマイコン32に入力される。分圧電圧は、温度抵抗器12の両端間の電圧である。 The regulator 30 also applies a constant target voltage to the series circuit including the variable resistor 31 and the temperature resistor 12 . Therefore, the regulator 30 functions as a voltage applying section. A variable resistor 31 and a temperature resistor 12 divide the target voltage. A divided voltage obtained by dividing the voltage by the variable resistor 31 and the temperature resistor 12 is input to the microcomputer 32 . The divided voltage is the voltage across temperature resistor 12 .
 目標電圧をVgと記載する。可変抵抗器31及び温度抵抗器12それぞれの抵抗値をRv及びRtと記載する。可変抵抗器31及び温度抵抗器12が分圧することによって得られる分圧電圧をVdと記載する。分圧電圧Vdは下記式で表される。
 Vd=Vg・Rt/(Rv+Rt)
A target voltage is described as Vg. The resistance values of the variable resistor 31 and the temperature resistor 12 are denoted as Rv and Rt, respectively. A divided voltage obtained by voltage division by the variable resistor 31 and the temperature resistor 12 is denoted as Vd. The divided voltage Vd is represented by the following formula.
Vd=Vg·Rt/(Rv+Rt)
 分圧電圧Vdは、温度抵抗器12の抵抗値Rtが大きい程、高い。マイコン32は、分圧電圧Vdに基づいて、温度抵抗器12の温度を検知する。マイコン32は、温度抵抗器12の抵抗値が抵抗閾値以上の値に上昇した場合、可変抵抗器31の抵抗値を第1所定値に上昇させる。マイコン32は、温度抵抗器12の抵抗値が抵抗閾値未満の値に低下した場合、可変抵抗器31の抵抗値を第2所定値に低下させる。結果、後述するように、温度検知の精度が一定値以上に維持される。第1所定値は第2所定値を超えている。 The divided voltage Vd increases as the resistance value Rt of the temperature resistor 12 increases. The microcomputer 32 detects the temperature of the temperature resistor 12 based on the divided voltage Vd. The microcomputer 32 increases the resistance value of the variable resistor 31 to a first predetermined value when the resistance value of the temperature resistor 12 increases to a value equal to or higher than the resistance threshold value. The microcomputer 32 reduces the resistance value of the variable resistor 31 to a second predetermined value when the resistance value of the temperature resistor 12 has decreased to a value less than the resistance threshold value. As a result, as will be described later, the accuracy of temperature detection is maintained at a certain value or higher. The first predetermined value exceeds the second predetermined value.
<可変抵抗器31の構成>
 図3は可変抵抗器31の回路図である。可変抵抗器31は、直列スイッチ40、第1抵抗41、第2抵抗42及び切替え回路43を有する。直列スイッチ40は、第1抵抗41に直列に接続されている。第2抵抗42は、直列スイッチ40及び第1抵抗41を含む直列回路に並列に接続されている。なお、図3の例では、直列スイッチ40は、第1抵抗41のレギュレータ30側に配置されている。しかしながら、直列スイッチ40は、第1抵抗41の温度抵抗器12側に配置されてもよい。
<Configuration of Variable Resistor 31>
FIG. 3 is a circuit diagram of the variable resistor 31. As shown in FIG. The variable resistor 31 has a series switch 40 , a first resistor 41 , a second resistor 42 and a switching circuit 43 . The series switch 40 is connected in series with the first resistor 41 . A second resistor 42 is connected in parallel with a series circuit including the series switch 40 and the first resistor 41 . In addition, in the example of FIG. 3, the series switch 40 is arranged on the regulator 30 side of the first resistor 41 . However, the series switch 40 may be arranged on the temperature resistor 12 side of the first resistor 41 .
 直列スイッチ40及び第2抵抗42間の接続ノードはレギュレータ30に接続されている。第1抵抗41及び第2抵抗42間の接続ノードは、温度抵抗器12のNTCサーミスタ20の一端に接続されている。切替え回路43はマイコン32に接続されている。 A connection node between the series switch 40 and the second resistor 42 is connected to the regulator 30 . A connection node between the first resistor 41 and the second resistor 42 is connected to one end of the NTC thermistor 20 of the temperature resistor 12 . The switching circuit 43 is connected to the microcomputer 32 .
 第1抵抗41及び第2抵抗42それぞれの抵抗値をR1及びR2と記載する。直列スイッチ40がオフである場合、可変抵抗器31の抵抗値Rvは第2抵抗42の抵抗値R2である。直列スイッチ40がオンである場合、可変抵抗器31の抵抗値Rvは、第1抵抗41に第2抵抗42が並列に接続されている並列回路の抵抗値である。従って、直列スイッチ40がオンである場合における可変抵抗器31の抵抗値Rvは下記式で表される。
 Rv=R1・R2/(R1+R2)
The resistance values of the first resistor 41 and the second resistor 42 are denoted as R1 and R2, respectively. The resistance value Rv of the variable resistor 31 is the resistance value R2 of the second resistor 42 when the series switch 40 is off. When the series switch 40 is on, the resistance value Rv of the variable resistor 31 is the resistance value of a parallel circuit in which the first resistor 41 and the second resistor 42 are connected in parallel. Therefore, the resistance value Rv of the variable resistor 31 when the series switch 40 is on is represented by the following formula.
Rv=R1·R2/(R1+R2)
 マイコン32は、ハイレベル電圧又はローレベル電圧を切替え回路43に出力している。マイコン32が出力電圧をローレベル電圧からハイレベル電圧に切替えた場合、切替え回路43は、直列スイッチ40をオフからオンに切替える。R2はR1・R2/(R1+R2)よりも大きい。このため、直列スイッチ40がオフからオンに切替わった場合、可変抵抗器31の抵抗値Rvは低下する。 The microcomputer 32 outputs a high level voltage or a low level voltage to the switching circuit 43 . When the microcomputer 32 switches the output voltage from the low level voltage to the high level voltage, the switching circuit 43 switches the serial switch 40 from off to on. R2 is greater than R1·R2/(R1+R2). Therefore, when the series switch 40 is switched from off to on, the resistance value Rv of the variable resistor 31 decreases.
 マイコン32が出力電圧をハイレベル電圧からローレベル電圧に切替えた場合、切替え回路43は、直列スイッチ40をオンからオフに切替える。これにより、可変抵抗器31の抵抗値Rvは上昇する。前述したように、マイコン32は、可変抵抗器31の抵抗値を第1所定値又は第2所定値に調整する。第1所定値はR2である。第2所定値はR1・R2/(R1+R2)である。 When the microcomputer 32 switches the output voltage from the high level voltage to the low level voltage, the switching circuit 43 switches the series switch 40 from on to off. As a result, the resistance value Rv of the variable resistor 31 increases. As described above, the microcomputer 32 adjusts the resistance value of the variable resistor 31 to the first predetermined value or the second predetermined value. The first predetermined value is R2. The second predetermined value is R1·R2/(R1+R2).
<マイコン32の構成>
 図4はマイコン32の要部構成を示すブロック図である。マイコン32は、出力部50、A/D変換部51、記憶部52及び制御部53を有する。これらは内部バス54に接続されている。出力部50は、更に、可変抵抗器31の切替え回路43に接続されている。A/D変換部51は、可変抵抗器31及び温度抵抗器12間の接続ノードに接続されている。
<Configuration of microcomputer 32>
FIG. 4 is a block diagram showing the main configuration of the microcomputer 32. As shown in FIG. The microcomputer 32 has an output section 50 , an A/D conversion section 51 , a storage section 52 and a control section 53 . These are connected to the internal bus 54 . The output section 50 is further connected to the switching circuit 43 of the variable resistor 31 . The A/D converter 51 is connected to a connection node between the variable resistor 31 and the temperature resistor 12 .
 出力部50は、ハイレベル電圧又はローレベル電圧を可変抵抗器31の切替え回路43に出力している。出力部50の出力電圧は、前述したマイコン32の出力電圧である。出力部50は、制御部53の指示に従って、出力電圧をハイレベル電圧又はローレベル電圧に切替える。 The output unit 50 outputs a high level voltage or a low level voltage to the switching circuit 43 of the variable resistor 31. The output voltage of the output section 50 is the output voltage of the microcomputer 32 described above. The output unit 50 switches the output voltage to a high level voltage or a low level voltage according to instructions from the control unit 53 .
 可変抵抗器31及び温度抵抗器12が分圧した分圧電圧はA/D変換部51に入力される。A/D変換部51は、可変抵抗器31及び温度抵抗器12が分圧した分圧電圧をデジタル値に変換する。 A divided voltage divided by the variable resistor 31 and the temperature resistor 12 is input to the A/D converter 51 . The A/D converter 51 converts the divided voltage obtained by dividing the voltage by the variable resistor 31 and the temperature resistor 12 into a digital value.
 図5はデジタル値への変換の説明図である。A/D変換部51は、分圧電圧をnビットのデジタル値に変換する。ここで、nは2以上の整数である。目標電圧を(2-1)で除算する。この除算値の間隔で0Vから目標電圧までの2n個の目盛が設定される。2n個の目盛それぞれに2n個のデジタル値が割り当てられている。値が大きい目盛に対応するデジタル値は大きい。図5には、2進数で表された2n個のデジタル値それぞれに対応する10進数のデジタル値、及び、電圧が示されている。電圧の単位はボルトである。 FIG. 5 is an explanatory diagram of conversion into digital values. The A/D converter 51 converts the divided voltage into an n-bit digital value. Here, n is an integer of 2 or more. Divide the target voltage by (2 n -1). 2 n scales from 0 V to the target voltage are set at intervals of this division value. 2 n digital values are assigned to each of the 2 n graduations. The digital value corresponding to a scale with a large value is large. FIG. 5 shows decimal digital values and voltages corresponding to 2 n digital values expressed in binary. The unit of voltage is volts.
 図5では、nが3であり、かつ、目標電圧が5Vである例が示されている。0.71(=5/7)Vの間隔で0Vから5Vまでの8個の目盛が設定されている。8個の目盛それぞれに、0から7までの8個のデジタル値が割り当てられている。0Vには「000」が割り当てられている。5Vには「111」が割り当てられている。 FIG. 5 shows an example where n is 3 and the target voltage is 5V. Eight scales from 0V to 5V are set at intervals of 0.71 (=5/7)V. Eight digital values from 0 to 7 are assigned to each of the eight graduations. "000" is assigned to 0V. "111" is assigned to 5V.
 A/D変換部51は、入力された分圧電圧を、入力された分圧電圧に最も近い目盛のデジタル値に変換する。図5の例では、A/D変換部51は、5V近傍の分圧電圧を「111」に変換する。A/D変換部51は、2.86V近傍の分圧電圧を「100」に変換する。A/D変換部51は、0.71V近傍の分圧電圧を「001」に変換する。図4に示すマイコン32の制御部53は、A/D変換部51が変換したデジタル値を取得する。 The A/D converter 51 converts the input divided voltage into a digital value with a scale closest to the input divided voltage. In the example of FIG. 5, the A/D converter 51 converts the divided voltage near 5V into "111". The A/D converter 51 converts the divided voltage near 2.86V to "100". The A/D converter 51 converts the divided voltage near 0.71V to "001". A control unit 53 of the microcomputer 32 shown in FIG. 4 acquires the digital value converted by the A/D conversion unit 51 .
 記憶部52は、例えば、揮発性メモリ及び不揮発性メモリによって構成される。記憶部52には、コンピュータプログラムPが記憶されている。制御部53は、処理を実行する処理素子、例えば、CPU(Central Processing Unit)を有する。制御部53は処理部として機能する。制御部53の処理素子(コンピュータ)は、コンピュータプログラムPを実行することによって、温度抵抗器12の温度を検知する温度検知処理等を実行する。 The storage unit 52 is composed of, for example, a volatile memory and a nonvolatile memory. A computer program P is stored in the storage unit 52 . The control unit 53 has a processing element that executes processing, such as a CPU (Central Processing Unit). The control unit 53 functions as a processing unit. A processing element (computer) of the control unit 53 executes a computer program P to perform temperature detection processing for detecting the temperature of the temperature resistor 12 and the like.
 なお、コンピュータプログラムPは、コンピュータプログラムPを読み取り可能に記憶した非一時的な記憶媒体Aを用いて、マイコン32に提供されてもよい。記憶媒体Aは、例えば可搬型メモリである。可搬型メモリの例として、CD-ROM、USB(Universal Serial Bus)メモリ、SDカード、マイクロSDカード又はコンパクトフラッシュ(登録商標)等が挙げられる。記憶媒体Aが可搬型メモリである場合、制御部53の処理素子は、図示しない読取装置を用いて記憶媒体AからコンピュータプログラムPを読み取ってもよい。読み取ったコンピュータプログラムPは記憶部52に書き込まれる。更に、コンピュータプログラムPは、マイコン32の図示しない通信部が外部装置と通信することによって、マイコン32に提供されてもよい。この場合、制御部53の処理素子は、通信部を通じてコンピュータプログラムPを取得する。取得したコンピュータプログラムPは記憶部52に書き込まれる。 The computer program P may be provided to the microcomputer 32 using a non-temporary storage medium A that stores the computer program P in a readable manner. Storage medium A is, for example, a portable memory. Examples of portable memory include CD-ROM, USB (Universal Serial Bus) memory, SD card, micro SD card, compact flash (registered trademark), and the like. If the storage medium A is a portable memory, the processing element of the control unit 53 may read the computer program P from the storage medium A using a reading device (not shown). The read computer program P is written in the storage unit 52 . Furthermore, the computer program P may be provided to the microcomputer 32 by a communication section (not shown) of the microcomputer 32 communicating with an external device. In this case, the processing element of the control unit 53 acquires the computer program P through the communication unit. The acquired computer program P is written in the storage unit 52 .
 また、制御部53が有する処理素子の数は、1に限定されず、2以上であってもよい。制御部53が複数の処理素子を有する場合、複数の処理素子が協同して、温度検知処理等を実行してもよい。 Also, the number of processing elements that the control unit 53 has is not limited to one, and may be two or more. When the control unit 53 has a plurality of processing elements, the plurality of processing elements may cooperate to perform temperature detection processing and the like.
<温度検知の分解能>
 温度検知処理では、制御部53は、出力部50に指示して、出力電圧をハイレベル電圧又はローレベル電圧に切替えさせる。これにより、制御部53は、可変抵抗器31の抵抗値を第1所定値又は第2所定値に調整する。結果、温度検知の精度は一定値以上に維持される。この理由を説明する。
<Temperature detection resolution>
In the temperature detection process, the control unit 53 instructs the output unit 50 to switch the output voltage to a high level voltage or a low level voltage. Thereby, the controller 53 adjusts the resistance value of the variable resistor 31 to the first predetermined value or the second predetermined value. As a result, the accuracy of temperature detection is maintained above a certain value. The reason for this is explained.
 図6は、可変抵抗器31の抵抗値に応じた分解能の説明図である。図6には、分圧電圧と温度抵抗器12の温度との関係を示す電圧グラフと、分解能と温度抵抗器12の温度との関係を示す分解能グラフとが示されている。各グラフでは、一定の温度、例えば、1度の間隔で温度の複数の目盛が設けられている。分圧電圧の複数の目盛は、前述した2n個のデジタル値それぞれに対応する。前述したように、目盛の間隔は(目標電圧Vg)/(2n-1)である。図6では、A/D変換部51が分圧電圧を3ビットのデジタル値に変換する例が示されている。従って、分圧電圧の目盛の数は8個である。 FIG. 6 is an explanatory diagram of the resolution according to the resistance value of the variable resistor 31. As shown in FIG. FIG. 6 shows a voltage graph showing the relationship between the divided voltage and the temperature of the temperature resistor 12, and a resolution graph showing the relationship between the resolution and the temperature of the temperature resistor 12. FIG. In each graph, multiple scales of temperature are provided at intervals of constant temperature, eg, 1 degree. A plurality of scales of the divided voltage correspond to each of the 2 n digital values mentioned above. As described above, the scale interval is (target voltage Vg)/(2 n -1). FIG. 6 shows an example in which the A/D converter 51 converts the divided voltage into a 3-bit digital value. Therefore, the number of division voltage scales is eight.
 分解能は、2つの温度に対応する10進数のデジタル値の差分値である。例えば、10度の分解能は、9度に対応する10進数のデジタル値と、10度に対応する10進数のデジタル値との差分値である。差分値が大きい程、温度抵抗器12の温度の温度差をより明確に示すことができる。 The resolution is the difference between the decimal digital values corresponding to the two temperatures. For example, the resolution of 10 degrees is the difference value between the decimal digital value corresponding to 9 degrees and the decimal digital value corresponding to 10 degrees. The larger the difference value, the more clearly the temperature difference of the temperature resistor 12 can be indicated.
 前述したように、温度抵抗器12の温度が低い場合、温度抵抗器12の抵抗値は大きい(図2参照)。温度抵抗器12の温度が高い場合、温度抵抗器12の抵抗値は小さい(図2参照)。また、第1所定値は第2所定値を超えている。 As described above, when the temperature of the temperature resistor 12 is low, the resistance value of the temperature resistor 12 is large (see FIG. 2). When the temperature of the temperature resistor 12 is high, the resistance value of the temperature resistor 12 is small (see FIG. 2). Also, the first predetermined value exceeds the second predetermined value.
 可変抵抗器31の抵抗値が第1所定値である場合においては、温度抵抗器12の温度が低い範囲では、温度抵抗器12の温度の上昇に応じて、分圧電圧は急速に低下する。温度抵抗器12の温度が低い範囲では、温度抵抗器12の抵抗値と第1所定値と差分値は小さい。従って、温度抵抗器12の抵抗値の変化に応じた分圧電圧の変化は大きい。結果、温度抵抗器12の温度の上昇に応じて分圧電圧が急速に低下する。このため、温度抵抗器12の温度が低い範囲では、分解能は高い。温度抵抗器12の温度が変化した場合、A/D変換部51が変換するデジタル値も変化する。 When the resistance value of the variable resistor 31 is the first predetermined value, the divided voltage drops rapidly as the temperature of the temperature resistor 12 rises in the range where the temperature of the temperature resistor 12 is low. In the range where the temperature of the temperature resistor 12 is low, the difference between the resistance value of the temperature resistor 12 and the first predetermined value is small. Therefore, the change in the divided voltage in accordance with the change in the resistance value of the temperature resistor 12 is large. As a result, the divided voltage drops rapidly as the temperature of the temperature resistor 12 rises. Therefore, the resolution is high in the range where the temperature of the temperature resistor 12 is low. When the temperature of the temperature resistor 12 changes, the digital value converted by the A/D converter 51 also changes.
 可変抵抗器31の抵抗値が第1所定値である場合においては、温度抵抗器12の温度が高い範囲では、温度抵抗器12の温度の上昇に応じて、分圧電圧は徐々に低下する。温度抵抗器12の温度が高い範囲では、温度抵抗器12の抵抗値は、第1所定値よりも十分に小さい。従って、温度抵抗器12の抵抗値の変化に応じた分圧電圧の変化は小さい。結果、温度抵抗器12の温度の上昇に応じて分圧電圧は徐々に低下する。このため、温度抵抗器12の温度が高い範囲では、分解能は低い。図6に示すように、温度抵抗器12の温度が変化しても、A/D変換部51が変換するデジタル値は変化しない。例えば、99度及び100度に対応する2つの分圧電圧は、同一のデジタル値に変換される。 When the resistance value of the variable resistor 31 is the first predetermined value, the divided voltage gradually decreases as the temperature of the temperature resistor 12 rises in the range where the temperature of the temperature resistor 12 is high. In the range where the temperature of the temperature resistor 12 is high, the resistance value of the temperature resistor 12 is sufficiently smaller than the first predetermined value. Therefore, the change in the divided voltage corresponding to the change in the resistance value of the temperature resistor 12 is small. As a result, the divided voltage gradually decreases as the temperature of the temperature resistor 12 rises. Therefore, the resolution is low in the range where the temperature of the temperature resistor 12 is high. As shown in FIG. 6, even if the temperature of the temperature resistor 12 changes, the digital value converted by the A/D converter 51 does not change. For example, two divided voltages corresponding to 99 degrees and 100 degrees are converted to the same digital value.
 可変抵抗器31の抵抗値が第2所定値である場合において、温度抵抗器12の温度が低い範囲では、温度抵抗器12の温度の上昇に応じて、分圧電圧は徐々に低下する。温度抵抗器12の温度が低い範囲では、温度抵抗器12の抵抗値は、第2所定値よりも十分に大きい。従って、温度抵抗器12の抵抗値の変化に応じた分圧電圧の変化は小さい。結果、温度抵抗器12の温度の上昇に応じて分圧電圧は徐々に低下する。このため、温度抵抗器12の温度が低い範囲では、分解能は低い。図6に示すように、温度抵抗器12の温度が変化しても、A/D変換部51が変化するデジタル値は変化しない。例えば、-20度及び-19度に対応する2つの分圧電圧は、同一のデジタル値に変換される。 When the resistance value of the variable resistor 31 is the second predetermined value, the divided voltage gradually decreases as the temperature of the temperature resistor 12 rises in the range where the temperature of the temperature resistor 12 is low. In the range where the temperature of the temperature resistor 12 is low, the resistance value of the temperature resistor 12 is sufficiently higher than the second predetermined value. Therefore, the change in the divided voltage corresponding to the change in the resistance value of the temperature resistor 12 is small. As a result, the divided voltage gradually decreases as the temperature of the temperature resistor 12 rises. Therefore, the resolution is low in the range where the temperature of the temperature resistor 12 is low. As shown in FIG. 6, even if the temperature of the temperature resistor 12 changes, the digital value that the A/D converter 51 changes does not change. For example, two divided voltages corresponding to -20 degrees and -19 degrees are converted to the same digital value.
 可変抵抗器31の抵抗値が第2所定値である場合においては、温度抵抗器12の温度が高い範囲では、温度抵抗器12の温度の上昇に応じて、分圧電圧は急速に低下する。温度抵抗器12の温度が高い範囲では、温度抵抗器12の抵抗値と第2所定値との差分値が小さい。従って、温度抵抗器12の抵抗値の変化に応じた分圧電圧の変化は大きい。結果、温度抵抗器12の温度の上昇に応じて分圧電圧が急速に低下する。このため、温度抵抗器12の温度が高い範囲では、分解能は高い。温度抵抗器12の温度が変化した場合、A/D変換部51が変換するデジタル値も変化する。 When the resistance value of the variable resistor 31 is the second predetermined value, the divided voltage drops rapidly as the temperature of the temperature resistor 12 rises in the range where the temperature of the temperature resistor 12 is high. In the range where the temperature of the temperature resistor 12 is high, the difference value between the resistance value of the temperature resistor 12 and the second predetermined value is small. Therefore, the change in the divided voltage in accordance with the change in the resistance value of the temperature resistor 12 is large. As a result, the divided voltage drops rapidly as the temperature of the temperature resistor 12 rises. Therefore, the resolution is high in the range where the temperature of the temperature resistor 12 is high. When the temperature of the temperature resistor 12 changes, the digital value converted by the A/D converter 51 also changes.
 マイコン32の制御部53は、温度抵抗器12の温度が低い場合、即ち、温度抵抗器12の抵抗値が大きい場合、可変抵抗器31の抵抗値を第1所定値に調整する。制御部53は、温度抵抗器12の温度が高い場合、即ち、温度抵抗器12の抵抗値が小さい場合、可変抵抗器31の抵抗値を第2所定値に調整する。これにより、温度検知の精度が一定値以上に維持される。 The control unit 53 of the microcomputer 32 adjusts the resistance value of the variable resistor 31 to the first predetermined value when the temperature of the temperature resistor 12 is low, that is, when the resistance value of the temperature resistor 12 is high. When the temperature of the temperature resistor 12 is high, that is, when the resistance value of the temperature resistor 12 is low, the controller 53 adjusts the resistance value of the variable resistor 31 to the second predetermined value. Thereby, the accuracy of temperature detection is maintained at a certain value or higher.
<可変抵抗器31の抵抗値を変更するタイミング>
 図7は、可変抵抗器31の抵抗値を変更するタイミングの説明図である。図7では、温度抵抗器12の温度特性(図2参照)、電圧グラフ及び分解能グラフが示されている。可変抵抗器31の抵抗値が第1所定値である場合においては、第1所定値及び第2所定値それぞれに対応する分解能グラフは実線及び破線で示されている。可変抵抗器31の抵抗値が第2所定値である場合においては、第1所定値及び第2所定値それぞれに対応する分解能グラフは破線及び実線で示されている。
<Timing for changing the resistance value of the variable resistor 31>
FIG. 7 is an explanatory diagram of the timing of changing the resistance value of the variable resistor 31. As shown in FIG. FIG. 7 shows the temperature characteristics of the temperature resistor 12 (see FIG. 2), voltage graph and resolution graph. When the resistance value of the variable resistor 31 is the first predetermined value, the resolution graphs corresponding to the first predetermined value and the second predetermined value are indicated by solid lines and broken lines, respectively. When the resistance value of the variable resistor 31 is the second predetermined value, the resolution graphs corresponding to the first predetermined value and the second predetermined value are indicated by dashed lines and solid lines.
 図7では、2つの分解能グラフの交点(温度抵抗器12の温度)に対応する可変抵抗器の抵抗値がRthで示されている。Rthは抵抗閾値である。また、可変抵抗器31の抵抗値が第1所定値である場合において、2n個のデジタル値に対応する2n個の電圧の中で、交点に対応する分圧電圧に最も近い電圧をV1で表している。V1は第1電圧閾値である。可変抵抗器31の抵抗値が第2所定値である場合において、2n個のデジタル値に対応する2n個の電圧の中で、交点に対応する分圧電圧に最も近い電圧をV2で表している。V2は第2電圧閾値である。 In FIG. 7, the resistance value of the variable resistor corresponding to the intersection of the two resolution graphs (the temperature of the temperature resistor 12) is indicated by Rth. Rth is the resistance threshold. Further, when the resistance value of the variable resistor 31 is the first predetermined value, among the 2 n voltages corresponding to the 2 n digital values, V1 is represented by V1 is the first voltage threshold. When the resistance value of the variable resistor 31 is the second predetermined value, among the 2 n voltages corresponding to the 2 n digital values, the voltage closest to the divided voltage corresponding to the intersection is represented by V2. ing. V2 is a second voltage threshold.
 可変抵抗器31の抵抗値が第1所定値である場合においては、マイコン32は、温度抵抗器12の抵抗値が抵抗閾値Rth未満の値に低下した場合、即ち、分圧電圧が第1電圧閾値V1以下の値に低下した場合、可変抵抗器31の抵抗値を第2所定値に低下させる。可変抵抗器31の抵抗値が第2所定値である場合においては、マイコン32は、温度抵抗器12の抵抗値が抵抗閾値Rthを超えた場合、即ち、分圧電圧が第2電圧閾値V2を超えた場合、可変抵抗器31の抵抗値を第1所定値に上昇させる。これにより、温度検知の精度が一定値以上に維持される。 When the resistance value of the variable resistor 31 is the first predetermined value, the microcomputer 32 controls when the resistance value of the temperature resistor 12 decreases to a value less than the resistance threshold value Rth, that is, when the divided voltage is the first voltage. When the resistance value drops below the threshold value V1, the resistance value of the variable resistor 31 is lowered to the second predetermined value. When the resistance value of the variable resistor 31 is the second predetermined value, the microcomputer 32 detects when the resistance value of the temperature resistor 12 exceeds the resistance threshold value Rth, that is, when the divided voltage exceeds the second voltage threshold value V2. If exceeded, the resistance value of the variable resistor 31 is increased to the first predetermined value. Thereby, the accuracy of temperature detection is maintained at a certain value or higher.
<温度テーブルT>
 温度検知処理では、図4に示す制御部53は、A/D変換部51から取得したデジタル値に基づいて、温度抵抗器12の温度を特定する。温度抵抗器12の温度の特定では、温度テーブルTが用いられる。温度テーブルTは記憶部52に記憶されている。
<Temperature table T>
In the temperature detection process, the controller 53 shown in FIG. 4 identifies the temperature of the temperature resistor 12 based on the digital value acquired from the A/D converter 51 . A temperature table T is used to specify the temperature of the temperature resistor 12 . A temperature table T is stored in the storage unit 52 .
 図8は温度テーブルTの内容を示す図表である。温度テーブルTでは、2n個のデジタル値それぞれに対応する2n個の第1温度及び第2温度が示されている。第1温度及び第2温度の単位は度である。記憶部52は温度記憶部として機能する。図8では、nが10である例が示されている。従って、10進数のデジタル値は、0から1023までの範囲内の整数である。 FIG. 8 is a table showing contents of the temperature table T. As shown in FIG. The temperature table T shows 2 n first temperatures and second temperatures corresponding to 2 n digital values. The units for the first temperature and the second temperature are degrees. The storage unit 52 functions as a temperature storage unit. In FIG. 8, an example in which n is 10 is shown. Therefore, a decimal digital value is an integer in the range 0-1023.
 可変抵抗器31の抵抗値が第1所定値である場合においては、マイコン32は、A/D変換部51が変換したデジタル値に対応する第1温度を参照する。図7に示すように、分圧電圧が低い程、10進数のデジタル値は小さく、温度抵抗器12の温度は高い。従って、温度抵抗器12の温度が高い程、10進数のデジタル値は小さい。可変抵抗器31の抵抗値が第1所定値である場合において、温度抵抗器12の温度が高いとき、分解能は小さい。従って、10進数のデジタル値が小さい場合、複数のデジタル値に対応する複数の第1温度は同じである。 When the resistance value of the variable resistor 31 is the first predetermined value, the microcomputer 32 refers to the first temperature corresponding to the digital value converted by the A/D converter 51 . As shown in FIG. 7, the lower the divided voltage, the smaller the decimal digital value and the higher the temperature of the temperature resistor 12 . Therefore, the higher the temperature of the temperature resistor 12, the smaller the decimal digital value. When the resistance value of the variable resistor 31 is the first predetermined value and the temperature of the temperature resistor 12 is high, the resolution is small. Therefore, when the decimal digital value is small, the plurality of first temperatures corresponding to the plurality of digital values are the same.
 可変抵抗器31の抵抗値が第2所定値である場合においては、マイコン32は、A/D変換部51が変換したデジタル値に対応する第2温度を参照する。図7に示すように、分圧電圧が高い程、10進数のデジタル値は大きく、温度抵抗器12の温度は低い。従って、温度抵抗器12の温度が低い程、10進数のデジタル値が大きい。可変抵抗器31の抵抗値が第2所定値である場合において、温度抵抗器12の温度が低いとき、分解能は小さい。従って、10進数のデジタル値が大きい場合、複数のデジタル値に対応する複数の第2温度は同じである。 When the resistance value of the variable resistor 31 is the second predetermined value, the microcomputer 32 refers to the second temperature corresponding to the digital value converted by the A/D converter 51 . As shown in FIG. 7, the higher the divided voltage, the higher the decimal digital value and the lower the temperature of the temperature resistor 12 . Therefore, the lower the temperature of the temperature resistor 12, the larger the decimal digital value. When the resistance value of the variable resistor 31 is the second predetermined value, the resolution is small when the temperature of the temperature resistor 12 is low. Therefore, when the decimal digital value is large, the plurality of second temperatures corresponding to the plurality of digital values are the same.
<温度検知処理>
 図9は温度検知処理の手順を示すフローチャートである。マイコン32の制御部53は、温度検知処理を繰り返し実行する。マイコン32の記憶部52には、フラグの値が記憶されている。フラグの値は、制御部53によって1又は2に変更される。フラグの値について、「1」は、可変抵抗器31の抵抗値が第1所定値であることを示す。「2」は、可変抵抗器31の抵抗値が第2所定値であることを示す。
<Temperature detection processing>
FIG. 9 is a flow chart showing the procedure of temperature detection processing. The control unit 53 of the microcomputer 32 repeatedly executes the temperature detection process. The storage unit 52 of the microcomputer 32 stores flag values. The flag value is changed to 1 or 2 by the control unit 53 . Regarding the value of the flag, "1" indicates that the resistance value of the variable resistor 31 is the first predetermined value. "2" indicates that the resistance value of the variable resistor 31 is the second predetermined value.
 温度検知処理では、制御部53は、まず、A/D変換部51が変換したデジタル値を取得する(ステップS1)。次に、制御部53は、フラグの値が1であるか否かを判定する(ステップS2)。フラグの値が1ではない場合、フラグの値は2である。制御部53は、フラグの値が1であると判定した場合(S2:YES)、温度抵抗器12の抵抗値が抵抗閾値未満であるか否かを判定する(ステップS3)。図7の例では、制御部53がステップS1で取得したデジタル値に対応する分圧電圧が第1電圧閾値V1以下である場合、温度抵抗器12の抵抗値が抵抗閾値Rth未満であると判定する。制御部53がステップS1で取得したデジタル値に対応する分圧電圧が第1電圧閾値V1を超えている場合、温度抵抗器12の抵抗値が抵抗閾値Rth以上であると判定する。 In the temperature detection process, the control unit 53 first acquires a digital value converted by the A/D conversion unit 51 (step S1). Next, the control unit 53 determines whether or not the value of the flag is 1 (step S2). If the value of the flag is not 1, the value of the flag is 2. When determining that the value of the flag is 1 (S2: YES), the control unit 53 determines whether the resistance value of the temperature resistor 12 is less than the resistance threshold (step S3). In the example of FIG. 7, when the divided voltage corresponding to the digital value acquired in step S1 by the control unit 53 is equal to or less than the first voltage threshold value V1, the resistance value of the temperature resistor 12 is determined to be less than the resistance threshold value Rth. do. When the divided voltage corresponding to the digital value acquired in step S1 by the controller 53 exceeds the first voltage threshold V1, the resistance value of the temperature resistor 12 is determined to be equal to or greater than the resistance threshold Rth.
 制御部53は、温度抵抗器12の抵抗値が抵抗閾値未満であると判定した場合(S3:YES)、出力部50に指示して、出力電圧をハイレベル電圧に切替えさせることによって、可変抵抗器31の抵抗値を第2所定値に低下させる(ステップS4)。出力電圧のハイレベル電圧への切替えを出力部50に指示することは、直列スイッチ40のオンへの切替えを切替え回路43に指示することに相当する。制御部53は、ステップS4を実行した後、フラグの値を2に変更する(ステップS5)。次に、制御部53は、可変抵抗器31の抵抗値が第2所定値に調整された後にA/D変換部51が変換したデジタル値を再び取得する(ステップS6)。 When the control unit 53 determines that the resistance value of the temperature resistor 12 is less than the resistance threshold value (S3: YES), the control unit 53 instructs the output unit 50 to switch the output voltage to a high level voltage, so that the variable resistance The resistance value of the device 31 is lowered to a second predetermined value (step S4). Instructing the output section 50 to switch the output voltage to the high level voltage corresponds to instructing the switching circuit 43 to switch the series switch 40 to ON. After executing step S4, the control unit 53 changes the value of the flag to 2 (step S5). Next, the control unit 53 acquires again the digital value converted by the A/D conversion unit 51 after the resistance value of the variable resistor 31 is adjusted to the second predetermined value (step S6).
 制御部53は、フラグの値が1ではないと判定した場合(S2:NO)、温度抵抗器12の抵抗値が抵抗閾値を超えているか否かを判定する(ステップS7)。図7の例では、制御部53がステップS1で取得したデジタル値に対応する分圧電圧が第2電圧閾値V2を超えている場合、温度抵抗器12の抵抗値が抵抗閾値Rthを超えていると判定する。制御部53がステップS1で取得したデジタル値に対応する分圧電圧が第2電圧閾値V2以下である場合、温度抵抗器12の抵抗値が抵抗閾値Rth以下であると判定する。 When the control unit 53 determines that the value of the flag is not 1 (S2: NO), it determines whether the resistance value of the temperature resistor 12 exceeds the resistance threshold (step S7). In the example of FIG. 7, when the divided voltage corresponding to the digital value acquired by the control unit 53 in step S1 exceeds the second voltage threshold value V2, the resistance value of the temperature resistor 12 exceeds the resistance threshold value Rth. I judge. When the divided voltage corresponding to the digital value acquired in step S1 by the controller 53 is equal to or less than the second voltage threshold V2, the resistance value of the temperature resistor 12 is determined to be equal to or less than the resistance threshold Rth.
 制御部53は、温度抵抗器12の抵抗値が抵抗閾値を超えていると判定した場合(S7:YES)、出力部50に指示して、出力電圧をローレベル電圧に切替えさせることによって、可変抵抗器31の抵抗値を第1所定値に上昇させる(ステップS8)。出力電圧のローレベル電圧への切替えを出力部50に指示することは、直列スイッチ40のオフへの切替えを切替え回路43に指示することに相当する。制御部53は、ステップS8を実行した後、フラグの値を1に変更する(ステップS9)。次に、制御部53は、可変抵抗器31の抵抗値が第1所定値に調整された後にA/D変換部51が変換したデジタル値を再び取得する(ステップS10)。 When the control unit 53 determines that the resistance value of the temperature resistor 12 exceeds the resistance threshold value (S7: YES), the control unit 53 instructs the output unit 50 to switch the output voltage to a low level voltage, thereby making the variable The resistance value of the resistor 31 is raised to the first predetermined value (step S8). Instructing the output unit 50 to switch the output voltage to the low level voltage corresponds to instructing the switching circuit 43 to switch the series switch 40 off. After executing step S8, the control unit 53 changes the value of the flag to 1 (step S9). Next, the control unit 53 acquires again the digital value converted by the A/D conversion unit 51 after the resistance value of the variable resistor 31 is adjusted to the first predetermined value (step S10).
 制御部53は、温度抵抗器12の抵抗値が抵抗閾値以上であると判定した場合(S3:NO)、又は、ステップS10を実行した後、温度テーブルTにおいて、2n個の第1温度の中でステップS1又はステップS10で取得したデジタル値に対応する第1温度を読み出す(ステップS11)。ステップS11は、可変抵抗器31の抵抗値が第1所定値である場合に実行される。ステップS3を実行した直後のステップS11では、制御部53は、ステップS1で取得したデジタル値に対応する第1温度を読み出す。ステップS10を実行した直後のステップS11では、制御部53は、ステップS10で取得したデジタル値に対応する第1温度を読み出す。次に、制御部53は、温度抵抗器12の温度を特定する(ステップS12)。ステップS12では、制御部53は、温度抵抗器12の温度はステップS11で読み出した第1温度であると特定する。制御部53は、ステップS12を実行した後、温度検知処理を終了する。 When the control unit 53 determines that the resistance value of the temperature resistor 12 is equal to or greater than the resistance threshold value (S3: NO), or after executing step S10, the temperature table T stores 2 n first temperatures. The first temperature corresponding to the digital value acquired in step S1 or step S10 is read (step S11). Step S11 is executed when the resistance value of the variable resistor 31 is the first predetermined value. In step S11 immediately after executing step S3, the controller 53 reads out the first temperature corresponding to the digital value acquired in step S1. In step S11 immediately after executing step S10, the controller 53 reads the first temperature corresponding to the digital value acquired in step S10. Next, the controller 53 identifies the temperature of the temperature resistor 12 (step S12). At step S12, the controller 53 identifies that the temperature of the temperature resistor 12 is the first temperature read at step S11. After executing step S12, the control unit 53 terminates the temperature detection process.
 制御部53は、ステップS6を実行した後、又は、温度抵抗器12の抵抗値が抵抗閾値以下であると判定した場合(S7:NO)、温度テーブルTにおいて、2n個の第2温度の中でステップS1又はステップS6で取得したデジタル値に対応する第2温度を読み出す(ステップS13)。ステップS13は、可変抵抗器31の抵抗値が第2所定値である場合に実行される。ステップS6を実行した直後のステップS13では、制御部53は、ステップS6で取得したデジタル値に対応する第2温度を読み出す。ステップS7を実行した直後のステップS13では、制御部53は、ステップS1で取得したデジタル値に対応する第2温度を読み出す。次に、制御部53は、温度抵抗器12の温度を特定する(ステップS14)。ステップS14では、制御部53は、温度抵抗器12の温度はステップS13で読み出した第2温度であると特定する。制御部53は、ステップS12を実行した後、温度検知処理を終了する。制御部53は、温度検知処理を終了した後、再び、温度検知処理を実行する。 After executing step S6, or when determining that the resistance value of the temperature resistor 12 is equal to or lower than the resistance threshold value (S7: NO), the control unit 53 stores 2 n second temperature values in the temperature table T. The second temperature corresponding to the digital value acquired in step S1 or step S6 is read out (step S13). Step S13 is executed when the resistance value of the variable resistor 31 is the second predetermined value. In step S13 immediately after executing step S6, the controller 53 reads the second temperature corresponding to the digital value acquired in step S6. In step S13 immediately after executing step S7, the controller 53 reads the second temperature corresponding to the digital value acquired in step S1. Next, the controller 53 identifies the temperature of the temperature resistor 12 (step S14). At step S14, the controller 53 identifies that the temperature of the temperature resistor 12 is the second temperature read at step S13. After executing step S12, the control unit 53 terminates the temperature detection process. After completing the temperature detection process, the control unit 53 executes the temperature detection process again.
<効果>
 前述したように、温度検知装置11では、マイコン32の制御部53は、温度抵抗器12の抵抗値が抵抗閾値未満の値に低下した場合、可変抵抗器31の抵抗値を第2所定値に低下させる。制御部53は、温度抵抗器12の抵抗値が抵抗閾値を超えた場合、可変抵抗器31の抵抗値を第1所定値に上昇させる。このため、温度抵抗器12及び可変抵抗器31の抵抗値の差分値が大きい値に上昇することが防止される。結果、分圧電圧が大きく変化するので、精度よく温度を検知することができる。また、一定値以上の精度が維持される。
<effect>
As described above, in the temperature detection device 11, the control unit 53 of the microcomputer 32 sets the resistance value of the variable resistor 31 to the second predetermined value when the resistance value of the temperature resistor 12 drops below the resistance threshold value. Lower. When the resistance value of the temperature resistor 12 exceeds the resistance threshold value, the control section 53 increases the resistance value of the variable resistor 31 to the first predetermined value. Therefore, the difference between the resistance values of the temperature resistor 12 and the variable resistor 31 is prevented from increasing to a large value. As a result, since the divided voltage changes greatly, the temperature can be detected with high accuracy. Also, the accuracy of a certain value or more is maintained.
 温度検知処理の説明で述べたように、マイコン32の制御部53は、記憶部52に予め記憶されている温度テーブルTに基づいて、温度抵抗器12の温度を特定する。このため、簡単な構成で温度抵抗器12の温度の特定が実現される。 As described in the temperature detection process, the control unit 53 of the microcomputer 32 identifies the temperature of the temperature resistor 12 based on the temperature table T stored in advance in the storage unit 52. Therefore, the temperature of the temperature resistor 12 can be specified with a simple configuration.
(実施形態2)
 実施形態1では、マイコン32の制御部53は、温度テーブルTを用いて温度抵抗器12の温度が特定される。しかしながら、第1温度及び第2温度を特定する方法は、温度テーブルTを用いる方法に限定されない。
 以下では、実施形態2について、実施形態1と異なる点を説明する。後述する構成を除く他の構成については、実施形態1と共通している。このため、実施形態1と共通する構成部には実施形態1と同一の参照符号を付し、その構成部の説明を省略する。
(Embodiment 2)
In the first embodiment, the controller 53 of the microcomputer 32 uses the temperature table T to identify the temperature of the temperature resistor 12 . However, the method of specifying the first temperature and the second temperature is not limited to the method using the temperature table T.
Below, the points of the second embodiment that are different from the first embodiment will be described. Configurations other than those described later are common to those of the first embodiment. For this reason, the same reference numerals as in Embodiment 1 are given to the components that are common to Embodiment 1, and the description of those components is omitted.
<マイコン32の構成>
 実施形態2では、温度テーブルTの代わりに、第1算出式及び第2算出式が記憶部52に記憶されている。第1算出式は、電圧を第1変数として第1温度を算出するために用いられる。制御部53は、デジタル値に対応する分圧電圧を第1変数に代入することによって第1温度を算出する。同様に、第2算出式は、電圧を第2変数として第2温度を算出するために用いられる。制御部53は、デジタル値に対応する分圧電圧を第2変数に代入することによって第2温度を算出する。実施形態2では、記憶部52は算出式記憶部として機能する。第1算出式は第2算出式とは異なる。
<Configuration of microcomputer 32>
In the second embodiment, instead of the temperature table T, the storage unit 52 stores the first calculation formula and the second calculation formula. The first calculation formula is used to calculate the first temperature using the voltage as the first variable. The control unit 53 calculates the first temperature by substituting the divided voltage corresponding to the digital value for the first variable. Similarly, the second calculation formula is used to calculate the second temperature using the voltage as the second variable. The control unit 53 calculates the second temperature by substituting the divided voltage corresponding to the digital value for the second variable. In the second embodiment, the storage unit 52 functions as a calculation formula storage unit. The first calculation formula is different from the second calculation formula.
<温度検知処理>
 図10は、実施形態2における温度検知処理の手順を示すフローチャートである。実施形態1の説明で述べたように、マイコン32の制御部53は温度検知処理を実行する。制御部53は、温度検知処理のステップS1~S10,S12,S14を実施形態1と同様に実行する。このため、ステップS1~S10,S12,S14の詳細な説明を省略する。
<Temperature detection processing>
FIG. 10 is a flow chart showing the procedure of temperature detection processing according to the second embodiment. As described in the first embodiment, the controller 53 of the microcomputer 32 executes temperature detection processing. The control unit 53 executes steps S1 to S10, S12, and S14 of the temperature detection process in the same manner as in the first embodiment. Therefore, detailed description of steps S1 to S10, S12, and S14 is omitted.
 制御部53は、温度抵抗器12の抵抗値が抵抗閾値以上であると判定した場合(S3:NO)、又は、ステップS10を実行した後、ステップS1又はステップS10で取得したデジタル値に対応する分圧電圧を第1算出式の第1変数に代入することによって第1温度を算出する(ステップS21)。ステップS21は、可変抵抗器31の抵抗値が第1所定値である場合に実行される。ステップS3が実行された直後のステップS21では、制御部53は、ステップS1で取得したデジタル値に対応する分圧電圧を用いる。ステップS10が実行された直後のステップS21では、制御部53は、ステップS10で取得したデジタル値に対応する分圧電圧を用いる。 When the control unit 53 determines that the resistance value of the temperature resistor 12 is equal to or greater than the resistance threshold value (S3: NO), or after executing step S10, the control unit 53 determines the digital value corresponding to the digital value acquired in step S1 or step S10. A first temperature is calculated by substituting the divided voltage for the first variable of the first calculation formula (step S21). Step S21 is executed when the resistance value of the variable resistor 31 is the first predetermined value. In step S21 immediately after step S3 is executed, the control unit 53 uses the divided voltage corresponding to the digital value acquired in step S1. In step S21 immediately after step S10 is executed, the control unit 53 uses the divided voltage corresponding to the digital value acquired in step S10.
 制御部53は、ステップS21を実行した後、ステップS12を実行する。ステップS12では、制御部53は、温度抵抗器12の温度はステップS21で算出した第1温度であると特定する。 After executing step S21, the control unit 53 executes step S12. At step S12, the controller 53 determines that the temperature of the temperature resistor 12 is the first temperature calculated at step S21.
 同様に、制御部53は、ステップS6を実行した後、又は、温度抵抗器12の抵抗値が抵抗閾値以下であると判定した場合(S7:NO)、ステップS1又はステップS6で取得したデジタル値に対応する分圧電圧を第2算出式の第2変数に代入することによって第2温度を算出する(ステップS22)。ステップS22は、可変抵抗器31の抵抗値が第2所定値である場合に実行される。ステップS6が実行された直後のステップS22では、制御部53は、ステップS6で取得したデジタル値に対応する分圧電圧を用いる。ステップS7が実行された直後のステップS22では、制御部53は、ステップS1で取得したデジタル値に対応する分圧電圧を用いる。 Similarly, after executing step S6, or when determining that the resistance value of the temperature resistor 12 is equal to or less than the resistance threshold value (S7: NO), the control unit 53 controls the digital value acquired in step S1 or step S6. A second temperature is calculated by substituting the divided voltage corresponding to the second variable of the second calculation formula (step S22). Step S22 is executed when the resistance value of the variable resistor 31 is the second predetermined value. In step S22 immediately after step S6 is executed, the control unit 53 uses the divided voltage corresponding to the digital value acquired in step S6. In step S22 immediately after step S7 is executed, the control unit 53 uses the divided voltage corresponding to the digital value acquired in step S1.
 制御部53は、ステップS22を実行した後、ステップS14を実行する。ステップS14では、制御部53は、温度抵抗器12の温度はステップS22で算出した第2温度であると特定する。 After executing step S22, the control unit 53 executes step S14. At step S14, the controller 53 determines that the temperature of the temperature resistor 12 is the second temperature calculated at step S22.
<効果>
 実施形態2における温度検知装置11では、マイコン32の制御部53は、第1算出式及び第2算出式を用いて、温度抵抗器12の温度を特定する。このため、温度抵抗器12の正確な温度の特定が実現される。実施形態2における温度検知装置11は、実施形態1における温度検知装置11が奏する効果の中で、温度テーブルTから第1温度及び第2温度を読み出すことによって得られる効果を除く他の効果を同様に奏する。
<effect>
In the temperature detection device 11 according to the second embodiment, the controller 53 of the microcomputer 32 identifies the temperature of the temperature resistor 12 using the first calculation formula and the second calculation formula. Therefore, accurate temperature determination of the temperature resistor 12 is achieved. The temperature detection device 11 according to the second embodiment has the same effects as those of the temperature detection device 11 according to the first embodiment except for the effect obtained by reading the first temperature and the second temperature from the temperature table T. play to
(実施形態3)
 実施形態1では、可変抵抗器31は、抵抗値を調整することができる構成であればよい。このため、可変抵抗器31の構成は、直列スイッチ40及び第1抵抗41を含む直列回路に第2抵抗42が並列に接続される構成に限定されない。
 以下では、実施形態3について、実施形態1と異なる点を説明する。後述する構成を除く他の構成については、実施形態1と共通している。このため、実施形態1と共通する構成部には実施形態1と同一の参照符号を付し、その構成部の説明を省略する。
(Embodiment 3)
In Embodiment 1, the variable resistor 31 may have any configuration as long as the resistance value can be adjusted. Therefore, the configuration of the variable resistor 31 is not limited to the configuration in which the second resistor 42 is connected in parallel to the series circuit including the series switch 40 and the first resistor 41 .
In the following, the points of the third embodiment that are different from the first embodiment will be described. Configurations other than those described later are common to those of the first embodiment. For this reason, the same reference numerals as in Embodiment 1 are given to the components that are common to Embodiment 1, and the description of those components is omitted.
<可変抵抗器31の構成>
 図11は、実施形態3における可変抵抗器31の回路図である。実施形態3における可変抵抗器31は、実施形態1と同様に切替え回路43を有する。実施形態3における可変抵抗器31は、更に、接続器44及びu個の固定抵抗E1,E2,・・・Euを有する。ここで、uは2以上の整数である。接続器44はレギュレータ30に接続されている。接続器44は、更に、u個の固定抵抗E1,E2,・・・,Eu中の1つの一端に接続される。固定抵抗E1,E2,・・・,Euの他端は温度抵抗器12のNTCサーミスタ20の一端に接続されている。
<Configuration of Variable Resistor 31>
FIG. 11 is a circuit diagram of the variable resistor 31 according to the third embodiment. A variable resistor 31 in the third embodiment has a switching circuit 43 as in the first embodiment. The variable resistor 31 in Embodiment 3 further has a connector 44 and u fixed resistors E1, E2, . . . Eu. Here, u is an integer of 2 or more. Connector 44 is connected to regulator 30 . The connector 44 is further connected to one end of u fixed resistors E1, E2, . . . , Eu. , Eu are connected to one end of the NTC thermistor 20 of the temperature resistor 12 .
 切替え回路43は、接続器44において、レギュレータ30の接続先を、u個の固定抵抗E1,E2,・・・,Eu中の1つに変更する。マイコン32では、出力部50は、制御部53の指示に従って、レギュレータ30の接続先を示す接続先信号を切替え回路43に出力する。接続先信号が切替え回路43に入力された場合、切替え回路43は、レギュレータ30の接続先を、入力された接続先信号が示す接続先に変更する。固定抵抗E1,E2,・・・,Euの抵抗値は相互に異なる。 The switching circuit 43 changes the connection destination of the regulator 30 to one of u fixed resistors E1, E2, . In the microcomputer 32 , the output section 50 outputs a connection destination signal indicating the connection destination of the regulator 30 to the switching circuit 43 according to the instruction of the control section 53 . When the connection destination signal is input to the switching circuit 43, the switching circuit 43 changes the connection destination of the regulator 30 to the connection destination indicated by the input connection destination signal. The resistance values of the fixed resistors E1, E2, . . . , Eu are different from each other.
<温度検知処理>
 整数uが2である場合、制御部53は、実施形態1と同様に温度検知処理を実行する。固定抵抗E1,E2それぞれの抵抗値は、第1所定値及び第2所定値である。ステップS4では、制御部53は、出力部50に指示して、レギュレータ30の接続先として固定抵抗E2を示す接続先信号を切替え回路43に出力させることによって、可変抵抗器31の抵抗値を第2所定値に低下させる。
<Temperature detection processing>
When the integer u is 2, the controller 53 executes the temperature detection process as in the first embodiment. The resistance values of the fixed resistors E1 and E2 are a first predetermined value and a second predetermined value. In step S4, the control unit 53 instructs the output unit 50 to cause the switching circuit 43 to output a connection destination signal indicating the fixed resistor E2 as the connection destination of the regulator 30, thereby changing the resistance value of the variable resistor 31 to 2 Decrease to a predetermined value.
 同様に、ステップS8では、制御部53は、出力部50に指示して、レギュレータ30の接続先として固定抵抗E1を示す接続先信号を切替え回路43に出力させることによって、可変抵抗器31の抵抗値を第1所定値に上昇させる。 Similarly, in step S8, the control unit 53 instructs the output unit 50 to cause the switching circuit 43 to output a connection destination signal indicating the fixed resistor E1 as the connection destination of the regulator 30, thereby increasing the resistance of the variable resistor 31. Raise the value to a first predetermined value.
 整数uが3以上である場合、制御部53は、温度抵抗器12の抵抗値に応じて可変抵抗器31の抵抗値を調整する。温度テーブルTには、固定抵抗E1,E2,・・・Euそれぞれについて、デジタル値及び温度の関係が記憶されている。 When the integer u is 3 or more, the controller 53 adjusts the resistance value of the variable resistor 31 according to the resistance value of the temperature resistor 12 . The temperature table T stores the relationship between digital values and temperatures for each of the fixed resistors E1, E2, . . . Eu.
 1以上であり、かつ、u以下である整数をiで表す。制御部53は、レギュレータ30の接続先が固定抵抗Eiである場合、固定抵抗Eiに関して、A/D変換部51から取得したデジタル値に対応する温度を温度テーブルTから読み出す。制御部53は、温度抵抗器12の温度は、読み出した温度であると特定する。整数uが3以上である場合、より高い精度で温度抵抗器12の温度を検知することができる。 An integer greater than or equal to 1 and less than or equal to u is represented by i. When the regulator 30 is connected to the fixed resistor Ei, the controller 53 reads from the temperature table T the temperature corresponding to the digital value acquired from the A/D converter 51 for the fixed resistor Ei. The controller 53 determines that the temperature of the temperature resistor 12 is the read temperature. When the integer u is 3 or more, the temperature of the temperature resistor 12 can be detected with higher accuracy.
<効果>
 実施形態3における温度検知装置11は、実施形態1における温度検知装置11が奏する効果を同様に奏する。
<effect>
The temperature detection device 11 according to the third embodiment has the same effects as the temperature detection device 11 according to the first embodiment.
<変形例>
 実施形態3において、マイコン32の制御部53は、実施形態2と同様に算出式を用いて温度抵抗器12の温度を特定してもよい。この場合、記憶部52には、固定抵抗E1,E2,・・・Euそれぞれに対応するu個の算出式が記憶されている。これらは相互に異なっている。算出式は、電圧を変数として温度を算出するために用いられる。温度検知処理では、制御部53は、レギュレータ30の接続先が固定抵抗Eiである場合、A/D変換部51から取得したデジタル値に対応する分圧電圧を、固定抵抗Eiに対応する算出式の変数に代入することによって温度を算出する。制御部53は、温度抵抗器12の温度は、算出した温度であると特定する。
<Modification>
In the third embodiment, the controller 53 of the microcomputer 32 may specify the temperature of the temperature resistor 12 using a calculation formula as in the second embodiment. In this case, the storage unit 52 stores u calculation formulas corresponding to the fixed resistors E1, E2, . . . Eu. They are different from each other. The calculation formula is used to calculate the temperature using the voltage as a variable. In the temperature detection process, when the connection destination of the regulator 30 is the fixed resistor Ei, the control unit 53 converts the divided voltage corresponding to the digital value acquired from the A/D conversion unit 51 to the calculation formula corresponding to the fixed resistor Ei. Calculate the temperature by substituting in the variables of The control unit 53 specifies that the temperature of the temperature resistor 12 is the calculated temperature.
 実施形態3における可変抵抗器31の構成は、抵抗値を調整することができる構成であればよい。このため、可変抵抗器31は、接続器44及びu個の固定抵抗E1,E2,・・・,Euの代わりに、可変抵抗を有する構成であってもよい。可変抵抗は、レギュレータ30及び温度抵抗器12間に接続される。可変抵抗には、例えば、マイコン32の出力部50から電圧が印加されている。可変抵抗の抵抗値は、出力部50の出力電圧に応じて調整される。制御部53は、出力部50に出力電圧を変更させることによって、可変抵抗器31の抵抗値を調整する。 The configuration of the variable resistor 31 in Embodiment 3 may be any configuration as long as the resistance value can be adjusted. Therefore, the variable resistor 31 may have a variable resistor instead of the connector 44 and u fixed resistors E1, E2, . . . , Eu. A variable resistor is connected between the regulator 30 and the temperature resistor 12 . A voltage is applied to the variable resistor from the output section 50 of the microcomputer 32, for example. The resistance value of the variable resistor is adjusted according to the output voltage of the output section 50 . The control unit 53 adjusts the resistance value of the variable resistor 31 by causing the output unit 50 to change the output voltage.
 実施形態1~3において、温度抵抗器12の構成は、温度抵抗器12の温度が上昇した場合に抵抗値が低下する構成に限定されない。温度抵抗器12の構成は、例えば、温度抵抗器12の温度が上昇した場合に抵抗値が上昇する構成であってもよい。この場合、温度抵抗器12は、例えば、NTCサーミスタ20の代わりに、PTCサーミスタを有する。PTCはPositive Temperature Coefficientの略語である。 In Embodiments 1 to 3, the configuration of the temperature resistor 12 is not limited to a configuration in which the resistance value decreases when the temperature of the temperature resistor 12 rises. The configuration of the temperature resistor 12 may be, for example, a configuration in which the resistance value increases when the temperature of the temperature resistor 12 increases. In this case, temperature resistor 12 has, for example, a PTC thermistor instead of NTC thermistor 20 . PTC is an abbreviation for Positive Temperature Coefficient.
 この場合においても、実施形態1,2、及び、整数uが2である実施形態3における温度検知処理では、制御部53は、温度抵抗器12の抵抗値が抵抗閾値を超えた場合に可変抵抗器31の抵抗値を第1所定値上昇させる。制御部53は、温度抵抗器12の抵抗値が抵抗閾値未満の値に低下した場合に可変抵抗器31の抵抗値を第2所定値に低下させる。 Also in this case, in the temperature detection processing in Embodiments 1 and 2, and in Embodiment 3 in which the integer u is 2, the control unit 53 causes the variable resistance The resistance value of the device 31 is increased by a first predetermined value. The control unit 53 reduces the resistance value of the variable resistor 31 to a second predetermined value when the resistance value of the temperature resistor 12 has decreased to a value less than the resistance threshold value.
 実施形態1~3において、温度抵抗器12が配置される場所は、温度検知装置11の外側に限定されず、温度検知装置11の内側であってもよい。この場合、温度検知装置11は温度抵抗器12を有する。実施形態1~3における分圧電圧は、温度抵抗器12の両端間の電圧に限定されず、可変抵抗器31の両端間の電圧であってもよい。この場合、分圧電圧は、温度抵抗器12の抵抗値が大きい程、低い。 In Embodiments 1 to 3, the place where the temperature resistor 12 is arranged is not limited to the outside of the temperature detection device 11, and may be inside the temperature detection device 11. In this case, the temperature sensing device 11 has a temperature resistor 12 . The divided voltage in Embodiments 1 to 3 is not limited to the voltage across the temperature resistor 12 and may be the voltage across the variable resistor 31 . In this case, the higher the resistance value of the temperature resistor 12, the lower the divided voltage.
 実施形態1~3において、温度抵抗器12は、レギュレータ30及び可変抵抗器31間に接続されてもよい。この場合、可変抵抗器31は接地される。電流は、直流電源10の正極からレギュレータ30、温度抵抗器12、可変抵抗器31及び直流電源10の負極の順に流れる。分圧電圧は、温度抵抗器12又は可変抵抗器31の両端間の電圧である。 In the first to third embodiments, the temperature resistor 12 may be connected between the regulator 30 and the variable resistor 31. In this case, variable resistor 31 is grounded. Current flows from the positive terminal of the DC power supply 10 to the regulator 30, the temperature resistor 12, the variable resistor 31, and the negative terminal of the DC power supply 10 in this order. The divided voltage is the voltage across the temperature resistor 12 or the variable resistor 31 .
 開示された実施形態1~3はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The disclosed embodiments 1 to 3 should be considered illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the meaning described above, and is intended to include all changes within the meaning and scope equivalent to the scope of the claims.
 1 温度検知システム
 10 直流電源
 11 温度検知装置
 12 温度抵抗器
 20 NTCサーミスタ
 30 レギュレータ(電圧印加部)
 31 可変抵抗器
 32 マイコン
 40 直列スイッチ
 41 第1抵抗
 42 第2抵抗
 43 切替え回路
 44 接続器
 50 出力部
 51 A/D変換部
 52 記憶部(温度記憶部、算出式記憶部)
 53 制御部(処理部)
 54 内部バス
 A 記憶媒体
 C 車両
 E1,E2,・・・,Eu 固定抵抗
 P コンピュータプログラム
 T 温度テーブル
 
Reference Signs List 1 temperature detection system 10 DC power supply 11 temperature detection device 12 temperature resistor 20 NTC thermistor 30 regulator (voltage application unit)
31 Variable Resistor 32 Microcomputer 40 Series Switch 41 First Resistor 42 Second Resistor 43 Switching Circuit 44 Connector 50 Output Unit 51 A/D Converter 52 Storage Unit (Temperature Storage Unit, Calculation Formula Storage Unit)
53 control unit (processing unit)
54 internal bus A storage medium C vehicle E1, E2, ..., Eu fixed resistor P computer program T temperature table

Claims (8)

  1.  車両に搭載される温度検知装置であって、
     温度に応じて抵抗値が変化する温度抵抗器に接続される可変抵抗器と、
     前記温度抵抗器及び可変抵抗器を含む直列回路に一定の電圧を印加する電圧印加部と、
     前記温度抵抗器及び可変抵抗器が分圧した分圧電圧をデジタル値に変換する変換部と、
     処理を実行する処理部と
     を備え、
     前記温度は前記温度抵抗器の温度であり、
     前記処理部は、
     前記温度抵抗器の抵抗値に応じて前記可変抵抗器の抵抗値を調整し、
     前記可変抵抗器の抵抗値を調整した後に前記変換部が変換したデジタル値に基づいて前記温度抵抗器の温度を特定する
     温度検知装置。
    A temperature detection device mounted on a vehicle,
    a variable resistor connected to a temperature resistor whose resistance value changes according to temperature;
    a voltage applying unit that applies a constant voltage to a series circuit including the temperature resistor and the variable resistor;
    a converter that converts the divided voltage divided by the temperature resistor and the variable resistor into a digital value;
    a processing unit that executes processing;
    the temperature is the temperature of the temperature resistor,
    The processing unit is
    adjusting the resistance value of the variable resistor according to the resistance value of the temperature resistor;
    A temperature detection device that identifies the temperature of the temperature resistor based on the digital value converted by the conversion unit after adjusting the resistance value of the variable resistor.
  2.  前記可変抵抗器は、
     第1抵抗及び第2抵抗と、
     前記第1抵抗に直列に接続される直列スイッチと、
     前記直列スイッチをオン又はオフに切替える切替え回路と
     を有し、
     前記第1抵抗及び直列スイッチを含む直列回路に前記第2抵抗が並列に接続されており、
     前記処理部は、前記直列スイッチのオン又はオフへの切替えを前記切替え回路に指示することによって、前記可変抵抗器の抵抗値を調整する
     請求項1に記載の温度検知装置。
    The variable resistor is
    a first resistor and a second resistor;
    a series switch connected in series with the first resistor;
    a switching circuit for switching the series switch on or off;
    The second resistor is connected in parallel to a series circuit including the first resistor and a series switch,
    The temperature sensing device according to claim 1, wherein the processing unit adjusts the resistance value of the variable resistor by instructing the switching circuit to turn on or off the series switch.
  3.  前記処理部は、
     前記温度抵抗器の抵抗値が閾値を超えた場合に前記可変抵抗器の抵抗値を第1所定値に上昇させ、
     前記温度抵抗器の抵抗値が前記閾値未満の値に低下した場合に前記可変抵抗器の抵抗値を第2所定値に低下させ、
     前記第1所定値は前記第2所定値を超えている
     請求項1又は請求項2に記載の温度検知装置。
    The processing unit is
    increasing the resistance value of the variable resistor to a first predetermined value when the resistance value of the temperature resistor exceeds a threshold;
    decreasing the resistance value of the variable resistor to a second predetermined value when the resistance value of the temperature resistor decreases to a value less than the threshold;
    3. The temperature detection device according to claim 1, wherein said first predetermined value exceeds said second predetermined value.
  4.  複数のデジタル値それぞれに対応する複数の第1温度及び第2温度が記憶されている温度記憶部を備え、
     前記処理部は、
     前記可変抵抗器の抵抗値が前記第1所定値である場合、前記温度抵抗器の温度は、前記複数の第1温度の中で前記変換部が変換したデジタル値に対応する第1温度であると特定し、
     前記可変抵抗器の抵抗値が前記第2所定値である場合、前記温度抵抗器の温度は、前記複数の第2温度の中で前記変換部が変換したデジタル値に対応する第2温度値であると特定する
     請求項3に記載の温度検知装置。
    A temperature storage unit storing a plurality of first temperatures and second temperatures corresponding to the plurality of digital values,
    The processing unit is
    When the resistance value of the variable resistor is the first predetermined value, the temperature of the temperature resistor is the first temperature corresponding to the digital value converted by the conversion unit among the plurality of first temperatures. identified as
    When the resistance value of the variable resistor is the second predetermined value, the temperature of the temperature resistor is the second temperature value corresponding to the digital value converted by the conversion unit among the plurality of second temperatures. 4. The temperature sensing device of claim 3, wherein there is a temperature sensing device.
  5.  電圧を変数として温度を算出するための第1算出式及び第2算出式が記憶されている算出式記憶部を備え、
     前記処理部は、
     前記可変抵抗器の抵抗値が前記第1所定値である場合、前記変換部が変換したデジタル値が示す分圧電圧を前記第1算出式の変数に代入することによって温度を算出し、
     前記可変抵抗器の抵抗値が前記第2所定値である場合、前記変換部が変換したデジタル値が示す分圧電圧を前記第2算出式の変数に代入することによって温度を算出し、
     前記温度抵抗器の温度は、算出した温度であると特定する
     請求項3に記載の温度検知装置。
    a calculation formula storage unit that stores a first calculation formula and a second calculation formula for calculating temperature using voltage as a variable;
    The processing unit is
    when the resistance value of the variable resistor is the first predetermined value, calculating the temperature by substituting the divided voltage indicated by the digital value converted by the conversion unit into the variable of the first calculation formula;
    when the resistance value of the variable resistor is the second predetermined value, calculating the temperature by substituting the divided voltage indicated by the digital value converted by the conversion unit into the variable of the second calculation formula;
    The temperature sensing device according to claim 3, wherein the temperature of the temperature resistor is specified as a calculated temperature.
  6.  前記温度抵抗器の抵抗値は、前記温度抵抗器の温度が上昇した場合に低下する
     請求項1から請求項5のいずれか1項に記載の温度検知装置。
    The temperature detection device according to any one of claims 1 to 5, wherein the resistance value of the temperature resistor decreases when the temperature of the temperature resistor increases.
  7.  温度に応じて抵抗値が変化する温度抵抗器の抵抗値に応じて、前記温度抵抗器に接続される可変抵抗器の抵抗値を調整するステップと、
     前記可変抵抗器の抵抗値が調整された後、前記温度抵抗器及び可変抵抗器が一定の電圧を分圧することによって得られる分圧電圧のデジタル値に基づいて、前記温度を特定するステップと
     をコンピュータが実行し、
     前記温度は前記温度抵抗器の温度である
     温度検知方法。
    adjusting the resistance value of a variable resistor connected to the temperature resistor according to the resistance value of the temperature resistor, the resistance value of which changes according to the temperature;
    determining the temperature based on the digital value of the divided voltage obtained by dividing the constant voltage by the temperature resistor and the variable resistor after the resistance value of the variable resistor is adjusted; the computer runs
    The temperature sensing method, wherein the temperature is the temperature of the temperature resistor.
  8.  温度に応じて抵抗値が変化する温度抵抗器の抵抗値に応じて、前記温度抵抗器に接続される可変抵抗器の抵抗値を調整するステップと、
     前記可変抵抗器の抵抗値が調整された後、前記温度抵抗器及び可変抵抗器が一定の電圧を分圧することによって得られる分圧電圧のデジタル値に基づいて、前記温度を特定するステップと
     をコンピュータに実行させるために用いられ、
     前記温度は前記温度抵抗器の温度である
     コンピュータプログラム。
     
    adjusting the resistance value of a variable resistor connected to the temperature resistor according to the resistance value of the temperature resistor, the resistance value of which changes according to the temperature;
    determining the temperature based on the digital value of the divided voltage obtained by dividing the constant voltage by the temperature resistor and the variable resistor after the resistance value of the variable resistor is adjusted; used to make a computer execute
    The computer program, wherein the temperature is the temperature of the temperature resistor.
PCT/JP2022/039280 2021-11-10 2022-10-21 Temperature detection device, temperature detection method, and computer program WO2023085045A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-183472 2021-11-10
JP2021183472A JP2023070966A (en) 2021-11-10 2021-11-10 Temperature detection device, temperature detection method, and computer program

Publications (1)

Publication Number Publication Date
WO2023085045A1 true WO2023085045A1 (en) 2023-05-19

Family

ID=86335706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039280 WO2023085045A1 (en) 2021-11-10 2022-10-21 Temperature detection device, temperature detection method, and computer program

Country Status (2)

Country Link
JP (1) JP2023070966A (en)
WO (1) WO2023085045A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166832A (en) * 1984-12-24 1985-08-30 Omron Tateisi Electronics Co Electronic thermometer
JPH0310132A (en) * 1989-06-08 1991-01-17 Mitsubishi Electric Corp Apparatus for detecting driving state of vehicle
JPH0545231A (en) * 1991-08-13 1993-02-23 Matsushita Electric Ind Co Ltd Temperature measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166832A (en) * 1984-12-24 1985-08-30 Omron Tateisi Electronics Co Electronic thermometer
JPH0310132A (en) * 1989-06-08 1991-01-17 Mitsubishi Electric Corp Apparatus for detecting driving state of vehicle
JPH0545231A (en) * 1991-08-13 1993-02-23 Matsushita Electric Ind Co Ltd Temperature measuring device

Also Published As

Publication number Publication date
JP2023070966A (en) 2023-05-22

Similar Documents

Publication Publication Date Title
US9587994B2 (en) Semiconductor device
JP5060988B2 (en) Temperature detection circuit
KR101632095B1 (en) Process, voltage, and temperature sensor
US9590414B2 (en) Current controller and protection circuit
CN107923937B (en) Broken wire detection device
CN1411138A (en) Semiconductor device with temp compensating circuit
CN113050726B (en) Chip and temperature rise control method
JP2016200570A (en) Semiconductor device current detection method and semiconductor device
US11222526B2 (en) Two-wire transmitter
WO2023085045A1 (en) Temperature detection device, temperature detection method, and computer program
JP2009250613A (en) Temperature detection apparatus
JP5880493B2 (en) Temperature detection device
CN114665703A (en) Power supply circuit, voltage adjusting method, electronic device, and storage medium
US20090002122A1 (en) System for setting shutdown voltage of electronic device
US8461913B2 (en) Integrated circuit and a method for selecting a voltage in an integrated circuit
JP2010045942A (en) Overcurrent protective circuit and power supply using the same
US20120119748A1 (en) Battery voltage measurement system and battery voltage measurement method
CN111796651B (en) Digital certificate processing apparatus, chip power supply method, storage medium and program product
JP2006284301A (en) Temperature detector
KR20070010932A (en) Apparatus for controlling cooling device and cooling system
JP6823637B2 (en) Semiconductor device
CN116593022A (en) Temperature sensing device
JP3626702B2 (en) AD converter
CN112313489B (en) Temperature detection circuit for vehicle
JP2016142597A (en) Power supply voltage monitoring circuit and power supply circuit including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892545

Country of ref document: EP

Kind code of ref document: A1