WO2023082377A1 - 阶层式6LoWPAN网状网络的数据传送方法 - Google Patents

阶层式6LoWPAN网状网络的数据传送方法 Download PDF

Info

Publication number
WO2023082377A1
WO2023082377A1 PCT/CN2021/134770 CN2021134770W WO2023082377A1 WO 2023082377 A1 WO2023082377 A1 WO 2023082377A1 CN 2021134770 W CN2021134770 W CN 2021134770W WO 2023082377 A1 WO2023082377 A1 WO 2023082377A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh network
ngw
tunnel
address
6lowpan
Prior art date
Application number
PCT/CN2021/134770
Other languages
English (en)
French (fr)
Inventor
游千册
Original Assignee
杭州联芯通半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州联芯通半导体有限公司 filed Critical 杭州联芯通半导体有限公司
Publication of WO2023082377A1 publication Critical patent/WO2023082377A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/2592Translation of Internet protocol [IP] addresses using tunnelling or encapsulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a data transmission method of a hierarchical 6LoWPAN (Pv6 over Low Power Wireless Personal Area Networks) mesh network, especially a tunnel (Tunnel) through IPv6-in-IPv6, and the tunnel is used in the first-level network
  • L1_6LN Level 1 6LoWPAN Leaf Node
  • NGW Network Gateway
  • the 6LoWPAN border router (6LoWPAN Border Router, hereinafter referred to as 6LBR) can be used as the default gateway for the 6LoWPAN leaf node (6LoWPAN Leaf Node, hereinafter referred to as 6LN) Provide external IP connection; 6LBR is also responsible for managing the IPv6 network location in the 6LoWPAN mesh network, which can be regarded as an autonomous routing area.
  • the invention provides a data transmission method of a hierarchical 6LoWPAN mesh network, using standard IPv6-in-IPv6 tunnel technology and IPv6 address allocation to enhance the ability of NGW to connect to a hierarchical 6LoWPAN mesh network; it can be applied in high-tech smart
  • the Internet of Things such as the first-level broadband power line mesh network communication and the second-level low-power wireless mesh network transmission; reduce the network maintenance cost of 6LBR and increase the network coverage; can quickly replace the existing network.
  • the present invention provides a data transmission method of a hierarchical 6LoWPAN mesh network
  • the hierarchical 6LoWPAN mesh network includes an application server (application server) and stores a routing table (Routing Table) and a tunnel table (Tunnel Table) An NGW
  • the hierarchical 6LoWPAN mesh network has a first-level mesh network and a second-level mesh network
  • the method includes: a data transmission step, the packet transmission of the second-level mesh network
  • a 6LoWPAN leaf node (Level 1 6LoWPAN Leaf Node, hereinafter referred to as L1_6LN) of the first-level mesh network is transmitted through a tunnel between L1_6LN and NGW; where the tunnel is used for uplink transmission or downlink between L1_6LN and NGW send.
  • L1_6LN Level 1 6LoWPAN Leaf Node
  • the data transmission step includes: a unicast (Unicast) data uplink transmission step, a packet of the second-level mesh network can be transmitted through the tunnel between the L1_6LN and the NGW, and the second-level mesh network The packet of the network is transmitted to the NGW through the tunnel by L1_6LN, or the packet of the second-level mesh network is transmitted to the NGW using a preset route without the tunnel; and a unicast data downlink transmission step, the packet transmitted by the NGW must Tunnel to L1_6LN.
  • the data transmission step includes: a multicast (Multicast) data uplink transmission step, the packet of the second-level mesh network is transmitted to the NGW through the tunnel between the L1_6LN and the NGW through the L1_6LN; and the multicast data downlink transmission Step, the NGW transmits the packet through the tunnel between the L1_6LN and the NGW, and the packet is transmitted from the NGW to the L1_6LN through the tunnel, and then the L1_6LN broadcasts the packet to the second-level mesh network; or the NGW transmits the packet directly to the second-level mesh network. In the first-level mesh network without going through the tunnel, it is forwarded to the second-level network by L1_6LN.
  • Multicast multicast
  • Fig. 1 is the IPv6 addressing and data transmission process of the hierarchical 6LoWPAN mesh network of the present invention.
  • Figure 2 is the routing table and tunnel table of the downlink tunnel.
  • FIG. 3 is a unicast data transmission process of the hierarchical 6LoWPAN mesh network of the present invention.
  • FIG. 4 is the multicast data transmission process of the hierarchical 6LoWPAN mesh network of the present invention.
  • Fig. 1 is the IPv6 addressing and data transmission process of the hierarchical 6LoWPAN mesh network of the present invention.
  • the hierarchical 6LoWPAN mesh network includes an application server (Application Server, hereinafter referred to as APP_SERVER), NGW, a first-level mesh network L1, and a second-level mesh network L2.
  • Application Server Application Server
  • the first-level mesh network L1 includes L1_6LN and the 6LoWPAN border router (Level 1 6LoWPAN Border Router, hereinafter referred to as L1_6LBR) of the first-level mesh network L1; and the second-level mesh network L2 includes the second The 6LoWPAN leaf node (Level 2 6LoWPAN Leaf Node, hereinafter referred to as L2_6LN) of the first-level mesh network L2 and the 6LoWPAN border router (Level 2 6LoWPAN Border Router, hereinafter referred to as L2_6LBR) of the second-level mesh network L2.
  • L2_6LN The 6LoWPAN leaf node
  • L2_6LBR 6LoWPAN Border Router
  • IPV6 addresses (IPV6Address) of APP_SERVER, NGW, L1_6LBR, L1_6LN, L2_6LBR, and L2_6LN in this embodiment are respectively defined as GLA_SERVER, GLA_NGW, GLA_L1P_6LBR, GLA_L1P_6LN, GLA_L2P_6LBR, and GLA_L2 in this example P_6LN.
  • L1P and L2P in GLA_L1P_6LBR, GLA_L1P_6LN, L2P_6LBR, and L2P_6LN are represented as IPv6 address prefixes (address prefix), and L1P and L2P represent the segments of the first-level mesh network L1 and the second-level mesh network L2 respectively. ) or address range;
  • the IPV6 address GLA_SERVER of APP_SERVER indicates the global address (Global Address) connected to the Internet, that is, the data of APP_SERVER can be routed and transmitted to the Internet.
  • the NGW is responsible for managing the address prefix code of IPv6 in the 6LoWPAN network, and the IPv6 network location of each 6LoWPAN must be a subset of the NGW's IPv6 network location, and the first-level network in this embodiment
  • the mesh network L1 and the second-level mesh network L2 are parallel subnets (Subnets), so the address prefixes of the first-level mesh network L1 and the second-level mesh network L2 have the same length.
  • L1_6LBR sends a router request (Router Solicitation) packet to NGW, so that NGW performs IPv6 address configuration (IPv6 Address Configuration) on L1_6LBR, so that L1_6LBR obtains an IPv6 address as GLA_L1P_6LBR; at this time, the node is joined by L1_6LBR through 6LoWPAN Bootstrapping
  • the first-level mesh network L1 becomes L1_6LN, and then L1_6LN sends an address configuration request packet to L1_6LBR, and L1_6LBR performs IPv6 address configuration so that L1_6LN obtains an address prefix code with the same length as L1_6LBR, so L1_6LN obtains an IPv6 address as GLA_L1P_6LN.
  • the routing request packet can be that SLAAC is implemented by IPv6 StateLess Address AutoConfiguration (stateless address autoconfiguration) packet or DHCPv6 (Dynamic Host Configuration Protocol for IPv6) packet, and L1_6LBR transmits the route through multicast Broadcast packet; there is an IPv6-IPv6 uplink tunnel (IPv6-IPv6 uplink Tunnel) between L1_6LN and NGW, and uplink tunnel represents the tunnel of L1_6LN to NGW transmission direction;
  • IPv6-IPv6 uplink Tunnel IPv6-IPv6 uplink Tunnel
  • uplink tunnel represents the tunnel of L1_6LN to NGW transmission direction
  • the establishment of IPv6-IPv6 tunnel is received in L1_6LN
  • an uplink tunnel is established between L1_6LN and NGW at this time.
  • the NGW routing table records the address prefixes and interfaces of the destination addresses of the first-level mesh network L1 and the second-level mesh network L2; the interface of the first-level mesh network L1 is a physical An interface or a virtual interface, the interface of the second-level mesh network L2 is TUN_L2_6BR, and the routing table records the reference of the packet downlink transmission interface between the first-level mesh network L1 and the second-level mesh network L2.
  • the interface of the first-level mesh network L1 in the routing table is the physical layer interface physical_interface, indicating that the physical layer is used as the transmission interface
  • the interface of the second-level mesh network L2 is the tunnel interface TUN_L2_6BR, indicating that the GLA_L2P network segment uses The tunnel serves as the transmission interface, as shown in Figure 2.
  • the address request packet sent by L2_6LBR to NGW multicast can be received through The L1_6LN is forwarded to the NGW through the IPv6-IPv6 uplink tunnel (as shown by the dotted line), so that the NGW configures the IPV6 address for the L2_6LBR, so that the L2_6LBR obtains the IPv6 address as GLA_L2P_6LBR; in other words, the L2_6LBR uses multicast to transmit the address request packet to the L1_6LN, The L1_6LN unicast is forwarded to the NGW through the IPv6-IPv6 uplink tunnel.
  • the NGW After the NGW receives the address request packet of the L2_6LBR in the uplink tunnel, the NGW can establish an IPv6-IPv6 downlink tunnel (IPv6-IPv6 downlink Tunnel) from the NGW to the L1_6LN.
  • IPv6-IPv6 downlink Tunnel IPv6-IPv6 downlink Tunnel
  • the downlink tunnel represents the tunnel from the NGW to the L1_6LN transmission direction.
  • the tunnel table of NGW records that the downlink tunnel is the address of NGW with the source (Source) address, the address of L1_6LN as the destination address, and the tunnel interface is TUN_L2_6BR, which means that when TUN_L2_6BR is used as the transmission interface, an outer IPv6 header needs to be encapsulated ( Header), where the source location is GLA_NGW and the destination address is GLA_L1P_6LN, as shown in Figure 2.
  • FIG. 3 is a unicast data transmission process of the hierarchical 6LoWPAN mesh network of the present invention.
  • a packet of the second-level mesh network L2 can be transmitted through the uplink tunnel between L1_6LN and NGW, and a packet of the second-level mesh network L2 can be transmitted from L1_6LN through the uplink tunnel to NGW; that is, the header of the packet of the second-level mesh network is additionally added with a source address corresponding to the uplink tunnel and a destination address by L1_6LN, and the source address is the address of L1_6LN, and the destination address is the address of the NGW, as Used for the uplink tunnel between L1_6LN and NGW.
  • the source address of the header at L2_6LN is GLA_L2P_6LN, and the destination address is GLA_SERVER; but when L1_6LN is forwarded through an uplink tunnel, L1_6LN adds a layer-2 header, and the layer-2 header
  • the source address of the header is GLA_L1P_6LN
  • the destination address is GLA_NGW, which is used for identification of the upstream tunnel between L1_6LN and NGW.
  • the packet of the second-level mesh network L2 is transmitted to the NGW through the preset route without going through the uplink tunnel.
  • the source address of the header initially at L2_6LN is GLA_L2P_6LN
  • the destination address is GLA_SERVER
  • APP_SERVER is sent to APP_SERVER according to the preset route.
  • the packets transmitted by the NGW to the second-level mesh network L2 must use the downlink tunnel to transmit to L1_6LN, and the header of the first-level mesh network L1 packet is additionally added by the NGW corresponding to the downlink
  • the source address and destination address of the tunnel, and the source address is the address of NGW, and the destination address is the address of L1_6LN, which is used as the downlink tunnel between NGW and L1_6LN
  • the source address of the header on APP_SERVER is GLA_SERVER
  • the destination address is GLA_L2P_6LN
  • NGW adds a second layer header, and the second layer header
  • the source address is GLA_SERVER
  • the destination address is GLA_L1P_6LN, which is used as the tunnel identification between NGW and L1_6LN downlink.
  • FIG. 4 is a multicast data transmission process of the hierarchical 6LoWPAN mesh network of the present invention.
  • the data transmission step includes: the multicast data uplink transmission step, the packet of the second-level mesh network L2 is transmitted to the NGW through the L1_6LN using the uplink tunnel between the L1_6LN and the NGW.
  • the header of the packet of the second-level mesh network L2 is additionally added with a source address corresponding to the uplink tunnel by L1_6LN and a destination address, the source address is the address of L1_6LN, and the destination address is the address of NGW, which is used as an uplink tunnel between L1_6LN and NGW.
  • the initial source address of the header in L2_6LN is GLA_L2P_6LN
  • the destination address is GLA_MCAST, where GLA_MCAST means multicast to APP_SERVER
  • L1_6LN is forwarded through the uplink tunnel
  • the L1_6LN adds the second layer label Header
  • the source address of the second layer header is GLA_L1P_6LN
  • the destination address is GLA_NGW, which is used as the identification of the uplink tunnel between L1_6LN and NGW, and the data Data is finally sent to APP_SERVER.
  • the NGW transmits the packet through the downlink tunnel between L1_6LN and NGW, and the packet is transmitted from the NGW to the L1_6LN through the downlink tunnel, and then the L1_6LN broadcasts the packet to the second-level mesh network L2 ; or the data Data is directly broadcast by the NGW to the L1 road of the first-level mesh network without going through the downlink tunnel.
  • the source address of the APP_SERVER header initially is GLA_SERVER, and the destination address is GLA_MCAST; since it is in the first-level mesh network L1 It is broadcast and does not go through a downlink tunnel, so the NGW does not add a second-layer header, and finally transmits it to the L2_6LN of the second-level mesh network L2.
  • the header of the packet of the first-level mesh network L1 is additionally added by the NGW with the source address and destination address corresponding to the downlink tunnel, and the source address is NGW Address, the destination address is the address of L1_6LN, which is used as the downlink tunnel between NGW and L1_6LN.
  • APP_SERVER transmits data Data
  • its initial source address in APP_SERVER header is GLA_SERVER
  • destination address is GLA_MCAST
  • NGW forwards data via a downlink tunnel
  • NGW adds a second layer header
  • the source address is GLA_SERVER
  • the destination address is GLA_L1P_6LN, which is used as a tunnel identification between NGW and L1_6LN; the data is finally transmitted to L2_6LN of the second-level mesh network L2.
  • the present invention provides a data transmission method for a hierarchical 6LoWPAN mesh network, which uses standard IPv6-in-IPv6 tunneling technology and IPv6 address allocation to enhance the ability of the NGW to connect to a hierarchical 6LoWPAN mesh network, that is, use Two different routing protocols: "mesh-under” and "route-over" 6LoWPAN mesh networks can establish the aforementioned tunnels at the Network Layer.

Abstract

本发明提供一种阶层式6LoWPAN网状网络的数据传送方法,所述阶层式6LoWPAN网状网络包含一应用服务器与储存有一路由表与一隧道表的一NGW,且所述阶层式6LoWPAN网状网络具有一第一级网状网络与一第二级网状网络,所述方法包含:一数据传输步骤,第二级网状网络的封包的传输在第一级网状网络的一6LoWPAN叶节点上通过L1_6LN与NGW之间的一隧道传输;其中,隧道使用在L1_6LN和与NGW之间进行上行传送或下行传送。

Description

阶层式6LoWPAN网状网络的数据传送方法 技术领域
本发明有关于一种阶层式6LoWPAN(Pv6 over Low Power Wireless Personal Area Networks)网状网络的数据传送方法,尤指一种通过IPv6-in-IPv6隧道(Tunnel),且隧道使用在第一级网状网络的一6LoWPAN叶节点(Level 1 6LoWPAN Leaf Node,以下简称L1_6LN)上和网络网关(Network Gateway,以下简称NGW)之间的阶层式6LoWPAN网络的数据传送方法。
背景技术
在习知技术中,无论6LoWPAN网状网络使用哪一种路由协议,6LoWPAN的边界路由器(6LoWPAN Border Router,以下简称6LBR)都可以作为预设网关为6LoWPAN叶节点(6LoWPAN Leaf Node,以下简称6LN)提供外部IP连接;6LBR也负责管理6LoWPAN网状网络中的IPv6网络位置,可被看做是一个自治路由区。
由于每一个6LoWPAN皆为独立工作,使用者常会遇到「如何将一个6LoWPAN连接到另一个6LoWPAN从而去产生IP连线」的问题。
发明内容
本发明提供了一种阶层式6LoWPAN网状网络的数据传送方法,使用标准IPv6-in-IPv6隧道技术和IPv6地址分配增强NGW连接到阶层式6LoWPAN网状网络的能力;可被应用在高科技智慧物联网,比如一级宽频电力线网状网络通讯和二级低功耗无线网状网络传输;减少6LBR的网络维护成本,并增加网络涵盖范围;可快速取代现存网络。
本发明提供一种阶层式6LoWPAN网状网络的数据传送方法,所述阶层式6LoWPAN网状网络包含一应用服务器(application server)与储存有一路由表(Routing Table)与一隧道表(Tunnel Table)的一NGW,且所述阶层式6LoWPAN网状网络具有一第一级网状网络与一第二级网状网络,所述方法包含:一数据传输步骤,第二级网状网络的封包的传输在第一级网状网络的一6LoWPAN叶节点(Level 1 6LoWPAN  Leaf Node,以下简称L1_6LN)上通过L1_6LN与NGW之间的一隧道传输;其中,隧道使用在L1_6LN和与NGW之间进行上行传送或下行传送。
本发明一实施例中,数据传输步骤包含:一单播(Unicast)数据上行传送步骤,一第二级网状网络的封包可以通过由L1_6LN与NGW之间的隧道传送,且第二级网状网络的封包由L1_6LN通过所述隧道传送至NGW,或第二级网状网络的封包不经隧道而使用预设的路由传送至NGW;以及一单播数据下行传送步骤,NGW所传送的封包必须使用隧道传送至L1_6LN。
本发明一实施例中,数据传输步骤包含:一群播(Multicast)数据上行传送步骤,第二级网状网络的封包通过L1_6LN使用L1_6LN与NGW之间的隧道传送至NGW;以及一群播数据下行传送步骤,NGW传送封包是通过L1_6LN与NGW之间的隧道传送,且封包由NGW通过隧道传送至L1_6LN,再所述L1_6LN广播封包至第二级网状网络中;或NGW传送封包是直接广播至第一级网状网络中且不经过隧道,再由L1_6LN转传至第二级网络中。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本发明阶层式6LoWPAN网状网络的IPv6定址和数据传送流程。
图2是下行隧道的路由表与隧道表。
图3是本发明阶层式6LoWPAN网状网络的单播数据传送流程。
图4是本发明阶层式6LoWPAN网状网络的群播数据传送流程。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。
请参考图1,图1是本发明阶层式6LoWPAN网状网络的IPv6定址和数据传送流程。阶层式6LoWPAN网状网络中包含有一应用服务器(Application Server以下简称APP_SERVER)、NGW、第一级网状网络L1、以及第二级网状网络L2。其中,第一级网状网络L1中包含有L1_6LN与第一级网状网络L1的6LoWPAN边界路由器(Level 1 6LoWPAN Border Router,以下简称L1_6LBR);以及第二级网状网络L2中包含有第二级网状网络L2的6LoWPAN叶节点(Level 2 6LoWPAN Leaf Node,以下简称L2_6LN)与第二级网状网络L2的6LoWPAN边界路由器(Level 2 6LoWPAN Border Router,以下简称L2_6LBR)。
其中,为求简洁,本实施例中APP_SERVER、NGW、L1_6LBR、L1_6LN、L2_6LBR、以及L2_6LN的IPV6地址(IPV6Address)在本实例中分别被定义为GLA_SERVER、GLA_NGW、GLA_L1P_6LBR、GLA_L1P_6LN、GLA_L2P_6LBR、以及GLA_L2P_6LN。
GLA_L1P_6LBR、GLA_L1P_6LN、L2P_6LBR、以及L2P_6LN中的L1P与L2P表示为IPv6地址前置代码(address prefix),L1P与L2P分别代表第一级网状网络L1与第二级网状网络L2的网段(segment)或地址范围;APP_SERVER的IPV6地址GLA_SERVER表示连接网际网络的全球地址(Global Address),即APP_SERVER的数据可被路由传输至网际网络。
在本发明一实施例中,NGW负责管理IPv6在6LoWPAN网络中的地址前置代码,每个6LoWPAN的IPv6网络位置必须是NGW的IPv6下网络位置的子集,且本实施例中第一级网状网络L1与第二级网状网络L2是平行的子网络(Subnet),故第一级网状网络L1与第二级网状网络L2地址前置代码的长度相同。
首先L1_6LBR对NGW发送路由请求(Router Solicitation)封包,让NGW对L1_6LBR进行IPv6地址配置(IPv6 Address Configuration),使L1_6LBR取得IPv6地址为GLA_L1P_6LBR;此时,节点被L1_6LBR进行6LoWPAN引导入网(6LoWPAN Bootstrapping)加入第一级网状网络L1以成为L1_6LN,接着L1_6LN向L1_6LBR发送地址配置请求封包,L1_6LBR进行IPv6地址配置使L1_6LN取得与L1_6LBR有相同长度的地址前置代码,故L1_6LN取得IPv6地址为GLA_L1P_6LN。
在本发明一实施例中,路由请求封包可以是SLAAC是IPv6 StateLess Address AutoConfiguration(无状态地址自动设定)封包或DHCPv6(Dynamic Host Configuration Protocol for IPv6)封包所实现,且L1_6LBR通过群播进行传送路由广播封包;L1_6LN与NGW之间存在一个IPv6-IPv6上行隧道(IPv6-IPv6 uplink Tunnel),上行隧道表示L1_6LN往NGW传送方向的隧道;在一实施例中,IPv6-IPv6隧道的建立是在L1_6LN收到L2_6LBR的位置配置请求广播封包时,此时L1_6LN与NGW之间建立上行隧道。
NGW路由表记录第一级网状网络L1与第二级网状网络L2的目的(Destination)地址的地址前置代码(Address Prefix)与接口;其中第一级网状网络L1的接口为一物理接口或一虚拟接口,第二级网状网络L2的接口为TUN_L2_6BR,路由表记录第一级网状网络L1与第二级网状网络L2的封包下行传输接口的参考。
在本实施例中,路由表第一级网状网络L1的接口为物理层接口physical_interface,表示使用物理层作为传送接口,第二级网状网络L2的接口为隧道接口TUN_L2_6BR,表示GLA_L2P网段使用隧道作为传送接口,如图2所示。
由于第一级网状网络L1与第二级网状网络L2是平行的子网络,且L1_6LN与NGW之间存在一个IPv6-IPv6上行隧道,故L2_6LBR对NGW群播发送地址请求封包,可以接通过L1_6LN经由IPv6-IPv6上行隧道转送至NGW(如虚线所示),使NGW对L2_6LBR进行IPV6地址配置,使L2_6LBR取得IPv6地址为GLA_L2P_6LBR;换言之,L2_6LBR是利用群播传送地址请求封包至L1_6LN,再由L1_6LN单播经由IPv6-IPv6上行隧道转送至NGW。
NGW收到上行隧道中L2_6LBR的地址请求封包后,NGW可以建立NGW对L1_6LN的IPv6-IPv6下行隧道(IPv6-IPv6 downlink Tunnel),下行隧道表示NGW往L1_6LN传送方向的隧道。
其中,NGW的隧道表记录下行隧道为源(Source)地址为NGW的地址,目的地址为L1_6LN的地址,且隧道接口为TUN_L2_6BR表示使用TUN_L2_6BR作为传输接口时,需封装一外层的IPv6标头(Header),其中来源位置为GLA_NGW且目的地址为GLA_L1P_6LN,如图2所示。
此时,节点被L2_6LBR进行6LoWPAN引导加入第二级网状网络L2以成为L2_6LN,接着L2_6LN向L2_6LBR发送地址请求封包,L2_6LBR进行IPV6地址 配置使L2_6LN取得与L2_6LBR有相同长度的地址前置代码,故L2_6LN取得IPV6地址为GLA_L2P_6LN。接着,请参考图3,图3是本发明阶层式6LoWPAN网状网络的单播数据传送流程。单播数据上行传送步骤,第二级网状网络L2的一的封包可以通过上行隧道由L1_6LN与NGW之间的上行隧道传送,且第二级网状网络L2的封包由L1_6LN通过上行隧道传送至NGW;即第二级网状网络的封包的标头由L1_6LN另外加上对应于上行隧道的源地址与一目的地址,且源地址为L1_6LN的地址,目的地址为所述NGW的地址,以作为L1_6LN与NGW上行的隧道使用。
故,自L2_6LN传送数据Data时,其初始在L2_6LN的标头的源地址为GLA_L2P_6LN,目的地址为GLA_SERVER;但在L1_6LN经由上行隧道转送时,则L1_6LN加上第二层标头,第二层标头源地址为GLA_L1P_6LN,目的地址为GLA_NGW,以作为L1_6LN与NGW上行的隧道辨认使用。
相对应地,当第二级网状网络L2的封包不经上行隧道而使用预设的路由传送至NGW。此时,初始在L2_6LN的标头的源地址为GLA_L2P_6LN,目的地址为GLA_SERVER,并依据预设路由传送至APP_SERVER。
因单播数据下行传送步骤,其NGW所传送给第二级网状网络L2的封包必须使用下行隧道传送至L1_6LN,第一级网状网络L1的封包的标头由NGW另外加上对应于下行隧道的源地址与目的地址,且源地址为NGW的地址,目的地址为L1_6LN的地址,以作为NGW与L1_6LN下行的隧道使用
故,APP_SERVER传送数据Data时,其初始在APP_SERVER的标头的源地址为GLA_SERVER,目的地址为GLA_L2P_6LN;但在NGW经由下行隧道转送时,则NGW加上第二层标头,第二层标头源地址为GLA_SERVER,目的地址为GLA_L1P_6LN,以作为NGW与L1_6LN下行的隧道辨认使用。
接着,请参考图4,图4是本发明阶层式6LoWPAN网状网络的群播数据传送流程。
数据传输步骤包含:群播数据上行传送步骤,第二级网状网络L2的封包,通过L1_6LN使用L1_6LN与NGW之间的上行隧道传送至NGW。
在群播数据上行传送步骤中,当第二级网状网络L2的封包通过上行隧道传送时,第二级网状网络L2的封包的标头由L1_6LN另外加上对应于上行隧道的一源地 址与一目的地址,且源地址为L1_6LN的地址,目的地址为NGW的地址,以作为L1_6LN与NGW上行的隧道使用。
自L2_6LN传送数据Data时,其初始在L2_6LN的标头的源地址为GLA_L2P_6LN,目的地址为GLA_MCAST,其中GLA_MCAST表示群播至APP_SERVER;但在L1_6LN经由上行隧道转送时,则L1_6LN加上第二层标头,第二层标头源地址为GLA_L1P_6LN,目的地址为GLA_NGW,以作为L1_6LN与NGW上行隧道辨认使用,数据Data最终传送至APP_SERVER。
请注意,群播数据下行传送步骤,NGW传送封包是通过L1_6LN与NGW之间的下行隧道传送,且封包由NGW通过下行隧道传送至L1_6LN,再由L1_6LN广播封包至第二级网状网络L2中;或是数据Data由NGW不经下行隧道直接广播至第一级网状网络L1路中。
当数据由NGW不经下行隧道直接广播至第一级网状网络L1中时,其初始在APP_SERVER的标头的源地址为GLA_SERVER,目的地址为GLA_MCAST;由于是在第一级网状网络L1中广播且不经下行隧道,故NGW不另加上第二层标头,最终传送至第二级网状网络L2的L2_6LN。
当第一级网状网络L1的封包通过下行隧道传送时,第一级网状网络L1的封包的标头由NGW另外加上对应于下行隧道的源地址与目的地址,且源地址为NGW的地址,目的地址为L1_6LN的地址以作为NGW与L1_6LN下行的隧道使用。
故,APP_SERVER传送数据Data时,其初始在APP_SERVER的标头的源地址为GLA_SERVER,目的地址为GLA_MCAST;但在NGW经由下行隧道转送时,则NGW加上第二层标头,第二层标头源地址为GLA_SERVER,目的地址为GLA_L1P_6LN,以作为NGW与L1_6LN下行的隧道辨认使用;数据最终传送至第二级网状网络L2的L2_6LN。
综上所述,本发明提供了一种阶层式6LoWPAN网状网络的数据传送方法,使用标准IPv6-in-IPv6隧道技术和IPv6地址分配增强NGW连接到阶层式6LoWPAN网状网络的能力,即使用两种不同的路由协议:“mesh-under”和“route-over”的6LoWPAN网状网络,均可在网络层(Network Layer)进行前述隧道的建立。

Claims (12)

  1. 一种阶层式6LoWPAN网状网络的数据传送方法,其特征在于,所述阶层式6LoWPAN网状网络包含储存有一路由表与一隧道表的一网络网关NGW,且所述阶层式6LoWPAN网状网络具有一第一级网状网络与一第二级网状网络,所述方法包含:
    一数据传输步骤,所述第二级网状网络的封包的传输在所述第一级网状网络的一6LoWPAN叶节点上通过L1_6LN与所述NGW之间的一隧道传输;
    其中,所述隧道使用在所述L1_6LN和与所述NGW之间进行上行传送或下行传送。
  2. 如权利要求1所述的阶层式6LoWPAN网状网络的数据传送方法,其特征在于,所述数据传输步骤包含:
    一单播数据上行传送步骤,一第二级网状网络的封包可以通过所述隧道传送,且所述第二级网状网络的封包由所述L1_6LN通过所述隧道传送至所述NGW,或所述第二级网状网络的封包不经所述隧道而使用预设的路由传送至所述NGW;以及
    一单播数据下行传送步骤,所述NGW所传送的封包必须使用所述隧道传送至所述L1_6LN。
  3. 如权利要求2所述的阶层式6LoWPAN网状网络的数据传送方法,其特征在于,在所述单播数据上行传送步骤中,当所述第二级网状网络的封包通过所述隧道传送时,所述第二级网状网络的封包的标头由所述L1_6LN另外加上对应于所述隧道的一源地址与一目的地址,且所述源地址为所述L1_6LN的地址,所述目的地址为所述NGW的地址,以作为所述L1_6LN与所述NGW上行的隧道使用。
  4. 如权利要求2所述的阶层式6LoWPAN网状网络的数据传送方法,其特征在于,在所述单播数据下行传送步骤中,当所述第一级网状网络的封包通过所述隧道传送时,所述第一级网状网络的封包的标头由所述NGW另外加上对应于所述隧道的所述源地址与所述目的地址,且所述源地址为所述NGW的地址,所述目的地址为所述L1_6LN的地址,以作为所述NGW与所述L1_6LN下行的隧道使用。
  5. 如权利要求1所述的阶层式6LoWPAN网状网络的数据传送方法,其特征在于,所述数据传输步骤包含:
    一群播数据上行传送步骤,所述第二级网状网络的封包通过所述L1_6LN使用所述L1_6LN与所述NGW之间的所述隧道传送至所述NGW;以及
    一群播数据下行传送步骤,所述NGW传送封包是通过所述L1_6LN与所述NGW之间的所述隧道传送,且封包由所述NGW通过所述隧道传送至所述L1_6LN,再由所述L1_6LN广播封包至所述第二级网状网络中;或所述NGW传送封包是直接广播至所述第一级网状网络中且不经过所述隧道。
  6. 如权利要求5所述的阶层式6LoWPAN网状网络的数据传送方法,其特征在于,在所述群播数据上行传送步骤中,当所述第二级网状网络的封包通过所述隧道传送时,所述第二级网状网络的封包的标头由所述L1_6LN另外加上对应于所述隧道的一源地址与一目的地址,且所述源地址为所述L1_6LN的地址,所述目的地址为所述NGW的地址,以作为所述L1_6LN与所述NGW上行的隧道使用。
  7. 如权利要求6所述的阶层式6LoWPAN网状网络的数据传送方法,其特征在于,在所述群播数据下行传送步骤中,当所述第二级网状网络的封包通过所述隧道传送时,所述第一级网状网络的封包的标头由所述NGW另外加上对应于所述隧道的所述源地址与所述目的地址,且所述源地址为所述NGW的地址,所述目的地址为所述L1_6LN的地址以作为所述NGW与所述L1_6LN下行的隧道使用。
  8. 如权利要求1所述的阶层式6LoWPAN网状网络的数据传送方法,其特征在于,所述第二级网状网络中的一6LoWPAN边界路由器L2_6BR通过一地址请求封包以建立所述L1_6N对所述NGW上行的所述隧道。
  9. 如权利要求8所述的阶层式6LoWPAN网状网络的数据传送方法,其特征在于,当所述NGW收到来自所述L2_6BR对所述隧道上行的所述地址请求封包时,即所述NGW建立所述NGW对所述L1_6LN下行的所述隧道。
  10. 如权利要求9所述的阶层式6LoWPAN网状网络的数据传送方法,其特征在于,所述路由表记录所述第一级网状网络与所述第二级网状网络的所述目的地址的一地址前置代码与一接口;其中所述第一级网状网络的所述接口为一物理接口或一虚拟接口,所述第二级网状网络的所述接口为所述TUN_L2_6BR,所述路由表以记录所述第二级网状网络的封包经过所述隧道的网段。
  11. 如权利要求10所述的阶层式6LoWPAN网状网络的数据传送方法,其特征在于,所述NGW的所述隧道表记录下行隧道为所述源地址为所述NGW的地址,所述目的地址为所述L1_6LN的地址,且所述隧道接口为所述TUN_L2_6BR。
  12. 如权利要求10所述的阶层式6LoWPAN网状网络的数据传送方法,其特征在于,所述第一级网状网络与所述第二级网状网络的所述地址前置代码的长度相同。
PCT/CN2021/134770 2021-11-15 2021-12-01 阶层式6LoWPAN网状网络的数据传送方法 WO2023082377A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111369436.4A CN115314463A (zh) 2021-11-15 2021-11-15 阶层式6LoWPAN网状网络的数据传送方法
CN202111369436.4 2021-11-15

Publications (1)

Publication Number Publication Date
WO2023082377A1 true WO2023082377A1 (zh) 2023-05-19

Family

ID=83853478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134770 WO2023082377A1 (zh) 2021-11-15 2021-12-01 阶层式6LoWPAN网状网络的数据传送方法

Country Status (2)

Country Link
CN (1) CN115314463A (zh)
WO (1) WO2023082377A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068645B1 (en) * 2001-04-02 2006-06-27 Cisco Technology, Inc. Providing different QOS to layer-3 datagrams when transported on tunnels
CN106559348A (zh) * 2015-09-25 2017-04-05 中国电力科学研究院 一种智能6LoWPAN边界路由实现方法及边界路由器
US20170324849A1 (en) * 2016-05-06 2017-11-09 Cisco Technology, Inc. Partial reassembly and fragmentation for decapsulation
US20180191669A1 (en) * 2017-01-04 2018-07-05 Cisco Technology, Inc. Providing dynamic routing updates in field area network deployment using internet key exchange v2
US20190394124A1 (en) * 2018-06-26 2019-12-26 Cisco Technology, Inc. IN-SITU OPERATIONS, ADMINISTRATION, AND MAINTENANCE (iOAM) FOR SOFTWARE DEFINED ARCHITECTURES (SDAs)
CN110996285A (zh) * 2019-11-15 2020-04-10 中南大学 一种基于6LoWPAN的高校智慧消防服务系统及设计方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448099B1 (ko) * 2008-01-18 2014-10-07 삼성전자 주식회사 아이피 기반 저전력 무선 네트워크에서 이동성 지원 방법및 이를 위한 시스템
CN102457900B (zh) * 2010-11-03 2016-03-23 上海贝尔股份有限公司 传输基于IPv6低功耗无线个域网数据包的方法和装置
CN102769676B (zh) * 2011-05-03 2015-02-25 中国联合网络通信集团有限公司 Ip网络移动管理方法、装置和系统
CN104796333B (zh) * 2015-03-31 2018-12-04 桂林电子科技大学 一种基于IPv6的无线传感网络与Internet多网关互联方案
TWI731237B (zh) * 2018-04-26 2021-06-21 大陸商貴州濎通芯物聯技術有限公司 應用於網狀網路之透通橋接方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068645B1 (en) * 2001-04-02 2006-06-27 Cisco Technology, Inc. Providing different QOS to layer-3 datagrams when transported on tunnels
CN106559348A (zh) * 2015-09-25 2017-04-05 中国电力科学研究院 一种智能6LoWPAN边界路由实现方法及边界路由器
US20170324849A1 (en) * 2016-05-06 2017-11-09 Cisco Technology, Inc. Partial reassembly and fragmentation for decapsulation
US20180191669A1 (en) * 2017-01-04 2018-07-05 Cisco Technology, Inc. Providing dynamic routing updates in field area network deployment using internet key exchange v2
US20190394124A1 (en) * 2018-06-26 2019-12-26 Cisco Technology, Inc. IN-SITU OPERATIONS, ADMINISTRATION, AND MAINTENANCE (iOAM) FOR SOFTWARE DEFINED ARCHITECTURES (SDAs)
CN110996285A (zh) * 2019-11-15 2020-04-10 中南大学 一种基于6LoWPAN的高校智慧消防服务系统及设计方法

Also Published As

Publication number Publication date
CN115314463A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
US7706374B2 (en) Method for assigning IP address to terminal device and communication system
US7649866B2 (en) Method of subnet roaming within a network
US8782288B2 (en) Multicast-enabled address resolution protocol (ME-ARP)
JP4950354B2 (ja) Ipベースのインターフェースを使用してte2デバイス上でワイヤレスデータサービスをサポートするための方法および装置
EP2708001B1 (en) Label switched routing to connect low power network domains
EP1722523B1 (en) Apparatus and method for reserving session resource in IPv4/IPv6 combination network
US8635314B2 (en) Use of IPv6 in access networks
US8953601B2 (en) Internet protocol version six (IPv6) addressing and packet filtering in broadband networks
US9467376B2 (en) Method and device for sending internet protocol packets
US20100074256A1 (en) Service recognition method of router in ipv6 environment
JP4452727B2 (ja) IPv4/IPv6統合ネットワークシステムにおけるRSVPサポート方法及びそのシステム
KR20050012187A (ko) 인터넷 프로토콜 시스템에서 단말의 인터넷 프로토콜 주소생성 방법 및 시스템과 이를 위한 메시지 전송 방법 및시스템
WO2007006195A1 (fr) Dispositif de routage d’un dispositif d’accès et procédé correspondant acceptant une configuration passive d’adresse
JPWO2006093299A1 (ja) トンネリング装置及びそれに用いるトンネルフレーム振分方法並びにそのプログラム
CN103227787B (zh) 一种基于ARP代理的4over6隧道自动建立方法
WO2020220459A1 (zh) 基于VXLAN和OpenFlow的虚拟家庭网络共享方法及系统
WO2013088740A1 (ja) 無線ネットワークシステム、無線通信装置、及び、無線通信装置のプログラム
US20180167231A1 (en) Managing multiple virtual network memberships
US20080049765A1 (en) Method and system for inter working a point-to-point link and a LAN service
WO2023082377A1 (zh) 阶层式6LoWPAN网状网络的数据传送方法
Jeon et al. Transmission of IP over Ethernet over IEEE 802.16 Networks
WO2012152180A1 (zh) Ds-lite网络架构承载组播业务的方法、系统和网络节点
Aboba et al. Multiple Encapsulation Methods Considered Harmful
JP2007110654A (ja) ブリッジ装置及びブリッジ装置の制御方法
Racherla et al. IPv6 Introduction and Configuration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963815

Country of ref document: EP

Kind code of ref document: A1