WO2023082302A1 - 一种全断面任意深度定量采样器和采样方法 - Google Patents

一种全断面任意深度定量采样器和采样方法 Download PDF

Info

Publication number
WO2023082302A1
WO2023082302A1 PCT/CN2021/131473 CN2021131473W WO2023082302A1 WO 2023082302 A1 WO2023082302 A1 WO 2023082302A1 CN 2021131473 W CN2021131473 W CN 2021131473W WO 2023082302 A1 WO2023082302 A1 WO 2023082302A1
Authority
WO
WIPO (PCT)
Prior art keywords
window
actuator
sampling cylinder
sampling
discharge head
Prior art date
Application number
PCT/CN2021/131473
Other languages
English (en)
French (fr)
Inventor
罗陨飞
姜英
邵徇
朱学海
Original Assignee
英飞智信(苏州)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英飞智信(苏州)科技有限公司 filed Critical 英飞智信(苏州)科技有限公司
Publication of WO2023082302A1 publication Critical patent/WO2023082302A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • G01N1/08Devices for withdrawing samples in the solid state, e.g. by cutting involving an extracting tool, e.g. core bit

Definitions

  • the invention relates to the technical field of sampling equipment, in particular to a full-section arbitrary depth quantitative sampler and a sampling method.
  • the deep layer samplers used for mechanical sampling of bulk solid minerals such as coal and iron ore include inner auger drilling type and outer helical claw type.
  • the internal auger drilling type high-speed rotating auger bit can crush large-sized coal samples, gangue or ore indiscriminately.
  • some test items such as particle size screening, crushing strength, mechanical strength, drop strength, compressive strength, etc. , it is required that the original particle size of the sample should not be destroyed during sampling.
  • the high-speed rotating auger bit will cause damage to the bottom of the car. For the sake of safety, it is difficult to achieve real full-section random depth sampling in practical applications.
  • Such as the published patent CN201620845384.1 a new type of spiral sampler, CN201510181209.7 spiral sampler just have the above problems.
  • the conical claws that make up the sampling head rotate into the material layer (such as coal seam, iron ore layer) in a closed state. After reaching a certain depth, the head claws are driven by the driving mechanism in the material layer Forced to open, the sampling head continues to probe down, and the material enters the sampling cylinder. After collecting a certain amount of material, the claws are forced to close in the material layer through the driving mechanism to complete the sampling.
  • the material layer such as coal seam, iron ore layer
  • the conical claws need to overcome the strong resistance of the material to the claws twice in the material layer to complete the opening and closing action, and also need to resist the resistance of the material to the deep layer Mobile, which greatly affects the reliability and service life of the equipment. If things go on like this, the claws are easily deformed or damaged, and cannot be closed, making it difficult to collect materials.
  • the manipulator device of the sampling machine disclosed in patent CN201210181342.9, a sampling machine, a sampling device and its sampling head disclosed in CN201710651181.8 all have the above-mentioned problems.
  • the purpose of the present invention is to provide a full-section arbitrary depth quantitative sampler and sampling method, which can sample the entire cross-section at any depth without destroying the original particle size of the material.
  • the present invention provides the following technical solutions:
  • a kind of quantitative sampler of the present invention comprises:
  • a sampling cylinder the side wall of which is provided with at least one window for collecting samples
  • a discharge head which can be opened and closed at the bottom of the sampling cylinder
  • a first actuator which is arranged in the sampling cylinder and extends substantially parallel to the central axis of the sampling cylinder, the first actuator is actuated to open and close the discharge head;
  • the second actuator is arranged in the sampling cylinder and extends approximately parallel to the central axis of the sampling cylinder, the bottom end of the second actuator is provided with a baffle whose shape is adapted to the window, the The window is closed and opened by the shutter via movement of the second actuator.
  • a plurality of bucket teeth are arranged on the side wall of the sampling cylinder and/or the lower edge of the window.
  • the plurality of bucket teeth are arranged in an array, the bucket teeth form a certain angle with the window, and/or the bucket teeth form a certain angle with the side wall.
  • the bucket teeth are detachably connected to the side wall and/or the window.
  • a plurality of the windows are symmetrically distributed on the side wall, the number of the second actuator and/or the baffle is equal to the number of the windows, the baffle
  • the outer surface of the plate facing the window is adapted to the shape and size of the window.
  • the baffle is detachably mounted on the bottom of the second actuator. Whether or not the baffle is installed does not affect the overall structure and function of the sampler.
  • the position of the second actuating member gradually becomes sharper toward a position away from the second actuating member.
  • the discharge head includes a plurality of discharge sheets that can be opened and closed, and a plurality of the discharge sheets are hinged to the sampling cylinder, and the outer surface of the discharge sheet is provided with a Auxiliary samplers penetrate deep into the cut slices of the stockpile.
  • the first actuator is provided with a pusher plate that is substantially perpendicular to the central axis, and the pusher plate is hinged to one or more movable links toward the bottom surface of the discharge head.
  • the other end of the movable link is connected to the discharge sheet, and the first actuator actuates the opening and closing of the discharge sheet via the movable link.
  • the sampling cylinder, the first actuator and the second actuator are respectively driven by a motor, a hydraulic pump or a cylinder, and the motor, hydraulic pump or cylinder are respectively controlled by a processing unit,
  • the first actuator keeps the discharge head closed
  • the second actuator keeps the window closed
  • the second actuating member moves to make the baffle open the window
  • the second actuating member moves to make the baffle close the window
  • the first consistent The moving part actuates the opening of the discharge head.
  • the sampling method based on the described a kind of quantitative sampler comprises the following steps,
  • the sampling cylinder is drilled into the material layer
  • the discharge head enters the specified sampling depth of the material layer, and the second actuator moves so that the baffle opens the window,
  • the sampling cylinder is lifted from the material layer, and the material falls from the window into the discharge head.
  • the second actuator moves so that the baffle closes the window, no baffle installed The window will remain open all the time,
  • the first actuator actuates the unloading head to open.
  • a full-section arbitrary depth quantitative sampler and sampling method provided by the present invention have the following beneficial effects:
  • the deep sampling method adopts the method of material falling into the sample from the window of the side wall of the sampling cylinder.
  • the discharge head at the front end of the sampling cylinder is structurally equivalent to the existing external spiral claw sampling claw, but it is always closed during the sampling process and cannot be opened in the material layer, which significantly improves the stability and reliability of the equipment. sex.
  • the material enters the discharge head from the window on the side wall of the sampling cylinder, which realizes sampling at any depth without destroying the particle size of the material in the true sense.
  • the volume of the inner cylinder at the height of the discharge head and the window controls the quality of the collected material.
  • the control is within a certain range to realize quantitative sampling, and the opening and closing of the unloading head and the window are controlled through the actuation of the first actuator and the second actuator, so that the sampling accuracy is significantly improved.
  • Fig. 1 is a schematic structural diagram of a quantitative sampler provided by an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of a quantitative sampler provided by an embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of a first actuator of a quantitative sampler provided by an embodiment of the present invention.
  • Fig. 4 is a combined schematic diagram of two angles of a second actuator of a quantitative sampler provided by an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of the opening of the discharge head of a quantitative sampler provided with a window provided by an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the opening of the discharge head of a quantitative sampler provided with a pair of windows provided by an embodiment of the present invention.
  • Fig. 7 is a schematic cross-sectional view of a sampling cylinder of a quantitative sampler provided by an embodiment of the present invention.
  • FIGS. 8a-8d are schematic diagrams of a sampling process of a quantitative sampler sampling method provided by an embodiment of the present invention.
  • Sampling cylinder 1 discharge head 2, first actuating part 3, second actuating part 4, window 5, bucket teeth 6, reinforcing rib 11, cutting piece 21, pushing plate 31, movable connecting rod 32, Gap 33, baffle plate 41.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • a first feature being “on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • a quantitative sampler of the present invention includes,
  • a sampling cylinder 1 the side wall of which is provided with at least one window 5 for collecting samples;
  • a discharge head 2 which can be opened and closed at the bottom of the sampling cylinder 1;
  • a first actuator 3 which is arranged in the sampling cylinder 1 and extends approximately parallel to the central axis of the sampling cylinder 1, the first actuator 3 is actuated to open and close the discharge head 2;
  • the second actuator 4 is arranged in the sampling cylinder 1 and extends approximately parallel to the central axis of the sampling cylinder 1.
  • the bottom end of the second actuator 4 is provided with a shape adapted to the window 5.
  • a baffle 41 , the window 5 is closed and opened by the baffle 41 through the movement of the second actuator 4 .
  • a plurality of bucket teeth 6 are arranged on the side wall of the sampling cylinder 1 and/or the lower edge of the window 5 .
  • the plurality of bucket teeth 6 are arranged in an array, the bucket teeth 6 form a certain angle with the window 5, and/or the bucket teeth 6 and the side wall form an angle.
  • the bucket teeth 6 are detachably connected to the side wall and/or the window 5 .
  • the baffle 41 is detachably mounted on the bottom of the second actuator 4, and whether the baffle 41 is installed or not does not affect the overall structure and function of the sampler.
  • the side surface of the baffle 41 is chamfered. shape, gradually becoming sharper from a position close to the second actuating member 4 to a position away from the second actuating member 4 .
  • the discharge head 2 includes a plurality of openable and closable discharge sheets, the plurality of discharge sheets are hinged to the sampling cylinder 1, and the discharge sheet
  • the outer surface of the outer surface is provided with a cutting sheet 21 for assisting the sampler to go deep into the material pile.
  • the first actuator 3 is provided with a pushing plate 31 that is approximately perpendicular to the central axis, and the pushing plate 31 faces
  • the bottom surface of the discharge head 2 is hinged to a plurality of movable connecting rods 32 , the other end of the movable connecting rod 32 is connected to the discharge piece, and the first actuator 3 is actuated via the movable connecting rod 32
  • the discharge sheet is opened and closed.
  • the sampling cylinder 1, the first actuator 3 and the second actuator 4 are respectively driven by a motor, a hydraulic pump or an air cylinder, and the motor, hydraulic pump or The air cylinders are respectively controlled via the processing unit, wherein when the sampling cylinder 1 drills down into the material layer, the first actuator 3 keeps the discharge head 2 closed, and the second actuator 4 keeps the window 5 closed , when the sampling cylinder 1 is lifted from the material layer, the second actuator 4 moves so that the baffle 41 opens the window 5, and when the sampling cylinder 1 leaves the material layer, the second The movement of the actuator 4 makes the baffle 41 close the window 5 , and the first actuator 3 actuates the discharge head 2 to open.
  • the quantitative sampler is a full-section arbitrary depth quantitative sampler
  • the quantitative sampler includes a sampling cylinder 1, a discharge head 2, a first actuator 3 and a second actuator 4 arranged inside the sampling cylinder , the first actuating part 3 and the second actuating part 4 are connected to the sampling driving mechanism respectively, the discharge head is hinged to the sampling cylinder, and a window 5 is opened on the side wall of the sampling cylinder 1 near the discharge head, as shown in Figure 4
  • the shape of the tail of the second actuator 4 coincides with the shape of the window. When the second actuator moves downward, it can completely close the window, and when it moves upward, it can fully open the window.
  • the first actuating member 3 is arranged in the middle of the inside of the sampling cylinder, and the second actuating member 4 is arranged adjacent to the inner wall of the sampling cylinder on the side where the window is opened.
  • the window is opened to Close window 5 when moving down.
  • the first actuating member 3 is a first moving rod
  • the second actuating member 4 is a second moving rod
  • the discharge head is used as the head, which is opened only when discharging, and the head is closed during the whole sampling process, which is the discharge head, not the sampling head.
  • the head is opened only when discharging, and the head is closed during the whole sampling process, which is the discharge head, not the sampling head.
  • the tail end of the first actuator 3 is provided with a pushing plate 31, which can move up and down along with the first actuator.
  • the number of unloading pieces can be two or more, and the number of movable connecting rods is equal to the number of unloading pieces, in one-to-one correspondence; when the first actuator 3 moves downward, the unloading piece can It can be opened outwards under the push of the movable connecting rod. When the first actuator 3 moves upward, the movable connecting rod pulls the discharge piece to close; the connection mode between the movable connecting rod and the discharge piece can actually be welding. It can be fixed, screw fixed, or it can be movable connection.
  • the tail of the second actuator 4 is provided with a window baffle 41, the side of the baffle 41 facing the window matches the shape and size of the window, and the two sides of the window baffle are chamfered. shape, gradually becoming sharper from a position close to the second actuator to a position away from the second actuator; the number of the second actuator 4 corresponds to the number of windows one by one.
  • the shape of the notch 33 left by the pusher plate matches the shape of the vertical surface at the top of the window baffle, and when the top of the window baffle coincides with the notch 33 of the pusher plate, the cross-sectional shape of the sampling cylinder is just combined;
  • the purpose of the design is to clean the inner wall of the sampling cylinder as thoroughly as possible; however, in order to prevent the collision or jamming between the pushing plate and the window baffle due to deformation of the parts, a certain safety distance will be left between the two on the horizontal plane .
  • the driving device for the sampler itself to enter the coal seam and the first actuator 3 and the second actuator 4 can be driven by a motor, a hydraulic pump or an air cylinder.
  • a plurality of bucket teeth 6 are arranged side by side on the outer wall of the sampling cylinder and the lower edge of the window.
  • the shape and size of the bucket teeth 6 can be consistent, and the installation of the bucket teeth 6 forms a certain angle with the window.
  • the bucket tooth 6 has three main functions: when the sampler drills into the material layer, the window is closed, and the direction pointed by the tip of the bucket tooth 6 is opposite to the direction of drilling, so the material will not form obvious resistance to the bucket tooth 6 , so that it does not affect the normal drilling of the sampler; when the sampler lifts up the material layer, the window is open, and the direction pointed by the tooth tip of the bucket tooth 6 is consistent with the direction of the lifting, so the material forms resistance to the bucket tooth 6, in Under the action of the bucket teeth 6, the material that hinders the bucket teeth 6 from rising is squeezed into the window by the bucket teeth 6 and falls into the discharge head to complete the sampling; the bucket teeth 6 can prevent large pieces of material from being pushed away and avoid missed sampling.
  • a plurality of ribs 11 are provided on the inner wall of the sampling cylinder 1 to enhance the strength of the wall of the sampling cylinder and prevent deformation; outside the discharge head, a plurality of high-strength cutting materials are symmetrically arranged.
  • the cutting piece is vertically arranged outside the discharge head, and the head of the cutting piece is sharp in shape, which assists the discharge head to quickly penetrate into the material layer.
  • the sampling method based on the described a kind of quantitative sampler comprises the following steps,
  • the discharge head 2 enters the specified sampling depth of the material layer, the second actuator 4 moves so that the baffle 41 opens the window 5,
  • the sampling cylinder 1 is lifted from the material layer, and the material falls into the discharge head 2 from the window 5.
  • the second actuator 4 moves to close the baffle 41 Window 5, when installed without a baffle, the window will always be open.
  • the first actuator 3 actuates the discharge head 2 to open.
  • Step 1 The discharge head 2 is closed, all windows are closed, and the sampler is driven into the material layer by the driving mechanism;
  • Step 2 The unloading head of the sampler enters the specified sampling depth, and all the window baffles 41 move upwards driven by the driving mechanism to open the windows;
  • Step 3 The driving mechanism drives the sampler to slowly lift up the material layer
  • the sampler when sampling, the sampler must enter the material layer from the discharge head to the upper edge of the window, and the material can only fill the inner cylinder volume of the entire discharge head and window height at most, and rely on discharge when installing without baffles
  • the head is used to hold the collected samples, so the quality of the collected materials is always controlled within a certain range to achieve quantitative sampling.
  • Step 5 When the sampler leaves the material layer, all the window baffles 41 move downward under the drive of the driving mechanism to close the windows, and the windows will always be open when no baffles are installed;
  • Step 6 The sampler that has finished sampling is transferred to the top of the designated unloading area under the drive of the drive mechanism.
  • the first actuator 3 moves downward under the drive of the drive mechanism, and the movable connecting rod 32 moves the discharge sheet from The inside is opened outwards, and the collected samples fall from the discharge head into the discharge area;
  • Step 7 When the first actuator 3 moves downwards, it drives the pushing plate 31 to move downwards, and at the same time pushes out the materials, it also cleans the remaining materials adhering to the inner wall of the sampling cylinder.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种全断面任意深度定量采样器和采样方法,定量采样器中,采样筒(1)侧壁设有用于采集样品的至少一个窗口(5);卸料头(2)可开闭地设置于采样筒(1)底部;第一致动件(3)设在采样筒(1)内且大致平行于采样筒(1)的中心轴线延伸,第一致动件(3)致动以开闭卸料头(2);第二致动件(4)设在采样筒(1)内且大致平行于采样筒(1)的中心轴线延伸,第二致动件(4)的底端设有形状适配于窗口(5)的挡板(41),窗口(5)经由第二致动件(4)的移动而被挡板(41)闭合和开启。定量采样器能够全断面任意深度采样,且不破坏物料原始粒度。

Description

一种全断面任意深度定量采样器和采样方法 技术领域
本发明涉及采样设备技术领域,尤其涉及一种全断面任意深度定量采样器和采样方法。
背景技术
目前,用于煤炭、铁矿石等散装固体矿物机械采样的深层采样器包括内螺旋钻取式和外螺旋爪式。内螺旋钻取式高速旋转的螺旋钻头会对大粒度煤样、矸石或矿石进行无差别破碎,然而有些试验项目,如粒度筛分、抗碎强度、机械强度、落下强度、抗压强度等试验,要求采样时不能破坏样品原始粒度。此外,高速旋转的螺旋钻头会对车厢底部造成破坏,为了安全起见,实际应用中很难实现真正意义上的全断面任意深度采样。如已公开专利CN201620845384.1一种新型螺旋采样器、CN201510181209.7螺旋采样器便存在上述问题。
现有外螺旋爪式,组成采样头的锥形爪片以闭合状态旋转着进入物料层中(如煤层、铁矿石层),到达一定深度后,头部爪片在物料层内被驱动机构强行打开,采样头继续下探,物料进入采样筒内,采集一定量的物料后,爪片在物料层内经驱动机构再强行闭合,完成采样。该过程中,物料的原始粒度不会被过度破坏,但锥形爪片需先后两次在物料层中克服物料对爪片的强大阻力,完成开合动作,且还需要抵抗物料的阻力向深层移动,极大程度地影响了设备的可靠性和使用寿命。长此以往,爪片极易发生变形或损毁,闭合不上,难以实现物料采集。如专利CN201210181342.9公开的采样机机械手装置以及一种采样机、CN201710651181.8公开的一种采样装置及其采样头均存在上述问题。
综上所述,如何有效克服现有技术问题,以实现真正意义上的全断面任意深度采样,且不破坏物料原始粒度,亟待本领域技术人员解决。
在背景技术部分中公开的上述信息仅仅用于增强对本发明背景的理解,因此可能包含不构成本领域普通技术人员公知的现有技术的信息。
发明内容
本发明的目的是提供一种全断面任意深度定量采样器和采样方法,能够全断面任意深度采样,且不破坏物料原始粒度,为了实现上述目的,本发明提供如下技术方案:
本发明的一种定量采样器包括:
采样筒,其侧壁设有用于采集样品的至少一个窗口;
卸料头,其可开闭地设置于所述采样筒底部;
第一致动件,其设在所述采样筒内且大致平行于所述采样筒的中心轴线延伸,所述第一致动件致动以开闭所述卸料头;
第二致动件,其设在所述采样筒内且大致平行于所述采样筒的中心轴线延伸,所述第二致动件的底端设有形状适配于窗口的挡板,所述窗口经由所述第二致动件的移动而被所述挡板闭合和开启。
所述的一种定量采样器中,在所述采样筒的侧壁和/或所述窗口的下沿设置多个斗齿。
所述的一种定量采样器中,所述多个斗齿阵列排布,所述斗齿和窗口形成一定角度,和/或所述斗齿和所述侧壁形成一定角度。
所述的一种定量采样器中,所述斗齿可拆卸连接所述侧壁和/或所述窗口。
所述的一种定量采样器中,多个所述窗口对称地分布于所述侧壁,所述第二致动件和/或挡板的个数相等于所述窗口个数,所述挡板面向窗口的外表面与窗口的形状大小适配。
所述挡板以可拆卸形式安装于第二致动件底端,所述挡板有无安装不影响所述采样器的整体结构功能,所述挡板的侧表面为斜切状,从靠近第二致动件的位置向远离第二致动件的位置逐渐变尖锐。
所述的一种定量采样器中,所述卸料头包括可开闭的多个卸料片,多个所述卸料片铰接所述采样筒,所述卸料片的外表面设有用于辅助采样器深入物料堆的切料片。
所述的一种定量采样器中,所述第一致动件设有大致垂直于所述中心轴线的推料板,所述推料板朝向卸料头的底面铰接一个或多个可活动连杆,所述可活动连杆的另一端连接所述卸料片,所述第一致动件经由所述可活动连杆致动所述卸料片开闭。
所述的一种定量采样器中,所述采样筒、第一致动件和第二致动件分别经由电机、液压泵或气缸驱动,所述电机、液压泵或气缸分别经由处理单元控制,其中,当采样筒向下钻入物料层时,第一致动件保持所述卸料头闭合,所述第二致动件保持所述窗口闭合,当所述采样筒从物料层中提升时,所述第二致动件移动使得所述挡板开启窗口,当所述采样筒离开所述物料层时,所述第二致动件移动使得所述挡板闭合窗口,所述第一致动件致动所述卸料头开启。
基于所述的一种定量采样器的采样方法包括以下步骤,
闭合卸料头和窗口,采样筒钻入物料层中,
所述卸料头进入到物料层指定采样深度,所述第二致动件移动使得所述挡板开启窗口,
采样筒从物料层中提升,物料从窗口落入卸料头中,当所述采样筒离开所述物料层时,所述第二致动件移动使得所述挡板闭合窗口,无挡板安装时窗口将一直处于开启状态,
采样筒抵达卸料区域时,所述第一致动件致动所述卸料头开启。
在上述技术方案中,本发明提供的一种全断面任意深度定量采样器和采样方法,具有以下有益效果:与现有技术相比,深层采样方式采用物料从采样筒侧壁的窗口落入采样筒内,完全避免了原有的内螺旋采样方式对物料的破坏。采样筒前端的卸料头,在结构上等同于现有外螺旋爪式的采样爪,但在采样过程中始终保持闭合状态,在物料层中不被打开,显著提高了设备的稳定性和可靠性。本发明物料从采样筒的侧壁开窗中进入卸料头中,实现真正意义上不破坏物料粒度的同时实现任意深度采样,卸料头和窗口高度的内筒体积控制了采集物料的质量始终控制在一定范围内,实现定量采样,通过第一致动件和第二致动件致动控制卸料头和窗口的开闭使得采样精度显著提升。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种定量采样器的结构示意图。
图2为本发明实施例提供的一种定量采样器的结构示意图。
图3为本发明实施例提供的一种定量采样器的第一致动件的结构示意图。
图4为本发明实施例提供的一种定量采样器的第二致动件的两个角度的合成示意图。
图5为本发明实施例提供的设有一个窗口的一种定量采样器的卸料头开启的结构示意图。
图6为本发明实施例提供的设有一对窗口的一种定量采样器的卸料头开启的结构示意图。
图7为本发明实施例提供的一种定量采样器的采样筒截面示意图。
图8a-8d为本发明实施例提供的一种定量采样器的采样方法的采样过程示意图。
附图标记为:
采样筒1,卸料头2,第一致动件3,第二致动件4,窗口5,斗齿6,加强筋11,切料片21,推料板31,可活动连杆32,豁口33,挡板41。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全 部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
为了使本领域的技术人员更好地理解本发明的技术方案,下面将结合附图对本发明作进一步的详细介绍。
参见图1-7所示,在一个实施例中,本发明的一种定量采样器包括,
采样筒1,其侧壁设有用于采集样品的至少一个窗口5;
卸料头2,其可开闭地设置于所述采样筒1底部;
第一致动件3,其设在所述采样筒1内且大致平行于所述采样筒1的中心轴线延伸,所述第一致动件3致动以开闭所述卸料头2;
第二致动件4,其设在所述采样筒1内且大致平行于所述采样筒1的中心轴线延伸,所述第二致动件4的底端设有形状适配于窗口5的挡板41,所述窗口5经由所述第二致动件4的移动而被所述挡板41闭合和开启。
所述的一种定量采样器的优选实施例中,在所述采样筒1的侧壁和/或所述窗口5的下沿设置多个斗齿6。
所述的一种定量采样器的优选实施例中,所述多个斗齿6阵列排布,所述斗齿6和窗口5形成一定角度,和/或所述斗齿6和所述侧壁形成一定角度。
所述的一种定量采样器的优选实施例中,所述斗齿6可拆卸连接所述侧壁和/或所述窗口5。
所述的一种定量采样器的优选实施例中,多个所述窗口5对称地分布于所述侧壁,所述第二致动件4和/或挡板41的个数相等于所述窗口5个数,所述挡板41面向窗口5的外表面与窗口5的形状大小适配。
所述挡板41以可拆卸形式安装于第二致动件4底端,所述挡板41有无安装不影响所述采样器的整体结构功能,所述挡板41的侧表面为斜切状,从靠近第二致动件4的位置向远离第二致动件4的位置逐渐变尖锐。
所述的一种定量采样器的优选实施例中,所述卸料头2包括可开闭的多个卸料片,多个所述卸料片铰接所述采样筒1,所述卸料片的外表面设有用于辅助采样器深入物料堆的的切料片21。
如图3所示,所述的一种定量采样器的优选实施例中,所述第一致动件3设有大致垂直于所述中心轴线的推料板31,所述推料板31朝向卸料头2的底面铰接多个可活动连杆32,所述可活动连杆32的另一端连接所述卸料片,所述第一致动件3经由所述可活动连杆32致动所述卸料片开闭。
所述的一种定量采样器的优选实施例中,所述采样筒1、第一致动件3和第二致动件4分别经由电机、液压泵或气缸驱动,所述电机、液压泵或气缸分别经由处理单元控制,其中,当采样筒1向下钻入物料层时,第一致动件3保持所述卸料头2闭合,所述第二致动件4保持所述窗口5闭合,当所述采样筒1从物料层中提升时,所述第二致动件4移动使得所述挡板41开启窗口5,当所述采样筒1离开所述物料层时,所述第二致动件4移动使得所述挡板41闭合窗口5,所述第一致动件3致动所述卸料头2开启。
在一个实施例中,定量采样器为全断面任意深度定量采样器,定量采样器包括采样筒1、卸料头2、设置在采样筒内部的第一致动件3和第二致动件4,第一致动件3和第二致动件4分别与采样驱动机构传动连接,卸料头与采样筒铰接,采样筒1靠近卸料头的一端侧壁上开有窗口5,如图4所示,第二致动件4的尾部形状与窗口形状吻合,第二致动件向下运动时能够将窗口全部封闭,向上运动时,能够将窗口全部打开。
在一个实施例中,第一致动件3设置在采样筒内部中间,第二致动件4紧邻开有窗口一侧的采样筒内壁布置,第二致动件4向上移动时打开窗口,向下移动时关闭窗口5。
在一个实施例中,第一致动件3为第一移动杆,第二致动件4为第二移动杆。
在一个实施例中,卸料头作为头部,只有在卸料时才会打开,而采样的全过程中,头部都是关闭的,其为卸料头,而非采样头。其与现有技术的采样头的外形和位置虽然基本类似,但功能不一样。
在一个实施例中,窗口5可以是1个,也可以是前后对称的两个,窗口大小满足被采集样品最大标称粒度的3倍要求,对应的第二致动件4则可以是1个或者两个。
在一个实施例中,第一致动件3的尾端设置有推料板31,可以随着第一致动件上下移动。
在一个实施例中,推料板31与第一致动件3之间可以是焊接固定、套锁固定等任意固定形式,也可以是一体成型;推料板形状与采样筒内壁形状吻合,推料板31的作用是通过上下移动,将黏湿的物料从采样筒内推出,并具有清扫采样筒内壁的功能。
在一个实施例中,推料板31朝向卸料头的一面推料板底部与卸料头的每一个卸料片之间均设置有一个可活动连杆32,所述多个可活动连杆一端均与第一致动件上的推料板31底部活动链接,另一端则分别与对应卸料片内部固定连接。
在一个实施例中,卸料片数量可为两个或多个,可活动连杆数量与卸料片数量相等,一一对应;第一致动件3向下移动时,卸料片在可活动连杆的推动下可以向外打开,第一致动件3向上移动时,可活动连杆拉动卸料片闭合;可活动连杆与卸料片之间的连接方式,实际上可以是焊接固定、螺丝固定,也可以是活动连接。
在一个实施例中,所述第二致动件4的尾部设置有窗口的挡板41,挡板41面向窗口的一侧与窗口的形状、大小吻合,窗口挡板的两侧则为斜切状,从靠近第二致动件的位置向远离第二致动件的位置逐渐变尖锐;所述第二致动件4的数量与窗口数量一一对应。
在一个实施例中,窗口挡板41与第二致动件的连接方式是可以是焊接固定、螺丝固定,也可以是活动连接或一体成型,但二者始终保持相对固定,同时向上或同时向下运动;窗口挡板41的两侧为斜切状,有利于在采集样品结束后,第二致动件向下运动时,尾部结构能够顺利的穿过采样筒 内采集的物料样品最大程度降低采样筒内物料对第二致动件的阻力,完成关闭窗口的功能,也能够最大程度降低采样驱动机构的负荷。
在一个实施例中,为防止推料板31与窗口挡板41上下移动时发生碰撞,推料板31在靠近窗口挡板41的一侧留有豁口33,方便窗口挡板41正常通过。
在一个实施例中,推料板留出的豁口33形状,与窗口挡板顶端垂直面的形状吻合,且窗口挡板顶端与推料板豁口33重合时,正好组合成采样筒断面形状;这样设计目的是尽可能对采样筒内壁进行全面的清扫;但为了防止零部件变形导致推料板和窗口挡板之间发生碰撞或卡死,二者在水平面上,也会留有一定的安全间距。
在一个实施例中,采样器本身进入煤层以及所述第一致动件3和第二致动件4的驱动装置可采用电机、液压泵或气缸驱动。
在一个实施例中,在采样筒外壁、窗口的下沿,并排设置有多个斗齿6。
在一个实施例中,斗齿6的形状大小可以一致,斗齿6的安装和窗口形成一定角度。斗齿6的主要功能有三个:采样器钻进物料层时,开窗为闭合状态,斗齿6齿尖所指方向因与下钻方向相反,所以物料不会对斗齿6形成明显的阻力,从而也就不影响采样器的正常下钻;采样器向上提出物料层的时候,窗口为打开状态,斗齿6齿尖所指方向与提出方向一致,所以物料对斗齿6形成阻力,在斗齿6的作用下,阻碍斗齿6上升的物料,被斗齿6挤压进入窗口,落入卸料头内,完成采样;斗齿6能够防止大块物料被推开,避免漏采。
在一个实施例中,斗齿6与采样筒壁的连接方式可以是固定,也可以是可拆卸的,斗齿6可减少在物料层中下钻时的阻力,可增大在煤层中上提时对物料的挤压接触面积。
在一个实施例中,如图7所示,采样筒1内壁上设置有多个加强筋11,用以增强采样筒壁强度,防止变形;卸料头外部,对称设置有多个高强度切料片,切料片垂直布置在卸料头外侧,切料片头部为尖锐形状,辅助卸料头快速深入物料层中。
基于所述的一种定量采样器的采样方法包括以下步骤,
闭合卸料头2和窗口5,采样筒1钻入物料层中,
所述卸料头2进入到物料层指定采样深度,所述第二致动件4移动使得所述挡板41开启窗口5,
采样筒1从物料层中提升,物料从窗口5落入卸料头2中,当所述采样筒1离开所述物料层时,所述第二致动件4移动使得所述挡板41闭合窗口5,无挡板安装时窗口将一直处于开启状态,
采样筒1抵达卸料区域时,所述第一致动件3致动所述卸料头2开启。
在一个优选实施方式中,如图8所示,采样方法如下:
步骤一:卸料头2关闭、所有窗口关闭,采样器在驱动机构的带动下强力钻入物料层中;
步骤二:采样器的卸料头进入到指定采样深度,所有窗口挡板41在驱动机构的带动下向上移动,打开窗口;
步骤三:驱动机构带动采样器缓慢向上提出物料层;
步骤四:物料依靠自身重力和周围的扰动力场作用下,从窗口落入卸料头中;斗齿用于辅助将物料挤压进入卸料头中;斗齿有助于提高黏度较大或粒度较大的物料进入卸料头中的几率;
优选地,因为采样时,采样器从卸料头到窗口上沿必须全部进入物料层中,物料最多只能装满整个卸料头和窗口高度的内筒体积,无挡板安装时依靠卸料头来承装收集到的样品,所以采集物料的质量均始终控制在一定范围内,实现定量采样。
步骤五:在采样器离开物料层时,所有窗口挡板41在驱动机构的带动下向下移动,关闭窗口,无挡板安装时窗口将一直处于开启状态;
步骤六:完成采样的采样器,在驱动机构的带动下转移到指定的卸料区域上方,第一致动件3在驱动机构的带动下向下移动,可活动连杆32将卸料片从内部向外打开,采集的样品从卸料头中落入卸料区域内;
步骤七:第一致动件3在向下移动的同时,带动推料板31向下移动,将物料推出的同时,还清扫了采样筒内壁上残余粘附的物料。
如此循环往复,继续下一个样品的采集。
最后应该说明的是:所描述的实施例仅是本申请一部分实施例,而不是全部的实施例,基于本申请中的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。
以上只通过说明的方式描述了本发明的某些示范性实施例,毋庸置疑,对于本领域的普通技术人员,在不偏离本发明的精神和范围的情况下,可以用各种不同的方式对所描述的实施例进行修正。因此,上述附图和描述在本质上是说明性的,不应理解为对本发明权利要求保护范围的限制。

Claims (10)

  1. 一种定量采样器,其特征在于,其包括:
    采样筒,其侧壁设有用于采集样品的至少一个窗口;
    卸料头,其可开闭地设置于所述采样筒底部;
    第一致动件,其设在所述采样筒内且大致平行于所述采样筒的中心轴线延伸,所述第一致动件致动以开闭所述卸料头;
    第二致动件,其设在所述采样筒内且大致平行于所述采样筒的中心轴线延伸,所述第二致动件的底端设有形状适配于窗口的挡板,所述窗口经由所述第二致动件的移动而被所述挡板闭合和开启。
  2. 根据权利要求1所述的一种定量采样器,其特征在于,在所述采样筒的侧壁和/或所述窗口的下沿设置多个斗齿。
  3. 根据权利要求2所述的一种定量采样器,其特征在于,所述多个斗齿阵列排布,所述斗齿和窗口形成一定角度,和/或所述斗齿和所述侧壁形成一定角度。
  4. 根据权利要求3所述的一种定量采样器,其特征在于,所述斗齿可拆卸连接所述侧壁和/或所述窗口。
  5. 根据权利要求1所述的一种定量采样器,其特征在于,多个所述窗口对称地分布于所述侧壁,所述第二致动件和/或挡板的个数相等于所述窗口个数,所述挡板面向窗口的外表面与窗口的形状大小适配。
  6. 根据权利要求6所述的一种定量采样器,其特征在于,所述挡板以可拆卸形式安装于第二致动件底端,所述挡板有无安装不影响所述采样器的整体结构功能,所述挡板的侧表面为斜切状,从靠近第二致动件的位置向远离第二致动件的位置逐渐变尖锐。
  7. 根据权利要求1所述的一种定量采样器,其特征在于,所述卸料头包括可开闭的多个卸料片,多个所述卸料片铰接所述采样筒,所述卸料片的外表面设有用于辅助采样器深入物料堆的切料片。
  8. 根据权利要求7所述的一种定量采样器,其特征在于,所述第一致动件设有大致垂直于所述中心轴线的推料板,所述推料板朝向卸料头的底面铰接一个或多个可活动连杆,所述可活动连杆的另一端连接所述卸料片,所述第一致动件经由所述可活动连杆致动所述卸料片开闭。
  9. 根据权利要求1所述的一种定量采样器,其特征在于,所述采样筒、第一致动件和第二致动件分别经由电机、液压泵或气缸驱动,所述电机、液压泵或气缸分别经由处理单元控制,其中,当采样筒向下钻入物料层时,第一致动件保持所述卸料头闭合,所述第二致动件保持所述窗口闭合,当所述采样筒从物料层中提升时,所述第二致动件移动使得所述挡板开启窗口,当所述采样筒离开所述物料层时,所述第二致动件移动使得所述挡板闭合窗口,所述第一致动件致动所述卸料头开启。
  10. 基于权利要求1-9中任一项所述的一种定量采样器的采样方法,其特征在于,其包括以下步骤,
    闭合卸料头和窗口,采样筒钻入物料层中,
    所述卸料头进入到物料层指定采样深度,所述第二致动件移动使得所述挡板开启窗口,
    采样筒从物料层中提升,物料从窗口落入卸料头中,当所述采样筒离开所述物料层时,所述第二致动件移动使得所述挡板闭合窗口,无挡板安装时窗口将一直处于开启状态,
    采样筒抵达卸料区域时,所述第一致动件致动所述卸料头开启。
PCT/CN2021/131473 2021-11-10 2021-11-18 一种全断面任意深度定量采样器和采样方法 WO2023082302A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111328934.4 2021-11-10
CN202111328934.4A CN114034507A (zh) 2021-11-10 2021-11-10 一种全断面任意深度定量采样器和采样方法

Publications (1)

Publication Number Publication Date
WO2023082302A1 true WO2023082302A1 (zh) 2023-05-19

Family

ID=80143880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131473 WO2023082302A1 (zh) 2021-11-10 2021-11-18 一种全断面任意深度定量采样器和采样方法

Country Status (2)

Country Link
CN (1) CN114034507A (zh)
WO (1) WO2023082302A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116337515A (zh) * 2023-05-26 2023-06-27 中材克普(北京)生态环境有限公司 一种土壤中固体废物的监测取样装置
CN116718417A (zh) * 2023-08-09 2023-09-08 南京海关工业产品检测中心 一种可自动收合的固体散货取样定位杆
CN117420037A (zh) * 2023-07-20 2024-01-19 云南滇东雨汪能源有限公司 一种采煤工作面用煤的硬度检测系统及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706685A (zh) * 2012-06-04 2012-10-03 长沙开元机电设备有限公司 一种采样机机械手装置以及一种采样机
EP3232179A1 (en) * 2016-04-13 2017-10-18 Prometec Tools Oy Sampling device and sampling method
CN208125416U (zh) * 2017-12-10 2018-11-20 四川国测检测技术有限公司 一种土壤环境检测采样器
CN209945752U (zh) * 2019-03-23 2020-01-14 中煤浙江检测技术有限公司 一种旋转钻进式煤堆取样装置
CN211061230U (zh) * 2019-11-15 2020-07-21 重庆兴宇工程建设监理有限公司 一种建筑工程监理用取样装置
CN211825150U (zh) * 2020-04-08 2020-10-30 西藏自治区林业调查规划研究院、区林业生态监测中心、区林业碳汇计量检测中心 一种林业生态土壤取样器
CN213239495U (zh) * 2020-09-30 2021-05-18 河南科正检测技术有限公司 一种便捷采样器
CN216349678U (zh) * 2021-11-10 2022-04-19 英飞智信(苏州)科技有限公司 一种全断面任意深度定量采样器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202631297U (zh) * 2012-04-13 2012-12-26 北京华夏力鸿商品检验有限公司 一种煤炭采样头
CN104931290A (zh) * 2015-06-11 2015-09-23 浙江大学 一种可拆卸式浅层底泥与土壤两用采样器及其方法
CN207908191U (zh) * 2018-01-18 2018-09-25 浙江省淡水水产研究所 一种干湿两用采泥器
CN209247418U (zh) * 2019-01-02 2019-08-13 张艳燕 一种食品检测采样装置
CN210719752U (zh) * 2019-07-08 2020-06-09 孙丽娟 一种用于测定硼的土壤样品采集装置
CN210487350U (zh) * 2019-09-11 2020-05-08 浙江省工程咨询有限公司 一种工程监理取样设备
CN211347458U (zh) * 2019-11-12 2020-08-25 青海工程勘察院 一种岩土分析采样头
CN211122065U (zh) * 2019-11-13 2020-07-28 深圳市卓宝科技股份有限公司 一种岩棉取样装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706685A (zh) * 2012-06-04 2012-10-03 长沙开元机电设备有限公司 一种采样机机械手装置以及一种采样机
EP3232179A1 (en) * 2016-04-13 2017-10-18 Prometec Tools Oy Sampling device and sampling method
CN208125416U (zh) * 2017-12-10 2018-11-20 四川国测检测技术有限公司 一种土壤环境检测采样器
CN209945752U (zh) * 2019-03-23 2020-01-14 中煤浙江检测技术有限公司 一种旋转钻进式煤堆取样装置
CN211061230U (zh) * 2019-11-15 2020-07-21 重庆兴宇工程建设监理有限公司 一种建筑工程监理用取样装置
CN211825150U (zh) * 2020-04-08 2020-10-30 西藏自治区林业调查规划研究院、区林业生态监测中心、区林业碳汇计量检测中心 一种林业生态土壤取样器
CN213239495U (zh) * 2020-09-30 2021-05-18 河南科正检测技术有限公司 一种便捷采样器
CN216349678U (zh) * 2021-11-10 2022-04-19 英飞智信(苏州)科技有限公司 一种全断面任意深度定量采样器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116337515A (zh) * 2023-05-26 2023-06-27 中材克普(北京)生态环境有限公司 一种土壤中固体废物的监测取样装置
CN116337515B (zh) * 2023-05-26 2023-08-04 中材克普(北京)生态环境有限公司 一种土壤中固体废物的监测取样装置
CN117420037A (zh) * 2023-07-20 2024-01-19 云南滇东雨汪能源有限公司 一种采煤工作面用煤的硬度检测系统及装置
CN116718417A (zh) * 2023-08-09 2023-09-08 南京海关工业产品检测中心 一种可自动收合的固体散货取样定位杆
CN116718417B (zh) * 2023-08-09 2023-10-31 南京海关工业产品检测中心 一种可自动收合的固体散货取样定位杆

Also Published As

Publication number Publication date
CN114034507A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2023082302A1 (zh) 一种全断面任意深度定量采样器和采样方法
CN216349678U (zh) 一种全断面任意深度定量采样器
CN104849095A (zh) 一种惯性差动开锁弹簧冲击式水底泥沙样品的采集器
CN114100762B (zh) 一种砂石料全自动智能装车装置
CN210187269U (zh) 一种膨润土分级式粉碎装置
CN212707265U (zh) 一种自动破竹机
CN214183545U (zh) 一种建筑工程用垃圾分类处理装置
US4073229A (en) Vertical waste compacting apparatus
CN106969944B (zh) 一种螺旋采样装置
CN217910833U (zh) 一种蔬菜农药残留检测用破碎装置
CN217055016U (zh) 一种磷矿石开采用钻孔装置
CN202547973U (zh) 一种螺旋采样器
CN220405917U (zh) 一种物料破碎设备
CN2908608Y (zh) 垃圾箱的自动刮板卸料机构
CN216746880U (zh) 固体物料定量采样器
CN113318810A (zh) 一种废弃建筑钢筋混凝土回收装置
CN106743480A (zh) 一种取样用快速接料斗装置
CN219810716U (zh) 矿石破碎取样装置
CN220363829U (zh) 一种粉料挡料结构
CN213975727U (zh) 一种提升下料速度的矿用提升机料斗
CN211667693U (zh) 一种具有垃圾收集装置的路灯
CN217925598U (zh) 一种便于门窗滑道污渍清理的钢质防火门
CN216322545U (zh) 一种管材切割用废料回收装置
CN211801241U (zh) 一种锤式破碎机
CN117599888B (zh) 一种探矿用矿石样本破碎设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE