WO2023083257A1 - 一种微流控芯片盒及其微流控设备 - Google Patents

一种微流控芯片盒及其微流控设备 Download PDF

Info

Publication number
WO2023083257A1
WO2023083257A1 PCT/CN2022/131142 CN2022131142W WO2023083257A1 WO 2023083257 A1 WO2023083257 A1 WO 2023083257A1 CN 2022131142 W CN2022131142 W CN 2022131142W WO 2023083257 A1 WO2023083257 A1 WO 2023083257A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
microfluidic
microchannel
groove
liquid delivery
Prior art date
Application number
PCT/CN2022/131142
Other languages
English (en)
French (fr)
Inventor
吴刚
Original Assignee
迈安纳(上海)仪器科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111342721.7A external-priority patent/CN116116284A/zh
Priority claimed from CN202111342718.5A external-priority patent/CN116116470A/zh
Application filed by 迈安纳(上海)仪器科技有限公司 filed Critical 迈安纳(上海)仪器科技有限公司
Publication of WO2023083257A1 publication Critical patent/WO2023083257A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/23Mixing of laboratory samples e.g. in preparation of analysing or testing properties of materials

Definitions

  • the invention relates to the field of microfluidic control, in particular to a microfluidic chip box and a microfluidic device mainly for preparing nano-medicine and microspheres.
  • Microfluidics is a technology that uses micro-pipes (tens to hundreds of microns in size) to precisely control and manipulate micro-scale fluids or micro-volume fluids, especially for micron and submicron structures.
  • microfluidics The early concept of microfluidics was to use photolithography to fabricate gas chromatographs on silicon wafers, and then extended to microfluidic capillary electrophoresis instruments and microreactors.
  • One of the important features of microfluidics is the unique fluid properties in the micro-scale environment, such as laminar flow and droplets. With the help of these unique fluid phenomena, microfluidics can realize a series of microfabrication and micromanipulation that are difficult to be accomplished by conventional methods. At present, microfluidics is considered to have great development potential and broad application prospects in biological and medical research.
  • this patent provides a new technical solution.
  • the present invention provides a microfluidic chip box with simple structure, convenient use and better quality.
  • the specific technical solution is as follows:
  • a microfluidic chip box comprising
  • a box body the box body has an accommodating cavity with an open end, a chip groove and an annular groove are arranged at the bottom of the accommodating cavity, the annular groove is arranged around the outside of the chip groove, and at least A liquid inlet and at least one liquid outlet, both of which are connected to the chip groove;
  • a microfluidic chip the microfluidic chip is accommodated in a chip groove, a microfluidic channel is arranged in the microfluidic chip, and at least one first opening and at least one second opening are opened on the microfluidic chip , the first opening communicates with the second opening through the micro-channel, the first opening is correspondingly connected to the liquid inlet, and the second opening is correspondingly connected to the liquid outlet;
  • a box cover the box cover is closed to the opening of the box body, the box cover is provided with an annular clamping strip, and the annular clamping strip is engaged in the annular groove.
  • the structure of the microfluidic channel includes T-shaped structure, Y-shaped structure, cross-shaped structure, SHM fishbone structure, Tesla structure and swirling flow structure.
  • the microchannels include at least one liquid-feeding microchannel and at least one mixing microchannel.
  • the mixed microchannel is a linear microchannel, and/or a surrounding microchannel, and/or a curved microchannel, and/or Swirling flow microchannel;
  • the liquid inlet microchannel is a linear microchannel, and/or a surrounding microchannel, and/or a curved microchannel, and/or a swirling microchannel.
  • the mixed microchannel is a swirling flow mixing microchannel
  • the swirling flow mixing microchannel is a plurality of S-shaped microchannel structures in sequence from head to tail The vortex flow mixing microchannel formed by connecting.
  • the first opening corresponds to the liquid inlet microchannel one by one, one end of the liquid inlet microchannel communicates with the first opening, and the inlet microchannel is connected to the first opening.
  • the other end of the liquid microchannel communicates with one end of the mixing microchannel, and the other end of the mixing microchannel communicates with the second opening;
  • Both the first opening and the second opening are located on the same side of the microfluidic chip.
  • the microfluidic chip box described in this patent also includes a sealing structure, the first opening and the liquid inlet are provided with a sealing structure, and the second opening and the liquid outlet are provided with a sealing structure ;
  • the liquid inlet is provided with a hollow liquid inlet column
  • the liquid outlet is provided with a hollow liquid outlet column, and both the liquid inlet column and the liquid outlet column extend away from the box body.
  • a limiting column is provided at the bottom of the chip groove, a limiting hole is provided on the microfluidic chip, and the limiting column is accommodated in the limiting hole.
  • the box body is also fixedly connected with a handle end, the handle end is located at the end of the box body away from the liquid outlet, at least one side of the handle end
  • the surface is provided with a plurality of protrusions.
  • liquid-inlet micro-channels there are at least two liquid-inlet micro-channels, and at least two liquid-inlet micro-channels have the same shape and inner diameter, or
  • the shape and/or inner diameter of at least two liquid-feeding microchannels are different.
  • the sealing structure is a sealing ring, and at least two liquid inlet sealing grooves and outlet liquid sealing grooves are opened at the bottom of the chip groove, and the liquid inlet sealing groove Sealing rings are accommodated in both the sealing groove and the liquid outlet sealing groove, the first opening is in conflict with the liquid inlet through the sealing ring, and the second opening is in conflict with the liquid outlet through the sealing ring.
  • the present invention provides a microfluidic device with simple structure, convenient use, continuous automatic operation, high preparation precision and high flow rate.
  • the specific technical solution is as follows:
  • a microfluidic device including a device main body, a micro-mixing device, a liquid delivery device and a liquid contact device;
  • the main body of the device includes an opening and a housing chamber, the opening communicates with the housing chamber, the micro-mixing device, the liquid delivery device and the liquid-receiving device are all accommodated in the housing chamber, and the micro-mixing device includes a micro-channel, At least one liquid inlet and at least one liquid outlet, the liquid inlet and the liquid outlet are connected through a micro-channel, the liquid delivery device is matched with the liquid inlet, and the liquid delivery device can transport raw materials The liquid is in the liquid inlet, the liquid receiving device is corresponding to the liquid outlet, and the liquid receiving device can receive the microfluidic mixed liquid from the liquid outlet.
  • the main body of the device further includes a supporting body, the supporting body is accommodated in the accommodation chamber, and the supporting body is provided with a box groove and at least one A liquid delivery hole, the box body groove communicates with the liquid delivery hole, the micro-mixing device is buckled in the box body groove, and the liquid inlet of the micro-mixing device corresponds to the liquid delivery hole;
  • the liquid delivery device includes at least one liquid delivery tube, and the raw material liquid can be accommodated in the liquid delivery tube.
  • the liquid contact device includes a liquid contact slider and a liquid contact tube, the liquid contact slider is slidably installed on the support body, and the liquid contact slide A waste liquid tank and at least two card slots are provided on the block, the waste liquid tank is arranged between two adjacent card slots, the waste liquid tank can receive the waste liquid from the liquid outlet, and the liquid receiving pipe card Buckled in the card slot, the liquid connection tube can receive the microfluidic mixture at the liquid outlet;
  • the structure of the micro-channel includes T-shaped structure, Y-shaped structure, cross-shaped structure, SHM herringbone structure and Tesla structure.
  • the microchannel includes at least one liquid inlet microchannel and at least one mixing microchannel, and the liquid inlet corresponds to the liquid inlet microchannel one by one , one end of the liquid inlet microchannel communicates with the liquid inlet, the other end of the liquid inlet microchannel communicates with one end of the mixing microchannel, and the other end of the mixing microchannel communicates with the liquid outlet connected.
  • the microfluidic device described in this patent also includes a telescopic extruding device corresponding to the liquid delivery tube, and the telescopic extruding device is arranged on the liquid delivery tube On the side away from the micro-mixing device, the telescopic extruding device can push the raw material liquid in the liquid delivery pipe to the liquid inlet;
  • the supporting body provided with the liquid delivery hole can rotate.
  • the liquid delivery device further includes a heating structure capable of heating the liquid delivery hole, and the liquid delivery hole can conduct heat in the liquid delivery tube raw material liquid.
  • the support body provided with the liquid delivery hole can rotate and stop at any position.
  • the support body is rotatably connected to the device main body;
  • the supporting body includes a moving part and a fixing part, the fixing part is fixedly arranged on the device main body, the moving part can rotate around the fixing part, the moving part is provided with a first arc part, and the fixing part A second arc-shaped portion is provided on the upper portion, and the first arc-shaped portion and the second arc-shaped portion are surrounded to form a liquid delivery hole.
  • the liquid delivery device further includes a sleeve through which the liquid delivery tubes of different volumes are snapped into the liquid delivery hole.
  • At least two fixing grooves are opened on the micro-mixing device, and a protruding structure is arranged in the groove of the box body, and the micro-mixing device is accommodated in the box body In the slot, the protruding structure is buckled in the fixing slot.
  • the microchannel of the swirling flow structure is a swirling flow microchannel composed of a plurality of S-shaped microchannels connected end to end in sequence.
  • microfluidic device described in this patent has at least one or more beneficial effects as follows:
  • the microfluidic equipment described in this patent has a simple structure, a high degree of automation, convenient operation, and high preparation accuracy.
  • a microfluidic mixture is prepared using a micromixing device, and the entry of the raw material liquid into the micromixing is accurately controlled through automation.
  • the amount and speed of liquid feeding in the device are used to precisely control the ratio of the raw material liquids.
  • the different liquid receiving tubes of the liquid receiving device can be switched automatically, which can realize the multi-dose of the prepared microfluidic mixture. Continuous preparation; not only for experiments or small-batch production, but also for process amplification and application in production.
  • the microfluidic chip box is provided with a microchannel, by setting the shape of the microchannel (including straight lines, curves, encircling or swirling flow patterns, etc.), structure (including but not limited to T-shaped structure, Y-shaped structure, cross Type structure, SHM fishbone structure, Tesla structure and swirling flow structure) and inner diameter size, to control the flow rate and flow rate of the raw material liquid, and the mixing, and/or coating, and/or ratio configuration of the mixed liquid , and/or separation, and/or sorting, and/or purification, etc., to accurately prepare the ideal microfluidic mixture, especially to prepare nano-encapsulation of nucleic acid drugs or vaccines.
  • shape of the microchannel including straight lines, curves, encircling or swirling flow patterns, etc.
  • structure including but not limited to T-shaped structure, Y-shaped structure, cross Type structure, SHM fishbone structure, Tesla structure and swirling flow structure
  • inner diameter size to control the flow rate and flow rate of the raw material liquid, and the mixing, and
  • the microfluidic chip box is equipped with a sealing ring to realize the sealing connection between the first outlet and the second outlet of the microfluidic chip and the liquid inlet and outlet of the box body respectively, so as to prevent liquid leakage, which not only affects the experiment As a result, the re-prepared raw materials or products will be polluted; the micro-mixing device is equipped with a limit column to limit and fix the microfluidic chip, and to avoid leakage or blockage of the microfluidic chip due to sliding dislocation.
  • the micro-mixing device is equipped with a handle end, which is used to push the micro-mixing device in the groove of the box body by holding the handle end, or push the micro-mixing device to make the supporting body with the micro-mixing device buckled rotate, and a protrusion is provided to prevent slipping function, easy to operate.
  • the supporting body is provided with a first arc and a second arc, the second arc is rotatable for easy removal and placement of the liquid delivery tube, and the second arc has a circular shape that securely fixes the liquid delivery tube
  • the arc segment with an angle greater than 180° between the arc segment and the arc segment enables the arc segment to firmly buckle the liquid delivery tube and/or sleeve to prevent it from loosening or falling off, so that it is convenient to take out and place the liquid delivery tube, It can also firmly buckle the liquid delivery tube.
  • the liquid feeding device is equipped with a heating structure, which can heat the raw material liquid. According to the needs, set the heating temperature, heating time and other conditions to broaden the experimental conditions and provide more preparation conditions for the product preparation method. It is also equipped with a temperature sensor and control system, which facilitates precise control of heating start/end time, heating temperature and heating time, and facilitates precise control of preparation conditions, thus helping to prepare microfluidic mixtures with higher precision, higher purity and better stability liquid.
  • the support main body provided with the liquid delivery hole can be turned over, and it rotates around the main body of the equipment through the support main body, or the support main body is provided with a fixed part and a moving part that can rotate around the fixed part, so that the liquid delivery hole can be rotated, so that the liquid delivery tube can be easily rotated.
  • the rotating part is preferably a damped shaft or a universal damper, which can turn the liquid delivery hole in any position according to the needs, which is very convenient to operate and greatly improves the user experience.
  • the liquid delivery device is also equipped with a telescopic extrusion device, which can automatically control the extrusion of the raw material liquid in the liquid delivery pipe into the micro-mixing device without manual operation, which is convenient for the stable and uniform delivery of the raw material liquid, and can quantitatively control the delivery.
  • raw liquid It is equipped with a pressure sensor, which can automatically sense whether the liquid delivery pipe is in contact with the telescopic extrusion device, so as to control the delivery speed of the raw material liquid, that is, it can quantitatively control the flow rate and flow rate of the raw material liquid delivery, and it is convenient to control the distribution ratio between different raw material liquids. It is equipped with a control system.
  • control system can also combine the pressure value of the squeezed liquid delivery pipe detected by the pressure sensor, and adjust the rotation speed and Direction, with precise control or dynamic change to control the flow rate of the conveying raw material liquid.
  • the liquid receiving device which is provided with a liquid receiving slider, can install a plurality of liquid receiving pipes, and a plurality of liquid receiving pipes collect the microfluidic mixed liquid through the sliding switching of the liquid receiving slider, which is convenient for continuous operation, and the production process
  • the liquid tube collected in the middle can be removed, and a new liquid tube can be installed to continue collecting the microfluidic mixture.
  • a waste liquid tank is arranged on the liquid contact slider, and when switching between different liquid connection pipes, the liquid droplets flowing out of the liquid outlet can be collected, the device is kept clean, and the prepared microfluidic mixed liquid is not polluted.
  • the liquid contact device is equipped with a driving device and a spring, which can drive the liquid contact slider to move back and forth along the slide bar, so as to realize automatic switching of the liquid contact tube and improve work efficiency, and a spring is provided on the other side of the drive device, and the liquid contact slide
  • the block can automatically return to the initial position through the spring, which facilitates the continuous operation of the driving device and precisely controls the moving position of the liquid-contacting slider.
  • microfluidic device described in this patent can not only be used for the screening of nano-drug prescriptions at low flow rates in the range of 1-20ml/min in the early stage, but also has a breakthrough solution to the problem that traditional microfluidic devices cannot be scaled up. Flow rate can support up to 120ml/min.
  • Figure 1 is a schematic diagram of the explosive structure of the microfluidic device described in this patent.
  • Fig. 2 is a schematic diagram of the structure of part R in Fig. 1;
  • Fig. 3 is a schematic diagram of the three-dimensional structure of the microfluidic device described in this patent.
  • Fig. 4 is a three-dimensional structural schematic diagram of the main body of the device, the liquid delivery pipe and the liquid receiving pipe in Fig. 1;
  • Fig. 5 is a three-dimensional structural schematic diagram of the main body of the device, the liquid delivery pipe and the liquid receiving pipe in Fig. 1;
  • Fig. 6 is a schematic diagram of the three-dimensional structure of the supporting body, the liquid connection pipe and the pipe sleeve in Fig. 1;
  • Fig. 7 is a schematic diagram of the three-dimensional structure of the supporting body, the microfluidic chip box and the liquid connection tube in Fig. 1;
  • Fig. 8 is a schematic diagram of the three-dimensional structure of the supporting body and the liquid connection pipe in Fig. 1;
  • Fig. 9 is a schematic cross-sectional view along A-A direction of Fig. 8.
  • Fig. 10 is a schematic perspective view of the three-dimensional structure of the flipped state of Fig. 7;
  • Fig. 11 is a schematic diagram of a cross-sectional structure along the direction B of Fig. 10;
  • Figure 12 is a schematic diagram of the exploded structure of another embodiment of the device body described in this patent.
  • Fig. 13 is a schematic diagram of the three-dimensional structure of the main body of the device in Fig. 12;
  • Fig. 14 is a schematic diagram of a cross-sectional structure along direction A in Fig. 13;
  • Fig. 15 is a schematic diagram of the three-dimensional structure of the supporting body and the microfluidic chip box in Fig. 12;
  • Fig. 16 is a schematic diagram of the three-dimensional structure of the supporting body in Fig. 12;
  • Fig. 17 is a schematic front view of the supporting body in Fig. 12;
  • Fig. 18 is a schematic diagram of the explosion structure of the liquid delivery pipe described in this patent.
  • Fig. 19 is a schematic diagram of the three-dimensional structure of the liquid delivery tube described in this patent.
  • Fig. 20 is a perspective view of the three-dimensional structure of the sleeve described in this patent.
  • Fig. 21 is a three-dimensional structural schematic diagram of another perspective of the liquid delivery tube described in this patent.
  • Fig. 22 is a schematic diagram of the three-dimensional structure of the liquid contact slider described in this patent.
  • Fig. 23 is a schematic diagram of the three-dimensional structure of the liquid receiving tube described in this patent.
  • Figure 24 is a schematic diagram of the exploded structure of the microfluidic chip box described in this patent.
  • Fig. 25 is a schematic diagram of the three-dimensional structure of the microfluidic chip box described in this patent.
  • Fig. 26 is a schematic diagram of the structure of the plane A in Fig. 25;
  • Fig. 27 is a schematic diagram of a cross-sectional structure along the direction B in Fig. 25;
  • Fig. 28 is a perspective view of the three-dimensional structure of the box body of the microfluidic chip box described in this patent;
  • Fig. 29 is a perspective view of the three-dimensional structure of the box body of the microfluidic chip box described in this patent;
  • Fig. 30 is a perspective view of the three-dimensional structure of the microfluidic chip of the microfluidic chip box described in this patent;
  • Fig. 31 is a schematic diagram of the three-dimensional structure of another perspective of the microfluidic chip of the microfluidic chip box described in this patent;
  • Fig. 32 is a schematic perspective view of the three-dimensional structure of the box cover of the microfluidic chip box described in this patent.
  • the microfluidic device includes a device main body 1, a microfluidic chip box 2, a liquid delivery device 3 and a liquid contact device 4;
  • the device main body 1 includes an opening 11 and a housing chamber 12, the opening 11 communicates with the housing chamber 12, the microfluidic chip box 2, the liquid delivery device 3 and the liquid receiving device 4 are all accommodated in the housing chamber,
  • the microfluidic chip box 2 includes at least two liquid inlets 212, a microchannel and at least one liquid outlet 213, the liquid inlet 212 and the liquid outlet 213 are connected through the microchannel, and the liquid delivery The device 3 is matched with the liquid inlet 212, the liquid delivery device 3 can deliver the raw material liquid in the liquid inlet 212, the liquid receiving device 4 corresponds to the liquid outlet 213, and the liquid receiving device 4 is corresponding to the liquid outlet 213. 4 capable of receiving the microfluidic mixture from the liquid outlet 213.
  • the device main body 1 also includes a supporting body 13, the supporting body 13 is accommodated in the accommodating chamber 12, and the supporting body 13 is provided with a box body groove 131 and at least one liquid delivery hole 32, and the box body
  • the groove 131 and the liquid delivery hole 32 are arranged on different end faces of the support body 13, the box body groove 131 communicates with the liquid delivery hole 32, and the microfluidic chip box 2 is buckled in the box body groove 131 , the liquid inlet 212 of the microfluidic chip cartridge 2 corresponds to the liquid delivery hole 32 .
  • the axial direction of the box body groove 131 is perpendicular to the axial direction of the liquid delivery hole 32, the axis directions of a plurality of the liquid delivery holes 32 are consistent, and the liquid delivery hole 32 is located in the box body.
  • At least one slide bar 132 is detachably mounted on the support body 13 , and the slide bar 132 and the box groove 131 are located on the same side of the support body 13 .
  • the liquid delivery device 3 includes at least one liquid delivery tube 31 and at least one liquid delivery hole 32, the liquid delivery tube 31 is accommodated in the liquid delivery hole 32, and the liquid delivery tube 31 is sealed with the liquid inlet 212 connected, the liquid delivery tube 31 can push the raw material liquid into the liquid inlet 212 of the microfluidic chip cartridge 2 .
  • the liquid delivery device 3 also includes a heating structure, the heating structure can heat the liquid delivery hole 32, the liquid delivery hole 32 is a heat conduction liquid delivery hole, and the liquid delivery hole can conduct heat to the delivery hole. The raw material liquid in the liquid pipe 31.
  • the liquid delivery device 3 also includes an overturning structure, and the support body 13 is rotatably connected to the device body 1 through a rotating shaft or a cardan shaft.
  • the volume of the liquid delivery pipe 31 to accommodate the raw material liquid includes but not limited to 0.5ml-20ml, and the outer diameters of the liquid delivery pipes 31 of different volumes are different, so a sleeve 33 is provided, and the sleeve 33 is connected to the delivery pipe.
  • the liquid tube 31 is matched, and the liquid delivery tube 31 can be snapped into the liquid delivery hole 32 through the sleeve 33 .
  • the liquid contact device 4 includes a support body 13, a liquid contact slider 41 and a liquid contact tube 42.
  • the support body 13 is detachably mounted with at least one slide bar 132, and the liquid contact slide block 41 is sheathed on the slide bar. 132 and can slide along the slide bar 132, the liquid contact slider 41 is provided with at least two slots 412 and waste liquid tanks 413, and the waste liquid slots 413 are arranged between two adjacent slots 412 Between, the waste liquid tank 413 can receive the microfluidic mixed liquid in the liquid outlet 213, the liquid receiving pipe 42 has a liquid receiving chamber with one end open, and the liquid receiving pipe 42 is buckled in the slot 412, the The liquid connection tube 42 corresponds to the liquid outlet 213 , and the liquid connection tube 42 can receive the microfluidic mixture in the liquid outlet 213 .
  • the microchannels include at least two liquid inlet microchannels 221 and at least one mixing microchannel 222, the liquid inlets 212 correspond to the liquid inlet microchannels 221 one-to-one, and the liquid inlet microchannels 221 One end communicates with the liquid inlet 212 , the other end of the liquid inlet microchannel 221 communicates with one end of the mixing microchannel 222 , and the other end of the mixing microchannel 222 communicates with the liquid outlet 213 .
  • the microfluidic device is also provided with a device casing 14 and a device cover 15.
  • the device casing 14 is sleeved on the device body 1.
  • the device casing 14 has a casing opening, and the casing opening is connected to the opening 11 of the device body 1.
  • the device cover 15 is arranged at the opening of the shell.
  • the device cover 15 is rotatably connected to the device shell 14, and the device cover 15 is provided with a device handle 151.
  • the handle 151 of the handheld device can be conveniently Open the device cover 15 .
  • a power button 18 is also provided on the device casing, and the power button 18 can control the turning on and off of the device.
  • the placement frame 16 is fixedly arranged in the accommodating cavity 12, as shown in Figure 12, and the placement frame 16 can also be fixedly arranged on the side wall of the equipment casing 14, as shown in Figure 13 , the placement frame 16 is provided with a plurality of placement holes 161 , and the tube sleeve 33 is placed in the placement holes 161 .
  • the liquid delivery device 3 is used to deliver the raw material liquid to the microfluidic chip box of the microfluidic device according to a certain ratio and quantity, temperature and other control requirements, so as to prepare the microfluidic mixed solution.
  • the liquid delivery device includes a support body 13 and at least one liquid delivery tube 31;
  • the support body 13 is provided with at least one penetrating liquid delivery hole 32, as shown in Figure 6 and Figure 15, the liquid delivery hole 32 is located below the liquid inlet 212 of the microfluidic chip cartridge 2, the The liquid delivery hole 32 corresponds to the liquid inlet 212; in the example, there are two liquid delivery holes 32, of course, the liquid delivery hole 32 includes but is not limited to two, and also according to user requirements, experimental requirements or Production demand, you can set one or multiple. In an example, the end of the liquid delivery hole 32 away from the liquid inlet 212 defines a limiting ring groove 3213 .
  • the liquid delivery hole 32 can be designed integrally, as shown in Figure 12-17, or the liquid delivery hole 32 can be designed separately, as shown in Figure 1 and Figure 5-11.
  • a heating structure is provided on the support body 13, and the heating structure can heat the liquid delivery hole 32;
  • the microfluidic device also includes a control system, and the control system includes a heating control module, and the heating The structure is connected in communication with the heating control module, and the heating control module can control the opening, closing, heating temperature and heating time of the heating structure.
  • the heating structure is a heating sheet, and the heating sheet is fixed on the side of the support body 13 away from the slide bar 132, and the liquid delivery hole 32 is a heat conduction liquid delivery hole, and the liquid delivery hole can conduct heat to the
  • the heating plate is only added to the liquid delivery hole 32 part of the support body 13, and the other parts of the support body 13 and the liquid delivery hole 32 do not conduct heat conduction, that is, they are insulated from it.
  • the heating structure is set to heat the raw material liquid. According to the needs, the heating temperature, heating time and other conditions can be set to broaden the experimental conditions and provide more preparation conditions for the preparation method of the product.
  • the supporting body 13 is also provided with a temperature sensor, which can detect the temperature of the liquid delivery hole 32; the temperature sensor is connected to the heating control module, and the heating control module The temperature of the liquid delivery hole 32 detected by the temperature sensor can be received to precisely control the heating temperature and improve the accuracy of the experiment or product preparation.
  • the liquid delivery pipe 31 is accommodated in the liquid delivery hole 32, and the liquid delivery pipe 31 corresponds to the liquid inlet 212 one by one.
  • the liquid delivery pipe 31 includes a solution cylinder 311 and a push-pull rod 312, as shown in FIG. 18 As shown in -19, the solution cylinder 311 has a solution chamber 3111 with both ends open, the raw material liquid can be accommodated in the solution chamber 3111, the push-pull rod 312 can move in the solution chamber 3111, and the push-pull rod 312 automatically One end of the solution chamber 3111 extends into and is accommodated in the solution chamber 3111. The end of the solution cylinder 311 away from the push-pull rod 312 is provided with a hollow liquid delivery head 3112.
  • the inner diameter of the liquid delivery head 3112 is smaller than the inner diameter of the solution cylinder 311.
  • the push-pull rod 312 can push the raw material liquid into the microfluidic chip cartridge 2 through the liquid delivery head 3112 and the liquid inlet 212 in sequence.
  • the outer diameter of the liquid delivery head 3112 is larger than the inner diameter of the liquid inlet 212 of the microfluidic chip cartridge 2, and the outer diameter of the liquid delivery head 3112 is not larger than the inner diameter of the liquid inlet 212 of the microfluidic chip cartridge.
  • the liquid head 3112 extends into the liquid inlet 212 .
  • the end of the push-pull rod 312 close to the liquid delivery head 3112 is also provided with a sealing gasket, which can seal the raw material liquid in the solution chamber 3111.
  • the sealing gasket is preferably a rubber gasket, and of course it can also be other materials with Elastic gasket.
  • the liquid delivery hole 32 is integrally designed, the support body 13 is rotatably connected to the device body 1, and the support body 13 can rotate or turn around the device body 1 , the heating plate is fixed on a side of the supporting body 13 away from the sliding bar 132 .
  • the supporting body 13 is rotatably connected to the device main body 1 through a rotating shaft.
  • the rotating shaft is preferably a damping rotating shaft.
  • the rotating shaft can also be a non-damping rotating shaft.
  • the side wall of the supporting body 13 is symmetrically provided with rotating holes.
  • the device body 1 is provided with a device receiving hole 17, the device receiving hole 17 corresponds to the rotating hole 133 one by one, one end of the rotating shaft is fixedly accommodated in the rotating hole 133, and the other end of the rotating shaft is fixedly accommodated in the placement Inside hole 17.
  • the supporting body 13 is rotatably connected to the device main body 1 through a universal damper.
  • the universal damper can rotate more flexibly, have more angles and directions of rotation, and be more convenient to use.
  • the supporting body is set to be turned over, so that the liquid delivery tube 31 is conveniently taken out from the liquid delivery hole 32 or placed in the liquid delivery hole 32 .
  • the side of the supporting body 13 far away from the liquid delivery hole 32 is provided with a limiting wing 134, the limiting wing 134 is in conflict with the device main body 1, and the limiting wing 134 can make the supporting body 13 be placed against the device main body 1 opening.
  • the liquid delivery hole 32 is designed as a separate body, and the support body 3 includes a moving part 301 and a fixed part 302, and the moving part 301 and the fixed part part 302 is rotatably connected, the moving part 301 can rotate around the fixed part 302, the moving part 301 is provided with a first arc part 321, the fixed part 302 is provided with a second arc part 322, the first The arc portion 321 and the second arc portion 322 enclose the liquid delivery hole 32 .
  • the side of the fixed part 302 away from the moving part 301 is provided with a heating groove 135, and the heating sheet is fixedly arranged in the heating groove 135.
  • the heating sheet only heats the second arc-shaped part 322 on the fixed part 302, and is fixed Other parts of the part 302 and the moving part 301 are not heated, and they are insulated from the second arc part 322 on the fixed part 302 .
  • the first arc portion 321 includes an arc segment 3211 and a circular segment 3212 along the axial direction, the arc segment 3211 is located at the end of the liquid delivery hole 32 away from the microfluidic chip cartridge 2, the The second arc portion 322 matches the arc segment 3211 .
  • the arc angle range of the arc segment 3211 is 180°-360°, and the arc segment 3211 can prevent the liquid delivery tube 31 from loosening or falling from the liquid delivery hole 32.
  • the The arc angle range of the arc section 3211 is 180°-270°, and the arc angle range is set so that the liquid delivery hole 32 can not only buckle the liquid delivery tube 31, but also facilitate the removal and placement of the liquid delivery tube 31.
  • the fixed part is in a vertical fixed state, and the moving part 301 can be easily placed or taken out when the moving part 301 is turned upside down to be in a nearly horizontal state.
  • 302 conflicts, at this time, the first arc portion 321 and the second arc portion 322 encircle to form a complete liquid delivery hole 32, and then the liquid delivery tube 31 can be automatically or manually pressed to feed the liquid according to the needs or requirements of the experiment.
  • the mouth conveys the raw material liquid.
  • the moving part 301 is rotationally connected to the fixed part 302 through a rotating shaft, especially a damping rotating shaft or a universal damper.
  • a non-damping rotating shaft or other rotating parts can also be used to connect, as long as the moving part 301 can rotate Parts are all within the protection scope of this patent.
  • the supporting body 1 is provided with a turning handle 137, and the turning handle 137 can make the moving part 301 turn over more conveniently.
  • the flip structure is set, when flipped up, it is convenient to install and take out the liquid delivery pipe, making the operation of the equipment more convenient.
  • the liquid delivery device further includes a sleeve 33, as shown in Figure 6 and Figures 20-21;
  • the pipe sleeve 33 is a hollow tube with openings at both ends, the liquid delivery pipe 31 is buckled in the liquid delivery hole 32 through the pipe sleeve 33, and the outer end of the pipe sleeve 33 is provided with a stop ring 331.
  • the pipe sleeve 33 is accommodated in the liquid delivery hole 32, the stop ring 331 is in conflict with the orifice of the liquid delivery hole 32, the outer diameter of the pipe sleeve 33 is consistent with the inner diameter of the liquid delivery hole 32, and the pipe sleeve
  • the inner diameter of 33 is consistent with the outer diameter of the liquid delivery pipe 31, and the length of the sleeve 33 is not greater than the length of the liquid delivery hole 32; in an example, the volume range of the liquid delivery pipe 31 to accommodate the raw material liquid includes but is not limited to 0.5 ml-20ml; the outer diameters of the liquid delivery tubes 31 of different volumes are different, so the liquid delivery tubes 31 of different volume specifications are equipped with matching tube sleeves 33, and the inner diameters of the tube sleeves 33 of different specifications are different.
  • the outer diameters of the pipe sleeves 33 are all the same, and the outer diameters of the pipe sleeves 33 are consistent with the inner diameters of the liquid delivery holes 32 .
  • the inner diameters of the liquid delivery tubes 31 of different volumes are also different, and the volume of the liquid delivery tube 31 to accommodate the raw material liquid includes but not limited to 0.5ml, 1ml, 2ml, 3ml, 5ml, 7ml, 8ml, 10ml, 12ml, 15ml, 18ml and 20ml.
  • the limiting ring 331 is symmetrically provided with two inwardly recessed arc-shaped grooves 3311, the limiting ring 331 is matched with the limiting ring groove 3213, and the limiting ring 331 is accommodated in The limit ring groove 3213 is inside.
  • the arc-shaped groove 3311 is provided, which is not only beautiful, but also convenient for taking out and placing the liquid delivery pipe 31 .
  • the liquid delivery hole 32 is integrally designed, the side wall of the limit ring groove 3213 is provided with a handle groove, the sleeve 33 is buckled in the liquid delivery hole 32, and the limit ring 331 is accommodated in the In the limit ring groove 3213, the handle groove provided is convenient to take out the pipe sleeve 33 from the handle groove, which is convenient for operation.
  • the sleeve is provided to facilitate the adaptation of liquid delivery tubes of different volumes and types to the liquid delivery device.
  • the liquid delivery tube can be a medical syringe (except needles) on the market, and there is no need to customize the liquid delivery tube to reduce costs.
  • the liquid contact device 4 is mainly used to receive the microfluidic mixed liquid produced by the microfluidic equipment, and of course also includes collecting waste liquid.
  • the liquid contact device includes a support body 13, a liquid contact slider 41 and a liquid contact tube 42;
  • At least one slide bar 132 is detachably installed on the support body 13, and a plurality of slide bar holes 1321 are arranged on the support body 13, and the slide bar holes 1321 and the box groove 131 are located on the support body 13. On the same side of the same side, the slide bar hole 1321 is located below the box body groove 131, and the end of the slide bar 132 is detachably installed in the slide bar hole 1321.
  • there are two slide bars 132 there are two slide bars 132, The two sliding rods 132 have the same axial direction.
  • the liquid-contacting slider 41 is provided with at least one through hole 411 and at least two slots 412, as shown in FIG.
  • the liquid contact slider 41 can be slid on the sliding bar 132 after being disassembled and installed on the supporting body 13 .
  • the liquid receiving tube 42 has a liquid receiving chamber with an open end, as shown in Fig. 1-2 and Fig. Below the liquid outlet 213 of the control chip box, the opening of the liquid connection pipe 42 faces upward, and the microfluidic chip box 2 includes a liquid inlet 212, a micro-channel and a liquid outlet 213, and the raw material liquid flows from the liquid inlet. 212 enters, the microfluidic mixed solution is prepared through the microchannel, and the prepared microfluidic mixed solution flows out from the liquid outlet 213.
  • the inner diameter of the perforation 411 is consistent with the outer diameter of the sliding rod 132, and there are two perforating holes 411 and two sliding rods 132, which is convenient for stabilizing the liquid contacting slider 41, thereby stabilizing the liquid receiving pipe 42, so that the inner The microfluidic mixture does not leak; in the example, there are two card slots 412, of course, the card slots 412 include but are not limited to two, there may be one, and there may be more.
  • the liquid connection pipe can also be divided into a collection pipe for collecting microfluidic mixed liquid and a waste liquid pipe for collecting waste liquid.
  • the centrifuge tube can be used directly as the liquid receiving tube to reduce the cost, but it is not limited to the centrifuge tube, as long as the liquid receiving tube can receive the microfluidic mixture.
  • the support body 13 is provided with a through groove 136, and the through groove 136 is arranged between the two slide bar holes 1321 on the same side of the support body 13, and the axis direction of the through groove 136 is in line with the axis of the slide bar 132.
  • the direction is the same, and the side of the liquid pipe 42 close to the open end is provided with a snap ring 421, as shown in Figure 23, the snap ring 421 is in conflict with the snap groove 412, and the snap ring 421 can prevent the liquid pipe 42 from slide down from the card slot 412.
  • a waste liquid tank 413 is arranged between two adjacent card slots 412, the direction of the axis of the waste liquid tank 413 is the same as that of the card slot 412, the opening of the waste liquid tank 413 faces upward, and the waste liquid tank 413 can receive
  • the waste liquid tank 413 can keep the support body 13 and the interior of the containing chamber 12 clean for the liquid droplets flowing out of the liquid outlet 212 when the liquid connection tube is switched, so as to prevent the prepared microfluidic mixture from being polluted.
  • a spring is sheathed on the sliding rod 132, the spring is located on one side of the liquid-contacting slider 41, one end of the spring is in conflict with the supporting body 13, and the spring The other end of the contacting slider 41 is in conflict with the liquid contacting slider 41.
  • the spring can contact the liquid contacting slider 41 at one end of the slide bar 132. Location. The spring is in contact with one side of the liquid-contacting slider 41. During the sliding process of the liquid-contacting slider 41, the sliding position of the liquid-contacting slider 41 can be accurately controlled through the friction of the spring.
  • the spring resists the liquid-contacting slider 41 at the initial position through elastic force, so that the liquid-contacting slider 41 automatically resets without manual adjustment to the initial position, which facilitates the continuous operation of the liquid-contacting device 4 and realizes automatic production.
  • the liquid contact device 4 also includes a driving device 43, as shown in Figure 2, Figures 4-5 and Figures 12-13, the driving device 43 has a driving rod 431, and the driving rod 431 Accommodated in the accommodating chamber 12, the drive device is installed on the side wall of the equipment main body, the drive rod 431 is located on the side of the liquid contact slider 41 away from the spring, the drive rod 431 and the liquid contact slider 41 Coaxially arranged, the drive device can drive the drive rod 431 to move towards the direction of the liquid contact slider 41, and the drive rod 431 passes through the through groove 136 to drive the liquid contact slider 41 to move away from the drive rod 431.
  • the The driving rod 431 is arranged coaxially with the liquid-contacting slider 41 .
  • the driving device controls the extension distance of the driving rod 431, under the cooperation of the spring on the other side of the liquid contact slider 41, and then controls the sliding position of the liquid contact slider 41, and the liquid contact slider 41 slides to different positions.
  • the liquid receiving pipe 42 in different card slots can be switched to the bottom of the liquid outlet 213 of the microfluidic chip cartridge, the control system also includes a liquid receiving control module, and the liquid receiving control module is communicated with the driving device 43,
  • the liquid contact control module can control the driving rod 431 of the driving device 43 to advance and retreat. Switching between different liquid receiving pipes 42 through the driving device facilitates automatic continuous operation and helps to improve production efficiency.
  • the telescopic extruding device 5 is used to extrude and push the raw material liquid in the liquid delivery tube 31 into the microfluidic chip cartridge.
  • the telescopic extruding device is fixed in the accommodating chamber 12 , and in an example, two telescopic extruding devices 5 are symmetrically arranged in the accommodating chamber.
  • the telescopic extrusion device includes a slide rail 51, a sliding structure 52 and a driving structure 53;
  • the slide rail 51 is fixed on the inner wall of the device main body 1 , and the two slide rails 51 are symmetrically fixed on the inner wall of the device main body 1 .
  • the sliding structure 52 is slidingly matched with the sliding rail 51, and the sliding structure 52 can slide along the sliding rail 51; in one embodiment, the sliding structure 52 is provided with a chute, and the chute is sleeved on the On the slide rail 51 , the slide structure 52 slides on the slide rail 51 through a slide groove.
  • a slide rail groove is provided on the slide rail 51
  • a slide block is provided on a side of the slide structure 52 close to the slide rail 51, and the slide block is accommodated in the slide rail groove, and the slide structure 52 The slider moves in the groove of the slide rail.
  • the driving structure 53 can drive the sliding structure 52 to move along the slide rail 51 .
  • the driving structure 53 includes a motor and a screw mandrel 531 fixedly connected to the motor, the screw mandrel 531 is provided with external threads; the sliding structure 52 is provided with a screw mandrel hole 521 along the sliding direction, and the inner wall of the screw mandrel hole 521 An internal thread matching the external thread is provided, the sliding structure 52 is inserted on the screw rod 531 through the screw rod hole 521, the motor drives the screw rod 531 to rotate, and the rotating screw rod can drive the screw rod 531 The sliding structure 52 moves along the slide rail.
  • the telescopic extruding device 5 can automatically control the extrusion of the liquid delivery tube to deliver the raw material liquid into the microfluidic chip box without manual operation, which facilitates the stable and uniform delivery of the raw material liquid and can quantitatively control the delivered raw material liquid.
  • a pressure sensor 54 is installed on the sliding structure 52 , and the pressure sensor 54 can detect the pressure that the sliding structure 52 pushes the liquid connection tube 31 .
  • the sliding structure 52 includes a sliding body 522 and a movable piece 523, the movable piece 523 is movably installed on the sliding main body 522, and the sliding body 522 and the liquid delivery tube 31 are respectively located on the sides of the movable piece 523.
  • the movable piece 523 corresponds to the liquid delivery pipe 31 of the liquid delivery device 3 , and under the driving action of the driving structure, the sliding structure 52 can move toward the liquid delivery pipe 31 , and the movable piece 523 conflicts with the liquid delivery pipe 31;
  • the pressure sensor 54 is fixedly installed on the sliding body 522, the pressure sensor 54 conflicts with the movable piece 523, and the pressure sensor 54 can sense and detect The movable piece 523 is in contact with the liquid tube.
  • the shape of the movable piece 523 includes but not limited to square, circle, rhombus, triangle, polygon, ellipse or other regular or irregular shapes.
  • the side of the sliding body 522 close to the slide rail 51 is perpendicular to the side of the sliding body 522 close to the movable piece 523 .
  • a pressure sensor is provided to accurately detect the pressure of the telescopic extrusion device 5 squeezing the liquid delivery pipe 31, which is convenient for controlling the speed of conveying the raw material liquid, that is, the flow rate and flow rate of the conveyed raw material liquid can be quantitatively controlled, and it is convenient to control the difference between different raw material liquids. delivery ratio.
  • one end of the movable piece 523 is movably connected to the sliding body 522 through a rotating shaft, and a sensing hole 5221 is opened on the side of the sliding body 522 close to the movable piece 523,
  • the pressure sensor 54 is accommodated in the sensing hole 5221 , and the pressure sensor 54 interferes with the movable piece 523 .
  • the axis direction of the sensing hole 5221 is consistent with the axis direction of the screw rod 531 .
  • the sliding structure 52 further includes a sensor 524; the sliding body 522 is provided with a sensor slot 5222, and the opening of the sensor slot 5222 faces away from the movable piece 523.
  • the pressure sensor 54 is fixed in the sensor groove 5222, the side of the sliding body 522 close to the movable piece 523 is provided with a pressure hole 5223, the pressure hole 5223 communicates with the sensor groove 5222, and the sensing element
  • One end of the sensing element 524 is fixedly connected to the pressure sensor 54 , and the other end of the sensing element 524 passes through the pressure hole 5223 and interferes with the movable piece 523 .
  • the pressure sensor can detect the pressure value of the movable piece 523 through the resistance value, extrusion force or deformation of the sensing element 524, and the pressure value of the movable piece is also the pressure value of the sliding structure pressing the liquid delivery pipe It should be noted that the pressure sensor can also detect other physical quantities of the movable piece 523 and/or the sensing element 524 to detect the pressure value of the sliding structure pressing the liquid delivery tube.
  • the other end of the sensing part 524 is provided with a pulley, and the sensing part 524 is in conflict with the movable piece 523 through the pulley, and the pulley can reduce the friction between the sensing part 524 and the moving part 523, avoiding the friction between the sensing part 524 and the movable part 523.
  • the wear of the movable part 523 prolongs its service life and helps to prolong the use accuracy of the equipment.
  • the control system further includes an extrusion control module
  • the pressure sensor 54 is connected in communication with the extrusion control module
  • the extrusion control module can monitor the pressure value of the pressure sensor 54
  • the driving structure 53 communicates with the extrusion control module
  • the extrusion control module can control the opening, closing, rotation speed and rotation direction of the driving structure 53, and adjust the movement of the movable sheet against the object to be extruded by controlling the driving structure. Pressure value.
  • there are two telescopic extrusion devices and the extrusion control module separately controls the two telescopic extrusion devices.
  • the extrusion control module is set.
  • the extrusion control module can also adjust the pressure of the driving structure in a timely manner according to the setting or needs according to the pressure value of the extrusion liquid delivery pipe detected by the pressure sensor.
  • the speed and direction of rotation can be precisely controlled or dynamically changed to control the flow rate of the conveying raw material liquid.
  • a fixed plate 55 is provided in the accommodation cavity 12 of the device main body 1, the slide rail 51 and the sliding structure 52 are located above the fixed plate 55, and the driving structure 53 is located below the fixed plate 55,
  • the driving structure 53 is fixedly mounted on the fixing plate 55 , and the threaded rod 531 passes through the fixing plate 55 and fits on the sliding structure 52 .
  • the accommodating cavity below the fixing plate 55 is set as an auxiliary machine cavity, and an auxiliary machine frame is arranged around the auxiliary machine cavity, and the auxiliary machine frame can fix auxiliary components such as a drive structure, and the front and rear ends of the auxiliary machine frame are respectively provided with openings for installation.
  • the driving structure 53 is fixed in the auxiliary machine chamber, the side wall of the equipment main body 1 is provided with an air exhaust port, and the air exhaust port communicates with the auxiliary machine chamber, so
  • the air outlet is provided with an exhaust fan, and the exhaust fan can make the auxiliary machine chamber ventilate and dissipate heat.
  • the micro-mixing device can prepare one or more raw material liquids to obtain a target product, ie, a microfluidic mixed liquid, by controlling the flow rate, flow rate and/or different micro-channel designs of the raw material liquids.
  • the micro-mixing device includes but is not limited to a microfluidic chip box, a T-shaped mixing device, a metal mixing device, etc.
  • This patent mainly uses the microfluidic chip box 2 as an example to introduce the structural features of the micro-mixing device.
  • the microfluidic chip box 2 includes a box body 21, a microfluidic chip 22 and a box cover 23;
  • the box body 21 has an accommodating cavity 211 with one end open, as shown in Figures 26-29, the bottom of the accommodating cavity 211 is provided with a chip groove 2111 and an annular groove 2112, and the annular groove 2112 is arranged around the chip Outside the groove 2111, the chip groove 2111 and the annular groove 2112 are arranged at intervals, that is, the chip groove 2111 and the annular groove 2112 are not connected, and the box body 21 is provided with at least two liquid inlets 212 and at least one liquid outlet 213, the liquid inlet 212 and the liquid outlet 213 are connected to the chip groove 2111; in the example, the liquid inlet 212 is provided with a hollow liquid inlet column 2121, and the liquid outlet 213 is provided with a hollow outlet
  • the liquid column 2131, the liquid inlet column 2121 and the liquid outlet column 2131 both extend towards the direction away from the box body 21, and the liquid inlet column 2121 and the liquid outlet column 2131 are integrally connected with the box body 21;
  • the openings of the liquid inlet 212 and the liquid inlet 212 face downward, and the liquid delivery head 3112 of the liquid delivery pipe 31 extends into the liquid inlet column 2121, which can seal and transport the raw material liquid, preventing the liquid delivery head 3112 from contacting with the liquid inlet column 2121.
  • Inadequate contact of the liquid inlet column 2121 causes leakage of the raw material liquid.
  • the leakage of the raw material liquid not only affects the proportion of different raw material liquids, but also affects the ratio of each component in the prepared microfluidic mixture, and even fails to prepare a qualified microfluidic mixture.
  • the bottom of the box body 21 is provided with an inner annular raised bar 2116 and an outer annular raised bar 2117, and the inner annular raised bar 2116 and the outer annular raised bar 2117 are arranged coaxially, so An annular groove 2112 is formed between the inner annular protrusion 2116 and the outer annular protrusion 2117 , and the inner annular protrusion 2116 encloses a chip groove 2111 .
  • the box body 21 is also fixedly connected with a handle end 214, the handle end 214 is located at the end of the box body 21 away from the liquid outlet 213, and at least one side surface of the handle end 214 is provided with a plurality of protrusions.
  • Protrusion 2141, the protrusion 2141 is preferably a circular arc protrusion, of course, the protrusion can also be in any other shape. In an example, a plurality of the protrusions 2141 are arranged in an array.
  • the handle end 214 is provided for pushing the microfluidic chip box in the box body groove by holding the handle end, or pushing the microfluidic chip box 2 so that the supporting body 13 with the microfluidic chip box 2 buckled rotates , setting the protrusions can play an anti-slip effect and facilitate operation, but the protrusions are not limited to circular arcs, or are not limited to protrusions, and concave-convex lines can also be set on the surface of the handle end, as long as it can increase The frictional force will not cause any damage to the hand, all within the scope of protection of this patent.
  • a plurality of protrusions 2141 are provided on both sides of the handle end 214 .
  • the end of the handle end 214 away from the accommodating cavity 211 is arc-shaped, and the axis direction of the arc is parallel to the accommodating cavity 211 .
  • the microfluidic chip 22 is accommodated in the chip groove 2111, and a microfluidic channel is arranged in the microfluidic chip 22.
  • the structure of the microfluidic channel includes but is not limited to a T-shaped structure, a Y-shaped structure, a cross Type structure, SHM structure (that is, fishbone structure), Tesla structure and swirling flow structure, etc.
  • the structure of the micro-channel is preferably a swirling flow structure, and experiments have confirmed that the swirling flow structure can greatly increase the flow rate, and at the same time, the encapsulation efficiency and dispersion are also improved. better.
  • the microfluidic channel includes at least two liquid inlet microchannels 221 and at least one mixing microfluidic channel 222, and the microfluidic chip 22 is provided with at least two first openings 223 and at least one second opening 224, the The first opening 223 corresponds to the liquid inlet microchannel 221 one by one, the first opening corresponds to the liquid inlet, the second opening corresponds to the liquid outlet, and the liquid inlet microflow One end of the channel 221 communicates with the first opening 223, the other end of the liquid inlet microchannel 221 communicates with one end of the mixing microchannel 222, and the other end of the mixing microchannel 222 communicates with the second opening 224
  • the inner diameter of the chip groove 2111 is consistent with the outer diameter of the microfluidic chip 22, and the first opening 223 and the second opening 224 are both arranged on the same side of the microfluidic chip 22;
  • the material of chip 22 includes but not limited to polymers, stainless steel and PEEK etc., and described polymers includes but not limited to
  • the box cover 23 covers the opening of the box body 21, as shown in Figure 32, the box cover 23 is in contact with the microfluidic chip 22 in the chip slot, and the box cover 23 is provided with an annular clamping strip 231 , the annular clip bar 231 is engaged in the annular groove 2112 .
  • the inner side of the annular clip 231 has an inclined surface, and the inclined surface can play a sealing role, so that the annular clip 231 is ultrasonically welded and sealed in the annular groove 2112 .
  • the box cover 23 is provided with at least two fixing grooves 232. When the microfluidic chip box is placed on the microfluidic equipment, the microfluidic chip box can be fixed on the microfluidic equipment through the fixing grooves.
  • the fixed groove plays the role of positioning and fixing.
  • the side wall of the box body groove 131 is provided with a protrusion structure, and the protrusion structure corresponds to the fixing groove 232.
  • the protrusion structure is buckled in the fixing groove 232
  • the side wall of the box body groove 131 is provided with a through engaging hole, and the fixing member is accommodated in the engaging hole and protrudes into the box body groove to form a protruding structure, which plays a role in fixing and engaging the microfluidic chip box
  • other forms of protruding structures can also be used, as long as they can play the role of fixing and engaging the microfluidic chip box.
  • the mixed microchannels include but not limited to linear microchannels, and/or surrounding microchannels, and/or curved microchannels, and/or swirling microchannels.
  • the mixing microchannel 222 is a swirling flow microchannel
  • the swirling flow mixing microchannel is a swirling flow mixing microchannel composed of a plurality of S-shaped microchannel structures connected end to end in sequence, along the For the flow direction of the raw material liquid, two adjacent S-shaped micro-channel structures can be connected smoothly or dislocated, and can be located inside the previous S-shaped micro-channel structure, or can be located in the previous S-shaped micro-channel structure. outside of the runner structure.
  • the latter S-shaped micro-channel structure is staggered inside the former S-shaped micro-channel structure, as shown in FIG. 30 .
  • the mixing microchannel is capable of mixing, and/or coating, and/or proportioning, and/or separating, and/or sorting, and/or purifying raw material liquids.
  • the micro-channel can mix two or more raw material liquids well, and/or coat, and/or configure the ratio, and/or Separation, and/or sorting, and/or purification, etc., to achieve the purpose of experimental preparation.
  • the liquid-feeding microchannels include but are not limited to linear microchannels, and/or surrounding microchannels, and/or curved microchannels, and/or swirling microchannels.
  • the liquid inlet microchannel is a linear microchannel.
  • the liquid inlet microchannel includes a first liquid inlet microchannel 2211 and a second liquid inlet microchannel 2212, the shape and inner diameter of the first liquid inlet microchannel 2211 and the second liquid inlet microchannel 2212 Can be the same or different.
  • the flow rate and flow rate of the raw material liquid can be controlled by setting the shape and inner diameter of the liquid inlet microchannel, so that different raw material liquids can be mixed to achieve better mixing effect, coating effect or others.
  • a sealing structure is also included, a sealing structure is provided between the first opening 223 and the liquid inlet 212, and a sealing structure is provided between the second opening 224 and the liquid outlet 213 .
  • the sealing structure is a sealing ring 241, and at least two liquid inlet sealing grooves 2113 and liquid outlet sealing grooves 2114 are provided at the bottom of the chip groove 2111, and the inside of the liquid inlet sealing groove 2113 and the liquid outlet sealing groove 2114 are each A sealing ring 241 is accommodated, the first opening 223 interferes with the liquid inlet 212 through the sealing ring 241 , and the second opening 224 interferes with the liquid outlet 213 through the sealing ring 241 .
  • the sealing ring 241 in the liquid inlet sealing groove 2113 and the sealing ring 241 in the liquid outlet sealing groove 2114 can be the same or different.
  • the sealing ring 241 of the groove 2114 is matched with the liquid outlet sealing groove 2114.
  • the liquid inlet sealing groove 2113 is arranged coaxially with the liquid inlet 212
  • the liquid outlet sealing groove 2114 is arranged coaxially with the liquid outlet 213, and the inner diameter of the liquid inlet sealing groove 2113 is larger than the The inner diameter of the liquid inlet 212, the inner diameter of the liquid outlet sealing groove 2114 is larger than the inner diameter of the liquid outlet 213, the outer diameter of the sealing ring 241 in the liquid inlet sealing groove 2113 is larger than the inner diameter of the first opening 223, the liquid outlet sealing groove
  • the outer diameter of the sealing ring 241 of 2114 is larger than the inner diameter of the second opening 224; the first outlet and the second outlet of the microfluidic chip are respectively sealed and connected with the liquid inlet and the liquid outlet of the box body to
  • a limit post 2115 is provided at the bottom of the chip slot 2111, and a through limit hole 226 is provided on the microfluidic chip 22, and the limit post 2115 is accommodated in the limit hole 226 .
  • the limiting post and the limiting hole 226 can limit the position of the microfluidic chip 22 in the chip groove, so that the first opening communicates with the liquid inlet one by one, and the second opening communicates with the outlet.
  • the liquid ports are correspondingly connected to prevent dislocation, avoid liquid leakage or blockage, and also play a role in fixing the microfluidic chip 22 .
  • the microfluidic chip box is mainly used for the mixing of materials and the generation of droplets, especially the preparation of nano-medicines, nano-carriers and microspheres.
  • Nano-drugs include but not limited to nucleic acid drugs, small molecule nano-drugs and nanocrystalline drugs, etc.
  • nano-carriers include but not limited to lipid nanoparticles (LNP), polymers, polypeptides and proteins, etc.
  • said small molecule nanomedicines include but not limited to paclitaxel liposomes and doxorubicin liposomes, etc.; microspheres include but not limited to PLGA microspheres, gel microspheres and embolic microspheres.
  • the LNP used in the prescription was the classic Dlin-MC3 prescription (dissolved in 100% drug In ethanol), luciferase mRNA (Luc mRNA) was used as the wrapper, and dissolved in water for injection buffer at a certain pH value), for reasons of confidentiality, the specific prescription concentration will not be announced.
  • the above PDI represents the polymer dispersibility index
  • the results of the data confirm that the LNP prescription-wrapped mRNA drug prepared by the patented microfluidic device has better dispersibility and higher encapsulation efficiency.
  • the encapsulation rate is as high as 96%, and the dispersibility index reaches 0.03%, and can also reach a high flow rate of 120ml/min, so the patented microfluidic device is more effective and practical, and it is also more convenient and efficient.
  • the microfluidic equipment described in this patent has a simple structure, a high degree of automation, convenient operation, and high preparation accuracy.
  • a microfluidic mixture is prepared using a micromixing device, and the entry of the raw material liquid into the micromixing is accurately controlled through automation.
  • the amount and speed of liquid feeding in the device are used to precisely control the ratio of the raw material liquids.
  • the different liquid receiving tubes of the liquid receiving device can be switched automatically, which can realize the multi-dose of the prepared microfluidic mixture. Continuous preparation; not only for experiments or small-batch production, but also for process amplification and application in production.
  • the micro-mixing device sets the micro-channel, by setting the shape of the micro-channel (including straight line, curve, surround or swirl flow type, etc.), structure (including but not limited to T-shaped structure, Y-shaped structure, cross-shaped structure) , SHM fishbone structure, Tesla structure and swirling flow structure) and inner diameter size, to control the flow rate and flow rate of the raw material liquid, and the mixing, and/or coating, and/or ratio configuration of the mixed liquid, and /or separation, and/or sorting, and/or purification, etc., to accurately prepare the ideal microfluidic mixture, especially to prepare nano-encapsulation of nucleic acid drugs or vaccines.
  • the micro-mixing device is equipped with a sealing ring to realize the sealing connection between the first outlet and the second outlet of the microfluidic chip and the liquid inlet and the liquid outlet of the box body respectively, so as to prevent liquid leakage, which not only affects the experimental results, And it will pollute the raw materials or products prepared again; the micro-mixing device is equipped with a limit column to limit and fix the microfluidic chip, so as to avoid leakage or blockage of the microfluidic chip due to sliding dislocation.
  • the micro-mixing device is equipped with a handle end, which is used to push the micro-mixing device in the groove of the box body by holding the handle end, or push the micro-mixing device to make the supporting body with the micro-mixing device buckled rotate, and a protrusion is provided to prevent slipping function, easy to operate.
  • the supporting body is provided with a first arc and a second arc, the second arc is rotatable for easy removal and placement of the liquid delivery tube, and the second arc has a circular shape that securely fixes the liquid delivery tube
  • the arc segment with an angle greater than 180° between the arc segment and the arc segment enables the arc segment to firmly buckle the liquid delivery tube and/or sleeve to prevent it from loosening or falling off, so that it is convenient to take out and place the liquid delivery tube, It can also firmly buckle the liquid delivery tube.
  • the liquid feeding device is equipped with a heating structure, which can heat the raw material liquid. According to the needs, set the heating temperature, heating time and other conditions to broaden the experimental conditions and provide more preparation conditions for the product preparation method. It is also equipped with a temperature sensor and control system, which facilitates precise control of heating start/end time, heating temperature and heating time, and facilitates precise control of preparation conditions, thus helping to prepare microfluidic mixtures with higher precision, higher purity and better stability liquid.
  • the support main body provided with the liquid delivery hole can be turned over, and it rotates around the main body of the equipment through the support main body, or the support main body is provided with a fixed part and a moving part that can rotate around the fixed part, so that the liquid delivery hole can be rotated, so that the liquid delivery tube can be easily rotated.
  • the rotating part is preferably a damped shaft or a universal damper, which can turn the liquid delivery hole in any position according to the needs, which is very convenient to operate and greatly improves the user experience.
  • the liquid delivery device is also equipped with a telescopic extrusion device, which can automatically control the extrusion of the raw material liquid in the liquid delivery pipe into the micro-mixing device without manual operation, which is convenient for the stable and uniform delivery of the raw material liquid, and can quantitatively control the delivery.
  • a telescopic extrusion device which can automatically control the extrusion of the raw material liquid in the liquid delivery pipe into the micro-mixing device without manual operation, which is convenient for the stable and uniform delivery of the raw material liquid, and can quantitatively control the delivery. raw liquid.
  • It is equipped with a pressure sensor, which can be used to automatically sense whether the liquid delivery pipe is in contact with the telescopic device, so as to control the delivery speed of the raw material liquid, that is, to quantitatively control the flow rate and flow rate of the raw material liquid delivery, and to control the distribution ratio between different raw material liquids. It is equipped with a control system.
  • control system can also combine the pressure value of the squeezed liquid delivery pipe detected by the pressure sensor, and adjust the rotation speed and Direction, with precise control or dynamic change to control the flow rate of the conveying raw material liquid.
  • the liquid receiving device which is provided with a liquid receiving slider, can install a plurality of liquid receiving pipes, and a plurality of liquid receiving pipes collect the microfluidic mixed liquid through the sliding switching of the liquid receiving slider, which is convenient for continuous operation, and the production process
  • the liquid tube collected in the middle can be removed, and a new liquid tube can be installed to continue collecting the microfluidic mixture.
  • a waste liquid tank is arranged on the liquid contact slider, and when switching between different liquid connection pipes, the liquid droplets flowing out of the liquid outlet can be collected, the device is kept clean, and the prepared microfluidic mixed liquid is not polluted.
  • the liquid contact device is equipped with a driving device and a spring, which can drive the liquid contact slider to move back and forth along the slide bar, so as to realize automatic switching of the liquid contact tube and improve work efficiency, and a spring is provided on the other side of the drive device, and the liquid contact slide
  • the block can automatically return to the initial position through the spring, which facilitates the continuous operation of the driving device and precisely controls the moving position of the liquid-contacting slider.
  • microfluidic device described in this patent can not only be used for the screening of nano-drug prescriptions at low flow rates in the range of 1-20ml/min in the early stage, but also has a breakthrough solution to the problem that traditional microfluidic devices cannot be scaled up. Flow rate can support up to 120ml/min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Micromachines (AREA)

Abstract

一种微流控芯片盒及其微流控设备,包括设备主体(1)、微混合装置、送液装置(3)和接液装置(4);设备主体(1)包括开口(11)和容纳腔(12),开口(11)与容纳腔(12)相连通,微混合装置、送液装置(3)和接液装置(4)均容置于容纳腔(12)内,微混合装置为微流控芯片盒,其包括至少两个进液口(212)、微流道和至少一个出液口(213),进液口(212)和出液口(213)通过微流道相连通,送液装置(3)能够输送原料液体于进液口(212)内,接液装置(4)能够接收自出液口(213)的微流体混合液。

Description

一种微流控芯片盒及其微流控设备 技术领域
本发明涉及微流体控制领域,尤其涉及一种主要制备纳米药物和微球的微流控芯片盒及其微流控设备。
背景技术
微流控是使用微管道(尺寸为数十到数百微米)精确控制和操控微尺度流体或微小体积流体的技术,尤其针对微米和亚微米结构。
微流控的早期概念是采用光刻技术在硅片上制作气相色谱仪,而后扩展到微流控毛细管电泳仪和微反应器等。微流控的重要特征之一是微尺度环境下具有独特的流体性质,如层流和液滴等。借助这些独特的流体现象,微流控可以实现一系列常规方法所难以完成的微加工和微操作。目前,微流控被认为在生物、医学研究中具有巨大的发展潜力和广泛的应用前景。
但目前常见的流控芯片盒制作结构较为复杂、成本较高,且有些只能一次性使用,造成极大的浪费,给研发单位或人员带来高昂的研发成本。
目前国内缺少系统的自动化制备微流体设备,对于送液装置,如何精确控制及自动化动态控制原料液体的进液量和进液速度,如何加热原料液体及设定一定的温度或温度曲线,如何方便取出及重新放置原料液体,如何实现多剂量连续制备,以实现自动化连续生产,及制备过程中如何保证原料液体和微流体混合液不发生泄漏,等等一系列问题。
因此,针对上述问题,本专利提供了一种新的技术方案。
发明内容
为解决现有技术中存在的技术问题,本发明一方面提供了一种构造简单、使用方便、质量更好的微流控芯片盒,具体技术方案如下所述:
一种微流控芯片盒,包括
盒体,所述盒体具有一端开口的容置腔,所述容置腔底部设置有芯片槽和环形槽,所述环形槽绕设于所述芯片槽外侧,所述盒体上开设有至少一个进液口和至少一个出液口,所述进液口和出液口均与芯片槽相连通;
微流控芯片,所述微流控芯片容置于芯片槽内,所述微流控芯片内设置微流道,所述微流控芯片上开设有至少一个第一开口和至少一个第二开口,所述第一开口通过微流道与第二开口连通,所述第一开口与所述进液口对应连接,所述第二开口与所述出液口相对应连接;
盒盖,所述盒盖盖合于所述盒体的开口处,所述盒盖上设置有环形卡条,所述环形卡条卡合于所述环形槽内。
作为本专利所述微流控芯片盒的一种优选方案,所述微流道的结构包括T型结构、Y型结构、十字型结构、SHM鱼骨结构、特斯拉结构和回旋流结构。
作为本专利所述微流控芯片盒的一种优选方案,所述微流道包括至少一个进液微流道和至少一个混合微流道。
作为本专利所述微流控芯片盒的一种优选方案,所述混合微流道为直线型微流道、和/或环绕型微流道、和/或曲线型微流道、和/或回旋流型微流道;
所述进液微流道为直线型微流道、和/或环绕型微流道、和/或曲线型微流道、和/或回旋流型微流道。
作为本专利所述微流控芯片盒的一种优选方案,所述混合微流道为回旋流混合微流道,所述回旋流混合微流道为多个S型微流道结构依次首尾相接构成的回旋流混合微流道。
作为本专利所述微流控芯片盒的一种优选方案,所述第一开口与进液微流道一一对应,所述进液微流道的一端与第一开口相连通,所述进液微流道的另一端与混合微流道的一端相连通,所述混合微流道的另一端与第二开口相连通;
所述第一开口和第二开口均位于所述微流控芯片的同一侧。
作为本专利所述微流控芯片盒的一种优选方案,还包括密封结构,所述第一开口与所述进液口设置有密封结构,所述第二开口与出液口设置有密封结构;
所述进液口设置有中空的进液柱,所述出液口设置有中空的出液柱,所述进液柱和出液柱均朝向远离盒体的方向延伸。
作为本专利所述微流控芯片盒的一种优选方案,所述芯片槽底部设置限位柱,所述微流控芯片上设置限位孔,所述限位柱容纳于限位孔内。
作为本专利所述微流控芯片盒的一种优选方案,所述盒体还固定连接有把手端,所述把手端位于所述盒体远离出液口的一端,所述把手端的至少一侧表面设置有多个凸起。
作为本专利所述微流控芯片盒的一种优选方案,所述进液微流道至少有两个,至少两个进液微流道的形状和内径尺寸相同,或
至少两个进液微流道的形状和/或内径尺寸不同。
作为本专利所述微流控芯片盒的一种优选方案,所述密封结构为密封圈,所述芯片槽底部开设有至少两个进液密封槽和出液密封槽,所述进液密封槽和出液密封槽内均容置有密封圈,所述第一开口通过密封圈与进液口相抵触,所述第二开口通过密封圈与出液口相抵触。
另一方面,本发明提供了一种构造简单、使用方便、可实现连续自动化作业、制备精度高、流速高的微流控设备,具体技术方案如下所述:
一种微流控设备,包括设备主体、微混合装置、送液装置和接液装置;
所述设备主体包括开口和容纳腔,所述开口与容纳腔相连通,所述微混合装置、送液装置和接液装置均容置于容纳腔内,所述微混合装置包括微流道、至少一个进液口和至少一个出液口,所述进液口和出液口通过微流道相连通,所述送液装置与所述进液口相配合,所述送液装置能够输送原料液体于进液口内,所述接液装置与所述出液口相对应,所述接液装置能够接收自出液口的微流体混合液。
作为本专利所述微流控设备的一种优选方案,所述设备主体还包括支撑主体,所述支撑主体容置于所述容纳腔内,所述支撑主体上开设有盒体槽和至少一个送液孔,所述盒体槽与所述送液孔相连通,所述微混合装置卡扣于盒体槽内,所述微混合装置的进液口与所述送液孔相对应;
所述送液装置包括至少一个送液管,所述送液管内能够容置有原料液体。
作为本专利所述微流控设备的一种优选方案,所述接液装置包括接液滑块和接液管,所述接液滑块滑动安装于所述支撑主体上,所述接液滑块上开设有废液槽和至少两个卡槽,所述废液槽设置于两两相邻卡槽之间,所述废液槽能够接收出液口的废液,所述接液管卡扣于卡槽内,所述接液管能够接收出液口的微流体混合液;
所述微流道的结构包括T型结构、Y型结构、十字型结构、SHM鱼骨结构和特斯拉结构。
作为本专利所述微流控设备的一种优选方案,所述微流道包括至少一个进液微流道和至少一个混合微流道,所述进液口与进液微流道一一对应,所述进 液微流道的一端与进液口相连通,所述进液微流道的另一端与混合微流道的一端相连通,所述混合微流道的另一端与出液口相连通。
作为本专利所述微流控设备的一种优选方案,还包括伸缩挤压装置,所述伸缩挤压装置与所述送液管相对应,所述伸缩挤压装置设置于所述送液管远离微混合装置的一侧,所述伸缩挤压装置能够推送送液管内原料液体至进液口;
设置有送液孔的支撑主体能够转动。
作为本专利所述微流控设备的一种优选方案,所述送液装置还包括加热结构,所述加热结构能够加热所述送液孔,所述送液孔能够热传导于所述送液管内的原料液体。
作为本专利所述微流控设备的一种优选方案,设置有送液孔的支撑主体能够转动并停止于任意位置。
作为本专利所述微流控设备的一种优选方案,所述支撑主体转动连接于设备主体上;或
所述支撑主体包括移动部和固定部,所述固定部固定设置于所述设备主体上,所述移动部能够绕固定部转动,所述移动部上设置有第一弧形部,所述固定部设置有第二弧形部,所述第一弧形部和第二弧形部合围形成送液孔。
作为本专利所述微流控设备的一种优选方案,所述送液装置还包括管套,不同容积的送液管通过管套卡扣于所述送液孔内。
作为本专利所述微流控设备的一种优选方案,所述微混合装置上开设有至少两个固定槽,所述盒体槽内设置有突起结构,所述微混合装置容置于盒体槽内,所述突起结构卡扣于固定槽内。
作为本专利所述微流控设备的一种优选方案,回旋流结构的微流道为多个S型微流道依次首尾相接构成的回旋流型微流道。
与现有技术相比,本专利所述的微流控设备,至少具有如下一种或多种有益效果:
(1)本专利所述的微流控设备,其设备构造简单、自动化程度高、操作方便,制备精度较高,使用微混合装置制备微流体混合液,通过自动化精确控制原料液体的进入微混合装置内的进液量及进液速度,以精确控制各原料液体之间的配比,另外,接液装置的不同接液管之间可自动切换,能够实现制备的微流体混合液的多剂量连续制备;不仅应用实验或小批量产品制作,同时也能够 进行工艺放大,应用于生产上。
(2)微流控芯片盒设置微流道,通过设置微流道的形状(包括直线、曲线、环绕型或回旋流型等)、结构(包括但不限于T型结构,Y型结构,十字型结构,SHM鱼骨结构、特斯拉结构和回旋流结构)和内径尺寸,来控制原料液体的流量和流速,及对混合后的液体的混合、和/或包覆、和/或比例配置、和/或分离、和/或分选、和/或提纯等等操作,以精确制备出理想的微流体混合液,特别是制备核酸类药物或者疫苗的纳米包裹等。
(3)微流控芯片盒设置密封圈,实现微流控芯片的第一出口和第二出口分别与盒体的进液口和出液口之间密封连接,防止液体洒漏,不仅影响实验结果,且会污染再次制备的原料或产物;微混合装置设置限位柱,对微流控芯片起到限位和固定作用,避免微流控芯片滑动错位出现漏液或堵塞等情况。微混合装置设置把手端,用于手扶把手端推动微混合装置于盒体槽内,或推动微混合装置,以使卡扣有微混合装置的支撑主体转动,设置凸起,能够起到防滑作用,便于操作。
(4)支撑主体上设置第一弧形部和第二弧形部,第二弧形部可转动,便于取出和放置送液管,且第二弧形部具有牢固固定送液管的圆形段和弧形夹角大于180°的弧形段,使得弧形段也能够牢固卡扣送液管和/或管套,防止其松脱或掉落,达到既方便取出和放置送液管,又能牢固卡扣送液管的目的。
(5)送液装置设置加热结构,能够加热原料液体,根据需要,设定加热温度、加热时间等条件,拓宽实验条件,为产品的制备方法提供更多的制备条件。还设置有温度传感器和控制系统,便于精确控制加热开始/结束时间、加热温度和加热时长,便于精确控制制备条件,从而有助于制备出精度、纯度更高和稳定性更好的微流体混合液。
(6)设置送液孔的支撑主体能够翻转,其通过支撑主体绕设备主体转动,或支撑主体设置固定部和能够绕固定部转动的移动部,能够使送液孔发生转动,便于送液管安装于送液孔内或自送液孔内取出,且翻转后能够清晰观察到送液管有无牢固安装入进液口内,确保了原料液体向微混合装置内输送时不发生泄漏,确保稳定制备出微流体混合液;另外,转动部件优选阻尼转轴或万向阻尼器,可以根据需要使送液孔翻转在任意的位置,操作非常方便,极大提升用户体验。
(7)送液装置还配置有伸缩挤压装置,能够自动控制向微混合装置内挤压送液管中的原料液体,而无需手动操作,便于原料液体稳定均匀输送,及能够定量控制输送的原料液体。其设置压力传感器,能够自动化感应送液管是否接触伸缩挤压装置,便于控制原料液体的输送速度,即能够定量控制原料液体输送的流量、流速,便于控制不同原料液体之间的配送比例。其设置控制系统,控制系统除了控制驱动结构的开启、关闭和转动速度外,还能够结合压力传感器检测的挤压送液管的压力值,根据设定或需要,适时调整驱动结构的转动速度和方向,以精确控制或动态变化控制输送原料液体的流量流速。
(8)接液装置,其设置有接液滑块,可安装多个接液管,多个接液管通过接液滑块的滑动切换来收集微流体混合液,方便连续作业,且制作过程中收集完成的接液管能够取下,安装上新的接液管继续收集微流体混合液。接液滑块上设置废液槽,切换不同接液管时能够收集出液口流出的液滴,保持装置干净,保证制得的微流体混合液不被污染。接液装置设置驱动装置和弹簧,能够驱动接液滑块沿滑杆来回移动,从而实现接液管自动切换,提供工作效率,且在驱动装置的另一侧设置弹簧,操作完成后接液滑块能够通过弹簧自动回复至初始位置,方便驱动装置连续操作,并精确控制接液滑块的移动位置。
(9)本专利所述的微流控设备不仅可以用于前期1-20ml/min流速范围的低流速纳米药物处方筛选,更突破性的解决了传统微流控装置不能工艺放大的问题,最高流速可以支持到120ml/min。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1是本专利所述的微流控设备的爆炸结构示意图;
图2是图1中的R部结构示意图;
图3是本专利所述的微流控设备的立体结构示意图;
图4是图1中设备主体、送液管和接液管的立体结构示意图;
图5是图1中设备主体、送液管和接液管的立体结构示意图;
图6是图1中支撑主体、接液管和管套的立体结构示意图;
图7是图1中支撑主体、微流控芯片盒和接液管的立体结构示意图;
图8是图1中支撑主体和接液管的立体结构示意图;
图9是图8的A-A向剖面示意图;
图10是图7的翻转状态的立体结构示意图;
图11是图10的B向剖面结构示意图;
图12是本专利所述的设备主体的另一个实施例的爆炸结构示意图;
图13是图12中设备主体的立体结构示意图;
图14是图13中A向剖面结构示意图;
图15是图12中支撑主体和微流控芯片盒的立体结构示意图;
图16是图12中支撑主体的立体结构示意图;
图17是图12中支撑主体的主视示意图;
图18是本专利所述的送液管的爆炸结构示意图;
图19是本专利所述的送液管的立体结构示意图;
图20是本专利所述的管套的一个视角的立体结构示意图;
图21是本专利所述的送液管的另一个视角的立体结构示意图;
图22是本专利所述的接液滑块的立体结构示意图;
图23是本专利所述的接液管的立体结构示意图;
图24是本专利所述的微流控芯片盒的爆炸结构示意图;
图25是本专利所述的微流控芯片盒的立体结构示意图;
图26是图25的A向平面结构示意图;
图27是图25中的B向剖面结构示意图;
图28是本专利所述的微流控芯片盒的盒体的一个视角的立体结构示意图;
图29是本专利所述的微流控芯片盒的盒体的另一个视角的立体结构示意图;
图30是本专利所述的微流控芯片盒的微流控芯片的一个视角的立体结构示意图;
图31是本专利所述的微流控芯片盒的微流控芯片的另一个视角的立体结构 示意图;
图32是本专利所述的微流控芯片盒的盒盖的立体结构示意图。
其中,1-设备主体,2-微流控芯片盒,3-送液装置,4-接液装置,5-伸缩挤压装置,11-开口,12-容纳腔,13-支撑主体,131-盒体槽,132-滑杆,1321-滑杆孔,133-转动孔,134-限位翼,135-加热槽,136-通槽,137-翻转把手,14-设备外壳,15-设备盖,151-设备盖把手,16-放置架,161-放置孔,17-设备容纳孔,18-电源按钮,21-盒体,22-微流控芯片,23-盒盖,211-容置腔,2111-芯片槽,2112-环形槽,2113-进液密封槽,2114-出液密封槽,2115-限位柱,2116-内环形凸条,2117-外环形凸条,212-进液口,2121-进液柱,213-出液口,2131-出液柱,214-把手端,2141-凸起,221-进液微流道,2211-第一进液微流道,2212-第二进液微流道,222-混合微流道,223-第一开口,224-第二开口,226-限位孔,231-环形卡条,232-固定槽,241-密封圈,31-送液管,32-送液孔,33-管套,34-转轴,301-移动部,302-固定部,311-溶液筒,3111-溶液腔,3112-送液头,312-推拉杆,321-第一弧形部,322-第二弧形部,3211-弧形段,3212-圆形段,3213-限位环槽,331-限位环,3311-弧形槽,41-接液滑块,42-接液管,411-穿孔,412-卡槽,413-废液槽,421-卡环,43-驱动装置,431-驱动杆,51-滑轨,52-滑动结构,53-驱动结构,521-丝杆孔,522-滑动主体,5221-感应孔,5222-传感器槽,5223-压力孔,523-活动片,524-感应件,531-丝杆,54-压力传感器,55-固定板。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解说明的是,术语“上”、“下”、“顶”、“底”、“一端”、“一侧”、“另一侧”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,“多个”的含义是两个 或两个以上,除非另有明确具体的限定。
在本发明的描述中,除非另有明确的规定和限定,术语“设置有”、“设有”、“连接”、“设置有”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内根据具体情况理解上述术语在本发明中的具体含义。
实施例
请参阅图1-32,如图1-32所示,所述微流控设备包括设备主体1、微流控芯片盒2、送液装置3和接液装置4;
所述设备主体1包括开口11和容纳腔12,所述开口11与容纳腔12相连通,所述微流控芯片盒2、送液装置3和接液装置4均容置于容纳腔内,所述微流控芯片盒2包括至少两个进液口212、微流道和至少一个出液口213,所述进液口212和出液口213通过微流道相连通,所述送液装置3与所述进液口212相配合,所述送液装置3能够输送原料液体于进液口212内,所述接液装置4与所述出液口213相对应,所述接液装置4能够接收自出液口213的微流体混合液。
所述设备主体1还包括支撑主体13,所述支撑主体13容置于所述容纳腔12内,所述支撑主体13上开设有盒体槽131和至少一个送液孔32,所述盒体槽131和送液孔32设置于所述支撑主体13的不同端面,所述盒体槽131与所述送液孔32相连通,所述微流控芯片盒2卡扣于盒体槽131内,所述微流控芯片盒2的进液口212与所述送液孔32相对应。示例中,所述盒体槽131的轴线方向与所述送液孔32的轴线方向相垂直,多个所述送液孔32的轴线方向相一致,所述送液孔32位于所述盒体槽131下方。所述支撑主体13上可拆卸安装有至少一个滑杆132,所述滑杆132和所述盒体槽131位于所述支撑主体13的同一侧。
所述送液装置3包括至少一个送液管31和至少一个送液孔32,所述送液管31容置于送液孔32内,所述送液管31与所述进液口212密封连接,所述送液管31能够推送原料液体于微流控芯片盒2的进液口212内。优选的,所述送液装置3还包括加热结构,所述加热结构能够加热所述送液孔32,所述送液孔32为导热送液孔,所述送液孔能够热传导于所述送液管31内的原料液体。优选的,所述送液装置3还包括翻转结构,所述支撑主体13通过转轴或万向轴转动连接 于设备主体1上。优选的,所述送液管31容纳原料液体的容积包括但不限于0.5ml-20ml,不同容积的送液管31的外径不同,故设置管套33,所述管套33与所述送液管31相匹配,所述送液管31能够通过管套33卡扣于所述送液孔32内。
所述接液装置4包括支撑主体13、接液滑块41和接液管42,所述支撑主体13上可拆卸安装有至少一个滑杆132,所述接液滑块41穿套于滑杆132上并能够沿所述滑杆132滑动,所述接液滑块41上开设有至少两个卡槽412和废液槽413,所述废液槽413设置于两两相邻卡槽412之间,所述废液槽413能够接收出液口213的微流体混合液,所述接液管42具有一端开口的接液腔,所述接液管42卡扣于卡槽412内,所述接液管42与所述出液口213相对应,所述接液管42能够接收出液口213的微流体混合液。
所述微流道包括至少两个进液微流道221和至少一个混合微流道222,所述进液口212与进液微流道221一一对应,所述进液微流道221的一端与进液口212相连通,所述进液微流道221的另一端与混合微流道222的一端相连通,所述混合微流道222的另一端与出液口213相连通。
微流控设备还设有设备外壳14和设备盖15,所述设备外壳14套设于设备主体1上,所述设备外壳14具有外壳开口,所述外壳开口与所述设备主体1的开口11相对应,所诉设备盖15设置于外壳开口处,示例中,所述设备盖15转动连接于所述设备外壳14上,所述设备盖15上设置有设备把手151,手持设备把手151能够方便打开设备盖15。示例中,所述设备外壳上还设置有电源按钮18,所述电源按钮18能够控制设备的开启和关闭。
还包括放置架16,所述放置架16固定设置于所述容纳腔12内,如图12所示,所述放置架16还可以固定设置于设备外壳14的侧壁上,如图13所示,所述放置架16上开设有多个放置孔161,所述管套33放置于放置孔161内。
送液装置
所述送液装置3用于将原料液体按照一定的比例和数量、温度及其他控制要求等输送至微流体设备的微流控芯片盒内,以制得微流体混合液。
请参阅图1和图5-21,如图所示,所述送液装置包括支撑主体13和至少一个送液管31;
所述支撑主体13上开设有至少一个贯通的送液孔32,如图6和图15所示, 所述送液孔32位于所述微流控芯片盒2的进液口212下方,所述送液孔32与所述进液口212相对应;示例中,所述送液孔32有两个,当然,所述送液孔32包括但不限于两个,也根据用户需求、实验需求或生产需求,可以设置一个,也可以设置多个。示例中,所述送液孔32远离进液口212的一端开设有限位环槽3213。所述送液孔32既可以一体设计,如图12-17所示,所述送液孔32还可以分体设计,如图1和图5-11所示。
优选的,所述支撑主体13上设置有加热结构,所述加热结构能够加热所述送液孔32;所述微流控设备还包括控制系统,所述控制系统包括加热控制模块,所述加热结构与所述加热控制模块通讯连接,所述加热控制模块能够控制加热结构的开启、关闭、加热温度和加热时间。示例中,所述加热结构为加热片,所述加热片固定于所述支撑主体13远离滑杆132的一侧,所述送液孔32为导热送液孔,所述送液孔能够热传导于所述送液管31内的原料液体,优选的,加热片只加支撑主体13的送液孔32部分,支撑主体13的其他部分与送液孔32部分不进行热传导,即与其隔热处理。设置加热结构,能够加热原料液体,根据需要,设定加热温度、加热时间等条件,拓宽实验条件,为产品的制备方法提供更多的制备条件。
在优选的实施例中,所述支撑主体13上还设置有温度传感器,所述温度传感器能够检测送液孔32的温度;所述温度传感器与所述加热控制模块通讯连接,所述加热控制模块能够接收温度传感器检测到的送液孔32的温度,以精确控制加热的温度,提高实验或产品制备的精度。
所述送液管31容置于送液孔32内,所述送液管31与所述进液口212一一对应,所述送液管31包括溶液筒311和推拉杆312,如图18-19所示,所述溶液筒311具有两端开口的溶液腔3111,所述溶液腔3111内能够容置原料液体,所述推拉杆312能够在溶液腔3111内移动,所述推拉杆312自溶液腔3111的一端伸入并容纳于溶液腔3111内,所述溶液筒311远离推拉杆312的一端设置有中空的送液头3112,所述送液头3112内径小于溶液筒311内径,所述推拉杆312能够推送原料液体依次通过送液头3112和进液口212至微流控芯片盒2内。示例中,所述送液头3112外径大于微流控芯片盒2的进液口212内径,所述送液头3112外径不大于微流控芯片盒的进液口212内径,所述送液头3112伸入至进液口212内。示例中,所述推拉杆312靠近送液头3112的一端还设置有密 封垫,所述密封垫能够密封原料液体于溶液腔3111内,所述密封垫优选为橡胶垫,当然也可以为其他具有弹性的密封垫。
在一个实施例中,如图12-17所示,所述送液孔32为一体设计,所述支撑主体13转动连接于设备主体1上,所述支撑主体13能够绕设备主体1转动或翻转,所述加热片固定于所述支撑主体13远离滑杆132的一侧。一个示例,所述支撑主体13通过转轴转动连接于设备主体1上,所述转轴优选为阻尼转轴,当然所述转轴也可以为非阻尼转轴,所述支撑主体13的侧壁对称开设有转动孔133,所述设备主体1上开设有设备容纳孔17,所述设备容纳孔17与所述转动孔133一一对应,转轴一端固定容置于转动孔133内,转轴另一端固定容置于放置孔17内。另一示例,所述支撑主体13通过万向阻尼器转动连接于设备主体1上,其万向阻尼器转动更灵活,转动的角度和方向更多样,使用更方便。设置支撑主体能够翻转,方便所述送液管31自送液孔32内取出或放置于送液孔32内。所述支撑主体13远离送液孔32的一侧设置有限位翼134,所述限位翼134与所述设备主体1相抵触,所述限位翼134能够使支撑主体13抵触放置于设备主体1的开口处。
在另一个实施例中,如图1和图5-11所示,所述送液孔32为分体设计,所述支撑主体3包括移动部301和固定部302,所述移动部301与固定部302转动连接,所述移动部301能够绕固定部302转动,所述移动部301上设置有第一弧形部321,所述固定部302设置有第二弧形部322,所述第一弧形部321和第二弧形部322合围形成送液孔32。所述固定部302远离移动部301的一侧开设有加热槽135,所述加热片固定设置于加热槽135内,优选的,加热片只加热固定部302上的第二弧形部322,固定部302的其他部分和移动部301不加热,其与固定部302上的第二弧形部322做隔热处理。示例中,所述第一弧形部321沿轴线方向包括弧形段3211和圆形段3212,所述弧形段3211位于所述送液孔32远离微流控芯片盒2的一端,所述第二弧形部322与所述弧形段3211相匹配。优选的,所述弧形段3211的弧形夹角范围为180°-360°,所述弧形段3211能够阻止送液管31自送液孔32内松脱或掉落,优选的,所述弧形段3211弧形夹角范围为180°-270°,设置弧形夹角范围,使得所述送液孔32既能够卡扣送液管31,又方便取出和放置所述送液管31。示例中,固定部呈竖直固定状态,移动部301翻转起来呈接近水平状态时可以方便放置或取出所述送液管31,待 送液管31放置完成后,移动部301移动至与固定部302相抵触,此时所述第一弧形部321和第二弧形部322合围形成完整的送液孔32,然后可以自动或手动按压送液管31,根据实验的需要或要求向进液口输送原料液体。示例中,所述移动部301通过转轴、特别是阻尼转轴或万向阻尼器与固定部302转动连接,当然,还可以使用非阻尼转轴,或其他转动部件连接,只要能实现移动部301转动的部件,均在本专利的保护范围。示例中,所述支撑主体1上设置有翻转把手137,所述翻转把手137能够使得所述移动部301翻转更方便。设置翻转结构,翻转起来时,方便送液管安装和取出,使得设备操作更方便。
在再一个实施例中,所述送液装置还包括管套33,如图6和图20-21所示;
所述管套33呈两端开口的中空管,所述送液管31通过管套33卡扣于送液孔32内,所述管套33外的一端套设有限位环331,所述管套33容置于送液孔32内,所述限位环331与所述送液孔32孔口相抵触,所述管套33外径与送液孔32内径相一致,所述管套33内径与所述送液管31外径相一致,所述管套33长度不大于所述送液孔32长度;示例中,所述送液管31容纳原料液体的容积范围包括但不限于0.5ml-20ml;不同容积的送液管31的外径不相同,故不同容积规格的送液管31配置有与之相配套的管套33,不同规格的管套33的内径不相同,不同规格的管套33的外径均相同,管套33外径与所述送液孔32内径一致。优选的,不同容积的送液管31的内径也不相同,所述送液管31容纳原料液体的容积包括但不限于0.5ml、1ml、2ml、3ml、5ml、7ml、8ml、10ml、12ml、15ml、18ml和20ml。示例中,所述限位环331上对称开设有两个向内凹陷的弧形槽3311,所述限位环331与所述限位环槽3213相匹配,所述限位环331容置于所述限位环槽3213内。设置弧形槽3311,既美观,又便于取出和放置送液管31。一体设计的所述送液孔32,所述限位环槽3213侧壁开设有把手槽,所述管套33卡扣于所述送液孔32内,所述限位环331容置于所述限位环槽3213内,设置的把手槽方便自把手槽内取出管套33,方便操作。
设置管套,便于不同容积不同型号的送液管均可以适配于本送液装置,送液管可以采用市面上的医用注射器(针头除外),无需特意定制送液管,降低成本。
接液装置
所述接液装置4主要用于接收微流控设备制得的微流体混合液,当然还包 括收集废液。
请参阅图1-2、图4-13、图15-17和图22-23,如图所示,所述接液装置包括支撑主体13、接液滑块41和接液管42;
所述支撑主体13上可拆卸安装有至少一个滑杆132,所述支撑主体13上设置有多个滑杆孔1321,所述滑杆孔1321与所述盒体槽131位于所述支撑主体13的同一侧,所述滑杆孔1321位于所述盒体槽131的下方,所述滑杆132的端部可拆卸安装于滑杆孔1321内,示例中,所述滑杆132有两个,两个所述滑杆132轴向相同。
所述接液滑块41上设置有至少一个穿孔411和至少两个卡槽412,如图22所示,所述穿孔411与卡槽412相垂直,所述滑杆132穿过穿孔411并可拆卸安装于所述支撑主体13上,所述接液滑块41能够在所述滑杆132上滑动。所述接液管42具有一端开口的接液腔,如图1-2和图4-11所示,所述接液管42卡扣于卡槽412内,所述接液管42位于微流控芯片盒的出液口213的下方,所述接液管42开口朝上,所述微流控芯片盒2包括进液口212、微流道和出液口213,原料液体自进液口212进入,经过微流道制得微流体混合液,制得的微流体混合液自出液口213流出。示例中,所述穿孔411内径与所述滑杆132外径相一致,所述穿孔411和滑杆132均有两个,便于稳定接液滑块41,从而稳定接液管42,使其内的微流体混合液不发生漏洒;示例中,所述卡槽412有两个,当然所述卡槽412包括但不限于两个,可以有一个,还可以有更多个。当然,接液管还可以分为收集微流体混合液的收集管和收集废液的废液管。另外,接液管可以直接采用离心管,降低成本,但不仅仅只限于离心管,只要能起到接收微流体混合液功能的接液管均可。
优选的,所述支撑主体13上开设通槽136,所述通槽136设置于支撑主体13同侧的两个滑杆孔1321之间,所述通槽136轴线方向与所述滑杆132轴线方向相一致,所述接液管42靠近开口端一侧设置有卡环421,如图23所示,所述卡环421与卡槽412相抵触,所述卡环421能够阻止接液管42自卡槽412内滑落。
两两相邻卡槽412之间设置有废液槽413,所述废液槽413与所述卡槽412轴线方向相同,所述废液槽413开口朝上,所述废液槽413能够接收切换接液管时出液口212流出的液滴,所述废液槽413可以保持支撑主体13上及容纳腔 12内干净,避免制得的微流体混合液被污染。
在优选的实施例中,所述滑杆132上穿套有弹簧,所述弹簧位于所述接液滑块41的一侧,所述弹簧的一端与所述支撑主体13相抵触,所述弹簧的另一端与接液滑块41相抵触,所述弹簧能够抵触所述接液滑块41于滑杆132的一端,该滑杆132远离弹簧的一端记为所述接液滑块41的初始位置。所述弹簧抵触于接液滑块41的一侧,在接液滑块41滑动过程中,通过弹簧的抵触能够精确控制接液滑块41的滑动位置,另外,接液滑块41滑动结束后,所述弹簧通过弹力作用抵触接液滑块41于初始位置,使得所述接液滑块41自动复位,而无需手动调节至初始位置,这样便于接液装置4连续操作,实现自动化生产。
在优选的实施例中,所述接液装置4还包括驱动装置43,如图2、图4-5和图12-13所示,所述驱动装置43具有驱动杆431,所述驱动杆431容纳于容纳腔12内,所述驱动装置安装于设备主体的侧壁上,所述驱动杆431位于所述接液滑块41远离弹簧的一侧,所述驱动杆431与接液滑块41同轴设置,所述驱动装置能够驱动驱动杆431朝向接液滑块41方向移动,所述驱动杆431穿过通槽136驱动接液滑块41朝向远离驱动杆431方向移动,优选的,所述驱动杆431与所述接液滑块41同轴设置。所述驱动装置通过控制驱动杆431的伸出距离,在接液滑块41另一侧弹簧的配合下,进而控制接液滑块41的滑动位置,接液滑块41滑动到不同的位置,能够切换不同卡槽内的接液管42切换至微流控芯片盒的出液口213的下方,所述控制系统还包括接液控制模块,所述接液控制模块与驱动装置43通讯连接,所述接液控制模块能够控制驱动装置43的驱动杆431前进和后退。通过驱动装置切换不同的接液管42,便于自动化连续作业,有助于提高生产效率。
伸缩挤压装置
所述伸缩挤压装置5用于挤压推动所述送液管31内的原料液体至微流控芯片盒内。所述伸缩挤压装置固定于所述容纳腔12内,示例中,两个所述伸缩挤压装置5对称设置于所述容纳腔内。
请参阅图1、图4-5和图12-14,如图所示,所述伸缩挤压装置包括滑轨51、滑动结构52和驱动结构53;
所述滑轨51固定于设备主体1的内壁上,两个滑轨51对称固定于所述设备主体1的内壁上。
所述滑动结构52与所述滑轨51滑动配合,所述滑动结构52能够沿所述滑轨51滑动;一个实施例,所述滑动结构52上设置有滑槽,所述滑槽套设于所述滑轨51上,所述滑动结构52通过滑槽在滑轨51上滑动。一个实施例,所述滑轨51上设置滑轨槽,所述滑动结构52靠近滑轨51的一侧设置有滑块,所述滑块容纳于所述滑轨槽内,所述滑动结构52通过所述滑块在所述滑轨槽内移动。
所述驱动结构53能够驱动所述滑动结构52沿滑轨51移动。所述驱动结构53包括电机和与电机固定连接的丝杆531,所述丝杆531上设置有外螺纹;所述滑动结构52沿滑动方向开设有丝杆孔521,所述丝杆孔521内壁设置有与外螺纹相匹配的内螺纹,所述滑动结构52通过丝杆孔521穿套于所述丝杆531上,所述电机驱动所述丝杆531转动,转动的丝杆能够带动所述滑动结构52沿滑轨移动。所述伸缩挤压装置5能够自动控制挤压送液管以向微流控芯片盒内输送原料液体,而无需手动操作,便于原料液体稳定均匀输送,及能够定量控制输送的原料液体。
优选的,所述滑动结构52上安装有压力传感器54,所述压力传感器54能够检测所述滑动结构52推动接液管31的压力。
示例中,所述滑动结构52包括滑动主体522和活动片523,所述活动片523活动安装于所述滑动主体522上,所述滑动主体522和所述送液管31分别位于活动片523的两侧,所述活动片523与所述送液装置3的送液管31相对应,在驱动结构的驱动作用下,所述滑动结构52能够朝向所述送液管31移动,所述活动片523与所述送液管31相抵触;所述压力传感器54固定安装于所述滑动主体522上,所述压力传感器54与所述活动片523相抵触,所述压力传感器54能够感应并检测到所述活动片523与接液管相接触。所述活动片523形状包括但不限于方形、圆形、菱形、三角形、多边形、椭圆形或其他规则、不规则形状等。示例中,所述滑动主体522靠近滑轨51的一侧与所述滑动主体522靠近活动片523的一侧相垂直。设置压力传感器,能够准确检测所述伸缩挤压装置5挤压送液管31的压力,便于控制输送原料液体的速度,即能够定量控制输送原料液体的流量、流速,便于控制不同原料液体之间的配送比例。
在一个实施例中,如图4-5所示,所述活动片523的一端通过转轴与所述滑动主体522活动连接,所述滑动主体522靠近活动片523的一侧开设有感应孔5221,所述压力传感器54容置于所述感应孔5221内,所述压力传感器54与所 述活动片523相抵触。示例中,所述感应孔5221的轴线方向与所述丝杆531的轴线方向相一致。
在另一个实施例中,如图12-14所示,所述滑动结构52还包括感应件524;所述滑动主体522上开设有传感器槽5222,所述传感器槽5222开口朝向远离活动片523的方向,所述压力传感器54固定于传感器槽5222内,所述滑动主体522靠近活动片523的一侧开设有压力孔5223,所述压力孔5223与所述传感器槽5222相连通,所述感应件524的一端与所述压力传感器54固定连接,所述感应件524的另一端穿过所述压力孔5223并与所述活动片523相抵触。所述压力传感器能够通过感应件524的电阻值、挤压力或形变量检测所述活动片523的压力值,所述活动片的压力值也即所述滑动结构挤压送液管的压力值,需要说明的是,所述压力传感器还可以检测活动片523和/或感应件524的其他的物理量来检测滑动结构挤压送液管的压力值。示例中,所述感应件524的另一端设置有滑轮,所述感应件524通过滑轮与活动片523相抵触,所述滑轮能够减少感应件524与活动件523的摩擦力,避免感应件524和活动件523发生磨损,延长其使用寿命,并有助于延长设备的使用精度。
优选的,所述控制系统还包括挤压控制模块,所述压力传感器54与所述挤压控制模块通讯连接,所述挤压控制模块能够监控所述压力传感器54的压力值,所述驱动结构53与所述挤压控制模块通讯连接,所述挤压控制模块能够控制驱动结构53的开启、关闭、转动速度和转动方向,并通过控制驱动结构来调节所述活动片抵触待挤压物的压力值。示例中,所述伸缩挤压装置有两个,所述挤压控制模块分别单独控制两个所述伸缩挤压装置。设置挤压控制模块,挤压控制模块除了控制驱动结构的开启、关闭和转动速度外,还能够结合压力传感器检测的挤压送液管的压力值,根据设定或需要,适时调整驱动结构的转动速度和方向,以精确控制或动态变化控制输送原料液体的流量流速。
示例中,所述设备主体1的容纳腔12内设置有固定板55,所述滑轨51和滑动结构52位于所述固定板55的上方,所述驱动结构53位于所述固定板55下方,所述驱动结构53固定安装于所述固定板55上,所述丝杆531穿过固定板55并穿套于所述滑动结构52上。固定板55下方的容纳腔设定为辅机腔,辅机腔周围设置有辅机框架,辅机框架能够固定容纳驱动结构等辅助部件,辅机框架前后两端分别设有开放口用以安装和拆卸驱动结构等辅助部件,所述驱动 结构53固定于辅机腔内,所述设备主体1的侧壁上开设有排风口,所述排风口与所述辅机腔相连通,所述排风口设置有排风扇,排风扇能够使辅机腔通风散热。
微混合装置
所述微混合装置能够将一种或多种原料液体,通过控制原料液体的流量、流速和/或不同的微流道设计制备得到目标产物,即微流体混合液。
所述微混合装置包括但不限于微流控芯片盒、T型混合装置和金属混合装置等等,本专利主要以微流控芯片盒2为例来介绍微混合装置的结构特征。
请参阅图24-32,如图24-32所示,所述微流控芯片盒2包括盒体21、微流控芯片22和盒盖23;
所述盒体21具有一端开口的容置腔211,如图26-29所示,所述容置腔211底部设置有芯片槽2111和环形槽2112,所述环形槽2112绕设于所述芯片槽2111外侧,所述芯片槽2111和环形槽2112间隔设置,即所述芯片槽2111和环形槽2112不连通,所述盒体21上开设有至少两个进液口212和至少一个出液口213,所述进液口212和出液口213均与芯片槽2111相连通;示例中,所述进液口212设置有中空的进液柱2121,所述出液口213设置有中空的出液柱2131,所述进液柱2121和出液柱2131均朝向远离盒体21的方向延伸,所述进液柱2121和出液柱2131均与盒体21一体连接;优选的,所述进液口212和出液口213均为圆形,所述进液柱2121和出液柱2131均为圆柱形。示例中,所述进液口212和进液口212开口朝向下方,所述送液管31的送液头3112伸入至进液柱2121内,能够密封输送原料液体,防止送液头3112与进液柱2121接触不牢固造成原料液体漏洒,原料液体漏洒不仅影响不同原料液体之间的配比,影响制备的微流体混合液中各成分的比例,甚至无法制备出合格的微流体混合液,而且原料液体漏洒也污染容纳腔;所述盒体21底部设置有内环形凸条2116和外环形凸条2117,所述内环形凸条2116和外环形凸条2117同轴设置,所述内环形凸条2116和外环形凸条2117之间形成环形槽2112,所述内环形凸条2116围成芯片槽2111。
优选的,所述盒体21还固定连接有把手端214,所述把手端214位于所述盒体21远离出液口213的一端,所述把手端214的至少一侧表面设置有多个凸起2141,所述凸起2141优选为圆弧形凸起,当然所述凸起还可以为其他任意形 状。示例中,多个所述凸起2141呈阵列设置。设置所述把手端214,用于手扶把手端推动微流控芯片盒于盒体槽内,或推动微流控芯片盒2,以使卡扣有微流控芯片盒2的支撑主体13转动,设置所述凸起,能够起到防滑作用,便于操作,但凸起并不限于圆弧形,或并不限于凸起,还可以是在把手端表面设置凹凸纹路,只要能起到增大摩擦力又不会对手产生损伤的皆在本专利的保护范围内。示例中,所述把手端214两侧表面均设置有多个凸起2141。示例中,所述把手端214远离容置腔211的一端为弧形,所述弧形轴线方向与所述容置腔211平行。
所述微流控芯片22容置于芯片槽2111内,所述微流控芯片22内设置微流道,所述微流道的结构根据需要包括但不限于T型结构,Y型结构,十字型结构,SHM结构(即鱼骨结构)、特斯拉结构和回旋流结构等等。示例中,如图24、图26-27和图30-31所示,所述微流道的结构优选为回旋流结构,实验证实回旋流结构能够大大提高流速、同时包封率和分散性也更佳。所述微流道包括至少两个进液微流道221和至少一个混合微流道222,所述微流控芯片22上设置至少两个第一开口223和至少一个第二开口224,所述第一开口223与进液微流道221一一对应,所述第一开口与所述进液口一一对应,所述第二开口与所述出液口相对应,所述进液微流道221的一端与第一开口223相连通,所述进液微流道221的另一端与混合微流道222的一端相连通,所述混合微流道222的另一端与第二开口224相连通;示例中,所述芯片槽2111内径与所述微流控芯片22外径相一致,所述第一开口223和第二开口224均设置在微流控芯片22的同一侧;微流控芯片22的材质包括但不限于聚合物类、不锈钢和PEEK等,所述聚合物类包括但不限于环烯烃聚合物(cop),环烯烃共聚物(coc)和聚二甲基硅氧烷(pdms)等,其微流控芯片22的制作方法包括但不限制于注塑、精密机加工等材料加工手法,同时微流控芯片通道的封装工艺包括但不限于超声键合、热压键合、激光焊接和冷/热压焊等等。
所述盒盖23盖合于所述盒体21的开口处,如图32所示,所述盒盖23抵触微流控芯片22于芯片槽内,所述盒盖23上设置有环形卡条231,所述环形卡条231卡合于所述环形槽2112内。示例中,所述环形卡条231的内侧具有倾斜面,设置所述倾斜面,能够起到密封作用,使得所述环形卡条231超声波焊接并密封在环形槽2112内。所述盒盖23上开设有至少两个固定槽232,所述微流 控芯片盒容置于微流控设备上时,所述微流控芯片盒能够通过固定槽固定于微流控设备上,固定槽起到定位和固定的作用。所述盒体槽131侧壁设置有突起结构,所述突起结构与固定槽232相对应,所述微流控芯片盒插入盒体槽131内时,所述突起结构卡扣于固定槽232内,示例中,盒体槽131侧壁开设有贯通的卡合孔,固定件容置于卡合孔内并伸出至盒体槽内,形成突起结构,起到固定卡合微流控芯片盒的作用,当然,还可以有其他形式的突起结构,只要能够起到固定卡合微流控芯片盒的作用即可。
所述混合微流道包括但不限于直线型微流道、和/或环绕型微流道、和/或曲线形微流道、和/或回旋流型微流道。示例中,所述混合微流道222为回旋流型微流道,所述回旋流混合微流道为多个S型微流道结构依次首尾相接构成的回旋流混合微流道,沿着原料液体的流动方向,相邻两个S型微流道结构可以平滑相连接,也可以错位相连接,可以错位于前一个S型微流道结构的内部,也可以错位于前一个S型微流道结构的外部。示例中,后一个S型微流道结构错位于前一个S型微流道结构的内部,如图30所示。所述混合微流道能够使原料液体混合、和/或包覆、和/或比例配置、和/或分离、和/或分选、和/或提纯。通过设置微流道的形状、结构以及微流道内径,使得微流道能够对两种或两种以上原料液体进行很好的混合、和/或包覆、和/或比例配置、和/或分离、和/或分选、和/或提纯等等的操作,以达到实验制备的目的。
所述进液微流道包括但不限于直线型微流道、和/或环绕型微流道、和/或曲线形微流道、和/或回旋流型微流道。示例中,所述进液微流道为直线型微流道。所述进液微流道包括第一进液微流道2211和第二进液微流道2212,所述第一进液微流道2211和第二进液微流道2212的形状和内径尺寸可以相同也可以不同。可以通过设置进液微流道的形状和内径尺寸来控制原料液体的流量及流速,以使不同的原料液体混合后达到更好的混合效果、包覆效果或其他等等。
在一个优选的实施例中,还包括密封结构,所述第一开口223与所述进液口212之间设置有密封结构,所述第二开口224与出液口213之间设置有密封结构。示例中,所述密封结构为密封圈241,所述芯片槽2111底部开设有至少两个进液密封槽2113和出液密封槽2114,所述进液密封槽2113和出液密封槽2114内均容置有密封圈241,所述第一开口223通过密封圈241与进液口212相抵触,所述第二开口224通过密封圈241与出液口213相抵触。当然,进液 密封槽2113内的密封圈241与出液密封槽2114的密封圈241可以相同也可以不同,进液密封槽2113内的密封圈241与进液密封槽2113相匹配,出液密封槽2114的密封圈241与出液密封槽2114相匹配。示例中,所述进液密封槽2113与所述进液口212同轴设置,所述出液密封槽2114与所述出液口213同轴设置,所述进液密封槽2113内径大于所述进液口212内径,所述出液密封槽2114内径大于所述出液口213内径,所述进液密封槽2113内的密封圈241外径大于第一开口223内径,所述出液密封槽2114的密封圈241外径大于所述第二开口224内径;实现微流控芯片的第一出口和第二出口分别与盒体的进液口和出液口之间密封连接,防止微流控芯片盒2内的液体洒漏,不仅影响实验结果,且会污染下一次制备时的原料或微流体混合液产物。
在再一个优选的实施例中,所述芯片槽2111底部设置限位柱2115,所述微流控芯片22上设置贯通的限位孔226,所述限位柱2115容纳于限位孔226内。所述限位柱和限位孔226能限定微流控芯片22在芯片槽的位置,以使所述第一开口与所述进液口一一对应连通,所述第二开口与所述出液口对应连通,不致错位,避免出现漏液或堵塞等情况,还能起到固定微流控芯片22的作用。
优选的,所述微流控芯片盒主要用于物料的混合和液滴的生成,特别是纳米药物、纳米载体和微球的制备。纳米药物包括但不限于核酸类药物、小分子纳米药物和纳米晶药物等,纳米载体包括但不限于脂质纳米粒(LNP)、聚合物、多肽和蛋白等所述核酸类药物包括但不限于mRNA、siRNA、环状RNA和自复制RNA等,所述小分子纳米药物包括但不限于紫杉醇脂质体和阿霉素脂质体等;微球包括但不限于PLGA微球、凝胶微球和栓塞微球等。
我们分别使用本专利微流控设备和传统分开搭建式微流控装置测试了经典LNP处方包裹mRNA药物的工艺制备情况,处方中所选用的LNP的为经典的Dlin-MC3处方(溶解于100%药用乙醇中),包裹物选用了荧光素酶mRNA(Luc mRNA),溶解于一定PH值中的注射用水缓冲液中),出于保密原因,具体处方浓度不予公布。
表1本专利设备以及传统分开搭建式微流控装置制备经典LNP处方包裹 mRNA药物情况表
Figure PCTCN2022131142-appb-000001
上述PDI表示聚合物分散性指数,其数据结果证实了本专利微流控设备制得的LNP处方包裹mRNA药物分散性更好、包封率更高,包封率高达96%,分散性指数达到0.03%,同时也能够达到120ml/min的高流速,故而本专利微流控设备的有效实用更强,同时也更为方便便捷,效率更高。
以上部件的所有技术特征在不冲突的情况下可以任意自由组合,另外,部件结构上的变化、变型和修改也均在本专利的保护范围。
本专利所述的微流控设备的有益效果是:
(1)本专利所述的微流控设备,其设备构造简单、自动化程度高、操作方便,制备精度较高,使用微混合装置制备微流体混合液,通过自动化精确控制原料液体的进入微混合装置内的进液量及进液速度,以精确控制各原料液体之间的配比,另外,接液装置的不同接液管之间可自动切换,能够实现制备的微流体混合液的多剂量连续制备;不仅应用实验或小批量产品制作,同时也能够进行工艺放大,应用于生产上。
(2)微混合装置设置微流道,通过设置微流道的形状(包括直线、曲线、环绕型或回旋流型等)、结构(包括但不限于T型结构,Y型结构,十字型结构,SHM鱼骨结构、特斯拉结构和回旋流结构)和内径尺寸,来控制原料液体的流量和流速,及对混合后的液体的混合、和/或包覆、和/或比例配置、和/或分离、和/或分选、和/或提纯等等操作,以精确制备出理想的微流体混合液,特别是制备核酸类药物或者疫苗的纳米包裹等。
(3)微混合装置设置密封圈,实现微流控芯片的第一出口和第二出口分别与盒体的进液口和出液口之间密封连接,防止液体洒漏,不仅影响实验结果,且会污染再次制备的原料或产物;微混合装置设置限位柱,对微流控芯片起到限位和固定作用,避免微流控芯片滑动错位出现漏液或堵塞等情况。微混合装置设置把手端,用于手扶把手端推动微混合装置于盒体槽内,或推动微混合装置,以使卡扣有微混合装置的支撑主体转动,设置凸起,能够起到防滑作用,便于操作。
(4)支撑主体上设置第一弧形部和第二弧形部,第二弧形部可转动,便于取出和放置送液管,且第二弧形部具有牢固固定送液管的圆形段和弧形夹角大于180°的弧形段,使得弧形段也能够牢固卡扣送液管和/或管套,防止其松脱或掉落,达到既方便取出和放置送液管,又能牢固卡扣送液管的目的。
(5)送液装置设置加热结构,能够加热原料液体,根据需要,设定加热温度、加热时间等条件,拓宽实验条件,为产品的制备方法提供更多的制备条件。还设置有温度传感器和控制系统,便于精确控制加热开始/结束时间、加热温度和加热时长,便于精确控制制备条件,从而有助于制备出精度、纯度更高和稳定性更好的微流体混合液。
(6)设置送液孔的支撑主体能够翻转,其通过支撑主体绕设备主体转动,或支撑主体设置固定部和能够绕固定部转动的移动部,能够使送液孔发生转动,便于送液管安装于送液孔内或自送液孔内取出,且翻转后能够清晰观察到送液管有无牢固安装入进液口内,确保了原料液体向微混合装置内输送时不发生泄漏,确保稳定制备出微流体混合液;另外,转动部件优选阻尼转轴或万向阻尼器,可以根据需要使送液孔翻转在任意的位置,操作非常方便,极大提升用户体验。
(7)送液装置还配置有伸缩挤压装置,能够自动控制向微混合装置内挤压 送液管中的原料液体,而无需手动操作,便于原料液体稳定均匀输送,及能够定量控制输送的原料液体。其设置压力传感器,能够用于自动化感应送液管是否接触伸缩装置,便于控制原料液体的输送速度,即能够定量控制原料液体输送的流量、流速,便于控制不同原料液体之间的配送比例。其设置控制系统,控制系统除了控制驱动结构的开启、关闭和转动速度外,还能够结合压力传感器检测的挤压送液管的压力值,根据设定或需要,适时调整驱动结构的转动速度和方向,以精确控制或动态变化控制输送原料液体的流量流速。
(8)接液装置,其设置有接液滑块,可安装多个接液管,多个接液管通过接液滑块的滑动切换来收集微流体混合液,方便连续作业,且制作过程中收集完成的接液管能够取下,安装上新的接液管继续收集微流体混合液。接液滑块上设置废液槽,切换不同接液管时能够收集出液口流出的液滴,保持装置干净,保证制得的微流体混合液不被污染。接液装置设置驱动装置和弹簧,能够驱动接液滑块沿滑杆来回移动,从而实现接液管自动切换,提供工作效率,且在驱动装置的另一侧设置弹簧,操作完成后接液滑块能够通过弹簧自动回复至初始位置,方便驱动装置连续操作,并精确控制接液滑块的移动位置。
(9)本专利所述的微流控设备不仅可以用于前期1-20ml/min流速范围的低流速纳米药物处方筛选,更突破性的解决了传统微流控装置不能工艺放大的问题,最高流速可以支持到120ml/min。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改和变型。

Claims (18)

  1. 一种微流控芯片盒,其特征在于,包括;
    盒体(21),所述盒体(21)具有一端开口的容置腔(211),所述容置腔(211)底部设置有芯片槽(2111)和环形槽(2112),所述环形槽(2112)绕设于所述芯片槽(2111)外侧,所述盒体(21)上开设有至少一个进液口(212)和至少一个出液口(213),所述进液口(212)和出液口(213)均与芯片槽(2111)相连通;
    微流控芯片(22),所述微流控芯片(22)容置于芯片槽(2111)内,所述微流控芯片(22)内设置微流道,所述微流控芯片(22)上开设有至少一个第一开口(223)和至少一个第二开口(224),所述第一开口(223)通过微流道与第二开口(224)连通,所述第一开口(223)与所述进液口对应连接,所述第二开口与所述出液口相对应连接;
    盒盖(23),所述盒盖(23)盖合于所述盒体(21)的开口处,所述盒盖(23)上设置有环形卡条(231),所述环形卡条(231)卡合于所述环形槽(2112)内。
  2. 根据权利要求1所述的微流控芯片盒,其特征在于,所述微流道的结构包括T型结构、Y型结构、十字型结构、SHM鱼骨结构、特斯拉结构和回旋流结构。
  3. 根据权利要求2所述的微流控芯片盒,其特征在于,所述微流道包括至少一个进液微流道(221)和至少一个混合微流道(222)。
  4. 根据权利要求3所述的微流控芯片盒,其特征在于,所述混合微流道为直线型微流道、和/或环绕型微流道、和/或曲线型微流道、和/或回旋流型微流道;
    所述进液微流道为直线型微流道、和/或环绕型微流道、和/或曲线型微流道、和/或回旋流型微流道。
  5. 根据权利要求4所述的微流控芯片盒,其特征在于,所述混合微流道(222)为回旋流型微流道,所述回旋流型微流道为多个S型微流道依次首尾相接构成 的回旋流型微流道。
  6. 根据权利要求3所述的微流控芯片盒,其特征在于,所述第一开口(223)与进液微流道(221)一一对应,所述进液微流道(221)的一端与第一开口(223)相连通,所述进液微流道(221)的另一端与混合微流道(222)的一端相连通,所述混合微流道(222)的另一端与第二开口(224)相连通。
  7. 根据权利要求1所述的微流控芯片盒,其特征在于,还包括密封结构,所述第一开口(223)与所述进液口(212)设置有密封结构,所述第二开口(224)与出液口(213)设置有密封结构;
    所述进液口(212)设置有中空的进液柱(2121),所述出液口(213)设置有中空的出液柱(2131),所述进液柱(2121)和出液柱(2131)均朝向远离盒体(21)的方向延伸。
  8. 根据权利要求1所述的微流控芯片盒,其特征在于,所述芯片槽(2111)底部设置限位柱(2115),所述微流控芯片(22)上设置限位孔(226),所述限位柱(2115)容纳于限位孔(226)内;
    所述盒体(21)还固定连接有把手端(214),所述把手端(214)位于所述盒体(21)远离出液口(213)的一端,所述把手端(214)的至少一侧表面设置有多个凸起(2141)。
  9. 根据权利要求3所述的微流控芯片盒,其特征在于,所述进液微流道至少有两个,至少两个进液微流道的形状和内径尺寸相同,或
    至少两个进液微流道的形状和/或内径尺寸不同。
  10. 根据权利要求7所述的微流控芯片盒,其特征在于,所述密封结构为密封圈(241),所述芯片槽(2111)底部开设有至少两个进液密封槽(2113)和出液密封槽(2114),所述进液密封槽(2113)和出液密封槽(2114)内均容置有密封圈(241),所述第一开口(223)通过密封圈(241)与进液口(212)相抵触,所述第二开口(224)通过密封圈(241)与出液口(213)相抵触。
  11. 一种微流控设备,其特征在于,包括设备主体(1)、微混合装置、送液装置(3)和接液装置(4);
    所述设备主体(1)包括开口(11)和容纳腔(12),所述开口(11)与容纳腔(12)相连通,所述微混合装置、送液装置(3)和接液装置(4)均容置于容纳腔内,所述微混合装置为微流控芯片盒,微流控芯片盒包括微流道、至少一个进液口(212)和至少一个出液口(213),所述进液口(212)和出液口(213)通过微流道相连通,所述送液装置(3)与所述进液口(212)相配合,所述送液装置(3)能够输送原料液体于进液口(212)内,所述接液装置(4)与所述出液口(213)相对应,所述接液装置(4)能够接收自出液口(213)的微流体混合液。
  12. 根据权利要求1所述的微流控设备,其特征在于,所述设备主体(1)还包括支撑主体(13),所述支撑主体(13)容置于所述容纳腔(12)内,所述支撑主体(13)上开设有盒体槽(131)和至少一个送液孔(32),所述盒体槽(131)与所述送液孔(32)相连通,所述微混合装置卡扣于盒体槽(131)内,所述微混合装置的进液口与所述送液孔(32)相对应;
    所述送液装置(3)包括至少一个送液管(31),所述送液管(31)内能够容置有原料液体。
  13. 根据权利要求2所述的微流控设备,其特征在于,所述接液装置(4)包括接液滑块(41)和接液管(42),所述接液滑块(41)滑动安装于所述支撑主体上,所述接液滑块(41)上开设有废液槽(413)和至少两个卡槽(412),所述废液槽(413)设置于两两相邻卡槽(412)之间,所述废液槽(413)能够接收出液口(213)的废液,所述接液管(42)卡扣于卡槽(412)内,所述接液管(42)能够接收出液口(213)的微流体混合液。
  14. 根据权利要求2所述的微流控设备,其特征在于,还包括伸缩挤压装置(5),所述伸缩挤压装置(5)与所述送液管(31)相对应,所述伸缩挤压装置(5)设置于所述送液管(31)远离微混合装置的一侧,所述伸缩挤压装置(5)能够推送送液管(31)内原料液体至进液口(212);
    设置有送液孔(32)的支撑主体(13)能够转动。
  15. 根据权利要求2所述的微流控设备,其特征在于,所述送液装置(3)还包括加热结构,所述加热结构能够加热所述送液孔(32),所述送液孔能够热传导于所述送液管(31)内的原料液体。
  16. 根据权利要求5所述的微流控设备,其特征在于,设置有送液孔(32)的支撑主体(13)能够转动并停止于任意位置;
    所述送液装置还包括管套(33),不同容积的送液管(31)通过管套(33)卡扣于所述送液孔(32)内。
  17. 根据权利要求5或7所述的微流控设备,其特征在于,所述支撑主体(13)转动连接于设备主体(1)上,或
    所述支撑主体(13)包括移动部和固定部,所述固定部固定设置于所述设备主体上,所述移动部能够绕固定部转动,所述移动部上设置有第一弧形部,所述固定部设置有第二弧形部,所述第一弧形部和第二弧形部合围形成送液孔。
  18. 根据权利要求2所述的微流控设备,其特征在于,所述微混合装置上开设有至少两个固定槽(232),所述盒体槽内设置有突起结构,所述微混合装置容置于盒体槽(131)内,所述突起结构卡扣于固定槽(232)内。
PCT/CN2022/131142 2021-11-12 2022-11-10 一种微流控芯片盒及其微流控设备 WO2023083257A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111342721.7 2021-11-12
CN202111342718.5 2021-11-12
CN202111342721.7A CN116116284A (zh) 2021-11-12 2021-11-12 一种微流控设备
CN202111342718.5A CN116116470A (zh) 2021-11-12 2021-11-12 一种微流控芯片盒

Publications (1)

Publication Number Publication Date
WO2023083257A1 true WO2023083257A1 (zh) 2023-05-19

Family

ID=86335120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131142 WO2023083257A1 (zh) 2021-11-12 2022-11-10 一种微流控芯片盒及其微流控设备

Country Status (1)

Country Link
WO (1) WO2023083257A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117990174A (zh) * 2024-04-03 2024-05-07 滨州市检验检测中心(滨州市纺织纤维检验所、滨州市厨具产品质量检验中心) 一种液体计量装置
CN117990174B (zh) * 2024-04-03 2024-06-04 滨州市检验检测中心(滨州市纺织纤维检验所、滨州市厨具产品质量检验中心) 一种液体计量装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052471A1 (ja) * 2005-11-07 2007-05-10 Konica Minolta Medical & Graphic, Inc. マイクロリアクタおよびそれを用いた送液方法
CN111514948A (zh) * 2020-04-27 2020-08-11 京东方科技集团股份有限公司 微流控芯片和检测系统
CN112195094A (zh) * 2020-09-30 2021-01-08 苏州莱博睿思生物科技有限公司 一种微流控芯片盒
CN216458927U (zh) * 2021-11-12 2022-05-10 迈安纳(上海)仪器科技有限公司 一种微流控芯片盒
CN216778659U (zh) * 2021-11-12 2022-06-21 迈安纳(上海)仪器科技有限公司 一种微流控设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052471A1 (ja) * 2005-11-07 2007-05-10 Konica Minolta Medical & Graphic, Inc. マイクロリアクタおよびそれを用いた送液方法
CN111514948A (zh) * 2020-04-27 2020-08-11 京东方科技集团股份有限公司 微流控芯片和检测系统
CN112195094A (zh) * 2020-09-30 2021-01-08 苏州莱博睿思生物科技有限公司 一种微流控芯片盒
CN216458927U (zh) * 2021-11-12 2022-05-10 迈安纳(上海)仪器科技有限公司 一种微流控芯片盒
CN216778659U (zh) * 2021-11-12 2022-06-21 迈安纳(上海)仪器科技有限公司 一种微流控设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117990174A (zh) * 2024-04-03 2024-05-07 滨州市检验检测中心(滨州市纺织纤维检验所、滨州市厨具产品质量检验中心) 一种液体计量装置
CN117990174B (zh) * 2024-04-03 2024-06-04 滨州市检验检测中心(滨州市纺织纤维检验所、滨州市厨具产品质量检验中心) 一种液体计量装置

Similar Documents

Publication Publication Date Title
US20220274072A1 (en) Fluid injection
CN109908986B (zh) 一种基于出口不对称毛细管的液滴生成系统及使用方法
US7883265B2 (en) Devices, systems, and methods for preparing emulsions
Li et al. Simple and reusable off-the-shelf microfluidic devices for the versatile generation of droplets
US9464736B2 (en) Apparatus and methods for transferring materials between locations possessing different cross-sectional areas with minimal band spreading and dispersion due to unequal path-lengths
EP1358931A2 (en) Fine channel device, fine particle producing method and solvent extraction method
EP1483052B1 (en) Retaining microfluidic microcavity and other microfluidic structures
US20110284375A1 (en) Microfluidic device and analyzing device using the same
CA2439627A1 (en) Structural units that define fluidic functions
CN101982229B (zh) 用于单分散乳液制备的重力驱动微流体装置及方法
CN103454126A (zh) 一种可调式液滴发生装置
WO2020007098A1 (zh) 数字pcr芯片及包含它的液滴生成系统和检测系统
CN209162064U (zh) 用于数字pcr检测的液滴生成系统
CN106669556B (zh) 一种利用变换微流控通道制备毫米级颗粒的方法
CN216458927U (zh) 一种微流控芯片盒
CN216778659U (zh) 一种微流控设备
CN116116284A (zh) 一种微流控设备
WO2023083257A1 (zh) 一种微流控芯片盒及其微流控设备
CN105214546B (zh) 一种基于脉动流的震荡射流式微混合器
CN201823514U (zh) 用于单分散乳液制备的重力驱动微流体装置
CN105163857B (zh) 流体储存器
Zhang et al. Bent-capillary-centrifugal-driven monodisperse droplet generator with its application for digital LAMP assay
CN208177379U (zh) 多重乳液发生装置
TWI281415B (en) A filtering apparatus for high efficient collection of nanoparticles
Sundra et al. The effects of micromixing two solutions of two concentrations in a two tier PDMS micromixer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892050

Country of ref document: EP

Kind code of ref document: A1