WO2023083128A1 - 孤岛微电网系统及其交互振荡抑制方法、系统 - Google Patents

孤岛微电网系统及其交互振荡抑制方法、系统 Download PDF

Info

Publication number
WO2023083128A1
WO2023083128A1 PCT/CN2022/130250 CN2022130250W WO2023083128A1 WO 2023083128 A1 WO2023083128 A1 WO 2023083128A1 CN 2022130250 W CN2022130250 W CN 2022130250W WO 2023083128 A1 WO2023083128 A1 WO 2023083128A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual synchronous
synchronous generator
source
voltage
current
Prior art date
Application number
PCT/CN2022/130250
Other languages
English (en)
French (fr)
Inventor
陈燕东
郭健
伍文华
谢志为
周乐明
周小平
徐千鸣
何志兴
Original Assignee
广东志成冠军集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东志成冠军集团有限公司 filed Critical 广东志成冠军集团有限公司
Priority to US18/269,464 priority Critical patent/US20240047969A1/en
Publication of WO2023083128A1 publication Critical patent/WO2023083128A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B6/00Internal feedback arrangements for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B6/02Internal feedback arrangements for obtaining particular characteristics, e.g. proportional, integral, differential electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/002Flicker reduction, e.g. compensation of flicker introduced by non-linear load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach

Definitions

  • the invention relates to a low-frequency oscillation suppression technology of a power grid, in particular to an isolated island micro-grid system and a method and system for suppressing interactive oscillations thereof.
  • VSM virtual synchronous machine
  • VSG virtual synchronous generators
  • LVSM load-side virtual synchronous machines
  • VSG has been extensively studied, including implementation, parameter design, application, and small-signal impedance modeling.
  • power electronic loads connected to island microgrids are increasingly required to provide inertia and damping. Therefore, it is possible to introduce a running LVSM into a PWM rectifier without a phase-locked loop.
  • VSG or LVSM can operate stably even in a weak grid, but it cannot be guaranteed that the system powered by VSG to LVSM is still stable. Moreover, due to the q–q channel negative resistance behavior of LVSMs in the low-frequency range, it means that the interaction dynamics between VSGs and LVSMs may cause instability, thus limiting their large-scale application in island microgrids. Therefore, it is necessary to study the interaction dynamics between VSG and LVSM.
  • the methods for suppressing interactive oscillations in island microgrids can be roughly divided into two categories.
  • One type is implemented by an external device and the other by a modified controller. It is more economical to suppress oscillations by improving the controller than by adding additional equipment.
  • the literature has proposed parameter optimization methods to alleviate the interaction between VSI and VSR.
  • an active compensation technique is proposed to maintain the stability of the entire system consisting of multiple VSIs and VSRs.
  • the impedance of the LVSM is different from that of the VSR, the prior art has not studied the method of suppressing the mutual oscillation of the VSG and the LVSM.
  • the technical problem to be solved by the present invention is to provide an isolated island microgrid system and its interactive oscillation suppression method and system, which can effectively suppress the interactive oscillation of VSG and LVSM.
  • an interactive oscillation suppression method for an island microgrid system includes a plurality of power supply units; each power supply unit includes a source-side virtual synchronous generator and a load-side virtual synchronous generator; the source-side virtual synchronous generator is connected in series with the load-side virtual synchronous generator; the load-side virtual synchronous generator is connected to a load; the method includes the following steps:
  • D q represents the given reactive power-voltage droop coefficient
  • U n represents the rated value of the terminal voltage amplitude of the source-side virtual synchronous generator
  • K is the given excitation adjustment coefficient
  • s is the Laplacian operator
  • D p represents the damping coefficient
  • ⁇ n represents the synchronous angular velocity of the island microgrid system
  • J is the rotor inertia of VSG
  • i d and i q are the dq components of the three-phase current of the virtual synchronous machine at the source side;
  • R v and L v are the resistance and inductance values of the given virtual impedance respectively;
  • the impedance of the VSG is reshaped by the combined method of d-axis inductor current feedforward control and d-axis voltage feedback control, so as to reduce the impedance amplitude of the VSG. Therefore, the low-frequency interaction between VSG and LVSM can be alleviated, thereby suppressing the interactive oscillation between VSG and LVSM, and ensuring the stability of the island microgrid system.
  • i d1 * and i d2 * are respectively the voltage feedback component of the d-axis and the current feed-forward component of the d-axis, and their calculation methods are as follows:
  • the present invention also provides an interactive oscillation suppression system of an island microgrid system, which includes a computer device; the computer device is configured or programmed to execute the steps of the interactive oscillation suppression method of the present invention.
  • the present invention also provides an isolated island microgrid system, including a plurality of power supply units; each power supply unit includes a source-side virtual synchronous generator and a load-side virtual synchronous generator; the source-side virtual synchronous generator and load The virtual synchronous generators on the load side are connected in series; the virtual synchronous generators on the load side are connected to the load; the virtual synchronous generators on the source side are connected to the processor; the processor is configured or programmed to perform the interactive oscillation suppression method of the present invention step.
  • the island microgrid system of the present invention can avoid potential network attacks.
  • the island microgrid system of the present invention avoids low-frequency interactive oscillation, improves the stability of the island microgrid system, and enables the island microgrid system to be applied in engineering.
  • the processor of the present invention samples the three-phase output current of the source-side virtual synchronous generator through a current sampling circuit; the processor samples the three-phase output current of the source-side virtual synchronous generator through a voltage sampling circuit output voltage; the processor outputs a duty cycle signal to the switching tube of the source-side virtual synchronous generator.
  • the method of the present invention can suppress the interactive oscillation between VSG and LVSM, ensuring the stability of the island microgrid system;
  • the method of the present invention maintains the dynamic performance of the isolated island microgrid system, and the control is simple and economical;
  • the island microgrid system of the present invention can support voltage and frequency stability from both sides of the source and load, and can omit secondary communication at the same time, avoiding potential network attacks, and is safe and reliable to use.
  • Fig. 1 is an island microgrid system composed of a source-load virtual synchronizer according to Embodiment 1 of the present invention
  • Fig. 2 is the main circuit and control method diagram of the virtual synchronous machine after the impedance remodeling of Embodiment 2 of the present invention
  • FIG. 3 is a simulation waveform of system interface voltage before and after impedance reshaping in Embodiment 1 of the present invention.
  • Embodiment 1 of the present invention provides an island microgrid system including a source-load virtual synchronous machine. As shown in FIG. 1, the island microgrid system in Embodiment 1 uses VSG and LVSM in combination. Each power supply unit includes a VSG and a LVSM, and the LVSM is connected to a load. The connection point between the VSG and the LVSM is called a common coupling point.
  • Embodiment 1 of the present invention there are n power supply units, so there are n VSGs (VSG1, VSG2, . . . , VSGn) and n LVSMs (LVSM1, LVSM2, . . . , LVSMn).
  • Embodiment 2 of the present invention provides the interactive oscillation suppression method of the isolated island microgrid system in Embodiment 1.
  • the interactive oscillation suppression method of the embodiment of the present invention is controlled from the source side virtual synchronous generator.
  • the virtual synchronous generator on the source side includes an LC filter, a three-phase inverter circuit, a sampling circuit, a DC side energy storage capacitor, a controller, and a drive protection circuit;
  • the LC filter is connected to the output side of the three-phase inverter circuit;
  • the three-phase inverter The bridge arm of the circuit is connected in parallel with the DC side energy storage capacitor;
  • the input terminal of the sampling circuit is connected with the LC filter;
  • the output terminal of the sampling circuit is connected with the input terminal of the controller;
  • the controller is connected with the input terminal of the drive protection circuit; the drive protection circuit
  • the output end is used to drive the three-phase inverter circuit.
  • the sampling circuit includes a voltage sampling circuit and a current sampling circuit.
  • the current sampling circuit is connected to the input side of the LC filter.
  • the current sampling circuit is used to sample the three-phase currents ia , ib and ic of the LC filter.
  • the voltage sampling circuit is connected to the LC filter On the output side of the filter, the voltage sampling circuit is used to sample the line voltage u ab and u bc of the LC filter.
  • the interactive oscillation suppression method in Embodiment 2 of the present invention includes the following steps:
  • E m (D q (U n -u d )+Q set -Q)/( Ks);
  • E m represents the output voltage amplitude of the virtual synchronous generator
  • D q represents the reactive power-voltage droop coefficient
  • U n represents the rated value of the terminal voltage amplitude of the virtual synchronous machine
  • K is the excitation adjustment coefficient
  • Q set Indicates the reactive command value of the virtual synchronous machine
  • the voltage feedback component i d1 * of the d-axis and the current feedforward component i d2 * of the d-axis are calculated as:
  • T c is the time constant of the low-pass filter
  • G m U dc0 /2
  • G i k pi +k ii /s
  • k pi is the proportional gain of the current PI controller
  • k ii is the current PI controller integral gain.
  • Fig. 3 provides the simulation waveform of the d-axis component of the interface voltage of the island microgrid system in Embodiment 1 of the present invention.
  • the d-axis component of the system interface voltage induces low-frequency oscillation.
  • the oscillation suppression method of the embodiment is invented, the d-axis component of the system interface voltage is gradually stabilized, and the system can run stably.

Abstract

本发明公开了一种孤岛微电网系统及其交互振荡抑制方法、系统,源侧虚拟同步机和负载侧虚拟同步机结合起来提供虚拟惯性和阻尼。本发明提出了一种d轴电感电流前馈控制和d轴电压反馈控制的方法来重塑VSG的阻抗,以减小VSG的阻抗幅值。因此,VSG和LVSM之间的低频交互作用可以得到抑制。本发明可用于解决由含多源-荷虚拟同步机构成的交流孤岛微电网的交互振荡问题。

Description

孤岛微电网系统及其交互振荡抑制方法、系统
交叉引用
本申请要求2021年11月11日提交的中国专利申请号202111332841.9的权益,所述申请以引用的方式整体并入本申请。
技术领域
本发明涉及电网低频振荡抑制技术,特别是一种孤岛微电网系统及其交互振荡抑制方法、系统。
背景技术
近年来,随着能源短缺和环境污染问题的日益突出,由光伏系统、风力发电、储能和电压源换流器(VSC)组成的分布式微电网得到了广泛的应用。然而,随着电力电子变换器普及率的逐渐提高,系统的低惯性和可再生能源的随机发电威胁着孤岛微电网的稳定性。
为了解决这一问题,虚拟同步机(VSM)应运而生,它模拟同步电机的动态特性,为电力系统提供虚拟惯性和阻尼。虚拟同步机可分为两类:虚拟同步发电机(VSG)和负载侧虚拟同步机(LVSM)。目前,VSG已经得到了广泛的研究,包括实现、参数设计、应用、小信号阻抗建模。除了供电侧,连接到孤岛微电网的电力电子负载也逐渐被要求提供惯性和阻尼。因此,可以在没有锁相环的情况下将运行的LVSM引入到PWM整流器中。根据现有的研究,VSG或LVSM即使在弱电网中也能稳定运行,但不能保证由VSG给LVSM供电的系统仍然是稳定的。此外,由于LVSM在低频范围内的q-q通道负电阻行为,这意味着VSG和LVSM之间的相互作用动力学可能会导致不稳定性,因此限制了它们在孤岛微电网中的大规模应用。因此,有必要研究VSG与LVSM之间的交互动态。
一般来说,对孤岛微电网中交互振荡的抑制方法大致分为两类。一种类型由外部设备实现,另一种类型由改进的控制器实现。与附加设备相比,通过改进控制器来抑制振荡更为经济。已有文献提出通过虚拟阻抗增强VSG在弱电网中的稳定性,并设计了谐波虚拟阻抗来抑制VSG的谐波。然而,应用虚拟阻抗控制会导致VSG产生电压降落。此外,对于类似的孤岛微电网,已有文献提出了参数优化的方法来缓解VSI和VSR之间的相互作用。此外,还提出了有源补偿技术,以保持由多个VSI和VSR组成的整个系统的稳定性。然而,由于LVSM的阻抗与VSR不同,现有技术并未对VSG与LVSM交互振荡的抑制方法进行研究。
发明内容
本发明所要解决的技术问题是,针对现有技术不足,提供一种孤岛微电网系统及其交互振荡抑制方法、系统,有效抑制VSG与LVSM的交互振荡。
为解决上述技术问题,本发明所采用的技术方案是:一种孤岛微电网系统的交互振荡抑制方法,孤岛微电网系统包括多个供电单元;每个供电单元均包括一源侧虚拟同步发电机和一负荷侧虚拟同步发电机;所述源侧虚拟同步发电机和负荷侧虚拟同步发电机串联;所述负荷侧虚拟同步发电机接负载;该方法包括以下步骤:
S1、根据源侧虚拟同步发电机三相输出电压的d轴分量u d,源侧虚拟同步发电机的瞬时无功Q及其指令值Q set,得到源侧虚拟同步发电机的输出电压幅值E m,其计算公式为:
E m=(D q(U n-u d)+Q set-Q)/(Ks);
其中,D q表示给定的无功-电压下垂系数;U n表示源侧虚拟同步发电机的端电压幅值额定值;K为给定的励磁调节系数;s为拉普拉斯算子;
S2、根据源侧虚拟同步机的有功功率P及其指令值P *,得到源侧虚拟同步发电机的相角θ,其计算公式为:
Figure PCTCN2022130250-appb-000001
其中,D p表示阻尼系数;ω n表示孤岛微电网系统同步角速度;J为VSG的转子惯量;
S3、将源侧虚拟同步发电机的电压幅值E m通过减去源侧虚拟同步机的电流与阻抗的乘积,构建虚拟阻抗,得到dq轴电压的指令值u d *,u q *,其计算方式如下:
Figure PCTCN2022130250-appb-000002
其中,i d、i q为源侧虚拟同步机三相电流的dq分量;R v、L v分别为给定的虚拟阻抗的阻值与感值;
S4、将源侧虚拟同步发电机的dq轴电压的指令值u d*,u q*与其三相电压的dq分量作差,其差值通过PI控制,得到电流的指令值i d0 *,i q *
S6、利用下式计算源侧虚拟同步发电机三相输出电流d轴电流分量的指令值i d *:i d *=i d0 *-i d1 *+i d2 *
S7、将源侧虚拟同步发电机的dq轴电流指令值指令i d *,i q *分别与其三相电流的dq分量i d、i q作差,并作为PI控制器的输入,得到dq轴的占空比值d d和d q
S8、根据dq轴的占空比d d、d q和源侧虚拟同步发电机的相角θ,得到三相静止坐标系下的占空比d a,d b和d c,控制所述源侧虚拟同步发电机开关管的通断。
Figure PCTCN2022130250-appb-000003
本发明通过d轴电感电流前馈控制和d轴电压反馈结合控制的方法来重塑VSG的阻抗,以减小VSG的阻抗幅值。因此,VSG和LVSM之间的低频交互作用可以得到缓解,进而抑制了VSG与LVSM的交互振荡,保证了孤岛微电网系统的稳定性。
步骤S6中,i d1 *、i d2 *分别为d轴的电压反馈分量和d轴的电流前馈分量,其计算方式如下:
Figure PCTCN2022130250-appb-000004
Figure PCTCN2022130250-appb-000005
其中,L f,C f为VSG的LC滤波器的感值与容值;T c是低通滤波器的时间常数G m=U dc0/2;G i=k pi+k ii/s,k pi和k ii为电流PI控制器的比例和积分增益。
本发明还提供了一种孤岛微电网系统的交互振荡抑制系统,其包括计算机设备;所述计算机设备被配置或编程为用于执行本发明交互振荡抑制方法的步骤。
本发明还提供了一种孤岛微电网系统,包括多个供电单元;每个供电单元均包括一源侧虚拟同步发电机和一负荷侧虚拟同步发电机;所述源侧虚拟同步发电机和负荷侧虚拟同步发电机串联;所述负荷侧虚拟同步发电机接负载;所述源侧虚拟同步发电机与处理器连接;所述处理器被配置或编程为用于执行本发明交互振荡抑制方法的步骤。
由于VSG和LVSM都能自主参与系统电压和频率的调节,且不需要依赖额外的通信网络来实现两级控制,因此本发明的孤岛微电网系统可以避免潜在的网络攻击。同时,本发明的孤岛微电网系统避免了低频交互振荡,提高了孤岛微电网系统的稳定性,使得孤岛微电网系统能够应用于工程中。
为了便于获取相应数据,本发明的处理器通过电流采样电路采样所述源侧虚拟同步发电 机的三相输出电流;所述处理器通过电压采样电路采样所述源侧虚拟同步发电机的三相输出电压;所述处理器输出占空比信号至所述源侧虚拟同步发电机的开关管。
与现有技术相比,本发明所具有的有益效果为:
1、本发明的方法可以抑制VSG与LVSM的交互振荡,保证了孤岛微电网系统的稳定性;
2、本发明的方法保持了孤岛微电网系统的动态性能,控制简单、经济;
3、本发明的孤岛微电网系统可以从源荷两侧支撑电压和频率稳定,同时可以省略二次通信,避免潜在的网络攻击,使用安全可靠。
附图说明
图1是本发明实施例1由源荷虚拟同步机构成的孤岛微电网系统;
图2是本发明实施例2阻抗重塑后的虚拟同步机的主电路及其控制方式图;
图3是本发明实施例1阻抗重塑前后系统接口电压的仿真波形。
具体实施方式
本发明实施例1提供了一种含源-荷虚拟同步机的孤岛微电网系统,如图1所示,实施例1的孤岛微电网系统将VSG与LVSM结合使用,该孤岛微电网系统包括多个供电单元,每个供电单元包括一VSG和一LVSM,LVSM接负载。VSG与LVSM的连接点称为公共耦合点。
本发明实施例1中共有n个供电单元,因此一共有n个VSG(VSG1、VSG2、……、VSGn)和n个LVSM(LVSM1、LVSM2、……、LVSMn)。
本发明实施例2提供了实施例1孤岛微电网系统的交互振荡抑制方法,如图2所示,本发明实施例的交互振荡抑制方法是从源侧虚拟同步发电机进行控制的。源侧虚拟同步发电机包括LC滤波器、三相逆变电路、采样电路、直流侧储能电容、控制器和驱动保护电路;LC滤波器与三相逆变电路输出侧连接;三相逆变电路的桥臂与直流侧储能电容并联;采样电路的输入端与LC滤波器连接;采样电路的输出端与控制器输入端连接;控制器与驱动保护电路输入端连接;所述驱动保护电路输出端用于驱动三相逆变电路。其中采样电路包括电压采样电路和电流采样电路,电流采样电路接LC滤波器输入侧,电流采样电路用于采样LC滤波器的三相电流i a、i b和i c,电压采样电路接LC滤波器输出侧,电压采样电路用于采样LC滤波器的线电压u ab、u bc
本发明实施例2的交互振荡抑制方法包括如下步骤:
1)采样LC滤波器的三相输出电流i a、i b和i c、LC滤波器的线电压u ab、u bc
2)由三相线电压u ab、u bc计算三相相电压u a、u b和u c
3)由LC滤波器的三相输出电流i a、i b和i c,网侧三相相电压u a、u b和u c,分别计算三相电压的dq分量u d,u q和三相电流的dq分量i d,i q
4)根据三相电压的dq分量u d,u q和三相电流的dq分量i d,i q,计算瞬时有功功率P和无功功率Q;
5)由瞬时有功功率P计算虚拟同步发电机的电磁转矩T e,T e=P/ω n,其中,ω n表示电网同步角速度;
6)由T set计算虚拟同步发电机的相角
Figure PCTCN2022130250-appb-000006
其中,D p表示阻尼系数;T set表示虚拟同步机的机械转矩;
7)由网侧电压的d轴分量u d和无功功率Q计算出虚拟同步发电机的输出电压幅值,E m=(D q(U n-u d)+Q set-Q)/(Ks);其中,E m表示虚拟同步发电机的输出电压幅值;D q表示无功-电压下垂系数;U n表示虚拟同步机的端电压幅值额定值;K为励磁调节系数;Q set表示虚拟同步机的无功指令值;
8)将源侧虚拟同步发电机的dq轴电压的指令值u d*,u q*与其三相电压的dq分量作差,差值通过PI控制,得到电流的指令值i d0 *,i q *
9)通过PI控制器的输出及d轴的电压反馈分量i d1 *和d轴的电流前馈分量i d2 *,得到三相电流的d轴电流分量的指令值i d *;其计算公式为:i d *=i d0 *-i d1 *+i d2 *。其中,d轴的电压反馈分量i d1 *和d轴的电流前馈分量i d2 *的计算方式为:
Figure PCTCN2022130250-appb-000007
Figure PCTCN2022130250-appb-000008
其中,T c是低通滤波器的时间常数,G m=U dc0/2;G i=k pi+k ii/s;k pi为电流PI控制器的比例增益;k ii为电流PI控制器的积分增益。
10)将源侧虚拟同步发电机的dq轴电流指令值指令i d *,i q *分别与其三相电流的dq分量i d、i q作差,差值分别作为PI控制器的输入,得到dq轴的占空比值d d和d q
11)根据dq轴的占空比和相位θ,得到三相静止坐标系下的占空比d a,d b和d c
12)根据占空比d a,d b和d c,控制电力电子装置开关管的开断。
图3提供了本发明实施例1的孤岛微电网系统的接口电压d轴分量的仿真波形,在不添加本发明实施例的控制过程时,系统接口电压的d轴分量诱发低频振荡,在采用本发明实施例的振荡抑制方法后,系统接口电压的d轴分量是渐渐稳定的,系统能稳定运行。

Claims (5)

  1. 一种孤岛微电网系统的交互振荡抑制方法,其特征在于,孤岛微电网系统包括多个供电单元;每个供电单元均包括一源侧虚拟同步发电机和一负荷侧虚拟同步发电机;所述源侧虚拟同步发电机和负荷侧虚拟同步发电机串联;所述负荷侧虚拟同步发电机接负载;该方法包括以下步骤:
    S1、根据源侧虚拟同步发电机三相输出电压的d轴分量u d、源侧虚拟同步发电机的瞬时无功功率Q及瞬时无功功率Q的指令值Q set,得到源侧虚拟同步发电机的输出电压幅值E m,E m计算公式为:
    E m=(D q(U n-u d)+Q set-Q)/(Ks);
    其中,D q表示给定的无功-电压下垂系数;U n表示源侧虚拟同步发电机的端电压幅值额定值;K为给定的励磁调节系数;s为拉普拉斯算子;
    S2、根据源侧虚拟同步机的有功功率P及有功功率P的指令值P *,得到源侧虚拟同步发电机的相角θ,其计算公式为:
    Figure PCTCN2022130250-appb-100001
    其中,D p表示阻尼系数;ω n表示孤岛微电网系统同步角速度;J为源侧虚拟同步发电机的转子惯量;
    S3、根据源侧虚拟同步发电机的电压幅值E m得到dq轴电压的指令值u d *,u q *,其计算方式如下:
    Figure PCTCN2022130250-appb-100002
    其中,i d、i q为源侧虚拟同步机三相电流的dq分量;R v、L v分别为给定的虚拟阻抗的阻值与感值;
    S4、将源侧虚拟同步发电机的dq轴电压的指令值u d*,u q*与源侧虚拟同步发电机三相电压的dq分量作差,差值通过PI控制,得到电流的指令值i d0 *,i q *
    S6、利用下式计算源侧虚拟同步发电机三相输出电流d轴电流分量的指令值i d *:i d *=i d0 *-i d1 *+i d2 *
    S7、将源侧虚拟同步发电机的dq轴电流指令值指令i d *,i q *分别与源侧虚拟同步发电机三相电流的dq分量i d、i q作差,差值分别作为PI控制器的输入,得 到dq轴的占空比值d d和d q
    S8、根据dq轴的占空比d d、d q和源侧虚拟同步发电机的相角θ,得到三相静止坐标系下的占空比d a,d b和d c,控制所述源侧虚拟同步发电机开关管的通断;
    Figure PCTCN2022130250-appb-100003
  2. 根据权利要求1所述的孤岛微电网系统的交互振荡抑制方法,其特征在于,步骤S6中,i d1 *、i d2 *分别为d轴的电压反馈分量和d轴的电流前馈分量,其计算公式如下:
    Figure PCTCN2022130250-appb-100004
    Figure PCTCN2022130250-appb-100005
    其中L f,C f为源侧虚拟同步发电机的LC滤波器的感值与容值;T c是低通滤波器的时间常数;G m=U dc0/2;G i=k pi+k ii/s,k pi和k ii为电流PI控制器的比例和积分增益。
  3. 一种孤岛微电网系统的交互振荡抑制系统,其特征在于,包括计算机设备;所述计算机设备包括处理器和存储器;所述处理器用于执行所述存储器中存储的计算机程序;所述计算机程序被配置为用于执行权利要求1或2所述方法的步骤。
  4. 一种孤岛微电网系统,其特征在于,包括多个供电单元;每个供电单元均包括一源侧虚拟同步发电机和一负荷侧虚拟同步发电机;所述源侧虚拟同步发电机和负荷侧虚拟同步发电机串联;所述负荷侧虚拟同步发电机接负载;所述源侧虚拟同步发电机与处理器连接;所述处理器被配置或编程为用于执行权利要求1或2所述方法的步骤。
  5. 根据权利要求4所述的孤岛微电网系统,其特征在于,所述处理器通过电流采样电路采样所述源侧虚拟同步发电机的三相输出电流;所述处理器通过电压采样电路采样所述源侧虚拟同步发电机中LC滤波器的线电压;所述处理器输出占空比信号至所述源侧虚拟同步发电机的开关管。
PCT/CN2022/130250 2021-11-11 2022-11-07 孤岛微电网系统及其交互振荡抑制方法、系统 WO2023083128A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/269,464 US20240047969A1 (en) 2021-11-11 2022-11-07 Island microgrid system, and interactive oscillation suppression method and system therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111332841.9 2021-11-11
CN202111332841.9A CN114024309B (zh) 2021-11-11 2021-11-11 孤岛微电网系统及其交互振荡抑制方法、系统

Publications (1)

Publication Number Publication Date
WO2023083128A1 true WO2023083128A1 (zh) 2023-05-19

Family

ID=80063592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130250 WO2023083128A1 (zh) 2021-11-11 2022-11-07 孤岛微电网系统及其交互振荡抑制方法、系统

Country Status (3)

Country Link
US (1) US20240047969A1 (zh)
CN (1) CN114024309B (zh)
WO (1) WO2023083128A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116667388A (zh) * 2023-07-25 2023-08-29 西安热工研究院有限公司 一种液流超容锂电池混合储能抑制电力系统低频振荡方法
CN116865361A (zh) * 2023-07-20 2023-10-10 芜湖职业技术学院 一种基于分数阶微分的虚拟同步发电机功率控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114024309B (zh) * 2021-11-11 2023-12-05 广东志成冠军集团有限公司 孤岛微电网系统及其交互振荡抑制方法、系统
CN116613781B (zh) * 2023-06-08 2023-11-17 广东工业大学 基于占空比计算的直流母线振荡抑制装置的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035760A1 (en) * 2017-08-17 2019-02-21 Nanyang Technological University VIRTUAL ENERGY SYSTEM INERTIA APPARATUS, AND METHODS OF OPERATION THEREOF
CN110445186A (zh) * 2019-07-10 2019-11-12 中国电力科学研究院有限公司 一种自同步微电网控制系统及二次调频控制方法
US20200212823A1 (en) * 2019-01-02 2020-07-02 General Electric Company Virtual synchronous generator system and method with virtual inertia control
CN111541274A (zh) * 2020-05-27 2020-08-14 燕山大学 一种基于虚拟同步发电机特性的孤岛微电网控制策略
CN112039112A (zh) * 2020-06-23 2020-12-04 湖南大学 虚拟同步机串补并网系统次同步振荡抑制方法及控制系统
CN114024309A (zh) * 2021-11-11 2022-02-08 广东志成冠军集团有限公司 孤岛微电网系统及其交互振荡抑制方法、系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092302B (zh) * 2017-11-20 2020-10-27 东南大学 负荷虚拟同步机低电压穿越控制方法
FR3095559A1 (fr) * 2019-04-25 2020-10-30 Schneider Electric Industries Sas Procédé de commande d’un convertisseur dc/ac
CN110429658B (zh) * 2019-07-30 2020-12-25 河海大学 一种基于一致性的负荷虚拟同步机分布式协同控制方法
CN110277803B (zh) * 2019-07-30 2021-02-12 西安西电电气研究院有限责任公司 一种储能变流器的虚拟同步发电机控制方法及控制装置
US11973417B2 (en) * 2019-08-09 2024-04-30 Tokyo Electric Power Company Holdings, Incorporated System interconnection power conversion device
CN111490558A (zh) * 2020-03-31 2020-08-04 杭州鸿晟电力设计咨询有限公司 一种改进虚拟同步发电机的微电网并离网安全控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035760A1 (en) * 2017-08-17 2019-02-21 Nanyang Technological University VIRTUAL ENERGY SYSTEM INERTIA APPARATUS, AND METHODS OF OPERATION THEREOF
US20200212823A1 (en) * 2019-01-02 2020-07-02 General Electric Company Virtual synchronous generator system and method with virtual inertia control
CN110445186A (zh) * 2019-07-10 2019-11-12 中国电力科学研究院有限公司 一种自同步微电网控制系统及二次调频控制方法
CN111541274A (zh) * 2020-05-27 2020-08-14 燕山大学 一种基于虚拟同步发电机特性的孤岛微电网控制策略
CN112039112A (zh) * 2020-06-23 2020-12-04 湖南大学 虚拟同步机串补并网系统次同步振荡抑制方法及控制系统
CN114024309A (zh) * 2021-11-11 2022-02-08 广东志成冠军集团有限公司 孤岛微电网系统及其交互振荡抑制方法、系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, AOYANG: "Harmonic Suppression Method for VSG Connected to Weak Grid and Device Development", MASTER'S THESIS, 10 May 2019 (2019-05-10), CN, pages 1 - 69, XP009546244, DOI: 10.27135/d.cnki.ghudu *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116865361A (zh) * 2023-07-20 2023-10-10 芜湖职业技术学院 一种基于分数阶微分的虚拟同步发电机功率控制方法
CN116667388A (zh) * 2023-07-25 2023-08-29 西安热工研究院有限公司 一种液流超容锂电池混合储能抑制电力系统低频振荡方法
CN116667388B (zh) * 2023-07-25 2023-11-17 西安热工研究院有限公司 一种液流超容锂电池混合储能抑制电力系统低频振荡方法

Also Published As

Publication number Publication date
US20240047969A1 (en) 2024-02-08
CN114024309B (zh) 2023-12-05
CN114024309A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2023083128A1 (zh) 孤岛微电网系统及其交互振荡抑制方法、系统
He et al. An islanding microgrid power sharing approach using enhanced virtual impedance control scheme
Pan et al. Optimized controller design for $ LCL $-type grid-connected inverter to achieve high robustness against grid-impedance variation
Shao et al. Power coupling analysis and improved decoupling control for the VSC connected to a weak AC grid
Kenyon et al. Grid-following inverters and synchronous condensers: A grid-forming pair?
Li et al. Design and operation analysis of virtual synchronous compensator
Zhou et al. DC-link voltage research of photovoltaic grid-connected inverter using improved active disturbance rejection control
Wen et al. Modeling the output impedance negative incremental resistance behavior of grid-tied inverters
Khazaei et al. Impedance-model-based MIMO analysis of power synchronization control
Bin et al. New control scheme of power decoupling based on virtual synchronous generator
Lin et al. Role Determination of Impedance Coupling in GCC with DC-Link Virtual Inertia Control
Liu et al. Control loop stability criterion and interaction law analysis for grid-connected inverter in weak grid
Xin et al. A generalized-impedance based stability criterion for three-phase grid-connected voltage source converters
Guan et al. Admittance modeling and stability analysis for inverter-based microgrid with voltage-source-rectifier load
Wenbing et al. Full-band output impedance model of virtual synchronous generator in dq framework
Ahmad et al. Real and reactive power compensation of a power system by using DSTATCOM
Chen et al. Enhanced Q-axis Voltage Integral Damping Control for Fast PLL-Synchronized Inverters in Weak Grids
Sahoo et al. An improved UPFC control to enhance power system stability
Li et al. An improved vector control strategy of VSC-HVDC connected to weak power grid
Heidari Improve the Power Quality of Wind Power Plant by Modifying the Theory of Instantaneous Active and Reactive Power
Aryanezhad et al. Delay dependent H∞ based robust control strategy for unified power quality conditioner in a microgrid
Ren et al. Influence of PLL on broadband oscillation under weak grid
Avdiaj et al. A virtual synchronous machine-based control for eliminating DC-side power oscillations of three-phase VSCs under unbalanced grid voltages
Liu et al. Power Oscillation Analysis of PMSG Wind Power Generation System Considering Power Control Nonlinearity
Saralaya et al. An improved voltage controller for distribution static compensator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18269464

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891922

Country of ref document: EP

Kind code of ref document: A1