WO2023083223A1 - 气雾生成装置、感应线圈及其制备方法 - Google Patents

气雾生成装置、感应线圈及其制备方法 Download PDF

Info

Publication number
WO2023083223A1
WO2023083223A1 PCT/CN2022/130933 CN2022130933W WO2023083223A1 WO 2023083223 A1 WO2023083223 A1 WO 2023083223A1 CN 2022130933 W CN2022130933 W CN 2022130933W WO 2023083223 A1 WO2023083223 A1 WO 2023083223A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction coil
wire
generating device
aerosol generating
conductive
Prior art date
Application number
PCT/CN2022/130933
Other languages
English (en)
French (fr)
Inventor
戚祖强
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111318784.9A external-priority patent/CN116098325A/zh
Priority claimed from CN202211351480.7A external-priority patent/CN117981907A/zh
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Publication of WO2023083223A1 publication Critical patent/WO2023083223A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up

Definitions

  • the embodiments of the present invention relate to the technical field of electronic atomization, and in particular to an aerosol generating device, an induction coil and a preparation method thereof.
  • Smoking articles eg, cigarettes, cigars, etc.
  • Burn tobacco during use to produce tobacco smoke. Attempts have been made to replace these tobacco-burning products by making products that release compounds without burning them.
  • An example of such a product is a heating device, which releases a compound by heating rather than burning a material.
  • the material may be tobacco or other non-tobacco products, which may or may not contain nicotine.
  • an aerosol generating device can generate a magnetic field through an induction coil to induce heating of the susceptor to heat the atomized liquid matrix to release the compound to generate an aerosol for the user to inhale.
  • the induction coil of the existing aerosol generating device is produced, since the induction coil is prepared by one or more thin conductive threads, it is easy to break the wire during the twisting process, and the AC impedance of the coil is relatively large. The heat generation efficiency of the aerosol-generating device is low.
  • the first aspect of the present application provides an aerosol generating device, including: an induction coil, used to generate a changing magnetic field; a receptor, used to induce heat in the changing magnetic field, thereby heating the aerosol generating substrate to generate an aerosol; wherein, the The wire material of the induction coil includes more than two bundles of wire cores; the wire cores include more than two conductive wires.
  • the cross section of the conductive material of the induction coil is circular or rectangular.
  • the induction coil is configured as a solenoid coil or a planar helical coil.
  • the wire material of the induction coil includes 3-10 bundles of the wire cores.
  • the conductive filament has a diameter of 0.02-0.2 mm.
  • the conductive filament has a percentage elongation at break of 1-6%.
  • the core has an ultimate tensile strength greater than 50 MPa.
  • more than two conductive wires in the wire cores are twisted; and/or, more than two bundles of the wire cores in the wire material of the induction coil are twisted of.
  • the core further includes a first covering layer for covering two or more conductive wires; and/or, the induction coil further includes a covering layer for covering two bundles of the above-mentioned The second coating of the core.
  • the aerosol-generating matrix includes a liquid matrix
  • the susceptor is configured to heat the liquid matrix to generate an aerosol
  • each bundle of the wire cores is made of a plurality of conductive wires twisted one or more times.
  • the number of conductive filaments used in the first twisting of the plurality of conductive filaments is between 3 and 20.
  • the wire core is formed by twisting a plurality of conductive wires three or four times.
  • the diameter of the conductive wire is between 0.01 mm and 0.05 mm.
  • the wire material of the induction coil includes 500-2000 conductive wires.
  • the operating frequency provided to the induction coil is between 500KHz-3MHz.
  • the induction coil is configured as a solenoid coil, and the number of turns of the solenoid coil is between 4 turns and 20 turns.
  • the cross-section of the hollow part of the solenoid coil is elliptical.
  • the distance between adjacent turns of the solenoid coil is between 0.1 mm and 2 mm.
  • the second aspect of the present application provides an induction coil for an aerosol generating device, the induction coil is configured to generate a changing magnetic field; the wire material of the induction coil includes multiple bundles of wire cores, each bundle of wire cores It is formed by twisting a plurality of conductive threads one or more times; wherein, the number of conductive threads used in the first twisting of the plurality of conductive threads is between 3 and 20.
  • the third aspect of the present application provides a method for preparing an induction coil for an aerosol generating device, the method comprising: providing 3 to 20 conductive wires, and obtaining the first-level wire core after the first twisting ;Provide multiple bundles of first-level wire cores, and the second-level wire cores are obtained after multiple bundles of first-level wire cores are twisted for the second time; provide multiple bundles of second-level wire cores, and multiple bundles of second-level wire cores are passed through the third The wire material of the induction coil is formed after secondary twisting.
  • multiple bundles of second-level wire cores are twisted for the third time to obtain third-level wire cores; multiple bundles of third-level wire cores are provided, and multiple bundles of third-level wire cores are twisted for the fourth time Then form the wire material of the induction coil.
  • the above induction coil is advantageous for suppressing the current offset formed by itself and reducing the internal loss of the induction coil itself. Moreover, the induction coil of the above-mentioned aerosol generating device can avoid disconnection, reduce the AC impedance of the induction coil itself, reduce the loss caused by the internal proximity effect, and improve the heating efficiency of the aerosol generating device.
  • Fig. 1 is a schematic structural view of the aerosol generating device provided in Example 1 of the specific embodiment of the present application;
  • Fig. 2 is a structural schematic diagram of an angle of view of the induction coil in Fig. 1;
  • Fig. 3 is a schematic cross-sectional view of the wire material of the induction coil in Fig. 2;
  • Fig. 4 is a schematic cross-sectional view of the wire material of the induction coil in another implementation example provided in Embodiment 1 of the specific implementation mode of the present application;
  • Fig. 5 is a schematic cross-sectional view of an induction coil in yet another implementation example provided in Embodiment 1 of the specific embodiment of the present application;
  • Fig. 6 is a schematic cross-sectional view of the wire material of the induction coil in Fig. 5;
  • Fig. 7 is a schematic structural diagram of an induction coil of another implementation example provided in Embodiment 1 of the specific implementation mode of the present application;
  • Fig. 8 is a schematic structural diagram of an induction coil of another implementation example provided in Embodiment 1 of the specific implementation mode of the present application;
  • Fig. 9 is a schematic structural view of an aerosol generating device provided in Embodiment 1 of the specific embodiment of the present application.
  • Fig. 10 is the temperature change curve of the induction coil provided in Example 1 of the specific embodiment of the present application and the induction coil of the comparative example during use;
  • Fig. 11 is a schematic diagram of the aerosol generating device provided in Example 2 of the specific embodiment of the present application.
  • Fig. 12 is a schematic diagram of the induction coil provided in Example 2 of the specific implementation mode of the present application.
  • Fig. 13 is a schematic cross-sectional view of the wire material of the induction coil provided in Example 2 of the specific embodiment of the present application;
  • Fig. 14 is a schematic cross-sectional view of another wire material of the induction coil provided in Example 2 of the specific embodiment of the present application;
  • Fig. 15 is a schematic diagram of another induction coil provided in Embodiment 2 of the specific implementation mode of the present application;
  • FIG. 16 is a schematic diagram of a method for forming an induction coil provided in Example 2 of the specific implementation manner of the present application.
  • the aerosol-generating device is used to heat an aerosol-generating substrate to generate an inhalable aerosol.
  • the aerosol-generating substrate can be a solid substrate or a liquid substrate;
  • the carrier carrying the above-mentioned aerosol-generating substrate can be a rod-shaped or rod-shaped aerosol-generating product, and the aerosol-generating product comprises at least one volatile solid-state substrate;
  • the carrier can also be a pod capable of holding a certain volume of liquid matrix, and the pod has a liquid storage cavity or a holding medium for storing the liquid matrix inside the pod.
  • An embodiment of the present application proposes an aerosol generating device, the structure of which can be seen in Figure 1, including:
  • the induction coil 50 is used to generate a changing magnetic field under an alternating current
  • the susceptor 30, at least a part of which extends in the chamber, is configured to be inductively coupled with the induction coil 50, and generates heat when penetrated by a changing magnetic field, thereby heating the aerosol-generating substrate A such as a cigarette, so that the aerosol-generating substrate A volatilization of at least one component to form an aerosol for inhalation;
  • the cell 10 is a rechargeable DC cell that can output DC current
  • the circuit 20 is connected to the rechargeable battery cell 10 through proper electrical connection, and is used to convert the DC current output by the battery cell 10 into an alternating current with a suitable frequency and then supply it to the induction coil 50 .
  • the induction coil 50 may comprise a helically wound cylindrical inductor coil, as shown in FIG. 1 .
  • the helically wound cylindrical induction coil 50 may have a radius r in the range of about 5 mm to about 10 mm, and in particular the radius r may be about 7 mm.
  • the length of the helically wound cylindrical induction coil 50 may be in the range of about 8 mm to about 14 mm, and the number of turns of the induction coil 50 is in the range of about 8 turns to 15 turns.
  • the internal volume may be in the range of about 0.15 cm3 to about 1.10 cm3.
  • the frequency of the alternating current supplied by the circuit 20 to the induction coil 50 is in the range of 80KHz-500KHz; more specifically, the frequency may be in the range of about 200KHz to 300KHz.
  • the DC power supply voltage provided by the battery cell 10 is in the range of about 2.5V to about 9.0V, and the amperage of the DC current provided by the battery cell 10 is in the range of about 2.5A to about 20A.
  • the susceptor 30 is generally in the shape of a pin or a needle or a rod or a blade, which is advantageous for insertion into the aerosol-generating substrate A; meanwhile, the susceptor 30 may have a length of about 12 mm, About 4 mm in width and about 0.5 mm in thickness, and may be made of grade 430 stainless steel (SS430). As an alternative embodiment, susceptor 30 may have a length of about 12 mm, a width of about 5 mm, and a thickness of about 0.5 mm, and may be made of grade 430 stainless steel (SS430).
  • SS430 grade 430 stainless steel
  • the susceptor 30 can also be configured into a cylindrical or tubular shape; when in use, its inner space forms a chamber for receiving the aerosol-generating substrate A, and through the aerosol-generating substrate A The way of heating the periphery of the device generates an aerosol for inhalation.
  • the susceptors 30 may also be made of grade 420 stainless steel (SS420), and alloy materials containing iron/nickel such as permalloy.
  • the aerosol generating device further includes a support 40 for arranging the induction coil 50 and the receptor 30 , and the material of the support 40 may include high-temperature-resistant non-metallic materials such as PEEK or ceramics.
  • the induction coil 50 is wound on the outer wall of the bracket 40 and then fixed.
  • the bracket 40 has a hollow tubular shape, and a part of the tubular hollow space forms the chamber for receiving the aerosol-generating substrate A mentioned above.
  • the susceptor 30 is made of the above-mentioned susceptibility materials, or is obtained by electroplating, depositing, etc. on the outer surface of a heat-resistant base material such as ceramics to form a susceptibility material coating.
  • FIG. 2 shows a schematic structural view of the induction coil 50 in one embodiment; the induction coil 50 is a solenoid coil wound by an elongated wire material; and is arranged around the chamber and/or the susceptor 30 after assembly.
  • the cross-sectional profile of the wire material of the induction coil 50 is circular.
  • FIG. 3 shows a schematic cross-sectional view of an embodiment of the wire material of the induction coil 50 in Fig. 2; Two conductive wires 511.
  • the wire material of the induction coil 50 it is suitable for the wire material of the induction coil 50 to include 3-10 wire cores 51; and it is suitable for each wire core 51 to have about 10-50 conductive wires 511.
  • each conductive wire 511 Corresponding to the magnetic field generated by the induction coil 50 at a frequency varying between 80 KHz and 500 KHz during implementation, it is appropriate to make the maximum diameter of each conductive wire 511 less than or equal to one-third of the skin depth. Based on the fact that the skin depth is about 0.12-0.25 mm when working at the above frequency in practice; in an ideal situation, it is ideal that the maximum diameter of each conductive wire 511 is about 0.02-0.07 mm.
  • the conductive wire 511 is made of low-resistivity metals or alloys such as copper, gold, silver or their alloys, and carbon materials (carbon fibers or other conductive carbon materials). In practice, based on meeting the requirements of the above skin depth as much as possible, it is also necessary to make the conductive thread 511 easy to prepare and obtain in terms of strength and production; diameter is suitable.
  • the conductive wire 511 adopts copper wire with the above diameter, which generally has a percentage elongation at break of about 1-6%, which is advantageous in terms of convenience in production preparation and strength. And, the conductive wires 511 are substantially evenly distributed in the wire core 51 .
  • the induction coil 50 may include 12-200 conductive wires 511 in total.
  • the induction coil 50 has 5 bundles of wire cores 51; each bundle of wire cores 51 includes 24 conductive wires 511; the diameter of each conductive wire 511 is 0.08mm; the conductive wires 511 are copper wires.
  • the above induction coil 50 that adopts the multi-bundle wire core 51 structure can help to eliminate the "internal proximity effect" of the induction coil 50 prepared by using a single-bundle wire wire (that is, the alternating magnetic field generated by the single-bundle wire wire will Eddy currents are generated in other adjacent wires), which is beneficial to suppressing the current offset of the induction coil 50 itself; thereby reducing the internal resistance and internal loss of the induction coil 50 .
  • each conductive wire 511 in the wire core 51 is formed with insulating material layers such as insulating varnish/insulation film by deposition, spraying, etc., so that each conductive wire 511 in the wire core 51 are basically insulated; in an optional implementation, the insulating material includes, but is not limited to, Teflon, polytetrafluoroethylene, polyimide, polyurethane, aromatic amide polymer, and the like.
  • the wire core 51 is formed by twisting a plurality of conductive filaments 511 .
  • the plurality of conductive filaments 511 are twisted clockwise or counterclockwise.
  • the conductive filaments 511 in each bundle of wire cores 51 are parallel or intertwined or braided together in a helical manner, so that they are stably intertwined without unraveling.
  • Each bundle of wire cores 51 also includes a first covering layer 512 for wrapping the twisted conductive wires 511 ; so as to prevent or prevent the conductive wires 511 in the wire cores 51 from spreading out.
  • the first covering layer 512 is formed by using silk-covered wires commonly used in cable manufacturing (such as acetate fiber filaments, polyester fiber filaments, etc.).
  • the wire core 51 twisted by the conductive wire 511 and wrapped with the first coating layer 512 has an outer diameter of about 0.25-1 mm.
  • the wire core 51 prepared by the above twisted wire package has an ultimate tensile strength greater than 50 MPa.
  • the wire core 51 has an approximately rectangular cross-sectional area.
  • the conductive wire 511 is a thin wire with a rectangular cross-section; for example, an elongated strip-shaped thin wire obtained by cutting copper foil.
  • the first cladding layer 512 in each bundle of wire cores 51 is made by putting materials such as acetate cellulose or polyester fiber outside the twisted conductive wire 511, and self-adhesive through hot air or acetone. They are bonded together by an adhesive process, and the first cladding layer 512 is formed after curing.
  • the hot air self-adhesive process is to heat the mold with hot air when the stranded conductive wire 511 is wound outside the above cellulose acetate or polyester fiber, so that the temperature of the mold reaches the bonding temperature of the wire, so that the cellulose acetate or polyester fiber
  • the polyester fiber filaments are bonded and formed outside the conductive filament 511 to form the first cladding layer 512;
  • the acetone self-adhesive process is to apply acetone through a felt or nozzle during the process of winding the above cellulose acetate filaments outside the twisted conductive filament 511. Coated or sprayed on the surface of the filaments, the acetate filaments are bonded together by acetone, and the first coating layer 512 is formed after curing.
  • the first cladding layer 512 in the above wire core 51 is obtained in a manner similar to that of optical fiber/cable and other preparation methods after internal filling and then surface coating.
  • fillers such as polyethylene, polyvinyl chloride (PVC) or nylon are used to fill the gaps between the conductive filaments 511 during the twisting process, and then use covering materials such as phenolic resin, alcohol, etc. It is obtained after coating with acid resin, nitrile rubber or EPDM rubber. It is beneficial to prevent the conductive filament 511 in the wire core 51 from spreading out and slipping off after preparation.
  • the wire material of the induction coil 50 is formed by twisting the multi-bundle wire core 51; or, the wire material of the induction coil 50 is formed by parallel or winding or braiding the multi-bundle wire core 51 in a helical manner .
  • the induction coil 50 also includes a second covering layer 52 for wrapping the stranded multi-bundle wire cores 51 ; so as to prevent or stop the multi-bundle wire cores 51 from being scattered.
  • the above second cladding layer 52 is also formed by using the materials and processes similar to the above first cladding layer 512 .
  • the section of the induction coil 50 that is further twisted by twisting the multiple wire cores 51 and wrapped with the second cladding layer 52 has an outer diameter of about 1-3 mm.
  • first cladding layer 512 and the second cladding layer 52 are basically insulating materials; then after the preparation is completed, the wire cores 51 are insulated from each other.
  • FIG. 4 shows a schematic cross-sectional view of the wire material of the induction coil 50a in another embodiment; the induction coil 50a of this embodiment includes:
  • each wire 51a includes at least two wire cores 511a; each wire core 511a includes a plurality of conductive wires 5111a.
  • the wire material of the induction coil 50a in the embodiment shown in FIG. 4 is obtained by further twisting or winding a plurality of wire materials in the embodiment shown in FIG. 3 .
  • multiple wire materials of the induction coil 50a in the embodiment shown in FIG. 4 can also be continuously re-twisted or wound to obtain a better induction coil.
  • Fig. 5 shows a schematic diagram of an induction coil 50b in another embodiment, in which the induction coil 50b is in the form of a solenoid coil; flat shape.
  • FIG. 6 shows a schematic diagram of a cross section of the wire material of the induction coil 50b in FIG. 5; the cross section of the wire material of the induction coil 50b has a first dimension d1 extending in the longitudinal direction, and a first dimension d1 extending in a radial direction perpendicular to the longitudinal direction. and the first dimension d1 of the section of the wire material of the induction coil 50b extending longitudinally is larger than the second dimension d2 extending along the radial direction, so that the section of the wire material of the induction coil 50b is substantially flattened in a rectangular shape.
  • the first dimension d1 is approximately 1-mm; the second dimension d2 is approximately 0.1-0.5 mm.
  • the cross-sectional configuration of the wire material of the induction coil 50b is such that the maximum dimension in the latitude of the above two directions is different, such as an ellipse.
  • the cross-section of the wire material is a flat induction coil 50b, and the shape of the wire material is completely or at least flattened. Consequently, the wire material extends to a lesser extent in the radial direction. By this measure, energy losses in the induction coil 50b can be reduced. At the same time, the induction coil 50b can be made thinner in the radial direction, which is beneficial for reducing the skin effect.
  • the wire material of the induction coil 50b includes at least two bundles of wire cores 51b, and each bundle of wire cores 51b includes a plurality of twisted or wound conductive wires 511b.
  • the wire cores 51b are arranged or arranged along the longitudinal direction of the cross-section of the wire material.
  • the induction coil 50c is configured in the shape of a solenoid with a square cross section.
  • FIGS. 8 and 9 show schematic views of an induction coil 50d and an aerosol generating device with the induction coil 50d in yet another variant embodiment; in this embodiment, the induction coil 50d is configured as a planar helical coil.
  • the cross-section of the wire material of induction coil 5Od is generally circular.
  • the cross-section of the wire material of the induction coil 50d is flat or rectangular.
  • the extension dimension of the wire material of the induction coil 50d in the radial direction is larger than the extension dimension in the axial direction, and the cross-section is substantially rectangular.
  • the wire material of the induction coil 50d may also be formed by twisting or winding the above at least two wire bundles; similarly, each wire bundle includes at least two twisted or wound conductive wires.
  • the aerosol generating device of this embodiment includes:
  • a frame 40d defining a chamber for receiving the aerosol-generating substrate A
  • the susceptor 30d at least partially located in the chamber, is penetrated by the changing magnetic field to generate heat to heat the aerosol-generating substrate A received in the chamber;
  • a planar induction coil 50d arranged substantially perpendicular to the longitudinal direction of the aerosol-generating device; is used to generate a changing magnetic field.
  • a planar induction coil 50d is positioned between the susceptor 30d/support 40d and the circuit 20 .
  • the planar induction coil 5Od is arranged coaxially with the susceptor 3Od.
  • the central axis of the susceptor 30d is substantially coincident with the central axis of the planar induction coil 50d.
  • planar induction coil 50d is supported and fixed by a first support 60d and a second support 70d.
  • the first support 60d and/or the second support 70d is in the shape of a sheet or plate parallel to the planar induction coil 50d.
  • FIG. 10 shows the temperature change curve of the induction coil 50 itself measured when an alternating current with an amplitude of 6A and a frequency of 200KHz-300KHz is provided to the induction coil 50 of the wire material with the structure shown in FIG. 3 .
  • the induction coil 50 is obtained by dividing 120 copper wires with a diameter of 0.08mm into 5 bundles, and twisting 24 wires in each bundle respectively.
  • FIG. 10 also shows the temperature change curve of the induction coil in a comparative example when it provides an alternating current with an amplitude of 6A and a frequency of 200KHz-300KHz.
  • the induction coil is prepared by twisting 120 copper wires with a diameter of 0.08 mm into one bundle.
  • the heating of the induction coil itself in the comparative example is always higher than that of the induction coil 50 in the embodiment.
  • the higher temperature of the induction coil in the comparative example is less caused by the material or internal resistance compared with the embodiment. More is caused by internal proximity effects.
  • the induction coil of the embodiment is advantageous in suppressing the current offset formed by itself and reducing the internal loss of the induction coil itself.
  • Fig. 11 is a schematic diagram of an aerosol generating device provided in an embodiment of the present application.
  • the aerosol generating device 100 includes an atomizer 10 and a power supply assembly 20 .
  • the atomizer 10 is removably connected to the power supply assembly 20, and the atomizer 10 and the power supply assembly 20 may be snap-fitted, magnetically connected, or the like.
  • the atomizer 10 includes a receptor 11 and a liquid storage chamber (not shown).
  • the liquid storage chamber is used to store the nebulizable liquid matrix; the susceptor 11 is configured to be inductively coupled with the induction coil 21 and generate heat when penetrated by a changing magnetic field, thereby heating the liquid matrix to generate an aerosol for inhalation.
  • the liquid matrix preferably comprises a tobacco-containing material comprising volatile tobacco flavor compounds that are released from the liquid matrix upon heating.
  • the liquid base may comprise non-tobacco material.
  • Liquid bases may include water, ethanol or other solvents, plant extracts, nicotine solutions, and natural or artificial flavorings.
  • the liquid base further comprises an aerosol forming agent. Examples of suitable aerosol formers are glycerol and propylene glycol.
  • the susceptor 11 can be made of at least one of the following materials: aluminum, iron, nickel, copper, bronze, cobalt, ordinary carbon steel, stainless steel, ferritic stainless steel, martensitic stainless steel or austenitic stainless steel.
  • the susceptor 11 may directly or indirectly contact the liquid matrix, thereby evaporating the liquid matrix by releasing heat.
  • the atomizer 10 also includes a liquid delivery unit, and the receptor 11 indirectly contacts the liquid matrix through the liquid delivery unit.
  • the liquid transfer unit can be, for example, cotton fibers, metal fibers, ceramic fibers, glass fibers, porous ceramics, etc., and can transfer the liquid matrix stored in the liquid storage cavity to the receptor 11 through capillary action.
  • the susceptor 11 can be kept out of contact with the liquid matrix, which heats the liquid matrix by radiating heat.
  • the susceptor 11 is configured as a closed-loop or non-closed-loop tube, and the susceptor 11 is wound by sheet metal mesh and supported on the inner surface of the liquid transfer unit.
  • the susceptor 11 may further include a radial portion extending radially from one end of the tube, and the radial portion may be fitted to the end of the liquid transfer unit.
  • the susceptor 11 is embedded in the liquid transfer unit and co-fired with the liquid transfer unit to form an atomizing core.
  • the liquid matrix does not need to be conducted to the surface of the susceptor 11 for atomization, but begins to be heated and atomized near the susceptor 11; on the one hand, the heat conduction contact between the susceptor 11 and the liquid transfer unit will not cause dry burning; On the one hand, most liquid substrates are not in direct contact with the susceptor 11 during atomization, which can avoid metal contamination of the susceptor 11 .
  • the susceptor 11 may include a plurality of spaced closed rings, each of which includes the same or different metal materials, for example, materials of different closed rings have different Curie temperature points.
  • the susceptor 11 may be a plate-like structure.
  • the susceptor 11 of the plate-like structure may have a plurality of mesh holes.
  • the weight of the susceptor 11 ranges from 10 mg to 30 mg. Preferably, between 10 mg and 25 mg; more preferably, between 10 mg and 23 mg; more preferably, between 15 mg and 23 mg; more preferably, between 18 mg and 23 mg. In a specific example, the weight of susceptor 11 may be 20 mg, 21 mg, and so on.
  • the power supply assembly 20 includes an induction coil 21 , a circuit 22 and an electric core 23 .
  • the induction coil 21 is configured to generate a changing magnetic field under an alternating current.
  • Circuitry 22 may control the overall operation of aerosol-generating device 100 .
  • the circuit 22 not only controls the operation of the battery cell 23 and the induction coil 21 , but also controls the operation of other components in the aerosol generating device 100 .
  • the frequency of the alternating current supplied by the circuit 22 to the induction coil 21 is between 500KHz and 3MHz; preferably, the frequency can be between 500KHz and 2.5MHz; further preferably, the frequency can be between 500KHz and 2.5MHz 2MHz; more preferably, the frequency may be between 500KHz-1.5MHz; further preferably, the frequency may be between 500KHz-1MHz.
  • the frequency of the alternating current supplied by the circuit 22 to the induction coil 21 is 500KHZ, or 600KHZ, or 800KHZ, or 1.2MHZ.
  • the battery cell 23 provides power for operating the aerosol generating device 100 .
  • the battery cell 23 may be a rechargeable battery cell or a disposable battery cell.
  • Fig. 12 is a schematic diagram of an induction coil provided in an embodiment of the present application.
  • the induction coil 21 includes a main body 211 , an electrical connection portion 212 , and an electrical connection portion 213 , and the electrical connection portion 212 and the electrical connection portion 213 are used for electrical connection with the electric core 23 .
  • the main body 211 is arranged around the susceptor 11 , and the main body 211 can be sleeved on a bracket (not shown).
  • the shape of the bracket is similar to that of the main body 211 .
  • the main body 211 is a solenoid coil wound by a slender wire material, for example: 500-2000 wires are used for winding and forming, or 500-1900 wires are used, or 700-1900 wires are used, or 900-1900 wires are used. wires, or 1000-1900 wires, or 1200-1900 wires, or 1400-1900 wires, or 1600-1900 wires.
  • the cross-section of the wire material can be rectangular, circular or elliptical.
  • the preferred shape is rectangular, so that the wire material of the induction coil 21 is flat, which is beneficial for increasing the number of turns of the induction coil 21 per unit length and thus increasing the inductance value.
  • the total length of the main body 211 along the axial direction is about 5-20 mm; in a specific embodiment, the total length of the induction coil 21 along the axial direction is 12.2 mm.
  • the cross-section of the hollow part of the main body 211 is non-circular, such as an ellipse; and the cross-section of the main body 211 is in the shape of a racetrack.
  • the difference between the major axis and the minor axis of the ellipse is between 0.5 mm and 2 mm.
  • the length of the major axis of the ellipse is between 8 mm and 15 mm (preferably, between 8 mm and 12 mm; more preferably, between 8 mm and 10 mm; further preferably, between 9 mm and 10 mm); the ellipse
  • the length of the minor axis is between 8mm-13mm (preferably, between 8mm-11mm; more preferably, between 8mm-10mm; more preferably, between 8mm-9mm).
  • the length of the major axis of the ellipse is 9.7 mm
  • the length of the minor axis of the ellipse is 8.9 mm.
  • the main body 211 having this shape facilitates the manufacture of the induction coil 21 and assembly into the power supply assembly 20 .
  • the number of turns or windings of the solenoid coil is between 4 turns and 20 turns; preferably, between 6 turns and 20 turns; more preferably, between 6 turns and 15 turns; further preferably, between 6 turns and 12 turns turns; more preferably, between 6 turns and 10 turns.
  • An induction coil 21 with this many turns can provide an effective magnetic field for heating the susceptor 11 .
  • the spacing between adjacent windings can be the same or different.
  • the distance between adjacent windings is about 0.1-2mm; or, between 0.1mm-1.5mm; or, between 0.1mm-1mm; or, between 0.1mm-0.5mm.
  • the spacing between adjacent windings is 0.2 or 0.4 mm. It has been found that these specific spacings provide efficient heating of the susceptor 11 and thus of the liquid matrix.
  • Fig. 13 is a schematic cross-sectional view of the wire material of the induction coil provided by the embodiment of the present application.
  • wire strands 30b and 30c described in this embodiment are the wire cores described in Embodiment 1
  • the wires 30a described in this embodiment are the conductive wires described in Embodiment 1.
  • the wire material 30 of the induction coil 21 includes a plurality of wire strands 30c, and each wire strand 30c includes a plurality of wire strands 30b.
  • Each wire strand 30b has 3 to 20 wires 30a; or, has 3 to 18 wires 30a; or, has 3 to 16 wires 30a; or, has 3 to 14 wires 30a; or, has 3 to 12 wires 30a; wires 30a; or, 5-12 wires 30a; or, 8-12 wires 30a.
  • the wire 30a is made of low-resistivity metals or alloys such as copper, gold, silver or their alloys, and carbon materials (carbon fibers or other conductive carbon materials).
  • the cross section of the wire 30a may be circular or rectangular. In a preferred implementation, the cross-section of the wire 30a is circular, so that on the one hand, the phenomenon of disconnection can be avoided, and on the other hand, it is beneficial to reduce the AC impedance of the induction coil itself.
  • an impedance analyzer can be used to measure that the cross-sectional shape of the wire 30a is circular.
  • the real part of the equivalent impedance of the induction coil 21 (corresponding "equivalent impedance 1" in the following table), and the real part of the equivalent impedance of the induction coil 21 when the cross-sectional shape of the wire 30a is a rectangle (the corresponding "etc. effective impedance 2") for verification.
  • the number of twisting times is the second twisting
  • the number of conductors 30a in the first twisting is 45.
  • the value of the equivalent impedance 1 is smaller than the value of the equivalent impedance 2, that is, when the cross-sectional shape of the wire 30a is circular, the real part of the equivalent impedance of the induction coil 21 is smaller than The real part of the equivalent impedance of the induction coil 21 when the cross-sectional shape of the wire 30a is a rectangle is the same even at a higher operating frequency. Therefore, when the cross-sectional shape of the wire 30a is circular, it is beneficial to reduce the AC impedance of the induction coil itself.
  • the diameter of the wire 30a is between 0.01mm ⁇ 0.05mm. In a specific embodiment, the diameter of the wire 30a may be 0.03mm or 0.04mm. The smaller diameter of the wire 30a is conducive to reducing the influence of the skin effect of the induction coil 21, improving the heating efficiency of the susceptor, and helping to increase the atomization speed of the liquid matrix; And quality, it is beneficial to reduce the volume of the atomizer used with the power pack.
  • each bundle of wire strands 30b in the plurality of wire strands 30b may have the same number of wires, or may have a different number of wires.
  • one bundle of wire strands 30b has 10 wires 30a and the other bundle of wire strands 30b has 15 wires 30a.
  • 3 to 20 wires 30a are twisted for the first time to obtain a bundle of wire strands 30b, then multiple bundles of wire strands 30b are twisted for the second time to obtain a bundle of wire strands 30c, and finally
  • the wire material 30 of the induction coil 21 is formed by twisting the plurality of wire strands 30c for the third time.
  • the bundle numbers of the wire strands 30b and the wire strands 30c are not limited, and generally can be determined by the total number of wires 30a in the induction coil 21 .
  • the main body 211 is formed by winding 1600 wires, then 10 wires 30a can be twisted for the first time to obtain a bunch of wire strands 30b, and then 16 bundles of wire strands 30b can be twisted for the second time A bundle of wire strands 30c is obtained, and finally 10 bundles of wire strands 30c are twisted for the third time.
  • stranding in the above stranding process, stranding can be performed in a clockwise or counterclockwise direction.
  • the induction coil 21 with the above structure can avoid disconnection, reduce the AC impedance of the induction coil itself, reduce the loss caused by the internal proximity effect, and improve the heating efficiency of the aerosol generating device.
  • each wire 30a in the wire strands 30b can be formed with insulating material layers such as insulating varnish/insulating film by deposition, spraying, etc., so that each wire 30a in the wire strands 30b is basically Insulating; in optional implementations, insulating materials include, but are not limited to, Teflon, Teflon, polyimide, polyurethane, aramid polymers, and the like.
  • Each bundle of wire strands 30b also includes a cladding layer (not shown) for wrapping the twisted wires 30a to prevent or prevent the wires 30a in the wire strands 30b from being scattered.
  • the covering layer is formed by using silk-covered wires commonly used in cable manufacturing (such as acetate fiber filaments, polyester fiber filaments, etc.).
  • the cladding layer in each bundle of wire strands 30b is made by bonding materials such as acetate cellulose or polyester fiber to the outside of the stranded wire 30a, through hot air self-adhesive or acetone self-adhesive process These are bonded together and when cured, the cladding is formed.
  • the hot air self-adhesive process is to heat the mold with hot air when the twisted wire 30a is wound outside the above cellulose acetate or polyester fiber, so that the temperature of the mold reaches the bonding temperature of the wire, so that the cellulose acetate or polyester
  • the ester fiber filaments are bonded and formed on the outside of the wire 30a to form a coating
  • the acetone self-adhesive process is to coat or spray acetone on the wires through a felt or nozzle during the process of winding the above cellulose acetate filaments outside the stranded wire 30a.
  • the cellulose acetate filaments are bonded together by acetone, and the coating is formed after curing.
  • the cladding layer in the above wire strand 30b is obtained in a manner similar to that of optical fiber/cable and other preparation methods after internal filling and then surface coating.
  • fillers such as polyethylene, polyvinyl chloride (PVC) or nylon are used to fill the gaps between the wires 30a during the twisting process, and then use covering materials such as phenolic resin, alkyd Resin, Nitrile or EPDM coated. It is advantageous to prevent unraveling and slipping of the wire 30a in the wire strand 30b after preparation.
  • the multiple bundles of wire strands 30b or the multiple bundles of wire strands 30c are also insulated from each other by using the above-mentioned similar coating layer.
  • Fig. 14 is a schematic cross-sectional view of another wire material of the induction coil provided by the embodiment of the present application.
  • each bundle of wire strands 40a is similar to the wire material 30 shown in FIG. 13 , that is, it is formed after twisting three times.
  • the wire material 40 formed after twisting four times can further avoid disconnection and reduce the AC impedance of the induction coil itself. It has been found that the above objects can be achieved by conducting wire materials formed by twisting more than three times. In view of the cost of the stranding process, it is preferred to use three or four stranding processes to form the wire material.
  • the inventor selected two groups of different measurement conditions to measure the real part of the equivalent impedance: one is that the number of times of twisting is twice, and the second The number of wires 30a is 45 (the corresponding "equivalent impedance 3" in the following table) when twisting once; the other is that the number of times of twisting is four times, and the number of wires 30a is 10 when twisting for the first time (the corresponding "equivalent impedance 4" in the table below); other measurement conditions are the same, for example: the operating frequency is 500KHz-3MHz, and the cross-sectional shape of the wire 30a is circular.
  • the measurement results are as follows:
  • the number of times of twisting is four times, and when the number of conductors 30a is 10 when twisting for the first time, its AC impedance is relatively small; When the number of conducting wires 30a is 45", the AC impedance drops significantly. Therefore, the wire strands of the induction coil use a lower number of wires (for example, 3 to 20) when twisting for the first time, and increasing the number of twisting times (for example, more than three times) can promote the electromagnetic coupling efficiency and improve the sensitivity of the susceptor during work.
  • the heating speed enables the aerosol generating device to generate an aerosol in a very short time after it is activated, thereby meeting the requirement that the aerosol generating device containing a liquid matrix can be inhaled almost without waiting after activation.
  • the number of times of twisting is four times, and the number of wires 30a is 10 at the time of the first twisting", during the twisting process, there is no disconnection phenomenon;
  • the number of wires 30a during the secondary twisting is 45", and there is a disconnection phenomenon.
  • Fig. 15 is a schematic diagram of another induction coil provided by an embodiment of the present application.
  • the induction coil 21a is configured as a planar helical coil.
  • the wire material of the planar helical coil is also formed by twisting multiple wires 30a; wherein, the number of wires 30a in the first twisting ranges from 3 to 20 wires.
  • the stranding times are preferably three or four stranding processes.
  • the planar helical coils may be arranged in a direction perpendicular to the longitudinal direction of the aerosol-generating device 100 or along the longitudinal direction of the aerosol-generating device 100 .
  • the planar helical coil may be supported by a sheet or plate-shaped support parallel to the planar induction coil 21a, or may be embedded in other components.
  • FIG. 16 is a schematic diagram of a method for forming an induction coil provided by an embodiment of the present application.
  • the method includes:
  • Step S11 providing 3 to 20 wires, and obtaining the first-level wire strands after the first twisting
  • Step S12 providing multiple bundles of first-grade wire strands, and obtaining second-grade wire strands after the multiple bundles of first-grade wire strands are twisted for the second time;
  • Each bundle of first-level wire strands among the multiple bundles of first-level wire strands may have the same number of wires, or may have different numbers of wires.
  • Step S13 providing multiple bundles of second-level wire strands, which form the wire material of the induction coil after being twisted for the third time.
  • the method also includes:
  • Multiple bundles of third-level wire strands are provided, and the multiple bundles of third-level wire strands are twisted for the fourth time to form the wire material of the induction coil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Induction Heating (AREA)

Abstract

本申请公开一种气雾生成装置及感应线圈;其中,气雾生成装置包括:感应线圈,用于产生变化的磁场;感受器,用于在变化的磁场中感应发热,从而加热气溶胶生成基质,如液体基质以生成气溶胶。其中,感应线圈的导线材料包括两束以上的线芯,线芯包括有两根以上的导电丝,从而可以抑制自身形成电流偏移、降低感应线圈自身的内部损耗。或者,感应线圈的导线材料包括多束线芯,每一束线芯是由多根导电丝经过一次或多次绞合后形成,多根导电丝在第一次绞合中使用的导电丝数量介于3~20,从而可以避免断线现象发生,降低感应线圈自身的交流阻抗,减少由内部邻近效应引起的损耗,提升气雾生成装置的发热效率。

Description

气雾生成装置、感应线圈及其制备方法
相关申请的交叉参考
本申请要求于2021年11月9日提交中国专利局,申请号为202111318784.9,发明名称为“气雾生成装置及感应线圈”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请还要求于2022年10月31日提交中国专利局,申请号为202211351480.7,发明名称为“电子雾化装置、感应线圈及其方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及电子雾化技术领域,特别涉及一种气雾生成装置、感应线圈及其制备方法。
背景技术
烟制品(例如,香烟、雪茄等)在使用过程中燃烧烟草以产生烟草烟雾。人们试图通过制造在不燃烧的情况下释放化合物的产品来替代这些燃烧烟草的制品。此类产品的示例为加热装置,其通过加热而不是燃烧材料来释放化合物。例如,该材料可为烟草或其他非烟草产品,这些非烟草产品可包含或可不包含尼古丁。
气雾生成装置作为一种已知的加热装置,能够通过感应线圈产生磁场,诱导感受器发热以加热雾化液体基质释放化合物生成气溶胶以供用户吸食。
而现有气雾生成装置的感应线圈在生产时,由于感应线圈是由一根或多根细的导电丝线制备的,因此在绞合过程中容易出现断线现象,线圈的交流阻抗较大,气雾生成装置的发热效率较低。
发明内容
本申请第一方面提供一种气雾生成装置,包括:感应线圈,用于产生变化的磁场;感受器,用于在变化的磁场中感应发热,从而加热气溶胶生成基质生成气溶胶;其中,所述感应线圈的导线材料包括两束以上的线芯;所述线芯包括有两根以上的导电丝。
在更加优选的实施中,所述感应线圈的导电材料的截面呈圆形或矩形。
在更加优选的实施中,所述感应线圈被构造成是螺线管线圈或平面的螺旋线圈。
在更加优选的实施中,所述感应线圈的导线材料包括3~10束所述线芯。
在更加优选的实施中,所述导电丝具有0.02~0.2mm的直径。
在更加优选的实施中,所述导电丝具有1~6%的断裂伸长百分率。
在更加优选的实施中,所述线芯具有大于50MPa以上的极限抗拉强度。
在更加优选的实施中,所述线芯中的两根以上的所述导电丝是绞合的;和/或,所述感应线圈的导线材料中的两束以上的所述线芯是绞合的。
在更加优选的实施中,所述线芯还包括用于包覆两根以上所述导电丝的第一包覆层;和/或,所述感应线圈还包括用于包覆两束以上所述线芯的第二包覆层。
在更加优选的实施中,所述气溶胶生成基质包括液体基质,所述感受器被配置为加热液体基质从而生成气溶胶,每一束所述线芯是由多根导电丝经过一次或多次绞合后形成,所述多根导电丝在第一次绞合中使用的导电丝数量介于3~20。
在更加优选的实施中,所述线芯是由多根导电丝经过三次或者四次 绞合后形成。
在更加优选的实施中,所述导电丝的直径介于0.01mm~0.05mm。
在更加优选的实施中,所述感应线圈的导线材料包括有500~2000根所述导电丝。
在更加优选的实施中,提供给所述感应线圈的工作频率介于500KHz~3MHz。
在更加优选的实施中,所述感应线圈被构造成螺线管线圈,所述螺线管线圈的匝数介于4匝~20匝。
在更加优选的实施中,所述螺线管线圈的中空部分的截面呈椭圆形。
在更加优选的实施中,所述螺线管线圈相邻匝数的间距介于0.1~2mm。
本申请第二方面提供一种用于气雾生成装置的感应线圈,所述感应线圈被配置为产生变化的磁场;所述感应线圈的导线材料包括多束线芯,每一束所述线芯是由多根导电丝经过一次或多次绞合后形成;其中,所述多根导电丝在第一次绞合中使用的导电丝数量介于3~20。
本申请第三方面提供一种制备用于气雾生成装置的感应线圈的方法,所述方法包括:提供数量为3~20的根导电丝,经过第一次绞合后得到第一级线芯;提供多束第一级线芯,多束第一级线芯经过第二次绞合后得到第二级线芯;提供多束第二级线芯,多束第二级线芯经过第三次绞合后形成所述感应线圈的导线材料。
在更加优选的实施中,多束第二级线芯经过第三次绞合后得到第三级线芯;提供多束第三级线芯,多束第三级线芯经过第四次绞合后形成所述感应线圈的导线材料。
以上感应线圈对抑制自身形成电流偏移、以及降低感应线圈自身的内部损耗是有利的。且以上气雾生成装置的感应线圈,能够避免断线现 象发生,降低感应线圈自身的交流阻抗,减少由内部邻近效应引起的损耗,提升气雾生成装置的发热效率。
附图说明
一个或多个实施例中通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件/模块和步骤表示为类似的元件/模块和步骤,除非有特别申明,附图中的图不构成比例限制。
图1是本申请具体实施方式中实施例一提供的气雾生成装置的结构示意图;
图2是图1中感应线圈一个视角的结构示意图;
图3是图2中感应线圈的导线材料的截面示意图;
图4是本申请具体实施方式中实施例一提供的又一个实施示例的感应线圈的导线材料的截面示意图;
图5是本申请具体实施方式中实施例一提供的又一个实施示例的感应线圈一个视角的剖面示意图;
图6是图5中感应线圈的导线材料的截面示意图;
图7是本申请具体实施方式中实施例一提供的又一个实施示例的感应线圈的结构示意图;
图8是本申请具体实施方式中实施例一提供的又一个实施示例的感应线圈的结构示意图;
图9是本申请具体实施方式中实施例一提供的又一个实施示例的气雾生成装置的结构示意图;
图10是本申请具体实施方式中实施例一提供的感应线圈和对比例的感应线圈使用中自身的温度变化曲线;
图11是本申请具体实施方式中实施例二提供的气雾生成装置示意图;
图12是本申请具体实施方式中实施例二提供的感应线圈示意图;
图13是本申请具体实施方式中实施例二提供的感应线圈的导线材料的截面示意图;
图14是本申请具体实施方式中实施例二提供的感应线圈的另一导线材料的截面示意图;
图15是本申请具体实施方式中实施例二提供的另一感应线圈示意图;
图16是本申请具体实施方式中实施例二提供的形成感应线圈的方法示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请提供的气溶胶生成装置用于加热气溶胶生成基质,从而生成可抽吸的气溶胶。气溶胶生成基质可以是固态基质,也可以是液体基质; 承载上述气溶胶生成基质的载体可以是棒状或杆状的气溶胶生成制品,该气溶胶生成制品包含至少一种可挥发的固态基质;载体还可以是能够容纳一定容量液体基质的烟弹,烟弹内部具有用于存储液体基质的储液腔或者保持介质。为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。
实施例一
本申请的一实施例提出一种气雾生成装置,其构造可以参见图1所示,包括:
腔室,气溶胶生成基质A可移除地接收在腔室内;
感应线圈50,用于在交变电流下产生变化磁场;
感受器30,至少一部分在腔室内延伸,并被配置为与感应线圈50感应耦合,在被变化磁场穿透下发热,进而对气溶胶生成基质A例如烟支进行加热,使气溶胶生成基质A的至少一种成分挥发,形成供抽吸的气溶胶;
电芯10,为可充电的直流电芯,可以输出直流电流;
电路20,通过适当的电连接到可充电的电芯10,用于从将电芯10输出的直流电流,转变成具有适合频率的交变电流再供应到感应线圈50。
根据产品使用中的设置,感应线圈50可以包括绕成螺旋状的圆柱形电感器线圈,如图1中所示。绕成螺旋状的圆柱形感应线圈50可以具有范围在大约5mm到大约10mm内的半径r,并特别地半径r可以大约为7mm。绕成螺旋状的圆柱形感应线圈50的长度可以在大约8mm到大约14mm的范围内,感应线圈50的匝数大约8匝到15匝的范围内。相应地,内体积可能在大约0.15cm3至大约1.10cm3的范围内。
在更加优选的实施中,电路20供应到感应线圈50的交变电流的频率介于80KHz~500KHz;更具体地,所述频率可以在大约200KHz到 300KHz的范围。
在一个优选的实施例中,电芯10提供的直流供电电压在约2.5V至约9.0V的范围内,电芯10可提供的直流电流的安培数在约2.5A至约20A的范围内。
在一个优选的实施例中,感受器30大体呈销钉或针状或棒状或者刀片状的形状,进而对于插入至气溶胶生成基质A内是有利的;同时,感受器30可以具有大约12毫米的长度,大约4毫米的宽度和大约0.5毫米的厚度,并且可以由等级430的不锈钢(SS430)制成。作为替代性实施例,感受器30可以具有大约12毫米的长度,大约5毫米的宽度和大约0.5毫米的厚度,并且可以由等级430的不锈钢(SS430)制成。在其他的变化实施例中,感受器30还可以被构造成圆筒状或管状的形状;在使用时其内部空间形成用于接收气溶胶生成基质A的腔室,并通过对气溶胶生成基质A的外周加热的方式,生成供吸食的气溶胶。这些感受器30还可以由等级420的不锈钢(SS420)、以及含有铁/镍的合金材料(比如坡莫合金)制成。
在图1所示的实施例中,气雾生成装置还包括用于布置感应线圈50和感受器30的支架40,该支架40的材质可以包括耐高温非金属材料比如PEEK或者陶瓷等。在实施中,感应线圈50采用缠绕在支架40的外壁上进而固定。同时,根据图1所示,该支架40的中空的管状形状,其管状中空的部分空间形成上述用于接收气溶胶生成基质A的腔室。
在可选的实施中,感受器30是由以上感受性的材质制备的,或者是由陶瓷等耐热的基体材质外表面上电镀、沉积等形成感受材料涂层获得的。
进一步图2示出了一个实施例中感应线圈50的结构示意图;感应线圈50是由细长的导线材料绕制的螺线管线圈;在装配后是围绕腔室 和/或感受器30布置的。在该实施例中感应线圈50的导线材料截面轮廓为圆形形状。
进一步图3示出了图2中感应线圈50的导线材料一个实施例的截面示意图;在实施中,感应线圈50的导线材料包括至少两束的线芯51,每个线芯51内包括有至少两根导电丝511。在更加优选的实施中,感应线圈50的导线材料包括有3~10束的线芯51是适合的;以及每束线芯51具有大约10~50根导电丝511是适合的。
对应以上在实施中感应线圈50在80KHz~500KHz的频率之间产生变化的磁场,使每根导电丝511的最大直径小于等于趋肤深度的三分之一是合适的。基于实施中按照以上频率工作时趋肤深度大约0.12~0.25mm;则理想的情形中,使每根导电丝511的最大直径大约具有0.02~0.07mm是理想的。
在一些实施中,导电丝511是由铜、金、银或它们的合金、以及碳材料(碳纤维或其他导电碳材料)等低电阻率的金属或合金制备的。在实施中基于尽可能满足以上趋肤深度的要求,同时还需要使导电丝511在强度和生产上是便于制备获得的;则在优选的实施中,每根导电丝511采用大约0.05~0.2mm的直径是适合的。
具体地,导电丝511采用以上直径的铜丝,大致具有大约1~6%的断裂伸长百分率;在生产制备和强度等便利性上是有利的。以及,导电丝511基本是均匀地分布在线芯51内的。
进一步在更加优选的实施中,感应线圈50可以总共包括有12~200根导电丝511。在一个具体的实施中,感应线圈50具有5束线芯51;每束线芯51包括24根导电丝511;每根导电丝511的直径为0.08mm;导电丝511是铜丝。
以上采用多束线芯51构造的感应线圈50,可以有助于消除采用单 束导线丝制备的感应线圈50在工作中的“内部邻近效应”(即单束导线丝产生的交变磁场将会在邻近的其他导线丝中产生涡流),对抑制感应线圈50自身形成电流偏移是有利的;进而降低感应线圈50的内阻和内部损耗。
进一步在更加优选的实施中,线芯51中的每根导电丝511表面都通过沉积、喷涂等方式形成有绝缘漆/绝缘膜等绝缘材料层,以使线芯51中的每根导电丝511之间基本是绝缘的;可选的实施中,绝缘材料包括但不限于,铁氟龙、聚四氟乙烯、聚酰亚胺、聚氨酯、芳香族酰胺聚合物等。
在一些实施中,线芯51是通过将多根导电丝511绞合形成。在更加优选的实施中,多根导电丝511按照顺时针或逆时针的方向绞合的。
在又一些实施中,每束线芯51中的导电丝511是通过螺旋方式并行或者缠绕或者编织在一起,从而使它们是稳定缠绕而不散开的。
每束线芯51还包括有第一包覆层512,与用于对绞合后的导电丝511进行包裹;以防止或阻止线芯51中的导电丝511散开。在优选的实施中,第一包覆层512是采用通常线缆制造中常用的丝包线(例如醋酸纤维丝、聚酯纤维丝等)制备形成。
在优选的实施中,通过导电丝511绞合后并包裹有第一包覆层512的线芯51大约具有0.25~1mm的外径尺寸。
在更加优选的实施中,通过以上绞合后丝包制备的线芯51具有大于50MPa以上的极限抗拉强度。
或者在又一些变化的实施中,线芯51具有大约呈矩形的截面面积。
或者在又一些变化的实施中,导电丝511是截面为矩形的薄片丝;例如通过将铜箔裁切获得的细长条带状的薄片丝。
在一个具体的实施中,每束线芯51中的第一包覆层512是通过将 醋酸纤维丝或聚酯纤维丝等材料在绞合后的导电丝511外,通过热风自粘或丙酮自粘工艺使它们粘结在一起,固化后即形成第一包覆层512。其中,热风自粘工艺是在绞合后的导电丝511外绕制以上醋酸纤维丝或聚酯纤维丝等时通过热风加热模具,使模具温度达到线材的粘结温度,从而使醋酸纤维丝或聚酯纤维丝在导电丝511外粘结成型形成第一包覆层512;丙酮自粘工艺,是在绞合后的导电丝511外绕制以上醋酸纤维丝的过程中通过毛毡或喷嘴将丙酮涂覆或喷洒到丝的表面上,通过丙酮使醋酸纤维丝粘结在一起,固化后即形成第一包覆层512。
或者在又一个变化的实施中,以上线芯51中的第一包覆层512是类似光纤/线缆等制备方法中内部填充后表面涂敷的方式获得的。具体的一些实施中,采用填充物例如聚乙烯、聚氯乙烯(PVC)或尼龙等在绞合的过程中对导电丝511之间的缝隙进行填充,而后再用包覆材料例如酚醛树脂、醇酸树脂、丁腈橡胶或三元乙丙橡胶进行包覆后获得。对于在制备后阻止线芯51中导电丝511的散开和滑脱是有利的。
以及进一步地,感应线圈50的导线材料是通过将多束线芯51绞合形成;或者,感应线圈50的导线材料是通过将多束线芯51按螺旋方式并行或者缠绕或者编织在一起形成的。
进一步在实施中,感应线圈50还包括有第二包覆层52,以用于对绞合后的多束线芯51进行包裹;以防止或阻止多束线芯51散开。相近地,以上第二包覆层52也采用以上类似第一包覆层512的材料和工艺制备形成。
在更加优选的实施中,进一步通过将多束线芯51绞合后并且包裹有第二包覆层52的感应线圈50的截面具有大约1~3mm的外径尺寸。
同样地,以上第一包覆层512和第二包覆层52基本都是绝缘材料;则在制备完毕后,线芯51之间是彼此绝缘的。
进一步图4示出了又一个实施例的感应线圈50a的导线材料的截面示意图;该实施例的感应线圈50a包括:
两根以上的导线51a;每根导线51a包括至少两束线芯511a;每束线芯511a包括多根导电丝5111a。
在一个优选的实施中,图4所示实施例的感应线圈50a的导线材料是由多根图3所示实施例的导线材料进一步再次绞合或绕制后获得的。
或者在其他的变化实施中,还可以将多根图4所示实施例的感应线圈50a的导线材料继续再绞合或绕制获得更佳的感应线圈。
进一步图5示出了又一个实施例的感应线圈50b的示意图,该实施例中感应线圈50b是螺线管线圈的形式;并且感应线圈50b的导线材料的截面是不同于常规圆形的宽或者扁的形状。
进一步图6示出了图5中感应线圈50b的导线材料的截面的示意图;感应线圈50b的导线材料的截面具有沿纵向延伸的第一尺寸d1、以及具有沿垂直于纵向的径向延伸的第二尺寸d2;并且感应线圈50b的导线材料的截面沿纵向延伸的第一尺寸d1大于沿径向延伸的第二尺寸d2,从而使感应线圈50b的导线材料的截面大致上呈扁的矩形形状。在一个优选的实施中,第一尺寸d1大约为1~mm;第二尺寸d2大约为0.1~0.5mm。在一些实施例中,感应线圈50b的导线材料的截面构形成在以上两个方向纬度上的最大尺寸是不同的,例如椭圆形。
简单地说,以上导线材料截面呈扁形的感应线圈50b,导线材料的形式完全地或至少是展平的。因此,导线材料沿着径向方向延伸呈较小的程度。通过这种措施,可以减少感应线圈50b中的能量损失。同时,可以使感应线圈50b在径向方向上更薄,对于降低趋肤效应是有利的。
进一步参见图6所示,感应线圈50b的导线材料中,包括有至少两束线芯51b,每束线芯51b均包括有多根绞合或绕制的导电丝511b。在 更加优选的实施中,线芯51b是沿着导线材料截面的纵向排列或布置的。
或者在图7所示的实施中,感应线圈50c被构造成是截面呈方形的螺线管形状。
图8和图9示出了又一个变化实施例中感应线圈50d和具有感应线圈50d的气雾生成装置的示意图;在该实施例中,感应线圈50d被构造成平面的螺旋线圈。
在一些实施中,感应线圈50d的导线材料的截面是通常的圆形。或者在又一些变化的实施中,感应线圈50d的导线材料的截面是扁形或矩形。具体,例如感应线圈50d的导线材料沿径向方向的延伸尺寸大于沿轴向方向的延伸尺寸,进而截面大致上呈矩形形状。
以及,感应线圈50d的导线材料也是可以包括有以上至少两束导线束绞合或绕制形成的;同样地,每束导线束中均包括有至少两根绞合或绕制导电丝。
进一步根据图9所示,该实施例的气雾生成装置包括:
支架40d,界定有用于接收气溶胶生成基质A的腔室;
感受器30d,至少部分位于腔室内,被变化的磁场穿透而发热,以加热接收于腔室内的气溶胶生成基质A;
平面的感应线圈50d,基本是垂直于气雾生成装置的纵向布置;用于产生变化的磁场。
在更加优选的实施中,平面的感应线圈50d定位于感受器30d/支架40d与电路20之间。
在更加优选的实施中,平面的感应线圈50d是与感受器30d同轴布置的。或者感受器30d的中心轴线与平面的感应线圈50d的中心轴线是基本重合的。
在优选的实施中,平面的感应线圈50d有第一支撑件60d和第二支 撑件70d进行支撑和固定的。
在一些实施中,第一支撑件60d和/或第二支撑件70d是与平面的感应线圈50d平行的片状或板状的。
进一步图10示出了对图3所示结构的导线材料的感应线圈50提供幅值为6A、频率200KHz~300KHz的交变电流时所测得的感应线圈50自身的温度变化曲线。在该测试的实施例中,感应线圈50是由120根直径为0.08mm的铜丝先分成5束,每束24根分别依次绞合后获得的。
同样地,图10中还示出了一个对比例中感应线圈在提供幅值为6A、频率200KHz~300KHz的交变电流时所测得的自身的温度变化曲线。在该对比例中,感应线圈是将120根直径为0.08mm的铜丝全部绞合成1束后的导线材料的制备的。
根据图10中的测试结果,对比例中感应线圈自身的发热一直是高于实施例的感应线圈50的。在材料铜丝和数量均相同、以及供电所提供的交变电流也相同的情况下,对比例相比实施例中感应线圈的更高的温度较少地是由材料或内阻导致的,而更多的是由内部邻近效应导致的。相比,实施例的感应线圈对抑制自身形成电流偏移、以及降低感应线圈自身的内部损耗是有利的。
实施例二
图11是本申请实施方式提供的气雾生成装置示意图。
如图11所示,气雾生成装置100包括雾化器10和电源组件20。雾化器10可移除的连接至电源组件20,雾化器10与电源组件20可以是卡扣连接、磁性连接等等。
雾化器10包括感受器11以及储液腔(未示出)。储液腔用于存储可雾化的液体基质;感受器11被配置为与感应线圈21感应耦合,在被 变化磁场穿透下发热,进而对液体基质进行加热,以生成供吸食的气溶胶。
液体基质优选地包含烟草的材料,所述含烟草的材料包含在加热时从液体基质释放的挥发性烟草香味化合物。替代地或另外,液体基质可以包含非烟草材料。液体基质可以包括水、乙醇或其他溶剂、植物提取物、尼古丁溶液和天然或人造的调味剂。优选的是,液体基质进一步包含气溶胶形成剂。合适的气溶胶形成剂的实例是甘油和丙二醇。
一般的,感受器11可选用以下至少之一材料制成:铝、铁、镍、铜、青铜、钴、普通碳钢、不锈钢、铁素体不锈钢、马氏体不锈钢或奥氏体不锈钢。
在一些示例性实施中,感受器11可以直接或者间接地接触液体基质,从而通过释放热量来蒸发液体基质。进一步地,雾化器10还包括液体传递单元,感受器11通过液体传递单元间接地接触液体基质。液体传递单元可以为如棉纤维、金属纤维、陶瓷纤维、玻璃纤维、多孔陶瓷等,通过毛细作用,可将储液腔存储的液态基质传递至感受器11。在一些可选的实施中,感受器11可以与液体基质保持非接触,其通过辐射热量来加热液体基质。
在一些示例性实施中,感受器11被构造成闭合环或者非闭合环的管状,感受器11是由片状的金属网卷绕并支撑在液体传递单元的内表面。
在一些示例性实施中,感受器11还可以包括由管的一端径向延伸的径向部分,该径向部分可与液体传递单元的端部贴合。
在一些示例性实施中,感受器11埋设于液体传递单元内、且与液体传递单元共烧形成雾化芯。这样,液体基质不用传导至感受器11表面接触时才进行雾化,而是在靠近感受器11部位即开始受热雾化;一 方面使在感受器11与液体传递单元存在导热接触不会产生干烧,另一方面大多数的液体基质雾化时不与感受器11直接接触,能避免感受器11产生的金属污染。
在一些示例性实施中,感受器11可包括多个间隔的闭合环,每个闭合环包括相同或者不同的金属材料,例如不同的闭合环的材料的居里温度点是不同的。
在一些示例性实施中,感受器11可以是板状结构。板状结构的感受器11上可以具有多个网孔。
在一些示例性实施中,感受器11的重量介于10mg~30mg。优选的,介于10mg~25mg;进一步优选的,介于10mg~23mg;进一步优选的,介于15mg~23mg;进一步优选的,介于18mg~23mg。在具体示例中,感受器11的重量可以为20mg、21mg等等。
电源组件20包括感应线圈21、电路22以及电芯23。
感应线圈21被配置为在交变电流下产生变化的磁场。
电路22可以控制气雾生成装置100的整体操作。电路22不仅控制电芯23和感应线圈21的操作,而且还控制气雾生成装置100中其他元件的操作。
在一示例中,电路22供应到感应线圈21的交变电流的频率介于500KHz~3MHz;优选的,所述频率可以介于500KHz~2.5MHz;进一步优选的,所述频率可以介于500KHz~2MHz;进一步优选的,所述频率可以介于500KHz~1.5MHz;进一步优选的,所述频率可以介于500KHz~1MHz。例如电路22供应到感应线圈21的交变电流的频率为500KHZ,或者为600KHZ,或者为800KHZ,或者为1.2MHZ。
电芯23提供用于操作气雾生成装置100的电力。电芯23可以是可反复充电电芯或一次性电芯。
图12是本申请实施方式提供的感应线圈示意图。
如图12所示,感应线圈21包括主体211、电连接部212、电连接部213,电连接部212、电连接部213用于与电芯23电连接。
在装配后主体211是围绕感受器11布置的,主体211可以套接在支架(未示出)上,支架的形状与主体211类似。
主体211是由细长的导线材料绕制的螺线管线圈,例如:采用500~2000根导线卷绕成型,或者采用500~1900根导线,或者采用700~1900根导线,或者采用900~1900根导线,或者采用1000~1900根导线,或者采用1200~1900根导线,或者采用1400~1900根导线,或者采用1600~1900根导线。
导线材料的截面可以是矩形、圆形或者椭圆形。优选的是矩形形状,进而使得感应线圈21的导线材料是扁平构造,对于在单位长度上提升感应线圈21的匝数进而提升电感值是有利的。
主体211沿轴向方向的总长度大约为5~20mm;在一个具体的实施例中,感应线圈21沿轴向方向的总长度为12.2mm。
主体211的中空部分的截面是非圆形的,例如呈椭圆形;而主体211的截面呈跑道形状。在一些示例中,椭圆形的长轴与短轴的差值介于0.5mm~2mm。具体地,该椭圆形的长轴的长度介于8mm~15mm(优选的,介于8mm~12mm;进一步优选的,介于8mm~10mm;进一步优选的,介于9mm~10mm);该椭圆形的短轴的长度介于8mm~13mm(优选的,介于8mm~11mm;进一步优选的,介于8mm~10mm;进一步优选的,介于8mm~9mm)。在一个具体的实施例中,椭圆形的长轴的长度为9.7mm,椭圆形的短轴的长度为8.9mm。具有该形状的主体211,利于感应线圈21的制作和装配至电源组件20中。
螺线管线圈的匝数或者绕组介于4匝~20匝;优选的,介于6匝~ 20匝;进一步优选的,介于6匝~15匝;进一步优选的,介于6匝~12匝;进一步优选的,介于6匝~10匝。具有这么多匝数的感应线圈21可以提供用于加热感受器11的有效磁场。
相邻绕组之间的间距可以相同,也可以不同。相邻绕组之间的间距大约为0.1~2mm;或者,介于0.1mm~1.5mm;或者,介于0.1mm~1mm;或者,介于0.1mm~0.5mm。在一个具体的实施例中,相邻绕组之间的间距为0.2或者0.4mm。已经发现,这些特定的间距提供了感受器11的有效加热,并因此提供了液体基质的有效加热。
图13是本申请实施方式提供的感应线圈的导线材料的截面示意图。
需要说明的是,本实施例中所述的导线股30b、导线股30c即为实施例一种所述的线芯,本实施例中所述的导线30a即为实施例一所述的导电丝,为相同物体的不同名称。
如图13所示,感应线圈21的导线材料30包括多束导线股30c,而每束导线股30c内又包括多束导线股30b。每束导线股30b内具有3~20根导线30a;或者,具有3~18根导线30a;或者,具有3~16根导线30a;或者,具有3~14根导线30a;或者,具有3~12根导线30a;或者,具有5~12根导线30a;或者,具有8~12根导线30a。在一具体的实施例中,每束导线股30b内可以具有10根导线30a。
在一实施例中,导线30a是由铜、金、银或它们的合金、以及碳材料(碳纤维或其他导电碳材料)等低电阻率的金属或合金制备的。
在一实施例中,导线30a的横截面可以是圆形或者矩形。优选的实施中,导线30a的横截面是圆形,这样一方面能够避免断线现象发生,另一方面利于降低感应线圈自身的交流阻抗。
可以在工作频率、绞合次数、第一次绞合时的导线30a数量(以下表格中对应的“导线数量”)等条件相同情况下,使用阻抗分析仪测量 导线30a的横截面形状为圆形时感应线圈21的等效阻抗实部(以下表格中对应的“等效阻抗1”)、导线30a的横截面形状为矩形时感应线圈21的等效阻抗实部(以下表格中对应的“等效阻抗2”)来进行验证。本次测量过程中,绞合次数采用的二次绞合,第一次绞合时的导线30a数量为45根。测量结果如下:
序号 工作频率 绞合次数 导线数量 等效阻抗1 等效阻抗2
1 500KHz 二次 45 22.56mΩ 24.68mΩ
2 1MHz 二次 45 30.46mΩ 32.56mΩ
3 1.5MHz 二次 45 38.44mΩ 39.96mΩ
4 2MHz 二次 45 46.86mΩ 48.46mΩ
5 2.5MHz 二次 45 55.47mΩ 57.89mΩ
6 3MHz 二次 45 66.89mΩ 68.38mΩ
从上述测量结果可以看出,在相同条件下,等效阻抗1的值要小于等效阻抗2的值,即导线30a的横截面形状为圆形时感应线圈21的等效阻抗实部要小于导线30a的横截面形状为矩形时感应线圈21的等效阻抗实部,即使在较高的工作频率下也是如此。因此导线30a的横截面形状为圆形时,利于降低感应线圈自身的交流阻抗。
在一实施例中,对应以上在实施中感应线圈21在500KHz~3MHz的频率之间产生变化的磁场,导线30a的直径介于0.01mm~0.05mm是理想的。在一具体的实施例中,导线30a的直径可以为0.03mm或者0.04mm。导线30a较小的直径利于降低感应线圈21趋肤效应的影响,提高感受器的加热效率,有利于提升液体基质的雾化速度;此外采用较小线径的导线的感应线圈,对于降低感受器的尺寸和质量,减小配合电源组件使用的雾化器的体积都是有利的。
在一实施例中,多束导线股30b中每一束导线股30b可以具有相同 数量的导线,也可以具有不同数量的导线。例如:一束导线股30b具有10根导线30a,而另一束导线股30b具有15根导线30a。
在一实施例中,先将3~20根导线30a经过第一次绞合后得到一束导线股30b,然后将多束导线股30b经过第二次绞合后得到一束导线股30c,最后将多束导线股30c经过第三次绞合后形成感应线圈21的导线材料30。
其中,导线股30b的束数、导线股30c的束数不作限定,一般可由感应线圈21中导线30a的总数量决定的。例如:若主体211是由1600根导线卷绕成型,则可先将10根导线30a经过第一次绞合后得到一束导线股30b,然后将16束导线股30b经过第二次绞合后得到一束导线股30c,最后将10束导线股30c经过第三次绞合后得到。
其中,上述绞合过程中,可以按照顺时针或逆时针的方向绞合。
以上构造的感应线圈21,能够避免断线现象发生,降低感应线圈自身的交流阻抗,还可以减少由内部邻近效应引起的损耗,提升气雾生成装置的发热效率。
进一步的实施中,导线股30b中的每根导线30a表面都可以通过沉积、喷涂等方式形成有绝缘漆/绝缘膜等绝缘材料层,以使导线股30b中的每根导线30a之间基本是绝缘的;可选的实施中,绝缘材料包括但不限于,铁氟龙、聚四氟乙烯、聚酰亚胺、聚氨酯、芳香族酰胺聚合物等。
每束导线股30b还包括有包覆层(未示出),与用于对绞合后的导线30a进行包裹;以防止或阻止导线股30b中的导线30a散开。在优选的实施中,包覆层是采用通常线缆制造中常用的丝包线(例如醋酸纤维丝、聚酯纤维丝等)制备形成。
在一个具体的实施中,每束导线股30b中的包覆层是通过将醋酸纤 维丝或聚酯纤维丝等材料粘结在绞合后的导线30a外,通过热风自粘或丙酮自粘工艺使它们粘结在一起,固化后即形成包覆层。其中,热风自粘工艺是在绞合后的导线30a外绕制以上醋酸纤维丝或聚酯纤维丝等时通过热风加热模具,使模具温度达到线材的粘结温度,从而使醋酸纤维丝或聚酯纤维丝在导线30a外粘结成型形成包覆层;丙酮自粘工艺,是在绞合后的导线30a外绕制以上醋酸纤维丝的过程中通过毛毡或喷嘴将丙酮涂覆或喷洒到丝的表面上,通过丙酮使醋酸纤维丝粘结在一起,固化后即形成包覆层。
或者在又一个变化的实施中,以上导线股30b中的包覆层是类似光纤/线缆等制备方法中内部填充后表面涂敷的方式获得的。具体的一些实施中,采用填充物例如聚乙烯、聚氯乙烯(PVC)或尼龙等在绞合的过程中对导线30a之间的缝隙进行填充,而后再用包覆材料例如酚醛树脂、醇酸树脂、丁腈橡胶或三元乙丙橡胶进行包覆后获得。对于在制备后阻止导线股30b中导线30a的散开和滑脱是有利的。
进一步在实施中,同样地,采用前述类似的包覆层,多束导线股30b或者多束导线股30c之间也是彼此绝缘的。
图14是本申请实施方式提供的感应线圈的另一导线材料的截面示意图。
与图13不同的是,图14所示的导线材料40包括多束导线股40a,将多束导线股40a经过第四次绞合后形成感应线圈21的导线材料40。其中,每一束导线股40a与图13所示的导线材料30类似,即经过三次绞合后形成。
四次绞合后形成的导线材料40,能够进一步地避免断线现象发生,降低感应线圈自身的交流阻抗。已经发现,经过三次以上绞合后形成的导线材料均能达到上述目的。鉴于绞合工艺成本的原因,优选的采用三 次或者四次绞合工艺形成导线材料。
为了进一步验证绞合次数以及第一次绞合时导线30a的数量的影响,发明人选择了两组不同的测量条件来进行测量等效阻抗实部:一种是绞合次数为二次,第一次绞合时导线30a的数量为45根(以下表格中对应的“等效阻抗3”);另一种是绞合次数为四次,第一次绞合时导线30a的数量为10根(以下表格中对应的“等效阻抗4”);其它测量条件相同,例如:工作频率为500KHz~3MHz、导线30a的横截面形状均为圆形。使用阻抗分析仪测量,测量结果如下:
序号 工作频率 导线的横截面形状 等效阻抗3 等效阻抗4
1 500KHz 圆形 22.56mΩ 14.09mΩ
2 1MHz 圆形 30.46mΩ 16.15mΩ
3 1.5MHz 圆形 38.44mΩ 18.33mΩ
4 2MHz 圆形 46.86mΩ 20.83mΩ
5 2.5MHz 圆形 55.47mΩ 24.28mΩ
6 3MHz 圆形 66.89mΩ 28.47mΩ
从上述测量结果可以看出,绞合次数为四次,第一次绞合时导线30a的数量为10根时,其交流阻抗较小;与“绞合次数为二次,第一次绞合时导线30a的数量为45根”对比的来看,交流阻抗下降幅度非常大。因此感应线圈的导线股在第一次绞合时使用较低数量的导线(例如3~20根),而增加绞合次数(例如三次以上),可以促进电磁耦合效率,提高感受器在工作中的升温速度,使得气雾生成装置在启动后能够在极短的时间内生成气溶胶,从而符合含有液体基质的气雾生成装置在启动后几乎无需等待即可抽吸的使用需求。
另外,“绞合次数为四次,第一次绞合时导线30a的数量为10根”,在其绞合过程中,并未出现断线现象;而“绞合次数为二次,第一次绞 合时导线30a的数量为45根”,存在断线现象发生。
图15是本申请实施方式提供的另一感应线圈示意图。
如图15所示,感应线圈21a被构造成平面的螺旋线圈。平面的螺旋线圈的导线材料也是由多根导线30a经过多次绞合后形成;其中,第一次绞合中导线30a的数量介于3~20根。绞合次数优选的采用三次或者四次绞合工艺。
平面的螺旋线圈可以沿着垂直于气雾生成装置100的纵向方向布置或者沿着气雾生成装置100的纵向布置。平面的螺旋线圈可以通过与平面的感应线圈21a平行的片状或板状的支撑件来支撑,也可以嵌入在其他部件中。
图16是本申请实施方式提供的形成感应线圈的方法示意图。
如图16所示,所述方法包括:
步骤S11、提供数量为3~20的根导线,经过第一次绞合后得到第一级导线股;
步骤S12、提供多束第一级导线股,多束第一级导线股经过第二次绞合后得到第二级导线股;
多束第一级导线股中每一束第一级导线股可以具有相同数量的导线,也可以具有不同数量的导线。
步骤S13、提供多束第二级导线股,多束第二级导线股经过第三次绞合后形成所述感应线圈的导线材料。
在一示例中,所述方法还包括:
多束第二级导线股经过第三次绞合后得到第三级导线股;
提供多束第三级导线股,多束第三级导线股经过第四次绞合后形成所述感应线圈的导线材料。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的 实施例,但是,本申请可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本申请内容的额外限制,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施例,均视为本申请说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (20)

  1. 一种气雾生成装置,其特征在于,包括:
    感应线圈,用于产生变化的磁场;
    感受器,用于在变化的磁场中感应发热,从而加热气溶胶生成基质生成气溶胶;
    其中,所述感应线圈的导线材料包括两束以上的线芯;所述线芯包括有两根以上的导电丝。
  2. 如权利要求1所述的气雾生成装置,其特征在于,所述感应线圈的导电材料的截面呈圆形或矩形。
  3. 如权利要求1或2所述的气雾生成装置,其特征在于,所述感应线圈被构造成是螺线管线圈或平面的螺旋线圈。
  4. 如权利要求1所述的气雾生成装置,其特征在于,所述感应线圈的导线材料包括3~10束所述线芯。
  5. 如权利要求1所述的气雾生成装置,其特征在于,所述导电丝具有0.02~0.2mm的直径。
  6. 如权利要求1所述的气雾生成装置,其特征在于,所述导电丝具有1~6%的断裂伸长百分率。
  7. 如权利要求1所述的气雾生成装置,其特征在于,所述线芯具有 大于50MPa以上的极限抗拉强度。
  8. 如权利要求1所述的气雾生成装置,其特征在于,所述线芯中的两根以上的所述导电丝是绞合的;
    和/或,所述感应线圈的导线材料中的两束以上的所述线芯是绞合的。
  9. 如权利要求1所述的气雾生成装置,其特征在于,所述线芯还包括用于包覆两根以上所述导电丝的第一包覆层;
    和/或,所述感应线圈还包括用于包覆两束以上所述线芯的第二包覆层。
  10. 如权利要求1所述的气雾生成装置,其特征在于,所述气溶胶生成基质包括液体基质,所述感受器被配置为加热液体基质从而生成气溶胶,每一束所述线芯是由多根导电丝经过一次或多次绞合后形成,所述多根导电丝在第一次绞合中使用的导电丝数量介于3~20。
  11. 如权利要求10所述的气雾生成装置,其特征在于,所述线芯是由多根导电丝经过三次或者四次绞合后形成。
  12. 如权利要求10所述的气雾生成装置,其特征在于,所述导电丝的直径介于0.01mm~0.05mm。
  13. 如权利要求10所述的气雾生成装置,其特征在于,所述感应线圈的导线材料包括有500~2000根所述导电丝。
  14. 如权利要求10所述的气雾生成装置,其特征在于,提供给所述感应线圈的工作频率介于500KHz~3MHz。
  15. 如权利要求10所述的气雾生成装置,其特征在于,所述感应线圈被构造成螺线管线圈,所述螺线管线圈的匝数介于4匝~20匝。
  16. 如权利要求15所述的气雾生成装置,其特征在于,所述螺线管线圈的中空部分的截面呈椭圆形。
  17. 根据权利要求15所述的气雾生成装置,其特征在于,所述螺线管线圈相邻匝数的间距介于0.1~2mm。
  18. 一种用于气雾生成装置的感应线圈,所述感应线圈被配置为产生变化的磁场;其特征在于,所述感应线圈的导线材料包括多束线芯,每一束所述线芯是由多根导电丝经过一次或多次绞合后形成;其中,所述多根导电丝在第一次绞合中使用的导电丝数量介于3~20。
  19. 一种制备用于气雾生成装置的感应线圈的方法,其特征在于,所述方法包括:
    提供数量为3~20的根导电丝,经过第一次绞合后得到第一级线芯;
    提供多束第一级线芯,多束第一级线芯经过第二次绞合后得到第二级线芯;
    提供多束第二级线芯,多束第二级线芯经过第三次绞合后形成所述感应线圈的导线材料。
  20. 如权利要求19所述的方法,其特征在于,还包括:
    多束第二级线芯经过第三次绞合后得到第三级线芯;
    提供多束第三级线芯,多束第三级线芯经过第四次绞合后形成所述感应线圈的导线材料。
PCT/CN2022/130933 2021-11-09 2022-11-09 气雾生成装置、感应线圈及其制备方法 WO2023083223A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111318784.9 2021-11-09
CN202111318784.9A CN116098325A (zh) 2021-11-09 2021-11-09 气雾生成装置及感应线圈
CN202211351480.7A CN117981907A (zh) 2022-10-31 2022-10-31 电子雾化装置、感应线圈及其方法
CN202211351480.7 2022-10-31

Publications (1)

Publication Number Publication Date
WO2023083223A1 true WO2023083223A1 (zh) 2023-05-19

Family

ID=86335111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130933 WO2023083223A1 (zh) 2021-11-09 2022-11-09 气雾生成装置、感应线圈及其制备方法

Country Status (1)

Country Link
WO (1) WO2023083223A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2686051Y (zh) * 2004-02-20 2005-03-16 西安石油勘探仪器总厂 一种多束绞合绝缘高温导线
CN109448927A (zh) * 2018-07-31 2019-03-08 天津市奥讯通电缆科技发展有限公司 高频励磁线的制造工艺
CN110944530A (zh) * 2017-08-09 2020-03-31 菲利普莫里斯生产公司 具有非圆形电感器线圈的气溶胶生成系统
CN112656033A (zh) * 2019-10-16 2021-04-16 深圳市合元科技有限公司 气雾生成装置、感受器及温度监测方法
CN217184858U (zh) * 2021-11-09 2022-08-16 深圳市合元科技有限公司 气雾生成装置及感应线圈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2686051Y (zh) * 2004-02-20 2005-03-16 西安石油勘探仪器总厂 一种多束绞合绝缘高温导线
CN110944530A (zh) * 2017-08-09 2020-03-31 菲利普莫里斯生产公司 具有非圆形电感器线圈的气溶胶生成系统
CN109448927A (zh) * 2018-07-31 2019-03-08 天津市奥讯通电缆科技发展有限公司 高频励磁线的制造工艺
CN112656033A (zh) * 2019-10-16 2021-04-16 深圳市合元科技有限公司 气雾生成装置、感受器及温度监测方法
CN217184858U (zh) * 2021-11-09 2022-08-16 深圳市合元科技有限公司 气雾生成装置及感应线圈

Similar Documents

Publication Publication Date Title
JP6909319B2 (ja) 絡み合った芯および発熱体を組み込んだエアロゾル発生装置
US11234457B2 (en) Aerosol delivery system and method of operating the aerosol delivery system
US20230096283A1 (en) Aerosol generating system with multiple susceptors
KR20210064307A (ko) 가열 조립체 및 에어로졸 형성 기재를 유도 가열하기 위한 방법
IL267678B1 (en) Heat fuse for an electronic vaporizer
KR20180071323A (ko) 에어로졸 발생 물품 및 에어로졸 발생 물품을 제조하기 위한 방법, 에어로졸 발생 장치 및 시스템
CN216701692U (zh) 气雾生成装置及感应线圈
JP7279184B2 (ja) エアロゾル供給デバイス
CN217184858U (zh) 气雾生成装置及感应线圈
US11889867B2 (en) Aerosol-generating device for inductive heating of an aerosol-forming substrate
US20230210185A1 (en) Susceptor assembly comprising one or more composite susceptor particles
JP2022522751A (ja) エアロゾル供給デバイス
US20230010295A1 (en) Inductively heating aerosol-generating device with a multi-wire induction coil
CN219182804U (zh) 电子雾化装置、感应线圈
WO2023083223A1 (zh) 气雾生成装置、感应线圈及其制备方法
US20220142254A1 (en) Aerosol provision device
WO2024093759A1 (zh) 电子雾化装置、感应线圈及其方法
EP4149290B1 (en) Aerosol-generating article with liquid-conveying susceptor assembly
EP4149291B1 (en) Liquid-conveying susceptor assembly for conveying and inductively heating an aerosol-forming liquid
CN116098325A (zh) 气雾生成装置及感应线圈
WO2023088266A1 (zh) 气雾生成装置及感应线圈
US20230413903A1 (en) Braided absorbent material for use in a consumable of a non-combustible aerosol provision system
CN216723153U (zh) 感应加热组件及气溶胶产生装置
JP2023164794A (ja) エアロゾル供給デバイス
CN117356765A (zh) 一种气溶胶生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892017

Country of ref document: EP

Kind code of ref document: A1