WO2023082990A1 - 一种确定机械臂工作位姿的方法和装置 - Google Patents
一种确定机械臂工作位姿的方法和装置 Download PDFInfo
- Publication number
- WO2023082990A1 WO2023082990A1 PCT/CN2022/127400 CN2022127400W WO2023082990A1 WO 2023082990 A1 WO2023082990 A1 WO 2023082990A1 CN 2022127400 W CN2022127400 W CN 2022127400W WO 2023082990 A1 WO2023082990 A1 WO 2023082990A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pose
- implant
- coordinate system
- robotic arm
- determining
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C8/00—Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
- A61C8/0089—Implanting tools or instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J5/00—Manipulators mounted on wheels or on carriages
- B25J5/007—Manipulators mounted on wheels or on carriages mounted on wheels
Definitions
- the present application relates to the technical field of dental implant robots, in particular to a method and device for determining the working pose of a robotic arm.
- the present application is proposed to provide a method and device for determining the working pose of a manipulator that overcomes the above problems or at least partially solves the above problems.
- a method for determining the working pose of a robotic arm comprising:
- the candidate pose corresponding to the shortest moving distance is determined as the target pose for implant nest preparation.
- a device for determining the working pose of a robotic arm comprising:
- the initial pose acquisition module is used to obtain the initial pose of the end of the mechanical arm relative to the base;
- a candidate pose determination module configured to determine several candidate poses that meet the preset implant conditions at the end of the robotic arm
- a distance calculation module configured to calculate, based on the target point at the end of the mechanical arm, the moving distance between the target point in each candidate pose and the target point in the initial pose;
- the target pose determination module is configured to determine the candidate pose corresponding to the shortest moving distance as the target pose for implant socket preparation.
- a robotic arm trolley is provided. After the mechanical arm trolley adjusts the end of the robotic arm to the target pose according to the method mentioned above, it adjusts the end of the robotic arm to reach the implant placement Prepare the nest in the position.
- a dental implant robot system is provided, and the dental implant robot system includes the aforementioned robotic arm trolley.
- the initial pose of the end of the robotic arm by obtaining the initial pose of the end of the robotic arm relative to the base, several candidate poses of the end of the robotic arm that meet the preset implant conditions are determined. Then, based on the target point at the end of the mechanical arm, calculate the moving distance between the target point in each candidate pose and the target point in the initial pose; determine the candidate pose corresponding to the shortest moving distance as the implant nest preparation target pose. Therefore, during the implant surgery, the initial posture of the end of the robotic arm is fully referred to, and it can be quickly converted to the target posture and then moved into the oral cavity. In this way, large-angle posture changes in the oral cavity can be avoided, thereby improving surgical safety.
- Fig. 1 is a schematic structural diagram of a dental implant robot system provided by an embodiment of the present application
- FIG. 2 is an enlarged view of a TCP structure provided by an embodiment of the present application.
- Fig. 3 is a flow chart of the steps of a method for determining the working pose of a robotic arm provided in an embodiment of the present application;
- Fig. 4 is a flow chart of the steps of another method for determining the working pose of the robotic arm provided in the embodiment of the present application;
- Fig. 5 is a schematic diagram of a method for determining the working pose of a robotic arm provided in an embodiment of the present application
- Fig. 6 is a schematic diagram of another method for determining the working pose of the robotic arm provided by the embodiment of the present application.
- Fig. 7 is a block diagram of a device for determining a working pose of a robotic arm provided by an embodiment of the present application.
- the position of the implant is usually planned in advance according to the CT (Computed Tomography) image of the patient's oral cavity, and a virtual implant is placed at the corresponding position of the CT image through the surgical planning software.
- This virtual implant is called a planned implant, and the corresponding position of the planned implant in the patient's oral cavity is determined as the placement position of the implant.
- the dental implant robot system needs to refer to the planned implant, and prepare a socket for the placement of the implant in the patient's oral cavity, so as to perform implant implantation.
- a dental implant robot system provided by an embodiment of the present application is shown, the system may include a manipulator trolley 112, a main control trolley (not shown in the figure) and a navigation trolley 113, The manipulator trolley 112, the main control trolley and the navigation trolley 113 interact in pairs.
- the manipulator trolley 112 includes a manipulator 1122.
- the manipulator 1122 includes a base, a manipulator joint mounted on the base, and a manipulator end for carrying an end effector.
- the end of the manipulator may also be referred to as a TCP ( Tool Center Position, tool center point) or TCP end, which refers to the end of the execution end joint of the robotic arm.
- a mobile phone 115 also called an implant mobile phone
- a bur 116 for implant nest preparation is fixed on the mobile phone 115 .
- the motion path of the end of the mechanical arm is controlled by the internal mechanical arm motion program of the mechanical arm trolley 112, so that the bur 116 reaches the implant placement position for socket preparation.
- the axis of the bur 116 and the planning implant are required (the planning implant refers to the virtual implant planned by the doctor in the operation planning software of the main console, and the position information of the virtual implant in the patient's oral cavity
- the planning implant refers to the virtual implant planned by the doctor in the operation planning software of the main console, and the position information of the virtual implant in the patient's oral cavity
- the axes that can be sent from the main control trolley to the mechanical arm trolley are coincident, so that the necessary pose transformation relationship needs to be established, so that the mechanical arm trolley 112 can obtain the bur 116 and the implant according to the pose transformation relationship.
- the relative position information between the placement positions can control the movement path of the mechanical arm, and finally enable the bur 116 to reach the implant placement position for nest preparation.
- different coordinate systems can be established according to different devices, so as to determine the transformation relationship of each posture.
- the position of the bur 116 can be determined by the mobile phone registration locator, and the position of the mobile phone 115 can be determined by the mobile phone locator 1172 fixed on the TCP.
- the coordinate system established for the robotic arm trolley 112 may include: a base coordinate system, a TCP coordinate system, a mobile phone locator coordinate system, and a bur coordinate system.
- An oral locator 1171 is placed in the oral cavity, so that the position of the implant placement relative to the positioning of the oral cavity can be determined through the oral locator 1171, and the coordinate system of the oral locator and the implant coordinate system can be established.
- the navigation trolley 113 includes an infrared positioning module 1131. Through the infrared positioning module 1131, not only its position relative to the mobile phone locator 1172 can be determined, but also its position relative to the oral cavity locator 1171 can be determined. Therefore, the modeling group coordinate system.
- the pose transformation relationship from the base coordinate system to the TCP coordinate system can be directly read from the lower computer of the mechanical arm trolley 112; the coordinate system of the mobile phone locator to the TCP coordinate system
- the pose transformation relationship is the factory calibration parameter, which can be directly obtained; the pose transformation from the bur coordinate system to the mobile phone locator coordinate system can be obtained from the lower computer; the pose transformation relationship from the module coordinate system to the oral locator coordinate system , and the pose transformation relationship from the module coordinate system to the mobile phone locator coordinate system can be directly read from the navigation trolley 113;
- the main control trolley includes a host computer, which can obtain the CT image of the oral cavity and The pose transformation relationship between the oral positioner coordinate system and the implant coordinate system can be obtained based on the CT image, and all the pose transformation relations obtained above can be determined as pose transformation information.
- the establishment of the base coordinate system B is as follows: take the center of the base of the base as the origin; its Z axis is perpendicular to the base, and its direction is upward along the direction of gravity; the X axis points to where the cooling holes of the mechanical arm trolley 112 are located The heat dissipation plane is perpendicular to the heat dissipation plane; the Y axis is determined according to the right-hand rule.
- the TCP coordinate system Tcp is established as follows: take the center of the end face of the TCP as the origin, the Z axis is coaxial with the axis of the end joint, and the direction is outward from the end face of the end of the end joint; according to the right-hand rule and the direction identification of the end of the end joint, Determine the X and Y axes. Taking Fig. 1 as an example, the above-mentioned terminal joint is the sixth joint.
- the coordinate system R of the mobile phone locator is established as follows: take the center of ball 1 as the origin of the coordinate system, the X-axis points from ball 1 to ball 2, and the Y-axis is at the centers of ball 1, ball 2 and ball 3 On the plane where it is located, the Z-axis direction is perpendicular to this plane and goes downward.
- the needle coordinate system N is established as follows: the center of the tip of the needle 116 is the origin; the Z axis is parallel to the rotation axis of the needle 116, and the direction is from the tip of the needle 116 to the tail end; The X-axis is located on a plane perpendicular to the Z-axis, and the direction is that the origin of the bur coordinate system points to the origin of the TCP coordinate system; the Y-axis is determined according to the right-hand rule.
- the infrared positioning module 1131 includes two cameras installed side by side, with the midpoint of the line connecting the centers of the two cameras as the origin; the Z axis is parallel to the normal line of the outer surface of the camera, and the direction is pointing to the inside of the camera; the X-axis is parallel to the central line, and the direction is to point to the camera on the left; the Y-axis is determined according to the right-hand rule.
- the establishment of the oral positioner coordinate system D is as follows: the origin is at the center of ball 1, the Z axis is perpendicular to the plane where the centers of balls 1, 2 and 3 are located, and the X axis is the center of ball 1 Pointing to the center of the sphere 2, the establishment of the Y axis follows the right-hand rule.
- the establishment of the implant coordinate system P is as follows: the Z axis is coaxial with the screw axis of the planned implant, and the direction is from the upper end surface of the planned implant to the lower end surface; The center of the screw axis of the planned implant is the origin; the X-axis and the Y-axis are established according to the right-hand rule, wherein the directions of the X-axis and the Y-axis can be randomly determined.
- attitude is represented by a 3X3 R rotation matrix
- translation is represented by a 3X1 P translation matrix
- the manipulator trolley 112 can obtain pose transformation information based on the interaction relationship with the main control trolley and the navigation trolley 113, and perform the following method steps based on the pose transformation information.
- FIG. 3 it shows a flow chart of the steps of a method for determining the working pose of a robotic arm provided in an embodiment of the present application.
- the method may include:
- Step 301 Obtain the initial pose of the end of the robotic arm relative to the base.
- Step 302 determining several candidate poses of the end of the robotic arm that meet the preset implant conditions.
- the pose of the TCP in the base coordinate system can be read from the lower computer of the robotic arm trolley 112, and this pose can be used as the initial pose.
- this pose can be used as the initial pose.
- the posture of the TCP can be directly adjusted on the outside of the oral cavity, so that after the TCP adjusts the posture, it can drive the bur 116 to move linearly to the implant placement position.
- the condition of the implant can be preset, for example, the condition of the implant can be the coincidence of the Z axis of the bur coordinate system and the implant coordinate system, or the origin of the bur coordinate system and the Z axis, and the origin and Z axis of the implant coordinate system.
- the Z axis coincides at the same time, or the coordinate system of the bur and the coordinate system of the implant coincide. Therefore, when the implant conditions are used for screening, when the X-axis and Y-axis of the implant coordinate system are in a certain direction, the pose of the TCP in the base coordinate system is determined according to the pose transformation information, and the This pose is determined as a candidate pose. Therefore, the screw axis of the planned implant can be rotated as the rotation axis to obtain X-axis and Y-axis in different directions, thereby determining several candidate poses.
- Step 303 based on the target point at the end of the manipulator, calculate the movement distance between the target point in each candidate pose and the target point in the initial pose.
- Step 304 Determine the candidate pose corresponding to the shortest moving distance as the target pose for implant socket preparation.
- the target point may be the origin of the TCP coordinate system.
- the origin of the TCP coordinate system located in the initial pose is calculated, and the origin of the TCP coordinate system located in the candidate pose is calculated. the moving distance between.
- the candidate pose corresponding to the shortest moving distance is determined as the target pose. Due to the hysteresis of the adjustment of the TCP by the robotic arm trolley 112, when the moving distance is the shortest, the initial pose of the TCP is converted to a candidate pose that meets the implant conditions, and the adjustment speed of the TCP is improved to a certain extent.
- the end of the robotic arm can be moved linearly through the robotic arm 1122 , so that the bur 116 reaches the implant placement position for nest preparation.
- the embodiment of the present application provides a method for determining the working pose of the robotic arm.
- the method obtains the initial pose of the end of the robotic arm relative to the base, and then determines that the end of the robotic arm conforms to the preset implant. Conditional several candidate poses. Then, based on the target point at the end of the mechanical arm, calculate the moving distance between the target point in each candidate pose and the target point in the initial pose; determine the candidate pose corresponding to the shortest moving distance as the implant nest preparation target pose. Therefore, during the implant surgery, the initial posture of the end of the robotic arm is fully referred to, and it can be quickly converted to the target posture and then moved into the oral cavity. In this way, large-angle posture changes in the oral cavity can be avoided, thereby improving surgical safety.
- FIG. 4 it shows a flow chart of steps for another method for determining the working pose of a robotic arm provided by an embodiment of the present application.
- the method may include:
- Step 401 Obtain the initial pose of the end of the robotic arm relative to the base.
- the pose of the TCP in the base coordinate system can be read from the lower computer of the robotic arm trolley 112, and this pose is used as the initial pose, and the initial pose is
- Determining several candidate poses at the end of the robotic arm that meet preset implant conditions may include: Step 402 and Step 404 .
- implant conditions can be preset.
- the implant condition may be that the coordinate system of the bur and the coordinate system of the implant coincide.
- Step 402 Set the initial implant coordinate system within the target angle range, take the screw axis of the planned implant as the rotation axis, and rotate according to a preset angular interval to obtain each candidate implant coordinate system after several rotations .
- the initial implant coordinate system refers to the corresponding implant coordinate system when the end of the robotic arm is in the initial pose.
- the Z-axis of the initial implant coordinate system that is, the screw axis of the planned implant, can be used as the rotation axis, starting with its X-axis, and counterclockwise as the positive direction.
- the X-axis of the initial implant coordinate system can freely rotate 360° around its rotation axis, depending on the direction of rotation, it can change from 0° to 360° or -360° to 0°, as the target angle range.
- FIG. 5 Another optional embodiment of the invention, as shown in Figure 5, when the X-axis and Y-axis of the implant coordinate system point to the inside of the oral cavity, the mobile phone 115 will interfere with the inner wall of the oral cavity.
- the posture of the implant condition creates intraoperative risks.
- the angle that may cause the mobile phone 115 to interfere with the inner wall of the oral cavity can be removed.
- the oral cavity segmentation plane defining the internal and external directions of the oral cavity can be identified through the CT image, wherein the Z axis of the initial implant coordinate system is on the oral cavity segmentation surface, and the X axis can be defined on the oral cavity segmentation plane. Outward direction to remove the interference angle.
- the split angle is a negative value.
- the angle range from the split angle to the split angle plus 180° may be used as the target angle range.
- Step 403 Determine the implant pose transformation relationship between the initial implant coordinate system and each of the candidate implant coordinate systems.
- Step 404 according to the pose transformation information and the implant pose transformation relationship, obtain each candidate pose of the end of the robotic arm relative to the base.
- the angular interval may be selected as 1°. According to the angle interval, after performing one rotation operation of the implant coordinate system, it is necessary to determine the candidate pose of the TCP in the base coordinate system.
- the candidate pose of the TCP in the base coordinate system is recorded as It can be calculated according to the following formula (1):
- ⁇ represents the rotation angle from the X-axis of the initial implant coordinate system to the X-axis of the currently rotated candidate implant coordinate system. It can be determined according to the number of rotation operations performed and the direction of rotation.
- the candidate poses of the TCP in the base coordinate system after each rotation can be determined.
- Step 405 based on the target point at the end of the manipulator, calculate the movement distance between the target point in each candidate pose and the target point in the initial pose.
- Step 406 taking the candidate pose corresponding to the shortest moving distance as the target pose for implant nest preparation.
- the target point may be the origin of the TCP coordinate system.
- the origin of the TCP coordinate system located in the initial pose is calculated, and the origin of the TCP coordinate system located in the candidate pose is calculated. the moving distance between.
- the corresponding P translation matrix is The P translation matrix corresponding to the candidate pose after each rotation is arrive where n represents the number of times to perform the rotation operation.
- the TCP After the above n moving distances are acquired, compare the lengths of the n moving distances, and determine the corresponding candidate pose as the target pose when the moving distance is the shortest. After transforming the TCP from the initial position to the target pose, the TCP is moved in a straight line to the direction of the oral cavity, so that the bur 116 reaches the implant placement position for nest preparation. While increasing the adjustment speed of the robotic arm trolley 112, the safety of the implant surgery can also be ensured.
- the target pose of the implant nest preparation can also be determined by the pose of the implant placement position relative to the base coordinate system to represent the corresponding ⁇ angle when the shortest moving distance is determined according to the above calculation steps.
- the calculation formula of is as follows:
- the embodiment of the present application provides a method for determining the working pose of the robotic arm.
- the method obtains the initial pose of the end of the robotic arm relative to the base, and then determines that the end of the robotic arm conforms to the preset implant. Conditional several candidate poses. Then, based on the target point at the end of the mechanical arm, calculate the moving distance between the target point in each candidate pose and the target point in the initial pose; determine the candidate pose corresponding to the shortest moving distance as the implant nest preparation target pose. Therefore, during the implant surgery, the initial posture of the end of the robotic arm is fully referred to, and it can be quickly converted to the target posture and then moved into the oral cavity. In this way, large-angle posture changes in the oral cavity can be avoided, thereby improving surgical safety.
- the position of the bur 116 may be used as the main and the TCP position as the supplementary to determine the corresponding target angle range.
- the projection acts as a reference to the x-axis.
- the projection on the XY plane of the implant coordinate system is used as the reference X axis.
- the angle required to be rotated from the X-axis of the initial implant coordinate system to the reference X-axis is determined as the first angle.
- the bur 116 when the bur 116 is adjusted to a posture conforming to the condition of the implant, the bur 116 needs to be rotated by the first angle around the XY plane.
- the range of a second angle can be expanded clockwise and counterclockwise in the vicinity of the first angle, and then the target pose can be determined.
- the second angle can be preset.
- those skilled in the art may collect several sample data of posture adjustment of the dental implant robot system, and determine the second angle based on the analysis of the sample data, for example, the second angle ⁇ may be 10°.
- the pose transformation relationship from the initial implant coordinate system to the bur coordinate system is determined, and the first angle ⁇ is calculated.
- the calculation formula is as follows:
- the end of the robotic arm can be moved linearly through the robotic arm 1122 , so that the bur 116 reaches the implant placement position for socket preparation.
- FIG. 7 it shows a device for determining the working pose of a robotic arm provided by an embodiment of the present application.
- the device may include:
- the initial pose acquisition module 701 is configured to acquire the initial pose of the end of the robotic arm relative to the base.
- the candidate pose determination module 702 is configured to determine several candidate poses of the end of the robotic arm that meet preset implant conditions.
- the distance calculation module 703 is configured to calculate, based on the target point at the end of the manipulator, the moving distance between the target point in each candidate pose and the target point in the initial pose.
- the target pose determination module 704 is configured to determine the candidate pose corresponding to the shortest moving distance as the target pose for implant socket preparation.
- the end of the mechanical arm is the tip of the bur clamped by the mechanical arm; the conditions of the implant include:
- the bur coordinate system of the bur coincides with the implant coordinate system of the planned implant
- the Z axis of the bur coordinate system coincides with the rotation axis of the bur
- the Z axis of the implant coordinate system coincides with the screw axis of the planned implant.
- the candidate pose determination module is used for:
- the initial implant coordinate system is in the target angle range, and the screw axis of the planned implant is used as the rotation axis, and rotated at preset angular intervals to obtain each candidate implant coordinate system after several rotations, wherein,
- the initial implant coordinate system refers to the corresponding implant coordinate system when the end of the mechanical arm is in the initial pose;
- the candidate pose determination module is also used for:
- each candidate pose of the end of the robotic arm relative to the base is obtained.
- the target angle range is set to 0°-360° or -360°-0°.
- the target angle range is set between the segmentation angle and the segmentation angle plus 180°, wherein the segmentation angle is the rotation of the X-axis of the implant coordinate system to the oral cavity segmentation plane
- the angle of the oral cavity is used to define the internal and external directions of the oral cavity.
- the device further includes an angle determination module, and the angle determination module is used for:
- the angle required to be rotated from the X-axis of the initial implant coordinate system to the reference X-axis is taken as a first angle.
- the angle range between the first angle minus the preset second angle and the first angle plus the second angle is used as the target angle range.
- the device may also include:
- the pose transformation module is used to transform the end of the mechanical arm from the initial pose to the target pose, and then move the end of the robotic arm to the placement position of the implant for nest preparation.
- the embodiment of the present application provides a device for determining the working pose of the robotic arm.
- the device obtains the initial pose of the end of the robotic arm relative to the base, and then determines that the end of the robotic arm conforms to the preset implant. Conditional several candidate poses. Then, based on the target point at the end of the mechanical arm, calculate the moving distance between the target point in each candidate pose and the target point in the initial pose; determine the candidate pose corresponding to the shortest moving distance as the implant nest preparation target pose. Therefore, during the implant surgery, the initial posture of the end of the robotic arm is fully referred to, and it can be quickly converted to the target posture and then moved into the oral cavity. In this way, large-angle posture changes in the oral cavity can be avoided, thereby improving surgical safety.
- modules in the device in the embodiment can be adaptively changed and arranged in one or more devices different from the embodiment.
- Modules or units or components in the embodiments may be combined into one module or unit or component, and furthermore may be divided into a plurality of sub-modules or sub-units or sub-assemblies.
- All features disclosed in this specification including accompanying claims, abstract and drawings) and any method or method so disclosed may be used in any combination, except that at least some of such features and/or processes or units are mutually exclusive. All processes or units of equipment are combined.
- Each feature disclosed in this specification may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise.
- An electronic device comprising:
- processors one or more processors
- One or more programs wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs are configured to perform the above-described embodiments the method described.
- a computer-readable storage medium stores a computer program used in combination with an electronic device, and the computer program can be executed by a processor to implement the methods described in the above-mentioned embodiments.
- embodiments of the embodiments of the present application may be provided as methods, devices, or computer program products. Therefore, the embodiment of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, embodiments of the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
- computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
- Embodiments of the present application are described with reference to flowcharts and/or block diagrams of methods, terminal devices (systems), and computer program products according to the embodiments of the present application. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor or processor of other programmable data processing terminal equipment to produce a machine such that instructions executed by the computer or processor of other programmable data processing terminal equipment Produce means for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
- These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing terminal to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the The instruction means implements the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Robotics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Epidemiology (AREA)
- Mechanical Engineering (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
- Dental Prosthetics (AREA)
- Manipulator (AREA)
Abstract
一种确定机械臂工作位姿的方法和装置,涉及种植牙机器人技术领域。方法通过获取机械臂末端相对于基座的初始位姿(301),再确定机械臂末端符合预设的种植体条件的若干个候选位姿(302)。接着基于机械臂末端的目标点,计算各候选位姿下的目标点到初始位姿下的目标点之间的移动距离(303);将最短移动距离对应的候选位姿,确定为种植体备窝的目标位姿(304)。由此,在种植手术过程中,充分参考机械臂末端的初始姿态,并可以快速的转换为目标位姿后运动到口腔内。由此可以避免在口腔内发生大角度的姿态变换,提高手术安全性。
Description
本申请要求在2021年11月9日提交中国专利局、申请号为202111317934.4、发明名称为“一种确定机械臂工作位姿的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及种植牙机器人技术领域,特别是涉及一种确定机械臂工作位姿的方法和装置。
在种植体的种植手术中,首先需要通过车针对种植体放置位置进行备窝,车针备窝时其轴线需要与规划种植体的轴线重合。其中,车针通过手机固定结构和手机固定在机械臂台车的机械臂末端,在种植手术中,需要通过机械臂台车控制机械臂末端运动,以使车针运动到种植体放置位置的轴线上。由于口腔的空间有限。如果机械臂末端以随意的位姿进行运动,其在运动的过程中可能会产生较大角度的位移,产生术中风险。
发明内容
鉴于上述问题,提出了本申请以便提供一种克服上述问题或者至少部分地解决上述问题的确定机械臂工作位姿的方法和装置。
依据本申请的第一方面,提供了一种确定机械臂工作位姿的方法,所述方法包括:
获取机械臂末端相对于基座的初始位姿;
确定所述机械臂末端符合预设的种植体条件的若干个候选位姿;
基于所述机械臂末端的目标点,计算各所述候选位姿下的目标点到所述初始位姿下的目标点之间的移动距离;
将最短移动距离对应的所述候选位姿,确定为种植体备窝的目标位姿。
依据本申请的第二方面,提供了一种确定机械臂工作位姿的装置,所述装置包括:
初始位姿获取模块,用于获取机械臂末端相对于基座的初始位姿;
候选位姿确定模块,用于确定所述机械臂末端符合预设的种植体条件的 若干个候选位姿;
距离计算模块,用于基于所述机械臂末端的目标点,计算各所述候选位姿下的目标点到所述初始位姿下的目标点之间的移动距离;
目标位姿确定模块,用于将最短移动距离对应的所述候选位姿,确定为种植体备窝的目标位姿。
依据本申请的第三方面,提供了一种机械臂台车,所述机械臂台车按照上述提及到的方法调整机械臂末端为目标位姿后,调节所述机器臂末端到达种植体放置位置进行备窝。
依据本申请的第四方面,提供了一种种植牙机器人系统,所述种植牙机器人系统包括上述提及到的机械臂台车。
本申请方案中,通过获取机械臂末端相对于基座的初始位姿,再确定所述机械臂末端符合预设的种植体条件的若干个候选位姿。接着基于机械臂末端的目标点,计算各候选位姿下的目标点到初始位姿下的目标点之间的移动距离;将最短移动距离对应的所述候选位姿,确定为种植体备窝的目标位姿。由此,在种植手术过程中,充分参考机械臂末端的初始姿态,并可以快速的转换为目标位姿后运动到口腔内。由此可以避免在口腔内发生大角度的姿态变换,提高手术安全性。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。
在附图中:
图1是本申请实施例提供的一种种植牙机器人系统的结构示意图;
图2是本申请实施例提供的一种TCP处结构的放大图;
图3是本申请实施例提供的一种确定机械臂工作位姿的方法的步骤流程图;
图4是本申请实施例提供的另一种确定机械臂工作位姿的方法的步骤流程图;
图5是本申请实施例提供的一种确定机械臂工作位姿的方法示意图;
图6是本申请实施例提供的另一种确定机械臂工作位姿的方法示意图;
图7是本申请实施例提供的一种确定机械臂工作位姿的装置的框图。
附图标注说明:112、机械臂台车;1122、机械臂;113、导航台车;1131、红外定位模组;115、手机;1151、手机固定结构;116、车针;1171、口腔定位器;1172、手机定位器。
下面将参照附图更详细地描述本申请的示例性实施例。虽然附图中显示了本申请的示例性实施例,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本申请,并且能够将本申请的范围完整的传达给本领域的技术人员。
在进行种植牙手术之前,通常会依据患者口腔的CT(Computed Tomography,电子计算机断层扫描)图像提前规划好种植体的位置,并通过手术规划软件在CT图像的对应位置放置一颗虚拟种植体,此虚拟种植体被称为规划种植体,且患者口腔内对应的所述规划种植体所处的位置,确定为种植体放置位置。在进行种植牙手术时,所述种植牙机器人系统需要参考规划种植体,在患者口腔内对种植体放置位置进行备窝,以进行种植牙的种植。
参照图1和图2,示出了本申请实施例提供的一种种植牙机器人系统,所述系统可以包括机械臂台车112、主控台车(图中未显示)和导航台车113,所述机械臂台车112、主控台车以及导航台车113两两形成交互。
所述机械臂台车112包括机械臂1122,所述机械臂1122包括基座、安装于基座的机械臂关节以及用于携带末端执行工具的机械臂末端,机械臂末端也可以称为TCP(Tool Center Position,工具中心点)或TCP末端,其指的是机械臂执行端关节的末端。具体地,所述机械臂末端上可安装手机115(也称为种植手机)作为末端执行工具,手机115上固定有用于种植体备窝的车针116。通过机械臂台车112内部机械臂运动程序控制机械臂末端的运动路径,以使车针116到达种植体放置位置进行备窝。在种植体备窝时,需要车针116轴线与规划种植体(规划种植体指医生在主控台车的手术规划软 件中所规划的虚拟种植体,该虚拟种植体在患者口腔中的位置信息可通过主控台车发送至机械臂台车)的轴线重合,由此,需要建立必要的位姿转换关系,使得所述机械臂台车112能够依据位姿转换关系获取车针116与种植体放置位置之间的相对位置信息,从而能够控制机械臂的运动路径,最后使得车针116能够到达种植体放置位置进行备窝。由此,可以根据不同器件,建立不同的坐标系,从而确定出各位姿变换关系。
对于机械臂台车112而言,车针116的位置可以通过手机注册定位器确定,手机115的位置可以通过在TCP上固定的手机定位器1172确定。针对机械臂台车112建立的坐标系可以包括:基座坐标系、TCP坐标系、手机定位器坐标系以及车针坐标系。在口腔内放置一口腔定位器1171,从而通过口腔定位器1171可以确定种植体放置位置相对于口腔定位的位置,可以建立口腔定位器坐标系和种植体坐标系。所述导航台车113包括红外定位模组1131,通过红外定位模组1131,不仅可以确定其相对于手机定位器1172的位置,还可以确定其相对于口腔定位器1171的位置,因此,建立模组坐标系。
综上,在所述种植牙机器人系统中,基座坐标系到TCP坐标系的位姿变换关系,可直接从机械臂台车112的下位机上读取;手机定位器坐标系到TCP坐标系的位姿变换关系,为出厂标定参数,可直接获得;车针坐标系到手机定位器坐标系的位姿变换,可从下位机获得;模组坐标系到口腔定位器坐标系的位姿变换关系,和模组坐标系到手机定位器坐标系的位姿变换关系,均可以从导航台车113上直接读取;所述主控台车包括上位机,其可以得到口腔的CT图像并在上位机进行展示,口腔定位器坐标系到种植体坐标系的位姿变换关系,可以基于CT图像获取,将上述所得到所有位姿变换关系,确定为位姿变换信息。
以下列举各坐标系的建立的示例。
基座坐标系B的建立如下:以所述基座的底座中心为原点;其Z轴垂直于所述基座,且方向沿重力方向向上;X轴指向机械臂台车112的散热孔所在的散热平面,并垂直于所述散热平面;依据右手定则确定Y轴。
TCP坐标系Tcp的建立如下:以TCP的端面中心为原点,Z轴与末端关节轴线共轴,且方向由该末端关节末端的端面朝外;依据右手定则和末端关节末端的方向标识,确定X轴和Y轴。以图1为例,上述的末端关节为第六节关节。
参照图2所示,手机定位器坐标系R的建立如下:以球1的球心为坐标 系原点,X轴由球1指向球2,Y轴在球1、球2以及球3的球心所在的平面上,Z轴方向垂直于此平面向下。
车针坐标系N的建立如下:以车针116的尖端中心为原点;Z轴与所述车针116的转动轴向平行,且方向为从所述车针116的尖端指向所述尾端;X轴位于与Z轴垂直的平面上,且方向为车针坐标系的原点指向TCP坐标系的原点的原点;依据右手定则确定出Y轴。
模组坐标系W的建立如下:红外定位模组1131包括两个并列安装的摄像头,以两个摄像头的中心连线的中点为原点;Z轴与摄像头外表面的法线平行,且方向为指向所述摄像头的内部;X轴与所述中心连线平行,且方向为指向位于左侧的所述摄像头;依据右手定则确定出Y轴。
参照图1所示,口腔定位器坐标系D的建立如下:原点在球1的球心,Z轴垂直于球1、球2以及球3的球心所在平面指向上,X轴为球心1指向球心2,Y轴的建立遵循右手定则。
种植体坐标系P的建立如下:Z轴与规划种植体的旋拧轴向共轴,且方向为从所述规划种植体的上端面指向下端面;以所述上端面到下端面之间的所述规划种植体的旋拧轴向的中心为原点;依据右手定则建立X轴和Y轴,其中,X轴和Y轴的方向可以随机确定。
上述各位姿变换关系均可以通过矩阵T来表示:T矩阵里的内容如下:
其中,姿态用一个3X3的R旋转矩阵表示,平移用一个3X1的P平移矩阵表示。
表示基座坐标系到TCP坐标系的位姿变换关系;
表示手机定位器坐标系到TCP坐标系的位姿变换关系;
表示车针坐标系到手机定位器坐标系的位姿变换;
表示模组坐标系到口腔定位器坐标系的位姿变换关系;
表示模组坐标系到手机定位器坐标系的位姿变换关系;
表示口腔定位器坐标系到种植体坐标系的位姿变换关系。
所述机械臂台车112能够基于与主控台车、导航台车113的交互关系,获取到位姿变换信息,并基于位姿变换信息,执行下述方法步骤。
参照图3,示出了本申请实施例提供的一种确定机械臂工作位姿的方法的步骤流程图,所述方法可以包括:
步骤301、获取机械臂末端相对于基座的初始位姿。
步骤302、确定所述机械臂末端符合预设的种植体条件的若干个候选位姿。
本申请实施例中,可从机械臂台车112的下位机上读取TCP在所述基座坐标系中的位姿,将此位姿作为初始位姿。为了避免所述TCP在患者口腔内发生大角度的姿态变换,破坏口腔内壁黏膜,从而产生术中风险。由此,可以在驱动TCP运动之前,在口腔外侧直接对TCP进行姿态调整,使得TCP调整位姿之后带动车针116直线移动到达种植体放置位置。因此,可以对种植体条件进行预设,例如,种植体条件可以是车针坐标系和种植体坐标系的Z轴重合,或者是车针坐标系原点和Z轴、与种植体坐标系原点和Z轴同时重合,又或者是车针坐标系和种植体坐标系重合。因此,以所述种植体条件进行筛选,在种植体坐标系的X轴和Y轴处于某一方向时,依据所述位姿变换信息,确定出TCP在基座坐标系中的位姿,将此位姿确定为候选位姿。由此可以将所述规划种植体的旋拧轴向作为旋转轴进行旋转,得到不同方向的X轴和Y轴,从而确定出若干个候选位姿。
步骤303、基于所述机械臂末端的目标点,计算各所述候选位姿下的目标点到所述初始位姿下的目标点之间的移动距离。
步骤304、将最短移动距离对应的所述候选位姿,确定为种植体备窝的目标位姿。
本申请实施例中,所述目标点可以是TCP坐标系的原点,在得到一个候选位姿时,计算出位于初始位姿的TCP坐标系原点,到位于此候选位姿下的TCP坐标系原点之间的移动距离。以此类推,在获取到若干个移动距离后,确定出最短移动距离对应的候选位姿为目标位姿。由于TCP受机械臂台车112调节存在滞后性,在移动距离最短时,将TCP的初始位姿转换为符合种植体条件的候选位姿,在一定程度上提高TCP的调节速度。
在将所述机械臂末端由初始位姿变换为所述目标位姿后,通过所述机械臂1122可以直线移动所述机械臂末端,从而使得车针116到达种植体放置位置进行备窝。
综上,本申请实施例提供的一种确定机械臂工作位姿的方法,所述方法 通过获取机械臂末端相对于基座的初始位姿,再确定所述机械臂末端符合预设的种植体条件的若干个候选位姿。接着基于机械臂末端的目标点,计算各候选位姿下的目标点到初始位姿下的目标点之间的移动距离;将最短移动距离对应的所述候选位姿,确定为种植体备窝的目标位姿。由此,在种植手术过程中,充分参考机械臂末端的初始姿态,并可以快速的转换为目标位姿后运动到口腔内。由此可以避免在口腔内发生大角度的姿态变换,提高手术安全性。
参照图4,示出了本申请实施例提供的另一种确定机械臂工作位姿的方法的步骤流程图,所述方法可以包括:
步骤401、获取机械臂末端相对于基座的初始位姿。
确定所述机械臂末端符合预设的种植体条件的若干个候选位姿,可以包括:步骤402和步骤404。
为了避免所述TCP在患者口腔内发生大角度的姿态变换,破坏口腔内壁黏膜,从而产生术中风险。由此,可以在驱动TCP运动之前,在口腔外侧直接对TCP进行姿态调整,使得TCP调整位姿之后带动车针116直线移动到达种植体放置位置。因此,可以对种植体条件进行预设。例如,为了后续方便数据的计算,所述种植体条件可以为车针坐标系和种植体坐标系重合。
步骤402、将初始种植体坐标系在目标角度范围,以所述规划种植体的旋拧轴向为旋转轴,按预设的角度间隔进行旋转,得到旋转若干次后的各候选种植体坐标系。
本申请实施例中,所述初始种植体坐标系指的是所述机械臂末端处于初始位姿时对应的种植体坐标系。可以将初始种植体坐标系的Z轴,即规划种植体的旋拧轴向为旋转轴,以其X轴为起始,将逆时针作为正方向,通过预设目标角度范围和角度间隔,在此目标角度范围内,依据所述角度间隔进行遍历,确定出若干个候选种植体坐标系,并基于各候选种植体坐标系,确定各候选种植体坐标系对应的各候选位姿。
一种可选的发明实施例,由于初始种植体坐标系的X轴可以绕其旋转轴自由旋转360°,根据旋转的方向不同,其可以将0°~360°或-360°~0°,作为目标角度范围。
另一种可选的发明实施例,参照图5所示,当种植体坐标系的X轴和Y轴指向口腔内部时,手机115会与口腔内壁形成干涉,若在此时调整为符合所述种植体条件的姿态,会产生术中风险。由此,可以基于患者口腔的CT图像,去除能够造成手机115与口腔内壁形成干涉的角度。当规划种植体放置完成后,可以通过CT图像识别出界定口腔内外方向的口腔分割面,其中,所述初始种植体坐标系的Z轴在所述口腔分割面上,可以通过限定X轴在口腔外方向来去除干涉角度。一种示例中,将位于口腔外方向的X轴为起始,绕所述旋转轴顺时针旋转至X轴位于所述口腔分割面上时的角度,将此角度作为分割角度,基于旋转方向可知,所述分割角度为负值。可以将分割角度到分割角度加上180°的角度范围作为目标角度范围。
步骤403、确定所述初始种植体坐标系与各所述候选种植体坐标系之间的种植体位姿变换关系。
步骤404、依据位姿变换信息和所述种植体位姿变换关系,得到所述机械臂末端相对于所述基座的各候选位姿。
本申请实施例中,所述角度间隔可以选用1°。依据所述角度间隔,执行种植体坐标系一次旋转操作后,需要确定出TCP在基座坐标系中的候选位姿。
其中
其中,α表示所述初始种植体坐标系的X轴到当前旋转后的候选种植体坐标系的X轴的旋转角度。其可以根据执行旋转操作的次数和旋转方向确定。
当第一次按照逆时针旋转1°时,所述α为1,当第一次按照顺时针旋转1°时,所述α为-1。对应的,当第二次按照逆时针旋转1°时,所述α为2,当第二次按照顺时针旋转1°时,所述α为-2。以此类推,基于上述计算步骤,可以确定出每次旋转后的TCP在所述基座坐标系中的候选位姿。
步骤405、基于所述机械臂末端的目标点,计算各所述候选位姿下的目标点到所述初始位姿下的目标点之间的移动距离。
步骤406、将最短移动距离对应的所述候选位姿,作为种植体备窝的目标位姿。
本申请实施例中,所述目标点可以是TCP坐标系的原点,在得到一个候选位姿时,计算出位于初始位姿的TCP坐标系原点,到位于此候选位姿下的TCP坐标系原点之间的移动距离。
在执行第一次旋转操作后,计算初始姿态的TCP原点到旋转后的TCP 原点之间的移动距离S
1,其计算公式如下:
以此类推,在执行第n次旋转操作后,计算初始姿态的TCP原点到旋转后的TCP原点之间的移动距离S
n,其计算公式如下:
在获取到上述n个移动距离后,比对此n个所述移动距离的长短,在所述移动距离最短时,确定其对应的候选位姿为目标位姿。将所述TCP由初始位置变换为目标位姿后,再直线移动所述TCP到口腔内方向,使得车针116到达种植体放置位置进行备窝。在提高所述机械臂台车112的调节速度的同时,还可以保证种植手术的安全性。
综上,本申请实施例提供的一种确定机械臂工作位姿的方法,所述方法通过获取机械臂末端相对于基座的初始位姿,再确定所述机械臂末端符合预设的种植体条件的若干个候选位姿。接着基于机械臂末端的目标点,计算各候选位姿下的目标点到初始位姿下的目标点之间的移动距离;将最短移动距离对应的所述候选位姿,确定为种植体备窝的目标位姿。由此,在种植手术过程中,充分参考机械臂末端的初始姿态,并可以快速的转换为目标位姿后运动到口腔内。由此可以避免在口腔内发生大角度的姿态变换,提高手术安全性。
作为另一种可选的发明实施例,参照图6所示,可以采用以车针116位置为主,TCP位置为辅来确定对应的目标角度范围。首先建立所述初始种植体坐标系的原点到所述车针坐标系的原点的方向向量,并将所述向量在所述初始种植体坐标系的X轴与Y轴所构成的XOY平面上的投影作为参考X轴。所述种植体坐标系的XY平面上的投影,作为参考X轴。其中,所述初 始种植体坐标系X轴到所述参考X轴所需要旋转的角度,将此角度确定为第一角度。也就是说,在将车针116调节到符合种植体条件的姿态时,所述车针116需要绕XY平面上旋转所述第一角度。由此,可以在所述第一角度的附近,顺时针和逆时针双向分别扩大一个第二角度的范围,进而确定目标位姿。其中,所述第二角度可以预先设置。例如,本领域技术人员可以通过收集种植牙机器人系统的位姿调节的若干样本数据,基于对所述样本数据的分析来确定第二角度,例如,第二角度γ可以为10°。
首先依据所述位姿变换信息,确定初始种植体坐标系到车针坐标系的位姿变换关系,计算第一角度β,其计算公式如下:
接着,执行上述步骤402-步骤406,确定出TCP的目标位姿。
在将所述机械臂末端由初始位姿变换为所述目标位姿后,通过所述机械臂1122可以直线移动所述机械臂末端,从而使得车针116到达种植体放置位置进行备窝。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述 的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本申请实施例所必须的。
参照图7,示出了本申请实施例提供的一种确定机械臂工作位姿的装置,所述装置可以包括:
初始位姿获取模块701,用于获取机械臂末端相对于基座的初始位姿。
候选位姿确定模块702,用于确定所述机械臂末端符合预设的种植体条件的若干个侯选位姿。
距离计算模块703,用于基于所述机械臂末端的目标点,计算各所述候选位姿下的目标点到所述初始位姿下的目标点之间的移动距离。
目标位姿确定模块704,用于将最短移动距离对应的所述候选位姿,确定为种植体备窝的目标位姿。
一种可选的发明实施例,所述机械臂末端为所述机械臂所夹持车针的尖端;所述种植体条件包括:
所述车针的车针坐标系与规划种植体的种植体坐标系重合,所述车针坐标系的Z轴与所述车针的转动轴向相重合,所述种植体坐标系的Z轴与所述规划种植体的旋拧轴向相重合。
一种可选的发明实施例,所述候选位姿确定模块用于:
将初始种植体坐标系在目标角度范围,以所述规划种植体的旋拧轴向为旋转轴,按预设的角度间隔进行旋转,得到旋转若干次后的各候选种植体坐标系,其中,所述初始种植体坐标系指的是所述机械臂末端处于初始位姿时对应的种植体坐标系;
确定所述机械臂末端在所述车针坐标系和每一所述候选种植体坐标系重合时相对于所述基座的各候选位姿。
一种可选的发明实施例,所述候选位姿确定模块还用于:
确定所述初始种植体坐标系与各所述候选种植体坐标系之间的种植体位姿变换关系。
依据位姿变换信息和所述种植体位姿变换关系,得到所述机械臂末端相对于所述基座的各候选位姿。
一种可选的发明实施例,所述目标角度范围设置为0°~360°或-360°~0°。
一种可选的发明实施例,所述目标角度范围设置为分割角度到分割角度加上180°之间,其中,所述分割角度为所述种植体坐标系的X轴旋转至口 腔分割面上的角度,所述口腔分割面用于界定口腔内外方向。
一种可选的发明实施例,所述装置还包括角度确定模块,所述角度确定模块用于:
建立所述初始种植体坐标系的原点到所述车针坐标系的原点的方向向量,并将所述方向向量在所述初始种植体坐标系的X轴与Y轴所构成平面上的投影作为参考X轴。
将所述初始种植体坐标系的X轴到所述参考X轴所需旋转的角度,作为第一角度。
将所述第一角度减去预设的第二角度到所述第一角度加上所述第二角度之间的角度范围,作为目标角度范围。
一种可选的发明实施例,所述装置还可以包括:
位姿变换模块,用于将所述机械臂末端由所述初始位姿变换为所述目标位姿后,移动所述机械臂末端到达种植体放置位置进行备窝。
综上,本申请实施例提供的一种确定机械臂工作位姿的装置,所述装置通过获取机械臂末端相对于基座的初始位姿,再确定所述机械臂末端符合预设的种植体条件的若干个候选位姿。接着基于机械臂末端的目标点,计算各候选位姿下的目标点到初始位姿下的目标点之间的移动距离;将最短移动距离对应的所述候选位姿,确定为种植体备窝的目标位姿。由此,在种植手术过程中,充分参考机械臂末端的初始姿态,并可以快速的转换为目标位姿后运动到口腔内。由此可以避免在口腔内发生大角度的姿态变换,提高手术安全性。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域技术人员易于想到的是:上述各个实施例的任意组合应用都是可行的,故上述各个实施例之间的任意组合都是本申请的实施方案,但是由于篇幅限制,本说明书在此就不一一详述了。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在上面对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方 法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
一种电子设备,包括:
一个或多个处理器;
存储器;
一个或多个程序,其中所述一个或多个程序被存储在所述存储器中并被配置为由所述一个或多个处理器执行,所述一个或多个程序配置用于执行上述实施例所述的方法。
一种计算机可读存储介质,存储与电子设备结合使用的计算机程序,所述计算机程序可被处理器执行以完成上述实施例所述的方法。
本领域内的技术人员应明白,本申请实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生 一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的一种确定机械臂工作位姿的方法和一种确定机械臂工作位姿的装置,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
Claims (18)
- 一种确定机械臂工作位姿的方法,其中,所述方法应用于种植手术机器人,包括:获取机械臂末端相对于基座的初始位姿;确定所述机械臂末端符合预设的种植体条件的若干个候选位姿;基于所述机械臂末端的目标点,计算各所述候选位姿下的目标点到所述初始位姿下的目标点之间的移动距离;将最短移动距离对应的所述候选位姿,确定为种植体备窝的目标位姿;所述机械臂末端为所述机械臂所夹持车针的尖端;所述种植体条件包括:所述车针的车针坐标系与规划种植体的种植体坐标系重合,所述车针坐标系的Z轴与所述车针的转动轴向相重合,所述种植体坐标系的Z轴与所述规划种植体的旋拧轴向相重合。
- 根据权利要求1所述的确定机械臂工作位姿的方法,其中,所述确定所述机械臂末端符合预设的种植体条件的若干个候选位姿,包括:将初始种植体坐标系在目标角度范围,以所述规划种植体的旋拧轴向为旋转轴,按预设的角度间隔进行旋转,得到旋转若干次后的各候选种植体坐标系,其中,所述初始种植体坐标系是所述机械臂末端处于所述初始位姿时对应的种植体坐标系;确定所述机械臂末端在所述车针坐标系和每一所述候选种植体坐标系重合时相对于所述基座的各候选位姿。
- 根据权利要求2所述的确定机械臂工作位姿的方法,其中,所述确定所述机械臂末端在所述车针坐标系和每一所述候选种植体坐标系重合时相对于所述基座的各候选位姿,包括:确定所述初始种植体坐标系与各所述候选种植体坐标系之间的种植体位姿变换关系;依据位姿变换信息和所述种植体位姿变换关系,得到所述机械臂末端相对于所述基座的各候选位姿。
- 根据权利要求2所述的确定机械臂工作位姿的方法,其中,所述目标角度范围设置为0°~360°或-360°~0°。
- 根据权利要求2所述的确定机械臂工作位姿的方法,其中,所述目标角度范围设置为分割角度到分割角度加上180°,其中,所述分割角度为所述 初始种植体坐标系的X轴旋转至口腔分割面上的角度,所述口腔分割面用于界定口腔内外方向。
- 根据权利要求2所述的确定机械臂工作位姿的方法,其中,所述方法还包括确定所述目标角度范围的步骤:建立所述初始种植体坐标系的原点到所述车针坐标系的原点的方向向量,并将所述方向向量在所述初始种植体坐标系的X轴与Y轴所构成平面上的投影作为参考X轴;将所述初始种植体坐标系的X轴到所述参考X轴所需旋转的角度,作为第一角度;将所述第一角度减去预设的第二角度到所述第一角度加上所述第二角度之间的角度范围,作为目标角度范围。
- 根据权利要求1所述的确定机械臂工作位姿的方法,其中,所述方法还包括:将所述机械臂末端由所述初始位姿变换为所述目标位姿后,移动所述机械臂末端到达种植体放置位置进行备窝。
- 一种确定机械臂工作位姿的装置,其中,所述装置包括:初始位姿获取模块,用于获取机械臂末端相对于基座的初始位姿;候选位姿确定模块,用于确定所述机械臂末端符合预设的种植体条件的若干个侯选位姿;距离计算模块,用于基于所述机械臂末端的目标点,计算各所述候选位姿下的目标点到所述初始位姿下的目标点之间的移动距离;目标位姿确定模块,用于将最短移动距离对应的所述候选位姿,确定为种植体备窝的目标位姿;所述机械臂末端为所述机械臂所夹持车针的尖端;所述种植体条件包括:所述车针的车针坐标系与规划种植体的种植体坐标系重合,所述车针坐标系的Z轴与所述车针的转动轴向相重合,所述种植体坐标系的Z轴与所述规划种植体的旋拧轴向相重合。
- 根据权利要求8所述的确定机械臂工作位姿的装置,其中,所述候选位姿确定模块用于:将初始种植体坐标系在目标角度范围,以所述规划种植体的旋拧轴向为旋转轴,按预设的角度间隔进行旋转,得到旋转若干次后的各候选种植体坐 标系,其中,所述初始种植体坐标系指的是所述机械臂末端处于初始位姿时对应的种植体坐标系;确定所述机械臂末端在所述车针坐标系和每一所述候选种植体坐标系重合时相对于所述基座的各候选位姿。
- 根据权利要求9所述的确定机械臂工作位姿的装置,其中,所述候选位姿确定模块还用于:确定所述初始种植体坐标系与各所述候选种植体坐标系之间的种植体位姿变换关系;依据位姿变换信息和所述种植体位姿变换关系,得到所述机械臂末端相对于所述基座的各候选位姿。
- 根据权利要求9所述的确定机械臂工作位姿的装置,其中,所述目标角度范围设置为0°~360°或-360°~0°。
- 根据权利要求9所述的确定机械臂工作位姿的装置,其中,所述目标角度范围设置为分割角度到分割角度加上180°之间,其中,所述分割角度为所述种植体坐标系的X轴旋转至口腔分割面上的角度,所述口腔分割面用于界定口腔内外方向。
- 根据权利要9所述的确定机械臂工作位姿的装置,其中,所述装置还包括角度确定模块,所述角度确定模块用于:建立所述初始种植体坐标系的原点到所述车针坐标系的原点的方向向量,并将所述方向向量在所述初始种植体坐标系的X轴与Y轴所构成平面上的投影作为参考X轴;将所述初始种植体坐标系的X轴到所述参考X轴所需旋转的角度,作为第一角度;将所述第一角度减去预设的第二角度到所述第一角度加上所述第二角度之间的角度范围,作为目标角度范围。
- 根据权利要求8所述的确定机械臂工作位姿的装置,其中,所述装置还包括:位姿变换模块,用于将所述机械臂末端由所述初始位姿变换为所述目标位姿后,移动所述机械臂末端到达种植体放置位置进行备窝。
- 一种机械臂台车,其中,所述机械臂台车按照权利要求1-7任一所述的方法调整机械臂末端为目标位姿后,调节所述机器臂末端到达种植体放置位置进行备窝。
- 一种种植牙机器人系统,其中,所述种植牙机器人系统包括权利要求15所述的机械臂台车。
- 一种电子设备,包括:一个或多个处理器;存储器;一个或多个程序,其中所述一个或多个程序被存储在所述存储器中并被配置为由所述一个或多个处理器执行,所述一个或多个程序配置用于执行权利要求1-7中任一所述的方法。
- 一种计算机可读存储介质,存储与电子设备结合使用的计算机程序,所述计算机程序可被处理器执行以完成权利要求1-7中任一所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111317934.4A CN113768640B (zh) | 2021-11-09 | 2021-11-09 | 一种确定机械臂工作位姿的方法和装置 |
CN202111317934.4 | 2021-11-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023082990A1 true WO2023082990A1 (zh) | 2023-05-19 |
Family
ID=78956825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/127400 WO2023082990A1 (zh) | 2021-11-09 | 2022-10-25 | 一种确定机械臂工作位姿的方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113768640B (zh) |
WO (1) | WO2023082990A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116747039A (zh) * | 2023-08-17 | 2023-09-15 | 深圳卡尔文科技有限公司 | 一种种植机器人位姿调整方法、系统和存储介质 |
CN117649449A (zh) * | 2024-01-30 | 2024-03-05 | 鲁东大学 | 一种基于计算机视觉的机械臂抓取定位系统 |
CN117860382A (zh) * | 2024-01-02 | 2024-04-12 | 北京长木谷医疗科技股份有限公司 | 基于lstm的导航手术机械臂视觉伺服位姿预测pd控制方法 |
CN118177964A (zh) * | 2024-03-27 | 2024-06-14 | 北京纳通医用机器人科技有限公司 | 一种基于视觉伺服修正的力位混合控制方法和装置 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113768640B (zh) * | 2021-11-09 | 2022-02-08 | 极限人工智能有限公司 | 一种确定机械臂工作位姿的方法和装置 |
CN114434445B (zh) * | 2022-01-26 | 2024-07-23 | 深圳市越疆科技有限公司 | 机械臂安装角度标定方法、装置、安装控制装置和介质 |
CN114505859B (zh) * | 2022-02-23 | 2023-12-01 | 四川锋准机器人科技有限公司 | 一种种植牙手术机器人末端柔顺控制方法 |
CN114564050A (zh) * | 2022-03-03 | 2022-05-31 | 瑞龙诺赋(上海)医疗科技有限公司 | 手术平台定位系统、位姿信息确定方法以及装置 |
CN115153855B (zh) * | 2022-07-29 | 2023-05-05 | 中欧智薇(上海)机器人有限公司 | 一种微型机械臂的定位对准方法、装置及电子设备 |
CN115153782A (zh) * | 2022-08-12 | 2022-10-11 | 哈尔滨理工大学 | 一种超声引导下的穿刺机器人空间注册方法 |
CN115227407B (zh) * | 2022-09-19 | 2023-03-03 | 杭州三坛医疗科技有限公司 | 一种手术机器人控制方法、装置、系统、设备及存储介质 |
CN117290980B (zh) * | 2023-11-27 | 2024-02-02 | 江西格如灵科技股份有限公司 | 一种基于Unity平台的机械臂仿真方法及系统 |
CN117958983B (zh) * | 2024-03-29 | 2024-08-20 | 北京爱康宜诚医疗器材有限公司 | 手术机器人的零点标定方法、装置、存储介质及电子设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190054617A1 (en) * | 2017-08-15 | 2019-02-21 | Utechzone Co., Ltd. | Robotic arm processing method and system based on 3d image |
CN111267095A (zh) * | 2020-01-14 | 2020-06-12 | 大连理工大学 | 一种基于双目视觉的机械臂抓取控制方法 |
CN113400325A (zh) * | 2021-06-23 | 2021-09-17 | 四川锋准机器人科技有限公司 | 一种种植牙机器人导航定位方法 |
CN113768640A (zh) * | 2021-11-09 | 2021-12-10 | 极限人工智能有限公司 | 一种确定机械臂工作位姿的方法和装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3473834B2 (ja) * | 1999-11-29 | 2003-12-08 | 株式会社安川電機 | ロボットの制御装置 |
DE10306793A1 (de) * | 2002-05-21 | 2003-12-04 | Plus Endoprothetik Ag Rotkreuz | Anordnung und Verfahren zur intraoperativen Festlegung der Lage eines Gelenkersatzimplantats |
US8971597B2 (en) * | 2005-05-16 | 2015-03-03 | Intuitive Surgical Operations, Inc. | Efficient vision and kinematic data fusion for robotic surgical instruments and other applications |
WO2013106430A1 (en) * | 2012-01-09 | 2013-07-18 | Old Dominion University Research Foundation | Method and system for automated dental implantation |
CN110559082B (zh) * | 2019-09-10 | 2020-07-31 | 深圳市精锋医疗科技有限公司 | 手术机器人及其机械臂的控制方法、控制装置 |
-
2021
- 2021-11-09 CN CN202111317934.4A patent/CN113768640B/zh active Active
-
2022
- 2022-10-25 WO PCT/CN2022/127400 patent/WO2023082990A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190054617A1 (en) * | 2017-08-15 | 2019-02-21 | Utechzone Co., Ltd. | Robotic arm processing method and system based on 3d image |
CN111267095A (zh) * | 2020-01-14 | 2020-06-12 | 大连理工大学 | 一种基于双目视觉的机械臂抓取控制方法 |
CN113400325A (zh) * | 2021-06-23 | 2021-09-17 | 四川锋准机器人科技有限公司 | 一种种植牙机器人导航定位方法 |
CN113768640A (zh) * | 2021-11-09 | 2021-12-10 | 极限人工智能有限公司 | 一种确定机械臂工作位姿的方法和装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116747039A (zh) * | 2023-08-17 | 2023-09-15 | 深圳卡尔文科技有限公司 | 一种种植机器人位姿调整方法、系统和存储介质 |
CN116747039B (zh) * | 2023-08-17 | 2023-10-31 | 深圳卡尔文科技有限公司 | 一种种植机器人位姿调整方法、系统和存储介质 |
CN117860382A (zh) * | 2024-01-02 | 2024-04-12 | 北京长木谷医疗科技股份有限公司 | 基于lstm的导航手术机械臂视觉伺服位姿预测pd控制方法 |
CN117649449A (zh) * | 2024-01-30 | 2024-03-05 | 鲁东大学 | 一种基于计算机视觉的机械臂抓取定位系统 |
CN117649449B (zh) * | 2024-01-30 | 2024-05-03 | 鲁东大学 | 一种基于计算机视觉的机械臂抓取定位系统 |
CN118177964A (zh) * | 2024-03-27 | 2024-06-14 | 北京纳通医用机器人科技有限公司 | 一种基于视觉伺服修正的力位混合控制方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN113768640A (zh) | 2021-12-10 |
CN113768640B (zh) | 2022-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023082990A1 (zh) | 一种确定机械臂工作位姿的方法和装置 | |
JP6427972B2 (ja) | ロボット、ロボットシステム及び制御装置 | |
JP6591507B2 (ja) | 同時運動学およびハンドアイ較正 | |
CN107160380B (zh) | 一种基于scara机械手的相机标定和坐标变换的方法 | |
WO2020024178A1 (zh) | 一种手眼标定方法、系统及计算机存储介质 | |
WO2017219640A1 (zh) | 一种机械臂的轨迹规划方法及装置 | |
WO2018043525A1 (ja) | ロボットシステム、ロボットシステム制御装置、およびロボットシステム制御方法 | |
US20170277167A1 (en) | Robot system, robot control device, and robot | |
US10377043B2 (en) | Robot control apparatus, robot, and robot system | |
JP2009269110A (ja) | 組立装置 | |
JP2016187846A (ja) | ロボット、ロボット制御装置およびロボットシステム | |
JP6885856B2 (ja) | ロボットシステムおよびキャリブレーション方法 | |
WO2018209592A1 (zh) | 一种机器人的运动控制方法、机器人及控制器 | |
JP6855491B2 (ja) | ロボットシステム、ロボットシステム制御装置、およびロボットシステム制御方法 | |
JP2017100202A (ja) | ロボットシステム、制御装置、制御方法、及びプログラム | |
CN114474058B (zh) | 视觉引导的工业机器人系统标定方法 | |
CN115179297A (zh) | 手术机器人位置姿态控制联合避障关节极限的方法及系统 | |
WO2020010625A1 (zh) | 机器人运动学模型优化方法、系统和存储装置 | |
King et al. | Vision guided robots for automated assembly | |
JP2016203282A (ja) | エンドエフェクタの姿勢変更機構を備えたロボット | |
CN108858162B (zh) | 四轴机械臂的位置确定方法和装置 | |
WO2023013698A1 (ja) | ロボット制御装置、ロボット制御システム、及びロボット制御方法 | |
WO2023013739A1 (ja) | ロボット制御装置、ロボット制御システム、及びロボット制御方法 | |
US20230381969A1 (en) | Calibration Method And Robot System | |
CN118267109A (zh) | 主从异构手术机器人控制方法、装置、设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22891786 Country of ref document: EP Kind code of ref document: A1 |