WO2023084781A1 - 入荷量予測モデル生成装置、取引量予測装置、入荷量予測モデル生成方法、取引量予測方法、及び入荷量予測モデル生成プログラム - Google Patents

入荷量予測モデル生成装置、取引量予測装置、入荷量予測モデル生成方法、取引量予測方法、及び入荷量予測モデル生成プログラム Download PDF

Info

Publication number
WO2023084781A1
WO2023084781A1 PCT/JP2021/041930 JP2021041930W WO2023084781A1 WO 2023084781 A1 WO2023084781 A1 WO 2023084781A1 JP 2021041930 W JP2021041930 W JP 2021041930W WO 2023084781 A1 WO2023084781 A1 WO 2023084781A1
Authority
WO
WIPO (PCT)
Prior art keywords
market
arrival
data
transaction
day
Prior art date
Application number
PCT/JP2021/041930
Other languages
English (en)
French (fr)
Inventor
拓馬 若森
響子 森原
和之 磯
哲郎 甘粕
裕一郎 関口
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/041930 priority Critical patent/WO2023084781A1/ja
Publication of WO2023084781A1 publication Critical patent/WO2023084781A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Definitions

  • the disclosed technology relates to a receipt amount prediction model generation device, a transaction amount prediction device, a receipt amount prediction model generation method, a transaction amount prediction method, and a receipt amount prediction model generation program.
  • Patent Document 1 describes a planting plan providing system that provides a planting plan for agricultural products.
  • This planting plan provision system collects the environmental data of the farmland and the shipping volume data of the agricultural products produced in the farmland, and uses the collected environmental data and shipping volume data as learning data to perform learning with a learning model. Generate one trained model. Then, this planting plan providing system uses the new environmental data of the farmland as input data for the first learned model, estimates the shipment volume of agricultural products produced in the farmland, and estimates the shipment volume of agricultural products. , based on the demand data of the agricultural products, determine the planting plan of the agricultural products.
  • Patent Document 1 learns and predicts the monthly transaction volume, so when predicting the total monthly transaction volume, the impact of market holidays is considered to be small. However, when predicting the daily trading volume, the prediction accuracy of the time-series prediction model decreases due to the effect of market holidays.
  • the disclosed technology has been made in view of the above points, and includes a receipt amount prediction model generation device, a transaction volume prediction device, a receipt amount prediction model generation method, which can predict the daily transaction volume with high accuracy, It is an object of the present invention to provide a transaction volume prediction method and a receipt volume prediction model generation program.
  • a first aspect of the present disclosure is a receiving amount prediction model generation device, which receives input of market transaction data including dates, market business days, transaction volumes, and exogenous variables for commodity transactions; a stock volume estimating unit for estimating a stock volume on a closed day when the market is closed and on the next business day of the closed market based on the date, market business day, and transaction volume included in the market transaction data; and the market transaction data. and a receiving amount prediction model learning unit that generates a receiving amount prediction model by performing machine learning on the dates and exogenous variables included in and the receiving amount estimated by the receiving amount estimating unit as learning data.
  • a second aspect of the present disclosure is a trading volume prediction device, which accepts input of prediction data including prediction dates to be predicted, prediction days, market business days, and exogenous variables for product transactions and the amount of goods received on the day when the market is closed and the business day following the said closed day, estimated from the date included in the market transaction data obtained in advance, the business day of the market, and the transaction volume, and Received quantity prediction that is generated by machine learning using dates and exogenous variables included in market transaction data as learning data, and that outputs the received quantity for the date determined by the forecast date and forecast number of days using forecast data as input
  • a received quantity forecasting unit that uses a model to predict the received quantity for a date corresponding to the prediction data received by the receiving unit; and a transaction volume conversion unit that converts into a predicted value of the transaction volume of.
  • a third aspect of the present disclosure is a method for generating a forecast model for incoming goods, which receives input of market transaction data including dates, market business days, transaction volumes, and exogenous variables for commodity transactions, and Based on the date, market business day, and transaction volume included in the data, estimate the arrival volume on the day when the market is closed and the business day following the said holiday, and the date and exogenous variables included in the market transaction data. and, by performing machine learning using the estimated arrival amount as learning data, a arrival amount prediction model is generated.
  • a fourth aspect of the present disclosure is a trading volume prediction method, which accepts input of prediction data including prediction dates to be predicted, prediction days, market business days, and exogenous variables for product trading, The amount of goods received on the day when the market is closed and the business day following the said closed day, estimated from the date, the business day of the market, and the trading volume included in the market transaction data obtained in advance, and the relevant market transaction data It is generated by machine learning using the dates and exogenous variables contained in the model as learning data, and the forecast data is used as input, and the arrival amount forecast model that outputs the arrival amount for the date determined by the forecast date and forecast days is used. Then, the arrival quantity for the date corresponding to the received prediction data is predicted, and the predicted value for the arrival quantity for the predicted date is converted into the predicted value for the transaction quantity for that date.
  • a fifth aspect of the present disclosure is a receipt amount forecast model generation program, which receives input of market transaction data including dates, market business days, transaction volumes, and exogenous variables for commodity transactions, and Based on the date, market business day, and transaction volume included in the data, estimate the arrival volume on the day when the market is closed and the business day following the said holiday, and the date and exogenous variables included in the market transaction data. , and machine learning using the estimated arrival amount as learning data to generate a arrival amount prediction model.
  • the disclosed technology has the effect of being able to predict the daily trading volume with high accuracy.
  • the incoming quantity forecasting model generation device and transaction volume forecasting device generate a time-series forecasting model without considering the effects of closed days, and provide specific improvements to the conventional method of forecasting. , which indicates an improvement in the technical field related to prediction of incoming and transaction volumes using market transaction data.
  • FIG. 1 is a diagram for explaining the overview of the arrival amount estimation process according to this embodiment.
  • the trading volume on the business day following the closed market is divided and distributed in consideration of the number of closed days before the next business day.
  • the arrival amount is estimated, and the arrival amount prediction model is generated using the estimated arrival amount as learning data.
  • the generated arrival volume prediction model is used to predict the daily arrival volume, and the predicted daily arrival volume is converted into the daily transaction volume. As a result, the daily transaction volume can be predicted with high accuracy.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the arrival quantity prediction model generation device 10 according to this embodiment.
  • the arrival quantity prediction model generation device 10 includes a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a storage 14, an input section 15, and a display section 16. , and a communication interface (I/F) 17 .
  • Each component is communicatively connected to each other via a bus 18 .
  • the CPU 11 is a central processing unit that executes various programs and controls each part. That is, the CPU 11 reads a program from the ROM 12 or the storage 14 and executes the program using the RAM 13 as a work area. The CPU 11 performs control of each configuration and various arithmetic processing according to programs stored in the ROM 12 or the storage 14 . In this embodiment, the ROM 12 or the storage 14 stores a received quantity prediction model generation program for executing the received quantity prediction model generation process.
  • the ROM 12 stores various programs and various data.
  • the RAM 13 temporarily stores programs or data as a work area.
  • the storage 14 is composed of a HDD (Hard Disk Drive) or SSD (Solid State Drive) and stores various programs including an operating system and various data.
  • the input unit 15 includes a pointing device such as a mouse and a keyboard, and is used to perform various inputs to the device itself.
  • the display unit 16 is, for example, a liquid crystal display, and displays various information.
  • the display unit 16 may employ a touch panel system and function as the input unit 15 .
  • the communication interface 17 is an interface for the own device to communicate with other external devices.
  • a wired communication standard such as Ethernet (registered trademark) or FDDI (Fiber Distributed Data Interface)
  • a wireless communication standard such as 4G, 5G, or Wi-Fi (registered trademark) is used.
  • General-purpose computer devices such as server computers and personal computers (PCs), are applied to the arrival quantity prediction model generation device 10 according to the present embodiment.
  • FIG. 3 is a block diagram showing an example of the functional configuration of the arrival quantity prediction model generation device 10 according to this embodiment.
  • the arrival quantity prediction model generation device 10 includes a reception unit 101, a arrival quantity estimation unit 102, a arrival quantity prediction model learning unit 103, and an output unit 104 as functional configurations.
  • Each functional configuration is realized by the CPU 11 reading out a received quantity prediction model generation program stored in the ROM 12 or the storage 14, developing it in the RAM 13, and executing it.
  • the accepting unit 101 accepts input of market transaction data, which is data on product transactions in the market, and outputs the accepted market transaction data to the received quantity estimating unit 102 .
  • Market trading data includes dates, market opening days, trading volumes, and exogenous variables.
  • An exogenous variable is an external variable that is not affected by other variables in the system.
  • the exogenous variable is, for example, the temperature, and a value obtained by integrating temperatures over the past 21 days may be used.
  • the trading volume on the closed day is 0 (zero).
  • a market holiday, as described above, represents a day when the wholesaler is closed (that is, a day when the market is closed). Products are arriving even on days when the market is closed, but the actual amount of arrivals is unknown. From the next business day after the market is closed, the trading volume tends to increase because the amount received on the closed day is traded. In other words, the actual arrival amount is unknown even on the next business day due to the influence of the market holiday.
  • the arrival amount estimating unit 102 estimates the arrival amount on the day when the market is closed and the next business day of the market holiday from the date, the business day of the market, and the transaction amount included in the market transaction data. Specifically, the incoming quantity estimating unit 102 calculates the quantity obtained by dividing the trading volume on the next business day of the closed market by the number obtained by adding 1 to the number of consecutive closed days before the next business day. , the amount of goods received on the day the market is closed and the business day following the day the market is closed. In other words, the quantity of goods received on each of the days when the market is closed and the business day following the said day when the market is closed is derived by the following formula (1). However, let X be the trading volume on the business day after the closed market, Y be the number of consecutive closed days, and Z be the incoming volume on each closed day and the next business day of the closed market.
  • FIG. 4 is a diagram for explaining the arrival amount estimation process according to this embodiment. However, in the example of FIG. 4, exogenous variables are omitted to simplify the explanation.
  • the table on the left in FIG. 4 includes dates, market business days, and transaction volumes as an example of market transaction data.
  • the market is closed on July 3rd, July 7th, July 8th, July 10th, July 14th, and July 15th.
  • the transaction volume on July 4 which is the next business day of the closed market "July 3," is 1000 (unit: kg, hereinafter omitted).
  • the transaction volume on July 9, which is the next business day of the closed market "July 8,” is 2,000.
  • the transaction volume on July 11, which is the next business day of the closed market "July 10” is 1,000.
  • the trading volume on July 16, which is the next business day of the closed market "July 15,” is 700.
  • the arrival quantity prediction model learning unit 103 generates a arrival quantity prediction model by performing machine learning using the dates and exogenous variables included in the market transaction data and the arrival quantity estimated by the arrival quantity estimation unit 102 as learning data. do.
  • a time-series prediction model such as SARIMA (Seasonal AutoRegressive Integrated Moving Average), which is one of the time-series analysis methods, is applied.
  • the output unit 104 outputs the arrival amount prediction model generated by the arrival amount prediction model learning unit 103 to a learned model DB (DataBase) 141, and learns the parameters of the arrival amount prediction model (for example, SARIMA parameters). Store in the completed model DB 141 .
  • the trained model DB 141 may be stored in the storage 14 or may be stored in an external storage device.
  • FIG. 5 is a flow chart showing an example of the flow of processing by the arrival quantity prediction model generation program according to this embodiment.
  • the processing by the arrival quantity prediction model generation program is realized by the CPU 11 of the arrival quantity prediction model generation device 10 writing the arrival quantity prediction model generation program stored in the ROM 12 or the storage 14 to the RAM 13 and executing it.
  • the CPU 11 accepts input of market transaction data, which is data on product transactions in the market.
  • Market trading data includes dates, market opening days, trading volumes, and exogenous variables.
  • step S102 the CPU 11 estimates the amount of incoming stock on the day when the market is closed and the business day following the day when the market is closed, based on the date, the business day of the market, and the transaction volume included in the market transaction data received in step S101. do. Specifically, the quantity of incoming goods on the day the market is closed and the business day following the day the market is closed is derived by the above equation (1).
  • step S103 the CPU 11 performs machine learning using the dates and exogenous variables included in the market transaction data and the estimated arrival amount estimated in step S102 as learning data to generate an arrival amount prediction model.
  • a time series prediction model such as SARIMA is applied to the learning model.
  • step S104 the CPU 11 outputs the arrival quantity prediction model generated in step S103 to the learned model DB 141, stores the parameters of the arrival quantity prediction model (for example, SARIMA parameters) in the learned model DB 141, and stores the actual arrival quantity.
  • the parameters of the arrival quantity prediction model for example, SARIMA parameters
  • FIG. 6 is a block diagram showing an example of the hardware configuration of the trading volume prediction device 20 according to this embodiment.
  • the trading volume prediction device 20 includes a CPU 21, a ROM 22, a RAM 23, a storage 24, an input section 25, a display section 26, and a communication interface (I/F) 27. Each component is communicatively connected to each other via a bus 28 .
  • the CPU 21 is a central processing unit that executes various programs and controls each section. That is, the CPU 21 reads a program from the ROM 22 or the storage 24 and executes the program using the RAM 23 as a work area. The CPU 21 performs control of each configuration and various arithmetic processing according to programs stored in the ROM 22 or the storage 24 . In this embodiment, the ROM 22 or storage 24 stores a trading volume prediction program for executing trading volume prediction processing.
  • the ROM 22 stores various programs and various data.
  • the RAM 23 temporarily stores programs or data as a work area.
  • the storage 24 is composed of an HDD or SSD and stores various programs including an operating system and various data.
  • the input unit 25 includes a pointing device such as a mouse and a keyboard, and is used to perform various inputs to the device itself.
  • the display unit 26 is, for example, a liquid crystal display, and displays various information.
  • the display unit 26 may employ a touch panel system and function as the input unit 25 .
  • the communication interface 27 is an interface for the own device to communicate with other external devices.
  • the communication uses, for example, a wired communication standard such as Ethernet (registered trademark) or FDDI, or a wireless communication standard such as 4G, 5G, or Wi-Fi (registered trademark).
  • General-purpose computer devices such as server computers and personal computers (PCs), for example, are applied to the transaction volume prediction device 20 according to the present embodiment.
  • the arrival quantity prediction model generation device 10 and the transaction volume prediction device 20 are shown as separate devices, but the arrival quantity prediction model generation device 10 and the transaction volume prediction device 20 are treated as one device. may be realized.
  • FIG. 7 is a block diagram showing an example of the functional configuration of the transaction volume prediction device 20 according to this embodiment.
  • the transaction volume prediction device 20 includes a reception unit 201, a receipt amount prediction unit 202, a transaction volume conversion unit 203, and an output unit 204 as functional configurations.
  • Each functional configuration is realized by the CPU 21 reading out a trading volume prediction program stored in the ROM 22 or the storage 24, developing it in the RAM 23, and executing it.
  • the reception unit 201 receives input of forecast data including forecast dates, forecast days, market business days, and exogenous variables for product transactions in the market, and uses the received forecast data to predict incoming volumes. Output to the unit 202 .
  • the exogenous variable is, for example, the temperature as described above, and here, the forecast value for the date to be predicted is used.
  • the arrival quantity prediction unit 202 uses the arrival quantity prediction model stored in the learned model DB 141 to predict the arrival quantity for the date corresponding to the prediction data received by the reception unit 201 .
  • the learned model DB 141 may be stored in the storage 24 .
  • the arrival quantity prediction model is a model generated by the arrival quantity prediction model generating device 10 .
  • the arrival volume prediction model is estimated from the dates included in the market transaction data acquired in advance, the business days of the market, and the transaction volume. It is also a model generated by machine learning using dates and exogenous variables included in the market transaction data as learning data.
  • the arrival quantity prediction model receives prediction data as input, and outputs the arrival quantity for a date determined by the predicted date and the predicted number of days.
  • the transaction volume conversion unit 203 converts the predicted value of the arrival quantity for the date predicted by the arrival quantity prediction unit 202 into the predicted value of the transaction volume for that date. Specifically, for example, when predicting the trading volume for the business day following a closed market, the incoming volume (predicted value) for the next business day is added to the incoming volume (predicted value) for is set as the trading volume (predicted value) for the next business day, and the trading volume (predicted value) for the non-market day is set to 0 (zero).
  • FIG. 8 is a diagram for explaining transaction volume conversion processing according to the present embodiment.
  • the table on the left in Fig. 8 contains the date, market business day, and arrival amount (predicted value).
  • the market is closed on July 18th.
  • the arrival amount (predicted value) on the closed day “July 18" is 130, and the arrival amount (predicted value) on July 19, which is the next business day, is 170.
  • the right table shown in FIG. 8 includes dates, market business days, and transaction volumes (predicted values).
  • the transaction volume (predicted value) on the next business day, “July 19th,” is the amount of arrivals (predicted value) on July 19th, plus The volume (predicted value) is added and the transaction volume (predicted value) for the closed day “July 18" is set to 0 (zero).
  • the output unit 204 outputs the predicted value of the transaction volume converted by the transaction volume conversion unit 203 .
  • the predicted value of the trading volume is output to the display unit 26, for example.
  • FIG. 9 is a flow chart showing an example of the flow of processing by the transaction volume prediction program according to this embodiment.
  • the processing by the transaction volume prediction program is realized by the CPU 21 of the transaction volume prediction device 20 writing the transaction volume prediction program stored in the ROM 22 or storage 24 to the RAM 23 and executing it.
  • step S111 of FIG. 9 the CPU 21 receives input of prediction data including prediction dates, prediction days, market business days, and exogenous variables for commodity transactions in the market.
  • step S112 the CPU 21 uses the arrival amount prediction model stored in the learned model DB 141 to predict the arrival amount for the date corresponding to the prediction data received in step S111.
  • the arrival quantity prediction model is a model generated by the arrival quantity prediction model generating device 10 .
  • step S113 the CPU 21 converts the predicted value of the incoming quantity for the date predicted in step S112 into the predicted value of the transaction quantity for that date.
  • the next business day's incoming volume (predicted value)
  • the amount obtained by adding the arrival amount (predicted value) on the closed day is set as the trading amount (predicted value) for the next business day, and the trading amount (predicted value) for the closed day is set to 0 (zero).
  • step S114 the CPU 21 outputs the predicted value of the transaction volume converted in step S113, for example, to the display unit 26, and terminates the series of processing by this transaction volume prediction program.
  • FIG. 10 is a graph showing an example of autocorrelation analysis according to this embodiment.
  • Graph A shown in FIG. 10 shows the autocorrelation of the incoming quantity (estimated value) and shows the periodicity that matches the characteristics of the data. In other words, there is a 365-day cycle, which matches the domain knowledge that, for example, the amount of arrival of agricultural products has a cycle of years.
  • graph B shown in FIG. 10 shows the autocorrelation of transaction volume, and the characteristics of the data cannot be read. In other words, the cycle of 260 days is meaningless. In this way, by converting the transaction volume into the arrival volume, it is possible to read characteristics of the data that cannot be obtained from the transaction volume.
  • the method for estimating the amount of arrivals according to the present embodiment (with estimation processing of arrivals) is used as the proposed technology (that is, the transaction amount is converted to the amount of arrivals, and a time-series forecast model is created using the converted amount of arrivals.
  • a method that does not have a receipt amount estimation process is regarded as a conventional technique (that is, a method that learns and predicts the transaction amount itself).
  • SARIMA (1, 0, 1) (0, 1, 1) [7] was used as the time series forecast model.
  • RMSE root mean squared error
  • FIG. 11 is a time-series graph showing the evaluation results.
  • the graph of FIG. 11 shows the relationship between the predicted value and the actual value of transaction volume as of August 4th.
  • the vertical axis indicates transaction volume (kg) and the horizontal axis indicates date.
  • T1 indicates the actual value of transaction volume
  • T2 indicates the predicted value of the conventional technology
  • T3 indicates the predicted value of the proposed technology.
  • the market is closed on August 4th and August 8th. It can be seen that the proposed technology can predict the trading volume on August 5th and August 9th on the next business day after the market is closed with higher accuracy than the conventional technology.
  • FIG. 12 is a diagram showing accuracy evaluation results using RMSE. As shown in FIG. 12, the RMSE of the proposed technology has an improvement rate of 13% after one day and an improvement rate of 62% after two days compared to the RMSE of the conventional technology, indicating that the RMSE is also improved. I understand.
  • the arrival amount is estimated from the transaction amount
  • the time-series forecast model is learned using the estimated arrival amount
  • the arrival amount is predicted using the learned time-series forecast model
  • Estimated incoming volume is converted into estimated trading volume.
  • processors other than the CPU 11 may execute the arrival amount prediction model generation processing that the CPU 11 in the above embodiment reads and executes the arrival amount prediction model generation program.
  • the processor is a PLD (Programmable Logic Device) whose circuit configuration can be changed after manufacturing, such as an FPGA (Field-Programmable Gate Array), and an ASIC (Application Specific Integrated Circuit) to execute specific processing.
  • a dedicated electric circuit or the like which is a processor having a specially designed circuit configuration, is exemplified.
  • the arrival amount prediction model generation process may be executed by one of these various processors, or a combination of two or more processors of the same or different types (for example, multiple FPGAs, and a CPU and an FPGA , etc.). More specifically, the hardware structure of these various processors is an electric circuit in which circuit elements such as semiconductor elements are combined. The same applies to the trading amount prediction program executed by the CPU 21 .
  • the arrival amount prediction model generation program is pre-stored (also referred to as "installed") in the ROM 12 or storage 14 , but the present invention is not limited to this.
  • the arrival amount prediction model generation program is stored in non-transitory storage such as CD-ROM (Compact Disk Read Only Memory), DVD-ROM (Digital Versatile Disk Read Only Memory), and USB (Universal Serial Bus) memory. It may be provided in a form stored on a medium. Also, the arrival quantity prediction model generation program may be downloaded from an external device via a network. The same applies to the trading amount prediction program executed by the CPU 21 .
  • a receiving quantity prediction model generation device configured to generate a receiving quantity prediction model by performing machine learning using dates and exogenous variables included in the market transaction data and the estimated receiving quantity as learning data.
  • a non-temporary storage medium storing a computer-executable program for executing the arrival amount prediction model generation process,
  • the arrival amount prediction model generation process includes: accepts input of market trading data, including dates, market days, trading volumes, and exogenous variables, for trading commodities; Based on the date, market business day, and transaction volume included in the market transaction data, estimate the amount of incoming stock on the day the market is closed and the next business day of the market holiday,
  • the trading volume prediction process includes: Accepts input of forecast data including forecast dates, forecast days, market business days, and exogenous variables for commodity transactions, The amount of goods received on the day when the market is closed and the business day following the said closed day, estimated from the date, the business day of the market, and the trading volume included in the market transaction data obtained in advance, and the relevant market transaction data It is generated by machine learning using the dates and exogenous variables contained in the model as learning data, and the forecast data is used as input, and the arrival amount forecast model that outputs the arrival amount for the date determined by the forecast date and forecast days is used. predicting the arrival amount for the date corresponding to the received prediction data, A non-temporary storage medium that converts the predicted value of the amount of incoming goods for the predicted date into the predicted value of the amount of transaction for that date.
  • Arrival quantity prediction model generation device 11 21 CPU 12, 22 ROMs 13, 23 RAM 14, 24 storages 15, 25 input units 16, 26 display units 17, 27 communication I/F 18, 28 bus 20 transaction volume prediction device 101, 201 reception unit 102 arrival amount estimation unit 103 arrival amount prediction model learning unit 104, 204 output unit 141 learned model DB 202 Arrival amount prediction unit 203 Transaction amount conversion unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

入荷量予測モデル生成装置は、商品の取引について、日付、市場の営業日、取引量、及び外生変数を含む市場取引データの入力を受け付ける受付部と、市場取引データに含まれる日付、市場の営業日、及び取引量から、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量を推定する入荷量推定部と、市場取引データに含まれる日付及び外生変数、並びに、入荷量推定部により推定された入荷量を学習用データとして機械学習することにより入荷量予測モデルを生成する入荷量予測モデル学習部と、を備える。

Description

入荷量予測モデル生成装置、取引量予測装置、入荷量予測モデル生成方法、取引量予測方法、及び入荷量予測モデル生成プログラム
 開示の技術は、入荷量予測モデル生成装置、取引量予測装置、入荷量予測モデル生成方法、取引量予測方法、及び入荷量予測モデル生成プログラムに関する。
 青果物等の卸売市場では、日々全国各地の産地から入荷する品物に対して、卸売業者が買い手(卸売業者、売買参加者等)の需要をもとに分荷を行い、売買取引をしている。卸売業者が休みとなる休市日は取引が停止する一方で、産地からの入荷は休市日であるか否かに関わらず発生する。そのため、日々の取引量はそれ以前の休市日の影響を受けて増加する傾向がある。この増加の影響により、市場取引データの分析における周期性の推定が困難となり、分析結果の信頼性が損なわれる。
 例えば、特許文献1には、農作物の作付け計画を提供する作付け計画提供システムが記載されている。この作付け計画提供システムは、農地の環境データ及び当該農地で生産された農産物の出荷量データを収集し、収集した環境データ及び出荷量データを学習用データとして学習モデルにて学習を行うことにより第1の学習済みモデルを生成する。そして、この作付け計画提供システムは、農地の新たな環境データを第1の学習済みモデルの入力データとして用いて、当該農地で生産される農産物の出荷量を推定し、推定した農産物の出荷量と、当該農産物の需要データとに基づき、農産物の作付け計画を決定する。
特開2021-082073号公報
 上記特許文献1の手法では、月次の取引量を学習し、予測しているため、月単位の取引量の合計を予測する場合は休市日の影響は小さいと考えられる。しかしながら、日次の取引量を予測する場合、休市日の影響により、時系列予測モデルの予測精度が低下する。
 開示の技術は、上記の点に鑑みてなされたものであり、日次の取引量を高精度に予測することができる入荷量予測モデル生成装置、取引量予測装置、入荷量予測モデル生成方法、取引量予測方法、及び入荷量予測モデル生成プログラムを提供することを目的とする。
 本開示の第1態様は、入荷量予測モデル生成装置であって、商品の取引について、日付、市場の営業日、取引量、及び外生変数を含む市場取引データの入力を受け付ける受付部と、前記市場取引データに含まれる日付、市場の営業日、及び取引量から、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量を推定する入荷量推定部と、前記市場取引データに含まれる日付及び外生変数、並びに、前記入荷量推定部により推定された入荷量を学習用データとして機械学習することにより入荷量予測モデルを生成する入荷量予測モデル学習部と、を備える。
 本開示の第2態様は、取引量予測装置であって、商品の取引について、予測対象とする予測日、予測日数、市場の営業日、及び外生変数を含む予測用データの入力を受け付ける受付部と、予め取得された市場取引データに含まれる日付、市場の営業日、及び取引量から推定された、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量、並びに、当該市場取引データに含まれる日付及び外生変数を学習用データとして機械学習することにより生成され、かつ、予測用データを入力として、予測日及び予測日数によって定まる日付の入荷量を出力する入荷量予測モデルを用いて、前記受付部により受け付けた予測用データに対応する日付の入荷量を予測する入荷量予測部と、前記入荷量予測部により予測された日付の入荷量の予測値を、当該日付の取引量の予測値に変換する取引量変換部と、を備える。
 本開示の第3態様は、入荷量予測モデル生成方法であって、商品の取引について、日付、市場の営業日、取引量、及び外生変数を含む市場取引データの入力を受け付け、前記市場取引データに含まれる日付、市場の営業日、及び取引量から、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量を推定し、前記市場取引データに含まれる日付及び外生変数、並びに、前記推定された入荷量を学習用データとして機械学習することにより入荷量予測モデルを生成する。
 本開示の第4態様は、取引量予測方法であって、商品の取引について、予測対象とする予測日、予測日数、市場の営業日、及び外生変数を含む予測用データの入力を受け付け、予め取得された市場取引データに含まれる日付、市場の営業日、及び取引量から推定された、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量、並びに、当該市場取引データに含まれる日付及び外生変数を学習用データとして機械学習することにより生成され、かつ、予測用データを入力として、予測日及び予測日数によって定まる日付の入荷量を出力する入荷量予測モデルを用いて、前記受け付けた予測用データに対応する日付の入荷量を予測し、前記予測された日付の入荷量の予測値を、当該日付の取引量の予測値に変換する。
 本開示の第5態様は、入荷量予測モデル生成プログラムであって、商品の取引について、日付、市場の営業日、取引量、及び外生変数を含む市場取引データの入力を受け付け、前記市場取引データに含まれる日付、市場の営業日、及び取引量から、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量を推定し、前記市場取引データに含まれる日付及び外生変数、並びに、前記推定された入荷量を学習用データとして機械学習することにより入荷量予測モデルを生成することを、コンピュータに実行させる。
 開示の技術によれば、日次の取引量を高精度に予測することができる、という効果を有する。
実施形態に係る入荷量推定処理の概要の説明に供する図である。 実施形態に係る入荷量予測モデル生成装置のハードウェア構成の一例を示すブロック図である。 実施形態に係る入荷量予測モデル生成装置の機能構成の一例を示すブロック図である。 実施形態に係る入荷量推定処理の説明に供する図である。 実施形態に係る入荷量予測モデル生成プログラムによる処理の流れの一例を示すフローチャートである。 実施形態に係る取引量予測装置のハードウェア構成の一例を示すブロック図である。 実施形態に係る取引量予測装置の機能構成の一例を示すブロック図である。 実施形態に係る取引量変換処理の説明に供する図である。 実施形態に係る取引量予測プログラムによる処理の流れの一例を示すフローチャートである。 実施形態に係る自己相関分析の一例を示すグラフである。 評価結果を示す時系列のグラフである。 RMSEを用いた精度評価結果を示す図である。
 以下、開示の技術の実施形態の一例を、図面を参照しつつ説明する。なお、各図面において、同一又は等価な構成要素及び部分には同一の参照符号を付与している。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 本実施形態に係る入荷量予測モデル生成装置及び取引量予測装置は、休市日の影響を考慮せずに時系列予測モデルを生成し、予測する従来の手法に対して特定の改善を提供するものであり、市場取引データを用いた入荷量及び取引量の予測に係る技術分野の向上を示すものである。
 図1は、本実施形態に係る入荷量推定処理の概要の説明に供する図である。
 図1において、上述したように、例えば、青果物等の卸売市場では、日々全国各地の産地から入荷する品物に対して、卸売業者が買い手(卸売業者、売買参加者等)の需要をもとに分荷を行い、売買取引をしている。卸売業者が休みとなる休市日(図1の例では5月2日)は取引が停止する一方で、産地からの入荷は休市日であるか否かに関わらず発生する。翌営業日(図1の例では5月3日)の取引量はそれ以前の休市日(5月2日)の影響を受けて増加する傾向がある。この場合、休市日(5月2日)及び翌営業日(5月3日)の実際の入荷量は不明である。このため、日次の取引量を予測する場合、休市日の影響により、時系列予測モデルの予測精度が低下する。
 これに対して、本実施形態では、休市日の翌営業日の取引量を、当該翌営業日前の休市日の数を考慮して分割、分配することで、休市日及び翌営業日の未知の入荷量を推定し、推定した入荷量を学習用データとして用いて入荷量予測モデルを生成する。また、取引量そのものを学習、予測するのではなく、生成した入荷量予測モデルを用いて日次の入荷量を予測し、予測した日次の入荷量を日次の取引量に変換する。これにより、日次の取引量を精度良く予測することができる。
 まず、図2を参照して、本実施形態に係る入荷量予測モデル生成装置10のハードウェア構成について説明する。
 図2は、本実施形態に係る入荷量予測モデル生成装置10のハードウェア構成の一例を示すブロック図である。
 図2に示すように、入荷量予測モデル生成装置10は、CPU(Central Processing Unit)11、ROM(Read Only Memory)12、RAM(Random Access Memory)13、ストレージ14、入力部15、表示部16、及び通信インタフェース(I/F)17を備えている。各構成は、バス18を介して相互に通信可能に接続されている。
 CPU11は、中央演算処理ユニットであり、各種プログラムを実行したり、各部を制御したりする。すなわち、CPU11は、ROM12又はストレージ14からプログラムを読み出し、RAM13を作業領域としてプログラムを実行する。CPU11は、ROM12又はストレージ14に記憶されているプログラムに従って、上記各構成の制御及び各種の演算処理を行う。本実施形態では、ROM12又はストレージ14には、入荷量予測モデル生成処理を実行するための入荷量予測モデル生成プログラムが格納されている。
 ROM12は、各種プログラム及び各種データを格納する。RAM13は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ14は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)により構成され、オペレーティングシステムを含む各種プログラム、及び各種データを格納する。
 入力部15は、マウス等のポインティングデバイス、及びキーボードを含み、自装置に対して各種の入力を行うために使用される。
 表示部16は、例えば、液晶ディスプレイであり、各種の情報を表示する。表示部16は、タッチパネル方式を採用して、入力部15として機能しても良い。
 通信インタフェース17は、自装置が他の外部機器と通信するためのインタフェースである。当該通信には、例えば、イーサネット(登録商標)若しくはFDDI(Fiber Distributed Data Interface)等の有線通信の規格、又は、4G、5G、若しくはWi-Fi(登録商標)等の無線通信の規格が用いられる。
 本実施形態に係る入荷量予測モデル生成装置10には、例えば、サーバコンピュータ、パーソナルコンピュータ(PC:Personal Computer)等の汎用的なコンピュータ装置が適用される。
 次に、図3を参照して、入荷量予測モデル生成装置10の機能構成について説明する。
 図3は、本実施形態に係る入荷量予測モデル生成装置10の機能構成の一例を示すブロック図である。
 図3に示すように、入荷量予測モデル生成装置10は、機能構成として、受付部101、入荷量推定部102、入荷量予測モデル学習部103、及び出力部104を備えている。各機能構成は、CPU11がROM12又はストレージ14に記憶された入荷量予測モデル生成プログラムを読み出し、RAM13に展開して実行することにより実現される。
 受付部101は、市場における商品の取引についてのデータである市場取引データの入力を受け付け、受け付けた市場取引データを入荷量推定部102に出力する。市場取引データは、日付、市場の営業日、取引量、及び外生変数を含む。なお、外生変数とは、システム内の他の変数の影響を受けない外的な変数のことをいう。外生変数は、例えば、気温であり、過去21日間の気温を積算した値を用いてもよい。ここで、休市日の取引量は0(ゼロ)である。休市日とは、上述したように、卸売業者が休みの日(つまり、市場が休みの日)を表す。休市日にも商品の入荷は発生しているが、実際の入荷量は不明である。休市日の翌営業日以降は、休市日の入荷量を取引する関係で、取引量が増加する傾向がある。つまり、翌営業日についても休市日の影響を受けて実際の入荷量は不明である。
 入荷量推定部102は、市場取引データに含まれる日付、市場の営業日、及び取引量から、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量を推定する。具体的に、入荷量推定部102は、休市日の翌営業日の取引量を、当該翌営業日より前に連続する休市日の日数に1を加えた数で除算して得られた量を、休市日及び当該休市日の翌営業日の各々の入荷量とする。つまり、休市日及び当該休市日の翌営業日の各々の入荷量は、下記の式(1)によって導出される。但し、休市日の翌営業日の取引量をX、連続する休市日の日数をY、休市日及び当該休市日の翌営業日の各々の入荷量をZとする。
 Z=X/(Y+1) ・・・(1)
 図4は、本実施形態に係る入荷量推定処理の説明に供する図である。但し、図4の例では、説明を簡単にするため、外生変数は省略している。
 図4に示す左側の表には、市場取引データの一例として、日付、市場の営業日、及び取引量が含まれる。この例では、7月3日、7月7日、7月8日、7月10日、7月14日、及び7月15日が休市日である。休市日「7月3日」の翌営業日である7月4日の取引量が1000(単位:kg、以下省略)である。休市日「7月8日」の翌営業日である7月9日の取引量が2000である。休市日「7月10日」の翌営業日である7月11日の取引量が1000である。休市日「7月15日」の翌営業日である7月16日の取引量が700である。
 図4に示す右側の表には、日付、市場の営業日、取引量、及び入荷量が含まれる。なお、休市日及び翌営業日以外の通常の営業日では、取引量と入荷量とが同じであるものとする。例えば、休市日「7月7日、8日」、翌営業日「7月9日」の場合、7月7日、8日、及び9日の各々の入荷量は、上記式(1)より、2000/3≒666、と推定される。同様に、休市日「7月3日」、翌営業日「7月4日」の場合、7月3日及び4日の各々の入荷量は、上記式(1)より、1000/2=500、と推定され、休市日「7月10日」、翌営業日「7月11日」の場合、7月10日及び11日の各々の入荷量は、上記式(1)より、1000/2=500、と推定される。休市日「7月14日、15日」、翌営業日「7月16日」の場合、7月14日、15日、及び16日の各々の入荷量は、上記式(1)より、700/3≒233、と推定される。
 入荷量予測モデル学習部103は、市場取引データに含まれる日付及び外生変数、並びに、入荷量推定部102により推定された入荷量を学習用データとして機械学習することにより入荷量予測モデルを生成する。具体的に、学習モデルには、例えば、時系列分析手法の一つであるSARIMA(Seasonal AutoRegressive Integrated Moving Average)等の時系列予測モデルが適用される。
 出力部104は、入荷量予測モデル学習部103により生成された入荷量予測モデルを学習済みモデルDB(DataBase:データベース)141に出力し、入荷量予測モデルのパラメータ(例えば、SARIMAのパラメータ)を学習済みモデルDB141に格納する。学習済みモデルDB141は、ストレージ14に記憶されていてもよいし、外部の記憶装置に記憶されていてもよい。
 次に、図5を参照して、本実施形態に係る入荷量予測モデル生成装置10の作用について説明する。
 図5は、本実施形態に係る入荷量予測モデル生成プログラムによる処理の流れの一例を示すフローチャートである。入荷量予測モデル生成プログラムによる処理は、入荷量予測モデル生成装置10のCPU11が、ROM12又はストレージ14に記憶されている入荷量予測モデル生成プログラムをRAM13に書き込んで実行することにより、実現される。
 図5のステップS101では、CPU11が、市場における商品の取引についてのデータである市場取引データの入力を受け付ける。市場取引データは、日付、市場の営業日、取引量、及び外生変数を含む。
 ステップS102では、CPU11が、ステップS101で受け付けた市場取引データに含まれる日付、市場の営業日、及び取引量から、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量を推定する。具体的には、休市日及び当該休市日の翌営業日の各々の入荷量は、上述の式(1)によって導出される。
 ステップS103では、CPU11が、市場取引データに含まれる日付及び外生変数、並びに、ステップS102で推定した入荷量を学習用データとして機械学習することにより入荷量予測モデルを生成する。具体的に、学習モデルには、例えば、SARIMA等の時系列予測モデルが適用される。
 ステップS104では、CPU11が、ステップS103で生成した入荷量予測モデルを学習済みモデルDB141に出力し、入荷量予測モデルのパラメータ(例えば、SARIMAのパラメータ)を学習済みモデルDB141に格納し、本入荷量予測モデル生成プログラムによる一連の処理を終了する。
 次に、図6を参照して、本実施形態に係る取引量予測装置20のハードウェア構成について説明する。
 図6は、本実施形態に係る取引量予測装置20のハードウェア構成の一例を示すブロック図である。
 図6に示すように、取引量予測装置20は、CPU21、ROM22、RAM23、ストレージ24、入力部25、表示部26、及び通信インタフェース(I/F)27を備えている。各構成は、バス28を介して相互に通信可能に接続されている。
 CPU21は、中央演算処理ユニットであり、各種プログラムを実行したり、各部を制御したりする。すなわち、CPU21は、ROM22又はストレージ24からプログラムを読み出し、RAM23を作業領域としてプログラムを実行する。CPU21は、ROM22又はストレージ24に記憶されているプログラムに従って、上記各構成の制御及び各種の演算処理を行う。本実施形態では、ROM22又はストレージ24には、取引量予測処理を実行するための取引量予測プログラムが格納されている。
 ROM22は、各種プログラム及び各種データを格納する。RAM23は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ24は、HDD又はSSDにより構成され、オペレーティングシステムを含む各種プログラム、及び各種データを格納する。
 入力部25は、マウス等のポインティングデバイス、及びキーボードを含み、自装置に対して各種の入力を行うために使用される。
 表示部26は、例えば、液晶ディスプレイであり、各種の情報を表示する。表示部26は、タッチパネル方式を採用して、入力部25として機能しても良い。
 通信インタフェース27は、自装置が他の外部機器と通信するためのインタフェースである。当該通信には、例えば、イーサネット(登録商標)若しくはFDDI等の有線通信の規格、又は、4G、5G、若しくはWi-Fi(登録商標)等の無線通信の規格が用いられる。
 本実施形態に係る取引量予測装置20には、例えば、サーバコンピュータ、パーソナルコンピュータ(PC)等の汎用的なコンピュータ装置が適用される。なお、本実施形態では、入荷量予測モデル生成装置10と取引量予測装置20とを別々の装置として示しているが、入荷量予測モデル生成装置10と取引量予測装置20とを1つの装置として実現してもよい。
 次に、図7を参照して、取引量予測装置20の機能構成について説明する。
 図7は、本実施形態に係る取引量予測装置20の機能構成の一例を示すブロック図である。
 図7に示すように、取引量予測装置20は、機能構成として、受付部201、入荷量予測部202、取引量変換部203、及び出力部204を備えている。各機能構成は、CPU21がROM22又はストレージ24に記憶された取引量予測プログラムを読み出し、RAM23に展開して実行することにより実現される。
 受付部201は、市場における商品の取引について、予測対象とする予測日、予測日数、市場の営業日、及び外生変数を含む予測用データの入力を受け付け、受け付けた予測用データを入荷量予測部202に出力する。なお、外生変数は、上述したように、例えば、気温であり、ここでは、予測対象の日付に対する予報値を用いる。
 入荷量予測部202は、学習済みモデルDB141に格納された入荷量予測モデルを用いて、受付部201により受け付けた予測用データに対応する日付の入荷量を予測する。なお、学習済みモデルDB141は、ストレージ24に記憶されていてもよい。入荷量予測モデルは、入荷量予測モデル生成装置10によって生成されたモデルである。入荷量予測モデルは、予め取得された市場取引データに含まれる日付、市場の営業日、及び取引量から推定された、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量、並びに、当該市場取引データに含まれる日付及び外生変数を学習用データとして機械学習することにより生成されたモデルである。入荷量予測モデルは、予測用データを入力として、予測日及び予測日数によって定まる日付の入荷量を出力する。
 取引量変換部203は、入荷量予測部202により予測された日付の入荷量の予測値を、当該日付の取引量の予測値に変換する。具体的には、例えば、休市日の翌営業日の取引量を予測する場合、翌営業日の入荷量(予測値)に、翌営業日の前に連続する休市日の入荷量(予測値)を加算して得られた量を翌営業日の取引量(予測値)とし、休市日の取引量(予測値)を0(ゼロ)にする。
 図8は、本実施形態に係る取引量変換処理の説明に供する図である。
 図8に示す左側の表には、日付、市場の営業日、及び入荷量(予測値)が含まれる。この例では、7月18日が休市日である。休市日「7月18日」の入荷量(予測値)が130であり、翌営業日である7月19日の入荷量(予測値)が170である。
 図8に示す右側の表には、日付、市場の営業日、及び取引量(予測値)が含まれる。翌営業日「7月19日」の取引量(予測値)は、7月19日の入荷量(予測値)に、7月19日の前に連続する休市日「7月18日」の入荷量(予測値)を加算して得られた量とし、休市日「7月18日」の取引量(予測値)を0(ゼロ)にする。図8の例では、翌営業日「7月19日」の取引量(予測値)は、130+170=300、と導出される。
 出力部204は、取引量変換部203により変換された取引量の予測値を出力する。取引量の予測値は、例えば、表示部26に出力される。
 次に、図9を参照して、本実施形態に係る取引量予測装置20の作用について説明する。
 図9は、本実施形態に係る取引量予測プログラムによる処理の流れの一例を示すフローチャートである。取引量予測プログラムによる処理は、取引量予測装置20のCPU21が、ROM22又はストレージ24に記憶されている取引量予測プログラムをRAM23に書き込んで実行することにより、実現される。
 図9のステップS111では、CPU21が、市場における商品の取引について、予測対象とする予測日、予測日数、市場の営業日、及び外生変数を含む予測用データの入力を受け付ける。
 ステップS112では、CPU21が、学習済みモデルDB141に格納された入荷量予測モデルを用いて、ステップS111で受け付けた予測用データに対応する日付の入荷量を予測する。入荷量予測モデルは、入荷量予測モデル生成装置10によって生成されたモデルである。
 ステップS113では、CPU21が、ステップS112で予測した日付の入荷量の予測値を、当該日付の取引量の予測値に変換する。具体的には、例えば、上述の図8に示すように、休市日の翌営業日の取引量を予測する場合、翌営業日の入荷量(予測値)に、翌営業日の前に連続する休市日の入荷量(予測値)を加算して得られた量を翌営業日の取引量(予測値)とし、休市日の取引量(予測値)を0(ゼロ)にする。
 ステップS114では、CPU21が、ステップS113で変換された取引量の予測値を例えば表示部26に出力し、本取引量予測プログラムによる一連の処理を終了する。
 このように取引量を入荷量に変換することで、例えば、図10に示すように、取引量からは得られないデータの特性を読み取ることができる。
 図10は、本実施形態に係る自己相関分析の一例を示すグラフである。
 図10に示すグラフAは、入荷量(推定値)の自己相関を示し、データの特性に合わせた周期性を示している。つまり、365日周期があり、例えば、農作物の入荷量は年単位の周期性がある、というドメイン知識と一致している。一方、図10に示すグラフBは、取引量の自己相関を示し、データの特性が読み取れない。つまり、260日という周期が意味を持たない。このように、取引量を入荷量に変換することで、取引量からは得られないデータの特性を読み取ることができる。
(実施例)
 本実施形態に係る入荷量推定処理の有無による取引量予測の精度の変化を以下の実験により評価した。
 実験設定として、本実施形態に係る入荷量推定処理を行う手法(入荷量推定処理有り)を提案技術(つまり、取引量を入荷量に変換し、変換した入荷量を用いて時系列予測モデルを学習し、学習した時系列予測モデルを用いて入荷量を予測し、入荷量の予測値を取引量の予測値に逆変換する手法)とし、提案技術の比較対象として、入荷量推定処理を行わない手法(入荷量推定処理なし)を従来技術(つまり、取引量そのものを学習、予測する手法)とした。
 データセットとして、農作物市場における実際の取引データを用いた。ここでは、特定の入荷者からの特定の品目の野菜の日単位の取引データ(日付、市場の営業日、取引量)を用いた。2020年6月19日から2021年8月3日までの取引データを学習し、2021年8月4日から2021年8月11日までを予測に使用した。予測日を1日ずつずらしながら、計8回の予測を実施し、1日後、2日後の予測値の平均を計算した。
 時系列予測モデルには、SARIMA(1、0、1)(0、1、1)[7]を用いた。評価指標には、下記に示す平均平方二乗誤差(RMSE)を用いた。
Figure JPOXMLDOC01-appb-I000001
 図11は、評価結果を示す時系列のグラフである。図11のグラフは、8月4日時点の取引量の予測値と実績値との関係を示している。縦軸は取引量(kg)を示し、横軸は日付を示す。T1は取引量の実績値を示し、T2は従来技術の予測値を示し、T3は提案技術の予測値を示す。8月4日、8月8日は休市日である。提案技術は、従来技術よりも休市日の翌営業日の8月5日、8月9日の取引量を精度良く予測出来ていることが分かる。
 図12は、RMSEを用いた精度評価結果を示す図である。図12に示すように、提案技術のRMSEは、従来技術のRMSEに比べ、1日後の改善率が13%、2日後の改善率が62%となっており、RMSEでも改善されていることが分かる。
 このように本実施形態によれば、取引量から入荷量が推定され、推定された入荷量を用いて時系列予測モデルが学習され、学習済み時系列予測モデルを用いて入荷量が予測され、入荷量の予測値が取引量の予測値に変換される。これにより、休市日の影響を小さくし、日次の取引量の予測における時系列予測モデルの予測精度が向上する。
 上記実施形態でCPU11が入荷量予測モデル生成プログラムを読み込んで実行した入荷量予測モデル生成処理を、CPU11以外の各種のプロセッサが実行してもよい。この場合のプロセッサとしては、FPGA(Field-Programmable Gate Array)等の製造後に回路構成を変更可能なPLD(Programmable Logic Device)、及びASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が例示される。また、入荷量予測モデル生成処理を、これらの各種のプロセッサのうちの1つで実行してもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGA、及びCPUとFPGAとの組み合わせ等)で実行してもよい。また、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。なお、CPU21によって実行される取引量予測プログラムについても同様である。
 また、上記実施形態では、入荷量予測モデル生成プログラムがROM12又はストレージ14に予め記憶(「インストール」ともいう)されている態様を説明したが、これに限定されない。入荷量予測モデル生成プログラムは、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の非一時的(non-transitory)記憶媒体に記憶された形態で提供されてもよい。また、入荷量予測モデル生成プログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。なお、CPU21によって実行される取引量予測プログラムについても同様である。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 以上の実施形態に関し、更に以下の付記を開示する。
(付記項1)
 メモリと、
 前記メモリに接続された少なくとも1つのプロセッサと、
 を含み、
 前記プロセッサは、
 商品の取引について、日付、市場の営業日、取引量、及び外生変数を含む市場取引データの入力を受け付け、
 前記市場取引データに含まれる日付、市場の営業日、及び取引量から、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量を推定し、
 前記市場取引データに含まれる日付及び外生変数、並びに、前記推定された入荷量を学習用データとして機械学習することにより入荷量予測モデルを生成する
 ように構成されている入荷量予測モデル生成装置。
(付記項2)
 メモリと、
 前記メモリに接続された少なくとも1つのプロセッサと、
 を含み、
 前記プロセッサは、
 商品の取引について、予測対象とする予測日、予測日数、市場の営業日、及び外生変数を含む予測用データの入力を受け付け、
 予め取得された市場取引データに含まれる日付、市場の営業日、及び取引量から推定された、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量、並びに、当該市場取引データに含まれる日付及び外生変数を学習用データとして機械学習することにより生成され、かつ、予測用データを入力として、予測日及び予測日数によって定まる日付の入荷量を出力する入荷量予測モデルを用いて、前記受け付けた予測用データに対応する日付の入荷量を予測し、
 前記予測された日付の入荷量の予測値を、当該日付の取引量の予測値に変換する
 ように構成されている取引量予測装置。
(付記項3)
 入荷量予測モデル生成処理を実行するようにコンピュータによって実行可能なプログラムを記憶した非一時的記憶媒体であって、
 前記入荷量予測モデル生成処理は、
 商品の取引について、日付、市場の営業日、取引量、及び外生変数を含む市場取引データの入力を受け付け、
 前記市場取引データに含まれる日付、市場の営業日、及び取引量から、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量を推定し、
 前記市場取引データに含まれる日付及び外生変数、並びに、前記推定された入荷量を学習用データとして機械学習することにより入荷量予測モデルを生成する
 非一時的記憶媒体。
(付記項4)
 取引量予測処理を実行するようにコンピュータによって実行可能なプログラムを記憶した非一時的記憶媒体であって、
 前記取引量予測処理は、
 商品の取引について、予測対象とする予測日、予測日数、市場の営業日、及び外生変数を含む予測用データの入力を受け付け、
 予め取得された市場取引データに含まれる日付、市場の営業日、及び取引量から推定された、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量、並びに、当該市場取引データに含まれる日付及び外生変数を学習用データとして機械学習することにより生成され、かつ、予測用データを入力として、予測日及び予測日数によって定まる日付の入荷量を出力する入荷量予測モデルを用いて、前記受け付けた予測用データに対応する日付の入荷量を予測し、
 前記予測された日付の入荷量の予測値を、当該日付の取引量の予測値に変換する
 非一時的記憶媒体。
10   入荷量予測モデル生成装置
11、21 CPU
12、22 ROM
13、23 RAM
14、24 ストレージ
15、25 入力部
16、26 表示部
17、27 通信I/F
18、28 バス
20   取引量予測装置
101、201 受付部
102 入荷量推定部
103 入荷量予測モデル学習部
104 、204 出力部
141 学習済みモデルDB
202 入荷量予測部
203 取引量変換部

Claims (6)

  1.  商品の取引について、日付、市場の営業日、取引量、及び外生変数を含む市場取引データの入力を受け付ける受付部と、
     前記市場取引データに含まれる日付、市場の営業日、及び取引量から、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量を推定する入荷量推定部と、
     前記市場取引データに含まれる日付及び外生変数、並びに、前記入荷量推定部により推定された入荷量を学習用データとして機械学習することにより入荷量予測モデルを生成する入荷量予測モデル学習部と、
     を備えた入荷量予測モデル生成装置。
  2.  前記入荷量推定部は、前記休市日の翌営業日の取引量を、当該翌営業日より前に連続する休市日の日数に1を加えた数で除算して得られた量を、前記休市日及び当該休市日の翌営業日の各々の入荷量とする
     請求項1に記載の入荷量予測モデル生成装置。
  3.  商品の取引について、予測対象とする予測日、予測日数、市場の営業日、及び外生変数を含む予測用データの入力を受け付ける受付部と、
     予め取得された市場取引データに含まれる日付、市場の営業日、及び取引量から推定された、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量、並びに、当該市場取引データに含まれる日付及び外生変数を学習用データとして機械学習することにより生成され、かつ、予測用データを入力として、予測日及び予測日数によって定まる日付の入荷量を出力する入荷量予測モデルを用いて、前記受付部により受け付けた予測用データに対応する日付の入荷量を予測する入荷量予測部と、
     前記入荷量予測部により予測された日付の入荷量の予測値を、当該日付の取引量の予測値に変換する取引量変換部と、
     を備えた取引量予測装置。
  4.  商品の取引について、日付、市場の営業日、取引量、及び外生変数を含む市場取引データの入力を受け付け、
     前記市場取引データに含まれる日付、市場の営業日、及び取引量から、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量を推定し、
     前記市場取引データに含まれる日付及び外生変数、並びに、前記推定された入荷量を学習用データとして機械学習することにより入荷量予測モデルを生成する
     入荷量予測モデル生成方法。
  5.  商品の取引について、予測対象とする予測日、予測日数、市場の営業日、及び外生変数を含む予測用データの入力を受け付け、
     予め取得された市場取引データに含まれる日付、市場の営業日、及び取引量から推定された、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量、並びに、当該市場取引データに含まれる日付及び外生変数を学習用データとして機械学習することにより生成され、かつ、予測用データを入力として、予測日及び予測日数によって定まる日付の入荷量を出力する入荷量予測モデルを用いて、前記受け付けた予測用データに対応する日付の入荷量を予測し、
     前記予測された日付の入荷量の予測値を、当該日付の取引量の予測値に変換する
     取引量予測方法。
  6.  商品の取引について、日付、市場の営業日、取引量、及び外生変数を含む市場取引データの入力を受け付け、
     前記市場取引データに含まれる日付、市場の営業日、及び取引量から、市場が休みとなる休市日及び当該休市日の翌営業日の入荷量を推定し、
     前記市場取引データに含まれる日付及び外生変数、並びに、前記推定された入荷量を学習用データとして機械学習することにより入荷量予測モデルを生成することを、
     コンピュータに実行させるための入荷量予測モデル生成プログラム。
PCT/JP2021/041930 2021-11-15 2021-11-15 入荷量予測モデル生成装置、取引量予測装置、入荷量予測モデル生成方法、取引量予測方法、及び入荷量予測モデル生成プログラム WO2023084781A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041930 WO2023084781A1 (ja) 2021-11-15 2021-11-15 入荷量予測モデル生成装置、取引量予測装置、入荷量予測モデル生成方法、取引量予測方法、及び入荷量予測モデル生成プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041930 WO2023084781A1 (ja) 2021-11-15 2021-11-15 入荷量予測モデル生成装置、取引量予測装置、入荷量予測モデル生成方法、取引量予測方法、及び入荷量予測モデル生成プログラム

Publications (1)

Publication Number Publication Date
WO2023084781A1 true WO2023084781A1 (ja) 2023-05-19

Family

ID=86335500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041930 WO2023084781A1 (ja) 2021-11-15 2021-11-15 入荷量予測モデル生成装置、取引量予測装置、入荷量予測モデル生成方法、取引量予測方法、及び入荷量予測モデル生成プログラム

Country Status (1)

Country Link
WO (1) WO2023084781A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11120255A (ja) * 1997-10-14 1999-04-30 Duskin Co Ltd 在庫管理方法及び在庫管理装置
JPH11224297A (ja) * 1998-02-06 1999-08-17 Hitachi Ltd 相場品取引における価格予測及び商品取引方法
JP2005135287A (ja) * 2003-10-31 2005-05-26 National Agriculture & Bio-Oriented Research Organization 予測装置、予測方法および予測プログラム
JP2015219651A (ja) * 2014-05-15 2015-12-07 株式会社Jsol 農作物の収穫予測装置、収穫予測システム及び収穫予測方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11120255A (ja) * 1997-10-14 1999-04-30 Duskin Co Ltd 在庫管理方法及び在庫管理装置
JPH11224297A (ja) * 1998-02-06 1999-08-17 Hitachi Ltd 相場品取引における価格予測及び商品取引方法
JP2005135287A (ja) * 2003-10-31 2005-05-26 National Agriculture & Bio-Oriented Research Organization 予測装置、予測方法および予測プログラム
JP2015219651A (ja) * 2014-05-15 2015-12-07 株式会社Jsol 農作物の収穫予測装置、収穫予測システム及び収穫予測方法

Similar Documents

Publication Publication Date Title
Khuntia et al. Forecasting the load of electrical power systems in mid‐and long‐term horizons: a review
Suryani et al. Dynamic simulation model of air cargo demand forecast and terminal capacity planning
Blackburn et al. A predictive analytics approach for demand forecasting in the process industry
Ketter et al. Real-time tactical and strategic sales management for intelligent agents guided by economic regimes
Ma et al. Measure of the bullwhip effect considering the market competition between two retailers
JP7107222B2 (ja) 商品需要予測システム、商品需要予測方法および商品需要予測プログラム
Gyulai et al. Capacity planning and resource allocation in assembly systems consisting of dedicated and reconfigurable lines
Amado et al. Conditional correlation models of autoregressive conditional heteroscedasticity with nonstationary GARCH equations
US20200311749A1 (en) System for Generating and Using a Stacked Prediction Model to Forecast Market Behavior
JP2019215831A (ja) 予測システム及び予測方法
Raiyani et al. Usage of time series forecasting model in Supply chain sales prediction
Liu et al. A Dynamic Model of Input–Output Networks
Ling et al. A Forecast Combination Framework with Multi‐Time Scale for Livestock Products’ Price Forecasting
WO2023084781A1 (ja) 入荷量予測モデル生成装置、取引量予測装置、入荷量予測モデル生成方法、取引量予測方法、及び入荷量予測モデル生成プログラム
Ramirez Inter-firm relationships and asset prices
WO2023120126A1 (ja) 販売数量予測システム、販売数量予測方法
Sakalayen et al. An econophysics approach to forecast bulk shipbuilding orderbook: an application of Newton’s law of gravitation
WO2019187289A1 (ja) 評価システム、評価方法および評価用プログラム
Oliveira et al. Cross-Learning-Based Sales Forecasting Using Deep Learning via Partial Pooling from Multi-level Data
Wang et al. A control chart based approach to monitoring supply network dynamics using Kalman filtering
WO2023243058A1 (ja) 取引量予測モデル生成装置、取引量予測装置、取引量予測モデル生成方法、取引量予測方法、取引量予測モデル生成プログラム、及び取引量予測プログラム
Raghunathan et al. Bullwhip effect of multiple products with interdependent product demands
Qureshi et al. A comparative analysis of traditional SARIMA and machine learning models for CPI data modelling in Pakistan
Maknickiene et al. Investigation of Prediction Capabilities using RNN Ensembles.
JP2020115276A (ja) 情報処理方法、情報処理装置、プログラム及び学習済みモデルの生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964134

Country of ref document: EP

Kind code of ref document: A1