WO2023082386A1 - 一种新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层及其制备方法 - Google Patents

一种新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层及其制备方法 Download PDF

Info

Publication number
WO2023082386A1
WO2023082386A1 PCT/CN2021/135276 CN2021135276W WO2023082386A1 WO 2023082386 A1 WO2023082386 A1 WO 2023082386A1 CN 2021135276 W CN2021135276 W CN 2021135276W WO 2023082386 A1 WO2023082386 A1 WO 2023082386A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
coating
entropy alloy
present
coating layer
Prior art date
Application number
PCT/CN2021/135276
Other languages
English (en)
French (fr)
Inventor
李长久
张瑞翔
易兰林
孔凡厚
梁雪
饶寅朝
Original Assignee
海南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南大学 filed Critical 海南大学
Publication of WO2023082386A1 publication Critical patent/WO2023082386A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only

Definitions

  • the invention belongs to the technical field of coatings, and in particular relates to a novel Fe-Cr-Co-Cu-Ti-Y multi-element high-entropy alloy coating and a preparation method thereof.
  • Aluminum alloy has small specific gravity, low density, fast heat transfer, high content in the earth's crust, and simple mining. It has been widely used in various industries. However, aluminum alloy has low hardness and poor wear resistance, and it is difficult to harden it by conventional heat treatment methods, so its application is restricted to a certain extent. At present, there are two main methods to improve the wear resistance of aluminum alloy surface: one is to improve the overall wear resistance of aluminum alloy; the other is to improve the wear resistance of aluminum alloy surface through surface modification. Commonly used aluminum alloy surface modification techniques include anodizing, electroplating, electroless plating, chemical oxidation, physical vapor deposition (PVD), chemical vapor deposition (CVD), spraying, ion implantation, micro-arc oxidation, etc. However, the surface coatings obtained by these methods on aluminum alloys are thin or the adhesion strength between the coating and the substrate is not high, and it is easy to crack and peel off, which belongs to simple mechanical bonding or diffusion bonding.
  • the object of the present invention is to provide a kind of novel Fe-Cr-Co-Cu-Ti-Y multi-element high-entropy alloy coating and preparation method thereof, the novel Fe-Cr-Co-Cu prepared by the method provided by the invention -Ti-Y multi-element high-entropy alloy coating has better performance.
  • the invention provides a method for preparing a novel Fe-Cr-Co-Cu-Ti-Y multi-element high-entropy alloy coating, comprising:
  • the powder coating includes: mixed powder and solvent
  • the mixed powder includes: Fe powder, Co powder, Cr powder, Cu powder, Ti powder and Y powder.
  • the base is aluminum alloy.
  • the molar ratio of the Fe powder, Co powder, Cr powder, Cu powder, Ti powder and Y powder is (56 ⁇ 84):(59 ⁇ 118):(52 ⁇ 78):(64 ⁇ 96): (48 ⁇ 57): (13.35 ⁇ 22.25).
  • the particle size of the mixed powder is 300-500 mesh.
  • the solvent is alcohol
  • the thickness of the coating is 250-450 microns.
  • the drying temperature is 80-120°C.
  • the laser cladding is carried out under the protection of an argon atmosphere.
  • the current during the laser cladding process is 80-120A
  • the scanning speed is 100-400mm/min
  • the pulse width is 2-5ms
  • the frequency is 5-20Hz
  • the defocus is 1-5mm.
  • the present invention provides a novel Fe-Cr-Co-Cu-Ti-Y multi-element high-entropy alloy coating prepared by the method described in the above technical solution.
  • the invention prepares a novel composite high-entropy alloy coating through laser cladding to improve its poor performance.
  • the invention prepares the novel high-entropy alloy coating by laser cladding, which can improve its poor performance, change the metallographic structure, improve its surface strength and hardness, and increase the service life of aluminum and aluminum alloy parts.
  • the present invention prepares the multi-principal element alloy coating on the surface of aluminum alloy by laser cladding to improve the surface performance of aluminum alloy.
  • the selected element powders include: pure Fe powder, pure Cr powder (chromium), pure Co powder (cobalt), pure Cu powder, pure Ti powder, Y powder (yttrium), these powders are analytically pure (AR), and the particle size is about 300-500 mesh.
  • Fe can increase the mixing entropy value; Cr can significantly improve the strength and hardness of the alloy, and at the same time make the alloy have strong corrosion resistance, Cr can also react with Al to improve the oxidation resistance of the alloy; Co has excellent high temperature resistance and corrosion resistance It can also significantly improve the strength; the addition of Ti element makes it easier for the alloy to form a BCC structure, and the Y element can enhance the overall shape and toughness.
  • the alloy system in order to have a sufficient amount of ductile phase formation and prevent cracking, from the perspective of mixing enthalpy, try to select elements with smaller mixing enthalpy, generally between -40 ⁇ +15kJ/mol ; Beautiful surface shape; can form a uniform cladding layer.
  • the high-entropy alloy in the present invention is also called a multi-principal element alloy.
  • a high-entropy alloy is broadly defined as a solid solution composed of 5 or more elements, and the atomic fraction of its main elements ranges from 5% to 35%. ; High-entropy alloys have the characteristics of high entropy and difficult diffusion of constituent element atoms, and it is easy to obtain solid solution phases and nanostructures with high thermal stability, even amorphous structures, and their mechanical properties are better.
  • the laser beam has good coherence, strong directionality and high energy density
  • the surface modification of the material can use laser.
  • Laser surface modification technology refers to the use of laser irradiation to produce a series of thin layers of physical and chemical changes to improve the comprehensive performance of the material surface.
  • Laser surface modification technology has the advantages of fast cooling speed, short laser processing time, no special requirements on workpiece size, easy to obtain ideal surface modified layer structure, easy to achieve selective alloying, automation, etc., and can obtain fine grains on the surface of aluminum alloy. , Uniform and dense strengthening layer, and the strengthening layer and the matrix are metallurgically bonded.
  • the invention provides a method for preparing a novel Fe-Cr-Co-Cu-Ti-Y multi-element high-entropy alloy coating, comprising:
  • the coating is subjected to laser cladding to obtain a novel Fe-Cr-Co-Cu-Ti-Y multi-element high-entropy alloy coating.
  • the base is preferably an aluminum alloy, more preferably a 1050 aluminum alloy; the Al content in the 1050 aluminum alloy is preferably greater than or equal to 99.5wt%, more preferably 99.5wt% to 99.8wt%, most preferably 99.6 wt% ⁇ 99.7wt%.
  • the method for the treatment preferably includes:
  • the substrate is sanded, degreased, washed and dried.
  • the grinding is preferably done with sandpaper, more preferably with 120-800 mesh sandpaper to smooth the substrate.
  • the method for removing oil stains is preferably to use acetone to wash away oil stains.
  • the cleaning method is preferably alcohol cleaning.
  • the drying is preferably blow drying.
  • the powder coating includes: mixed powder and solvent.
  • the mixed powder includes: Fe powder, Co powder, Cr powder, Cu powder, Ti powder and Y powder.
  • the purity of the Fe powder, Co powder, Cr powder, Cu powder, Ti powder and Y powder is preferably analytically pure.
  • the particle size of the Fe powder, Co powder, Cr powder, Cu powder, Ti powder and Y powder is preferably 300-500 mesh, more preferably 350-450 mesh, and most preferably 400 mesh. head.
  • the molar ratio of the Fe powder, Co powder, Cr powder, Cu powder, Ti powder and Y powder is preferably (56 ⁇ 84):(59 ⁇ 118):(52 ⁇ 78):(64 ⁇ 96):(48 ⁇ 57):(13.35 ⁇ 22.25), more preferably (60 ⁇ 80):(70 ⁇ 110):(55 ⁇ 75):(70 ⁇ 90):(50 ⁇ 55):(15 ⁇ 20), most preferably (65 ⁇ 75):(80 ⁇ 100):(60 ⁇ 70):(75 ⁇ 85):(52 ⁇ 53):(16 ⁇ 18).
  • the solvent is preferably alcohol.
  • the mass ratio of the mixed powder to the solvent is preferably 1:(1-3), more preferably 1:(1.5-2.5), and most preferably 1:2.
  • the preparation method of the powder coating preferably includes:
  • the mixed powder is mixed with a solvent and then ground to obtain a powder coating.
  • the grinding is preferably carried out in a mortar; the grinding time is preferably 0.5 to 2 hours, more preferably 1 to 1.5 hours, most preferably 1.2 to 1.3 hours; Thick and mushy.
  • the thickness of the coating is preferably 250-450 microns, more preferably 300-400 microns, most preferably 350 microns; it is preferable to use a scraper to control the coating thickness during the coating process.
  • the drying method is preferably drying, more preferably drying in a resistance furnace; the resistance furnace is preferably a KSL-1200X box-type resistance furnace.
  • the drying temperature is preferably 80-120°C, more preferably 90-110°C, most preferably 100°C; the drying holding time is preferably 1-4 hours, more preferably 2-3 hours. hours, most preferably 2.5 hours; during the drying process, the temperature is preferably increased by 8-12°C per minute to 80-120°C, more preferably by 9-11°C per minute, most preferably by 10°C per minute.
  • the laser cladding is preferably performed under the protection of an argon atmosphere.
  • the laser cladding preferably adopts LWS-1000 Nd:YAG laser welding machine; the laser working substance of the LWS-1000 Nd:YAG laser welding machine is Nd:YAG, and the laser wavelength is 1.064 microns;
  • the output power is 0-1000W, the pulse frequency is 0-100Hz, the pulse width is 0.5-10ms, the working current is 100-450A, the beam divergence angle is ⁇ 15mrad, the power fluctuation is ⁇ 3%, the spot diameter is 0.6-1.0mm, and the working table travel is 400mm *600mm*300mm.
  • the current in the laser cladding process is preferably 80-120A, more preferably 90-110A, most preferably 100A;
  • the scanning speed is preferably 100-400mm/min, more preferably 150-350mm/min , more preferably 200-300mm/min, most preferably 250mm/min;
  • pulse width is preferably 2-5ms, more preferably 3-4ms;
  • frequency is preferably 5-20Hz, more preferably 10-15Hz, most preferably 12 ⁇ 13Hz;
  • the defocus amount is preferably 1 ⁇ 5mm, more preferably 2 ⁇ 4mm, most preferably 3mm;
  • the size of the cladding area is preferably (5 ⁇ 15)mm*(5 ⁇ 15)mm, more preferably (8 ⁇ 12) mm*(8-12) mm, most preferably 10 mm*10 mm.
  • the present invention provides a novel Fe-Cr-Co-Cu-Ti-Y multi-element high-entropy alloy coating prepared by the method described in the above technical scheme; the novel Fe-Cr-Co-Cu-Ti-Y multi-element
  • the composition range of the high-entropy alloy coating is consistent with the composition range of the mixed powder described in the above technical solution, and the thickness range is consistent with the coating thickness range described in the above technical solution, which will not be repeated here.
  • the new coating is clad under the above-mentioned optimized process parameters.
  • the hardness of the cladding layer is significantly improved compared with the base material, and the maximum hardness is increased by 24 times. Up to 30% higher than the base material.
  • the present invention prepares the multi-principal element alloy coating on the surface of aluminum alloy by laser cladding to improve the surface performance of aluminum alloy.
  • the selected element powders include: pure Fe powder, pure Cr powder (chromium), pure Co powder (cobalt), pure Cu powder, pure Ti powder, Y powder (yttrium), these powders are analytically pure (AR), and the particle size is about 300-500 mesh.
  • Fe can increase the mixing entropy value; Cr can significantly improve the strength and hardness of the alloy, and at the same time make the alloy have strong corrosion resistance, Cr can also react with Al to improve the oxidation resistance of the alloy; Co has excellent high temperature resistance and corrosion resistance It can also significantly improve the strength; the addition of Ti element makes it easier for the alloy to form a BCC structure, and the Y element can enhance the overall shape and toughness.
  • the alloy system in order to have a sufficient amount of ductile phase formation and prevent cracking, from the perspective of mixing enthalpy, try to select elements with smaller mixing enthalpy, generally between -40 ⁇ +15kJ/mol ; Beautiful surface shape; can form a uniform cladding layer.
  • the substrate used in the following examples of the present invention is an aluminum sheet product provided by Beijing Jiaming Platinum Industry Nonferrous Metals Co., Ltd., and the equipment used in the laser cladding process is an LWS-1000 Nd:YAG laser welder; LWS- The laser working substance of the 1000 type Nd:YAG laser welding machine is Nd:YAG, the laser wavelength is 1.064 microns; the output power is 0-1000W, the pulse frequency is 0-100Hz, the pulse width is 0.5-10ms, the working current is 100-450A, the beam Divergence angle ⁇ 15mrad, power fluctuation ⁇ 3%, spot diameter 0.6 ⁇ 1.0mm, table travel 400mm*600mm*300mm.
  • laser cladding is carried out on the above coating by using LWS-1000 Nd:YAG laser welding machine.
  • the process parameters are: current 90A, scanning speed 200mm/min, pulse width 2ms, frequency 10Hz, The defocus amount is 1 mm; Fe-Cr-Co-Cu-Ti-Y multi-element high-entropy alloy coating is obtained.
  • the performance of the Fe-Cr-Co-Cu-Ti-Y multi-element high-entropy alloy coating prepared in the embodiment of the present invention is tested.
  • the detection method of the surface hardness is: use VTD401 digital micro-Vickers hardness tester to measure the laser cladding layer
  • the load is 100gf
  • the loading time is 10s
  • the hardness test direction is the horizontal direction
  • the hardness measurement is carried out along the cladding layer in the horizontal direction, with one point at an interval of 0.5mm, and the measurement is 5 to 6 on the cladding layer. points, measure 3 to 4 points on the base metal, and take the average value.
  • the hardness test method at the joint between the coating and the substrate is: use the VTD401 digital micro Vickers hardness tester to measure the microhardness of the cross-section of the laser cladding layer, the load is 100gf, and the loading time is 10s; the direction of the hardness test is vertical Direction, measure one point at an interval of 0.25mm in the vertical direction, measure 5 to 6 points on the cladding layer, and measure 3 to 4 points on the base metal, and take the average value.
  • the detection method of the coefficient of friction is: use the MMW-1A microcomputer-controlled universal friction and wear testing machine of Jinan Yihua Tribology Testing Technology Co., Ltd. to carry out the wear test, the load is 20N, the speed is 100r/min, the test time is 15min, and the wear quality is An electronic scale with an accuracy of 10 -4 g is used for measurement; the sample preparation is The corresponding grinding ring uses the No. 45 steel grinding ring after heat treatment; the specific test conditions are: the rotating speed is 100rpm/min, the test force is maintained under a load of 20N, and the test is carried out in the form of dry friction. The time is 20 minutes.
  • the present invention improves the surface properties of the aluminum alloy by preparing a multi-principal alloy coating on the surface of the aluminum alloy by laser cladding.
  • the selected element powders include: pure Fe powder, pure Cr powder (chromium), pure Co Powder (cobalt), pure Cu powder, pure Ti powder, Y powder (yttrium), these powders are analytically pure (AR), and the particle size is about 300-500 mesh.
  • Fe can increase the mixing entropy value; Cr can significantly improve the strength and hardness of the alloy, and at the same time make the alloy have strong corrosion resistance, Cr can also react with Al to improve the oxidation resistance of the alloy; Co has excellent high temperature resistance and corrosion resistance It can also significantly improve the strength; the addition of Ti element makes it easier for the alloy to form a BCC structure, and the Y element can enhance the overall shape and toughness.
  • the alloy system in order to have a sufficient amount of ductile phase formation and prevent cracking, from the perspective of mixing enthalpy, try to select elements with smaller mixing enthalpy, generally between -40 ⁇ +15kJ/mol ; Beautiful surface shape; can form a uniform cladding layer.

Abstract

一种Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层及其制备方法,制备方法包括:在基体表面涂覆粉末涂料后干燥,得到涂层;将所述涂层进行激光熔覆,得到Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层;所述粉末涂料包括:混合粉体和溶剂;所述混合粉体包括:Fe粉,Co粉,Cr粉,Cu粉,Ti粉和Y粉。通过激光熔覆制备得到了一种复合高熵合金涂层,提高了表面强度硬度,提高了铝及铝合金零部件的使用寿命。

Description

一种新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层及其制备方法
本申请要求于2021年11月15日提交中国专利局、申请号为202111347065.X、发明名称为“一种新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于涂层技术领域,尤其涉及一种新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层及其制备方法。
背景技术
铝合金比重小、密度低、传热快,且地壳中含量高、开采简单,已经大规模应用于各行各业。但是铝合金硬度低,耐磨性也差,而且常规的热处理方法很难对其进行硬化处理,所以在一定程度上制约了其应用。目前,提高铝合金表面耐磨损性的两个主要方法为:一种是提高铝合金的整体耐磨性;另一种是通过表面改性改善铝合金表面的耐磨损性。常用的铝合金表面改性技术包括阳极氧化,电镀,化学镀,化学氧化,物理气相沉积(PVD),化学气相沉积(CVD),喷涂,离子注入,微弧氧化法等。然而,通过这些方法在铝合金上获得的表面涂层较薄或者涂层与基材的粘合强度不高,并且易于破裂和剥离,属于简单的机械粘合或扩散粘合。
发明内容
有鉴于此,本发明的目的在于提供一种新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层及其制备方法,本发明提供的方法制备的新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层具有较好的性能。
本发明提供了一种新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层的制备方法,包括:
在基体表面涂覆粉末涂料后干燥,得到涂层;
将所述涂层进行激光熔覆,得到新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层;
所述粉末涂料包括:混合粉体和溶剂;
所述混合粉体包括:Fe粉,Co粉,Cr粉,Cu粉,Ti粉和Y粉。
优选的,所述基体为铝合金。
优选的,所述Fe粉,Co粉,Cr粉,Cu粉,Ti粉和Y粉的摩尔比为(56~84):(59~118):(52~78):(64~96):(48~57):(13.35~22.25)。
优选的,所述混合粉体的粒度为300~500目。
优选的,所述溶剂为酒精。
优选的,所述涂覆的厚度为250~450微米。
优选的,所述干燥的温度为80~120℃。
优选的,所述激光熔覆在氩气气氛的保护下进行。
优选的,所述激光熔覆过程中的电流为80~120A,扫描速度为100~400mm/min,脉宽为2~5ms,频率为5~20Hz,离焦量为1~5mm。
本发明提供了一种上述技术方案所述的方法制备得到的新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层。
本发明针对铝合金较低的表面硬度和较差的耐磨性,通过激光熔覆,制备了一种新型复合高熵合金涂层以改善其不良性能。本发明通过采用激光熔覆制备新型高熵合金涂层可改善其不良性能,改变金相组织,提高其表面强度硬度,提高铝及铝合金零部件的使用寿命。
本发明通过激光熔覆在铝合金表面制备多主元合金涂层来改善铝合金的表面性能,选取的元素粉末有:纯Fe粉、纯Cr粉(铬)、纯Co粉(钴)、纯Cu粉、纯Ti粉、Y粉末(钇),这些粉末采用分析纯(AR),粒度大小约为300~500目。Fe能增加混合熵值;Cr能显著提高合金的强度、硬度,同时使合金有较强的耐腐蚀能力,Cr也能和Al反应提高合金抗氧化性;Co有优良的耐高温性能和耐蚀性,也能显著提高强度;Ti元素的加入让合金更容易形成BCC结构,Y元素可以增强整体的塑形、韧性。本发明在合金体系的选择上为了有足够量的韧性相生成,防止开裂,从混合焓的角度出发,尽量选择相互之间混合焓较小的元素,一般在-40~+15kJ/mol之间;表面成形美观;能形成均匀的熔覆层。
本发明中的高熵合金,又称为多主元合金,高熵合金宽泛地定义为由5种或者5种以上的元素组成的一种固溶体,其主要元素原子分数范围在5%~35%; 高熵合金具有较高的熵值和组成元素原子不易扩散的特点,易获得高热稳定性的固溶相和纳米结构,甚至是非晶结构,其力学性能较好。
在本发明中,激光束的相干性好,方向性强、具有高能量密度,材料的表面改性可用激光。激光表面改性技术是指使用激光照射,以产生一系列的物理变化和化学变化的薄层,用以提高材料表面综合性能。激光表面改性技术冷却速度快、激光加工时间短、对工件尺寸无特殊要求、易得到理想的表面改性层组织、易实现选区合金化、自动化等优点,能在铝合金表面获得晶粒细小、均匀致密的强化层,且强化层与基体间属于冶金结合。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员经改进或润饰的所有其它实例,都属于本发明保护的范围。应理解,本发明实施例仅用于说明本发明的技术效果,而非用于限制本发明的保护范围。实施例中,所用方法如无特别说明,均为常规方法。
本发明提供了一种新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层的制备方法,包括:
在基体表面涂覆粉末涂料后干燥,得到涂层;
将所述涂层进行激光熔覆,得到新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层。
在本发明中,所述基体优选为铝合金,更优选为1050铝合金;所述1050铝合金中Al含量优选大于等于99.5wt%,更优选为99.5wt%~99.8wt%,最优选为99.6wt%~99.7wt%。
在本发明中,优选对所述基体进行处理再涂覆粉末涂料,所述处理的方法优选包括:
将所述基体进行打磨、去油污、清洗和干燥。
在本发明中,所述打磨优选采用砂纸打磨,更优选分别用120~800目的砂纸将基体打磨平整。
在本发明中,所述去油污的方法优选为采用丙酮洗去油污。
在本发明中,所述清洗的方法优选为采用酒精清洗。
在本发明中,所述干燥优选为吹干。
在本发明中,所述粉末涂料包括:混合粉体和溶剂。
在本发明中,所述混合粉体包括:Fe粉,Co粉,Cr粉,Cu粉,Ti粉和Y粉。
在本发明中,所述Fe粉,Co粉,Cr粉,Cu粉,Ti粉和Y粉(混合粉体)的纯度优选为分析纯。
在本发明中,所述Fe粉,Co粉,Cr粉,Cu粉,Ti粉和Y粉(混合粉体)的粒度优选为300~500目,更优选为350~450目,最优选为400目。
在本发明中,所述Fe粉,Co粉,Cr粉,Cu粉,Ti粉和Y粉的摩尔比优选为(56~84):(59~118):(52~78):(64~96):(48~57):(13.35~22.25),更优选为(60~80):(70~110):(55~75):(70~90):(50~55):(15~20),最优选为(65~75):(80~100):(60~70):(75~85):(52~53):(16~18)。
在本发明中,所述溶剂优选为酒精。
在本发明中,所述混合粉体和溶剂的质量比优选为1:(1~3),更优选为1:(1.5~2.5),最优选为1:2。
在本发明中,所述粉末涂料的制备方法优选包括:
将混合粉体和溶剂混合后研磨,得到粉末涂料。
在本发明中,所述研磨优选在研钵中进行;所述研磨的时间优选为0.5~2小时,更优选为1~1.5小时,最优选为1.2~1.3小时;所述研磨优选研磨成不粘稠糊状。
在本发明中,所述涂覆的厚度优选为250~450微米,更优选为300~400微米,最优选为350微米;优选在涂覆过程中采用刮刀控制涂覆厚度。
在本发明中,所述干燥的方法优选为烘干,更优选在电阻炉中烘干;所述电阻炉优选为KSL-1200X箱式电阻炉。在本发明中,所述干燥的温度优选为80~120℃,更优选为90~110℃,最优选为100℃;所述干燥的保温时间优选为1~4小时,更优选为2~3小时,最优选为2.5小时;所述干燥过程中优选温度每分钟上升8~12℃升温至80~120℃,更优选为每分钟上升9~11℃,最优选为每分钟上升10℃。
在本发明中,所述激光熔覆优选在氩气气氛的保护下进行。在本发明中,所述激光熔覆优选采用LWS-1000型Nd:YAG激光焊机;所述LWS-1000型Nd:YAG激光焊机的激光工作物质为Nd:YAG,激光波长为1.064微米;输出功率 为0~1000W,脉冲频率为0~100Hz,脉冲宽度0.5~10ms,工作电流100~450A,光束发散角<15mrad,功率波动<3%,光斑直径为0.6~1.0mm,工作台行程400mm*600mm*300mm。
在本发明中,所述激光熔覆过程中的电流优选为80~120A,更优选为90~110A,最优选为100A;扫描速度优选为100~400mm/min,更优选为150~350mm/min,更优选为200~300mm/min,最优选为250mm/min;脉宽优选为2~5ms,更优选为3~4ms;频率优选为5~20Hz,更优选为10~15Hz,最优选为12~13Hz;离焦量优选为1~5mm,更优选为2~4mm,最优选为3mm;熔覆区域尺寸优选为(5~15)mm*(5~15)mm,更优选为(8~12)mm*(8~12)mm,最优选为10mm*10mm。
本发明提供了一种上述技术方案所述的方法制备得到的新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层;所述新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层的成分范围与上述技术方案所述混合粉体的成分范围一致,厚度范围与上述技术方案所述涂覆厚度范围一致,在此不再赘述。
本发明在上述优化工艺参数下熔覆新型涂层,熔覆层硬度较基材提升明显,最高硬度提升了24倍,熔覆层中部的平均硬度较基材硬度提升了16倍,耐磨性较基材最高提升了30%。
本发明通过激光熔覆在铝合金表面制备多主元合金涂层来改善铝合金的表面性能,选取的元素粉末有:纯Fe粉、纯Cr粉(铬)、纯Co粉(钴)、纯Cu粉、纯Ti粉、Y粉末(钇),这些粉末采用分析纯(AR),粒度大小约为300~500目。Fe能增加混合熵值;Cr能显著提高合金的强度、硬度,同时使合金有较强的耐腐蚀能力,Cr也能和Al反应提高合金抗氧化性;Co有优良的耐高温性能和耐蚀性,也能显著提高强度;Ti元素的加入让合金更容易形成BCC结构,Y元素可以增强整体的塑形、韧性。本发明在合金体系的选择上为了有足够量的韧性相生成,防止开裂,从混合焓的角度出发,尽量选择相互之间混合焓较小的元素,一般在-40~+15kJ/mol之间;表面成形美观;能形成均匀的熔覆层。
本发明以下实施例中所采用的基材为北京佳铭铂业有色金属有限公司提供的铝片产品,激光熔覆过程中所采用的设备为LWS-1000型Nd:YAG激光焊 机;LWS-1000型Nd:YAG激光焊机的激光工作物质为Nd:YAG,激光波长为1.064微米;输出功率为0~1000W,脉冲频率为0~100Hz,脉冲宽度0.5~10ms,工作电流100~450A,光束发散角<15mrad,功率波动<3%,光斑直径为0.6~1.0mm,工作台行程400mm*600mm*300mm。
实施例1~5
分别用120目到800目砂纸将铝片打磨平整,用丙酮洗去油污,然后用酒精清洗,并吹干,作为基板。
按照表1中的各原料用量将纯Cr粉、纯Co粉、纯Cu粉、纯Ti粉和Y粉末(各粉末的粒度为300~500目)使用酒精将各原料粉末混和,在研钵中研磨约1h后成不粘稠糊状,得到涂料。
将上述涂料在上述基板上预置一层涂层,用刮刀控制涂层厚度为250μm;涂覆后放入KSL-1200X箱式电阻炉中烘干,在KSL-1200X箱式电阻炉中每分钟上升10℃,升温至100℃后保温4h,使涂层干燥。
在氩气氛围保护下,采用LWS-1000型Nd:YAG激光焊机对上述涂层进行激光熔覆激光熔覆,工艺参数为:电流90A,扫描速度200mm/min,脉宽2ms,频率10Hz,离焦量1mm;得到Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层。
对本发明实施例制备得到的Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层进行性能检测,表面硬度的检测方法为:利用VTD401数显显微维氏硬度计测量激光熔覆层横截面的显微硬度,载荷为100gf,加载时间为10s;硬度测试方向为水平方向,水平方向沿着熔覆层进行硬度测量,间隔0.5mm打一个点,在熔覆层上测5~6个点,在母材上测3~4个点,取平均值。
涂层与基材连接处的硬度检测方法为:利用VTD401数显显微维氏硬度计测量激光熔覆层横截面的显微硬度,载荷为100gf,加载时间为10s;硬度测试方向为竖直方向,竖直方向间隔0.25mm测一个点,在熔覆层上测5~6个点,在母材上测3~4个点,取平均值。
摩擦系数的检测方法为:采用济南益华摩擦学测试技术有限公司的MMW-1A微机控制万能摩擦磨损试验机进行磨损试验,载荷为20N,转速为100r/min,测试时间为15min,磨损质量用精度为10 -4g的电子秤进行测量;试样制备为
Figure PCTCN2021135276-appb-000001
的圆柱体,与之对应的对磨环使用热处理之后 的45号钢对磨环;具体试验条件为:转速100rpm/min,试验力在20N的载荷下保持载荷,以干摩擦的形式进行,试验时间20min。
检测结果如表1所示。
表1 本发明实施例1~5中各金属粉末用量及制备的涂层性能检测结果
Figure PCTCN2021135276-appb-000002
由以上实施例可知,本发明通过激光熔覆在铝合金表面制备多主元合金涂层来改善铝合金的表面性能,选取的元素粉末有:纯Fe粉、纯Cr粉(铬)、纯Co粉(钴)、纯Cu粉、纯Ti粉、Y粉末(钇),这些粉末采用分析纯(AR),粒度大小约为300~500目。Fe能增加混合熵值;Cr能显著提高合金的强度、硬度,同时使合金有较强的耐腐蚀能力,Cr也能和Al反应提高合金抗氧化性;Co有优良的耐高温性能和耐蚀性,也能显著提高强度;Ti元素的加入让合金更容易形成BCC结构,Y元素可以增强整体的塑形、韧性。本发明在合金体系的选择上为了有足够量的韧性相生成,防止开裂,从混合焓的角度出发,尽量选择相互之间混合焓较小的元素,一般在-40~+15kJ/mol之间;表面成形美观;能形成均匀的熔覆层。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层的制备方法,包括:
    在基体表面涂覆粉末涂料后干燥,得到涂层;
    将所述涂层进行激光熔覆,得到新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层;
    所述粉末涂料包括:混合粉体和溶剂;
    所述混合粉体包括:Fe粉,Co粉,Cr粉,Cu粉,Ti粉和Y粉。
  2. 根据权利要求1所述的方法,其特征在于,所述基体为铝合金。
  3. 根据权利要求1所述的方法,其特征在于,所述Fe粉,Co粉,Cr粉,Cu粉,Ti粉和Y粉的摩尔比为(56~84):(59~118):(52~78):(64~96):(48~57):(13.35~22.25)。
  4. 根据权利要求1所述的方法,其特征在于,所述混合粉体的粒度为300~500目。
  5. 根据权利要求1所述的方法,其特征在于,所述溶剂为酒精。
  6. 根据权利要求1所述的方法,其特征在于,所述涂覆的厚度为250~450微米。
  7. 根据权利要求1所述的方法,其特征在于,所述干燥的温度为80~120℃。
  8. 根据权利要求1所述的方法,其特征在于,所述激光熔覆在氩气气氛的保护下进行。
  9. 根据权利要求1所述的方法,其特征在于,所述激光熔覆过程中的电流为80~120A,扫描速度为100~400mm/min,脉宽为2~5ms,频率为5~20Hz,离焦量为1~5mm。
  10. 一种权利要求1所述的方法制备得到的新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层。
PCT/CN2021/135276 2021-11-15 2021-12-03 一种新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层及其制备方法 WO2023082386A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111347065.X 2021-11-15
CN202111347065.XA CN114032437B (zh) 2021-11-15 2021-11-15 一种新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层及其制备方法

Publications (1)

Publication Number Publication Date
WO2023082386A1 true WO2023082386A1 (zh) 2023-05-19

Family

ID=80144337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135276 WO2023082386A1 (zh) 2021-11-15 2021-12-03 一种新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层及其制备方法

Country Status (2)

Country Link
CN (1) CN114032437B (zh)
WO (1) WO2023082386A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104141127A (zh) * 2013-10-10 2014-11-12 天津大学 高熵合金粉末及熔覆层制备方法和应用
CN104313572A (zh) * 2014-11-14 2015-01-28 重庆理工大学 一种铝合金表面激光合金化Al-Cr-Ti-Si-Cu多主元合金涂层的制备方法
CN105624515A (zh) * 2014-10-30 2016-06-01 安旭龙 一种高熵合金涂层材料及其制备方法
CN106119835A (zh) * 2016-07-28 2016-11-16 四川建筑职业技术学院 一种等轴晶高熵合金涂层及其制备方法
CN113293370A (zh) * 2021-05-28 2021-08-24 皖西学院 一种铝合金表面激光熔覆的高熵合金涂层和制备方法
US20210260704A1 (en) * 2020-02-24 2021-08-26 Honda Motor Co., Ltd. Multi component solid solution high-entropy alloys

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104141127A (zh) * 2013-10-10 2014-11-12 天津大学 高熵合金粉末及熔覆层制备方法和应用
CN105624515A (zh) * 2014-10-30 2016-06-01 安旭龙 一种高熵合金涂层材料及其制备方法
CN104313572A (zh) * 2014-11-14 2015-01-28 重庆理工大学 一种铝合金表面激光合金化Al-Cr-Ti-Si-Cu多主元合金涂层的制备方法
CN106119835A (zh) * 2016-07-28 2016-11-16 四川建筑职业技术学院 一种等轴晶高熵合金涂层及其制备方法
US20210260704A1 (en) * 2020-02-24 2021-08-26 Honda Motor Co., Ltd. Multi component solid solution high-entropy alloys
CN113293370A (zh) * 2021-05-28 2021-08-24 皖西学院 一种铝合金表面激光熔覆的高熵合金涂层和制备方法

Also Published As

Publication number Publication date
CN114032437A (zh) 2022-02-11
CN114032437B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
Li et al. Microstructure and properties of Ti/TiBCN coating on 7075 aluminum alloy by laser cladding
CN105112909B (zh) 一种添加CeO2的铁基Cr3C2激光熔覆涂层及其制备方法
CN109763125B (zh) 一种耐高温磨损的高熵合金涂层及其制备工艺、应用
Liu et al. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding
Ravnikar et al. Laser coating of aluminum alloy EN AW 6082-T651 with TiB2 and TiC: Microstructure and mechanical properties
Li et al. Microstructure and wear resistance of a Ni-WC composite coating on titanium grade 2 obtained by electroplating and electron beam remelting
Ren et al. Wear-resistant NbMoTaWTi high entropy alloy coating prepared by laser cladding on TC4 titanium alloy
Monfared et al. Microstructural studies and wear assessments of Ti/TiC surface composite coatings on commercial pure Ti produced by titanium cored wires and TIG process
Wang et al. Effect of Ni-coated WC reinforced particles on microstructure and mechanical properties of laser cladding Fe-Co duplex coating
Fatoba et al. Microstructural analysis, micro-hardness and wear resistance properties of quasicrystalline Al–Cu–Fe coatings on Ti-6Al-4V alloy
CN108677129A (zh) 一种FeCoNiCrSiAl高熵合金涂层及其制备方法
Yang et al. Microstructure and properties of FeCoCrNiMoSix high-entropy alloys fabricated by spark plasma sintering
CN110846651A (zh) 一种陶瓷增强的钴基熔覆材料、涂层及其制备方法
CN104607631B (zh) 一种铜单元素基合金激光高熵合金化所用粉料及制备工艺
CN110359040A (zh) 考虑稀释率的CoCrFexNiMnMo高熵合金涂层及其制备方法
Ardeshiri et al. Surface alloying of A2618 aluminum with silicon and iron by TIG process
Hebbale Microstructural characterization of Ni based cladding on SS-304 developed through microwave energy
Liu et al. Pulsed Nd: YAG laser post-treatment Ni-based crack-free coating on copper substrate and its wear properties
Liu et al. An investigation of the surface quality and corrosion resistance of laser remelted and extreme high-speed laser cladded Ni-based alloy coating
WO2023082386A1 (zh) 一种新型Fe-Cr-Co-Cu-Ti-Y多元高熵合金涂层及其制备方法
Pyachin et al. Formation of intermetallic coatings by electrospark deposition of titanium and aluminum on a steel substrate
CN110241419A (zh) 一种表面具有抗高温氧化和耐磨涂层的钛合金材料及应用
CN104264151B (zh) 一种反应等离子熔覆原位合成TiN涂层的制备方法
CN106086877B (zh) 一种基于提高钛合金表面熔点的激光熔覆涂层表面强化方法
Wei et al. Microstructure and properties of TiN/Ni composite coating prepared by plasma transferred arc scanning process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963824

Country of ref document: EP

Kind code of ref document: A1