WO2023082972A1 - 一种基于柔性电极探针的视觉增强方法、装置及系统 - Google Patents

一种基于柔性电极探针的视觉增强方法、装置及系统 Download PDF

Info

Publication number
WO2023082972A1
WO2023082972A1 PCT/CN2022/126867 CN2022126867W WO2023082972A1 WO 2023082972 A1 WO2023082972 A1 WO 2023082972A1 CN 2022126867 W CN2022126867 W CN 2022126867W WO 2023082972 A1 WO2023082972 A1 WO 2023082972A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
candidate position
candidate
code
displayed
Prior art date
Application number
PCT/CN2022/126867
Other languages
English (en)
French (fr)
Inventor
彭雷
谭正
Original Assignee
上海脑虎科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海脑虎科技有限公司 filed Critical 上海脑虎科技有限公司
Publication of WO2023082972A1 publication Critical patent/WO2023082972A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36046Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the eye
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • A61N1/36139Control systems using physiological parameters with automatic adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36146Control systems specified by the stimulation parameters
    • A61N1/3615Intensity

Definitions

  • the invention relates to the field of optic nerve technology, in particular to a vision enhancement method, device and system based on a flexible electrode probe.
  • a visual cortical prosthesis is a proven visual enhancement technology that creates artificial vision by micro-electrically stimulating the visual cortex without the need for visual processing through the eyes or optic nerve. Therefore, the visual prosthesis of the visual cortex can be applied in the future to restore vision loss in blind people whose retina, eye or optic nerve is injured or degenerated, but whose visual cortex is intact.
  • the embodiments of the present application provide a vision enhancement method, device and system based on flexible electrode probes, which can realize the control of artificial vision display and achieve the effect of closed-loop reading and writing.
  • the embodiment of the present application provides a vision enhancement method based on a flexible electrode probe, including:
  • a set of candidate positions is determined from the area to be stimulated; flexible electrode probes are implanted in the area to be stimulated;
  • the EEG signal is a signal obtained by stimulating a neuron corresponding to each candidate position;
  • Target display information is determined according to the EEG signal corresponding to each candidate position and the information to be displayed.
  • the target display information is determined, including:
  • the candidate display information matches the information to be displayed, the candidate display information is determined as the target display information.
  • the flexible electrode probe has multiple channels, and each channel in the multiple channels includes multiple electrode sites;
  • Coding is performed on multiple electrode sites of each channel to obtain a subset of electrode codes; each electrode code in the electrode code subset is in one-to-one correspondence with each electrode site in multiple electrode sites, and the electrode code is The code under the candidate position corresponding to the channel to which the corresponding electrode site belongs.
  • the stimulus processing is performed on each candidate position in the candidate position set, and the EEG signal corresponding to each candidate position is obtained, including:
  • an embodiment of the present application provides a vision enhancement device based on a flexible electrode probe, including:
  • An acquisition module used to acquire information to be displayed
  • the first determination module is used to determine a set of candidate positions from the area to be stimulated based on the information to be displayed; the area to be stimulated is implanted with flexible electrode probes;
  • the stimulation module is used to control the electric stimulation unit to stimulate each candidate position in the candidate position set, and obtain the EEG signal corresponding to each candidate position;
  • the EEG signal is the signal obtained by stimulating the neuron corresponding to each candidate position ;
  • the second determination module is configured to determine target display information according to the EEG signal corresponding to each candidate position and the information to be displayed.
  • the second determination module includes:
  • the first determining submodule is used to determine candidate display information according to the EEG signal corresponding to each candidate position;
  • the second determining submodule is configured to determine the candidate display information as the target display information if the candidate display information matches the information to be displayed.
  • the flexible electrode probe has multiple channels, and each channel in the multiple channels includes multiple electrode sites;
  • the device also includes:
  • an encoding module for, prior to stimulus processing for each candidate position in the set of candidate positions
  • Coding is performed on multiple electrode sites of each channel to obtain a subset of electrode codes; each electrode code in the electrode code subset is in one-to-one correspondence with each electrode site in multiple electrode sites, and the electrode code is The code under the candidate position corresponding to the channel to which the corresponding electrode site belongs.
  • the stimulation module includes:
  • the third determining submodule is used to determine the target electrode code from each electrode code subset to obtain a target electrode code set
  • the processing sub-module is used to apply current to the electrode site corresponding to each target electrode code in the target electrode code set, perform stimulation processing on the candidate position corresponding to each target electrode code, and obtain the EEG signal corresponding to each candidate position.
  • the embodiment of the present application improves a vision enhancement system based on a flexible electrode probe, including:
  • a processor configured to obtain information to be displayed
  • a set of candidate positions is determined from the area to be stimulated; flexible electrode probes are implanted in the area to be stimulated;
  • the EEG signal is a signal obtained by stimulating a neuron corresponding to each candidate position;
  • An electrical stimulation unit configured to stimulate each candidate position in the candidate position set, so that neurons corresponding to each candidate position are stimulated to generate EEG signals
  • the EEG signal collection unit is used to collect the EEG signal corresponding to each candidate position and send it to the processor.
  • the embodiment of the present application also provides an electronic device, the electronic device includes a processor and a memory, at least one instruction, at least one program, code set or instruction set are stored in the memory, at least one instruction, at least one program, The code set or instruction set is loaded and executed by the processor to realize the above flexible electrode probe-based vision enhancement method.
  • the embodiment of the present application also provides a computer-readable storage medium, the storage medium stores at least one instruction, at least one program, code set or instruction set, at least one instruction, at least one program, code set or instruction set The set is loaded and executed by the processor to realize the above-mentioned flexible electrode probe-based vision enhancement method.
  • a vision enhancement method, device, and system based on a flexible electrode probe disclosed in an embodiment of the present application wherein the vision enhancement method includes acquiring information to be displayed, and determining a set of candidate positions from the area to be stimulated based on the information to be displayed, The area to be stimulated is implanted with flexible electrode probes, and the electrical stimulation unit is controlled to stimulate each candidate position in the candidate position set, and obtain the corresponding EEG signal of each candidate position; the EEG signal is to stimulate each candidate position
  • the signal obtained by the corresponding neuron determines the target display information according to the EEG signal corresponding to each candidate position and the information to be displayed.
  • the control of the artificial visual display can be realized, and the effect of closed-loop reading and writing can be achieved.
  • FIG. 1 is a schematic diagram of an application environment provided by an embodiment of the present application
  • Fig. 2 is a schematic flow chart of a vision enhancement method based on a flexible electrode probe provided in an embodiment of the present application
  • Fig. 3 is a schematic diagram of a flexible electrode probe provided in an embodiment of the present application.
  • Fig. 4 is a schematic diagram of information to be displayed provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a vision enhancement device based on a flexible electrode probe provided in an embodiment of the present application
  • Fig. 6 is a schematic structural diagram of a vision enhancement system based on a flexible electrode probe provided in an embodiment of the present application.
  • the "embodiment” referred to herein refers to a specific feature, structure or characteristic that may be included in at least one implementation of the present application.
  • the orientations or positional relationships indicated by the terms “upper”, “lower”, “top”, and “bottom” are based on the orientations or positional relationships shown in the drawings, and only It is for the convenience of describing the application and simplifying the description, rather than indicating or implying that the device/system or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and thus should not be construed as limiting the application.
  • first”, “second” and “third” are used for descriptive purposes only, and should not be understood as indicating or implying relative importance or implicitly specifying the number of technical features indicated. Thus, features defined as “first”, “second” and “third” may expressly or implicitly include one or more of these features. Also, the terms “first”, “second”, and “third”, etc. are used to distinguish similar items, and are not necessarily used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application described herein can be practiced in sequences other than those illustrated or described herein. Furthermore, the terms “comprising” and “having”, as well as any variations thereof, are intended to cover a non-exclusive inclusion.
  • FIG. 1 is a schematic diagram of an application environment provided by an embodiment of the present application, including a processor 101 , an electrical stimulation unit 103 and an EEG signal acquisition unit 105 .
  • the processor 101 can be connected with the electric stimulation unit 103 through a wired link, or can be connected through a wireless link, and the processor 101 can be connected with the EEG signal acquisition unit 105 through a wired link, or can be connected through a wireless link.
  • the processor can acquire the information to be displayed, and based on the information to be displayed, determine a set of candidate positions from the area to be stimulated, the area to be stimulated is implanted with flexible electrode probes, and control the electrical stimulation unit 103 to control each candidate position set in the set of candidate positions.
  • the position is stimulated and processed, and the EEG signal corresponding to each candidate position is obtained based on the EEG signal acquisition unit 105; the EEG signal is the signal obtained by stimulating the neuron corresponding to each candidate position, and according to the EEG signal corresponding to each candidate position Signal and information to be displayed, determine the target display information.
  • Figure 2 is a schematic flow chart of a vision enhancement method based on a flexible electrode probe provided in an embodiment of the application.
  • the method operation steps shown in the example or flow chart, but based on routine or non-creative work may include more or less operation steps.
  • the sequence of steps listed in the embodiments is only one of many execution sequences, and does not represent a unique execution sequence. In actual execution, it can be executed in sequence or in parallel according to the methods shown in the embodiments or drawings (for example, parallel processing processor or multi-threaded environment).
  • the method includes:
  • the processor may acquire the information to be displayed, and the information to be displayed may be triggered by the user based on the display interface of the processor, or may be input based on an input device adapted to the processing.
  • the information to be displayed may be numbers, letters, or other information such as text, which is not specifically limited in this specification.
  • the information to be displayed acquired by the processor may be a letter "A".
  • S203 Based on the information to be displayed, determine a set of candidate positions from the area to be stimulated; the area to be stimulated is implanted with flexible electrode probes.
  • the subject's cerebral cortex may have multiple areas, such as motor area M1, visual area V1, auditory area H1 and so on.
  • a flexible electrode probe can be implanted in the visual area of the cerebral cortex of the subject, that is, the area to be stimulated.
  • an 81-channel flexible electrode probe can be implanted in the visual area V1.
  • Fig. 3 is a schematic diagram of a flexible electrode probe provided by an embodiment of the present application.
  • the flexible electrode probe may include multiple channels, and each channel may include multiple electrode sites.
  • the channel 300 may include a first electrode site 301 and a second electrode site 302 . Since the subject's cerebral cortex is curved, when the flexible electrode probe is implanted into the subject's cerebral cortex, from the perspective of the subject's head looking down, each of the multiple channels corresponds to a different area of the visual cortex , but the coordinates of multiple electrode sites on the same channel in the corresponding coordinate system of the cerebral cortex are consistent, that is, multiple electrode sites on the same channel correspond to the same area of the visual cortex.
  • the corresponding position of the first electrode site 301 in the space coordinate system is (2,1,0)
  • the corresponding position of the second electrode site 302 in the space coordinate system is (2,1,-1)
  • the positions of the two electrode sites in the corresponding coordinate system of the cerebral cortex are both (2,1).
  • the multiple electrode sites on the same channel are not at the same height, that is, the positions in the electrode site array are different.
  • the first electrode site 301 corresponds to the electrode site array.
  • the position of the second electrode site 302 is (6,2), and the corresponding position of the second electrode site 302 in the electrode site array is (11,2).
  • multiple electrode sites of each channel can be encoded to obtain a subset of electrode codes, wherein each electrode code in the electrode code subset is related to each electrode in the multiple electrode sites There is a one-to-one correspondence between the sites, and the electrode code is the code under the candidate position corresponding to the channel to which the corresponding electrode site belongs.
  • the code m corresponding to each electrode site has a one-to-one correspondence with the position of the corresponding electrode site in the electrode array, that is, f(m) ⁇ (x, y).
  • the processor may determine a set of candidate positions from the area to be stimulated based on the information to be displayed, that is, determine the information to be displayed from multiple positions corresponding to the visual cortex.
  • A" corresponds to the set of candidate positions.
  • a flexible electrode probe with 1024 channels can be implanted in the motor area M1, and the subjects are trained and related EEG signals are recorded. That is to record the EEG signal when the subject's idea performs a certain function, and decode the idea in the processor to obtain the subject's movement intention, and then translate the intention into computer instructions through the processor, using Stimulate signals at control points to realize control of artificial visual display content. It can also be used as information to be displayed.
  • S205 Control the electrical stimulation unit to perform stimulation processing on each candidate position in the candidate position set, and obtain an EEG signal corresponding to each candidate position; the EEG signal is a signal obtained by stimulating a neuron corresponding to each candidate position.
  • the processor can determine the target electrode code from each electrode code sub-set to obtain the target electrode code set, and then apply current to the electrode site corresponding to each target electrode code in the target electrode code set.
  • Candidate positions corresponding to target electrode codes are stimulated and processed, and EEG signals corresponding to each candidate position are obtained.
  • the processor may determine the channel corresponding to each candidate position in the candidate position set, and select the code corresponding to at least one electrode site from the channel corresponding to each candidate position as the target electrode code, and obtain The target electrode code set, and then the electric stimulation unit can be used to stimulate the electrode sites corresponding to each target electrode code in the target electrode code set, so as to stimulate the neurons corresponding to the candidate positions, so that the characteristics of the subject's visual space The location produces bright/dark artificial light sensations, and EEG signals are obtained.
  • FIG. 4 is a schematic diagram of information to be displayed provided by the embodiment of the present application, in the figure, the corresponding positions of the information to be displayed in the display array are (1,5), (2,4), (3,4), (4,3), (5,3), (6,2), (7,2), (8,1), (9,1), (2,6), (3 ,6), (4,7), (5,7), (6,8), (7,8), (8,9), (9,9), (5,4), (5,5 ), (5,6), the processor can determine the target electrode code based on the above position, and obtain the target electrode code set, that is, assuming that the display array is consistent with the electrode site array, determine the target electrode code, and obtain the target electrode code set.
  • the processor can obtain the target electrode code set, and then can decode the target electrode code set to obtain the corresponding electrode sites that need to be stimulated.
  • S207 Determine target display information according to the EEG signal corresponding to each candidate position and the information to be displayed.
  • the processor can determine the candidate display information according to the EEG signal corresponding to each candidate position, and then can determine whether the candidate display information matches the information to be displayed. If it is determined that the candidate display information matches the information to be displayed, it can The candidate display information is determined as the target display information.
  • the target electrode code can be re-determined from each electrode code subset to obtain a new target electrode code set, and then the corresponding candidate for each target electrode code can be based on the electrical stimulation unit.
  • the location is stimulated and processed, and the EEG signal corresponding to each candidate location is obtained based on the EEG signal acquisition unit, and then the target display information can be determined according to the EEG signal corresponding to each candidate location and the information to be displayed.
  • the control of the artificial visual display can be realized, and the effect of closed-loop reading and writing can be achieved.
  • FIG. 5 is a schematic structural diagram of a vision enhancement device based on a flexible electrode probe provided in an embodiment of the application. As shown in Figure 5, the Devices can include:
  • the obtaining module 501 may be used to obtain information to be displayed;
  • the first determination module 503 can be used to determine a set of candidate positions from the area to be stimulated based on the information to be displayed; the area to be stimulated is implanted with flexible electrode probes;
  • the stimulation module 505 can be used to control the electrical stimulation unit to perform stimulation processing on each candidate position in the candidate position set, and obtain the EEG signal corresponding to each candidate position; the EEG signal is obtained by stimulating the neuron corresponding to each candidate position Signal;
  • the second determination module 507 may be configured to determine target display information according to the EEG signal corresponding to each candidate position and the information to be displayed.
  • the second determination module 507 may include:
  • the first determining submodule is used to determine candidate display information according to the EEG signal corresponding to each candidate position;
  • the second determining submodule is configured to determine the candidate display information as the target display information if the candidate display information matches the information to be displayed.
  • the flexible electrode probe has multiple channels, and each channel in the multiple channels includes multiple electrode sites;
  • Devices can also include:
  • an encoding module for, prior to stimulus processing for each candidate position in the set of candidate positions
  • Coding is performed on multiple electrode sites of each channel to obtain a subset of electrode codes; each electrode code in the electrode code subset is in one-to-one correspondence with each electrode site in multiple electrode sites, and the electrode code is The code under the candidate position corresponding to the channel to which the corresponding electrode site belongs.
  • the stimulation module 505 may include:
  • the third determining submodule is used to determine the target electrode code from each electrode code subset to obtain a target electrode code set
  • the processing sub-module is used to apply current to the electrode site corresponding to each target electrode code in the target electrode code set, perform stimulation processing on the candidate position corresponding to each target electrode code, and obtain the EEG signal corresponding to each candidate position.
  • Using the vision enhancement device based on the flexible electrode probe provided by the embodiment of the present application can realize the control of the artificial vision display, and can achieve the effect of closed-loop reading and writing.
  • FIG. 6 is a schematic structural diagram of a vision enhancement system based on a flexible electrode probe provided in an embodiment of the application.
  • the Devices can include:
  • the processor 601 is configured to acquire information to be displayed
  • a set of candidate positions is determined from the area to be stimulated; flexible electrode probes are implanted in the area to be stimulated;
  • the EEG signal is a signal obtained by stimulating a neuron corresponding to each candidate position;
  • the electrical stimulation unit 603 is used to stimulate each candidate position in the candidate position set, so that the neurons corresponding to each candidate position are stimulated to generate EEG signals;
  • the EEG signal collection unit 605 is used to collect the EEG signal corresponding to each candidate position and send it to the processor.
  • Using the vision enhancement device based on the flexible electrode probe provided by the embodiment of the present application can realize the control of the artificial vision display, and can achieve the effect of closed-loop reading and writing.
  • the embodiment of the present application also provides an electronic device, the electronic device can be set in the server to save at least one instruction and at least one program related to the vision enhancement method based on the flexible electrode probe in the method embodiment , a code set or an instruction set, the at least one instruction, the at least one section of program, the code set or the instruction set are loaded and executed by the memory to implement the above flexible electrode probe-based vision enhancement method.
  • the embodiment of the present application also provides a storage medium, which can be set in the server to save at least one instruction, at least one program, A code set or an instruction set, the at least one instruction, the at least one program, the code set or the instruction set are loaded and executed by the processor to implement the above flexible electrode probe-based vision enhancement method.
  • the foregoing storage medium may be located in at least one network server among multiple network servers in the computer network.
  • the above-mentioned storage medium may include, but is not limited to: U disk, read-only memory (ROM, Read-only Memory), mobile hard disk, magnetic disk or optical disk, etc., which can store program codes. medium.
  • the method in the application includes acquiring information to be displayed, and based on the information to be displayed, from the area to be stimulated
  • the set of candidate positions is determined, the area to be stimulated is implanted with flexible electrode probes, the electrical stimulation unit is controlled to stimulate each candidate position in the set of candidate positions, and the EEG signal corresponding to each candidate position is obtained; the EEG signal For the signals obtained by stimulating the neurons corresponding to each candidate position, the target display information is determined according to the EEG signal corresponding to each candidate position and the information to be displayed.
  • the control of the artificial visual display can be realized, and the effect of closed-loop reading and writing can be achieved.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral body; it can be a mechanical
  • a connection can also be an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal connection between two components or an interaction relationship between two components.
  • each embodiment in this specification is described in a progressive manner, the same and similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments.
  • the description is relatively simple, and for relevant parts, please refer to the description of the method embodiments.

Abstract

本申请实施例所公开的一种基于柔性电极探针的视觉增强方法、装置及系统,其中,视觉增强方法包括获取待显示信息,并基于待显示信息,从待刺激区域中确定候选位置集合,该待刺激区域植入有柔性电极探针,控制电刺激单元对候选位置集合中的每个候选位置进行刺激处理,获取每个候选位置对应的脑电信号;脑电信号为刺激每个候选位置对应的神经元得到的信号,根据每个候选位置对应的脑电信号和待显示信息,确定目标显示信息。基于本申请实施例可以实现对人工视觉显示内的调控,可以达到闭环读取和写入的效果。

Description

一种基于柔性电极探针的视觉增强方法、装置及系统 技术领域
本发明涉及视觉神经技术领域,尤其涉及一种基于柔性电极探针的视觉增强方法、装置及系统。
背景技术
对于视力障碍者而言,有效的视觉功能可以极大地提高他们在社会活动中的独立性和生活质量。视皮层视觉假体是一种行之有效的视觉增强技术,通过微电刺激视觉皮层创造人工视觉,无需通过眼睛或视神经进行视觉处理。因此,视皮层视觉假体在未来可以应用于视网膜、眼睛或视觉神经受伤或退化,但视觉皮质完好无损的盲人的视力损失恢复。
发明内容
本申请实施例提供一种基于柔性电极探针的视觉增强方法、装置及系统,可以实现对人工视觉显示内的调控,可以达到闭环读取和写入的效果。
本申请实施例提供了一种基于柔性电极探针的视觉增强方法,包括:
获取待显示信息;
基于待显示信息,从待刺激区域中确定候选位置集合;待刺激区域植入有柔性电极探针;
控制电刺激单元对候选位置集合中的每个候选位置进行刺激处理,获取每个候选位置对应的脑电信号;脑电信号为刺激每个候选位置对应的神经元得到的信号;
根据每个候选位置对应的脑电信号和待显示信息,确定目标显示信息。
进一步地,根据每个候选位置对应的脑电信号和待显示信息,确定目标显示信息,包括:
根据每个候选位置对应的脑电信号,确定候选显示信息;
若候选显示信息与待显示信息匹配,将候选显示信息确定为目标显示信息。
进一步地,柔性电极探针具有多个通道,多个通道中每个通道包括多个电极位点;
对候选位置集合中的每个候选位置进行刺激处理之前,还包括:
对每个通道的多个电极位点进行编码处理,得到电极编码子集合;电极编码子集合中的每个电极编码与多个电极位点中的每个电极位点一一对应,电极编码是对应的电极位点所属通道对应的候选位置下的编码。
进一步地,对候选位置集合中的每个候选位置进行刺激处理,获取每个候选位置对应的脑电信号,包括:
从每个电极编码子集合中确定目标电极编码,得到目标电极编码集合;
对目标电极编码集合中每个目标电极编码对应的电极位点施加电流,对每个目标电极编码对应的候选位置进行刺激处理,获取每个候选位置对应的脑电信号。
相应地,本申请实施例提供了一种基于柔性电极探针的视觉增强装置,包括:
获取模块,用于获取待显示信息;
第一确定模块,用于基于待显示信息,从待刺激区域中确定候选位置集合;待刺激区域植入有柔性电极探针;
刺激模块,用于控制电刺激单元对候选位置集合中的每个候选位置进行刺激处理,获取每个候选位置对应的脑电信号;脑电信号为刺激每个候选位置对应的神经元得到的信号;
第二确定模块,用于根据每个候选位置对应的脑电信号和待显示信息,确定目标显示信息。
进一步地,第二确定模块,包括:
第一确定子模块,用于根据每个候选位置对应的脑电信号,确定候选显示信息;
第二确定子模块,用于若候选显示信息与待显示信息匹配,将候选显示信息确定为目标显示信息。
进一步地,柔性电极探针具有多个通道,多个通道中每个通道包括多个电极位点;
装置还包括:
编码模块,用于在对候选位置集合中的每个候选位置进行刺激处理之前,
对每个通道的多个电极位点进行编码处理,得到电极编码子集合;电极编码子集合中的每个电极编码与多个电极位点中的每个电极位点一一对应,电极编码是对应的电极位点所属通道对应的候选位置下的编码。
进一步地,刺激模块,包括:
第三确定子模块,用于从每个电极编码子集合中确定目标电极编码,得到目标电极编码集合;
处理子模块,用于对目标电极编码集合中每个目标电极编码对应的电极位点施加电流,对每个目标电极编码对应的候选位置进行刺激处理,获取每个候选位置对应的脑电信号。
相应地,本申请实施例提高了一种基于柔性电极探针的视觉增强系统,包括:
处理器,用于获取待显示信息;
基于待显示信息,从待刺激区域中确定候选位置集合;待刺激区域植入有柔性电极探针;
控制电刺激单元对候选位置集合中的每个候选位置进行刺激处理,获取每个候选位置对应的脑电信号;脑电信号为刺激每个候选位置对应的神经元得到的信号;
根据每个候选位置对应的脑电信号和待显示信息,确定目标显示信息;
电刺激单元,用于对候选位置集合中的每个候选位置进行刺激处理,以使得每个候选位置对应的神经元被刺激生成脑电信号;
脑电信号采集单元,用于采集每个候选位置对应的脑电信号,并发送至处理器。
相应地,本申请实施例还提供了一种电子设备,该电子设备包括处理器和存储器,存储器中存储有至少一条指令、至少一段程序、代码集或指 令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现上述基于柔性电极探针的视觉增强方法。
相应地,本申请实施例还提供了一种计算机可读存储介质,该存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现上述基于柔性电极探针的视觉增强方法。
本申请实施例具有如下有益效果:
本申请实施例所公开的一种基于柔性电极探针的视觉增强方法、装置及系统,其中,视觉增强方法包括获取待显示信息,并基于待显示信息,从待刺激区域中确定候选位置集合,该待刺激区域植入有柔性电极探针,控制电刺激单元对候选位置集合中的每个候选位置进行刺激处理,获取每个候选位置对应的脑电信号;脑电信号为刺激每个候选位置对应的神经元得到的信号,根据每个候选位置对应的脑电信号和待显示信息,确定目标显示信息。基于本申请实施例可以实现对人工视觉显示内的调控,可以达到闭环读取和写入的效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案和优点,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1是本申请实施例所提供的一种应用环境的示意图;
图2是本申请实施例提供的一种基于柔性电极探针的视觉增强方法的流程示意图;
图3是本申请实施例提供的一种柔性电极探针的示意图;
图4是本申请实施例提供的一种待显示信息的示意图;
图5是本申请实施例提供的一种基于柔性电极探针的视觉增强装置的结构示意图;
图6是本申请实施例提供的一种基于柔性电极探针的视觉增强系统的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。显然,所描述的实施例仅仅是本申请一个实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
此处所称的“实施例”是指可包含于本申请至少一个实现方式中的特定特征、结构或特性。在本申请实施例的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置/系统或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。术语“第一”、“第二”和“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”和“第三”的特征可以明示或者隐含的包括一个或者更多个该特征。而且,术语“第一”、“第二”和“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例能够以除了在这里图示或描述以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
请参阅图1,其所示为本申请实施例所提供的一种应用环境的示意图,包括处理器101、电刺激单元103和脑电信号采集单元105。其中,处理器101可以与电刺激单元103通过有线链路连接,也可以通过无线链路连接,处理器101可以与脑电信号采集单元105通过有线链路连接,也可以通过无线链路连接。处理器可以获取待显示信息,并基于待显示信息,从待刺激区域中确定候选位置集合,该待刺激区域植入有柔性电极探针,控制电 刺激单元103对候选位置集合中的每个候选位置进行刺激处理,以及基于脑电信号采集单元105获取每个候选位置对应的脑电信号;脑电信号为刺激每个候选位置对应的神经元得到的信号,根据每个候选位置对应的脑电信号和待显示信息,确定目标显示信息。
下面介绍本申请一种基于柔性电极探针的视觉增强方法的具体实施例,图2是本申请实施例提供的一种基于柔性电极探针的视觉增强方法的流程示意图,本说明书提供了如实施例或流程图所示的方法操作步骤,但基于常规或者无创造性的劳动可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多执行顺序中的一种方式,不代表唯一的执行顺序,在实际执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境)。具体的如图2所示,该方法包括:
S201:获取待显示信息。
本申请实施例中,处理器可以获取待显示信息,该待显示信息可以是用户基于处理器的显示界面触发的,也可以是基于与处理适配的输入设备输入的。在一种可选的实施方式中,待显示信息可以是数字,也可以是字母,还可以是文字等其他信息,本说明书不作具体限定。
在一种可选的实施方式中,处理器获取的待显示信息可以是字母“A”。
S203:基于待显示信息,从待刺激区域中确定候选位置集合;待刺激区域植入有柔性电极探针。
本申请实施例中,受试者的大脑皮层可以具有多个区域,例如运动区M1,视觉区V1、听觉区H1等。本申请实施例中,可以在受试者的大脑皮层的视觉区即待刺激区域植入柔性电极探针,可选地,可以在视觉区V1植入81通道的柔性电极探针。
图3是本申请实施例提供的一种柔性电极探针的示意图,该柔性电极探针可以包括多个通道,每个通道可以包括多个电极位点。如3所示,通道300可以包括第一电极位点301和第二电极位点302。由于受试者的大脑 皮层是曲面的,在将柔性电极探针植入受试者的大脑皮层,从受试者头部的俯视角度看,多个通道中每个通道对应视觉皮层的不同区域,但同一通道上的多个电极位点在大脑皮层对应的坐标系中的坐标是一致的,即同一通道上的多个电极位点对应视觉皮层的同一区域。假设,第一电极位点301在空间坐标系中对应的位置为(2,1,0),第二电极位点302在空间坐标系中对应的位置为(2,1,-1),但这两个电极位点在大脑皮层对应的坐标系中的位置均为(2,1)。但从受试者头部的正视角度看,同一通道上的多个电极位点不在同一高度,即在电极位点阵列中的位置不同,假设,第一电极位点301在电极位点阵列对应的位置为(6,2),第二电极位点302在电极位点阵列对应的位置为(11,2)。
本申请实施例中,可以对每个通道的多个电极位点进行编码处理,得到电极编码子集合,其中,电极编码子集合中的每个电极编码与多个电极位点中的每个电极位点一一对应,电极编码是对应的电极位点所属通道对应的候选位置下的编码。每个电极位点对应的编码m与对应的电极位点在电极阵列中的位置具有一一对应关系,即f(m)→(x,y)。例如,可以对第一电极位点301和第二电极位点进行编码,得到第一电极位点对应的编码m=1,第二电极位点对应的编码为m=2,即编码1对应位置(6,2),编码2对应位置(11,2)。
在一种可选的实施方式中,在获取待显示信息之后,处理器可以基于待显示信息,从待刺激区域中确定候选位置集合,即从视觉皮层对应的多个位置中确定待显示信息“A”对应的候选位置集合。
本申请实施例中,可以在运动区M1植入1024通道的柔性电极探针,并对受试者进行训练,并记录相关脑电信号。也即是记录受试者意念执行某项功能时的脑电信号,并在处理器中对该意念进行解码,获得受试者的运动意图,然后通过处理器将意图转译成计算机指令,用于调控点刺激信号,实现对人工视觉显示内容的调控。也可以将其作为待显示信息。
S205:控制电刺激单元对候选位置集合中的每个候选位置进行刺激处理,获取每个候选位置对应的脑电信号;脑电信号为刺激每个候选位置对 应的神经元得到的信号。
本申请实施例中,处理器可以从每个电极编码子集合中确定目标电极编码,得到目标电极编码集合,进而对目标电极编码集合中每个目标电极编码对应的电极位点施加电流,对每个目标电极编码对应的候选位置进行刺激处理,获取每个候选位置对应的脑电信号。
在一种具体的实施方式中,处理器可以确定候选位置集合中每个候选位置对应的通道,并从每个候选位置对应的通道中选取至少一个电极位点对应的编码作为目标电极编码,得到目标电极编码集合,进而可以采用电刺激单元对目标电极编码集合中每个目标电极编码对应的电极位点进行刺激处理,以刺激候选位置对应的神经元,使得在受试者的视觉空间的特点位置产生亮/暗的人工光感觉,得到脑电信号。例如,当在视觉区V1植入柔性电极探针后,可以在与处理器适配的显示设备上显示待显示信息,并确定待显示信息对应的显示阵列,如上文中的描述的待显示信息“A”对应的显示阵列,图4是本申请实施例提供的一种待显示信息的示意图,图中,待显示信息在显示阵列中对应的位置为(1,5)、(2,4)、(3,4)、(4,3)、(5,3)、(6,2)、(7,2)、(8,1)、(9,1)、(2,6)、(3,6)、(4,7)、(5,7)、(6,8)、(7,8)、(8,9)、(9,9)、(5,4)、(5,5)、(5,6),处理器可以基于上述位置确定目标电极编码,得到目标电极编码集合,即假设显示阵列与电极位点阵列一致,确定目标电极编码,得到目标电极编码集合。
在一种具体的实施方式中,处理器可以获取目标电极编码集合,进而可以对目标电极编码集合进行解码处理,得到需要刺激的对应的电极位点。
S207:根据每个候选位置对应的脑电信号和待显示信息,确定目标显示信息。
本申请实施例中,处理器可以根据每个候选位置对应的脑电信号,确定候选显示信息,进而可以判断候选显示信息与待显示信息是否匹配,若判定候选显示信息与待显示信息匹配,可以将候选显示信息确定为目标显示信息。
若判定候选显示信息与待显示信息不匹配,可以从每个电极编码子集 合中重新确定目标电极编码,得到新的目标电极编码集合,进而可以基于电刺激单元对每个目标电极编码对应的候选位置进行刺激处理,并基于脑电信号采集单元获取每个候选位置对应的脑电信号,进而可以根据每个候选位置对应的脑电信号和待显示信息,确定目标显示信息。
采用本申请实施例所提供的基于柔性电极探针的视觉增强方法,可以实现对人工视觉显示内的调控,可以达到闭环读取和写入的效果。
本申请实施例还提供的一种基于柔性电极探针的视觉增强装置,图5是本申请实施例提供的一种基于柔性电极探针的视觉增强装置的结构示意图,如图5所示,该装置可以包括:
获取模块501可以用于获取待显示信息;
第一确定模块503可以用于基于待显示信息,从待刺激区域中确定候选位置集合;待刺激区域植入有柔性电极探针;
刺激模块505可以用于控制电刺激单元对候选位置集合中的每个候选位置进行刺激处理,获取每个候选位置对应的脑电信号;脑电信号为刺激每个候选位置对应的神经元得到的信号;
第二确定模块507可以用于根据每个候选位置对应的脑电信号和待显示信息,确定目标显示信息。
本申请实施例中,第二确定模块507可以包括:
第一确定子模块,用于根据每个候选位置对应的脑电信号,确定候选显示信息;
第二确定子模块,用于若候选显示信息与待显示信息匹配,将候选显示信息确定为目标显示信息。
本申请实施例中,柔性电极探针具有多个通道,多个通道中每个通道包括多个电极位点;
装置还可以包括:
编码模块,用于在对候选位置集合中的每个候选位置进行刺激处理之前,
对每个通道的多个电极位点进行编码处理,得到电极编码子集合;电极编码子集合中的每个电极编码与多个电极位点中的每个电极位点一一对应,电极编码是对应的电极位点所属通道对应的候选位置下的编码。
本申请实施例中,刺激模块505可以包括:
第三确定子模块,用于从每个电极编码子集合中确定目标电极编码,得到目标电极编码集合;
处理子模块,用于对目标电极编码集合中每个目标电极编码对应的电极位点施加电流,对每个目标电极编码对应的候选位置进行刺激处理,获取每个候选位置对应的脑电信号。
本申请实施例中的装置与方法实施例基于同样的申请构思。
采用本申请实施例提供的基于柔性电极探针的视觉增强装置,可以实现对人工视觉显示内的调控,可以达到闭环读取和写入的效果。
本申请实施例还提供的一种基于柔性电极探针的视觉增强系统,图6是本申请实施例提供的一种基于柔性电极探针的视觉增强系统的结构示意图,如图6所示,该装置可以包括:
处理器601用于获取待显示信息;
基于待显示信息,从待刺激区域中确定候选位置集合;待刺激区域植入有柔性电极探针;
控制电刺激单元对候选位置集合中的每个候选位置进行刺激处理,获取每个候选位置对应的脑电信号;脑电信号为刺激每个候选位置对应的神经元得到的信号;
根据每个候选位置对应的脑电信号和待显示信息,确定目标显示信息;
电刺激单元603用于对候选位置集合中的每个候选位置进行刺激处理,以使得每个候选位置对应的神经元被刺激生成脑电信号;
脑电信号采集单元605用于采集每个候选位置对应的脑电信号,并发送至处理器。
本申请实施例中的系统与方法实施例基于同样的申请构思。
采用本申请实施例提供的基于柔性电极探针的视觉增强装置,可以实 现对人工视觉显示内的调控,可以达到闭环读取和写入的效果。
本申请实施例还提供的一种电子设备,电子设备可设置于服务器之中以保存用于实现方法实施例中的一种基于柔性电极探针的视觉增强方法相关的至少一条指令、至少一段程序、代码集或指令集,该至少一条指令、该至少一段程序、该代码集或指令集由该存储器加载并执行以实现上述的基于柔性电极探针的视觉增强方法。
本申请实施例还提供的一种存储介质,存储介质可设置于服务器之中以保存用于实现方法实施例中一种基于柔性电极探针的视觉增强方法相关的至少一条指令、至少一段程序、代码集或指令集,该至少一条指令、该至少一段程序、该代码集或指令集由该处理器加载并执行以实现上述基于柔性电极探针的视觉增强方法。
可选的,在本实施例中,上述存储介质可以位于计算机网络的多个网络服务器中的至少一个网络服务器。可选地,在本实施例中,上述存储介质可以包括但不限于包括:U盘、只读存储器(ROM,Read-only Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
由上述本申请提供的基于柔性电极探针的视觉增强方法、装置、系统、电子设备或存储介质的实施例可见,本申请中方法包括获取待显示信息,并基于待显示信息,从待刺激区域中确定候选位置集合,该待刺激区域植入有柔性电极探针,控制电刺激单元对候选位置集合中的每个候选位置进行刺激处理,获取每个候选位置对应的脑电信号;脑电信号为刺激每个候选位置对应的神经元得到的信号,根据每个候选位置对应的脑电信号和待显示信息,确定目标显示信息。基于本申请实施例可以实现对人工视觉显示内的调控,可以达到闭环读取和写入的效果。
在本发明中,除非另有明确的规定和限定,术语“相连”、“连接”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的相连或两个元件的相互作用关 系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
需要说明的是:上述本申请实施例的先后顺序仅仅为了描述,不代表实施例的优劣,且上述本说明书对特定的实施例进行了描述,其他实施例也在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或者步骤可以按照不同的实施例中的顺序来执行并且能够实现预期的结果。另外,在附图中描绘的过程不一定要求示出特定顺序或者而连接顺序才能够实现期望的结果,在某些实施方式中,多任务并行处理也是可以的或者可能是有利的。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的均为与其他实施例的不同之处。尤其,对于装置和系统的实施例而言,由于其基于相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (11)

  1. 一种基于柔性电极探针的视觉增强方法,其特征在于,包括:
    获取待显示信息;
    基于所述待显示信息,从待刺激区域中确定候选位置集合;所述待刺激区域植入有柔性电极探针;
    控制电刺激单元对所述候选位置集合中的每个候选位置进行刺激处理,获取所述每个候选位置对应的脑电信号;所述脑电信号为刺激所述每个候选位置对应的神经元得到的信号;
    根据所述每个候选位置对应的脑电信号和所述待显示信息,确定目标显示信息。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述每个候选位置对应的脑电信号和所述待显示信息,确定目标显示信息,包括:
    根据所述每个候选位置对应的脑电信号,确定候选显示信息;
    若所述候选显示信息与所述待显示信息匹配,将所述候选显示信息确定为所述目标显示信息。
  3. 根据权利要求1-2任一所述的方法,其特征在于,所述柔性电极探针具有多个通道,所述多个通道中每个通道包括多个电极位点;
    所述对所述候选位置集合中的每个候选位置进行刺激处理之前,还包括:
    对所述每个通道的所述多个电极位点进行编码处理,得到电极编码子集合;所述电极编码子集合中的每个电极编码与所述多个电极位点中的每个电极位点一一对应,所述电极编码是对应的电极位点所属通道对应的候选位置下的编码。
  4. 根据权利要求3所述的方法,其特征在于,所述对所述候选位置集合中的每个候选位置进行刺激处理,获取所述每个候选位置对应的脑电信号,包括:
    从每个电极编码子集合中确定目标电极编码,得到目标电极编码集合;
    对所述目标电极编码集合中每个目标电极编码对应的电极位点施加电流,对所述每个目标电极编码对应的候选位置进行刺激处理,获取所述每个候选位置对应的脑电信号。
  5. 一种基于柔性电极探针的视觉增强装置,其特征在于,包括:
    获取模块,用于获取待显示信息;
    第一确定模块,用于基于所述待显示信息,从待刺激区域中确定候选位置集合;所述待刺激区域植入有柔性电极探针;
    刺激模块,用于控制电刺激单元对所述候选位置集合中的每个候选位置进行刺激处理,获取所述每个候选位置对应的脑电信号;所述脑电信号为刺激所述每个候选位置对应的神经元得到的信号;
    第二确定模块,用于根据所述每个候选位置对应的脑电信号和所述待显示信息,确定目标显示信息。
  6. 根据权利要求1所述的装置,其特征在于,
    所述第二确定模块,包括:
    第一确定子模块,用于根据所述每个候选位置对应的脑电信号,确定候选显示信息;
    第二确定子模块,用于若所述候选显示信息与所述待显示信息匹配,将所述候选显示信息确定为所述目标显示信息。
  7. 根据权利要求5-6任一所述的装置,其特征在于,所述柔性电极探针具有多个通道,所述多个通道中每个通道包括多个电极位点;
    所述装置还包括:
    编码模块,用于在所述对所述候选位置集合中的每个候选位置进行刺激处理之前,
    对所述每个通道的所述多个电极位点进行编码处理,得到电极编码子集合;所述电极编码子集合中的每个电极编码与所述多个电极位点中的每 个电极位点一一对应,所述电极编码是对应的电极位点所属通道对应的候选位置下的编码。
  8. 根据权利要求7所述的装置,其特征在于,所述刺激模块,包括:
    第三确定子模块,用于从每个电极编码子集合中确定目标电极编码,得到目标电极编码集合;
    处理子模块,用于对所述目标电极编码集合中每个目标电极编码对应的电极位点施加电流,对所述每个目标电极编码对应的候选位置进行刺激处理,获取所述每个候选位置对应的脑电信号。
  9. 一种基于柔性电极探针的视觉增强系统,其特征在于,包括:
    处理器,用于获取待显示信息;
    基于所述待显示信息,从待刺激区域中确定候选位置集合;所述待刺激区域植入有柔性电极探针;
    控制电刺激单元对所述候选位置集合中的每个候选位置进行刺激处理,获取所述每个候选位置对应的脑电信号;所述脑电信号为刺激所述每个候选位置对应的神经元得到的信号;
    根据所述每个候选位置对应的脑电信号和所述待显示信息,确定目标显示信息;
    电刺激单元,用于对所述候选位置集合中的每个候选位置进行刺激处理,以使得所述每个候选位置对应的神经元被刺激生成所述脑电信号;
    脑电信号采集单元,用于采集所述每个候选位置对应的脑电信号,并发送至所述处理器。
  10. 一种电子设备,其特征在于,所述电子设备包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现权利要求1-4任意一项所述的基于柔性电极探针的视觉增强方法。
  11. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如权利要求1-4任意一项所述的基于柔性电极探针的视觉增强方法。
PCT/CN2022/126867 2021-11-09 2022-10-23 一种基于柔性电极探针的视觉增强方法、装置及系统 WO2023082972A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111323374.3 2021-11-09
CN202111323374.3A CN114053582A (zh) 2021-11-09 2021-11-09 一种基于柔性电极探针的视觉增强方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2023082972A1 true WO2023082972A1 (zh) 2023-05-19

Family

ID=80274489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126867 WO2023082972A1 (zh) 2021-11-09 2022-10-23 一种基于柔性电极探针的视觉增强方法、装置及系统

Country Status (2)

Country Link
CN (1) CN114053582A (zh)
WO (1) WO2023082972A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114053582A (zh) * 2021-11-09 2022-02-18 上海脑虎科技有限公司 一种基于柔性电极探针的视觉增强方法、装置及系统
CN115568858B (zh) * 2022-09-07 2023-07-11 上海脑虎科技有限公司 神经电极装置及制备神经电极装置的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101879348A (zh) * 2010-06-18 2010-11-10 中国人民解放军第三军医大学第一附属医院 经硬脑膜外电刺激的视觉功能修复系统
CN106236377A (zh) * 2016-09-12 2016-12-21 北京大学 利用皮下神经刺激形成人工视觉的设备
US20210093864A1 (en) * 2018-03-05 2021-04-01 Baylor College Of Medicine Systems and methods of conveying a visual image to a person fitted with a visual prosthesis
CN112843467A (zh) * 2019-11-27 2021-05-28 深圳市中科先见医疗科技有限公司 视觉假体装置、系统及其控制方法、存储介质
CN112870562A (zh) * 2021-01-06 2021-06-01 上海交通大学 一种植入式压电mems超声换能器及其制备方法
CN114053582A (zh) * 2021-11-09 2022-02-18 上海脑虎科技有限公司 一种基于柔性电极探针的视觉增强方法、装置及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101879348A (zh) * 2010-06-18 2010-11-10 中国人民解放军第三军医大学第一附属医院 经硬脑膜外电刺激的视觉功能修复系统
CN106236377A (zh) * 2016-09-12 2016-12-21 北京大学 利用皮下神经刺激形成人工视觉的设备
US20210093864A1 (en) * 2018-03-05 2021-04-01 Baylor College Of Medicine Systems and methods of conveying a visual image to a person fitted with a visual prosthesis
CN112843467A (zh) * 2019-11-27 2021-05-28 深圳市中科先见医疗科技有限公司 视觉假体装置、系统及其控制方法、存储介质
CN112870562A (zh) * 2021-01-06 2021-06-01 上海交通大学 一种植入式压电mems超声换能器及其制备方法
CN114053582A (zh) * 2021-11-09 2022-02-18 上海脑虎科技有限公司 一种基于柔性电极探针的视觉增强方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Doctoral Dissertation", 1 July 2011, SHANGHAI JIAOTONG UNIVERSITY, CN, article LI, SHENG: "A Study of Visual Prosthetic Devices Modeling and Visual Information Processing", pages: 1 - 127, XP009545600 *

Also Published As

Publication number Publication date
CN114053582A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2023082972A1 (zh) 一种基于柔性电极探针的视觉增强方法、装置及系统
Kaufmann et al. Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state
Schalk et al. A practical guide to brain–computer interfacing with BCI2000: General-purpose software for brain-computer interface research, data acquisition, stimulus presentation, and brain monitoring
JP6454944B2 (ja) 生理信号を検出するための正面電極センサの構成および空間的配置
Cecotti A self-paced and calibration-less SSVEP-based brain–computer interface speller
Kimura et al. SSVEP-based brain–computer interfaces using FSK-modulated visual stimuli
Pfurtscheller et al. 15 years of BCI research at Graz University of Technology: current projects
Volosyak et al. Evaluation of the Bremen SSVEP based BCI in real world conditions
CN108245763A (zh) 脑机交互康复训练系统和方法
Maxfield et al. Exploring semantic and phonological picture–word priming in adults who stutter using event-related potentials
Bourkiza et al. Visual acuity of simulated thalamic visual prostheses in normally sighted humans
CN113362946A (zh) 视频处理装置、电子设备及计算机可读存储介质
CN111297379A (zh) 一种基于感官传递的脑机结合系统和方法
CN115517687A (zh) 基于多模态融合改善焦虑的特异性神经反馈系统
Aydin et al. Region based Brain Computer Interface for a home control application
Piña-Ramirez et al. Scenario screen: A dynamic and context dependent P300 stimulator screen aimed at wheelchair navigation control
van der Grinten et al. Towards biologically plausible phosphene simulation for the differentiable optimization of visual cortical prostheses
Anil et al. A tactile P300 based brain computer interface system for communication in iOS devices
US11213683B2 (en) Systems and methods for selective memory enhancement and/or disruption
CN112433617B (zh) 一种两人协同的p300-bci目标决策系统及方法
Singh et al. The detection of the rise to stand movements using bereitschaftspotential from scalp electroencephalography (EEG)
Goel An overview of brain computer interface
WO2019173265A1 (en) Systems and methods of conveying a visual image to a person fitted with a visual prosthesis
JP2020151234A (ja) 生体情報計測装置及び生体情報計測システム
Tallman Public Interest: EEG Implants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891769

Country of ref document: EP

Kind code of ref document: A1