WO2023082593A1 - 柱塞泵 - Google Patents

柱塞泵 Download PDF

Info

Publication number
WO2023082593A1
WO2023082593A1 PCT/CN2022/094456 CN2022094456W WO2023082593A1 WO 2023082593 A1 WO2023082593 A1 WO 2023082593A1 CN 2022094456 W CN2022094456 W CN 2022094456W WO 2023082593 A1 WO2023082593 A1 WO 2023082593A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
crosshead
plunger pump
temperature
detection hole
Prior art date
Application number
PCT/CN2022/094456
Other languages
English (en)
French (fr)
Inventor
李丙壮
杜瑞杰
孙忠全
崔文平
李朋
菅保国
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Publication of WO2023082593A1 publication Critical patent/WO2023082593A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • F04B53/144Adaptation of piston-rods
    • F04B53/147Mounting or detaching of piston rod
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/18Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/04Carter parameters
    • F04B2201/0402Lubricating oil temperature

Definitions

  • the present application relates to the technical field of high-pressure medium delivery equipment, in particular to a plunger pump.
  • the plunger pump As a kind of equipment for conveying high-pressure medium, the plunger pump is widely used in oil and gas extraction. In the process of oil and gas exploitation, the fracturing medium can be pumped to the stratum with high pressure through the plunger pump, and the stratum will be pressed open to form fractures, so as to achieve the purpose of increasing production and injection of oil and gas fields.
  • the plunger pump is used in harsh working conditions, the equipment has a high load, and the equipment is accompanied by severe vibration during operation. Therefore, the key load-bearing components in the plunger pump are prone to abnormal damage. If the damage of the key load-bearing parts in the plunger pump cannot be found in time, it is easy to cause the damaged part to expand to other parts in the plunger pump, causing more serious damage.
  • plunger pumps in oil and gas field well sites usually perform replacement preventive maintenance on plunger pumps according to the production plan and experience of operators.
  • the parts of the plunger pump need to be disassembled to detect whether the parts in the plunger pump are damaged.
  • this maintenance system regardless of whether the equipment is faulty or not, it must be dismantled and inspected, which wastes labor and materials and is blind.
  • the application discloses a plunger pump to solve the problem that the plunger pump needs to be dismantled and repaired blindly.
  • the plunger pump described in this application includes a fixed component, a moving component and a fault diagnosis module, the moving component is arranged on the fixed component, and the moving component can move relative to the fixed component.
  • the fault diagnosis module includes a temperature sensing component and a processing unit, the fixed component is provided with a temperature detection hole, the temperature sensing component is at least partly located in the temperature detection hole, and the temperature sensing component can be in contact with the lubricating oil flowing through the moving component; the processing unit and The temperature sensing component is connected, and the processing unit monitors and diagnoses the plunger pump according to the temperature value sensed by the temperature sensing component.
  • the fault diagnosis module further includes a display unit connected to the processing unit, and the display unit is used to display the results of the plunger pump monitoring and fault diagnosis.
  • the fixed assembly includes a crosshead slide rail
  • the moving assembly includes a crosshead assembly
  • the crosshead assembly is slidably matched with the crosshead slide rail.
  • the crosshead slide rail is provided with a first detection hole, the first detection hole runs through the crosshead slide rail to the side of the crosshead slide rail close to the crosshead assembly, the temperature sensing component includes a first temperature sensor, and the first temperature sensor is arranged on The first detection hole.
  • the end of the first temperature sensor close to the crosshead assembly does not protrude from the side of the crosshead slide rail close to the crosshead assembly.
  • the crosshead slide rail is cylindrical, and there are multiple first detection holes, the first temperature sensors correspond to the first detection holes one by one, and the first detection holes are arranged along the circumferential direction of the crosshead slide rail.
  • the crosshead slide rail is provided with an oil guide chamber and a second detection hole
  • the oil guide chamber communicates with the gap between the crosshead slide rail and the crosshead assembly
  • the gap between the crosshead slide rail and the crosshead assembly Lubricating oil flows into the oil guide chamber
  • the second detection hole communicates with the oil guide chamber
  • the temperature sensing component includes a second temperature sensor, and the second temperature sensor is arranged in the second detection hole.
  • the second detection hole is arranged at the bottom of the oil guide chamber.
  • the fixed assembly further includes a casing
  • the moving assembly further includes a connecting rod bearing bush
  • the temperature sensing assembly further includes a third temperature sensor
  • the casing is provided with a third detection hole, the third detection hole is located below the connecting rod bearing bush, and the third The temperature sensor is arranged in the third detection hole, and the lubricating oil flowing through the connecting rod bearing bush can drop to the third temperature sensor.
  • the third detection holes correspond to the third temperature sensors one by one, and the third detection holes are arranged along the rotation direction of the connecting rod bearing bush.
  • the plunger pump also includes a bearing and a bearing housing
  • the temperature sensing assembly further includes a fourth temperature sensor
  • the bearing housing is provided with a fourth detection hole
  • the fourth temperature sensor is arranged in the fourth detection hole.
  • the embodiment of the present application discloses that a temperature monitoring hole is opened on the fixed component, and the temperature of the lubricating oil flowing through the moving component is monitored by a temperature sensing component disposed in the temperature detecting hole.
  • One of the purposes of lubricating oil is to reduce the frictional resistance of moving components, and the other is to take away the heat generated by the friction between moving components and fixed components. Therefore, the temperature change of the lubricating oil flowing through the moving components can reflect the temperature change of the moving components.
  • the lubricating oil directly flows between the moving component and the fixed component, and directly transfers heat with the moving component and the fixed component. Therefore, the above scheme can improve the accuracy of the working state monitoring and fault diagnosis of the plunger pump.
  • Fig. 1 is a schematic diagram of a plunger pump disclosed in an embodiment of the present application at a first viewing angle
  • Fig. 2 is a schematic diagram of a plunger pump disclosed in an embodiment of the present application in a second perspective;
  • Fig. 3 is a schematic diagram of a plunger pump disclosed in an embodiment of the present application in a third perspective
  • Fig. 4 is a schematic cross-sectional view of a plunger pump disclosed in an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the installation of the first temperature sensor disclosed in an embodiment of the present application.
  • Fig. 6 is a schematic diagram of the installation of the second temperature sensor disclosed in an embodiment of the present application.
  • Fig. 7 is a schematic diagram of installation of a third temperature sensor disclosed in an embodiment of the present application.
  • Fig. 8 is a schematic diagram of installation of a fourth temperature sensor disclosed in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a fault diagnosis module disclosed in an embodiment of the present application.
  • 100-temperature sensing component 110-first temperature sensor; 120-second temperature sensor; 130-third temperature sensor; 140-fourth temperature sensor;
  • 1100-fluid end assembly 1110-valve box; 1120-plunger; 1130-upper valve; 1140-lower valve;
  • the plunger pump disclosed in this application includes a fixed component, a moving component and a fault diagnosis module.
  • the moving component is arranged on the fixed component, and the moving component can move relative to the fixed component.
  • the fixing assembly described in the present application may be: a component in the plunger pump that is fixed relative to the housing 600 of the plunger pump when the plunger pump is in a working state.
  • a moving component is a component that moves relative to a fixed component when the plunger pump is in working condition.
  • the movement of the moving component relative to the fixed component can be: the moving component slides relative to the fixed component, or the moving component rotates relative to the fixed component.
  • the fault diagnosis module includes a temperature sensing component 100 and a processing unit 200
  • the fixed component is provided with a temperature detection hole
  • the temperature sensing component 100 is at least partly located in the temperature detection hole
  • the temperature sensor The measuring assembly 100 may be in contact with lubricating oil flowing through the moving assembly.
  • the processing unit 200 is connected to the temperature sensing component 100 , and the processing unit 200 implements monitoring and fault diagnosis for the plunger pump according to the temperature value sensed by the temperature sensing component 100 .
  • the temperature sensing assembly 100 can be in contact with the lubricating oil flowing through the moving assembly.
  • the lubricating oil can flow through the temperature sensing assembly 100, or the temperature sensing assembly 100 can be at least partially immersed in the lubricating oil, so that the temperature sensing assembly 100 can Sensing the temperature of lubricating oil flowing through moving components.
  • the sensed temperature value is used as an input value of the processing unit 200 to implement monitoring and fault diagnosis of the plunger pump. Therefore, the working state of each moving component in the plunger pump can be detected without disassembling the plunger pump, and the fault diagnosis of the plunger pump can be performed. Therefore, there is no need to overhaul the plunger pump by blindly dismantling the plunger pump.
  • the processing unit 200 may be a single chip microcomputer.
  • the plunger pump can be monitored and fault diagnosed by monitoring the temperature of the lubricating oil flowing through the moving components. Exemplarily, when the temperature value sensed by the temperature sensing component 100 is outside the preset temperature range, the corresponding moving component of the plunger pump is faulty.
  • the corresponding moving component of the plunger pump is normal.
  • the preset temperature range corresponding to the moving component can be obtained based on experience or a large number of experiments.
  • the lubricating oil in order to achieve the effect of lubrication, the lubricating oil usually needs to flow between two relatively sliding contact surfaces, and the moving component and the fixed component heat up due to the mutual friction between the two relatively sliding contact surfaces. Therefore, the temperature of the lubricating oil is closer to the temperature of the moving components, and the accuracy and timeliness of monitoring and fault diagnosis of the plunger pump can be improved by detecting the temperature of the moving components.
  • the fault diagnosis module further includes a display unit 300, which is connected to the processing unit 200, and the display unit 300 is used to display the results of the plunger pump monitoring and fault diagnosis.
  • the display unit may be a screen, or a warning light.
  • the fault diagnosis module may further include an alarm connected to the processing unit 200, so that the alarm can issue an alarm when the plunger pump fails.
  • the alarm can be a warning light, or a buzzer. There are many types of alarms, so this embodiment does not limit the specific types of alarms.
  • the plunger pump includes a power end assembly 1000, a fluid end assembly 1100 and a reduction box assembly 1200.
  • the power end assembly 1000 consists of a power end housing 1300, a crosshead slide rail 400 and a holding
  • a crankshaft mechanism is provided in the power end housing 1300, the crankshaft mechanism includes a crankshaft 810 and a crankshaft bearing 910, a connecting rod 420, a crosshead assembly 500, etc.
  • the fluid end assembly 1100 includes valve box 1110, plunger 1120, suction valve, discharge valve, upper valve 1130, lower valve 1140, etc., crankshaft 810 rotates on crankshaft bearing 910, one end of connecting rod 420 is connected with crankshaft 810, and one end of connecting rod 420 It is connected with the crosshead assembly 500, the other end of the crosshead assembly 500 is connected with the plunger 1120 through the pull rod, and the external power source drives the crankshaft 810 to rotate through the reduction box assembly 1200, and the rotation of the crankshaft 810 is finally transformed into the plunger
  • the linear reciprocating motion of 1120 realizes the opening and closing of the suction valve and the discharge valve, that is, the fluid end assembly 1100 sucks low-pressure liquid and discharges high-pressure liquid.
  • the fixed assembly includes a crosshead slide rail 400
  • the moving assembly includes a crosshead assembly 500
  • the crosshead assembly 500 is in sliding fit with the crosshead slide rail 400
  • the crosshead slide rail 400 is provided with a first detection hole, the first detection hole runs through the crosshead slide rail 400 to the side of the crosshead slide rail 400 close to the crosshead assembly 500
  • the temperature sensing assembly 100 includes a first temperature sensor 110
  • the first temperature sensor 110 is disposed in the first detection hole.
  • the crosshead assembly 500 reciprocates relative to the crosshead slide rail 400 .
  • the first detection hole runs through the crosshead slide rail 400 to the side of the crosshead slide rail 400 close to the crosshead assembly 500, so that the lubricating oil between the crosshead assembly 500 and the crosshead slide rail 400 can enter the first detection hole , and then contact with the first temperature sensor 110, so that the first temperature sensor 110 can sense the temperature of the lubricating oil between the crosshead assembly 500 and the crosshead slide rail 400, and then through the crosshead assembly 500 and the crosshead slide rail 400
  • the temperature of the lubricating oil determines whether the crosshead assembly 500 or the crosshead slide 400 is malfunctioning.
  • the first temperature sensor 110 may be screwed into the first detection hole.
  • the end of the first temperature sensor 110 close to the crosshead assembly 500 does not protrude from the side of the crosshead slide rail 400 close to the crosshead assembly 500 to prevent the first temperature sensor 110 from intersecting with the crosshead assembly 500 .
  • the end of the first temperature sensor 110 close to the crosshead assembly 500 does not protrude from the side of the crosshead slide rail 400 close to the crosshead assembly 500, and the end of the first temperature sensor 110 close to the crosshead assembly 500 may be recessed in the crosshead.
  • the surface of the side of the slide rail 400 close to the crosshead assembly 500 may also be that the end of the first temperature sensor 110 close to the crosshead assembly 500 is flush with the surface of the side of the crosshead slide rail 400 close to the crosshead assembly 500 .
  • the crosshead slide rail 400 is cylindrical, and there are multiple first detection holes.
  • the first temperature sensors 110 correspond to the first detection holes one by one. set up.
  • the temperature values sensed by the plurality of first temperature sensors 110 can be processed by the processing unit 200 to obtain a more accurate temperature.
  • the temperature values sensed by a plurality of first temperature sensors 110 may be averaged to serve as the input value of the processing unit 200 .
  • other processing methods may also be used. Therefore, this embodiment does not limit the specific method for processing the temperature values sensed by the plurality of first temperature sensors 110 by the processing unit 200 .
  • the crosshead slide rail 400 is provided with an oil guide chamber 410 and a second detection hole, the oil guide chamber 410 communicates with the gap between the crosshead slide rail 400 and the crosshead assembly 500, and the crosshead slide rail 400 and Lubricating oil between the crosshead assemblies 500 flows into the oil guide chamber 410 , and the second detection hole communicates with the oil guide chamber 410 .
  • the temperature sensing component 100 includes a second temperature sensor 120, and the second temperature sensor 120 is disposed in the second detection hole.
  • the lubricating oil between the crosshead slide rail 400 and the crosshead assembly 500 after the lubricating oil between the crosshead slide rail 400 and the crosshead assembly 500 has heat exchange between the crosshead slide rail 400 and/or the crosshead assembly 500, it enters into the oil guide chamber 410, and then guides The temperature of the lubricating oil in the oil chamber 410 changes with the temperature of the crosshead slide rail 400 and the crosshead assembly 500 . Specifically, when the crosshead assembly 500 fails, the temperature of the crosshead assembly 500 rises, which in turn causes the temperature of the lubricating oil in the oil guide chamber 410 to rise. Therefore, monitoring and fault diagnosis of the working state of the crosshead assembly 500 can be implemented by monitoring the temperature of the lubricating oil in the oil guide chamber 410 .
  • the second detection hole is set at the bottom of the oil guide chamber 410 to ensure that the lubricating oil in the oil guide chamber 410 can fully contact the second temperature sensor 120, thereby avoiding the influence of the reduction of the amount of lubricating oil on the crosshead assembly 500 working status monitoring and fault diagnosis.
  • the number of the second detection holes can be multiple, the second temperature sensor 120 corresponds to the second detection holes one by one, and the second detection holes are distributed on different sides of the plunger pump, so that The temperature of the lubricating oil in the oil guide chamber 410 is still accurately monitored when the plunger pump is tilted.
  • the fixed assembly further includes a housing 600
  • the moving assembly further includes a connecting rod bearing bush 700
  • the temperature sensing assembly 100 further includes a third temperature sensor 130 .
  • the housing 600 is provided with a third detection hole, the third detection hole is located under the connecting rod bearing bush 700, the third temperature sensor 130 is arranged in the third detection hole, and the lubricating oil flowing through the connecting rod bearing bush 700 can drop to the third temperature sensor 130 .
  • the housing 600 includes a support plate 610 .
  • the support plate 610 protrudes toward the inside of the casing 600 .
  • the third detection hole is opened on the support plate 610 .
  • the support plate 610 may be a reinforcing plate disposed inside the casing 600 .
  • the lubricating oil flowing through the connecting rod bearing bush 700 drops on the third temperature sensor 130 under the action of gravity, and then the third temperature sensor 130 can be used to sense the temperature of the lubricating oil flowing through the connecting rod bearing bush 700, The monitoring and fault diagnosis of the working state of the connecting rod bearing bush 700 are realized.
  • the third detection holes correspond to the third temperature sensors 130 one by one, and the third detection holes are arranged along the rotation direction of the connecting rod bearing bush 700 .
  • the connecting rod bearing bush 700 rotates relative to the bearing 800 , so that the dripping position of lubricating oil flowing through the connecting rod bearing bush 700 is located in a fixed area in the housing 600 . Therefore, the accuracy of detecting the temperature of the lubricating oil flowing through the connecting rod bearing bush 700 can be improved by setting a plurality of third detection holes, so as to more accurately monitor the working state and fault diagnosis of the connecting rod bearing bush 700 .
  • the plunger pump further includes a bearing 800 and a bearing seat 900
  • the temperature sensing assembly 100 further includes a fourth temperature sensor 140
  • the bearing seat 900 is provided with a fourth detection hole
  • the fourth temperature sensor 140 is set in the fourth detection hole.
  • the fourth detection hole can be opened on the bearing seat 900 so that the fourth temperature sensor 140 can sense the temperature of the bearing 800 more accurately, thereby improving the accuracy of monitoring the working state of the bearing 800 and fault diagnosis.
  • bearing 800 may include crankshaft 810 and bearing housing 900 may include crankshaft bearing 910 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

一种柱塞泵,用于高压介质输送设备。该柱塞泵,包括固定组件、运动组件和故障诊断模块,运动组件设置于固定组件,且运动组件可相对固定组件运动。故障诊断模块包括温度感测组件(100)和处理单元(200),固定组件开设有温度检测孔,温度感测组件(100)至少部分位于温度检测孔,且温度感测组件(100)可与流经运动组件的润滑油接触;处理单元(200)与温度感测组件(100)相连,且处理单元(200)根据温度感测组件(100)感测的温度值对柱塞泵实施监测与故障诊断。该方案能解决柱塞泵需要盲目性拆解检修的问题。

Description

柱塞泵
交叉引用
本申请要求在2021年11月10日提交中国专利局、申请号为202122749185.4、发明名称为“柱塞泵”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及高压介质输送设备技术领域,尤其涉及一种柱塞泵。
背景技术
柱塞泵作为一种输送高压介质的设备,被广泛运用于油气开采。在油气开采作业过程中,可以通过柱塞泵将压裂介质高压泵送至地层,将地层压开,形成裂缝,从而达到油气田增产增注的目的。柱塞泵使用工况恶劣,设备承载高,且设备工作过程中伴有剧烈震动。因此,柱塞泵中的关键承载部件容易出现非正常损坏。如果不能及时发现柱塞泵中的关键承载部件的损坏,容易造成损坏部位在柱塞泵内扩展到其他部件,造成更为严重的损坏。
目前柱塞泵在油气田井场通常是根据作业人员生产计划和经验对柱塞泵进行顶替预防性检修。在检修过程中,需要拆解柱塞泵的零部件,以检测柱塞泵中零部件是否出现损伤。这种检修制度下,无论设备有无故障都要进行拆检,浪费人工、物料,具有盲目性。
申请内容
本申请公开一种柱塞泵,以解决柱塞泵需要盲目性拆解检修的问题。
为了解决上述问题,本申请采用下述技术方案:
本申请所述的柱塞泵,包括固定组件、运动组件和故障诊断模块,运动 组件设置于固定组件,且运动组件可相对固定组件运动。故障诊断模块包括温度感测组件和处理单元,固定组件开设有温度检测孔,温度感测组件至少部分位于温度检测孔,且温度感测组件可与流经运动组件的润滑油接触;处理单元与温度感测组件相连,且处理单元根据温度感测组件感测的温度值对柱塞泵实施监测与故障诊断。
进一步地,故障诊断模块还包括显示单元,显示单元与处理单元相连,且显示单元用于显示柱塞泵监测与故障诊断结果。
进一步地,固定组件包括十字头滑轨,运动组件包括十字头总成,十字头总成与十字头滑轨滑动配合。十字头滑轨设置有第一检测孔,第一检测孔贯穿十字头滑轨至十字头滑轨靠近十字头总成的一侧,温度感测组件包括第一温度传感器,第一温度传感器设置于第一检测孔。
进一步地,第一温度传感器靠近十字头总成的一端不凸出于十字头滑轨靠近十字头总成的一侧。
进一步地,十字头滑轨为筒状,第一检测孔的数量为多个,第一温度传感器与第一检测孔一一对应,第一检测孔沿十字头滑轨的周向设置。
进一步地,十字头滑轨设置有导油腔和第二检测孔,导油腔与十字头滑轨和十字头总成之间的间隙连通,且十字头滑轨和十字头总成之间的润滑油流向导油腔,第二检测孔与导油腔连通;温度感测组件包括第二温度传感器,第二温度传感器设置于第二检测孔。
进一步地,第二检测孔设置于导油腔的底部。
进一步地,固定组件还包括壳体,运动组件还包括连杆轴瓦,温度感测组件还包括第三温度传感器;壳体设置有第三检测孔,第三检测孔位于连杆轴瓦下方,第三温度传感器设置于第三检测孔,且流经连杆轴瓦的润滑油可滴落至第三温度传感器。
进一步地,第三检测孔的数量为多个,第三检测孔与第三温度传感器一一对应,且第三检测孔沿连杆轴瓦转动方向设置。
进一步地,柱塞泵还包括轴承和轴承座,温度感测组件还包括第四温度传感器,轴承座开设有第四检测孔,第四温度传感器设置于第四检测孔。
本申请采用的技术方案能够达到以下有益效果:
本申请实施例公开的通过在固定组件上开设温度监测孔,利用设置于温度检测孔内的温度感测组件监测流经运动组件的润滑油的温度。润滑油的其中一个目的是降低运动组件运动的摩擦阻力,另一方面是带走运动组件与固定组件之间相互摩擦产生的热量。故流经运动组件的润滑油的温度的变化可以反应运动组件的温度变化。并且,润滑油直接流经运动组件与固定组件之间,并与运动组件和固定组件直接发生热传递。因此,上述方案可以提高柱塞泵工作状态监测与故障诊断的准确性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请一种实施例公开的柱塞泵在第一视角的示意图;
图2为本申请一种实施例公开的柱塞泵在第二视角的示意图;
图3为本申请一种实施例公开的柱塞泵在第三视角的示意图;
图4为本申请一种实施例公开的柱塞泵的剖面示意图;
图5为本申请一种实施例公开的第一温度传感器的安装示意图;
图6为本申请一种实施例公开的第二温度传感器的安装示意图;
图7为本申请一种实施例公开的第三温度传感器的安装示意图;
图8为本申请一种实施例公开的第四温度传感器的安装示意图;
图9为本申请一种实施例公开的故障诊断模块的原理图。
附图标记说明:
100-温度感测组件;110-第一温度传感器;120-第二温度传感器;130- 第三温度传感器;140-第四温度传感器;
200-处理单元;
300-显示单元;
400-十字头滑轨;410-导油腔;420-连杆;
500-十字头总成;
600-壳体;610-支撑板;
700-连杆轴瓦;
800-轴承;810-曲轴;
900-轴承座;910-曲轴轴承;
1000-动力端总成;
1100-液力端总成;1110-阀箱;1120-柱塞;1130-上凡尔;1140-下凡尔;
1200-减速箱总成;
1300-动力端壳体。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下结合图1至图9,详细说明本申请各个实施例公开的技术方案。
本申请公开的柱塞泵包括固定组件、运动组件和故障诊断模块。可选地,运动组件设置于固定组件,且运动组件可相对固定组件运动。需要说明的是,本申请所述的固定组件可以为:在柱塞泵处于工作状态的情况下,柱塞泵中相对柱塞泵的壳体600固定的零部件。运动组件为:在柱塞泵处于工作状态的情况下,相对固定组件移动的零部件。运动组件可相对固定组件运动可以 为:运动组件相对固定组件滑移,也可以为运动组件相对固定组件转动。
参照图9,一种可选的实施例中,故障诊断模块包括温度感测组件100和处理单元200,固定组件开设有温度检测孔,温度感测组件100至少部分位于温度检测孔,且温度感测组件100可与流经运动组件的润滑油接触。处理单元200与温度感测组件100相连,且处理单元200根据温度感测组件100感测的温度值对柱塞泵实施监测与故障诊断。
温度感测组件100可与流经运动组件的润滑油接触可以为润滑油流经温度感测组件100,还可以为温度感测组件100至少部分浸入润滑油内,以使温度感测组件100可以感测流经运动组件的润滑油的温度。并将感测的温度值作为处理单元200的输入值,以对柱塞泵实施监测与故障诊断。因此,可以不用拆卸柱塞泵便能够对柱塞泵内各运动组件工作状态进行检测,并对柱塞泵进行故障诊断。进而无需通过盲目性拆解柱塞泵对柱塞泵进行检修。示例性地,处理单元200可以为单片机。
需要说明的是,由于润滑油在流经运动组件的过程中,运动组件会与润滑油之间发生热交换。在柱塞泵中运动组件以及与运动组件配合的固定组件出现故障的情况下,运动组件以及与运动组件配合的固定组件均会出现局部温度增加。在柱塞泵运动组件出现故障的情况下,流经运动组件的润滑油的温度会增加。因而,可以通过监测流经运动组件的润滑油的温度对柱塞泵实施监测与故障诊断。示例性地,在温度感测组件100感测的温度值位于预设温度范围外的情况下,柱塞泵对应的运动组件出现故障。在温度感测组件100感测的温度值位于预设温度范围内的情况下,柱塞泵对应的运动组件正常。具体的,运动组件对应的预设温度范围可以根据经验或大量实验得到。并且,对于不同的柱塞泵以及同一柱塞泵中不同位置的运动组件对应的预设温度范围存在差异。因此,本申请不限定预设温度范围。
需要说明的是,为了达到润滑的效果,润滑油通常情况下需要流经两个相对滑动的接触面之间,且运动组件与固定组件因为两个相对滑动的接触面 之间相互摩擦升温。因此,润滑油的温度更接近运动组件的温度,进而通过检测流经运动组件的温度可以提高对柱塞泵实施监测与故障诊断的准确性和及时性。
参照图9,故障诊断模块还包括显示单元300,显示单元300与处理单元200相连,且显示单元300用于显示柱塞泵监测与故障诊断结果。示例性地,显示单元可以为屏幕,也可以为报警灯。显示单元300的种类有很多。为此,本实施例不限定显示单元300的具体种类。
上述实施例通过设置显示单元300,进而可以便于作业人员及时观察柱塞泵的工作状态,以及柱塞泵出现故障的部位。一种可选地实施例中,故障诊断模块还可以包括报警器,报警器与处理单元200相连,以使报警器可以在柱塞泵出现故障的情况下发出报警。示例性地,报警器可以为报警灯,也可以为蜂鸣器。报警器的种类有很多,为此本实施例不限定报警器的具体种类。
参照图1至图4,柱塞泵包括动力端总成1000、液力端总成1100和减速箱总成1200组成,动力端总成1000由动力端壳体1300,十字头滑轨400和保持架组成,在动力端壳体1300内设有曲轴机构,曲轴机构包括曲轴810和曲轴轴承910,在十字头滑轨400内设有连杆420,十字头总成500等,液力端总成1100包括阀箱1110,柱塞1120,吸入阀,排出阀,上凡尔1130,下凡尔1140等,曲轴810在曲轴轴承910上转动,连杆420的一端与曲轴810连接,连杆420的一端与十字头总成500连接,十字头总成500的另一端通过拉杆与柱塞1120连接,外接动力源通过减速箱总成1200带动曲轴810作旋转运动,曲轴810的旋转运动最终转化为柱塞1120的直线往复运动,从而实现吸入阀,排出阀的启闭,即液力端总成1100吸入低压液体,排出高压液体。
参照图5,一种可选地实施例中,固定组件包括十字头滑轨400,运动组件包括十字头总成500,十字头总成500与十字头滑轨400滑动配合。十字 头滑轨400设置有第一检测孔,第一检测孔贯穿十字头滑轨400至十字头滑轨400靠近十字头总成500的一侧,温度感测组件100包括第一温度传感器110,第一温度传感器110设置于第一检测孔。
在柱塞泵处于工作状态的情况下,十字头总成500相对十字头滑轨400往复移动。第一检测孔贯穿十字头滑轨400至十字头滑轨400靠近十字头总成500的一侧,使得位于十字头总成500与十字头滑轨400之间的润滑油可以进入第一检测孔,进而与第一温度传感器110接触,使得第一温度传感器110可以感测十字头总成500与十字头滑轨400之间润滑油的温度,进而通过十字头总成500与十字头滑轨400之间润滑油的温度确定十字头总成500或十字头滑轨400是否出现故障。示例性地,第一温度传感器110可以与第一检测孔螺纹配合。
参照图5,第一温度传感器110靠近十字头总成500的一端不凸出于十字头滑轨400靠近十字头总成500的一侧,以避免第一温度传感器110与十字头总成500相撞。第一温度传感器110靠近十字头总成500的一端不凸出于十字头滑轨400靠近十字头总成500的一侧可以是第一温度传感器110靠近十字头总成500的一端内陷于十字头滑轨400靠近十字头总成500的一侧的表面,还可以是第一温度传感器110靠近十字头总成500的一端与十字头滑轨400靠近十字头总成500的一侧的表面齐平。
参照图4,十字头滑轨400为筒状,第一检测孔的数量为多个,第一温度传感器110与第一检测孔一一对应,第一检测孔沿十字头滑轨400的周向设置。本实施例中通过设置多个第一温度传感器110,可以通过处理单元200对多个第一温度传感器110感测的温度值进行处理,以得到更为精准的温度,另一方面可以对运动组件和不同部位实施监测与故障诊断。示例性地,可以通过将多个第一温度传感器110感测的温度值通过的平均至作为处理单元200的输入值。当然,还可以为其他处理方法,为此,本实施例不限定处理单元200处理多个第一温度传感器110感测的温度值的具体方法。
参照图6,十字头滑轨400设置有导油腔410和第二检测孔,导油腔410与十字头滑轨400和十字头总成500之间的间隙连通,且十字头滑轨400和十字头总成500之间的润滑油流向导油腔410,第二检测孔与导油腔410连通。温度感测组件100包括第二温度传感器120,第二温度传感器120设置于第二检测孔。实例性地,十字头滑轨400和十字头总成500之间的润滑油与十字头滑轨400和/或十字头总成500之间发生热交换后,进入导油腔410内,进而导油腔410内润滑油的温度随十字头滑轨400和十字头总成500的温度变化而变化。具体地,在十字头总成500出现故障的情况下,十字头总成500的温度升高,进而会导致导油腔410内润滑油的温度升高。因此,可以通过监测导油腔410内润滑油的温度对十字头总成500的工作状态实施监测与故障诊断。
参照图6,第二检测孔设置于导油腔410的底部,以确保导油腔410内的润滑油能够与第二温度传感器120充分接触,进而避免润滑油数量的减少影响对十字头总成500的工作状态的监测和故障诊断。一种可选地实施例中,第二检测孔的数量可以为多个,第二温度传感器120与第二检测孔一一对应,且第二检测孔分布于柱塞泵的不同侧,进而可以在柱塞泵倾斜的情况下仍然对导油腔410内润滑油的温度进行准确监测。
参照图4和图7,固定组件还包括壳体600,运动组件还包括连杆轴瓦700,温度感测组件100还包括第三温度传感器130。壳体600设置有第三检测孔,第三检测孔位于连杆轴瓦700下方,第三温度传感器130设置于第三检测孔,且流经连杆轴瓦700的润滑油可滴落至第三温度传感器130。示例性地,壳体600包括支撑板610。支撑板610凸向壳体600内侧。进一步地,第三检测孔开设于支撑板610上。进一步地,支撑板610可以为设置于壳体600内侧的加强板。该实施例中,流经连杆轴瓦700的润滑油在重力的作用下滴落在第三温度传感器130,进而可以利用第三温度传感器130感测流经连杆轴瓦700的润滑油的温度,实现对连杆轴瓦700工作状态的监测与故障 诊断。
第三检测孔的数量为多个,第三检测孔与第三温度传感器130一一对应,且第三检测孔沿连杆轴瓦700转动方向设置。参照图4,在柱塞泵处于工作状态的情况下,连杆轴瓦700相对轴承800转动,进而使得流经连杆轴瓦700的润滑油的滴落位置位于壳体600内的固定区域。因此,可以通过设置多个第三检测孔以提高检测流经连杆轴瓦700的润滑油的温度的精确度,进而更为精准地监测连杆轴瓦700的工作状态与故障诊断。
一种可选地实施例中,柱塞泵还包括轴承800和轴承座900,温度感测组件100还包括第四温度传感器140,轴承座900开设有第四检测孔,第四温度传感器140设置于第四检测孔。该实施例中,可以通过在轴承座900上开设第四检测孔,以使第四温度传感器140能够更为准确地感测轴承800的温度,进而提高对轴承800工作状态监测与故障诊断的精确度。示例性地,轴承800可以包括曲轴810,轴承座900可以包括曲轴轴承910。
本申请上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种柱塞泵,包括固定组件、运动组件和故障诊断模块,
    所述运动组件设置于所述固定组件,且所述运动组件可相对所述固定组件运动;
    所述故障诊断模块包括温度感测组件(100)和处理单元(200),所述固定组件开设有温度检测孔,所述温度感测组件(100)至少部分位于所述所述温度检测孔,且所述温度感测组件(100)可与流经所述运动组件的润滑油接触;所述处理单元(200)与所述温度感测组件(100)相连,且所述处理单元(200)根据所述温度感测组件(100)感测的温度值对所述柱塞泵实施监测与故障诊断。
  2. 根据权利要求1所述的柱塞泵,其中,所述故障诊断模块还包括显示单元(300),所述显示单元与所述处理单元(200)相连,且所述显示单元用于显示柱塞泵监测与故障诊断结果。
  3. 根据权利要求1所述的柱塞泵,其中,所述固定组件包括十字头滑轨(400),所述运动组件包括十字头总成(500),所述十字头总成(500)与所述十字头滑轨(400)滑动配合;
    所述十字头滑轨(400)设置有第一检测孔,所述第一检测孔贯穿十字头滑轨(400)至十字头滑轨(400)靠近所述十字头总成(500)的一侧,所述温度感测组件(100)包括第一温度传感器(110),所述第一温度传感器(110)设置于所述第一检测孔。
  4. 根据权利要求3所述的柱塞泵,其中,所述第一温度传感器(110)靠近所述十字头总成(500)的一端不凸出于十字头滑轨(400)靠近所述十字头总成(500)的一侧。
  5. 根据权利要求3所述的柱塞泵,其中,所述十字头滑轨(400)为筒状,所述第一检测孔的数量为多个,所述第一温度传感器(110)与所述第一检测孔一一对应,所述第一检测孔沿所述十字头滑轨(400)的周向设置。
  6. 根据权利要求3至5中任意一项所述的柱塞泵,其中,所述十字头滑轨(400)设置有导油腔(410)和第二检测孔,所述导油腔(410)与所述十字头滑轨(400)和所述十字头总成(500)之间的间隙连通,且所述所述十字头滑轨(400)和所述十字头总成(500)之间的润滑油流向所述导油腔(410),所述第二检测孔与所述导油腔(410)连通;所述温度感测组件(100)包括第二温度传感器(120),所述第二温度传感器(120)设置于所述第二检测孔。
  7. 根据权利要求6所述的柱塞泵,其中,所述第二检测孔设置于所述导油腔(410)的底部。
  8. 根据权利要求1至5中任意一项所述的柱塞泵,其中,所述固定组件还包括壳体(600),所述运动组件还包括连杆轴瓦(700),所述温度感测组件(100)还包括第三温度传感器(130);所述壳体(600)设置有第三检测孔,所述第三检测孔位于所述连杆轴瓦(700)下方,所述第三温度传感器(130)设置于所述第三检测孔,且流经所述连杆轴瓦(700)的润滑油可滴落至所述第三温度传感器(130)。
  9. 根据权利要求8所述的柱塞泵,其中,所述第三检测孔的数量为多个,所述第三检测孔与所述第三温度传感器(130)一一对应,且所述第三检测孔沿所述连杆轴瓦(700)转动方向设置。
  10. 根据权利要求1所述的柱塞泵,其中,所述柱塞泵还包括轴承(800)和轴承座(900),所述温度感测组件(100)还包括第四温度传感器(140),所述轴承座(900)开设有第四检测孔,所述第四温度传感器(140)设置于 所述第四检测孔。
PCT/CN2022/094456 2021-11-10 2022-05-23 柱塞泵 WO2023082593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122749185.4U CN216518566U (zh) 2021-11-10 2021-11-10 柱塞泵
CN202122749185.4 2021-11-10

Publications (1)

Publication Number Publication Date
WO2023082593A1 true WO2023082593A1 (zh) 2023-05-19

Family

ID=81529149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094456 WO2023082593A1 (zh) 2021-11-10 2022-05-23 柱塞泵

Country Status (3)

Country Link
US (1) US20230144116A1 (zh)
CN (1) CN216518566U (zh)
WO (1) WO2023082593A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3191280A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
CA3092859A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11193360B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
CN216518566U (zh) * 2021-11-10 2022-05-13 烟台杰瑞石油装备技术有限公司 柱塞泵
CN117072432B (zh) * 2023-10-17 2024-01-09 四川宏华电气有限责任公司 一种压裂泵阀箱调节支撑装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6102676A (en) * 1998-09-11 2000-08-15 Lincoln Industrial Corporation Pump
CN104929921A (zh) * 2015-05-12 2015-09-23 北京航空航天大学 一种分布式控制体体积温升模型的航空液压泵故障诊断方法
CN108087262A (zh) * 2017-12-13 2018-05-29 宁波修远机电有限公司 一种高压大流量柱塞泵
CN111441925A (zh) * 2020-04-03 2020-07-24 烟台杰瑞石油装备技术有限公司 一种轻型五缸柱塞泵
CN211116536U (zh) * 2019-11-26 2020-07-28 中石化四机石油机械有限公司 适用于固井压裂柱塞泵的智能控制装置
CN212479491U (zh) * 2020-07-23 2021-02-05 北京天地玛珂电液控制系统有限公司 一种柱塞泵及泵站
CN216518566U (zh) * 2021-11-10 2022-05-13 烟台杰瑞石油装备技术有限公司 柱塞泵

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108744A1 (en) * 2004-04-08 2005-11-17 Gas Machinery Research Council Measuring work performed by a reciprocating machine
US20120183247A1 (en) * 2011-01-14 2012-07-19 Remy Technologies, L.L.C. Electric machine with integrated bearing temperature sensor
US20140166132A1 (en) * 2012-12-14 2014-06-19 Arrow Engine Company Input expansion unit
US11073149B2 (en) * 2017-02-24 2021-07-27 Halliburton Energy Services, Inc. Pressure pump connecting rod monitoring
CN111502974A (zh) * 2020-05-28 2020-08-07 美国杰瑞国际有限公司 一种柱塞泵状态监测与故障诊断系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6102676A (en) * 1998-09-11 2000-08-15 Lincoln Industrial Corporation Pump
CN104929921A (zh) * 2015-05-12 2015-09-23 北京航空航天大学 一种分布式控制体体积温升模型的航空液压泵故障诊断方法
CN108087262A (zh) * 2017-12-13 2018-05-29 宁波修远机电有限公司 一种高压大流量柱塞泵
CN211116536U (zh) * 2019-11-26 2020-07-28 中石化四机石油机械有限公司 适用于固井压裂柱塞泵的智能控制装置
CN111441925A (zh) * 2020-04-03 2020-07-24 烟台杰瑞石油装备技术有限公司 一种轻型五缸柱塞泵
CN212479491U (zh) * 2020-07-23 2021-02-05 北京天地玛珂电液控制系统有限公司 一种柱塞泵及泵站
CN216518566U (zh) * 2021-11-10 2022-05-13 烟台杰瑞石油装备技术有限公司 柱塞泵

Also Published As

Publication number Publication date
US20230144116A1 (en) 2023-05-11
CN216518566U (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2023082593A1 (zh) 柱塞泵
US11047379B1 (en) Status monitoring and failure diagnosis system for plunger pump
JP4981906B2 (ja) シリンダ潤滑油を定量供給するシステムの潤滑装置、及びシリンダ潤滑油を定量供給する方法
US7518720B2 (en) Optical flow cell for use in high temperature and/or high pressure environments
US7860683B2 (en) Device and method for state monitoring in hydrostatic displacement units
CN109578459B (zh) 用于压裂装置的离合器及控制方法
US20230313792A1 (en) Plunger pump and pump station
JPS63105291A (ja) ポジテイブデイスプレースメントポンプの流量測定と監視とを行う装置及びこの装置に取り付けられるポンプ
DE102005059566B4 (de) Vorrichtung und Verfahren zur zustandsabhängigen Wartung von hydrostatischen Verdrängereinheiten
CN113607411A (zh) 扭矩限制器测试系统及方法
US11754067B2 (en) Fault detection and prediction
CN102713292A (zh) 借助活塞泵监督取样的装置
CN213392611U (zh) 一种根据声音变化诊断钻井泵泵阀故障系统
KR100742964B1 (ko) 발전기 터빈의 리프팅 오일펌프 검사장치
CN217305027U (zh) 阀箱检测系统
KR101885479B1 (ko) 윤활상태 자동 감시시스템
CN104963912B (zh) 一种能自动监测内泄漏的液压缸
CN210799335U (zh) 高温填料箱密封垫测漏结构
CN203822637U (zh) 容量调节机构检测装置
CN103527463B (zh) 可变排量机油泵偏心环偏摆角度的气测方法
CN207357303U (zh) 撕碎机及其机箱
KR102058887B1 (ko) 밸브 압력 검사기
CN213808035U (zh) 一种根据滞后角变化诊断钻井泵泵阀故障系统
CN213392612U (zh) 一种根据颜色变化诊断钻井泵活塞故障系统
CN220472681U (zh) 一种压裂车作业状态监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891403

Country of ref document: EP

Kind code of ref document: A1