WO2023083049A1 - 真空壁位置可调的冷冻消融针 - Google Patents

真空壁位置可调的冷冻消融针 Download PDF

Info

Publication number
WO2023083049A1
WO2023083049A1 PCT/CN2022/128871 CN2022128871W WO2023083049A1 WO 2023083049 A1 WO2023083049 A1 WO 2023083049A1 CN 2022128871 W CN2022128871 W CN 2022128871W WO 2023083049 A1 WO2023083049 A1 WO 2023083049A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
vacuum wall
vacuum
inner tube
wall
Prior art date
Application number
PCT/CN2022/128871
Other languages
English (en)
French (fr)
Inventor
杨迟
常兆华
Original Assignee
上海导向医疗系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海导向医疗系统有限公司 filed Critical 上海导向医疗系统有限公司
Priority to AU2022384225A priority Critical patent/AU2022384225A1/en
Priority to CA3238024A priority patent/CA3238024A1/en
Publication of WO2023083049A1 publication Critical patent/WO2023083049A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0293Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument interstitially inserted into the body, e.g. needle

Definitions

  • the invention relates to the technical field of cryoablation, in particular to a cryoablation needle with an adjustable vacuum wall position.
  • Cryoablation a treatment modality that uses low temperature to destroy diseased tissue, is considered to be an efficient and minimally invasive method for treating malignant tumors.
  • the cryoablation technique is easy to operate, has few complications, and can effectively relieve pain.
  • the boundary of the ice ball formed by ablation is clear and easy to observe. It can safely ablate lesions adjacent to large blood vessels or important organs; cryoablation can also use multiple needles to freeze , making the ablation range larger, suitable for large lesions and lesions with irregular shapes.
  • Intracellular ice damage directly damages the cell structure, so it is more destructive to cells.
  • the development of cryoablation technology has gone through three stages.
  • the first stage is liquid nitrogen delivery refrigeration technology.
  • This technology is to deliver liquid nitrogen at -196°C to the needle of the cryoablation needle through a low driving pressure to achieve the purpose of cryoablation.
  • the cold source of this technology relies entirely on liquid nitrogen, and the liquid nitrogen is located in the host or the liquid nitrogen barrel, which has a long delivery distance from the needle.
  • the temperature of the needle can reach -196 °C.
  • the cooling rate of liquid nitrogen refrigeration is the slowest in the existing technology;
  • the second stage is the direct throttling refrigeration technology, which uses the "Joule Thomson effect" (Joule Thompson Effect, referred to as J-T) principle, the ultra-high pressure gas at room temperature is delivered to the J-T groove (capillary tube that produces the J-T effect) inside the cryoablation needle to directly throttle to generate low temperature, and its cooling rate is relatively the fastest in current technology , but the J-T grooves and finned tubes inside the needle will still consume part of the cooling capacity and delay the cooling time.
  • the ultra-high pressure gas used is not popular and expensive, which makes it difficult to promote this technology;
  • the three-stage is pre-cooled throttling refrigeration technology.
  • the present invention proposes a cryoablation needle with adjustable vacuum wall position to solve the problem of slow cooling rate in the prior art.
  • the present invention provides a cryoablation needle with adjustable vacuum wall position, which includes: vacuum wall, J-T groove and vacuum wall adjustment device; wherein,
  • the vacuum wall includes: a needle bar and an inner tube
  • the distal end of the needle shaft has a needle
  • the inner tube is passed through the needle bar, and an interlayer is formed between the inner tube and the needle bar, and the interlayer can form a vacuum interlayer;
  • the J-T groove is pierced through the inner tube
  • the needle head can switch between at least two adjustment positions relative to the J-T groove, and the at least two adjustment positions include: a first adjustment position and a second adjustment position; the needle head
  • the section where the interlayer is located is a vacuum insulation area
  • the section where the first preset distance is located is a targeting area
  • the distal end of the J-T groove is located in the targeting area; the distal end of the J-T groove is the end of the J-T groove close to the needle;
  • said vacuum wall adjustment means is configured to switch said needle between said at least two adjustment positions by adjusting the position of said needle;
  • the distal end of the J-T groove When the distal end of the J-T groove is at the first adjustment position, there is a second preset distance between the distal end of the J-T groove and the needle along the axial direction of the vacuum wall, and the first Two preset distances at least ensure that the ice ball formed by freezing covers the needle, that is, the refrigerant fluid is sprayed from the J-T slot and returns from the inside of the target area and the inside of the vacuum insulation area, wherein during the return process of the refrigerant fluid from the inside of the target area, Heat exchange with material outside the entire targeting zone;
  • the third preset distance between the distal end of the J-T groove and the distal end of the vacuum insulation area.
  • the third preset distance at least ensures that the refrigerant returns directly from the vacuum insulation area after being sprayed from the J-T slot, and there is only relatively static refrigerant in the target area, which will not interfere with the outside of the target area.
  • the substance undergoes heat exchange, that is, the refrigerant does not release any cold energy in the targeted section during the freezing process; the far end of the vacuum heat insulation zone is the end of the vacuum heat insulation zone close to the needle.
  • the vacuum wall adjustment device includes: a first slider and a first slider guide;
  • the first slider guide is arranged along the axial direction of the vacuum wall; wherein,
  • the first slider is connected to the vacuum wall, and the first slider guide is fixed relative to the slider or the J-T slot;
  • the first slider guide and the J-T slot can slide relatively; if the first slider guide is relative to the If the position of the J-T slot is fixed, the first slider and the first slider guide can slide relatively;
  • the first slider and the vacuum wall can be controlled to move synchronously along the axis to switch the adjustment position of the needle.
  • a first sealing assembly which is in sealing connection with the proximal end of the inner tube; the proximal end of the inner tube is the end of the inner tube away from the needle;
  • a dynamic seal is formed between the first sealing assembly and the first slider.
  • the first sealing assembly includes: a sealing ring, a sealing groove and a sealing pressure piece; wherein,
  • the distal end of the sealing groove is fixed and sealed with the proximal end of the inner tube, and the distal end of the sealing groove is the end of the sealing groove close to the needle;
  • the sealing ring is arranged between the sealing pressing piece and the first slider, and the sealing pressing piece is arranged between the sealing ring and the sealing groove;
  • the sealing ring and the sealing pressure piece are slidably connected to the sealing groove;
  • the first sliding block, the sealing ring and the sealing pressure piece can be controlled and synchronized to move along the axial direction.
  • it also includes: a spring and a locking member; wherein,
  • One end of the spring moves synchronously with the distal end used for the J-T slot, and is also connected to the locking member; the locking member can enter and leave the locking position;
  • the other end of the spring is fixed relative to the J-T slot
  • the spring is limited by the retaining member to maintain a deformed state, and the distal end of the vacuum wall is located at the second adjustment position;
  • the deformation state is a state of compression or a state of tension
  • the spring When the locking member is out of the locking position, the spring can generate a restoring force from the deformed state to a natural state, and the restoring force can drive the distal end of the vacuum wall from the A second adjustment position enters the first adjustment position.
  • the first handle includes: a front handle and a rear handle;
  • the front handle is fixedly connected to the vacuum wall
  • the distal end of the rear handle is inserted into the proximal end of the front handle, and the two can slide relatively;
  • the front handle and/or the rear handle is provided with a limit ring, and the limit ring is used to limit the farthest distance that the vacuum wall moves to the distal end.
  • the locking member includes: a handle and a C-shaped ring; wherein,
  • the handle is arranged on the C-shaped ring;
  • the C-shaped ring is coated on the outer wall of the rear handle.
  • the vacuum wall includes: a front section vacuum wall and a back section vacuum wall, from the far end to the near end of the vacuum wall, the front section vacuum wall and the back section vacuum wall are distributed in sequence, and the front section vacuum wall The wall can move relative to the vacuum wall of the rear section; the needle is located on the vacuum wall of the front section;
  • the vacuum wall adjustment device switches the needle between the at least two adjustment positions by adjusting the relative position between the front vacuum wall and the rear vacuum wall.
  • the vacuum wall regulating device includes: a second slider and a second slider guide;
  • the second slider guide is arranged along the axial direction of the vacuum wall; wherein,
  • the second slider is connected to the front-section vacuum wall, and the position of the second slider guide is fixed relative to the front-section vacuum wall or the rear-section vacuum wall;
  • the second slider guide if the position of the second slider guide is fixed relative to the rear vacuum wall, then: the second slider and the second slider guide can slide relatively; if the second slider If the position of the guide part is fixed relative to the front vacuum wall, then: the rear vacuum wall and the guide part of the second slider can slide relative to each other;
  • the second slider and the front vacuum wall can be controlled and synchronously moved along the axial direction to switch the adjustment position of the needle.
  • it also includes: a second sealing assembly, the second sealing assembly is arranged between the front vacuum wall and the rear vacuum wall, and is used to form a dynamic seal between the front vacuum wall and the rear vacuum wall. seal.
  • it also includes: a dial block and a second handle, and the second handle: includes a handle adjustment slot;
  • the shifting block is connected with the slider, the shifting block is arranged in the handle adjustment groove, and the shifting block protrudes from the outer wall of the second handle;
  • the shifting block is slidably connected to the handle adjustment slot
  • the shifting block and the second sliding block can be controlled to move synchronously along the axis.
  • the vacuum wall also includes: an outer tube and a gasket; wherein,
  • the distal end of the outer tube is in sealing connection with the proximal end of the needle rod, the proximal end of the outer tube is in sealing connection with the proximal end of the inner tube, and the distal end of the outer tube is the outer tube close to the One end of the needle, the proximal end of the outer tube is the end of the outer tube away from the needle;
  • the gasket is arranged between the outer wall of the inner tube and the inner wall of the needle bar to form a sealed connection;
  • the inner tube sequentially includes: a front section of the inner tube and a rear section of the inner tube;
  • the front section of the inner tube is threaded through the needle bar, and the rear section of the inner tube is threaded through the outer tube;
  • the vacuum wall includes: a front section vacuum wall and a back section vacuum wall
  • the front section vacuum wall includes the needle bar and the front section of the inner tube
  • the back section vacuum wall includes the outer tube and the inner tube back section.
  • the outer diameter of the outer tube is larger than the outer diameter of the needle shaft, and the inner diameter of the outer tube is larger than the inner diameter of the needle shaft;
  • the outer diameter of the rear section of the inner tube is larger than the outer diameter of the front section of the inner tube, and the inner diameter of the rear section of the inner tube is larger than the inner diameter of the front section of the inner tube.
  • it also includes: a temperature measuring line;
  • the far end of the temperature measuring line is a temperature measuring point; the far end of the temperature measuring line is the end of the temperature measuring line close to the needle;
  • the temperature measuring point is set at the far end of the J-T groove for measuring the temperature at the far end of the J-T groove.
  • the present invention has the following advantages:
  • the vacuum wall position-adjustable cryoablation needle provided by the present invention can be adjusted through the position of the vacuum wall, including at least two adjustment positions.
  • the J-T groove is retracted to the inside of the vacuum insulation area and then the freeze is turned on.
  • all the delivery lines at the end of the cryoablation needle are pre-purged (cooled), and the pre-purge process does not consume cold energy in the targeted section, so all the cold energy is used to cool the delivery lines, so
  • the speed of the cooling delivery pipeline process is the fastest; and the target area does not release any cold during the pre-purging process, so there will be no frost or ice in the target area, and the formal operation can be performed directly;
  • the vacuum wall position-adjustable cryoablation needle provided by the present invention can be adjusted through the remote position of the vacuum wall, including at least two adjustment positions, and the cryoablation needle after pre-purging only targets the vacuum wall Without being cooled, when the J-T groove is returned to the inside of the target area, all the heat load comes only from the target area and the tumor tissue outside the target area, so the cooling rate of the freezing process will be greatly accelerated;
  • the vacuum wall position-adjustable cryoablation needle provided by the present invention can keep the pre-purge mode turned on after the needle test process is completed, and the inside of the vacuum insulation area (the far end of the J-T groove) is kept at the lowest temperature. No cold energy is released to the area, so operations such as puncture and scanning positioning can be performed. After the puncture is in place, adjust to the freezing mode. At this time, the inside of the target area will be directly lowered from normal temperature to the lowest temperature instantly, so it can be realized.
  • the cryoablation needle with adjustable vacuum wall position provided by the present invention has a wide range of applications and can be applied to all current cryoablation technologies: liquid nitrogen delivery refrigeration technology, direct throttling refrigeration technology, precooled throttling refrigeration technology, Fluid refrigeration technology; not only suitable for percutaneous cryoablation instruments, but also for cryoablation instruments operated through natural orifices.
  • Fig. 1 is a schematic diagram of vacuum wall adjustment of a rigid cryoablation needle with adjustable vacuum wall position according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram of vacuum wall adjustment of a flexible cryoablation needle with adjustable vacuum wall position according to an embodiment of the present invention
  • Fig. 3 is a pre-purge pattern diagram of the overall adjustment scheme of the vacuum wall of the rigid cryoablation needle in a preferred embodiment of the present invention
  • Fig. 4 is a freezing mode diagram of the overall adjustment scheme of the vacuum wall of the rigid cryoablation needle according to a preferred embodiment of the present invention
  • Fig. 5 is a schematic diagram of the vacuum wall of the flexible cryoablation needle according to a preferred embodiment of the present invention.
  • Fig. 6 is a pre-purge pattern diagram of the overall adjustment scheme of the vacuum wall of the flexible cryoablation needle according to a preferred embodiment of the present invention.
  • Fig. 7 is a freezing mode diagram of the overall adjustment scheme of the vacuum wall of the flexible cryoablation needle according to a preferred embodiment of the present invention.
  • Fig. 8 is a schematic diagram of a slider in a preferred embodiment of the present invention.
  • Fig. 9 is a schematic diagram of a locking member according to a preferred embodiment of the present invention.
  • Fig. 10 is a pre-purge pattern diagram of the front vacuum wall adjustment scheme of the rigid cryoablation needle in a preferred embodiment of the present invention.
  • Fig. 11 is a freezing mode diagram of the front vacuum wall adjustment scheme of the rigid cryoablation needle according to a preferred embodiment of the present invention.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • a plurality means a plurality, such as two, three, four, etc., unless otherwise specifically defined.
  • Fig. 1 and Fig. 2 are schematic diagrams of J-T groove adjustment of a cryoablation needle with adjustable vacuum wall position according to an embodiment of the present invention.
  • the cryoablation needle with adjustable vacuum wall position in this embodiment includes: vacuum wall, J-T groove 1 and vacuum wall adjustment device; the vacuum wall includes: needle bar 21 and inner tube 22, needle bar 21 The distal end has a needle 211.
  • the inner tube 22 is pierced through the needle bar 21, and an interlayer is formed between the inner tube 22 and the needle bar 21.
  • the interlayer can form a vacuum interlayer, which can be a permanent vacuum interlayer or a real-time vacuum interlayer; the vacuum interlayer serves as heat insulation, Prevent frostbite of normal tissue.
  • the first preset distance can be understood as the distance along the axial direction of the vacuum wall
  • the far end of the inner tube 22 is an inner tube 22 near the end of the needle 211.
  • the J-T groove 1 passes through the inner tube 22 .
  • the section area where the vacuum wall is distributed along its axial direction because the vacuum interlayer can play the role of heat insulation, so the section area where the interlayer is located is the vacuum heat insulation area 26, and the section where the first preset distance is located
  • the region is targeted region 25.
  • the far end of the vacuum wall has at least two adjustment positions: a first adjustment position and a second adjustment position, and then, the far end of the vacuum wall can be switched between at least two adjustment positions relative to the J-T groove (for example, by Movement along the axial direction of the vacuum wall realizes switching), at least two adjustment positions include: the first adjustment position and the second adjustment position; when the far end of the vacuum wall is at the first adjustment position, the far end of the J-T groove 1 is located at the target In the zone 25, it can be understood as being in the freezing mode, as shown in the dotted line part in Fig.
  • the far end of the J-T groove 1 is the end of the J-T groove 1 near the needle 211; when the far end of the vacuum wall is at the second adjustment position , the far end of the J-T tank 1 is located in the vacuum insulation area 26, which can be understood as being in a pre-purge mode, as shown by the solid line in FIG. 1 .
  • the vacuum wall adjustment device is used to adjust the distal end of the vacuum wall to switch between the at least two adjustment positions, specifically, the remote end of the vacuum wall can be adjusted in response to external manipulation to switch between at least two adjustment positions . Furthermore, any device that can realize the switch adjustment function does not deviate from the description of the solution.
  • the second preset distance between the far end of the J-T groove 1 and the needle 211, and the second preset distance at least ensures that the ice ball formed by freezing covers the needle, that is, the refrigerant fluid flows from the J-T
  • the tank 1 returns from the interior of the target area 25 and the interior of the vacuum insulation area 26 after spraying out, wherein the refrigerant fluid exchanges heat with the substances outside the entire target area during the process of returning from the interior of the target area 25 .
  • the far end of the vacuum wall When the far end of the vacuum wall is at the second adjustment position, there is a third preset distance between the far end of the J-T groove 1 and the far end of the vacuum insulation area, and the third preset distance at least ensures that the refrigerant fluid is sprayed from the J-T groove 1
  • the far end of the vacuum heat insulation area 26 is the end of the vacuum heat insulation area close to the needle 211 .
  • the J-T there is a third preset distance between the far end of the groove and the far end of the vacuum heat insulation zone, and the third preset distance is greater than or equal to the injection distance of the refrigerant fluid, so that it can be ensured that the refrigerant fluid will not spray out from the J-T groove 1. Spraying to the target area can return directly from the vacuum insulation area, thereby ensuring that there is only relatively static refrigerant in the target area.
  • the first preset distance, the second preset distance and the third preset distance can be understood as the distances along the axial direction of the vacuum wall.
  • the axial direction mentioned later can be understood as the axial direction of the vacuum wall.
  • the vacuum wall is a hard material vacuum wall, which can be applied to a percutaneous cryoablation instrument.
  • the needle 211 is in the form of a needle point.
  • the vacuum wall is a flexible material vacuum wall, which can be applied to an ablation device through a natural cavity.
  • the needle 211 is in the form of an arc.
  • the needle shaft 21 and the inner tube 22 can be made of soft non-metallic material or freely bendable metal material, such as: PTFE or PTFE braided tube or stainless steel corrugated tube.
  • the use process of the above-mentioned cryoablation needle with adjustable vacuum wall position is as follows: before the operation, take out the cryoablation needle in the pre-purge mode, connect it to the main machine, and put the needle shaft 21 of the cryoablation needle (at least the target Insert normal saline into area 25), turn on the knife test function, perform the rewarming link first, and when the needle temperature rises to a certain temperature value within a certain period of time, it proves that the rewarming function is normal. Immediately afterwards, the program automatically executes the freezing link. When the temperature of the needle drops to a certain temperature within a certain period of time, it proves that the freezing function is normal.
  • the time for the needle to maintain the lowest temperature can be appropriately extended to fully pre-purge, and then the test will automatically stop. knife.
  • the freezing process it can be observed whether there is frosting in the vacuum insulation area 26. If there is no frost, it proves that the heat insulation function is normal.
  • the needle immersed in physiological saline has air leakage. If not, it proves that the airtightness is normal.
  • the delivery pipelines of the host machine and the cryoablation needle have all completed pre-purging (cooling).
  • the freezing function (or the separately set pre-purge function) can be turned on first, and the freezing at this stage can be carried out at a lower working pressure, or intermittent ventilation, so that the temperature at the far end of the J-T tank can be maintained at The lowest temperature can save gas consumption at the same time.
  • percutaneous puncture can be performed while keeping the cryofunction turned on, so that the needle can reach the expected tumor location.
  • the distal end of the vacuum wall can be adjusted to move toward the proximal end, stop at the first adjustment position, and switch to the freezing mode. Since the entire delivery pipeline is already in a low temperature state, the cooling heat load of the cryoablation needle only leaves the target area 25 and the tumor tissue outside it.
  • the temperature at the distal end of the J-T groove can still be maintained.
  • the lowest temperature is maintained, while the outer wall of the target area 25 will instantly drop from normal temperature to below -100°C.
  • the operation time for ablation of the same size tumor is shortened, or a larger ablation area (ice puck) is generated in the same time.
  • the tumor cells undergo intracellular ice damage. The probability is greatly increased, and then the freezing damage of tumor cells is more thorough, and the ablation effect is better.
  • the adjustment of the distal position of the vacuum wall adopts the method of overall adjustment of the vacuum wall (J-T slot 1 is fixed), please refer to Fig. 3-Fig. 4 .
  • the vacuum wall regulating device may include: a mandrel 3 and a slider 8 .
  • the mandrel 3 is located in the axial direction of the vacuum wall;
  • the slider 8 is connected with the vacuum wall, and the slider is located at the proximal end of the inner tube, and the slider 8 is used to drive the mandrel 3 to move axially to drive the vacuum wall Axially moving, so that the distal end of the vacuum wall is switched between at least two adjustment positions, it can be seen that the slider 8 and the vacuum wall can move synchronously along the axial direction under control.
  • the distal end of the vacuum wall is at the second adjustment position, that is, the pre-purge mode diagram
  • FIG. 4 is the distal end of the vacuum wall is at the first adjustment position, that is, the freezing mode diagram.
  • the mandrel 3 is the first slider guiding part
  • the slider 8 is arranged on the outer wall of the mandrel 3
  • the mandrel 3 guides the slider 8 to move along the axial direction.
  • the vacuum wall can also be arranged on the outer wall of the mandrel 3
  • the slider 8 can be arranged on the outer wall of the vacuum wall.
  • the movement of the slider 8 further drives the vacuum wall to move along the mandrel 3 .
  • it can also be guided by a guide pipe arranged in the axial direction of the vacuum wall.
  • the guide pipe is arranged along the axial direction
  • the slider 8 is arranged on the inner wall of the guide pipe and slides along the guide pipe.
  • the first slider guide can also be connected to the component to be adjusted (vacuum wall), the slider is connected to the first slider guide, and the first slider guide is arranged in the direction of the axis, which can be adjusted along the axis. Center direction movement, slider 8 drives the first slider guide part along the axis direction, and then drives the vacuum wall to move along the axis direction.
  • the slider 8 includes: a middle fixing hole 83 and two fixing holes 85 for the air intake and return pipes, please refer to Figure 8, the three holes can be arranged in a straight line or in a triangle, or different arrangements can be adopted according to actual needs Way.
  • the mandrel 3, the air inlet pipe 6 and the air return pipe 7 are respectively inserted into the middle fixing hole 83 and the two air inlet and return pipe fixing holes 85 and are sealed and connected.
  • the air intake pipe 6 and the air return pipe 7 communicate with the J-T slot, the intake air of the J-T slot enters from the air intake pipe 6, and the return air of the J-T slot is discharged from the air return pipe 7.
  • a sealing component is also included, please refer to FIG. 2 and FIG. 3 .
  • the sealing assembly is in sealing connection with the proximal end of the inner tube 22 ; the proximal end of the inner tube 22 is the end of the inner tube away from the needle 211 ; a dynamic seal is formed between the sealing assembly and the slider 8 .
  • the sealing assembly includes: a sealing ring 51 , a sealing groove 52 and a sealing pressure piece 53 .
  • the distal end of the sealing groove 52 is fixedly sealed with the proximal end of the inner tube 22, and the distal end of the sealing groove 52 is the end of the sealing groove close to the needle 211;
  • the sealing ring 51 is placed in the sealing groove 52, and the sealing pressure piece 53 is axial screwed into the seal groove 52, the seal ring 51 is fixed between the seal groove 52 and the seal pressure piece 53, and the mandrel 3 is inserted into the seal ring 51 and the seal pressure piece 53, so the seal ring 51 is connected between the mandrel 3 and the seal pressure piece 53.
  • the sealing ring 51 may be a rubber sealing ring, such as a nitrile O-ring, or a low temperature resistant fluoropolymer + metal spring pan-sealing sealing ring.
  • the vacuum wall of the flexible cryoablation needle may further include: a vacuum tee 28 , a vacuum connecting tube 291 , a vacuum hose 292 and a gas return connecting tube 293 , please refer to FIG. 5 .
  • the proximal end of the inner pipe 22 is connected and sealed with the far end of the return air connecting pipe 293, the proximal end of the outer pipe 23 is connected and sealed with the tee connection part 281, and the proximal end of the vacuum tee 28 is connected and sealed with the return air connecting pipe 293.
  • the far end of the vacuum connecting pipe 291 is inserted into the tee side branch 282, and the vacuum hose 292 is inserted into the vacuum connecting pipe 291.
  • a shunt pipe 294 which is used to seal the gap between the intake pipe 6, the air return pipe 7 and the mandrel 3; Seal in the end, please refer to Figure 6 and Figure 7.
  • the adjustment of the remote position of the vacuum wall can be adjusted manually back and forth, or through a prefabricated spring 120, as shown in Figures 3, 4, 6, and 7 shown.
  • the spring 120 is used to maintain the position of the distal end of the vacuum wall; when the spring 120 is in a compressed or stretched state, the distal end of the vacuum wall is in the second adjustment position (pre-purge mode), as shown in Figures 3 and 6, Take the example of a spring in tension. When the spring is in a natural state, the distal end of the vacuum wall is in the first adjustment position (freezing mode), as shown in FIGS. 4 and 7 .
  • a locking member 10 as shown in Figures 3, 4, 6, and 7, when the distal end of the vacuum wall is at the second adjustment position, the locking member is used to keep the spring 120 stretched, when When it is necessary to switch to the first adjustment position, it is only necessary to pull out the locking member 10 .
  • the spring when the distal end of the vacuum wall is at the second adjustment position, the spring can also be in a compressed state, and when the distal end of the vacuum wall is at the first adjustment position, the spring is in a natural state.
  • a handle 9 which includes: a front handle 92 and a rear handle 93, please refer to FIGS. 3 and 4 .
  • the front handle includes: a front adjusting section 921 and a front limiting ring 922
  • the rear handle 93 includes: a rear adjusting section 931 , a rear limiting ring 932 and a slider fixing hole 933 .
  • the front handle 92 is fixedly connected with the vacuum wall; the slider 8 is fixedly connected with the rear handle 93 through the slider fixing hole 933 .
  • the rear adjustment section 931 is inserted into the front adjustment section 921 .
  • the front limit ring 922 and the rear limit ring 932 limit each other to limit the adjustment of the remote position of the vacuum wall.
  • the front limit ring 922 and the rear limit ring 932 limit each other , to limit the further movement of the vacuum wall to the distal end (that is, to limit the farthest distance that the vacuum wall can move to the distal end).
  • the front handle 92 and the rear handle 93 may not include the front limit ring 922 and the rear limit ring 932. Please refer to FIGS. Remote limit.
  • the fixing method of the locking member 10 is as follows: the distal end of the spring 120 is fixedly connected to the distal end of the front adjustment section 921, and the proximal end of the spring 120 is connected to the rear limit ring 932 is fixedly connected (that is, relatively fixed with the slider 8 ), and the locking member 10 is connected with the distal end of the spring 120 .
  • the rear adjustment section 931 is inserted into the front adjustment section 921.
  • the rear adjustment section 931 is relatively thin.
  • the rear adjustment section 931 has a section (the proximal end of the front limit ring 922 and the proximal end of the rear adjustment section 931 between) is exposed, and the clamping member 10 can just be stuck in this exposed rear adjustment section 931, thereby fixing the mutual position of the slider 8 and the vacuum wall.
  • the current prepurge mode When it is necessary to switch from the pre-purge mode to the freezing mode, hold the rear handle 93 and pull out the locking member 10. Under the tension of the spring 120, the slider 8 drives the front handle 92, that is, drives the vacuum wall to move closer. Move until the proximal end of the vacuum wall is supported by the rear handle 93 (the far end of the slider fixing hole 933), at this time the vacuum wall stops at the first adjustment position and switches to the freezing mode, please refer to Figures 4 and 7 .
  • cryoablation tube when the cryoablation tube is flexible and includes: a shunt tube 294, the rear adjustment section 931 of the handle is also provided with a shunt tube fixing hole 934, which is used to pass the shunt tube 294 through it, and it has been drilled.
  • a shunt tube fixing hole 934 which is used to pass the shunt tube 294 through it, and it has been drilled.
  • cryoablation tube when the cryoablation tube is flexible and includes: a vacuum hose 292, the rear adjustment section 931 of the handle is also provided with a hose guide tube 935 for passing the vacuum hose 292 therethrough.
  • a vacuum hose 292 when the cryoablation tube is flexible and includes: a vacuum hose 292, the rear adjustment section 931 of the handle is also provided with a hose guide tube 935 for passing the vacuum hose 292 therethrough.
  • hose guide tube 935 for passing the vacuum hose 292 therethrough.
  • the locking element 10 in order to facilitate the fixing of the locking element and the insertion and removal adjustment of the locking element, the locking element 10 includes: a handle part 101 and a C-shaped ring 103 , please refer to FIG. 9 .
  • the handle part 101 is arranged on the C-shaped ring 103, which is convenient for holding and adjusting; the C-shaped ring 103 is covered on the outer wall of the handle 9, which can prevent the retaining member from falling off in the radial direction.
  • finned tubes 4 which are arranged on the outer wall of the mandrel 3 , please refer to FIGS. 3 and 4 .
  • the finned tube 4 in order to expand the internal volume of the proximal end of the inner tube, for example, can be inserted into the proximal end of the inner tube, or it can accommodate More other components; since the internal volume of the proximal end of the inner tube needs to be enlarged, the internal volume of the proximal end of the vacuum wall also needs to be enlarged.
  • the vacuum wall also includes: an outer tube 23 and a gasket 24 , please refer to FIGS. 3 and 4 .
  • the gasket 24 is arranged between the outer wall of the distal end of the inner tube 22 and the inner wall of the needle bar 21 to form a sealed connection;
  • the proximal end of the tube 22 is sealingly connected.
  • the outer diameter of the outer tube 23 is greater than the outer diameter of the needle shaft 21, the inner diameter of the outer tube 23 is greater than the inner diameter of the needle shaft, the far end of the outer tube 23 is the end of the outer tube 23 near the needle 211, and the near end of the outer tube 23 is the outer tube 23 away from the end of the needle 211.
  • the inner tube 22 includes in turn: an inner tube front section 221 and an inner tube rear section 222, the outer diameter of the inner tube rear section 222 is smaller than the outer diameter of the inner tube front section 221, and the inner tube rear section The inner diameter of section 222 is greater than the inner diameter of inner tube front section 221 .
  • the front section 221 of the inner tube is located inside the needle bar 21
  • the rear section 222 of the inner tube is located inside the outer tube 23 .
  • the adjustment of the remote position of the vacuum wall can also be achieved by dividing the vacuum wall into two sections: the front vacuum wall and the rear vacuum wall, and only adjusting the front vacuum wall and fixing the rear vacuum wall.
  • the vacuum wall sequentially includes: a front vacuum wall and a rear vacuum wall, and the front vacuum wall and the rear vacuum wall can slide relative to each other;
  • the vacuum wall adjustment device includes: a slider 8 ,
  • the slider 8 is connected to the front section vacuum wall.
  • the slider 8 is used to move in the axial direction, so as to drive the front vacuum wall to move in the axial direction, so that the distal end of the front vacuum wall can be switched between at least two adjustment positions.
  • the mandrel 3 can be used as the second slider guide, the vacuum wall is arranged on the outer wall of the mandrel 3, the slider 8 is arranged on the outer wall of the vacuum wall, and the movement of the slider 8 further drives the vacuum wall along the core. Axis 3 movement.
  • the slider 8 can also be arranged on the outer wall of the mandrel 3, and the mandrel 3 guides the slider 8 to move along the axial direction.
  • it can also be guided by a guide pipe arranged in the axial direction of the vacuum wall. The guide pipe is arranged along the axial direction, and the slider 8 is arranged on the inner wall of the guide pipe and slides along the guide pipe. It can be guided to slide along the axial direction.
  • the second slider guide can also be connected to the component to be adjusted (front vacuum wall), the slider is connected to the first slider guide, and the first slider guide is arranged in the direction of the axis, which can be along the Moving in the direction of the axis, the slider 8 drives the first slider guide to move in the direction of the axis, and then drives the front vacuum wall to move in the direction of the axis.
  • an outer tube 23 is arranged at the proximal end of the needle bar 21, and the outer diameter of the outer tube 23 is larger than that of the needle bar 21, and the outer tube 23 is The inner diameter of the tube 23 is larger than that of the needle bar 21 .
  • the inner tube 22 comprises in turn: an inner tube front section 221 and an inner tube rear section 222, the outer diameter of the inner tube rear section 222 is larger than the outer diameter of the inner tube front section 221, and the inner tube rear section 222 The inner diameter is larger than the inner diameter of the inner tube front section 221.
  • the front section 221 of the inner tube is located inside the needle bar 21
  • the rear section 222 of the inner tube is located inside the outer tube 23
  • the front section vacuum wall and the back section vacuum wall are divided in the following manner: the front section vacuum wall includes: the needle bar 21 and the front section 221 of the inner tube, and the back section vacuum wall includes: the outer tube 23 and the back section 222 of the inner tube.
  • the front vacuum wall further includes: a gasket 24, which is arranged between the distal outer wall of the inner tube front section 221 and the needle bar 21, and between the proximal outer wall of the inner tube front section 221 and the needle bar 21.
  • a dynamic seal is realized between the front vacuum wall and the rear vacuum wall through a sealing assembly to prevent air leakage between the two, please refer to the figure 10, 11.
  • the sealing assembly includes: a sealing ring 51 and a sealing groove 52 .
  • the sealing groove 52 is located between the front section vacuum wall and the back section vacuum wall
  • the sealing ring 51 is located between the far-end outer wall of the front section vacuum wall and the sealing groove 52, and the sealing ring 51 can follow the front section vacuum wall along the sealing groove to move axially. Move to achieve dynamic sealing.
  • the sealing ring 51 is located on the outer surface of the vacuum wall in the front section, this area is in a normal temperature state, and only ordinary rubber sealing rings can be used, and there is no need to worry about sealing failure at low temperature.
  • a shift block 86 and a handle 9 are also provided, and a handle adjustment groove 94 is arranged in the handle 9.
  • the slide block 8 is fixed on the outer surface of the front section vacuum wall, and the shift block 86 is connected with the slide block 8, and the shift block 86 stretches out from the handle adjustment groove 94 to the outer wall of the handle 9, which is convenient for adjustment.
  • the sliding block 8 can be driven to move in the axial direction by moving the shifting block 86 to slide in the handle adjusting groove 94 .
  • the length of the handle adjustment groove 94 can be set according to the far-end position of the vacuum wall.
  • the dial block 86 is located at the proximal end of the handle adjustment groove 94, the far end of the vacuum wall is just at the first adjustment position.
  • a temperature measuring line 14 in order to better detect the freezing effect of the cryoablation needle, it also includes: a temperature measuring line 14, the far end of the temperature measuring line 14 is a temperature measuring point 141, and the far end of the temperature measuring line 14 is a temperature measuring point
  • the end of the thread 14 close to the needle 211 please refer to Figs. 3, 4, 6, 7, 10, 11.
  • the temperature measuring point 141 is set at the far end of the J-T tank 1 for measuring the temperature at the far end of the J-T tank 1 .
  • the temperature measuring line 14 runs along the outside of the J-T groove 1, and then leads from the inside of the mandrel 3 to the outside, and the inside of the mandrel 3 is sealed by pouring glue.
  • a rewarming line is also included, and the position and arrangement of the rewarming line are consistent with the temperature measuring line, so as to realize the rewarming function. It is preferably low, and the temperature measuring line and/or reheating line adopts T-type enamelled thermocouple wire.
  • an outer sleeve 13 is also provided on the outer wall of the handle 9, please refer to Figures 3, 4, 6, 7, 10, 11.
  • the pre-purge mode can be set, that is, the state where the far end of the J-T groove 1 is located inside the vacuum insulation area 26 is set as the product delivery state, and the operator can directly complete the pre-purge of the product through the process of testing the knife .
  • adjust to the freezing mode that is, the distal end of the J-T groove 1 is located inside the target area 25. After the freezing is turned on, the target area 25 will quickly cool down to lowest temperature.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Otolaryngology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

一种真空壁位置可调的冷冻消融针,包括:真空壁、J-T槽(1)及真空壁调节装置;其中,真空壁包括:针杆(21)以及内管(22);针杆(21)的远端具有针头(211);内管(22)穿设于针杆(21),内管(22)与针杆(21)之间形成夹层;内管(22)的远端与针杆(21)的远端间具有第一预设距离;J-T槽(1)穿设于内管(22);真空壁的远端相对于J-T槽(1)在至少两个调节位置间切换,两个调节位置包括:第一调节位置以及第二调节位置;在真空壁沿其轴心方向分布的各段区域中,夹层所处的一段区域为真空隔热区(26),第一预设距离所处的一段区域为靶向区(25);第一调节位置时J-T槽(1)的远端位于靶向区(25)内;第二调节位置时J-T槽(1)的远端位于真空隔热区(26)内。该冷冻消融针通过真空壁的远端在至少两个调节位置之间切换,大大加快了降温速率。

Description

真空壁位置可调的冷冻消融针 技术领域
本发明涉及冷冻消融技术领域,特别涉及一种真空壁位置可调的冷冻消融针。
背景技术
冷冻消融是一种利用低温来破坏病变组织的治疗方式,被认为是一种治疗恶性肿瘤高效、微创的方法。冷冻消融技术操作简便、并发症少、可有效镇痛,同时消融形成的冰球边界清晰、便于观察,可安全的消融临近大血管或重要脏器的病灶;冷冻消融还可采取多针冷冻的方式,使消融范围更大,适用于大病灶及形态不规则病灶。
细胞在冷冻过程中,细胞外冰晶首先形成,引起细胞外溶质浓度增大,产生高渗环境,细胞内水分进入细胞外,致使细胞内脱水。失去水分的细胞变得皱缩,细胞膜变形,造成高浓度毒性环境的“溶液损伤”;同时,细胞内形成的冰晶直接损伤细胞器和细胞膜,造成进一步的坏死,俗称“胞内冰损伤”,由于胞内冰损伤直接损伤细胞结构,因此其对细胞的破坏力更强。一般来说,细胞的降温速率越慢,发生“溶液损伤”的概率越大,降温速率越快,越容易诱发“胞内冰损伤”。因此,在肿瘤冷冻消融手术过程中普遍追求更快的降温速率,这样对肿瘤的杀伤更彻底,且可以大幅节省手术时间。
冷冻消融技术的发展经历了三个阶段,第一阶段为液氮输送制冷技术,该技术是将-196℃的液氮通过较低的驱动压输送至冷冻消融针的针头来达到冷冻消融的目的,由于该技术的冷源完全依靠液氮,而液氮位于主机或液氮桶内,其距离针头有很长的输送距离,液氮在输送过程中,只有当整个输送管路都达到-196℃以后,针头的温度才能达到-196℃,因此,液氮制冷的降温速率是现有技术中最慢的;第二阶段为直接节流制冷技术,这类技术利用了“焦耳汤姆逊效应”(Joule Thompson Effect,简称J-T)的原理,将常温的超高压气体输送至冷冻消融针内部的J-T槽(产生J-T效应的毛细管)直接节流产生低温,其降温速率是目前技术中相对最快的,但其针头内部的J-T槽和翅 片管等结构仍会消耗一部分冷量从而延缓了降温时间,此外,其所使用的超高压气体普及性不高且价格昂贵,导致该技术推广困难;第三阶段为经预冷的节流制冷技术,其原理是将常温的常规工业气体经过配套主机的预冷后,再输送至冷冻消融针内部的J-T槽通过节流产生比预冷温度更低的消融温度,该技术解决了气源昂贵稀缺的问题,且由于结合了节流制冷技术,其降温速率要明显快于液氮制冷技术,但相对于直接节流的制冷技术,其降温速率仍然偏慢。
发明内容
本发明针对上述现有技术中存在的问题,提出一种真空壁位置可调的冷冻消融针,以解决现有技术中降温速率慢的问题。
为解决上述技术问题,本发明是通过如下技术方案实现的:
本发明提供一种真空壁位置可调的冷冻消融针,其包括:真空壁、J-T槽以及真空壁调节装置;其中,
所述真空壁包括:针杆以及内管;
所述针杆的远端具有针头;
所述内管穿设于所述针杆,所述内管与所述针杆之间形成了夹层,所述夹层能够形成真空的夹层;
沿所述真空壁的轴心方向,所述内管的远端与所述针杆的远端之间具有第一预设距离;所述内管的远端为所述内管靠近所述针头的一端;
所述J-T槽穿设于所述内管;
所述针头能够相对于所述J-T槽在至少两个调节位置之间切换,所述至少两个调节位置包括:第一调节位置以及第二调节位置;针头
在所述真空壁沿其轴心方向分布的各段区域中,所述夹层所处的一段区域为真空隔热区,所述第一预设距离所处的一段区域为靶向区;
当所述针头位于第一调节位置时,所述J-T槽的远端位于所述靶向区内;所述J-T槽的远端为所述J-T槽靠近所述针头的一端;
当所述针头位于第二调节位置时,所述J-T槽的远端位于所述真空隔热区内;
所述真空壁调节装置用于通过调节所述针头的位置而使所述针头在所述 至少两个调节位置之间切换;
当所述J-T槽的远端位于所述第一调节位置时,沿所述真空壁的轴心方向,所述J-T槽的远端与所述针头之间具有第二预设距离,所述第二预设距离至少保证冷冻形成的冰球覆盖所述针头,即冷媒流体从J-T槽喷出后从靶向区内部和真空隔热区内部返回,其中冷媒流体从靶向区的内部返回过程中,与整个靶向区外部的物质发生热交换;
当所述J-T槽的远端位于所述第二调节位置时,沿所述真空壁的轴心方向,所述J-T槽的远端与所述真空隔热区的远端之间具有第三预设距离,所述第三预设距离至少保证冷媒从所述J-T槽喷出后直接从所述真空隔热区内返回,靶向区内只存在相对静止的冷媒,不会与靶向区外的物质发生热交换,即冷冻过程中冷媒在靶向区段不释放任何冷量;所述真空隔热区的远端为所述真空隔热区靠近所述针头的一端。
较佳地,所述真空壁调节装置包括:第一滑块以及第一滑块引导部;
所述第一滑块引导部沿所述真空壁的轴心方向设置;其中,
所述第一滑块与所述真空壁相连,所述第一滑块引导部相对于所述滑块或所述J-T槽位置固定;
其中,若所述第一滑块引导部相对于所述滑块位置固定,则所述第一滑块引导部与所述J-T槽能够相对滑动;若所述第一滑块引导部相对于所述J-T槽位置固定,则所述第一滑块与所述第一滑块引导部能够相对滑动;
所述第一滑块与所述真空壁能够受控同步沿所述轴心方向运动,以切换所述针头的调节位置。
较佳地,还包括:第一密封组件,所述第一密封组件与所述内管的近端之间密封连接;所述内管的近端为所述内管远离所述针头的一端;
所述第一密封组件与所述第一滑块之间形成动态密封。
较佳地,所述第一密封组件包括:密封圈、密封槽以及密封压件;其中,
所述密封槽的远端与所述内管的近端固定密封,所述密封槽的远端为所述密封槽靠近所述针头的一端;
所述密封圈设置于所述密封压件与第一滑块之间,所述密封压件设置于所述密封圈与密封槽之间;
所述密封圈以及密封压件滑动连接于所述密封槽;
所述第一滑块、所述密封圈与所述密封压件能够受控同步沿轴心方向运动。
较佳地,还包括:弹簧以及卡位件;其中,
所述弹簧的一端与用于所述J-T槽的远端同步运动,还与所述卡位件相连;所述卡位件能够进入与脱离卡位位置;
所述弹簧的另一端相对于所述J-T槽固定;
当所述卡位件处于卡位位置时,所述弹簧被所述卡位件限位而保持形变状态,所述真空壁的远端位于所述第二调节位置;
所述形变状态为压缩状态或拉伸状态;
当所述卡位件脱离所述卡位位置时,所述弹簧能够产生自所述形变状态恢复为自然状态的恢复作用力,所述恢复作用力能够驱动所述真空壁的远端自所述第二调节位置进入所述第一调节位置。
较佳地,还包括:第一手柄,所述第一手柄包括:前段手柄以及后段手柄;
所述前段手柄与所述真空壁固定连接;
所述后段手柄的远端插入所述前段手柄的近端,两者能够相对滑动;
所述前段手柄和/或所述后段手柄设置有限位环,所述限位环用于限制所述真空壁向远端移动的最远距离。
较佳地,所述卡位件包括:手持部以及C形环;其中,
所述手持部设置于所述C形环上;
所述C形环包覆在与所述后段手柄的外壁上。
较佳地,所述真空壁包括:前段真空壁以及后段真空壁,从所述真空壁的远端到近端,所述前段真空壁与所述后段真空壁依次分布,所述前段真空壁与所述后段真空壁之间能够相对运动;所述针头位于所述前段真空壁;
所述真空壁调节装置通过调节所述前段真空壁与所述后段真空壁之间的相对位置而使所述针头在所述至少两个调节位置间切换。
较佳地,所述真空壁调节装置包括:第二滑块以及第二滑块引导部;
所述第二滑块引导部沿所述真空壁的轴心方向设置;其中,
所述第二滑块与所述前段真空壁相连,所述第二滑块引导部相对于所述前段真空壁或所述后段真空壁位置固定;
其中,若所述第二滑块引导部相对于所述后段真空壁位置固定,则:所述第二滑块与所述第二滑块引导部能够相对滑动;若所述第二滑块引导部相对于所述前段真空壁位置固定,则:所述后段真空壁与所述第二滑块引导部能够相对滑动;
所述第二滑块与所述前段真空壁能够受控同步沿所述轴心方向运动,以切换所述针头的调节位置。
较佳地,还包括:第二密封组件,所述第二密封组件设置于所述前段真空壁与后段真空壁之间,用于使所述前段真空壁与后段真空壁之间形成动态密封。
较佳地,还包括:拨块以及第二手柄,所述第二手柄:包括手柄调节槽;
所述拨块与所述滑块相连,所述拨块设置于所述手柄调节槽内,所述拨块伸出所述第二手柄的外壁;
所述拨块滑动连接于所述手柄调节槽;
所述拨块与所述第二滑块能够受控同步沿所述轴心方向运动。
较佳地,所述真空壁还包括:外管以及垫圈;其中,
所述外管的远端与所述针杆的近端密封连接,所述外管的近端与所述内管的近端密封连接,所述外管的远端为所述外管靠近所述针头的一端,所述外管的近端为所述外管远离所述针头的一端;
所述垫圈设置于所述内管的外壁与所述针杆的内壁之间,形成密封连接;
从所述内管的远端到近端,所述内管依次包括:内管前段以及内管后段;
所述内管前段穿设于所述针杆,所述内管后段穿设于所述外管;
若所述真空壁包括:前段真空壁以及后段真空壁,则所述前段真空壁包括所述针杆以及所述内管前段,所述后段真空壁包括所述外管以及所述内管后段。
较佳地,所述外管的外径大于所述针杆的外径,所述外管的内径大于所述针杆的内径;
所述内管后段的外径大于所述内管前段的外径,所述内管后段的内径大于所述内管前段的内径。
较佳地,还包括:测温线;
所述测温线的远端为测温点;所述测温线的远端为所述测温线靠近所述 针头的一端;
所述测温点设于所述J-T槽的远端,用于测量所述J-T槽的远端处的温度。
相较于现有技术,本发明具有以下优点:
(1)本发明提供的真空壁位置可调的冷冻消融针,通过真空壁的位置可调节,至少包括两个调节位置,J-T槽回撤至真空隔热区内部再开启冷冻,可以将主机端以及冷冻消融针端的所有输送管路进行预吹扫(冷却),且该预吹扫过程不会在靶向区段消耗冷量,因此,所有的冷量均被用于冷却输送管路,因此该冷却输送管路过程的速率最快;并且预吹扫过程中靶向区不释放任何冷量,因此,靶向区不会有任何结霜、结冰现象,进而可以直接进行正式手术;
(2)本发明提供的真空壁位置可调的冷冻消融针,通过真空壁的远端位置可调节,至少包括两个调节位置,经过预吹扫后的冷冻消融针仅真空壁的靶向区未被冷却,当J-T槽被回调至靶向区内部后,所有的热负荷只来自于靶向区和靶向区外的肿瘤组织,因此,该冷冻过程的降温速率会大大加快;
(3)本发明提供的真空壁位置可调的冷冻消融针,在试针流程结束后,可以保持预吹扫模式开启,真空隔热区内部(J-T槽远端)保持在最低温,由于靶向区未释放任何冷量,因此,可以进行穿刺、扫描定位等操作,等穿刺到位后,再调节至冷冻模式,此时,靶向区内部将直接从常温瞬间降低至最低温,因此可以实现正式手术环节的极限快速降温;
(4)本发明提供的真空壁位置可调的冷冻消融针,适用范围广,可以适用于当前的当前所有的冷冻消融技术:液氮输送制冷技术、直接节流制冷技术、经预冷的节流制冷技术;不仅适用于经皮穿刺冷冻消融器械,还适用于经自然腔道手术的冷冻消融器械。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例的真空壁位置可调的硬质冷冻消融针的真空壁调节原理图;
图2为本发明一实施例的真空壁位置可调的柔性冷冻消融针的真空壁调节原理图;
图3为本发明一较佳实施例的硬质冷冻消融针的真空壁整体调节方案的预吹扫模式图;
图4为本发明一较佳实施例的硬质冷冻消融针的真空壁整体调节方案的冷冻模式图;
图5为本发明一较佳实施例的柔性冷冻消融针的真空壁的示意图;
图6为本发明一较佳实施例的柔性冷冻消融针的真空壁整体调节方案的预吹扫模式图;
图7为本发明一较佳实施例的柔性冷冻消融针的真空壁整体调节方案的冷冻模式图;
图8为本发明一较佳实施例的滑块的示意图;
图9为本发明一较佳实施例的卡位件的示意图;
图10为本发明一较佳实施例的硬质冷冻消融针的前段真空壁调节方案的预吹扫模式图;
图11为本发明一较佳实施例的硬质冷冻消融针的前段真空壁调节方案的冷冻模式图。
附图标记说明:
1-J-T槽,
21-针杆,
211-针头,
22-内管,
221-内管前段,
222-内管后段,
23-外管,
24-垫圈,
25-靶向区,
26-真空隔热区;
28-真空三通,
281-三通连接部,
282-三通旁支;
291-真空连接管,
292-真空软管,
293-回气连接管,
294-分流管;
3-芯轴,
4-翅片管,
51-密封圈,
52-密封槽,
53-密封压件;
6-进气管,
7-回气管,
8-滑块,
83-中间固定孔,
85-进回气管固定孔,
86-拨块;
9-手柄,
92-前段手柄,
921-前调节段,
922-前限位环;
93-后段手柄,
931-后调节段,
932-后限位环,
933-滑块固定孔,
934-分流管固定孔,
935-软管引导管;
94-手柄调节槽;
10-卡位件,
101-手持部,
103-C形环;
120-弹簧,
13-外套管,
14-测温线,
141-测温点。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明说明书的描述中,需要理解的是,术语“上部”、“下部”、“上端”、“下端”、“下表面”、“上表面”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明说明书的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本发明的描述中,“多个”的含义是多个,例如两个,三个,四个等,除非另有明确具体的限定。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
如图1、图2所示为本发明一实施例的真空壁位置可调的冷冻消融针的J-T槽调节原理图。
请参考图1、图2,本实施例的真空壁位置可调的冷冻消融针包括:真空壁、J-T槽1以及真空壁调节装置;真空壁包括:针杆21以及内管22,针杆21的远端具有针头211。内管22穿设于针杆21,内管22与针杆21之间形成夹层,夹层能够形成真空的夹层,可以为永久真空的夹层或实时抽真空的夹层;真空的夹层起到隔热,防止冻伤正常组织的作用。
内管22的远端与针杆的远端之间具有第一预设距离(该第一预设距离可理解为沿真空壁轴心方向的间隔距离);内管22的远端为内管22靠近针头211的一端。J-T槽1穿设于内管22。
在真空壁沿其轴心方向分布的各段区域中,因真空的夹层可起到隔热的作用,所以夹层所处的一段区域为真空隔热区26,第一预设距离所处的一段区域为靶向区25。
真空壁的远端具有至少两个调节位置:第一调节位置以及第二调节位置进而,所述真空壁的远端能够相对于所述J-T槽在至少两个调节位置之间切换(例如可通过沿真空壁轴心方向的运动实现切换),至少两个调节位置包括:第一调节位置以及第二调节位置;当真空壁的远端位于第一调节位置时,J-T槽1的远端位于靶向区25内,可理解为处于冷冻模式,如图1中的虚线部分所示;J-T槽1的远端为J-T槽1靠近针头211的一端;当真空壁的远端位于第二调节位置时,J-T槽1的远端位于真空隔热区26内,可理解为处于预吹扫模式,如图1中的实线部分所示。
真空壁调节装置用于调节所述真空壁的远端在所述至少两个调节位置之间切换,具体可响应于外部操控调节真空壁的远端,使之在至少两个调节位置之间切换。进而,可实现该切换调节功能的任意装置,均不脱离该方案的描述。
当真空壁的远端位于第一调节位置时,J-T槽1的远端与针头211之间具有第二预设距离,第二预设距离至少保证冷冻形成的冰球覆盖针头,即冷媒流体从J-T槽1喷出后从靶向区25内部和真空隔热区26内部返回,其中冷媒流体从靶向区25的内部返回过程中,与整个靶向区外部的物质发生热交换。
当真空壁的远端位于第二调节位置时,J-T槽1的远端与真空隔热区的远端之间具有第三预设距离,第三预设距离至少保证冷媒流体从J-T槽1喷出后直接从真空隔热区内返回,靶向区内只存在相对静止的冷媒,不会与靶向区 外的物质发生热交换,即冷冻过程中冷媒在靶向区段不释放任何冷量。真空隔热区26的远端为真空隔热区靠近针头211的一端。
其中,当真空壁的远端位于第二调节位置时,冷媒流体从J-T槽1喷出时会有一定的喷射距离,为了保证冷媒流体从J-T槽喷出后不会喷射到靶向区,J-T槽的远端与真空隔热区的远端之间距离第三预设距离,该第三预设距离大于等于冷媒流体的喷射距离,这样就可以保证冷媒流体从J-T槽1喷出后不会喷射到靶向区,可以直接从真空隔热区内返回,进而保证了靶向区内只存在相对静止的冷媒。
其中的第一预设距离、第二预设距离与第三预设距离,可理解为是沿真空壁轴心方向的间隔距离。此外,后文中所提及的轴向,均可理解为真空壁的轴心方向。
一实施例中,真空壁为硬质材料真空壁,可以应用于经皮刺冷冻消融器械,如图1所示,针头211为针尖形式。
一实施例中,真空壁为柔性材料真空壁,可以应用于经自然腔道消融器械,如图2所示,针头211为圆弧形式。优选地,针杆21以及内管22可以为软质的非金属材料或可自由弯曲的金属材料,如:PTFE或PTFE编织管或不锈钢波纹管。
一实施例中,上述真空壁位置可调的冷冻消融针的使用过程为:手术前,取出处于预吹扫模式的冷冻消融针,与主机相互连接,将冷冻消融针的针杆21(至少靶向区25)插入生理盐水中,开启试刀功能,试刀先执行复温环节,当针头温度在一定时间内上升至某一温度值时,证明复温功能正常。紧接着,程序自动执行冷冻环节,当针头温度在一定时间内降低至某一温度值时,证明冷冻功能正常,此时可适当延长针头保持最低温的时间以充分预吹扫,然后自动停止试刀。冷冻环节时,可观察真空隔热区26是否有结霜现象,若没有,证明绝热功能正常,全程观察浸于生理盐水中的针头是否有漏气现象,若没有,证明气密性正常。试刀结束后,主机和冷冻消融针的输送管路都完成了预吹扫(冷却)。紧接着,可以先开启冷冻功能(或开启单独设置的预吹扫功能),该阶段的冷冻可以在较低的工作压力下进行,或者间断通气,这样可以使J-T槽的远端的温度维持在最低温的同时还能节省气体用量。接下来,在保持冷冻功能开启的状态下,可在影像学引导下经皮穿刺,使针头到达预 期的肿瘤位置。此时,可以调节真空壁的远端向近端移动,在第一调节位置停住,切换至冷冻模式。由于整个输送管路已处于低温状态,冷冻消融针的降温热负荷只剩下靶向区25及其外部的肿瘤组织,因此,在切换至冷冻模式后,J-T槽的远端的温度,仍能维持在最低温,而靶向区25的外壁将从常温瞬间降至-100℃以下。这样一来,缩短了消融同样大小的肿瘤的手术时间,或在相同时间内生成了更大的消融范围(冰球),此外,由于肿瘤组织被更快速的降温,肿瘤细胞发生胞内冰损伤的概率大幅增加,继而肿瘤细胞的冷冻损伤更加彻底,消融效果更好。
一较佳实施例中,真空壁的远端位置的调节采用真空壁整体调节(J-T槽1固定)的方式,请参考图3-图4。
一实施例中,真空壁调节装置可以包括:芯轴3以及滑块8。其中,芯轴3位于真空壁的轴向方向上;滑块8与真空壁相连,滑块位于内管的近端,滑块8用于带动芯轴3进行轴向移动,以带动真空壁进行轴向移动,以使真空壁的远端在至少两个调节位置之间进行切换,可见:滑块8与真空壁能够受控同步沿所述轴心方向运动。
其中,如图3所示为真空壁的远端位于第二调节位置,即预吹扫模式图,如图4所示为真空壁的远端位于第一调节位置,即冷冻模式图。
上述实施例中,芯轴3即为第一滑块引导部,滑块8设置在芯轴3的外壁,芯轴3引导滑块8沿着轴心方向运动。不同实施例中,也可通过真空壁设置在芯轴3的外壁,滑块8可设置在真空壁的外壁,滑块8运动,进而带动真空壁沿着芯轴3运动。不同实施例中,也可通过设置在真空壁的轴心方向上的引导管来进行引导,引导管沿着轴心方向设置,滑块8设置在引导管的内壁,沿着引导管滑动,也可引导其沿着轴心方向滑动。不同实施例中,也可采用第一滑块引导部与待调节部件(真空壁)相连,滑块与第一滑块引导部相连,第一滑块引导部设置于轴心方向,可沿轴心方向运动,滑块8带动第一滑块引导部沿轴心方向,进而带动真空壁沿轴心方向运动。
一实施例中,滑块8包括:中间固定孔83以及两个进回气管固定孔85,请参考图8,三个孔可以直线排列,也可以三角形排列,也可以根据实际需要采用不同的排列方式。芯轴3、进气管6和回气管7分别插入中间固定孔83和两个进回气管固定孔85并密封连接。进气管6以及回气管7连通J-T槽, J-T槽的进气从进气管6进入,J-T槽的回气从回气管7排出。
一实施例中,在上述真空壁整体调节的实施例的基础上,为了防止在真空壁的远端位置调节过程中真空壁内部的气体泄漏,还包括密封组件,请参考图2及图3。密封组件与内管22的近端之间密封连接;内管22的近端为内管远离针头211的一端;密封组件与滑块8之间形成动态密封。
进一步地,密封组件包括:密封圈51、密封槽52以及密封压件53。其中,密封槽52的远端与内管22的近端固定密封,密封槽52的远端为密封槽靠近针头211的一端;密封圈51放置于密封槽52中,密封压件53沿轴向拧入密封槽52中,将密封圈51固定在密封槽52和密封压件53之间,芯轴3插入密封圈51内和密封压件53内,于是,密封圈51在芯轴3和密封槽52之间发生径向挤压形变,形成动态密封。可选地,密封圈51可以是橡胶密封圈,如丁晴O型圈,也可以是耐低温的氟聚合物+金属弹簧的泛塞密封圈。
一较佳实施例中,柔性冷冻消融针的真空壁还可包括:真空三通28、真空连接管291、真空软管292以及回气连接管293,请参考图5。其中,内管22的近端与回气连接管293的远端连接密封,外管23的近端与三通连接部281连接密封,真空三通28的近端与回气连接管293连接密封,真空连接管291的远端插入三通旁支282,真空软管292插入真空连接管291,通过对真空软管292的近端抽真空,可使内管22和外管23之间的间隙保持真空状态,起到防止冻伤正常自然腔道壁的效果。
一实施例中,还包括:分流管294,用于对进气管6、回气管7以及芯轴3之间的缝隙进行密封;进气管6、回气管7以及芯轴3插入分流管294的近端中进行密封,请参考图6、图7。
一实施例中,在上述真空壁整体调节的实施例的基础上,真空壁远端位置的调节可以通过手动前后调节,也可以通过预制的弹簧120来实现,如图3、4、6、7所示。弹簧120用于实现真空壁的远端位置的保持;当弹簧120为压缩或拉伸状态时,真空壁的远端位于第二调节位置(预吹扫模式),如图3、6所示,以弹簧处于拉伸状态为例。当弹簧为自然状态时,真空壁的远端位于第一调节位置(冷冻模式),如图4、7所示。进一步地,还包括:卡位件10,如图3、4、6、7所示,当真空壁的远端位于第二调节位置时,卡位件用于使弹簧120保持拉伸状态,当需要向第一调节位置切换时,只需要将卡位件10 抽出即可。
不同实施例中,当真空壁的远端位于第二调节位置时,弹簧也可以为压缩状态,当真空壁的远端位于第一调节位置时,弹簧为自然状态。
一实施例中,为了方便抓握及调节,还包括:手柄9,其包括:前段手柄92以及后段手柄93,请参考图3、4。前段手柄包括:前调节段921以及前限位环922,后段手柄93包括:后调节段931、后限位环932以及滑块固定孔933。前段手柄92与真空壁固定连接;滑块8通过滑块固定孔933与后段手柄93固定连接。后调节段931插入前调节段921。前限位环922与后限位环932相互限制,以对真空壁的远端位置调节进行限制,当真空壁移动到第二调节位置时,前限位环922与后限位环932互相限制,以限制真空壁进一步向远端移动(即限制真空壁向远端移动的最远距离)。
不同实施例中,前段手柄92以及后段手柄93也可以不包括前限位环922和后限位环932,请参考图6、7,可以通过前段手柄92的近端与后段手柄93的远端进行限位。
一较佳实施例中,请参考图3、6,卡位件10的固定方式具体为:弹簧120的远端与前调节段921的远端固定连接,弹簧120的近端与后限位环932固定连接(即与滑块8相对固定),卡位件10与弹簧120的远端相连。采用后调节段931插入前调节段921的方式,后调节段931比较细,在预吹扫模式下,后调节段931有一段(前限位环922的近端与后调节段931的近端之间)外露,卡位件10正好可以卡在这段外露的后调节段931中,从而将滑块8与真空壁的相互位置固定,此时弹簧120处于拉升状态,也就是保持住了当前的预吹扫模式。当需要从预吹扫模式向冷冻模式切换时,手握后段手柄93并将卡位件10拔出,在弹簧120的拉力作用下,滑块8带动前段手柄92,即带动真空壁向近端移动,直至真空壁的近端被后段手柄93(滑块固定孔933的远端)顶住,此时真空壁在第一调节位置停住,切换至冷冻模式,请参考图4、7。
一实施例中,冷冻消融管为柔性时,且包括:分流管294时,手柄的后调节段931还设置有分流管固定孔934,用于使分流管294从中穿过,已对其进行径向限位,请参考图6、图7。
一实施例中,冷冻消融管为柔性时,且包括:真空软管292时,手柄的 后调节段931还设置有软管引导管935,用于使真空软管292从中穿过,已对其进行方向引导,请参考图6、图7。
一较佳实施例中,为了方便卡位件的固定以及方便卡位件的插拔调节,卡位件10包括:手持部101以及C形环103,请参考图9。其中,手持部101设置在C形环103上,方便手握调节;C形环103包覆在手柄9的外壁上,可以防止卡位件径向脱落。
一较佳实施例中,为了提高散热功能,还包括:翅片管4,翅片管4设置于芯轴3的外壁上,请参考图3、4。
一较佳实施例中,在上述真空壁整体调节的实施例的基础上,为了扩大内管的近端的内部容积,如:可以将翅片管4塞入内管的近端内部,或者可以容纳其他更多的部件;由于内管的近端的内部容积需要扩大,进而真空壁的近端的内部容积也需要扩大。真空壁还包括:外管23以及垫圈24,请参考图3、4。其中,垫圈24设置于内管22的远端外壁与针杆21的内壁之间,形成密封连接;外管23的远端与针杆21的近端密封连接,外管23的近端与内管22的近端密封连接。外管23的外径大于针杆21的外径,外管23的内径大于针杆的内径,外管23的远端为外管23靠近针头211的一端,外管23的近端为外管23远离针头211的一端。进一步地,从内管22的远端到近端,内管22依次包括:内管前段221以及内管后段222,内管后段222的外径比内管前段221的外径,内管后段222的内径大于内管前段221的内径。内管前段221位于针杆21的内部,内管后段222位于外管23的内部。
一较佳实施例中,真空壁的远端位置的调节也可以采用将真空壁分为两段:前段真空壁与后段真空壁,只调节前段真空壁,后段真空壁固定的方式来实现,请参考图10、11。具体地,从真空壁的远端到近端,真空壁依次包括:前段真空壁以及后段真空壁,前段真空壁与后段真空壁之间能够相对滑动;真空壁调节装置包括:滑块8,滑块8与前段真空壁相连。滑块8用于沿轴向进行移动,以带动前段真空壁沿轴向进行移动,以使前段真空壁的远端在至少两个调节位置之间进行切换。
一实施例中,可采用芯轴3作为第二滑块引导部,真空壁设置在芯轴3的外壁,滑块8设置在真空壁的外壁,滑块8运动,进而带动真空壁沿着芯轴3运动。不同实施例中,也可将滑块8设置在芯轴3的外壁,芯轴3引导 滑块8沿着轴心方向运动。不同实施例中,也可通过设置在真空壁的轴心方向上的引导管来进行引导,引导管沿着轴心方向设置,滑块8设置在引导管的内壁,沿着引导管滑动,也可引导其沿着轴心方向滑动。不同实施例中,也可采用第二滑块引导部与待调节部件(前段真空壁)相连,滑块与第一滑块引导部相连,第一滑块引导部设置于轴心方向,可沿轴心方向运动,滑块8带动第一滑块引导部沿轴心方向,进而带动前段真空壁沿轴心方向运动。
一较佳实施例中,在上述真空壁分为两段的实施例的基础上,针杆21的近端设置有外管23,外管23的外径比针杆21的外径大,外管23的内径比针杆21的内径大。从内管22的远端到近端,内管22依次包括:内管前段221以及内管后段222,内管后段222的外径比内管前段221的外径大,内管后段222的内径比内管前段221的内径大。内管前段221位于针杆21的内部,内管后段222位于外管23的内部。此时前段真空壁与后段真空壁的划分方式为:前段真空壁包括:针杆21以及内管前段221,后段真空壁包括:外管23以及内管后段222。为了增强密封效果,前段真空壁还包括:垫圈24,垫圈24设置于内管前段221的远端外壁与针杆21之间,以及内管前段221的近端外壁与针杆21之间。
一较佳实施例中,在上述真空壁分为两段的实施例的基础上,前段真空壁与后段真空壁之间通过密封组件实现动态密封,防止两者之间漏气,请参考图10、11。密封组件包括:密封圈51以及密封槽52。其中,密封槽52位于前段真空壁与后段真空壁之间,密封圈51位于前段真空壁的远端外壁与密封槽52之间,密封圈51能够沿着密封槽跟随前段真空壁进行轴向移动,实现动态密封。本实施例中,由于密封圈51位于前段真空壁的外表面,此区域为常温状态,只需采用普通的橡胶密封圈即可,无需担心在低温状态下密封失效。
一较佳实施例中,在上述真空壁分为两段的实施例的基础上,为了方便滑块8的调节,还设置有拨块86以及手柄9,手柄9内设置有手柄调节槽94,请参考图10、11。滑块8固定在前段真空壁的外表面,拨块86与滑块8相连,拨块86从手柄调节槽94伸出至手柄9的外壁,方便调节。通过拨动拨块86在手柄调节槽94内滑动,可带动滑块8沿轴向进行移动。为了方便真空壁的远端调节位置的固定,手柄调节槽94的长度可根据真空壁的远端位置进行设置,当拨块86位于手柄调节槽94的最远端时,真空壁的远端正好位于第二调节位置,当拨块86位于手柄调节槽94的最近端时,真空壁的远端正好位于第一调节位 置。
一较佳实施例中,为了更好地检测冷冻消融针的冷冻效果,还包括:测温线14,测温线14的远端为测温点141,测温线14的远端为测温线14靠近针头211的一端,请参考图3、4、6、7、10、11。测温点141设于J-T槽1的远端,用于测量J-T槽1的远端处的温度。当J-T槽1的远端位于靶向区内时,用于在冷冻复温过程中,监测肿瘤中心温度,当J-T槽1的远端位于真空隔热区内时,用于在预吹扫过程中通过该温度指示预吹扫是否到位。测温线14沿着J-T槽1的外侧,然后从芯轴3内部引出至外部,芯轴3内部通过灌胶水密封。优选地,还包含复温线,复温线的位置和排布方式于测温线一致,用于实现复温功能。优选低,测温线和/或复温线采用T型漆包热电偶线。
一实施例中,为了将进气管、回气管等部件包裹起来,使得冷冻消融针的外观更整洁、操作更方便,在手柄9的外壁上还设置有外套管13,请参考图3、4、6、7、10、11。
较佳实施例中,可将预吹扫模式,即J-T槽1的远端位于真空隔热区26内部的状态设置为产品出厂状态,操作者可直接通过试刀的流程完成产品的预吹扫。试刀/预吹扫完成后,再调节至冷冻模式,即J-T槽1的远端位于靶向区25内部,开启冷冻后消融针由于经历过预吹扫,靶向区25将会快速降温至最低温度。
在本说明书的描述中,参考术语“一种实施方式”、“一种实施例”、“具体实施过程”、“一种举例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (17)

  1. 一种真空壁位置可调的冷冻消融针,其特征在于,包括:真空壁、J-T槽以及真空壁调节装置;其中,
    所述真空壁包括:针杆以及内管;
    所述针杆的远端具有针头;
    所述内管穿设于所述针杆,所述内管与所述针杆之间形成了夹层,所述夹层能够形成真空的夹层;
    沿所述真空壁的轴心方向,所述内管的远端与所述针杆的远端之间具有第一预设距离;所述内管的远端为所述内管靠近所述针头的一端;
    所述J-T槽穿设于所述内管;
    所述针头能够相对于所述J-T槽在至少两个调节位置之间切换,所述至少两个调节位置包括:第一调节位置以及第二调节位置;
    在所述真空壁沿其轴心方向分布的各段区域中,所述夹层所处的一段区域为真空隔热区,所述第一预设距离所处的一段区域为靶向区;
    当所述针头位于第一调节位置时,所述J-T槽的远端位于所述靶向区内;所述J-T槽的远端为所述J-T槽靠近所述针头的一端;
    当所述针头位于第二调节位置时,所述J-T槽的远端位于所述真空隔热区内;
    所述真空壁调节装置用于通过调节所述针头的位置而使所述针头在所述至少两个调节位置之间切换;
    所述真空壁调节装置包括:第一滑块以及第一滑块引导部;
    所述第一滑块与所述真空壁能够受控同步沿所述第一滑块引导部引导的方向运动,以切换所述针头的调节位置;所述第一滑块引导部用于引导所述第一滑块以及所述真空壁沿所述真空壁的轴心方向运动;
    当所述针头位于所述第一调节位置时,沿所述真空壁的轴心方向,所述J-T槽的远端与所述针头之间具有第二预设距离,所述第二预设距离至少保证冷冻形成的冰球覆盖所述针头;
    当所述真空壁的远端位于所述第二调节位置时,沿所述真空壁的轴心方向,所述J-T槽的远端与所述真空隔热区的远端之间具有第三预设距离,所述 第三预设距离至少保证冷媒从所述J-T槽喷出后直接从所述真空隔热区内返回;所述真空隔热区的远端为所述真空隔热区靠近所述针头的一端。
  2. 根据权利要求1所述的真空壁位置可调的冷冻消融针,其特征在于,所述第一滑块引导部沿所述真空壁的轴心方向设置;其中,
    所述第一滑块与所述真空壁相连,所述第一滑块引导部相对于所述滑块或所述J-T槽位置固定;
    其中,若所述第一滑块引导部相对于所述滑块位置固定,则所述第一滑块引导部与所述J-T槽能够相对滑动;若所述第一滑块引导部相对于所述J-T槽位置固定,则所述第一滑块与所述第一滑块引导部能够相对滑动。
  3. 根据权利要求2所述的真空壁位置可调的冷冻消融针,其特征在于,还包括:第一密封组件,所述第一密封组件与所述内管的近端之间密封连接;所述内管的近端为所述内管远离所述针头的一端;
    所述第一密封组件与所述第一滑块之间形成动态密封。
  4. 根据权利要求3所述的真空壁位置可调的冷冻消融针,其特征在于,所述第一密封组件包括:密封圈、密封槽以及密封压件;其中,
    所述密封槽的远端与所述内管的近端固定密封,所述密封槽的远端为所述密封槽靠近所述针头的一端;
    所述密封圈设置于所述密封压件与第一滑块之间,所述密封压件设置于所述密封圈与密封槽之间;
    所述密封圈以及密封压件滑动连接于所述密封槽;
    所述第一滑块、所述密封圈与所述密封压件能够受控同步沿轴心方向运动。
  5. 根据权利要求2所述的真空壁位置可调的冷冻消融针,其特征在于,还包括:弹簧以及卡位件;其中,
    所述弹簧的一端与用于所述J-T槽的远端同步运动,还与所述卡位件相连;所述卡位件能够进入与脱离卡位位置;
    所述弹簧的另一端相对于所述J-T槽固定;
    当所述卡位件处于卡位位置时,所述弹簧被所述卡位件限位而保持形变状态,所述真空壁的远端位于所述第二调节位置;
    所述形变状态为压缩状态或拉伸状态;
    当所述卡位件脱离所述卡位位置时,所述弹簧能够产生自所述形变状态恢复为自然状态的恢复作用力,所述恢复作用力能够驱动所述真空壁的远端自所述第二调节位置进入所述第一调节位置。
  6. 根据权利要求5所述的真空壁位置可调的冷冻消融针,其特征在于,还包括:第一手柄,所述第一手柄包括:前段手柄以及后段手柄;
    所述前段手柄与所述真空壁固定连接;
    所述后段手柄的远端插入所述前段手柄的近端,两者能够相对滑动;
    所述前段手柄和/或所述后段手柄设置有限位环,所述限位环用于限制所述真空壁向远端移动的最远距离。
  7. 根据权利要求6所述的真空壁位置可调的冷冻消融针,其特征在于,所述卡位件包括:手持部以及C形环;其中,
    所述手持部设置于所述C形环上;
    所述C形环包覆在与所述后段手柄的外壁上。
  8. 根据权利要求1至7任一项所述的真空壁位置可调的冷冻消融针,其特征在于,所述真空壁还包括:外管以及垫圈;其中,
    所述外管的远端与所述针杆的近端密封连接,所述外管的近端与所述内管的近端密封连接,所述外管的远端为所述外管靠近所述针头的一端,所述外管的近端为所述外管远离所述针头的一端;
    所述垫圈设置于所述内管的外壁与所述针杆的内壁之间,形成密封连接;
    从所述内管的远端到近端,所述内管依次包括:内管前段以及内管后段;
    所述内管前段穿设于所述针杆,所述内管后段穿设于所述外管;
    若所述真空壁包括:前段真空壁以及后段真空壁,则所述前段真空壁包括所述针杆以及所述内管前段,所述后段真空壁包括所述外管以及所述内管后段。
  9. 根据权利要求8所述的真空壁位置可调的冷冻消融针,其特征在于,所述外管的外径大于所述针杆的外径,所述外管的内径大于所述针杆的内径;
    所述内管后段的外径大于所述内管前段的外径,所述内管后段的内径大于所述内管前段的内径。
  10. 根据权利要求1至7任一项所述的真空壁位置可调的冷冻消融针,其特征在于,还包括:测温线;
    所述测温线的远端为测温点;所述测温线的远端为所述测温线靠近所述针头的一端;
    所述测温点设于所述J-T槽的远端,用于测量所述J-T槽的远端处的温度。
  11. 一种真空壁位置可调的冷冻消融针,其特征在于,包括:真空壁、J-T槽以及真空壁调节装置;其中,
    所述真空壁包括:针杆以及内管;
    所述针杆的远端具有针头;
    所述内管穿设于所述针杆,所述内管与所述针杆之间形成了夹层,所述夹层能够形成真空的夹层;
    沿所述真空壁的轴心方向,所述内管的远端与所述针杆的远端之间具有第一预设距离;所述内管的远端为所述内管靠近所述针头的一端;
    所述J-T槽穿设于所述内管;
    所述针头能够相对于所述J-T槽在至少两个调节位置之间切换,所述至少两个调节位置包括:第一调节位置以及第二调节位置;
    在所述真空壁沿其轴心方向分布的各段区域中,所述夹层所处的一段区域为真空隔热区,所述第一预设距离所处的一段区域为靶向区;
    当所述针头位于第一调节位置时,所述J-T槽的远端位于所述靶向区内;所述J-T槽的远端为所述J-T槽靠近所述针头的一端;
    当所述针头位于第二调节位置时,所述J-T槽的远端位于所述真空隔热区内;
    所述真空壁包括:前段真空壁以及后段真空壁,从所述真空壁的远端到近端,所述前段真空壁与所述后段真空壁依次分布,所述前段真空壁与所述后段真空壁之间能够相对运动;所述针头位于所述前段真空壁;
    所述真空壁调节装置通过调节所述前段真空壁与所述后段真空壁之间的相对位置而使所述针头在所述至少两个调节位置间切换;
    所述真空壁调节装置包括:第二滑块以及第二滑块引导部;
    所述第二滑块与所述前段真空壁能够受控同步沿所述第二滑块引导部引导的方向运动,以切换所述针头的调节位置;所述第二滑块引导部用于引导所述第二滑块以及所述前段真空壁沿所述真空壁的轴心方向运动;
    当所述针头位于所述第一调节位置时,沿所述真空壁的轴心方向,所述 J-T槽的远端与所述针头之间具有第二预设距离,所述第二预设距离至少保证冷冻形成的冰球覆盖所述针头;
    当所述真空壁的远端位于所述第二调节位置时,沿所述真空壁的轴心方向,所述J-T槽的远端与所述真空隔热区的远端之间具有第三预设距离,所述第三预设距离至少保证冷媒从所述J-T槽喷出后直接从所述真空隔热区内返回;所述真空隔热区的远端为所述真空隔热区靠近所述针头的一端。
  12. 根据权利要求11所述的真空壁位置可调的冷冻消融针,其特征在于,所述第二滑块引导部沿所述真空壁的轴心方向设置;其中,
    所述第二滑块与所述前段真空壁相连,所述第二滑块引导部相对于所述前段真空壁或所述后段真空壁位置固定;
    其中,若所述第二滑块引导部相对于所述后段真空壁位置固定,则:所述第二滑块与所述第二滑块引导部能够相对滑动;若所述第二滑块引导部相对于所述前段真空壁位置固定,则:所述后段真空壁与所述第二滑块引导部能够相对滑动。
  13. 根据权利要求12所述的真空壁位置可调的冷冻消融针,其特征在于,还包括:第二密封组件,所述第二密封组件设置于所述前段真空壁与后段真空壁之间,用于使所述前段真空壁与后段真空壁之间形成动态密封。
  14. 根据权利要求12所述的真空壁位置可调的冷冻消融针,其特征在于,还包括:拨块以及第二手柄,所述第二手柄:包括手柄调节槽;
    所述拨块与所述滑块相连,所述拨块设置于所述手柄调节槽内,所述拨块伸出所述第二手柄的外壁;
    所述拨块滑动连接于所述手柄调节槽;
    所述拨块与所述第二滑块能够受控同步沿所述轴心方向运动。
  15. 根据权利要求11至14任一项所述的真空壁位置可调的冷冻消融针,其特征在于,所述真空壁还包括:外管以及垫圈;其中,
    所述外管的远端与所述针杆的近端密封连接,所述外管的近端与所述内管的近端密封连接,所述外管的远端为所述外管靠近所述针头的一端,所述外管的近端为所述外管远离所述针头的一端;
    所述垫圈设置于所述内管的外壁与所述针杆的内壁之间,形成密封连接;
    从所述内管的远端到近端,所述内管依次包括:内管前段以及内管后段;
    所述内管前段穿设于所述针杆,所述内管后段穿设于所述外管;
    若所述真空壁包括:前段真空壁以及后段真空壁,则所述前段真空壁包括所述针杆以及所述内管前段,所述后段真空壁包括所述外管以及所述内管后段。
  16. 根据权利要求15所述的真空壁位置可调的冷冻消融针,其特征在于,所述外管的外径大于所述针杆的外径,所述外管的内径大于所述针杆的内径;
    所述内管后段的外径大于所述内管前段的外径,所述内管后段的内径大于所述内管前段的内径。
  17. 根据权利要求11至14任一项所述的真空壁位置可调的冷冻消融针,其特征在于,还包括:测温线;
    所述测温线的远端为测温点;所述测温线的远端为所述测温线靠近所述针头的一端;
    所述测温点设于所述J-T槽的远端,用于测量所述J-T槽的远端处的温度。
PCT/CN2022/128871 2021-11-11 2022-11-01 真空壁位置可调的冷冻消融针 WO2023083049A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022384225A AU2022384225A1 (en) 2021-11-11 2022-11-01 Vacuum wall position adjustable cryoablation needle
CA3238024A CA3238024A1 (en) 2021-11-11 2022-11-01 Cryoablation needle with adjustable vacuum wall position

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111329707.3A CN113768610B (zh) 2021-11-11 2021-11-11 真空壁位置可调的冷冻消融针
CN202111329707.3 2021-11-11

Publications (1)

Publication Number Publication Date
WO2023083049A1 true WO2023083049A1 (zh) 2023-05-19

Family

ID=78873715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128871 WO2023083049A1 (zh) 2021-11-11 2022-11-01 真空壁位置可调的冷冻消融针

Country Status (4)

Country Link
CN (1) CN113768610B (zh)
AU (1) AU2022384225A1 (zh)
CA (1) CA3238024A1 (zh)
WO (1) WO2023083049A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113768610B (zh) * 2021-11-11 2022-02-22 上海导向医疗系统有限公司 真空壁位置可调的冷冻消融针
CN114343823A (zh) * 2022-03-21 2022-04-15 上海导向医疗系统有限公司 靶向区可调的冷冻消融针

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188977A (zh) * 2005-04-28 2008-05-28 恩道凯尔公司 带可脱开手柄的可分离冷冻手术探针
US20080147055A1 (en) * 2006-12-19 2008-06-19 Endocare, Inc. Cryosurgical Probe With Vacuum Insulation Tube Assembly
US20160228173A1 (en) * 2003-01-15 2016-08-11 Adagio Medical, Inc. Cryotherapy probe
CN207253372U (zh) * 2017-03-07 2018-04-20 深圳市宝安区妇幼保健院 一种消融范围可控的消融针
CN110251224A (zh) * 2019-08-13 2019-09-20 上海导向医疗系统有限公司 可调节冷冻消融针
CN110507405A (zh) * 2019-08-13 2019-11-29 上海导向医疗系统有限公司 可调靶向区的冷冻消融针
CN112020337A (zh) * 2018-04-27 2020-12-01 生物相容英国有限公司 具有压力调节的冷冻手术系统
CN112022326A (zh) * 2020-08-18 2020-12-04 上海市第十人民医院 一种作用范围可调节的喷雾冷冻导管
CN113768610A (zh) * 2021-11-11 2021-12-10 上海导向医疗系统有限公司 真空壁位置可调的冷冻消融针

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7381207B2 (en) * 2003-06-25 2008-06-03 Endocare, Inc. Quick disconnect assembly having a finger lock assembly

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160228173A1 (en) * 2003-01-15 2016-08-11 Adagio Medical, Inc. Cryotherapy probe
CN101188977A (zh) * 2005-04-28 2008-05-28 恩道凯尔公司 带可脱开手柄的可分离冷冻手术探针
US20080147055A1 (en) * 2006-12-19 2008-06-19 Endocare, Inc. Cryosurgical Probe With Vacuum Insulation Tube Assembly
CN207253372U (zh) * 2017-03-07 2018-04-20 深圳市宝安区妇幼保健院 一种消融范围可控的消融针
CN112020337A (zh) * 2018-04-27 2020-12-01 生物相容英国有限公司 具有压力调节的冷冻手术系统
CN110251224A (zh) * 2019-08-13 2019-09-20 上海导向医疗系统有限公司 可调节冷冻消融针
CN110507405A (zh) * 2019-08-13 2019-11-29 上海导向医疗系统有限公司 可调靶向区的冷冻消融针
CN112022326A (zh) * 2020-08-18 2020-12-04 上海市第十人民医院 一种作用范围可调节的喷雾冷冻导管
CN113768610A (zh) * 2021-11-11 2021-12-10 上海导向医疗系统有限公司 真空壁位置可调的冷冻消融针

Also Published As

Publication number Publication date
CN113768610B (zh) 2022-02-22
AU2022384225A1 (en) 2024-05-30
CN113768610A (zh) 2021-12-10
CA3238024A1 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
WO2023083049A1 (zh) 真空壁位置可调的冷冻消融针
EP1003430B1 (en) Endoscopic cryospray device
WO2021027397A1 (zh) 可调节冷冻消融针
US6755823B2 (en) Medical device with enhanced cooling power
JP5490218B2 (ja) 多管の遠位部を有する単相液体冷媒冷凍アブレーション・システム及び関連する方法
US20100152722A1 (en) Cryoprobe with reduced adhesion to frozen tisssue
US20080033416A1 (en) Cryogenic Probe for Treating Enlarged Volume of Tissue
US20080125764A1 (en) Cryoprobe thermal control for a closed-loop cryosurgical system
WO2023083050A1 (zh) J-t槽位置可调的冷冻消融针
CN101584602A (zh) 多级预冷冷冻消融方法与设备
WO2021169800A1 (zh) 流量调节组件以及流量可调节的柔性冷冻探针
WO2023083047A1 (zh) J-t槽套管的冷冻消融针
WO2023083048A1 (zh) 双j-t槽的冷冻消融针
CN109481003A (zh) 一种低温氮气冷冻消融系统
US20080114347A1 (en) Closed Loop Cryosurgical System
CN209316044U (zh) 一种冷冻消融导管
JPWO2013160981A1 (ja) 冷凍手術装置用プローブ外筒及び治療子ユニット
KR20240096796A (ko) J-t 홈 슬리브 냉동 절제 니들
CN219048799U (zh) 一种气管镜用冷冻探头
CN116211440A (zh) 一种气道喷雾冷冻消融系统
CN118121292A (zh) 适用于柔性消融导管的多模态消融系统
CN113384341A (zh) 一种用于自然腔道疾病治疗的冷冻球囊装置
CN114848138A (zh) 一种热冷复合消融针

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3238024

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: AU2022384225

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022384225

Country of ref document: AU

Date of ref document: 20221101

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022891845

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022891845

Country of ref document: EP

Effective date: 20240611