WO2023082686A1 - 一种低表面粗糙度透明电极的制作方法 - Google Patents

一种低表面粗糙度透明电极的制作方法 Download PDF

Info

Publication number
WO2023082686A1
WO2023082686A1 PCT/CN2022/105865 CN2022105865W WO2023082686A1 WO 2023082686 A1 WO2023082686 A1 WO 2023082686A1 CN 2022105865 W CN2022105865 W CN 2022105865W WO 2023082686 A1 WO2023082686 A1 WO 2023082686A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive material
transparent electrode
screen printing
manufacturing
substrate
Prior art date
Application number
PCT/CN2022/105865
Other languages
English (en)
French (fr)
Inventor
李东东
赖文勇
Original Assignee
南京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京邮电大学 filed Critical 南京邮电大学
Publication of WO2023082686A1 publication Critical patent/WO2023082686A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal

Definitions

  • the invention relates to a method for manufacturing a transparent electrode with low surface roughness, which belongs to the field of new generation information technology industry.
  • the purpose of the present invention is to provide a method for manufacturing transparent electrodes with low surface roughness, so as to solve the shortcomings of transparent electrodes in the prior art in terms of manufacturing cost, surface roughness, and transfer success rate.
  • the transparent electrode has obvious advantages in light transmittance, conductivity, large area and other properties, and can simultaneously meet the performance requirements of optoelectronic devices such as solar cells, light-emitting diodes, flat panel displays, and electronic sensors for transparent electrodes.
  • the present invention provides a method for manufacturing a transparent electrode with low surface roughness, by first coating a layer of smooth conductive material on the substrate, then screen-printing conductive patterns, and finally coating A layer of surfactant-modified composite conductive material is transferred through a liquid substrate to obtain a transparent electrode with low surface roughness.
  • the specific steps for making the transparent electrode are:
  • Step S1 Coating a layer of smooth conductive material 2 on the smooth surface A substrate 1 by scrape coating or spin coating technology, and performing drying treatment;
  • Step S2 using screen printing ink to further print on the upper layer of the conductive material 2, the printing is screen printing, forming a screen printing pattern 3, and performing drying treatment;
  • Step S3 Scratch-coat a layer of composite conductive material 4 on the upper layer of the screen printing pattern 3 processed in step S2, and perform drying treatment;
  • Step S4 Apply the liquid B substrate 5 material to the upper layer of the composite conductive material 4 processed in step S3, so that the entire lower conductive material including the conductive material 2, the screen printing pattern 3, and the composite conductive material 4 are all embedded in the B substrate.
  • the vacuum defoaming and heating curing process are used to form the B substrate 5 material into a solid film.
  • the purpose of using the liquid substrate material here is to embed the entire lower conductive material into the B substrate material, which is convenient for later transparent electrodes. peel off;
  • Step S5 Peel off the B substrate 5 together with the conductive material 2 in step S1, the screen printing pattern 3 in step S2 and the composite conductive material 4 in step S3 from the A substrate to obtain the transparent electrode.
  • the A substrate is preferably any one of glass, polyethylene terephthalate PET, polyimide PI or silicon wafer.
  • the B substrate is preferably any one of polydimethylsiloxane PDMS or hydrogenated styrene-butadiene block copolymer SEBS.
  • the conductive material coated on the A substrate is preferably any one of silver nanowires, copper nanowires, poly 3,4-ethylenedioxythiophene/polystyrene sulfonate PEDOT:PSS, and graphene. A sort of.
  • the screen printing ink is preferably silver nanowire ink, copper nanowire ink, silver nanoparticle ink, copper nanoparticle ink, poly 3,4-ethylenedioxythiophene/polystyrene sulfonate PEDOT:PSS ink, graphite Any one of vinyl inks.
  • the composite conductive material is preferably silver nanowire+poly3,4-ethylenedioxythiophene/polystyrene sulfonate PEDOT:PSS, silver nanowire+graphene, copper nanowire+poly3,4-ethylenedioxy Any one of thiophene/polystyrene sulfonate PEDOT:PSS, copper nanowires + graphene.
  • the composite conductive material is a composite conductive material modified by a nonionic surfactant
  • the nonionic surfactant is preferably a long-chain fatty alcohol polyoxyethylene ether, an alkylphenol polyoxyethylene Any one of ethers, fatty acid polyoxyethylene esters, polyoxyethylene alkylamines, polyoxyethylene alkylamides and polyethers.
  • the invention coats a layer of smooth conductive material on the substrate before screen printing, and then transfers the screen-printed pattern to another substrate by coating modified composite conductive material and transfer printing technology , so that the adhesive force between the conductive material and the B substrate is far greater than the adhesive force between the conductive material and the A substrate, ensuring the transfer success rate, and the transparent electrode prepared by this method maintains the same A pristine smooth surface of the substrate contact surface with extremely low surface roughness, which improves the performance of the transparent electrode;
  • the transparent electrode prepared by the present invention has extremely low surface roughness, low cost, and excellent photoelectric performance, which meets the requirements of various optoelectronic devices, such as solar cells, light-emitting diodes, flat panel displays, and electronic sensors, etc., for high-performance transparent electrodes. Requirements, with important industrialization advantages.
  • Fig. 1 is a schematic diagram of the preparation process of the transparent electrode of the present invention
  • Fig. 2 is the photo of the transparent electrode obtained by the preparation method described in Example 1;
  • Fig. 3 is a photo under an optical microscope of the transparent electrode obtained by the preparation method described in Example 1.
  • 1-A substrate 2-conductive material; 3-screen printing pattern; 4-composite conductive material; 5-B substrate.
  • the silver nanowire transparent electrode prepared by this method has a very low surface roughness of 2.7nm, a film square resistance as low as 18 ⁇ sq -1 , and a light transmittance as high as 91%.
  • a photo of the screen-printed transparent electrode after transfer is shown in FIG. 2
  • an optical microscope photo of the screen-printed transparent electrode after transfer is shown in FIG. 3 .
  • the silver nanowire transparent electrode prepared by this method has a very low surface roughness of 2.7nm, a thin film square resistance as low as 12 ⁇ sq -1 , and a light transmittance as high as 88%. It is in the leading position in screen printing transparent electrodes. level.
  • the silver nanowire transparent electrode prepared by this method has a very low surface roughness of 2.7nm, a film square resistance as low as 10 ⁇ sq -1 , and a light transmittance as high as 84%. It is in the leading position in screen printing transparent electrodes. level.
  • the silver nanowire transparent electrode prepared by this method has a very low surface roughness of 2.7nm, a film square resistance as low as 8 ⁇ sq -1 , and a light transmittance as high as 77%. It is in the leading position in screen printing transparent electrodes. level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种低表面粗糙度透明电极的制作方法,具体是一种采用丝网印刷技术制备大面积、低成本、图案化透明电极的方法,重点是解决丝网印刷图案粗糙度较高的问题,通过在基底上先涂覆一层平滑的导电材料,然后进行丝网印刷导电图案,最后再涂覆一层表面活性剂改性的复合导电材料并进行薄膜转印来得到低表面粗糙度的透明电极。本方法制备的透明电极在剥离后保持了原基底的光滑表面,具有极低的表面粗糙度,并显著提高了薄膜的转印成功率,可直接应用于各种光电器件,如太阳能电池、发光二极管、平板显示、以及电子传感器等。

Description

一种低表面粗糙度透明电极的制作方法 技术领域
本发明涉及一种低表面粗糙度透明电极的制作方法,属于新一代信息技术产业领域。
背景技术
随着太阳能电池、发光二极管、平板显示、以及电子传感器等领域的快速发展,要求所使用的透明电极具备低成本、高电导率、高透光率、低表面粗糙度等性能。丝网印刷技术在低成本、大面积、图案化薄膜的制备方面展示出巨大的优势,现有技术中透明电极的图案化的金属纳米结构的制备方法是直接在基底材料上通过丝网印刷形成图案化的金属纳米结构,如何降低丝网印刷图案的粗糙度仍是一个挑战性的难题,电极表面粗糙度对后续功能层的制备与最终的器件性能将产生很大影响,例如发光二极管的电极之上需进一步制备空穴传输层、发光层、电子传输层等,如电极表面粗糙度较高,会影响上层各功能层的制备质量,最终会降低发光效率,甚至会引起器件短路。因此,攻克这一难关对于高性能透明电极的制备具有重要的意义。
发明内容
技术问题:本发明目的在于提供一种低表面粗糙度透明电极的制作方法,以解决现有技术中的透明电极在制造成本、表面粗糙度、转印成功率上存在的不足,且本发明制作的透明电极在透光率、导电性能、大面积等性能上具有明显的优势,可同时满足太阳能电池、发光二极管、平板显示、以及电子传感器等光电器件对透明电极性能的要求。
技术方案:为实现上述目的,本发明提供的一种低表面粗糙度透明电极的制作方法,通过在基底上先涂覆一层平滑的导电材料,然后进行丝网印刷导电图案,最后再涂覆一层表面活性剂改性的复合导电材料并通过液态基底进行薄膜转印,来得到低表面粗糙度的透明电极,如图1所示,所述透明电极的制作具体步骤为:
步骤S1:在表面光滑A基底1上通过刮涂或旋涂技术涂覆一层平滑的导电材料2,并进行烘干处理;
步骤S2:采用丝网印刷油墨在所述导电材料2上层进一步印刷,所述印刷为丝网印刷,形成丝网印刷图案3,并进行烘干处理;
步骤S3:在步骤S2处理后的所述丝网印刷图案3上层刮涂一层复合导电材料4,并进行烘干处理;
步骤S4:将液态的B基底5材料涂覆到步骤S3处理后的所述复合导电材料4上层,使整个下层导电材料包括导电材料2、丝网印刷图案3、复合导电材料4全部嵌入到B基底5材料中,并采用真空除泡和加热固化过程使B基底5材料形成固态薄膜,此处采用液态的基底材料目的在于使整个下层导电材料全部嵌入到B基底材料中,便于后期透明电极的剥离;
步骤S5:将B基底5连带步骤S1中所述导电材料2、步骤S2中丝网印刷图案3和步骤S3中复合导电材料4从A基底上剥离,即得到所述透明电极。
所述A基底优选为玻璃、聚对苯二甲酸乙二醇酯PET、聚酰亚胺PI或硅片中的任意一种。
所述B基底优选为聚二甲基硅氧烷PDMS或者氢化苯乙烯-丁二烯嵌段共聚物SEBS中的任意一种。
步骤S1中,所述在A基底上涂覆的导电材料优选为银纳米线、铜纳米线、聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐PEDOT:PSS、石墨烯中的任意一种。
所述丝网印刷油墨优选为银纳米线油墨、铜纳米线油墨、银纳米颗粒油墨、铜纳米颗粒油墨、聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐PEDOT:PSS油墨、石墨烯油墨中的任意一种。
所述复合导电材料优选为银纳米线+聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐PEDOT:PSS、银纳米线+石墨烯、铜纳米线+聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐PEDOT:PSS、铜纳米线+石墨烯中的任意一种。
为了进一步提高转印效果,所述复合导电材料为经非离子表面活性剂改性的复合导电材料,所述非离子表面活性剂优选为长链脂肪醇聚氧乙烯醚、烷基酚聚氧乙烯醚、脂肪酸聚氧乙烯酯、聚氧乙烯烷基胺、聚氧乙烯烷基酰胺和聚醚类中的任意一种。
有益效果:本发明通过在丝网印刷之前先在基底上涂覆一层平滑的导电材料,然后再通过涂覆改性复合导电材料和转印技术将丝网印刷的图案转移到另一基底上,使所述导电材料与B基底之间的粘合力远远大于导电材料与A基底的粘合力,保证转印成功率,且本方法制备的透明电极在剥离原A基底后保持了与A基底接触面的原始光滑表面,具有极低的表面粗糙度,从而提高了透明电极的性能;
此外,在本发明制备的所述透明电极的光滑表面涂覆其他功能层以 构成光电器件如太阳能电池、发光二极管、平板显示、以及电子传感器等,将提高光电器件的整体制备质量,从而提高光电器件的性能。
综上,本发明制备的透明电极具备极低的表面粗糙度、成本低廉,光电性能优异,满足各种光电器件,如太阳能电池、发光二极管、平板显示、以及电子传感器等,对高性能透明电极的要求,具有重要的产业化优势。
附图说明
图1为本发明所述透明电极的制备流程示意图;
图2为实施例1所述制备方法获得的透明电极照片;
图3为实施例1所述制备方法获得的透明电极在光学显微镜下的照片。
其中:1-A基底;2-导电材料;3-丝网印刷图案;4-复合导电材料;5-B基底。
具体实施方式
下面结合附图及具体实施例对本发明作更进一步的说明,但本发明并不限于以下实施例,下述方法中如无特别说明,所述方法均为常规方法。
实施例1:
1)在PET基底上通过刮涂技术涂覆一层平滑的银纳米线薄膜,厚度为0.3μm,并在120°进行烘干处理;2)通过丝网印刷技术在银纳米线薄膜上层印刷制备银纳米线网格,网格边长为3.5mm,网格厚度为1μm,并在120°进行烘干处理;3)在银纳米线网格上层刮涂一层银纳米线+聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐PEDOT:PSS+非离子表面活性剂长链脂肪醇聚氧乙烯醚的复合导电材料,厚度为0.2μm,其中, 银纳米线与PEDOT:PSS的质量比为0.4:1,并在120°进行烘干处理;4)将液态的PDMS均匀涂覆到复合导电材料上层,并经过真空除泡和加热固化过程使PDMS形成固态薄膜;5)将PDMS基底从PET基底上剥离,得到透明导电电极。
通过这一方法制备的银纳米线透明电极具有很低的表面粗糙度2.7nm,薄膜方阻低至18Ωsq -1,透光率高达91%。丝网印刷透明电极在转印后的照片如图2所示,丝网印刷透明电极在转印后的光学显微镜照片如图3所示。
实施例2:
1)在PET基底上通过刮涂技术涂覆一层平滑的银纳米线薄膜,厚度为0.3μm,并在120°进行烘干处理;2)通过丝网印刷技术在银纳米线薄膜上层印刷制备银纳米线网格,网格边长为3mm,网格厚度为1μm,并在120°进行烘干处理;3)在银纳米线网格上层刮涂一层银纳米线+聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐PEDOT:PSS+非离子表面活性剂长链脂肪醇聚氧乙烯醚的复合导电材料,厚度为0.2μm,其中,银纳米线与PEDOT:PSS的质量比为0.4:1,并在120°进行烘干处理;4)将液态的PDMS均匀涂覆到复合导电材料上层,并经过真空除泡和加热固化过程使PDMS形成固态薄膜;5)将PDMS基底从PET基底上剥离,得到透明导电电极。
通过这一方法制备的银纳米线透明电极具有很低的表面粗糙度2.7nm,薄膜方阻低至12Ωsq -1,透光率高达88%,在丝网印刷透明电极中各项性能均处于领先水平。
实施例3:
1)在PET基底上通过刮涂技术涂覆一层平滑的银纳米线薄膜,厚度为0.3μm,并在120°进行烘干处理;2)通过丝网印刷技术在银纳米线薄膜上层印刷制备银纳米线网格,网格边长为2mm,网格厚度为1μm,并在120°进行烘干处理;3)在银纳米线网格上层刮涂一层银纳米线+聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐PEDOT:PSS+非离子表面活性剂长链脂肪醇聚氧乙烯醚的复合导电材料,厚度为0.2μm,其中,银纳米线与PEDOT:PSS的质量比为0.4:1,并在120°进行烘干处理;4)将液态的PDMS均匀涂覆到复合导电材料上层,并经过真空除泡和加热固化过程使PDMS形成固态薄膜;5)将PDMS基底从PET基底上剥离,得到透明导电电极。通过这一方法制备的银纳米线透明电极具有很低的表面粗糙度2.7nm,薄膜方阻低至10Ωsq -1,透光率高达84%,在丝网印刷透明电极中各项性能均处于领先水平。
实施例4:
1)在PET基底上通过刮涂技术涂覆一层平滑的银纳米线薄膜,厚度为0.3μm,并在120°进行烘干处理;2)通过丝网印刷技术在银纳米线薄膜上层印刷制备银纳米线网格,网格边长为1.5mm,网格厚度为1μm,并在120°进行烘干处理;3)在银纳米线网格上层刮涂一层银纳米线+聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐PEDOT:PSS+非离子表面活性剂长链脂肪醇聚氧乙烯醚的复合导电材料,厚度为0.2μm,其中,银纳米线与PEDOT:PSS的质量比为0.4:1,并在120°进行烘干处理;4)将液态的PDMS均匀涂覆到复合导电材料上层,并经过真空除泡和加热 固化过程使PDMS形成固态薄膜;5)将PDMS基底从PET基底上剥离,得到透明导电电极。通过这一方法制备的银纳米线透明电极具有很低的表面粗糙度2.7nm,薄膜方阻低至8Ωsq -1,透光率高达77%,在丝网印刷透明电极中各项性能均处于领先水平。

Claims (8)

  1. 一种低表面粗糙度透明电极的制作方法,其特征在于,所述制作方法具体步骤为:
    步骤S1:在表面光滑的A基底上涂覆一层平滑的导电材料,并进行烘干处理;
    步骤S2:采用丝网印刷油墨在步骤S1所述导电材料上层进一步印刷,所述印刷为丝网印刷,形成丝网印刷图案,并进行烘干处理;
    步骤S3:在步骤S2处理后的所述丝网印刷图案上层刮涂一层复合导电材料,并进行烘干处理;
    步骤S4:将液态的B基底材料涂覆到步骤S3处理后的所述复合导电材料上层,使步骤S1中所述的导电材料、步骤S2中所述的丝网印刷图案、步骤S3中所述复合导电材料全部嵌入到B基底材料中,并采用真空除泡和加热固化过程使B基底材料形成固态薄膜;
    步骤S5:将B基底连带步骤S1中所述导电材料、步骤S2中所述丝网印刷图案和步骤S3中所述复合导电材料从A基底上剥离,即得到所述透明电极。
  2. 根据权利要求1所述的一种低表面粗糙度透明电极的制作方法,其特征在于,所述A基底是玻璃、聚对苯二甲酸乙二醇酯PET、聚酰亚胺PI或硅片中的任意一种。
  3. 根据权利要求1所述的一种低表面粗糙度透明电极的制作方法,其特征在于,所述B基底是聚二甲基硅氧烷PDMS或者氢化苯乙烯-丁二烯嵌段共聚物SEBS中的任意一种。
  4. 根据权利要求1所述的一种低表面粗糙度透明电极的制作方法, 其特征在于,在A基底涂覆的导电材料为银纳米线、铜纳米线、聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐PEDOT:PSS或石墨烯中的任意一种。
  5. 根据权利要求1所述的一种低表面粗糙度透明电极的制作方法,其特征在于,所述丝网印刷油墨为银纳米线油墨、铜纳米线油墨、银纳米颗粒油墨、铜纳米颗粒油墨、聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐PEDOT:PSS油墨或石墨烯油墨中的任意一种。
  6. 根据权利要求1所述的一种低表面粗糙度透明电极的制作方法,其特征在于,所述复合导电材料为银纳米线+聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐PEDOT:PSS、银纳米线+石墨烯、铜纳米线+聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐PEDOT:PSS、铜纳米线+石墨烯中的任意一种。
  7. 根据权利要求1所述的一种低表面粗糙度透明电极的制作方法,其特征在于,所述复合导电材料为经非离子表面活性剂改性后的复合导电材料。
  8. 根据权利要求7所述的一种低表面粗糙度透明电极的制作方法,其特征在于,所述改性所用的非离子表面活性剂为长链脂肪醇聚氧乙烯醚、烷基酚聚氧乙烯醚、脂肪酸聚氧乙烯酯、聚氧乙烯烷基胺、聚氧乙烯烷基酰胺和聚醚类中的任意一种。
PCT/CN2022/105865 2021-11-09 2022-07-15 一种低表面粗糙度透明电极的制作方法 WO2023082686A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111317938.2A CN113782256B (zh) 2021-11-09 2021-11-09 一种低表面粗糙度透明电极的制作方法
CN202111317938.2 2021-11-09

Publications (1)

Publication Number Publication Date
WO2023082686A1 true WO2023082686A1 (zh) 2023-05-19

Family

ID=78956852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105865 WO2023082686A1 (zh) 2021-11-09 2022-07-15 一种低表面粗糙度透明电极的制作方法

Country Status (2)

Country Link
CN (1) CN113782256B (zh)
WO (1) WO2023082686A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782256B (zh) * 2021-11-09 2022-02-18 南京邮电大学 一种低表面粗糙度透明电极的制作方法
CN114425618B (zh) * 2021-12-21 2023-07-04 西北工业大学 一种银金核壳纳米线掺杂的凝胶薄膜及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106782769A (zh) * 2016-11-22 2017-05-31 华中科技大学 低粗糙度低方阻的柔性透明导电复合薄膜及其制备方法
CN107068291A (zh) * 2017-04-10 2017-08-18 武汉理工大学 一种转移银纳米线透明导电薄膜到柔性衬底的方法
CN107610802A (zh) * 2016-07-11 2018-01-19 中国科学院上海高等研究院 透明导电薄膜、光电器件及其制作方法
CN113782256A (zh) * 2021-11-09 2021-12-10 南京邮电大学 一种低表面粗糙度透明电极的制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3136391B2 (ja) * 1994-11-29 2001-02-19 帝国通信工業株式会社 平滑基板用絶縁塗料層
WO2020255458A1 (ja) * 2019-06-20 2020-12-24 昭和電工株式会社 透明導電フィルム積層体及びその加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107610802A (zh) * 2016-07-11 2018-01-19 中国科学院上海高等研究院 透明导电薄膜、光电器件及其制作方法
CN106782769A (zh) * 2016-11-22 2017-05-31 华中科技大学 低粗糙度低方阻的柔性透明导电复合薄膜及其制备方法
CN107068291A (zh) * 2017-04-10 2017-08-18 武汉理工大学 一种转移银纳米线透明导电薄膜到柔性衬底的方法
CN113782256A (zh) * 2021-11-09 2021-12-10 南京邮电大学 一种低表面粗糙度透明电极的制作方法

Also Published As

Publication number Publication date
CN113782256A (zh) 2021-12-10
CN113782256B (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2023082686A1 (zh) 一种低表面粗糙度透明电极的制作方法
Li et al. Recent progress in silver nanowire networks for flexible organic electronics
WO2020233160A1 (zh) 一种嵌入式金属网格柔性透明电极的制造方法及其应用
CN106782769A (zh) 低粗糙度低方阻的柔性透明导电复合薄膜及其制备方法
JP5306341B2 (ja) パターン化された層を基板上に形成する方法
Ye et al. Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics
Lian et al. Highly conductive silver nanowire transparent electrode by selective welding for organic light emitting diode
Cui et al. A photolithographic stretchable transparent electrode for an all-solution-processed fully transparent conformal organic transistor array
KR102066075B1 (ko) 플렉서블 디스플레이용 기판 및 그 제조방법
CN105489784B (zh) 柔性导电电极的制备方法及该方法制备的电极及其应用
KR101677339B1 (ko) 은나노와이어 투명전극 제조방법
Sico et al. Effects of the ink concentration on multi-layer gravure-printed PEDOT: PSS
Ohsawa et al. Bending reliability of flexible transparent electrode of gravure offset printed invisible silver-grid laminated with conductive polymer
Kim et al. Lift-off patterning of Ag nanowire/PEDOT: PSS composite films for transparent electrodes using a fluoropolymer structure
Fakharan et al. Metal grid technologies for flexible transparent conductors in large-area optoelectronics
KR20140038141A (ko) 평탄화된 인쇄전자소자 및 그 제조 방법
KR20140008607A (ko) 희생 기판을 이용한 금속 배선이 함입된 유연 기판 제조 방법 및 이에 의해 제조된 금속 배선이 함입된 유연 기판
Piliego et al. Organic light emitting diodes with highly conductive micropatterned polymer anodes
US20240186034A1 (en) Method for manufacturing transparent electrode with low surface roughness
CN110265178A (zh) 一种柔性透明导电膜的制备方法
Kim et al. Fabrication of transparent and flexible Ag three-dimensional mesh electrode by thermal roll-to-roll imprint lithography
CN114927285A (zh) 一种柔性透明薄膜电极及其制备方法
US11510323B2 (en) Conductive laminated structure, a manufacturing method thereof, and a display panel
Jakob et al. Transfer printing of electrodes for organic devices: nanoscale versus macroscale continuity
CN105788708B (zh) 一种有序分布的导电薄膜的制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18025629

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891495

Country of ref document: EP

Kind code of ref document: A1