WO2023082168A1 - Robot de forage et procédé sans excavation de sol pour la pose de pipeline - Google Patents

Robot de forage et procédé sans excavation de sol pour la pose de pipeline Download PDF

Info

Publication number
WO2023082168A1
WO2023082168A1 PCT/CN2021/130251 CN2021130251W WO2023082168A1 WO 2023082168 A1 WO2023082168 A1 WO 2023082168A1 CN 2021130251 W CN2021130251 W CN 2021130251W WO 2023082168 A1 WO2023082168 A1 WO 2023082168A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
tunnel
drilling
traction
earth
Prior art date
Application number
PCT/CN2021/130251
Other languages
English (en)
Chinese (zh)
Inventor
于宙
Original Assignee
于宙
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 于宙 filed Critical 于宙
Priority to PCT/CN2021/130251 priority Critical patent/WO2023082168A1/fr
Publication of WO2023082168A1 publication Critical patent/WO2023082168A1/fr

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/22Rods or pipes with helical structure

Definitions

  • the shield head 4 of the shield machine has a large diameter, such as a common 6 meters, which is exactly equivalent to an enlarged file.
  • the present invention provides an earth-drilling robot, which includes a drilling rig main body and a driving module, the drilling rig main body is provided with a drill bit mounting frame, and the drill bit mounting frame is provided with a structure for cooperating with the drill bit, and the driving module is used to drive
  • the structure cooperating with the drill bit rotates;
  • the main body of the drilling rig is equipped with helical blades, and each of the helical blades can rotate around its axial direction, and all the helical blades are configured to form a walking mechanism for the advancement and retreat of the main body of the drilling rig and steering.
  • the ground-drilling robot in the present invention can break up the soil when drilling underground, and then pass through the ground. Specifically, the drill bit is used to break up soil, stone, steel blocks, etc., and then relying on the strong thrust formed by all the spiral blades, the ground-drilling robot passes through the broken soil.
  • the turning of the earth-drilling robot is realized by the rotation difference of the multi-axis helical blades, and there is no traditional steering mechanism. Debris remains in the tunnel.
  • the broken soil generated during the drilling process is at least partially in the channel surrounded by solid soil walls;
  • the present invention also provides a tunnel forming method, comprising the following steps:
  • Fig. 12a and Fig. 12b are respectively the structural schematic diagrams of two specific embodiments of the earth-drilling robot provided by the present invention.
  • Figures 19a to 20 are schematic diagrams of three different tunnel forming methods provided by the present invention.
  • Figure 23a shows three schematic diagrams of the planar soil door in the process of transporting crushed soil
  • Fig. 39 is a schematic cross-sectional view of the central axis of the walking mechanism of the earth-drilling robot coaxial with the central axis of the drill bit and eccentric;
  • a reel inside the equipment compartment, and a steel wire rope group with one end as a free end and which can be used as a traction rope is wound around the reel.
  • the steel wire rope group integrates signal transmission function, power supply transmission function and traction function. at least one.
  • a second driving mechanism is also provided in the equipment cabin, which is used to drive the reel to rotate forward or reverse, so as to realize the take-up and pay-off of the wire rope group.
  • Figures 42a and 42b show the percentage of the total cross-section of the propeller to the area of the drill bit, which can be large or small. It can be seen from the outline circle 108 of the single drill bit and the outline circle 215 of the helical blade in the two figures that the area percentages of the two are different.
  • a batch of hooks 508 that can be carried on the edge of the umbrella hook the inverted soil bucket wall 506 to prevent the umbrella from being turned over by the soil.
  • the soil entry end of the soil bucket wall 506 can be provided with a rewinding port 507, which cooperates with the hook 508 to limit the position.
  • Edges at both ends of the inner wall 513 of the soil bucket can be sharp structures 509 to help the bucket pass through the crushed soil.
  • the edges at both ends of the cylindrical soil bucket can also be retracted structures 510 to prevent the soil bucket from being stuck on the solid soil wall.
  • the advance direction of the tubular soil bucket in the crushed soil 811 is 511, and when the soil umbrella 505 tops the crushed soil and moves forward, it can be fully or incompletely closed because of the pressure of the crushed soil.
  • soil umbrella 505 also can be electrically folded. Therefore, the cylindrical soil bucket 501 can pass through the crushed soil as a whole.
  • the soil bucket wall 506 helps the soil bucket to hold the broken soil.
  • the soil umbrella 505 can be designed to be flatter or sharper after it is fully opened.
  • Step A the cylindrical soil bucket containing crushed soil 514 is pulled out of the tunnel; the first arm 968 remains motionless, the third arm 970 is set horizontally, and the second arm 969 is stretched into the side to wait;
  • the tunnel can be a solid soil wall sandwiching a hollow tunnel, or a solid soil wall 801 sandwiching a more compact broken soil 821 among Fig.
  • elongated sleeve 713 containing the pipeline that has been connected and wrapped therein, has just been installed into the more dense crushed soil 821 inside.
  • the plowshare When plowing the tunnel 981, the plowshare can be dragged by a steel cable or a carbon fiber cable, or the plowshare can be loaded on a vehicle with a wheeled vehicle or a tracked vehicle.
  • Plowshares can be mounted on the side, top, or bottom of the cart.
  • One or several plowshares can be installed on the car.
  • the overall cross-sectional profile of plowshare group can be aforesaid circular, or non-circular such as rectangle, trapezoid.
  • the plowshare group can be in the shape of a vertical strip, a horizontal strip, an oblique strip, an arc shape, or a combination thereof.
  • An open area 623 can also be reserved between the coulter and the central hard rod 614, so that the broken soil effect is better.
  • the plow share can also perform spiral movement in the X-Y plane to perform spiral plowing.
  • the second node transmits Y time later than the first node, and Y is greater than, or much larger than X.
  • Each node emits Y later in turn.
  • the first received signal must come from the first node, the second signal comes from the second node, and so on.
  • coding is omitted.
  • the wave speed is fast enough, resulting in a small Y value, and the total delay (2N-1)Y of the node group is within the tolerable range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

L'invention concerne un robot de forage de sol, un procédé de formation d'un tunnel, un procédé sans excavation de sol pour la pose d'un pipeline et un appareil de coutre. Des pales hélicoïdales sont montées sur un corps de machine de forage du robot de forage de sol, chaque pale hélicoïdale tourne autour d'une direction axiale de celle-ci. Ensemble, les pales hélicoïdales sont conçues pour former un mécanisme de déplacement, utilisé pour déplacer le corps de machine de forage vers l'avant et vers l'arrière et pour la direction. Le robot de forage de sol peut broyer le sol pendant le forage souterrain et, en se basant sur une poussée puissante provoquée par toutes les pales hélicoïdales, le robot de forage de sol peut se déplacer à travers le sol broyé. La direction du robot de forage de sol est obtenue au moyen d'une différence de rotation entre les multiples pales hélicoïdales. Le robot peut effectuer des opérations souterraines sous une route urbaine sans excavation de la surface de route. Le dispositif présente une grande facilité d'utilisation, des coûts faibles, une efficacité élevée et une grande flexibilité d'application et permet une commande précise. De plus, la présente invention concerne en outre un procédé de formation de tunnel ayant une flexibilité de transport de sol broyé relativement élevée dans des tunnels petits et moyens. Le procédé de formation pour former un tunnel de grand diamètre de tuyau divulgué dans la présente invention est rapide à construire et de faible coût.
PCT/CN2021/130251 2021-11-12 2021-11-12 Robot de forage et procédé sans excavation de sol pour la pose de pipeline WO2023082168A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/130251 WO2023082168A1 (fr) 2021-11-12 2021-11-12 Robot de forage et procédé sans excavation de sol pour la pose de pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/130251 WO2023082168A1 (fr) 2021-11-12 2021-11-12 Robot de forage et procédé sans excavation de sol pour la pose de pipeline

Publications (1)

Publication Number Publication Date
WO2023082168A1 true WO2023082168A1 (fr) 2023-05-19

Family

ID=86334826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130251 WO2023082168A1 (fr) 2021-11-12 2021-11-12 Robot de forage et procédé sans excavation de sol pour la pose de pipeline

Country Status (1)

Country Link
WO (1) WO2023082168A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1095807A (zh) * 1994-01-31 1994-11-30 戴君 不破坏路面路下管道施工方法
US20090301779A1 (en) * 2008-06-09 2009-12-10 Thad Bick Earth boring device
CN104653111A (zh) * 2015-01-29 2015-05-27 同济大学 自平衡多螺旋钻地机器人
CN106078716A (zh) * 2016-06-17 2016-11-09 西北工业大学 一种具有钻地功能的蛇形机器人
WO2020193960A1 (fr) * 2019-03-22 2020-10-01 hyperTunnel Limited Procédé et système de construction d'un tunnel souterrain
CN112285860A (zh) * 2019-07-24 2021-01-29 脸谱公司 铺设地下光缆的系统和方法
CN113250610A (zh) * 2021-06-07 2021-08-13 山东科技大学 一种螺旋推进式地下勘探小车
WO2021237442A1 (fr) * 2020-05-26 2021-12-02 于宙 Robot de forage au sol, procédé de formation de tunnel et appareil de coutre
CN113738269A (zh) * 2020-05-28 2021-12-03 宁波瑞能环境能源技术有限公司 一种钻地机器人、隧道的成型方法及犁刀装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1095807A (zh) * 1994-01-31 1994-11-30 戴君 不破坏路面路下管道施工方法
US20090301779A1 (en) * 2008-06-09 2009-12-10 Thad Bick Earth boring device
CN104653111A (zh) * 2015-01-29 2015-05-27 同济大学 自平衡多螺旋钻地机器人
CN106078716A (zh) * 2016-06-17 2016-11-09 西北工业大学 一种具有钻地功能的蛇形机器人
WO2020193960A1 (fr) * 2019-03-22 2020-10-01 hyperTunnel Limited Procédé et système de construction d'un tunnel souterrain
CN112285860A (zh) * 2019-07-24 2021-01-29 脸谱公司 铺设地下光缆的系统和方法
WO2021237442A1 (fr) * 2020-05-26 2021-12-02 于宙 Robot de forage au sol, procédé de formation de tunnel et appareil de coutre
CN113738269A (zh) * 2020-05-28 2021-12-03 宁波瑞能环境能源技术有限公司 一种钻地机器人、隧道的成型方法及犁刀装置
CN113250610A (zh) * 2021-06-07 2021-08-13 山东科技大学 一种螺旋推进式地下勘探小车

Similar Documents

Publication Publication Date Title
CN101358452B (zh) 一种全回转快速切割的清障拔桩施工方法及施工设备
US5765965A (en) Apparatus for in situ installation of underground containment barriers under contaminated lands
WO2021237442A1 (fr) Robot de forage au sol, procédé de formation de tunnel et appareil de coutre
US5957624A (en) Apparatus and method for in Situ installation of underground containment barriers under contaminated lands
CN113738269A (zh) 一种钻地机器人、隧道的成型方法及犁刀装置
CN109681227A (zh) 一种钻爆法隧道软弱大变形和岩爆预处理tbm
CN105626082A (zh) 一种地下隧道施工设备
WO2023082168A1 (fr) Robot de forage et procédé sans excavation de sol pour la pose de pipeline
US8608410B2 (en) Apparatus and a method for constructing an underground curved multisectional wall and stratum
US20040208710A1 (en) Apparatus and a method for constructing underground curved multisectional stratum and wall
JP2001003363A (ja) 地中埋設杭の破砕処理装置
JP2007138607A (ja) 二重構造の作業筒とトンネルの作業筒先進全断面後退掘削工法。
JP4014975B2 (ja) 軽量ボーリング装置
KR101237749B1 (ko) 쉴드공법에 사용되는 추진장치의 헤드
CN105019490A (zh) 双挖斗挖掘机组成的挖掘系统
JP3512012B2 (ja) 掘進機の掘進方法
CN204826012U (zh) 双挖斗挖掘机组成的挖掘系统
CN201071509Y (zh) 一种全回转快速切割的清障拔桩设备
CN110454183A (zh) 一种用于暗挖隧道的挖土工具及其挖土方法
CN113446015B (zh) 一种可调土压-矿山法双模式盾构机及其施工方法
CN204940387U (zh) 双挖斗挖掘机
CN204312070U (zh) 一种地下隧道施工设备
CN216050799U (zh) 一种斜向夯进夯管中的取土装置
JP6945329B2 (ja) 地中障害物除去方法
JP2596802B2 (ja) リングカット式掘削機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963618

Country of ref document: EP

Kind code of ref document: A1