WO2023080229A1 - 船舶用液化水素貯留方法 - Google Patents

船舶用液化水素貯留方法 Download PDF

Info

Publication number
WO2023080229A1
WO2023080229A1 PCT/JP2022/041307 JP2022041307W WO2023080229A1 WO 2023080229 A1 WO2023080229 A1 WO 2023080229A1 JP 2022041307 W JP2022041307 W JP 2022041307W WO 2023080229 A1 WO2023080229 A1 WO 2023080229A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquefied
liquefied hydrogen
tank
nitrogen
hydrogen
Prior art date
Application number
PCT/JP2022/041307
Other languages
English (en)
French (fr)
Inventor
哲也 濱野
宏之 武田
太一郎 下田
晴彦 冨永
隆道 細野
麻子 三橋
章司 池島
邦彦 持田
翔 樋渡
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2023080229A1 publication Critical patent/WO2023080229A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • B63J2/14Heating; Cooling of liquid-freight-carrying tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present disclosure relates to a liquefied hydrogen storage method for storing liquefied hydrogen in a liquefied hydrogen tank mounted on a ship.
  • Patent Literature 1 describes a process of cooling the cryogenic tank with the heat of vaporization of liquefied gas and discharging the vaporized gas as a method of cooling down the cryogenic tank. It is disclosed to provide
  • the liquefied hydrogen cannot be stored in the liquefied hydrogen tank until the liquefied hydrogen tank is sufficiently cooled after the introduction of liquefied hydrogen has started.
  • the hydrogen gas cannot be stored, and the vaporized hydrogen gas is discharged to the outside and consumed.
  • the amount of liquefied hydrogen consumed for cooling inside the liquefied hydrogen tank will increase. Since liquefied hydrogen has a low distribution volume and a high unit price, the conventional mode of cooling the liquefied hydrogen tank with liquefied hydrogen cannot reduce costs. In addition, since such liquefied hydrogen is combustible, the vaporized hydrogen gas must be safely treated with combustion equipment, and it is desirable to suppress the amount of hydrogen gas generated when cooling the tank. In addition, if the pressure in the tank rises above the design pressure or if combustion is not possible, it must be released to the atmosphere, and it is desirable to limit the amount of release.
  • the present disclosure provides a liquefied hydrogen storage method for ships that can reduce the amount of liquefied hydrogen consumed by vaporization when cooling the inside of a liquefied hydrogen tank mounted on a ship to a temperature at which liquefied hydrogen is stored. intended to provide
  • a liquefied hydrogen storage method for ships is a liquefied hydrogen storage method for ships for storing liquefied hydrogen in a liquefied hydrogen tank mounted on a ship, wherein A refrigerant is introduced into the liquefied hydrogen tank through the inserted pipe to precool the liquefied hydrogen tank, and the liquefied hydrogen is introduced into the liquefied hydrogen tank after precooling.
  • a method for storing liquefied hydrogen for ships which can reduce the amount of liquefied hydrogen consumed by vaporization when cooling the inside of a liquefied hydrogen tank mounted on a ship to a temperature at which liquefied hydrogen is stored. can provide
  • FIG. 1 is a diagram showing a schematic configuration of a ship according to one embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram showing a piping control system to a liquefied hydrogen tank in the ship shown in FIG.
  • FIG. 3 is a flow chart showing a liquefied hydrogen storage method in the ship shown in FIG.
  • FIG. 4 is a diagram showing a navigation image of a ship in this embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of a ship according to one embodiment of the present disclosure.
  • a ship 100 has a plurality of liquefied hydrogen tanks 1 mounted on a hull 110 .
  • four liquefied hydrogen tanks 1 are arranged side by side in the longitudinal direction of the hull 110 .
  • the liquefied hydrogen tank 1 includes a tank body 1A that stores liquefied hydrogen and a dome 1B that projects upward from the tank body 1A.
  • the type and number of tanks are not limited.
  • the dome 1B protrudes upward from the top of the tank body 1A.
  • the dome 1B is equipped with a maintenance hatch for operator access. Further, various pipes that communicate the inside and outside of the tank main body 1A pass through the dome 1B.
  • the lower part of the tank main body 1A is installed inside the hull 110.
  • a tank cover 120 covers the top of the tank main body 1A.
  • the tank cover 120 has an opening 120A through which the dome 1B penetrates. As a result, the liquefied hydrogen tank 1 is covered with the outside except for the dome 1B.
  • FIG. 2 is a schematic diagram showing a piping control system to a liquefied hydrogen tank in the ship shown in FIG.
  • ship 100 stores liquefied hydrogen in internal space 13 of liquefied hydrogen tank 1 .
  • liquefied hydrogen is indicated as LH2 .
  • the ship 100 has a function of removing oxygen and moisture present in the internal space 13 of the liquefied hydrogen tank 1 and cooling the internal space 13 before filling the internal space 13 with liquefied hydrogen.
  • the liquefied hydrogen tank 1 has a double shell structure in order to improve heat insulation.
  • the tank main body 1A has an outer tank 11 and an inner tank 12 that is housed in the outer tank 11 and forms an internal space 13 .
  • the tank main body 1A is formed in a spherical shape. That is, both the outer tub 11 and the inner tub 12 are formed in a spherical shape.
  • An inter-tank space 14 is formed between the inner surface of the outer tank 11 and the outer surface of the inner tank 12 .
  • the inter-tank space 14 is maintained in a vacuum state, and vacuum-insulates the internal space 13 from the outside of the liquefied hydrogen tank 1 .
  • Dome 1B also has a double shell structure.
  • the structure and heat insulation system of the tank main body 1A and the dome 1B are not limited to the above.
  • Both the outer tank 11 and the inner tank 12 are constructed of pressure-resistant walls.
  • the outer tank 11 is configured to have a higher pressure resistance than the inner tank 12 in order to withstand the differential pressure between the atmospheric pressure and the pressure in the inter-tank space 14 .
  • the inner tank 12 may be configured to have a higher pressure resistance than the outer tank 11 .
  • a plurality of rods bridging between the inner surface of the outer tank 11 and the outer surface of the inner tank 12 may be provided in the inter-tank space 14 .
  • the ship 100 includes a first introduction section 2 for introducing liquefied hydrogen into the liquefied hydrogen tank 1 .
  • the first introduction part 2 includes a manifold 21 that draws in liquefied hydrogen from the outside, a discharge port 22 that discharges the drawn-in liquefied hydrogen in the liquefied hydrogen tank 1, and is disposed between the manifold 21 and the discharge port 22.
  • a first pipe 23 is provided.
  • the discharge port 22 is arranged in the upper part of the internal space 13 of the liquefied hydrogen tank 1 .
  • the discharge port 22 has a spray nozzle shape and a small-diameter hole for spraying liquefied hydrogen to a predetermined range in the internal space 13 of the liquefied hydrogen tank 1 .
  • the first piping 23 is switched between flow and non-flow of liquefied hydrogen by the first on-off valve 24 . Therefore, by connecting an outboard liquefied hydrogen introduction system to the manifold 21 and opening the first on-off valve 24, liquefied hydrogen is supplied into the internal space 13 of the liquefied hydrogen tank 1 through the first pipe 23 and the discharge port 22. be done.
  • the first introduction part 2 also functions as an introduction part for introducing liquefied nitrogen into the liquefied hydrogen tank 1 .
  • liquefied nitrogen is denoted as LN2 .
  • the ship 100 includes a second introduction section 3 for introducing low-temperature hydrogen gas obtained by vaporizing liquefied hydrogen into the liquefied hydrogen tank 1 .
  • the low-temperature hydrogen gas is denoted as GH2 .
  • the second introduction part 3 includes a vaporizer 25 that vaporizes the liquefied hydrogen drawn from the manifold 21 and a second pipe 26 arranged between the manifold 21 and the discharge port 22 . That is, the low-temperature hydrogen gas generated by the vaporizer 25 is discharged into the liquefied hydrogen tank 1 through the discharge port 22 .
  • the first pipe 23 and the second pipe 26 are connected to the third pipe 28 so as to converge outside the liquefied hydrogen tank 1 .
  • the third pipe 28 is inserted through the dome 1B into the internal space 13 of the liquefied hydrogen tank 1 from above the tank main body 1A.
  • a discharge port dedicated to low-temperature hydrogen gas may be provided separately from the discharge port 22 for liquefied hydrogen or liquefied nitrogen.
  • the vaporizer 25 and the discharge port 22 are connected by a second pipe 26 .
  • the second pipe 26 is switched between low-temperature hydrogen gas flow and non-flow by a second on-off valve 27 . Therefore, by connecting an outboard liquefied hydrogen introduction system to the manifold 21 and opening the second on-off valve 27 , hydrogen is introduced into the internal space 13 of the liquefied hydrogen tank 1 through the vaporizer 25 , the second pipe 26 and the discharge port 22 . Cryogenic hydrogen gas is supplied.
  • the ship 100 is equipped with a discharge pipe 32 for discharging the gas inside the internal space 13 of the liquefied hydrogen tank 1 .
  • the gas flowing through the exhaust line 32 contains oxygen, nitrogen, or hydrogen.
  • nitrogen gas is denoted as GN2 .
  • the discharge pipe 32 is arranged so that one end is positioned above the internal space 13 of the liquefied hydrogen tank 1 and the other end is positioned outside.
  • the ship 100 includes a first measuring device 33 for measuring the oxygen concentration inside the discharge pipe 32 and a second measuring device 34 for measuring the hydrogen concentration inside the discharge pipe 32 .
  • a third on-off valve 35 switches between gas flow and non-flow through the discharge pipe 32 .
  • the discharge pipe 32 may be a different pipe for each gas to be discharged.
  • the ship 100 is equipped with a controller 5 for switching pipes to be circulated.
  • the controller 5 obtains the measurement results from the measuring instruments 33 and 34, and controls the opening and closing of the on-off valves 24, 27 and 35 based on the results.
  • the controller 5 is configured as a processing circuit having a processor, volatile memory, non-volatile memory, I/O interface, and the like.
  • a circuit, unit, or means is hardware that performs or is programmed to perform the recited functions.
  • the hardware may be the hardware disclosed herein, or other known hardware programmed or configured to perform the recited functions.
  • a circuit, unit or means is a combination of hardware and software where the hardware is a processor which is considered a type of circuit, the software being used to configure the hardware or the processor.
  • FIG. 3 is a flow chart showing a liquefied hydrogen storage method in the ship shown in FIG.
  • the internal space 13 of the liquefied hydrogen tank 1 contains oxygen, nitrogen, water vapor, etc. at room temperature.
  • the pressure of the internal space 13 is adjusted in advance so that the dew point temperature of the internal space 13 becomes a predetermined value.
  • step S1 a pre-cooling step of pre-cooling the inside of the liquefied hydrogen tank 1 using liquefied nitrogen is performed.
  • the controller 5 closes the second on-off valve 27 and opens the first on-off valve 24 and the third on-off valve 35 while the outboard liquefied nitrogen introduction system is connected to the manifold 21 . Open the valve.
  • liquefied nitrogen is introduced into the liquefied hydrogen tank 1 through the liquefied nitrogen introduction system, the first pipe 23 , and the third pipe 28 inserted from the top of the liquefied hydrogen tank 1 to the inside.
  • the liquefied hydrogen tank 1 is pre-cooled.
  • oxygen and moisture in the liquefied hydrogen tank 1 are removed by the liquefied nitrogen introduced into the liquefied hydrogen tank 1 .
  • the liquefied nitrogen introduced in the pre-cooling step and the low-temperature nitrogen gas vaporized by cooling the internal space 13 have a higher specific gravity than the residual air in the internal space 13, that is, normal temperature oxygen and nitrogen. Therefore, liquefied nitrogen and low-temperature nitrogen gas accumulate from the bottom of the internal space 13 and push up the remaining air. Therefore, residual air is discharged from the discharge pipe 32 provided in the upper part of the internal space 13, and oxygen is efficiently removed.
  • the first on-off valve 24 may be closed to disconnect the manifold 21 and the liquefied nitrogen introduction system. In this case, the ship 100 can navigate with liquefied nitrogen stored in the liquefied hydrogen tank 1 .
  • the liquefied nitrogen introduced into the internal space 13 is vaporized by heat exchange with the internal space 13. It becomes a low-temperature nitrogen gas atmosphere generated by At this time, the temperature of the internal space 13 becomes the first precooling temperature which is somewhat higher than the boiling point of nitrogen.
  • the first precooling temperature is, for example, about -180°C.
  • step S2 the controller 5 determines whether the oxygen concentration measured by the first measuring device 33 is less than the first reference value Th1.
  • the first reference value Th1 is set to a value when the oxygen concentration in the internal space 13 is sufficiently lower than the liquefied hydrogen combustion conditions. Note that the combustion condition for setting the first reference value Th1 is determined according to the dew point temperature preset in the internal space 13 .
  • Step S ⁇ b>3 is a nitrogen removal step for removing low-temperature nitrogen gas in the internal space 13 of the liquefied hydrogen tank 1 .
  • the controller 5 closes the first on-off valve 24 and opens the second on-off valve 27 and the third on-off valve 35 while the manifold 21 is connected to the outboard liquefied hydrogen introduction system. do.
  • the vaporizer 25 vaporizes the liquefied hydrogen introduced from the manifold 21 to generate low-temperature hydrogen gas at a predetermined temperature.
  • the low-temperature hydrogen gas produced by the vaporizer 25 is introduced into the liquefied hydrogen tank 1 through the second pipe 26 and the third pipe 28 .
  • the nitrogen gas in the internal space 13 of the liquefied hydrogen tank 1 is discharged to the outside through the discharge pipe 32 . Therefore, nitrogen gas in the internal space 13 is removed.
  • the temperature of the low-temperature hydrogen gas is within a predetermined range including the temperature at the end of the pre-cooling process. For example, if the temperature at the end of the pre-cooling process is -180°C, the temperature of the low-temperature hydrogen gas is set to -180 ⁇ 10°C. As a result, the difference between the temperature at the time of oxygen removal and the temperature at the time of subsequent nitrogen removal is reduced, so that the liquefied or solidified nitrogen can be prevented while maintaining the cooling state inside the liquefied hydrogen tank 1 .
  • the internal space 13 becomes the low-temperature hydrogen gas atmosphere introduced into the internal space 13 when the removal of nitrogen is completed, for example, when the hydrogen concentration is higher than the predetermined second reference value Th2.
  • the temperature of the internal space 13 becomes the second precooling temperature equal to or somewhat higher than the introduction temperature of the low-temperature hydrogen gas.
  • the second precooling temperature is, for example, about -180°C to -160°C.
  • step S4 the controller 5 determines whether the hydrogen concentration measured by the second measuring device 34 has become higher than the second reference value Th2.
  • the second reference value Th2 is set to a value when the nitrogen concentration in the internal space 13 is sufficiently low.
  • Step S5 is a liquefied hydrogen introducing step of introducing liquefied hydrogen into the internal space 13 of the precooled liquefied hydrogen tank 1 from which oxygen and nitrogen have been removed.
  • the controller 5 closes the second on-off valve 27 and opens the first on-off valve 24 from the state of the nitrogen removal step.
  • liquefied hydrogen is introduced into the internal space 13 of the liquefied hydrogen tank 1 through the liquefied hydrogen introduction system, the first pipe 23 , and the third pipe 28 inserted from the top of the liquefied hydrogen tank 1 to the inside.
  • the liquefied hydrogen By introducing the liquefied hydrogen into the liquefied hydrogen tank 1, the low-temperature hydrogen gas in the internal space 13 of the liquefied hydrogen tank 1 is discharged to the outside through the discharge pipe 32, and the liquefied hydrogen is stored in the internal space 13.
  • the liquefied hydrogen is sprayed from the first outlet 22 provided in the upper part of the internal space 13.
  • the liquefied hydrogen introduced from the upper part of the internal space 13 further reaches the temperature at which liquefied hydrogen can be stored in the internal space 13, that is, the liquefied hydrogen storage temperature near ⁇ 252.6° C., which is the boiling point temperature of liquefied hydrogen. Cooling.
  • the liquefied hydrogen is stored in the internal space 13 without being vaporized.
  • liquefied nitrogen is introduced into the liquefied hydrogen tank 1 through the pipes 23 and 28 inserted from the top of the liquefied hydrogen tank 1.
  • the inside of the liquefied hydrogen tank 1 is cooled in advance. Therefore, when introducing liquefied hydrogen into the liquefied hydrogen tank 1, the amount of liquefied hydrogen consumed for cooling the liquefied hydrogen tank 1 is reduced. Therefore, when cooling the inside of the liquefied hydrogen tank 1 to a temperature at which liquefied hydrogen is stored, the amount of liquefied hydrogen consumed by vaporization can be reduced.
  • the inside of the liquefied hydrogen tank 1 is cooled step by step, so that localized thermal shrinkage of the liquefied hydrogen tank 1 can be made more difficult to occur.
  • liquefied nitrogen to cool the inside of the liquefied hydrogen tank 1 from room temperature to the first precooling temperature close to the boiling point of liquefied nitrogen, liquefied hydrogen or low-temperature hydrogen gas is used for cooling from room temperature to the first precooling temperature.
  • the cooling efficiency including the production cost of the refrigerant, can be made higher than in the case of using .
  • the liquefied hydrogen tank 1 mounted on the ship 100 has an upper dome 1B protruding from the tank cover 120 so that the connection between the piping for introducing liquefied hydrogen and the liquefied hydrogen tank 1 becomes an exposed space outside the ship.
  • a hull 110 and a tank cover 120 cover the other parts except for the dome 1B.
  • the liquefied hydrogen tank 1 mounted on the ship 100 is safe by introducing liquefied nitrogen through the pipes 23 and 28 that are inserted from the upper part of the liquefied hydrogen tank 1 into the inside. Pre-cooling of the liquefied hydrogen tank 1 can be realized while observing the restrictions of .
  • the low-temperature hydrogen gas obtained by vaporizing the liquefied hydrogen is introduced, thereby removing the vaporized nitrogen during oxygen removal. be done. Since this eliminates the need to use liquefied hydrogen for removing nitrogen, the consumption of liquefied hydrogen can be suppressed.
  • nitrogen at normal temperature is introduced to remove oxygen in the liquefied hydrogen tank 1, and then liquefied hydrogen is introduced to remove nitrogen.
  • Some of the nitrogen in the tank may cool rapidly causing the nitrogen to locally solidify or liquefy.
  • local thermal contraction of the liquefied hydrogen tank 1 tends to occur at the location where the solidified or liquefied nitrogen occurs.
  • liquid nitrogen is introduced to remove oxygen in the liquefied hydrogen tank 1
  • low-temperature nitrogen gas is present in the liquefied hydrogen tank 1 at the stage where the low-temperature hydrogen gas is introduced. It means that it is full. Therefore, rapid cooling of nitrogen caused by the introduction of low-temperature hydrogen gas can be suppressed, and local solidification or liquefaction of nitrogen can be prevented.
  • the inside of the liquefied hydrogen tank 1 is at room temperature or at a temperature close to room temperature
  • the liquefied nitrogen at a temperature higher than that of the liquefied hydrogen
  • the liquefied hydrogen directly contacts the inner surface of the liquefied hydrogen tank 1, causing a thermal shock.
  • rapid cooling of the liquefied hydrogen tank 1 can be suppressed compared to the case where liquefied hydrogen is directly introduced. Therefore, damage caused by cooling to the liquefied hydrogen tank 1 can be reduced.
  • the amount of liquefied hydrogen required for cooling to the liquefied hydrogen storage temperature is given by the volume of the internal space 13. It increases as it gets bigger.
  • the amount of liquefied hydrogen required for cooling to the liquefied hydrogen storage temperature can be suppressed to, for example, about 1/5 of that in the conventional method.
  • the required amount of nitrogen increases compared to the conventional method, but compared to the production cost and maintenance cost of liquefied hydrogen, the cost of introducing nitrogen, especially liquefied nitrogen, is lower and the system Cost reduction can be realized as a whole.
  • the liquefied hydrogen tank 1 becomes larger, the amount of liquefied hydrogen released into the atmosphere increases in the conventional method, and cannot be ignored.
  • the problem of solidification or liquefaction of nitrogen described above becomes apparent in the conventional method.
  • the introduction mode of the present embodiment even if the liquefied hydrogen tank 1 is increased in size, it is possible to effectively suppress the increase in the amount of hydrogen released into the atmosphere, and to prevent the solidification or liquefaction of nitrogen. can do. Therefore, even if the size of the liquefied hydrogen tank 1 is increased, an increase in consumption of liquefied hydrogen can be suppressed and the inside of the liquefied hydrogen tank 1 can be cooled appropriately.
  • FIG. 4 is a diagram showing a navigation image of a ship in this embodiment.
  • the vessel 100 navigates between a first port P1 that receives liquefied hydrogen carried by the vessel 100 and a second port P2 that supplies the vessel 100 with liquefied hydrogen.
  • the second port P2 has a land-based liquefied hydrogen storage facility F2, such as a cargo handling base, where liquefied hydrogen is stored.
  • the liquefied hydrogen storage facility F2 corresponds to the above-described outboard liquefied hydrogen introduction system.
  • the ship 100 having liquefied hydrogen introduced into the liquefied hydrogen tank 1 at the second port P2 navigates from the second port P2 to the first port P1 with the liquefied hydrogen stored in the liquefied hydrogen tank 1 .
  • the liquefied hydrogen stored in the liquefied hydrogen tank 1 is taken out. It is in a state of cargo.
  • the period during which the ship 100 is anchored at the second port P2 that is, the period during which one ship 100 occupies the second port P2 is short.
  • the internal space 13 of the liquefied hydrogen tank 1 is at room temperature or at a temperature higher than a predetermined temperature at which liquefied hydrogen can be loaded when the ship 100 arrives at the second port P2, in addition to these two steps, It becomes necessary to perform the pre-cooling process at the second port P2 as well.
  • a pre-cooling process can be carried out during navigation from the first port P1 to the second port P2. That is, the vessel 100 navigates to the second port P2 with liquefied nitrogen introduced into the liquefied hydrogen tank 1 .
  • the vessel 100 navigates to the second port P2 with liquefied nitrogen introduced into the liquefied hydrogen tank 1 .
  • the first port P1 has a liquefied nitrogen storage facility F1
  • liquefied nitrogen is introduced into the liquefied hydrogen tank 1 while the ship 100 is anchored at the first port P1.
  • the liquefied nitrogen storage facility F1 corresponds to the above-described outboard liquefied nitrogen introduction system.
  • the internal space 13 of the liquefied hydrogen tank 1 is pre-cooled by the time the ship 100 reaches the second port P2 where the liquefied hydrogen storage facility F2 that supplies liquefied hydrogen to the liquefied hydrogen tank 1 is located. It is possible to shorten the period from arrival at Port 2 P2 to introduction of liquefied hydrogen into the liquefied hydrogen tank 1 . In addition, since pre-cooling is performed while the ship 100 is sailing on the sea, it is not necessary to continue mooring at the first port P1 during pre-cooling after introducing liquefied nitrogen at the first port P1. Therefore, the transportation cycle of liquid hydrogen between the first port P1 and the second port P2 can be shortened.
  • the place where the liquefied nitrogen is introduced into the liquefied hydrogen tank 1 does not have to be the first port P1 that receives the liquefied hydrogen.
  • liquefied nitrogen may be introduced into the liquefied hydrogen tank 1 when moored at a third port different from the first port P1 and the second port P2.
  • the ship 100 travels with no cargo from the first port P1 to the third port.
  • the ship 100 introduces liquefied nitrogen into the liquefied hydrogen tank 1 at the third port, and sails from the third port to the second port P2 while being pre-cooled with liquefied nitrogen.
  • liquefied hydrogen is introduced into the liquefied hydrogen tank 1.
  • the vessel 100 navigates from the second port P2 to the first port P1, thereby transporting liquefied hydrogen from the second port P2 to the first port P1.
  • the place where liquefied nitrogen is introduced into the liquefied hydrogen tank 1 does not have to be the liquefied nitrogen storage facility F1 fixed at the port.
  • liquefied nitrogen transported to the port by a liquefied nitrogen carrier such as a tank truck or liquefied nitrogen transported by another vessel may be introduced into the liquefied hydrogen tank 1.
  • the liquefied nitrogen storage facility F1 or the liquefied hydrogen storage facility F2 may be installed on land or on the sea.
  • the ship 100 undergoes regular maintenance every 2.5 years or every 5 years. In that case, dock at the dock for maintenance. Before docking, the tank is warmed up, and the inside of the liquefied hydrogen tank 1 is made into a nitrogen gas atmosphere or an air atmosphere. After docking, when loading is to be carried out again, the inside of the liquefied hydrogen tank 1 must be replaced with nitrogen gas, and then with hydrogen gas, and then cooled down. According to the present embodiment, by introducing liquefied nitrogen at the third port where liquefied nitrogen is introduced, precooling is performed while replacing with nitrogen gas, and then liquefied hydrogen is used at the second port P2. cooldown can be implemented.
  • one liquefied hydrogen tank 1 is precooled with liquefied nitrogen at the third port, and the liquefied nitrogen is stored in the liquefied hydrogen tank 1. good too.
  • the ship 100 is sailing from the third port to the second port P2
  • the liquefied nitrogen is supplied from one liquefied hydrogen tank 1 storing liquefied nitrogen to the other liquefied hydrogen tank 1, and the other liquefied hydrogen Pre-cooling of other liquefied hydrogen tanks 1 may be performed by spraying liquefied nitrogen into the tank 1 .
  • pre-cooling with liquefied nitrogen does not necessarily have to be performed before the introduction of liquefied hydrogen.
  • pre-cooling is performed by introducing liquefied nitrogen at the third port, and cooling down with liquefied hydrogen is performed at the second port P2 in a state before introducing liquefied hydrogen. is done.
  • the ship 100 is operated between the first port P1 and the second port P2 without pre-cooling with liquefied nitrogen during the period until the next scheduled maintenance.
  • the liquefied hydrogen may be transported multiple times.
  • the ship 100 may be anchored at sea for a predetermined period with liquefied nitrogen stored in the liquefied hydrogen tank 1 .
  • the vessel may be anchored in the sea near the second port P2 so that pre-cooling is completed.
  • the berthing period includes the assumed temperature of the internal space 13 of the liquefied hydrogen tank 1 at the end of the pre-cooling process, the rate of temperature decrease per unit time in the internal space 13 due to liquefied nitrogen, and the second It is set based on the distance to port P2.
  • the ship 100 may be equipped with a liquefied nitrogen tank that stores liquefied nitrogen.
  • a liquefied nitrogen tank that stores liquefied nitrogen.
  • the liquefied nitrogen may be sprayed from the discharge port 22 from the tank through the manifold 21, the first pipe 23 and the third pipe 28.
  • liquefied nitrogen is circulated through the first pipe 23 through which liquefied hydrogen is circulated.
  • the liquefied hydrogen distribution pipe and the liquefied nitrogen distribution pipe are common pipes, but this is not restrictive.
  • a distribution pipe for liquefied hydrogen and a distribution pipe for liquefied nitrogen may be arranged independently.
  • the end of the discharge pipe 32 is positioned at the upper part of the liquefied hydrogen tank 1, but the position of the end of the discharge pipe 32 is not limited to this.
  • a pipe for discharging nitrogen gas and oxygen gas and a pipe for discharging hydrogen gas may be arranged independently.
  • the positions of the ends of the discharge pipes may be different from each other.
  • the end of the discharge pipe for discharging residual air is located in the upper part of the liquefied hydrogen tank 1
  • the end of the discharge pipe for discharging nitrogen gas is located in the liquefied hydrogen tank. 1 may be located at the bottom.
  • the mode in which liquefied nitrogen or liquefied hydrogen is sprayed from the discharge port 22 into the internal space 13 of the liquefied hydrogen tank 1 is exemplified, but the present invention is not limited to this.
  • the distribution pipe for liquefied nitrogen or liquefied hydrogen may have an outlet other than the outlet 22 .
  • liquefied nitrogen or liquefied hydrogen may be ejected from another ejection port.
  • the liquefied nitrogen is introduced from the outboard liquefied nitrogen introduction system via the manifold 21 as an example, but the present invention is not limited to this.
  • a liquefied nitrogen tank that stores liquefied nitrogen may be mounted on the ship 100 and the liquefied nitrogen may be introduced into the liquefied hydrogen tank 1 from the liquefied nitrogen tank.
  • a liquefied nitrogen tank mounted on the ship 100 may be smaller than the liquefied hydrogen tank 1 .
  • the low-temperature hydrogen gas introduced in the nitrogen removal step is generated by vaporizing liquefied hydrogen with the vaporizer 25, but the present invention is not limited to this.
  • the low-temperature hydrogen gas generated by heat exchange between the liquefied hydrogen and the object to be cooled in that facility is transferred from the first pipe 23 to the internal space 13 of the liquefied hydrogen tank 1.
  • the evaporator 25, the second pipe 26 and the second on-off valve 27 may be omitted.
  • the first measuring device 33 for measuring the oxygen concentration is provided inside the discharge pipe 32 , but the first measuring device 33 may be provided inside the internal space 13 .
  • the second measuring device 34 for measuring the hydrogen gas concentration is provided inside the discharge pipe 32, but the second measuring device 34 may be provided inside the internal space 13. .
  • the internal space 13 of the liquefied hydrogen tank 1 is at room temperature and oxygen, nitrogen, water vapor, etc. are present, and the pre-cooling step of introducing liquefied nitrogen is started. It is not limited to this. Oxygen removal may occur prior to the pre-cooling step, for example, by introducing nitrogen gas before introducing liquefied nitrogen.
  • the low-temperature hydrogen gas is introduced after the liquefied nitrogen is introduced and before the liquefied hydrogen is introduced, but the low-temperature hydrogen gas does not have to be introduced.
  • pre-cooling with liquefied nitrogen pre-cooling with low-temperature nitrogen gas may be performed. That is, the refrigerant used for precooling may be liquefied nitrogen or low-temperature nitrogen gas.
  • the spherical liquefied hydrogen tank 1 was exemplified, but the shape of the liquefied hydrogen tank 1 is not particularly limited, and may be cylindrical, square, or the like. Also, the type of the liquefied hydrogen tank 1 is not particularly limited, such as, for example, a self-supporting sphere system.
  • Nitrogen gas may be supplied when the internal space 13 of the tank 1 is returned to the nitrogen atmosphere.
  • the hydrogen gas remaining in the liquefied hydrogen tank 1 is taken out from the discharge pipe 32, and is again circulated from the manifold 21 to the second pipe 26 to warm the hydrogen gas in the liquefied hydrogen tank 1 by the vaporizer 25 which is a heat exchanger. reintroduced into After the temperature of the internal space 13 of the liquefied hydrogen tank 1 rises to a temperature at which nitrogen does not liquefy, nitrogen gas is introduced into the liquefied hydrogen tank 1 .
  • the inside of the internal space 13 of the liquefied hydrogen tank 1 can be heated while the hydrogen atmosphere is replaced with the nitrogen atmosphere.
  • the warm-up in the liquefied hydrogen tank 1 at the time of maintenance or the like is performed by using nitrogen gas instead of warming up to near room temperature with hydrogen gas, thereby performing the warm-up and the gas replacement process from hydrogen gas to nitrogen gas. Since they can be carried out at the same time, the steps from warming up the inside of the tank to creating a nitrogen gas atmosphere can be carried out quickly.
  • heating of the hydrogen gas or nitrogen gas used for warm-up is not limited to the vaporizer 25 and may be performed by other heaters in the ship 100 .
  • a liquefied hydrogen storage method for ships is a liquefied hydrogen storage method for ships for storing liquefied hydrogen in a liquefied hydrogen tank mounted on a ship, wherein A refrigerant is introduced into the liquefied hydrogen tank through the inserted pipe to precool the liquefied hydrogen tank, and the liquefied hydrogen is introduced into the liquefied hydrogen tank after precooling.
  • the refrigerant is introduced into the liquefied hydrogen tank through a pipe that is inserted from the top of the liquefied hydrogen tank to the inside, thereby liquefying.
  • the inside of the hydrogen tank is pre-cooled. Therefore, when introducing liquefied hydrogen into the liquefied hydrogen tank, the amount of liquefied hydrogen consumed for cooling the liquefied hydrogen tank is reduced. Therefore, when cooling the inside of the liquefied hydrogen tank to a temperature at which liquefied hydrogen is stored, the amount of liquefied hydrogen consumed by vaporization can be reduced.
  • the liquefied hydrogen tanks mounted on ships are entirely covered except for the top.
  • a precooling of 1 can be achieved.
  • the refrigerant may be liquefied nitrogen. Further, the coolant may be low-temperature nitrogen gas obtained by vaporizing the liquefied nitrogen.
  • the low-temperature hydrogen gas obtained by vaporizing the liquefied hydrogen may be introduced.
  • the low temperature hydrogen gas is introduced to remove vaporized nitrogen during oxygen removal. Since this eliminates the need to use liquefied hydrogen for removing nitrogen, the consumption of liquefied hydrogen can be suppressed.
  • the ship navigates to a liquefied hydrogen storage facility where the liquefied hydrogen is stored with the refrigerant introduced into the liquefied hydrogen tank, and introduces the liquefied hydrogen into the liquefied hydrogen tank at the liquefied hydrogen storage facility.
  • the liquefied hydrogen tank is cooled after the ship arrives at the liquefied hydrogen storage facility. It is possible to shorten the period until the liquefied hydrogen is introduced into the In addition, since pre-cooling is performed while the ship is sailing on the sea, it is possible to shorten the transportation cycle of liquefied hydrogen between the liquefied hydrogen receiving place and the supplying place.
  • the coolant may be introduced into the liquefied hydrogen tank while the ship is moored at a location other than the liquefied hydrogen storage facility. Since the refrigerant is introduced into the liquefied hydrogen tank at a location separate from the liquefied hydrogen storage facility, the anchorage period at the liquefied hydrogen storage facility can be shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

船舶用液化水素貯留方法は、船舶に搭載される液化水素タンクに液化水素を貯留するための船舶用液化水素貯留方法であって、液化水素タンクの上部から内部に挿通される配管を通じて冷媒を液化水素タンク内に導入して液化水素タンクを予冷却し、予冷却後の液化水素タンクに液化水素を導入する。

Description

船舶用液化水素貯留方法
 本開示は、船舶に搭載された液化水素タンクに液化水素を貯留するための液化水素貯留方法に関する。
 液化水素タンクに液化水素を導入する場合には、まず、液化水素タンク内の酸素および水分を除去する工程が必要である。この工程は、液化水素タンク内の酸素濃度を、可燃性の液化水素の燃焼条件よりも十分に下げること、および、液化水素タンク内が、液化水素が導入されることにより低温になった際、液化水素タンクに設けられる各種バルブ、または計器類等に残留水蒸気が凝結し、機能不全を生じないように、液化水素タンク内の露点を十分下げることを目的としている。
 従来は、酸素および水分除去の工程の後、液化水素タンクに液化水素を導入しているが、液化水素の導入時において、液化水素タンク内は常温であるため、常温の液化水素タンク内に直接液化水素を導入すると、液化水素の貯留時に液化水素タンクに局部的な熱収縮による亀裂または変形等が生じる恐れがある。このような低温タンクの亀裂または変形等の問題に関し、例えば下記特許文献1には、低温タンクのクールダウン方法として、液化ガスの気化熱で低温タンクを冷却し、気化したガスを排出する工程を設けることが開示されている。
特開昭54-40327号公報
 しかし、上記のような方法を液化水素タンクへの液化水素の導入に適用しても、液化水素の導入開始後も液化水素タンクが十分に冷却されるまでは、液化水素を液化水素タンク内に貯留することができず、気化した水素ガスが外部に排出され、消費されてしまう。
 特に、液化水素タンクの容量を大きくしようとすると、液化水素タンク内の冷却のために消費される液化水素の量が増大する。液化水素は、流通量が少なく、単価が高いため、液化水素によって液化水素タンクを冷却する従来の態様は、コストの低減を図ることができない。また、このような液化水素は、可燃性であるため、気化した水素ガスは安全に燃焼設備で処理する必要があり、タンク内の冷却時に発生する水素ガス量を抑制することが望ましい。また万が一、タンクの圧力が設計圧力以上に上昇した場合や燃焼できない場合には大気放出する必要があるが、その放出量を抑制することが望ましい。
 また、船舶に液化水素タンクを搭載し、液化水素を海上輸送することが検討されている。船舶に搭載された液化水素タンクは、安全性を担保するための制約がより大きくなる。
 そこで本開示は、船舶に搭載された液化水素タンク内を液化水素が貯留される温度まで冷却する際に、液化水素が気化により消費される量を低減することができる船舶用液化水素貯留方法を提供することを目的とする。
 本開示の一形態に係る船舶用液化水素貯留方法は、船舶に搭載される液化水素タンクに液化水素を貯留するための船舶用液化水素貯留方法であって、前記液化水素タンクの上部から内部に挿通される配管を通じて冷媒を前記液化水素タンク内に導入して前記液化水素タンクを予冷却し、予冷却後の前記液化水素タンクに前記液化水素を導入する。
 本開示によれば、船舶に搭載された液化水素タンク内を液化水素が貯留される温度まで冷却する際に、液化水素が気化により消費される量を低減することができる船舶用液化水素貯留方法を提供できる。
図1は、本開示の一実施の形態における船舶の概略構成を示す図である。 図2は、図1に示す船舶における液化水素タンクへの配管制御系統を示す模式図である。 図3は、図1に示す船舶における液化水素貯留方法を示すフローチャートである。 図4は、本実施の形態における船舶の航行イメージを示す図である。
 以下、図面を参照しながら一実施の形態について説明する。なお、全ての図を通じて、同一のまたは対応する要素には同一の符号を付して重複する詳細な説明を省略する。
 図1は、本開示の一実施の形態における船舶の概略構成を示す図である。図1に示すように、船舶100は、船体110に搭載される複数の液化水素タンク1を備えている。図1の例では4つの液化水素タンク1が船体110の長手方向に並んで配置されている。液化水素タンク1は、液化水素を貯留するタンク本体1Aと、タンク本体1Aから上方に突出するドーム1Bとを含む。ただし、タンクの形式や数は限定されない。
 本実施の形態において、ドーム1Bは、タンク本体1Aの頂部から上方に突出している。ドーム1Bは、作業者が内部に入れるようなメンテナンスハッチを備えている。さらに、タンク本体1Aの内部と外部とを連通する各種配管がドーム1Bを通っている。
 タンク本体1Aの下方は、船体110内に設置される。タンク本体1Aの上方は、タンクカバー120により覆われている。タンクカバー120は、ドーム1Bが貫通する開口120Aを有している。これにより、液化水素タンク1は、ドーム1Bを除いて外部に対して被覆されている。
 図2は、図1に示す船舶における液化水素タンクへの配管制御系統を示す模式図である。図2に示すように、船舶100は、液化水素タンク1の内部空間13に液化水素を貯留する。なお、図面において、液化水素はLHと表記される。船舶100は、液化水素を内部空間13に充填する前に、液化水素タンク1の内部空間13に存在する酸素および水分を除去し、内部空間13を冷却する機能を有している。
 液化水素タンク1は、断熱性を高めるため、二重殻構造を有している。タンク本体1Aは、外槽11と、外槽11に収容されて内部空間13を形成する内槽12とを有している。一例として、タンク本体1Aは球状に形成される。すなわち、外槽11および内槽12の何れも球状に形成される。外槽11の内面と内槽12の外面との間には、槽間空間14が形成される。槽間空間14は、真空状態に維持され、内部空間13を液化水素タンク1の外部に対して真空断熱する。ドーム1Bも、同様に、二重殻構造を有している。ただし、タンク本体1Aやドーム1Bの構造や防熱方式は上記に限定されない。
 外槽11および内槽12は、いずれも耐圧壁で構成されている。例えば、外槽11は、大気圧と槽間空間14の圧力との間の差圧に耐えるために内槽12よりも耐圧性能が高く構成されている。ただし、内槽12が外槽11よりも耐圧性能が高く構成されていてもよい。槽間空間14には、外槽11の内面と内槽12の外面とに架け渡される複数のロッドが設けられていてもよい。
 船舶100は、液化水素タンク1に液化水素を導入する第1導入部2を備えている。第1導入部2は、外部から液化水素を引き込むマニホールド21と、液化水素タンク1内において、引き込んだ液化水素を吐出する吐出口22と、マニホールド21と吐出口22との間に配設される第1配管23と、を備えている。吐出口22は、液化水素タンク1の内部空間13の上部に配設される。吐出口22は、液化水素タンク1の内部空間13内の所定範囲に液化水素を噴霧するためのスプレーノズル形状や小径の穴を有している。
 第1配管23は、第1開閉弁24により、液化水素の流通または不通が切り替えられる。したがって、マニホールド21に船外の液化水素導入系統を接続し、第1開閉弁24を開放することにより、第1配管23および吐出口22を通じて液化水素タンク1の内部空間13内に液化水素が供給される。
 本実施の形態において、第1導入部2は、液化水素タンク1に液化窒素を導入する導入部としても機能する。なお、図面において、液化窒素はLNと表記される。マニホールド21に船外の液化窒素導入系統を接続し、第1開閉弁24を開放することにより、第1配管23および吐出口22を通じて液化水素タンク1の内部空間13内に液化窒素が供給される。
 さらに、船舶100は、液化水素タンク1に液化水素を気化させた低温水素ガスを導入する第2導入部3を備えている。なお、図面において、低温水素ガスは、GHと表記される。第2導入部3は、マニホールド21から引き込んだ液化水素を気化させる気化器25と、マニホールド21と吐出口22との間に配設される第2配管26と、を備えている。すなわち、気化器25で生成された低温水素ガスは、吐出口22から液化水素タンク1内に吐出される。
 本実施の形態において、第1配管23および第2配管26は、液化水素タンク1の外部において集合するように第3配管28に接続される。第3配管28は、ドーム1Bを通じてタンク本体1Aの上方から液化水素タンク1の内部空間13に挿通される。これに代えて、液化水素または液化窒素の吐出口22とは別に、低温水素ガス専用の吐出口が設けられてもよい。気化器25と吐出口22とは、第2配管26により接続されている。
 第2配管26は、第2開閉弁27により、低温水素ガスの流通または不通が切り替えられる。したがって、マニホールド21に船外の液化水素導入系統を接続し、第2開閉弁27を開放することにより、気化器25、第2配管26、吐出口22を通じて液化水素タンク1の内部空間13内に低温水素ガスが供給される。
 さらに、船舶100は、液化水素タンク1の内部空間13内の気体を排出するための排出配管32を備えている。排出配管32を流通する気体は、酸素、窒素、または水素を含む。なお、図面において、窒素ガスはGNと表記される。排出配管32は、一端部が液化水素タンク1の内部空間13の上部に位置し、他端部が外部に位置するように、配設される。船舶100は、排出配管32内の酸素濃度を計測する第1計測器33および排出配管32内の水素濃度を計測する第2計測器34を備えている。排出配管32は、第3開閉弁35により、気体の流通または不通が切り替えられる。なお、排出配管32は、排出する気体ごとに異なる配管としてもよい。
 船舶100は、流通させる配管を切り替えるための制御器5を備えている。制御器5は、計測器33,34における計測結果を取得し、その結果に基づいて、開閉弁24,27,35の開閉制御を行う。制御器5は、プロセッサ、揮発性メモリ、不揮発性メモリおよびI/Oインターフェース等を有する処理回路として構成される。
 なお、本明細書で開示する要素の機能は、開示された機能を実行するよう構成またはプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、または、それらの組み合わせを含む回路または処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路または回路と見なされる。本明細書において、回路、ユニット、または手段は、列挙された機能を実行するハードウェアであるか、または、列挙された機能を実行するようにプログラムされたハードウェアである。ハードウェアは、本明細書に開示されているハードウェアであってもよいし、あるいは、列挙された機能を実行するようにプログラムまたは構成されているその他の既知のハードウェアであってもよい。ハードウェアが回路の一種と考えられるプロセッサである場合、回路、ユニット、または手段はハードウェアとソフトウェアとの組み合わせであり、ソフトウェアはハードウェアまたはプロセッサの構成に使用される。
 図3は、図1に示す船舶における液化水素貯留方法を示すフローチャートである。本実施の形態における液化水素の貯留方法の開始時点において、液化水素タンク1の内部空間13は、常温で、酸素、窒素および水蒸気等が存在している。また、事前に、内部空間13の露点温度が所定値になるように、内部空間13の圧力が調整される。
 まず、ステップS1として、液化窒素を用いて液化水素タンク1内を予冷却する予冷却工程が行われる。予冷却工程において、制御器5は、マニホールド21に船外の液化窒素導入系統が接続された状態で、第2開閉弁27を閉弁するとともに、第1開閉弁24および第3開閉弁35を開弁する。これにより、液化窒素導入系統、第1配管23および液化水素タンク1の上部から内部に挿通される第3配管28を通じて液化窒素が液化水素タンク1内に導入される。これにより、液化水素タンク1が予冷却される。さらに、液化水素タンク1内に導入される液化窒素により、液化水素タンク1内の酸素および水分が除去される。
 予冷却工程において導入された液化窒素および内部空間13を冷却することにより気化した低温の窒素ガスは、内部空間13内の残存空気、すなわち、常温の酸素および窒素より比重が大きい。このため、液化窒素および低温の窒素ガスは、内部空間13の底部から溜まっていき、残存空気を上方へ押し上げる。そのため、内部空間13の上部に設けられた排出配管32から残存空気が排出され、効率的な酸素除去が行われる。
 なお、所定量の液化窒素が液化水素タンク1内に導入された場合に、第1開閉弁24を閉弁し、マニホールド21と液化窒素導入系統との接続を解除してもよい。この場合、船舶100は、液化窒素を液化水素タンク1内に貯留した状態で航行可能となる。
 酸素の除去が完了した状態、例えば、酸素濃度が所定の第1基準値Th1未満となった状態において、内部空間13は、導入された液化窒素がその内部空間13との熱交換によって気化することによって生じた低温の窒素ガス雰囲気となる。この際、内部空間13の温度は、窒素の沸点よりある程度高い第1予冷温度となる。第1予冷温度は、例えば約-180℃である。
 制御器5は、ステップS2において、第1計測器33で計測される酸素濃度が第1基準値Th1未満となったかどうかを判定する。第1基準値Th1は、内部空間13における酸素濃度が液化水素の燃焼条件よりも十分に低いときの値に設定される。なお、第1基準値Th1を設定するための燃焼条件は、内部空間13において予め設定された露点温度に応じて定められる。
 第1計測器33で計測される酸素濃度が第1基準値Th1未満となった場合、ステップS2でYesと判定され、ステップS3に遷移する。ステップS3は、液化水素タンク1の内部空間13における低温の窒素ガスを除去する窒素除去工程である。窒素除去工程において、制御器5は、マニホールド21に船外の液化水素導入系統と接続した状態で、第1開閉弁24を閉弁し、第2開閉弁27および第3開閉弁35を開弁する。気化器25は、マニホールド21から導入された液化水素を気化し、所定温度の低温水素ガスとして生成する。気化器25で生成された低温水素ガスは、第2配管26および第3配管28を通じて液化水素タンク1内に導入される。低温水素ガスが液化水素タンク1内に導入されることにより、液化水素タンク1の内部空間13の窒素ガスが排出配管32を通じて外部に排出される。したがって、内部空間13の窒素ガスが除去される。
 低温水素ガスの温度は、予冷却工程終了時の温度を含む所定範囲内の温度である。例えば、予冷却工程終了時の温度が-180℃である場合、低温水素ガスの温度は、-180±10℃に設定される。これにより、酸素除去時の温度とその後の窒素除去時の温度との差が小さくなるため、液化水素タンク1内の冷却状態を維持しつつ窒素の液化または固化を防止することができる。
 窒素の除去が完了した状態、例えば、水素濃度が所定の第2基準値Th2より高くなった状態で、内部空間13は、その内部空間13に導入された低温水素ガス雰囲気となる。この際、内部空間13の温度は、低温水素ガスの導入温度と同等あるいはこれよりある程度高い第2予冷温度となる。第2予冷温度は、例えば約-180℃~-160℃である。
 制御器5は、ステップS4において、第2計測器34で計測される水素濃度が第2基準値Th2より高くなったかどうかを判定する。第2基準値Th2は、内部空間13における窒素濃度が十分に低いときの値に設定される。
 第2計測器34で計測される水素濃度が第2基準値Th2より高くなった場合、ステップS4でYesと判定され、ステップS5に遷移する。ステップS5は、酸素および窒素が除去された予冷後の液化水素タンク1の内部空間13に液化水素を導入する液化水素導入工程である。制御器5は、窒素除去工程における状態から第2開閉弁27を閉弁する一方、第1開閉弁24を開弁する。これにより、液化水素導入系統、第1配管23および液化水素タンク1の上部から内部に挿通される第3配管28を通じて液化水素タンク1の内部空間13に液化水素が導入される。液化水素が液化水素タンク1内に導入されることにより、液化水素タンク1の内部空間13の低温水素ガスが排出配管32を通じて外部に排出されるとともに、内部空間13に液化水素が貯留される。
 液化水素は、内部空間13の上部に設けられた第1吐出口22から噴霧される。内部空間13の上部から導入された液化水素は、内部空間13内を、液化水素が貯留可能な温度、すなわち、液化水素の沸点の温度である-252.6℃近傍の液化水素貯留温度までさらに冷却する。
 内部空間13が、液化水素が貯留可能な温度近傍まで冷却されることにより、液化水素が気化することなく内部空間13内に貯留される。
 上記方法によれば、船舶100に搭載された液化水素タンク1に液化水素を導入する前に、液化水素タンク1の上部から内部に挿通される配管23,28を通じて液化窒素が液化水素タンク1内に導入されることにより、液化水素タンク1内が予め冷却される。このため、液化水素タンク1に液化水素を導入する際、液化水素タンク1を冷却するために消費される液化水素の量が低減する。したがって、液化水素タンク1内を液化水素が貯留される温度まで冷却する際に、液化水素が気化により消費される量を低減することができる。また、上記方法によれば、液化水素タンク1内が段階的に冷却されるため、液化水素タンク1の局部的な熱収縮をより生じ難くさせることができる。また、液化水素タンク1内を、常温から液化窒素の沸点に近い第1予冷温度まで冷却するために、液化窒素を用いることで、常温から第1予冷温度までの冷却に液化水素または低温水素ガスを用いる場合に比べて、冷媒の製造コストを含む冷却効率をより高くすることができる。
 また、船舶100に搭載される液化水素タンク1は安全上、液化水素を導入する配管と液化水素タンク1との接続が船外の暴露空間となるよう、上部のドーム1Bはタンクカバー120から突出しており、ドーム1Bを除く他の部分は船体110およびタンクカバー120に覆われている。液化水素タンク1の内部空間13への接続経路が、上部のドーム1Bに限定されることにより、万一、ドーム1Bおよびその周囲配管などの付帯設備から可燃性の水素が漏出した場合でも、船外に拡散し易くなり、船舶100に可燃性の水素が滞留することを抑制することができる。このような船舶100上の制約に対して、液化水素タンク1の上部から内部に挿通される配管23,28を通じて液化窒素を導入することにより、船舶100に搭載される液化水素タンク1の安全上の制約を守りつつ液化水素タンク1の予冷却を実現することができる。
 さらに、上記方法によれば、液化窒素が導入された後、液化水素を導入する前に、液化水素を気化させた低温水素ガスが導入されることにより、酸素除去の際に気化した窒素が除去される。これにより、窒素の除去に液化水素を使用する必要がなくなるため、液化水素の消費を抑えることができる。
 さらに、従来のように、液化水素タンク1内の酸素を除去するために常温の窒素を導入し、その後、液化水素を導入して窒素を除去する場合では、液化水素タンク1内に充満している窒素の一部が急速に冷却されて窒素が局部的に固化または液化する恐れがある。窒素が液化水素タンク1内で固化または液化すると、固化または液化した窒素が生じた箇所で液化水素タンク1の局部的な熱収縮が生じ易くなる。これに対し、上記方法によれば、液化水素タンク1内の酸素を除去するために液体窒素を導入するため、低温水素ガスが導入される段階の液化水素タンク1内には低温の窒素ガスが充満していることになる。このため、低温水素ガスの導入による窒素の急冷を抑制し、窒素が局部的に固化または液化することを防止することができる。
 また、液化水素タンク1内が常温または常温に近い温度にあるときに液化水素より高い温度の液化窒素を導入することにより、液化水素が直接液化水素タンク1の内面に接触することによって生じる熱衝撃を抑制することができる。また、液化水素を導入する前に液化窒素を導入することにより、直接液化水素が導入される場合に比べて液化水素タンク1が急冷されるのを抑制することができる。したがって、液化水素タンク1への冷却によるダメージを低減することができる。
 従来方法のように、液化水素を用いて液化水素タンク1の内部空間13を常温の状態から冷却する場合、液化水素貯留温度まで冷却するのに必要な液化水素量は、内部空間13の容積が大きくなるほど増大する。一方、本実施の形態によれば、液化水素貯留温度まで冷却するのに必要な液化水素量は、例えば従来方法の1/5程度に抑えられると考えられる。
 なお、本実施の形態においては、窒素の必要量が従来方法に対して増大するが、液化水素の製造コストおよび維持管理コストに比べれば、窒素、特に液化窒素の導入コストの方が低く、システム全体として低コスト化を実現することができる。
 また、液化水素タンク1が大型化すればするほど、従来方法では液化水素の大気放出量が増大し、無視できなくなる。また、液化水素タンク1が大型化すればするほど、従来方法では上述した窒素の固化または液化の問題が顕在化する。これに対し、本実施の形態における導入態様であれば、液化水素タンク1が大型化しても、水素の大気放出量の増大を有効に抑制することができ、また、窒素の固化または液化を防止することができる。したがって、液化水素タンク1を大型化しても、液化水素の消費量の増大を抑制し、かつ、液化水素タンク1内を適切に冷却することができる。
 上述したように、上記予冷却工程は、船舶100の航行中に実施可能である。図4は、本実施の形態における船舶の航行イメージを示す図である。例えば、船舶100は、船舶100で運ばれた液化水素を受領する第1港P1と船舶100に液化水素を供給する第2港P2との間を航行する。例えば、第2港P2は、荷役基地等の液化水素が貯留される陸上の液化水素貯留施設F2を有する。液化水素貯留施設F2は、上述した船外の液化水素導入系統に相当する。
 船舶100が第2港P2に停泊している間、少なくとも水素ガスを用いた窒素除去工程および液化水素導入工程が行われる。第2港P2で液化水素タンク1に液化水素が導入された船舶100は、液化水素タンク1に液化水素が貯留された状態で第2港P2から第1港P1へ航行する。液化水素の受領地である第1港P1では液化水素タンク1に貯留された液化水素が取り出され、第1港P1から第2港P2への航行中は、船舶100の液化水素タンク1は空荷の状態となる。
 液化水素貯留施設F2は、数が限られるため、船舶100が第2港P2に停泊する期間、すなわち、一の船舶100が第2港P2を占有する期間は、短いことが望まれる。一方、船舶100が第2港P2に到着した時点で液化水素タンク1の内部空間13が常温あるいは所定の液化水素を積荷できる温度よりも高い温度である場合、これらの2つの工程に加えて、上記予冷却工程をも第2港P2にて実施する必要が生じる。
 そこで、第1港P1から第2港P2への航行中に、予冷却工程が実施され得る。すなわち、船舶100は、液化水素タンク1内に液化窒素が導入された状態で第2港P2まで航行する。例えば、第1港P1に液化窒素貯留施設F1を有していれば、船舶100が第1港P1に停泊している間に、液化水素タンク1内に液化窒素を導入する。液化窒素貯留施設F1は、上述した船外の液化窒素導入系統に相当する。
 これによれば、液化水素タンク1に液化水素を供給する液化水素貯留施設F2のある第2港P2に到着するまでに、液化水素タンク1の内部空間13が予め冷却されため、船舶100が第2港P2に到着してから液化水素タンク1に液化水素を導入するまでの期間を短縮することができる。また、船舶100が海上を航行している間に予冷却を行うため、第1港P1で液化窒素を導入した後、予冷却を行う間、第1港P1で停泊し続ける必要がない。したがって、第1港P1と第2港P2との間の液体水素の運搬周期を短縮することができる。
 なお、液化窒素を液化水素タンク1に導入する場所は、液化水素を受領する第1港P1でなくてもよい。例えば、第1港P1および第2港P2とは異なる第3港に停泊した際に液化水素タンク1に液化窒素を導入してもよい。この場合、船舶100は、第1港P1から第3港までは空荷の状態で航行する。船舶100は、第3港で液化水素タンク1に液化窒素が導入され、第3港から第2港P2へ液化窒素による予冷却を行いながら航行する。船舶100が第2港P2に到着後、液化水素タンク1に液化水素が導入される。船舶100は、第2港P2から第1港P1へ航行することにより、第2港P2から第1港P1へ液化水素が運搬される。
 また、液化窒素を液化水素タンク1に導入する場所は、港に固定された液化窒素貯留施設F1でなくてもよい。例えば、液化窒素貯留施設F1のない港において、ローリー車等の液化窒素運搬車で港まで運搬された液化窒素や他の船舶で運搬された液化窒素が液化水素タンク1に導入されてもよい。また、液化窒素貯留施設F1または液化水素貯留施設F2は、陸上に設置されてもよいし、海上に設置されてもよい。
 通常、船舶100は2.5年や5年ごとに定期メンテナンスを実施する。その場合は、メンテナンスを行うドックに入渠する。入渠前にはウォームアップし、液化水素タンク1内を窒素ガス雰囲気、あるいは空気雰囲気とする。入渠後、再び積荷を実施する場合は、液化水素タンク1内を窒素ガスで置換し、さらに水素ガスで置換した後、クールダウンを行う必要がある。本実施の形態によれば、液化窒素が導入される第3港にて液化窒素を導入することにより、窒素ガスで置換しつつ予冷却を実施し、その後、第2港P2にて液化水素でのクールダウンを実施できる。
 また、船舶100に複数の液化水素タンク1が搭載される場合には、第3港において一の液化水素タンク1を液化窒素で予冷却し、さらに当該液化水素タンク1に液化窒素を貯留してもよい。さらに、船舶100が第3港から第2港P2までの航行中に、液化窒素が貯留された一の液化水素タンク1から他の液化水素タンク1へ液化窒素を供給し、当該他の液化水素タンク1内に液化窒素を噴霧することにより、他の液化水素タンク1の予冷却を実施してもよい。
 また、液化水素の導入前に必ずしも液化窒素による予冷却を実施しなくてもよい。例えば、船舶100の建造後または定期メンテナンス終了後、液化水素を導入する前の状態において、第3港で液化窒素を導入して予冷却を行い、第2港P2にて液化水素でのクールダウンが行われる。一方、第2港P2で液化水素を導入した後、次回の定期メンテナンスまでの期間において、船舶100は、液化窒素による予冷却を行うことなく、第1港P1と第2港P2との間で液化水素の運搬を複数回行ってもよい。
 また、船舶100は、液化水素タンク1内に液化窒素が貯留された状態で、海上で所定期間停泊していてもよい。例えば、液化窒素貯留施設F1が設置される港が第2港P2に近い場合、第2港P2の近海等において予冷却が完了するように停泊してもよい。例えば、停泊期間は、予冷却工程の終了時における液化水素タンク1の内部空間13の想定温度と、液化窒素による内部空間13における単位時間あたりの温度減少率と、船舶100の停泊地点から第2港P2までの距離とに基づいて、設定される。
 また、船舶100が液化窒素を貯留する液化窒素タンクを備えていてもよい。第1港P1に停泊中に液化窒素が液化水素タンク1に導入されるのに加えて、または、これに代えて、液化窒素を貯留した状態での航行中に、所定のタイミングで、液化窒素タンクからマニホールド21、第1配管23および第3配管28を通じて吐出口22から液化窒素を噴霧してもよい。
 以上、本開示の実施の形態について説明したが、本開示は上記実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の改良、変更、修正が可能である。
 例えば、上記実施の形態においては、液化水素を流通させる第1配管23に液化窒素を流通させる例を示した。すなわち、上記実施の形態においては、液化水素の流通配管と液化窒素の流通配管とを共通の配管としたがこれに限られない。例えば、液化水素の流通配管と液化窒素の流通配管とがそれぞれ独立して配設されてもよい。また、上記実施の形態においては、排出配管32の端部が液化水素タンク1内の上部に位置する態様を例示したが、排出配管32の端部の位置は、これに限られない。また、窒素ガス、酸素ガス、水素ガスを排出する排出配管32に代えて、窒素ガスおよび酸素ガスを排出する配管と水素ガスを排出する配管とがそれぞれ独立して配設されてもよい。この場合、各排出配管の端部の位置が互いに異なっていてもよい。例えば、窒素導入時において残存空気を排出するための排出配管の端部が液化水素タンク1内の上部に位置し、水素導入時において窒素ガスを排出するための排出配管の端部が液化水素タンク1内の下部に位置してもよい。
 また、上記実施の形態においては、吐出口22から液化水素タンク1の内部空間13内に液化窒素または液化水素が噴霧される態様を例示したがこれに限られない。例えば、液化窒素または液化水素の流通配管は、吐出口22とは別の吐出口を備えていてもよい。吐出口22から液化窒素または液化水素の噴霧を行わない場合は、液化窒素または液化水素が別の吐出口から吐出されるようにしてもよい。
 また、上記実施の形態においては、液化窒素がマニホールド21を介して船外の液化窒素導入系統から導入される態様を例示したが、これに限られない。例えば、船舶100に液化窒素を貯留する液化窒素タンクを搭載し、液化窒素タンクから液化水素タンク1に液化窒素を導入してもよい。例えば、船舶100に搭載される液化窒素タンクは、液化水素タンク1より小さくてもよい。
 また、上記実施の形態においては、窒素除去工程で導入される低温水素ガスを、液化水素を気化器25で気化して生成しているが、これに限られない。例えば、別の設備等において液化水素を冷媒として使用する場合、その設備において液化水素と冷却対象との熱交換によって生じた低温水素ガスを、第1配管23から液化水素タンク1の内部空間13に導入してもよい。この場合、気化器25、第2配管26および第2開閉弁27はなくてもよい。
 また、上記実施の形態においては、酸素濃度を計測する第1計測器33が排出配管32内に設けられているが、第1計測器33は、内部空間13内に設けられてもよい。同様に、上記実施の形態においては、水素ガス濃度を計測する第2計測器34が排出配管32内に設けられているが、第2計測器34は、内部空間13内に設けられてもよい。
 また、上記実施の形態においては、液化水素タンク1の内部空間13が常温かつ酸素、窒素および水蒸気等が存在している状態から液化窒素を導入する予冷却工程を開始する態様を例示したが、これに限られない。例えば、液化窒素を導入する前に窒素ガスを導入することにより、予冷却工程の前に酸素除去が行われてもよい。
 また、上記実施の形態においては、液化窒素を導入した後、液化水素を導入する前に、低温水素ガスを導入する態様を例示したが、低温水素ガスの導入は行われなくてもよい。また、液化窒素による予冷却の代わりに、低温窒素ガスによる予冷却が実施されてもよい。すなわち、予冷却に用いられる冷媒は、液化窒素でもよいし、低温窒素ガスでもよい。
 また、上記実施の形態においては、球状の液化水素タンク1を例示したが、液化水素タンク1の形状は、円筒状、角型状等、特に限定されない。また、液化水素タンク1のタイプも、例えば、自立球方式等、特に限定されない。
 また、上記実施の形態においては、液化水素タンク1内に液化水素を貯留するために、液化水素タンク1内を冷却する態様について例示したが、反対に、液化水素タンク1内を温めて液化水素タンク1の内部空間13を窒素雰囲気に戻す際に窒素ガスを供給してもよい。例えば、液化水素タンク1内に残存する水素ガスを排出配管32から取り出し、再度マニホールド21から第2配管26に流通させて熱交換器である気化器25により温めた水素ガスを液化水素タンク1内に再導入する。液化水素タンク1の内部空間13の温度が、窒素が液化しない温度まで上昇した後、液化水素タンク1内に窒素ガスを導入する。これにより、液化水素タンク1の内部空間13内を水素雰囲気から窒素雰囲気に置換しつつ温めることができる。このように、メンテナンス時等における液化水素タンク1内のウォームアップを、水素ガスによって常温付近まで温めるのではなく、窒素ガスを用いることでウォームアップと水素ガスから窒素ガスへのガス置換工程とを同時に実施することができるため、タンク内をウォームアップし窒素ガス雰囲気にするまでの工程を迅速に行うことができる。なお、ウォームアップに用いる水素ガスまたは窒素ガスの加温は気化器25に限定されず、船舶100内の他の加熱器によって行われてもよい。
 [本開示のまとめ]
 本開示の一態様に係る船舶用液化水素貯留方法は、船舶に搭載される液化水素タンクに液化水素を貯留するための船舶用液化水素貯留方法であって、前記液化水素タンクの上部から内部に挿通される配管を通じて冷媒を前記液化水素タンク内に導入して前記液化水素タンクを予冷却し、予冷却後の前記液化水素タンクに前記液化水素を導入する。
 上記方法によれば、船舶に搭載された液化水素タンクに液化水素を導入する前に、液化水素タンクの上部から内部に挿通される配管を通じて冷媒が液化水素タンク内に導入されることにより、液化水素タンク内が予め冷却される。このため、液化水素タンクに液化水素を導入する際、液化水素タンクを冷却するために消費される液化水素の量が低減する。したがって、液化水素タンク内を液化水素が貯留される温度まで冷却する際に、液化水素が気化により消費される量を低減することができる。
 また、船舶に搭載される液化水素タンクは、安全上、上部を除く全体が覆われている。このような船舶上の制約に対して、液化水素タンクの上部から内部に挿通される配管を通じて冷媒を導入することにより、船舶に搭載される液化水素タンクの安全上の制約を守りつつ液化水素タンク1の予冷却を実現することができる。
 前記冷媒は、液化窒素であってもよい。また、前記冷媒は、前記液化窒素を気化させた低温窒素ガスであってもよい。
 前記液化窒素または前記低温窒素ガスの導入後かつ前記液化水素を導入する前に、前記液化水素を気化させた低温水素ガスを導入してもよい。液化窒素または低温窒素ガスが導入された後、液化水素を導入する前に、低温水素ガスが導入されることにより、酸素除去の際に気化した窒素が除去される。これにより、窒素の除去に液化水素を使用する必要がなくなるため、液化水素の消費を抑えることができる。
 前記船舶は、前記液化水素タンク内に前記冷媒が導入された状態で前記液化水素が貯留される液化水素貯留施設まで航行し、前記液化水素貯留施設において前記液化水素タンクに前記液化水素を導入してもよい。
 これによれば、液化水素タンクに液化水素を供給する液化水素貯留施設に到着するまでに、液化水素タンクの内部空間が予め冷却されため、船舶が液化水素貯留施設に到着してから液化水素タンクに液化水素を導入するまでの期間を短縮することができる。また、船舶が海上を航行している間に予冷却を行うため、液化水素の受領地と供給地との間での液体水素の運搬周期を短縮することができる。
 前記船舶が前記液化水素貯留施設とは別の場所に停泊している間に、前記液化水素タンク内に前記冷媒を導入してもよい。液化水素貯留施設とは別の場所で冷媒が液化水素タンクに導入されるため、液化水素貯留施設での停泊期間を短くすることができる。

Claims (6)

  1.  船舶に搭載される液化水素タンクに液化水素を貯留するための船舶用液化水素貯留方法であって、
     前記液化水素タンクの上部から内部に挿通される配管を通じて冷媒液化窒素を前記液化水素タンク内に導入して前記液化水素タンクを予冷却し、
     予冷却後の前記液化水素タンクに前記液化水素を導入する、船舶用液化水素貯留方法。
  2.  前記冷媒は、液化窒素である、請求項1に記載の船舶用液化水素貯留方法。
  3.  前記冷媒は、前記液化窒素を気化させた低温窒素ガスである、請求項1に記載の船舶用液化水素貯留方法。
  4.  前記液化窒素または前記低温窒素ガスの導入後かつ前記液化水素を導入する前に、前記液化水素を気化させた低温水素ガスを導入する、請求項2または3に記載の船舶用液化水素貯留方法。
  5.  前記船舶は、前記液化水素タンク内に前記冷媒が導入された状態で前記液化水素が貯留される液化水素貯留施設まで航行し、
     前記液化水素貯留施設において前記液化水素タンクに前記液化水素を導入する、請求項1から4の何れかに記載の船舶用液化水素貯留方法。
  6.  前記船舶が前記液化水素貯留施設とは別の場所に停泊している間に、前記液化水素タンク内に前記冷媒を導入する、請求項5に記載の船舶用液化水素貯留方法。
     
PCT/JP2022/041307 2021-11-05 2022-11-07 船舶用液化水素貯留方法 WO2023080229A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-180940 2021-11-05
JP2021180940A JP2023069215A (ja) 2021-11-05 2021-11-05 船舶用液化水素貯留方法

Publications (1)

Publication Number Publication Date
WO2023080229A1 true WO2023080229A1 (ja) 2023-05-11

Family

ID=86241576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041307 WO2023080229A1 (ja) 2021-11-05 2022-11-07 船舶用液化水素貯留方法

Country Status (2)

Country Link
JP (1) JP2023069215A (ja)
WO (1) WO2023080229A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440327A (en) * 1977-09-05 1979-03-29 Mitsubishi Heavy Ind Ltd Cooling of membrane type low-temperature tank
JPS62237199A (ja) * 1986-04-05 1987-10-17 Kobe Steel Ltd 極低温液化ガス収納容器内の保存方法
JP2005299819A (ja) * 2004-04-13 2005-10-27 Iwatani Internatl Corp 低温液化ガス充填装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440327A (en) * 1977-09-05 1979-03-29 Mitsubishi Heavy Ind Ltd Cooling of membrane type low-temperature tank
JPS62237199A (ja) * 1986-04-05 1987-10-17 Kobe Steel Ltd 極低温液化ガス収納容器内の保存方法
JP2005299819A (ja) * 2004-04-13 2005-10-27 Iwatani Internatl Corp 低温液化ガス充填装置

Also Published As

Publication number Publication date
JP2023069215A (ja) 2023-05-18

Similar Documents

Publication Publication Date Title
KR100875064B1 (ko) 재액화 장치가 탑재된 lng 운반선에서의 증발가스처리방법 및 처리장치, 그리고 상기 처리장치를 구비한lng 운반선
EP2228294A1 (en) Vessel for transport of liquefied natural gas
KR20100112708A (ko) 질소를 이용한 액화가스 저장탱크의 치환방법
KR101559404B1 (ko) 질소를 이용한 액화가스 저장탱크의 치환장치
US20210164728A1 (en) Method and system for processing gas in a gas storage facility for a gas tanker
FI120776B (fi) Menetelmä paineenpitävään ja tasalämpöiseen säiliöön varastoidun nesteytetyn kaasun höyrystymisen estämiseksi ja laite sen toteuttamiseksi
KR20130107561A (ko) Lng 화물창의 단열시스템
KR101177817B1 (ko) 부유식 해상구조물의 저장탱크 유지보수 방법
WO2023080229A1 (ja) 船舶用液化水素貯留方法
US11300248B2 (en) Device and process for filling a mobile refrigerant tank with a cryogenic refrigerant
KR101567855B1 (ko) 질소를 이용한 액화가스 저장탱크의 치환장치
KR100885796B1 (ko) 증발가스 재액화 장치
KR20150116256A (ko) Lng 저장탱크의 가스 필링시스템 및 방법
EP4129815A1 (en) Ship
US3352123A (en) System for cooling, transporting and warming up double barrier liquefied gas cargo tanks
KR20190117926A (ko) 선박
KR101167150B1 (ko) Lng 운반선 화물창의 점검방법 및 점검장치
KR101751858B1 (ko) 선박용 증발가스 처리 방법
KR101584567B1 (ko) Lng 저장탱크의 로딩 시스템 및 방법
KR20110004667U (ko) 독립형 저장탱크 구조물
WO2023079683A1 (ja) 液化水素貯留方法および液化水素貯留システム
KR200462375Y1 (ko) 독립형 저장탱크의 누출액 수집장치
KR20220000431A (ko) 하이브리드 화물창을 포함하는 부유식 구조물
KR102239825B1 (ko) 액화가스 저장탱크의 상부구조
JP7412625B1 (ja) 極低温液化ガスの荷役方法、極低温液化ガスの荷役設備および極低温液化ガスの荷役設備における温度確認方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890049

Country of ref document: EP

Kind code of ref document: A1