WO2023080174A1 - Electric power generation system, control device, control method, and program - Google Patents

Electric power generation system, control device, control method, and program Download PDF

Info

Publication number
WO2023080174A1
WO2023080174A1 PCT/JP2022/041069 JP2022041069W WO2023080174A1 WO 2023080174 A1 WO2023080174 A1 WO 2023080174A1 JP 2022041069 W JP2022041069 W JP 2022041069W WO 2023080174 A1 WO2023080174 A1 WO 2023080174A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
simulated
power
generator
control
Prior art date
Application number
PCT/JP2022/041069
Other languages
French (fr)
Japanese (ja)
Inventor
仁哉 稻月
純一 富永
郁郎 西田
博之 古瀬
Original Assignee
Jfeエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeエンジニアリング株式会社 filed Critical Jfeエンジニアリング株式会社
Priority to JP2022573381A priority Critical patent/JPWO2023080174A1/ja
Publication of WO2023080174A1 publication Critical patent/WO2023080174A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/08Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems requiring starting of a prime-mover
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator

Definitions

  • the present invention relates to a power generation system, control device, control method, and program.
  • FIG. 1 Facilities with power loads such as electrical equipment may be equipped with a power generation system that generates power by connecting to the commercial power system and supplies the generated power to the power loads.
  • a power generation system an internal combustion engine that drives a generator in a state where the generator is disconnected from the commercial power system or the normal power supply during a power failure when power reception from the commercial power system or the normal power supply is stopped.
  • the engine is started and the generator is in self-sustained operation, and the generated voltage of the generator is established and stable power generation is possible, part or all of the power load to be supplied during a power failure is specified.
  • a technique is disclosed for injecting a load into a generator.
  • Non-Patent Document 1 In such a power generation system, it is possible to establish the power generation voltage of the generator and turn on the power load in a short period of time, for example, within about 40 seconds, after the power supply from the commercial power system or the normal power supply is stopped. (See Non-Patent Document 1).
  • Patent Document 2 the power consumption of the first simulated load and the second simulated load are equalized by the simulated load control means, the first simulated load power consumption adjusting means, and the second simulated load power consumption adjusting means.
  • a technique for executing simulated load control is disclosed.
  • Patent Document 3 discloses an electric load power consumption measuring means for measuring the power consumption of an electric load, a simulated load that consumes power generated by a generator, and a simulated load power consumption adjusting means that can change the power consumption of the simulated load.
  • a simulated load control for controlling the simulated load power consumption adjusting means based on the measurement results of the power load power consumption measuring means so that the power generated by the generator is maintained at or above a predetermined reference generated power that enables stable operation of the engine;
  • the power load fluctuates when the power load is turned on or off.
  • a simulated load is placed between the generator and the simulated load.
  • a power regulator must be provided to regulate power consumption.
  • the generator itself may be affected by failure, abnormal noise from the turbocharger that leads to failure, or disturbance of the power waveform.
  • the mechanical load on the generator increases, and the stable operation life of the generator is shortened, which may interfere with stable operation. Therefore, there is a demand for a technology that can stably start and operate a generator over a long period of time, which is required after stopping receiving power from a commercial power system or a normal power source.
  • the present invention has been made in view of the above, and its object is to provide a power generation system capable of stably starting and operating a generator over a long period of time after stopping receiving power from a commercial power system or a normal power supply. , a control device, a control method, and a program.
  • a power generation system includes a power generator that controls generated power by driving a power engine equipped with a speed governor; a simulated load in which a predetermined load capacity is set so that the power generated by the generator can be consumed while the power generator is driving and the power consumption can be adjusted; and a control unit capable of controlling the power consumption of the simulated load by controlling the simulated load adjustment unit, wherein the simulated load and a plurality of sets of the simulated load adjusting unit are provided with the simulated load and the simulated load adjusting unit as a pair, and the plurality of sets of the simulated loads correspond to the predetermined load capacities of the simulated loads constituting the plurality of sets.
  • the total is substantially equal to the set output of the generator, the simulated load and the simulated load adjustment unit are configured to be able to apply the adjusted load to the generator independently of each other, and the control unit is configured to: An adjustment signal is output to each of a plurality of simulated load adjustment units, and when the generator is started, one simulated load of the plurality of simulated loads is steplessly adjusted from 0 to the predetermined value with respect to the generator. a first closing control for instantaneously increasing the load capacity to the load capacity; and the predetermined load in the one simulated load during a period from after the first closing control until the power generated by the generator stabilizes.
  • the maintenance control for maintaining the capacity, and after the maintenance control, the load increase rate is higher than 0%/min for one of the plurality of simulated loads different from the one simulated load.
  • a second closing control for increasing the load capacity to the predetermined load capacity so as to satisfy the load capacity of 60%/min or less.
  • the second input control changes the load of the simulated load stepwise or linearly to the predetermined load. It is a control to increase up to the capacity.
  • a power generation system is the power generation system according to the above (3), in which the load boost rate in the simulated load that is turned on by the second turning-on control is greater than 0%/min and 45%/min.
  • the load capacity is increased to the predetermined load capacity so as to satisfy min or less.
  • a power generation system is the power generation system according to any one of the above (1) to (4), wherein the control unit finishes inputting the plurality of simulated loads to the generator. After that, supply of power generated by the generator is started to a power load different from the simulated load, and the power consumption of the simulated load is increased or decreased in response to fluctuations in power consumption caused by the power load. It controls the simulated load adjustment unit.
  • a control device is capable of consuming power generated by a generator that controls the power generated by driving a power engine equipped with a speed governor, and having a predetermined load capacity so that the power consumption can be adjusted.
  • a plurality of set simulated loads and a pair of the plurality of simulated loads configured to be adjustable so that the power consumption of each of the plurality of simulated loads can be individually increased from 0 to the predetermined load capacity set.
  • control unit capable of controlling a plurality of simulated load adjusting units, wherein the simulated load and the simulated load adjusting unit are provided as a pair in a plurality of pairs, and the plurality of pairs of the simulated loads correspond to the A total of the predetermined load capacities of the simulated loads constituting a plurality of sets is substantially equal to the set output of the generator, and each pair of the simulated load and the simulated load adjustment unit is adjusted to the generator.
  • the control unit outputs an adjustment signal to each of the plurality of simulated load adjusting units so that one of the plurality of simulated loads is applied when the generator is started.
  • a first closing control for steplessly turning on the generator so as to instantaneously increase from 0 to the predetermined load capacity, and after the first turning on control, the generator maintenance control for maintaining the predetermined load capacity of the one simulated load until the generated power stabilizes; and a second closing control for increasing the load capacity to the predetermined load capacity so that the load increase rate is greater than 0%/min and less than or equal to 60%/min.
  • a control method can consume the power generated by a power generator that controls the power generated by driving a power engine equipped with a speed governor, and adjust the power consumption so that a predetermined load capacity is provided.
  • a plurality of set simulated loads and a pair of the plurality of simulated loads configured to be adjustable so that the power consumption of each of the plurality of simulated loads can be individually increased from 0 to the predetermined load capacity set.
  • control unit capable of controlling a plurality of simulated load adjustment units, wherein a plurality of sets of the simulated load and the simulated load adjuster are provided as a pair, and the plurality of sets of the simulated load are:
  • the sum of the predetermined load capacities of the simulated loads constituting the plurality of sets is substantially equal to the set output of the generator, and each pair of the simulated load and the simulated load adjustment section adjusts the generator.
  • the control unit outputs an adjustment signal to each of the plurality of simulated load adjusting units to activate one of the plurality of simulated loads when the generator is started.
  • a first closing control for steplessly turning on the generator so as to instantaneously increase from 0 to the predetermined load capacity, and after the first turning on control, the generator maintenance control for maintaining the predetermined load capacity of the one simulated load until the generated power stabilizes; and a second closing control for increasing the load capacity to the predetermined load capacity so that the load increase rate is greater than 0%/min and less than or equal to 60%/min.
  • a program can consume power generated by a power generator that controls power generated by driving a power engine equipped with a speed governor, and sets a predetermined load capacity so that the power consumption can be adjusted. and a plurality of simulated loads configured to be adjustable so as to individually increase the power consumption of the plurality of simulated loads from 0 to the predetermined load capacity set, and provided in pairs with the plurality of simulated loads. a plurality of simulated load adjusting units, and a plurality of pairs of the simulated load and the simulated load adjusting unit are provided, and the plurality of sets of the simulated loads correspond to the simulated loads constituting the plurality of sets.
  • the sum of the predetermined load capacities is substantially equal to the set output of the generator, and each pair of the simulated load and the simulated load adjustment unit are controlled so that the adjusted load is applied to the generator independently of each other. outputting an adjustment signal to each of the plurality of simulated load adjustment units to a control unit capable of controlling one of the plurality of simulated loads when the generator is started, the simulated load being ignored for the generator; a first closing control for instantaneously increasing the load capacity from 0 to the predetermined load capacity in stages; maintenance control for maintaining the predetermined load capacity in the simulated load, and after the maintenance control, an increase load rate for another one of the plurality of simulated loads different from the one simulated load. and a second closing control for increasing the load capacity to the predetermined load capacity so that the load capacity is greater than 0%/min and less than or equal to 60%/min.
  • control device According to the power generation system, control device, control method, and program according to the present invention, it is possible to stably start and operate a generator over a long period of time after stopping receiving power from a commercial power system or a normal power supply. It becomes possible.
  • FIG. 1 is a block diagram showing a power generation system according to an embodiment of the invention.
  • FIG. 2 is a block diagram showing a power generation system control device according to an embodiment of the present invention.
  • FIG. 3 is a graph showing an example of control by the power generation system control device according to the embodiment of the present invention.
  • FIG. 4 is a graph showing the relationship between the input rate of the simulated load and the power factor of the engine generator when one simulated load is controlled.
  • FIG. 5 is a graph showing the relationship between the input rate of the simulated loads and the power factor of the engine generator when controlling a plurality of simulated loads simultaneously.
  • FIG. 6 is a graph showing the relationship between the input rate of the simulated loads and the power factor of the engine generator when a plurality of simulated loads are individually controlled.
  • FIG. 1 is a block diagram showing a power generation system according to an embodiment of the invention.
  • FIG. 2 is a block diagram showing a power generation system control device according to an embodiment of the present invention.
  • FIG. 7 is a flow chart for explaining a control method by the power generation system control device according to the embodiment of the present invention.
  • FIG. 8 is a graph for explaining the control method by the power generation system control device according to the first embodiment of the present invention.
  • FIG. 9 is a graph showing the input rate of the simulated load, the output of the generator, and the power factor of the generator for explaining the effect of the power generation system according to the first embodiment of the present invention.
  • FIG. 10 is a graph showing the load setting ratio and power generation output for each load increase rate in the power generation system according to the first embodiment of the present invention.
  • FIG. 11 is a table for explaining effects in the power generation system according to the first embodiment of the present invention.
  • FIG. 12 is a table explaining the definition of the table shown in FIG.
  • FIG. 13 is a graph for explaining the control method by the power generation system control device according to the second embodiment of the present invention.
  • FIG. 14 is a graph for explaining the control method by the power generation system control device according to the third embodiment of
  • FIG. 1 is a block diagram showing the configuration of a power generation system according to this embodiment.
  • the power generation system 1 includes a control device 10, an engine generator 20, a simulated load group 30 adjusted by a simulated load power consumption adjuster 31, a commercial power system 40, and an electric load 50. Prepare.
  • the output side of the engine generator 20 is provided with a generated power measuring section 61 capable of measuring the output power.
  • An input side of the power load 50 is provided with a power load power consumption measurement unit 62 capable of measuring the power supplied.
  • a simulated load power consumption measurement unit 63 capable of measuring the supplied power is provided.
  • the engine generator 20 as a generator has an internal combustion engine 21 and a generator 22 .
  • the engine generator 20 is configured to be capable of generating power by generating rotational motion with an engine as an internal combustion engine using fuel to rotate the rotor of the generator 22 .
  • the internal combustion engine 21 is not limited to an internal combustion engine 21 such as an engine as long as it is an engine capable of generating power by the generator 22 .
  • the internal combustion engine 21 is merely an example, and instead of the internal combustion engine 21, it is possible to adopt an external combustion engine such as a steam turbine or a gas turbine, or a power engine capable of generating power having another speed governor. is.
  • the simulated load group 30 is configured with a plurality of simulated loads 301, 302, 303, and 304.
  • Each of the simulated loads 301-304 is composed of, for example, a load resistor that consumes a predetermined amount of power.
  • Each of the simulated loads 301 to 304 consumes at least part of the power generated by the engine generator 20, thereby suppressing fluctuations in the power generated by the engine generator 20 and stabilizing the load. 50 is provided independently.
  • the simulated loads 301 to 304 are common to the power load 50 in that they are loads that consume the power generated by the engine generator 20 .
  • the simulated load power consumption adjuster 31 as a simulated load adjuster is a device that adjusts the power consumed by the simulated load group 30 based on the adjustment signal input from the control device 10 .
  • the simulated load power consumption adjuster 31 includes simulated load adjusters 311, 312, 313, and 314 corresponding to the simulated loads 301 to 304, respectively, and can independently control the plurality of simulated loads 301 to 304. configured to That is, the simulated loads 301 to 304 are configured to be able to adjust the magnitude of the loads by the simulated load adjusters 311 to 314, respectively. Thereby, simulated load adjusters 311 to 314 are configured to be able to adjust the power consumption of simulated loads 301 to 304 based on the adjustment signal input from control device 10, respectively.
  • the simulated load power consumption adjuster 31 is configured to be adjustable so as to increase the power consumption of the simulated load group 30 from 0 to a set predetermined load capacity.
  • the adjustment signal includes information for controlling an increase or decrease in power consumption of the simulated load group 30 .
  • the simulated load group 30 includes four simulated loads 301 to 304, but the number may be other than four as long as there are multiple simulated loads.
  • the number of simulated loads is typically 2 or more and 10 or less, preferably 3 or more and 6 or less, more preferably 4 or 5. It is a table.
  • the simulated load adjusters are also provided corresponding to the number of installed simulated loads, and are provided in pairs with the simulated loads. That is, the number of pairs of the simulated load and the simulated load adjuster is typically 2 or more and 10 or less, preferably 3 or more and 6 or less, more preferably 4 or 5.
  • each of the simulated loads 301 to 304 can consume power generated by the engine generator 20 while the internal combustion engine 21 is running, and can set a predetermined load capacity so that the power consumption can be adjusted. is.
  • the commercial power system 40 is, for example, a power system from a power company. In this specification, the commercial power system 40 is referred to as including the regular power supply.
  • the electric power load 50 is a load to which electric power necessary for operating the facility is supplied, and is specifically a load such as a pump or a motor. Note that the power load 50 is not limited to, for example, a pump or a motor, and conventionally known various loads can be used.
  • the generated power measurement unit 61 is a wattmeter that is connected to the power supply line connected to the engine generator 20 and outputs the measured value of the generated power output by the engine generator 20 to the control device 10 .
  • the power load power consumption measurement unit 62 is a power meter that is connected to a power supply line connected to the power load 50 and outputs a measured value of power consumption consumed by the power load 50 to the control device 10 .
  • the simulated load power consumption measurement unit 63 is connected to the power supply line connected to the simulated load group 30 or the simulated load power consumption regulator 31, and outputs the measured value of the power consumption consumed by the simulated load group 30 to the control device 10.
  • a plurality of simulated load power consumption measurement units 63 may be provided on the input side of each of the simulated loads 301 to 304 so as to correspond to each of the simulated loads 301 to 304 .
  • the generated power measurement unit 61, the power load power consumption measurement unit 62, and the simulated load power consumption measurement unit 63 are not limited to power meters as long as they are measuring devices capable of evaluating an increase or decrease in power. It is possible to employ a variety of measuring instruments.
  • the control device 10 acquires measured values of the power generated by the engine generator 20, the power consumption of the power load 50, and the power consumption of the simulated load group 30, and adjusts the consumption of the simulated load group 30 by the simulated load power consumption adjuster 31. It is a device that controls the increase and decrease of electric power.
  • FIG. 2 is a block diagram showing the control device 10 of the power generation system 1 according to this embodiment.
  • the control device 10 includes a determination control section 11, an addition section 12, a difference calculation section 13, a control sensitivity calculation section 14, a control output calculation section 15, and a storage section 16. Measured values are input to the control device 10 from the generated power measuring unit 61 , the power load power consumption measuring unit 62 , and the simulated load power consumption measuring unit 63 . Control device 10 outputs a control signal (adjustment signal) to each of simulated load regulators 311 to 314 of simulated load power consumption regulator 31 .
  • the determination control unit 11, the addition unit 12, the difference calculation unit 13, the control sensitivity calculation unit 14, and the control output calculation unit 15 specifically have hardware such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processor). , FPGA (Field-Programmable Gate Array) and other processors, and RAM (Random Access Memory) and ROM (Read Only Memory) and other main storage units (none of which are shown).
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • FPGA Field-Programmable Gate Array
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the storage unit 16 is composed of a storage medium selected from volatile memory such as RAM, nonvolatile memory such as ROM, EPROM (Erasable Programmable ROM), hard disk drive (HDD, Hard Disk Drive), and removable media.
  • Removable media are, for example, USB (Universal Serial Bus) memory, or disc recording media such as CD (Compact Disc), DVD (Digital Versatile Disc), or BD (Blu-ray (registered trademark) Disc).
  • the storage unit 16 may be configured using a computer-readable recording medium such as a memory card that can be attached from the outside.
  • the storage unit 16 can store an operating system (OS), various programs, various tables, various databases, and the like for executing the operations of the control device 10 .
  • OS operating system
  • various programs various tables, various databases, and the like for executing the operations of the control device 10 .
  • the various programs include a power increase/decrease control program for realizing increase/decrease control of the power consumption of the simulated load group 30 according to this embodiment.
  • These various programs can be recorded on computer-readable recording media such as hard disks, flash memories, CD-ROMs, DVD-ROMs, flexible disks, etc., and can be widely distributed.
  • control device 10 the program stored in the storage unit 16 is loaded into the work area of the main storage unit and executed, and by controlling each component through the execution of the program, the function that meets the predetermined purpose can be performed. realizable.
  • the control device 10 executes a program to execute the processes of the determination control section 11, the addition section 12, the difference calculation section 13, the control sensitivity calculation section 14, and the control output calculation section 15. FIG.
  • the determination control unit 11 is based on the measured value of generated power acquired from the generated power measuring unit 61 and the measured value of power consumption acquired from at least one of the power load power consumption measuring unit 62 and the simulated load power consumption measuring unit 63. to determine and select the control mode. Based on the selected control mode, the determination control unit 11 outputs a control signal (adjustment signal) to the simulated load power consumption adjuster 31 to control it.
  • the determination control unit 11 in the power generation system 1 has, for example, the following three power control mode units.
  • the determination control unit 11 of the control device 10 included in the power generation system 1 according to this embodiment functions as a main control unit that executes the following power control modes. Specifically, first, the determination control unit 11 selects one control mode unit from the first power control mode unit 111, the second power control mode unit 112, and the third power control mode unit 113, for example. Subsequently, the determination control unit 11 controls the simulated load adjusters 311 to 314 of the simulated load power consumption adjuster 31 based on the power control mode executed by the selected power control mode unit.
  • the first power control mode executed by the determination control unit 11 selecting the first power control mode unit 111 is a power control mode in which the emission power starts to decrease. That is, during a power outage in the commercial power system 40, the load power of the power load 50 may transiently increase from, for example, the start of power-on.
  • the first power control mode unit 111 of the determination control unit 11 controls the simulated load power consumption adjuster 31 to increase the power consumption (discharge power) of the simulated load group 30 and increase the load power of the power load 50. change to lower it by As a result, the discharge power is reduced in accordance with the load power consumed by the power load 50, and the power generated by the engine generator 20 can be maintained substantially constant.
  • the decrease or increase in the emitted power of the simulated load group 30 is stopped for a predetermined time, or the load of the simulated load group 30 is stopped. is maintained constant for a predetermined period of time. That is, the second power control mode unit 112 controls the simulated load power consumption regulator 31 to keep the power emitted from the simulated load group 30 in a state of not decreasing or constant.
  • the third power control mode executed by the third power control mode unit 113 is a power control mode that increases the power emitted by the simulated load group 30 . That is, the third power control mode section 113 controls the simulated load power consumption adjuster 31 to increase the power emitted from the simulated load group 30 . During a power failure of the commercial power system 40, the load power of the power load 50 may continue to decrease asymptotically. Therefore, the third power control mode unit 113 controls the simulated load power consumption adjuster 31 to adjust the discharge power of the simulated load group 30 to the absolute value of the increase rate of the load power consumed by the power load 50, that is, the decrease rate.
  • the generated power that has decreased following the decrease in the load power of the power loads 50 is adjusted by making the increase rate of the discharge power of the simulated load group 30 greater than the decrease rate of the load power of the power loads 50 .
  • the power generated by the engine generator 20 can be maintained substantially constant.
  • the control to keep the power generated by the engine generator 20 substantially constant by switching between the first power control mode, the second power control mode, and the third power control mode is referred to as power increase/decrease control for the engine generator 20. .
  • the adding unit 12 acquires and adds the measured value of the power load power consumption measuring unit 62 and the measured value of the simulated load power consumption measuring unit 63 , and outputs the result to the difference calculating unit 13 . That is, the adder 12 outputs the total power consumption of the simulated load group 30 and the power load 50 to the difference calculator 13 .
  • the difference calculation unit 13 calculates the difference between the total power consumption of the simulated load group 30 and the power load 50 and the power generated by the engine generator 20 and outputs the difference to the control output calculation unit 15 .
  • the difference calculator 13 is a calculator that calculates the difference between the generated power and the consumed power. By calculating the difference between the generated power and the consumed power by the difference calculation unit 13, it is possible to calculate the control value of the power consumption for the simulated load group 30 necessary to keep the power generated by the engine generator 20 substantially constant.
  • the control sensitivity calculation unit 14 outputs the control value of the power consumption of the simulated load group 30 required to keep the generated power substantially constant, which is obtained by the difference calculation unit 13, to the simulated load power consumption adjuster 31. to calculate That is, the control sensitivity calculation unit 14 calculates with what degree of sensitivity the control value of the power consumption of the simulated load group 30 is to be output.
  • the control sensitivity calculation unit 14 outputs sensitivity information obtained by the calculation to the control output calculation unit 15 .
  • the control output calculation unit 15 calculates the control value of the power consumption of the simulated load group 30 required to keep the generated power substantially constant, which is obtained by the difference calculation unit 13, and the sensitivity value obtained by the control sensitivity calculation unit 14. and generating control information that includes:
  • the control output calculator 15 outputs the generated control information to the determination controller 11 .
  • the determination control unit 11 converts the control information to be output to the simulated load power consumption adjuster 31 obtained by the control output calculation unit 15 into an appropriate control signal, and outputs the control signal to the simulated load power consumption adjuster 31 .
  • FIG. 3 is a graph showing an example of control of the engine generator 20 by the engine control unit (not shown) and the control device 10 of the power generation system 1 according to this embodiment.
  • FIG. 3 it is assumed that the engine generator 20 is disconnected from the power load 50 when a power failure is detected in a facility having the power load 50 or in the commercial power system 40 or the like.
  • An engine control unit (not shown) stabilizes the engine generator 20 by operating the engine generator 20 at the no-load rated speed in a state in which the power load 50 is disconnected from the engine generator 20 .
  • the control device 10 starts load increasing operation of the engine generator 20 with the simulated load.
  • engine power generation using the simulated load group 30 is performed from a state in which the engine generator 20 is stabilized by no-load rated speed operation while the power load 50 is disconnected from the engine generator 20.
  • the lifting load on the machine 20 is called "starting".
  • a predetermined starting time elapses from the start time T1 at which the engine generator 20 starts to start
  • the starting operation of the engine generator 20 ends.
  • the engine generator 20 stabilizes and the generated power becomes stable, and the power load 50 can be turned on (stabilization time T 2 ).
  • the power load 50 starts to be applied (load application start time point T3 ).
  • the power increase/decrease control is executed by the control device 10, and the discharge power is adjusted according to the load power consumed by the power load 50. be done.
  • the power generated by the engine generator 20 can be maintained substantially constant by increasing or decreasing the discharge power according to the increase or decrease in the load power according to the following formula (A).
  • the engine generator 20 can be operated at a constant load by the power increase/decrease control of the discharged power, and the stall of the internal combustion engine 21 in the engine generator 20 due to large load fluctuations can be avoided.
  • Emitted power Generated power - Load power ... (A)
  • the power consumption by the simulated load is increased linearly in order to increase the load only with the simulated load and to increase the load of the engine generator 20 stably. is preferred.
  • the present inventors have found that the power consumption by the simulated load is reduced in order to increase the load only with the simulated load and to increase the load of the engine generator 20 stably. It has been found that if the power factor is linearly increased, the power factor may suddenly drop, causing the engine generator 20 to trip. That is, the inventors have found that when the engine generator 20 is activated at the activation start time T1 , the engine generator 20 may trip during the time period (activation period ⁇ 1) shown in FIG.
  • the present inventor started the engine generator 20 in a state in which a predetermined load (hereinafter referred to as an initial load) was applied in advance using a load corresponding to the electric load 50, and the load application rate MV of the simulated load group 30 (%) and the power factor of the engine generator 20 was tested.
  • the load input rate (MV) (%) is defined as the ratio (%) of the simulated load output to the set output. , a load setting ratio (hereinafter also referred to as MV) (%).
  • FIGS. 4, 5, and 6 respectively show the case where one simulated load is provided, the case where a plurality of simulated loads are provided, and the case where a plurality of simulated loads are provided, respectively, which the present inventor performed in the power generation system 1.
  • 10 is a graph showing the relationship between the input rate of the simulated load and the power factor of the engine generator in the experiment when the control is performed to .
  • the inventor conducted an experiment using one simulated load 301 in the simulated load group 30 .
  • the initial load was set to 20%, 15%, 10%, and 5% of the set output of the engine generator 20, respectively.
  • the results are shown in FIG.
  • the maximum load of the simulated load 301 was set to 150 kW.
  • the set output is also called a specified output.
  • the set output is the total capacity of the simulated load group 30 required for stabilizing the operation of the engine generator 20 against fluctuations in the electric power load when the power generating equipment is operated in a self-sustained manner during a power failure.
  • the simulated load group 30 is a load that is not necessarily required for the facility, unlike the power load 50 that is consumed when the facility operates in a self-supporting manner during a power outage.
  • the emitted power shown in FIG. 3 is energetically inefficient by converting power to heat and releasing it to the atmosphere.
  • the total capacity of the simulated load group 30 firstly secures the total capacity of the power loads 50 consumed when the facility operates in a self-sustained manner during a power outage, and secondly, the transient It is necessary to determine the minimum capacity that can stably maintain the operation of the power generation facility even if power fluctuations occur.
  • the total capacity of the power load 50 is a capacity that can be reliably supplied by the power generation equipment, it will be below the rated output, and depending on the facility, when it is connected to the commercial power system 40, the power load 50 of the equipment In addition to power supply, electricity may also be sold. Therefore, the set output does not necessarily match the rated output of the power generation equipment, and the set output may be less than the rated output (set output ⁇ rated output).
  • the power factor decreases from 1 as the MV of the simulated load 301 is increased from 0%, and when the MV (%) is about 40% to 50%, the power factor is reduced to a minimum of about 0.93. Also, it can be seen that the power factor increases from 0.93 to 1 as the MV of the simulated load 301 is increased from 40%. Similarly, when the initial load is 15%, while the MV of the simulated load 301 is increased from 0% to 100%, the power factor is reduced to about 0.9 when the MV (%) is about 40%. It can be seen that it decreases to 1 and then increases to 1.
  • the power factor is the minimum 0.85 when the MV (%) is about 40%. It can be seen that it increases to 1 after decreasing to about .
  • the reason why the power factor is minimized when the MV (%) of the simulated load 301 is approximately 40% to 50% is due to the generation of harmonics. I came to know.
  • the initial load when the initial load is set to 5%, when the MV of the simulated load 301 is increased from 0%, it falls below the serious failure notification condition cos ⁇ min of the engine generator 20 during the increase, and the engine generator 20 was found to trip. Specifically, when the set output of the engine generator 20 is 600 kW, if the initial load is set to 30 kW or less, the MV (%) of the simulated load 301 is increased until the load reaches 100% (hereinafter referred to as It turned out that it becomes difficult to raise the load). In other words, the initial load should be 0%, but even if the initial load is 5%, the power factor drops sharply as the MV of the simulated load 301, that is, the power consumption, is increased. , the serious failure condition of the engine generator 20 is reached. Therefore, it turned out to be extremely difficult to increase the load of the engine generator 20 with the initial load set to 0%.
  • the present inventor conducted an experiment in which a plurality of simulated loads, for example, a plurality of simulated loads 301 and 302 were provided, and the simulated loads 301 and 302 were increased together to start the engine generator 20 .
  • the results are shown in FIG. It can be seen from FIG. 5 that in this case also, the tendency of the load increase of the engine generator 20 is the same as in FIG.
  • the MV (%) of the simulated load 301 is increased from 0% when the initial load is 10%
  • the engine generator 20 trips when the MV (%) of the simulated load 301 falls below the serious failure notification condition cos ⁇ min during the increase. It turned out to do.
  • the set output of the engine generator 20 is 600 kW, it has become difficult to increase the load of the engine generator 20 if the initial load is set to 60 kW or less.
  • the present inventor provides a plurality of simulated loads, for example, a plurality of simulated loads 301 to 304, and sequentially increases the MV (%) from 0% to 100% for the simulated loads 301 to 304 one by one, and the engine An experiment was conducted to increase the load on the generator 20 .
  • the simulated loads 301 to 304 each have a load of 150 kW.
  • the results are shown in FIG. It can be seen from FIG. 6 that in this case also, the tendency of the load increase of the engine generator 20 is the same as in FIG. That is, when the MV (%) of the plurality of simulated loads 301 to 304 are increased one by one, the conditions for the first simulated load 301 are the same as those in FIG. If (%) is increased from 0%, it becomes less than or equal to the critical failure notification condition cos ⁇ min in the middle of the increase, causing the engine generator 20 to trip.
  • the present inventors conducted further intensive studies and devised a control method for increasing the load at startup without causing the engine generator 20 to trip. That is, the inventor provides a plurality of simulated loads that can be applied to the engine generator 20 independently of each other, and when applying the plurality of simulated loads to the engine generator 20, The load capacity of the first simulated load is increased steplessly and instantaneously to the preset load capacity, and the second and subsequent simulated loads, which are the remaining simulated loads, are sequentially set one by one.
  • a control method was devised to increase the load capacity.
  • the load capacity for steplessly increasing the simulated load of the first unit is selected below the load capacity that does not cause the engine generator 20 to trip due to frequency drop or insufficient voltage due to load application.
  • load resistors are used as simulated loads, and when the total load capacity is about 400 kW, in the case of the engine generator 20, 25% (about 145 kW) of the rated output (585 kW) trips. This is the upper limit of the load capacity that does not occur. Therefore, the total load capacity is evenly distributed among the four simulated loads, that is, the load capacity of each is approximately 100 kW.
  • the present invention described below has been devised through the above earnest studies by the inventors of the present invention.
  • FIG. 7 is a flowchart for explaining a control method by the control device according to the first embodiment.
  • FIG. 8 is a graph showing an example of control corresponding to FIG. 7 by the control device 10 in the first embodiment. ST shown in FIG. 8 corresponds to the steps shown in FIG.
  • the flowchart shown in FIG. 7 is started by starting the engine generator 20 after the commercial power system 40 is in a power failure state and the engine generator 20 is disconnected from the power load 50 .
  • control device 10 applies an adjustment signal to apply load of one of simulated loads 301 to 304 when engine generator 20 is started. is output to the simulated load power consumption regulator 31 .
  • "at the start of the engine generator 20” means that although there are variations depending on the specifications and performance (specs) of the engine generator 20, there is no increase in load on the engine generator 20 by a predetermined engine control unit (not shown). In the case of the engine generator 20 according to the first embodiment, it means a time interval of about ⁇ 1 second, for example. That is, control device 10 outputs an adjustment signal to simulated load adjuster 311 of simulated load power consumption adjuster 31 to apply simulated load 301 to engine generator 20 .
  • the load of the simulated load 301 is input to the engine generator 20 so as to increase stepwise from 0% to 100%. That is, the first input control is performed to instantaneously increase the load capacity of the simulated load 301 to be input to the engine generator 20 from 0% to 100%.
  • the first input control is performed to instantaneously increase the load capacity of the simulated load 301 to be input to the engine generator 20 from 0% to 100%.
  • a load of X% of the set output is applied to the engine generator 20 stepwise.
  • Various values of X% can be adopted as long as they are equal to or less than the load capacity at which the engine generator 20 does not trip.
  • the load capacities of the four simulated loads 301 to 304 are made equal to each other, and the total load capacity is made substantially equal to the set output of the engine generator 20 .
  • the load capacity of each of the simulated loads 301-304 becomes 25% of the set output of the engine generator 20.
  • the load capacities of the simulated loads 301 to 304 can be set to different load capacities.
  • step ST2 the control device 10 determines whether or not the fluctuation of the output of the engine generator 20 accompanying the application of the first simulated load 301 has stabilized.
  • the control device 10 waits until the output of the engine generator 20 stabilizes in step ST2 until the output of the generated power of the engine generator 20 stabilizes (step ST2: No).
  • step ST2: Yes the process proceeds to step ST3.
  • step ST3 the control device 10 selects the second and subsequent simulated loads 301 to 304, here the second simulated load 302, from the load capacity of the engine generator 20 from 0% to 100%. Throw in a linear or stepped pattern. That is, control device 10 outputs an adjustment signal to simulated load adjuster 312 to control the load of simulated load 302, thereby increasing the load of simulated load 302 from 0% to engine generator 20 while increasing the load of simulated load 302 to 100%. %. As a result, the load capacity applied to the engine generator 20 increases from X% of the set output of the engine generator 20 to Y%. In the example shown in FIG. 8 , the load of the simulated load 302 is linearly increased to apply from X% to Y% of the set output of the engine generator 20 . Note that Y% is, for example, 50% in the first embodiment.
  • the load increase rate ⁇ (%/min) when increasing the load of the simulated load 302 and turning on the MV from X% to Y% of the set output of the engine generator 20 is 60% greater than 0%/min. %/min or less.
  • the load increase rate ⁇ is set to 60 (%/min), for example. The details of the reason for setting the load increase rate to 60 (%/min) or less will be described later.
  • the definition of the load increase rate ⁇ (%/min) in this specification will be explained.
  • “%” in the load increase rate ⁇ means “%” of MV (%), which is the load setting rate.
  • the target time of the load increase rate ⁇ is the time T ST2 when the first closing control and the maintenance control shown in FIG. This is less than the time required for the load to reach 100%, and is affected by the output scale of the power generation facility and the number of connected simulated loads, but at least 10 seconds or longer is required. be.
  • the time from when MV stabilizes at X% to 100%, the time from when it stabilizes at X% to Y%, and the time from Y% to Z% , the time from Y% to 100%, and the time from the time when it stabilizes at X% to the time when it reaches Z% which is 10 seconds or longer.
  • an arbitrary time of 10 seconds or more within the time from when the control device 10 determines that the output of the engine generator 20 is in a stable state to when the MV reaches 100% is increased.
  • the load increase rate ⁇ is stepped, that is, it is not a stepless input that instantaneously applies the load up to the MV, but a method that requires a predetermined time to reach the target MV (%).
  • the load increase rate ⁇ is set to 60 (%/min), for example, and the load of the simulated load 302 is linearly increased from 0% to 100%.
  • the time t to increase from X% to Y% is (50-25) / 60 (min) or less It is preferable to
  • step ST4 the control device 10 selects the second and subsequent simulated loads 303 from the plurality of simulated loads 301 to 304, here the third simulated load 303, to the engine generator 20 so that the engine generator 20 has a load capacity. Input linearly or stepwise from 0% to 100%. That is, the control device 10 outputs an adjustment signal to the simulated load adjuster 313 to control the load of the simulated load 303, thereby increasing the load of the simulated load 303 from 0% to the engine generator 20 to 100%. %. As a result, the load capacity applied to the engine generator 20 increases from Y% of the set output of the engine generator 20 to Z%.
  • the load increase rate ⁇ is set to satisfy the condition of more than 0%/min and 60%/min or less (0 ⁇ 60).
  • the load of the simulated load 303 is linearly increased to apply from Y % to Z % of the set output of the engine generator 20 .
  • Z % is, for example, 75% in the first embodiment.
  • step ST5 shown in FIG. , linearly or stepwise from 0% to 100% of the load capacity. That is, the control device 10 controls the load of the simulated load 304 by outputting the adjustment signal to the simulated load adjuster 314 so that the engine power generation is
  • the simulated load 304 is increased from 0% to 100% with respect to the aircraft 20 .
  • the load capacity applied to the engine generator 20 increases from Z% of the set output of the engine generator 20 to 100%.
  • the load of the simulated load 304 is linearly increased from Z% of the set output of the engine generator 20 to 100%.
  • the above-mentioned X%, Y%, and Z% can each be set arbitrarily. That is, an arbitrary control range is assigned to the simulated loads 301 to 304, each of the simulated loads 301 to 304 is individually controlled, and the load increase rate ⁇ is greater than 0%/min and less than or equal to 60%/min. While (0 ⁇ 60), the MV at each of the simulated loads 301 to 304 is increased from 0% to 100%. As a result, when the MV in the simulated load group 30 is set to 100%, the load is applied up to the set output of the engine generator 20, for example, about 70% of the rated output.
  • step ST6 the control device 10 determines whether or not a condition (power load input condition) for inputting the power load 50 provided in the facility or the like to the engine generator 20 has been established. It is determined whether or not the output of the power generated by 20 has stabilized.
  • the control device 10 waits until the output of the generated power from the engine generator 20 stabilizes before the power load 50 is turned on (step ST6: No).
  • step ST6: Yes the process proceeds to step ST7.
  • step ST7 the control device 10 applies the power load 50 to the engine generator 20, and selects the first to third power control modes to start power increase/decrease control.
  • the control device 10 outputs adjustment signals to the simulated load adjusters 311 to 314, and adjusts the loads of the simulated loads 301 to 304 according to the increase/decrease in the load power of the power load 50. do.
  • the electric power generated by the engine generator 20 is controlled to be substantially constant, as shown in the above formula (A).
  • the control processing of the load to be applied to the engine generator 20 by the control device 10 according to the first embodiment that is, the control processing for the simulated load group 30 and the simulated load power consumption adjuster 31 is completed.
  • control processing according to the above-described embodiment has been described as an example in which it is applied to the start-up period ⁇ 1 shown in FIG. be able to. That is, in the power increase/decrease control by the control device 10, in addition to the method of simultaneously controlling the simulated loads 301 to 304 in the simulated load group 30, these simulated loads 301 to 304 can be individually controlled to obtain the required emitted power. By sequentially turning on the simulated loads 301 to 304 that consume the power, it is possible to suppress a decrease in the power factor of the engine generator 20, so that it is possible to more stably control the emitted power.
  • FIG. 9 shows a graph when the engine generator 20 is started using four heaters having the same load capacity as the simulated loads 301 to 304, respectively, according to the control method according to the first embodiment described above.
  • the load increase rate ⁇ is 45 (%/min).
  • the horizontal axis represents the elapsed time (s) from the start of the simulated load increase of the second and subsequent units after the lapse of the maintenance period after the stepless load increase of the first unit.
  • the power output by the engine generator 20 is represented by a dotted line
  • the total power output by the four heaters is represented by a solid line
  • the four heaters are controlled by the control method according to the first embodiment.
  • MV of the whole (here, MV (%) by heater current control) is shown as a dashed line.
  • the power factor of the engine generator 20 is indicated by a chain double-dashed line.
  • the two thick dashed lines show an example of conditions for issuing a major failure alarm. second).
  • the power factor of the engine generator 20 is derived from the ratio of "active power" and "reactive power” consumed by the applied load.
  • the first simulated load 301 is stepwise increased to X%, or up to 25% in the first embodiment described above, and is instantaneously applied, at 0% and 100% in the simulated load adjuster 311 , there is no reduction in power factor (see FIGS. 4-6). Therefore, by setting the load capacity for applying the simulated load 301 by the first simulated load adjuster 311 to 100%, further simulated loads 302 to 304 can be obtained without causing a decrease in the power factor of the engine generator 20. can be put in.
  • the simulated load 301 has already applied a load that does not cause a drop in power factor. Even if the power increases, it is considered that a drastic drop in the power factor will not occur. Furthermore, as the number of the simulated loads 302 to 304 that are sequentially applied increases, the ratio of the loads with a power factor of 1 to the total of the simulated loads 301 to 304 increases. It is mitigated according to the number of simulated loads that are input. Therefore, as shown in FIG. 9, when the second to fourth heaters corresponding to the simulated loads 302 to 304 are turned on as the loads of the engine generator 20, the amount of decrease in the power factor increases as the number of heaters increases. It is thought that the
  • a gas engine is used as the internal combustion engine 21, and four heaters are used as simulated loads 301 to 304, respectively.
  • the gas engine as the internal combustion engine 21 has a rated output of 585 kW, for example, and a set output of 410 kW, which is about 70% of the rated output.
  • FIG. 10 shows a graph when the engine generator 20 is started under such experimental conditions. In FIG.
  • the left vertical axis represents the power output from the engine generator 20 for each load increase rate ⁇ , with a solid line (94%/min), a dotted line (60%/min), and a dashed line ( 45%/min), dashed-double-dotted line (24%/min), and dashed-dotted line (12%/min).
  • the upper graph corresponds to the left vertical axis.
  • the total MV when four heaters are controlled by the control method according to the first embodiment here, MV (%) by heater current control
  • MV (%) by heater current control is plotted for each load increase rate ⁇ .
  • the results are shown in FIG.
  • the engine generator 20 is started under these five conditions, and the presence or absence of failure, the generated power (voltage, frequency, power factor), the combustion chamber temperature, and the stability of the cooling water temperature trends are evaluated.
  • the degree of influence of the load on the engine generator 20 is represented by ⁇ (no failure), ⁇ (slight failure), and ⁇ (severe failure).
  • FIG. 12 shows criteria for each evaluation item of the evaluation shown in FIG.
  • the inventors found that when increasing the MV (%) from X% to Y%, from Y% to Z%, or from Z% to 100% of the set output of the engine generator 20, the load rate is greater than 60 (%/min) to stepwise increase the load.
  • the present inventor studied a case where, for example, a steam turbine was used as the power engine, and noticed that if the load was increased stepwise, the steam turbine would experience sudden load fluctuations.
  • changes in torque and enthalpy also increase, leading to deterioration of materials due to thermal stress, vibration of the turbine shaft, and contact due to differential elongation between the casing and the axle. more likely to cause problems. Therefore, it was found that it is not preferable to increase the load stepwise.
  • the load increases in a non-stepped constant period, or after the load increases in a non-stepped constant period Since a settling period is provided for stabilizing the power generation equipment, it is possible to suppress problems that occur when the load is increased stepwise.
  • the load increase rate ⁇ (%/min) is preferably greater than 0%/min and 60%/min or less (0 ⁇ 60). I came up with Furthermore, when the present inventor conducted similar studies on steam turbines and other power engines, the load increase rate ⁇ was greater than 0%/min and 60%/min or less (0 ⁇ 60). It was confirmed that 45%/min or more and 60%/min or less (45 ⁇ 60) is more preferable.
  • a plurality of independently controllable simulated loads 301 to 304 are connected to the engine generator 20 in a state in which the load can be applied, and the engine generator 20, a load capacity that does not trip at least the engine generator 20 is instantaneously stepped from 0% to 100% to the simulated load regulator 311 that controls at least one simulated load 301.
  • the engine generator 20 can be stably started while avoiding tripping. be possible.
  • Control method according to the second embodiment Next, a control method by the control device 10 according to the second embodiment of the present invention will be described.
  • a flowchart showing the control method according to the second embodiment is the same as that of the first embodiment shown in FIG.
  • a control method according to the second embodiment a case where the respective simulated loads 301 to 304 are boosted at different load boost rates (linear) will be described.
  • FIG. 13 is a graph showing an example of control corresponding to FIG. 7 by the control device 10 in the second embodiment.
  • ST shown in FIG. 13 corresponds to the steps shown in FIG.
  • the flowchart shown in FIG. 7 is started by activating the engine generator 20 after the commercial power system 40 is in a power failure state and the engine generator 20 is disconnected from the power load 50. be.
  • step ST2 determines that the output of the engine generator 20 is in a stable state (step ST2: Yes)
  • the process proceeds to step ST3.
  • step ST3 as the second input control, the control device 10 selects the second and later simulated loads 301 to 304 from the plurality of simulated loads 301 to 304, here the second simulated load 302, to the engine generator 20 at time T From ST2 to time TST3 , the load capacity is applied linearly or stepwise from 0% to 100%.
  • control device 10 controls the load of the simulated load 302 by outputting the adjustment signal to the simulated load adjuster 312, thereby adjusting the load of the simulated load 302 to the engine generator 20 and increasing the load-up rate to 60 ( %/min) while increasing to Y %.
  • the thick dotted line indicates the load increase rate of 60 (%/min).
  • the load of the simulated load 302 is linearly increased while the slope is set to 60 (%/min) or less, for example, 45 (%/min), and the set output of the engine generator 20 is increased from X% We have invested up to Y%. Note that Y% is, for example, 50% in the second embodiment.
  • step ST4 the control device 10 selects the second and subsequent simulated loads 303 from the plurality of simulated loads 301 to 304, here the third simulated load 303, to the engine generator 20 at time T ST3.
  • the load capacity is applied linearly or stepwise from 0% to 100%. That is, the control device 10 controls the load of the simulated load 303 by outputting the adjustment signal to the simulated load adjuster 313, so that the load increase rate is set to 60 (%/min) or less, and the engine generator 20 to increase the load of the simulated load 303 from Y% of the set output of the engine generator 20 to Z%.
  • the load increase rate is set to 60 (%/min) or less
  • the load of the simulated load 303 is linearly increased while the slope is set to 60 (%/min) or less, for example, 60 (%/min), and the set output of the engine generator 20 is increased from Y%.
  • Z% is, for example, 75% in the second embodiment.
  • step ST5 the control device 10 selects the second and subsequent simulated loads 304 from the plurality of simulated loads 301 to 304, here the fourth simulated load 304, to the engine generator 20 at time T ST4 . from 0% to 100% of the load capacity in a linear or stepwise manner from time T 2A (T ST5 ). That is, the control device 10 controls the load of the simulated load 304 by outputting the adjustment signal to the simulated load adjuster 314 so that the engine generator 20 is to increase the load of the simulated load 304 from Z% of the set output of the engine generator 20 to 100%. In the example shown in FIG. 13, the load of the simulated load 304 is linearly increased while the load-up rate is set to 45 (%/min) below 60 (%/min) to set the output Z of the engine generator 20. % to 100%.
  • the above X%, Y%, and Z% can be set arbitrarily. That is, an arbitrary control range is assigned to the simulated loads 301 to 304, each of the simulated loads 301 to 304 is individually controlled, and MV, which is the load setting ratio of each of the simulated loads 301 to 304, is set to 0. % to 100%. As a result, when the MV in the simulated load group 30 is set to 100%, the load is applied up to the set output of the engine generator 20 .
  • the load increase rate for each of the simulated loads 301 to 304 is set independently.
  • the tendency of the power generation output as the load increases becomes a polygonal line as shown in FIG.
  • the boost rate is derived as shown in the following equations (1-1), (1-2) and (1-3) respectively.
  • Boost rate of step ST3 (Y - X) / (T ST3 - T ST2 ) (1-1)
  • Boost rate of step ST4 (ZY) / (T ST4 - T ST3 ) (1-2)
  • Boost rate of step ST5 (100-Z)/(T ST5 -T ST4 ) (1-3)
  • the load boost rate shown in formulas (1-1) to (1-3) is 60%/min or less of the upper limit ((100-X)/(T 2 - T ST2 ) below).
  • steps ST6 and ST7 are executed in the same manner as in the first embodiment.
  • the control processing of the load to be applied to the engine generator 20 by the control device 10 according to the second embodiment that is, the control processing for the simulated load group 30 and the simulated load power consumption adjuster 31 is completed.
  • the load when the engine generator 20 is started, the load is applied at a load increase rate of 60 (%/min) or less, so that the same effect as in the first embodiment can be obtained. can.
  • Control method according to the third embodiment Next, a control method by the control device 10 according to the third embodiment of the present invention will be described.
  • a flow chart showing the control method according to the third embodiment is the same as that of the first embodiment shown in FIG.
  • a control method according to the third embodiment a case where the respective simulated loads 301 to 304 are increased at different load increase rates in a stepwise manner, that is, while load maintenance control is performed for a predetermined period of time, will be described.
  • FIG. 14 is a graph showing an example of control corresponding to FIG. 7 by the control device 10 in the third embodiment.
  • ST shown in FIG. 14 corresponds to the steps shown in FIG.
  • the flowchart shown in FIG. 7 is started by activating the engine generator 20 after the commercial power system 40 is in a power failure state and the engine generator 20 is disconnected from the power load 50. be.
  • step ST2 determines that the output of the engine generator 20 is in a stable state (step ST2: Yes)
  • the process proceeds to step ST3.
  • step ST3 as the second input control, the control device 10 selects the second and later simulated loads 301 to 304 from the plurality of simulated loads 301 to 304, here the second simulated load 302, to the engine generator 20 at time T From ST2 to time TST3e , the load capacity is linearly applied from 0% to 100%.
  • control device 10 controls the load of the simulated load 302 by outputting the adjustment signal to the simulated load adjuster 312, thereby adjusting the load of the simulated load 302 to the engine generator 20 and increasing the load-up rate to 60 ( %/min) while increasing to Y%.
  • the thick dotted line indicates a load increase rate of 60 (%/min).
  • the load of the simulated load 302 is linearly increased while the slope is set to 45 (%/min) below 60 (%/min) to increase the set output of the engine generator 20 from X% to Y We have invested up to %. Note that Y% is 50% in the third embodiment.
  • step ST4 the control device 10 selects the second and subsequent simulated loads 303 from the plurality of simulated loads 301 to 304, here the third simulated load 303, to the engine generator 20 at time T ST3e .
  • the load capacity is stepped from 0% to 100%. That is, control device 10 controls the load of simulated load 303 by outputting an adjustment signal to simulated load adjuster 313, thereby reducing the constant load maintenance control time and load increase rate to 60 (%/min) or less.
  • the load of the simulated load 303 on the engine generator 20 is increased from Y% to Z% of the set output of the engine generator 20 .
  • the simulated load rate of the simulated load 303 is set to 60 (%/min) and linearly increased, and the set output of the engine generator 20 is increased from Y% to Z%.
  • Z% is 75% in the third embodiment.
  • the reason why the constant load maintenance control time is provided as described above is that depending on the power generation equipment (steam turbine), thermal expansion of the casing and the axle may occur when the load is suddenly increased. The difference in temperature increases, causing contact and failure, and increasing the risk of material fatigue failure.
  • step ST5 the control device 10 selects the second and subsequent simulated loads 304 from the plurality of simulated loads 301 to 304, here the fourth simulated load 304, to the engine generator 20 at time T ST4e. to time T 2A (T ST5e ), the load capacity is stepped from 0% to 100%. That is, control device 10 controls the load of simulated load 304 by outputting an adjustment signal to simulated load adjuster 314, thereby reducing the constant load maintenance control time and load increase rate to 60 (%/min) or less. While including, the load of the simulated load 304 on the engine generator 20 is increased from Z% of the set output of the engine generator 20 to 100%. In the example shown in FIG.
  • the above X%, Y%, and Z% can be set arbitrarily. That is, an arbitrary control range is assigned to the simulated loads 301 to 304, each of the simulated loads 301 to 304 is individually controlled, and MV, which is the load setting ratio of each of the simulated loads 301 to 304, is set to 0. % to 100%. As a result, when the MV in the simulated load group 30 is set to 100%, the load is applied up to the set output of the engine generator 20 .
  • the load increase rate for each of the simulated loads 301 to 304 is set independently.
  • the tendency of the power generation output as the load increases becomes a polygonal line as shown in FIG.
  • the boost rate is derived as shown in the following equations (2-1), (2-2) and (2-3) respectively.
  • Boosting load rate of step ST3 (Y ⁇ X)/(T ST3e ⁇ T ST2 ) (2-1)
  • Boosting load rate of step ST4 (Z ⁇ Y)/(T ST4e ⁇ T ST4s ) (2-2)
  • Boost rate of step ST5 (100-Z)/(T ST5e - T ST5s ) (2-3)
  • the load boost rate shown in formulas (2-1) to (2-3) is 60%/min or less of the upper limit ((100-X)/(T 2 - T ST2 ) below).
  • steps ST6 and ST7 are executed in the same manner as in the first and second embodiments.
  • the control processing of the load to be applied to the engine generator 20 by the control device 10 according to the third embodiment that is, the control processing for the simulated load group 30 and the simulated load power consumption adjuster 31 is completed.
  • the load when the engine generator 20 is started, the load is applied at a load increase rate of 60%/min or less, thereby obtaining the same effects as those of the first and second embodiments. can be done.
  • the program for executing the processing method executed by the control device 10 can be recorded in a recording medium readable by a device such as a computer or other machine (hereinafter referred to as a computer or the like).
  • the computer or the like functions as the control device 10 by causing the computer or the like to read and execute the program of the recording medium.
  • a computer-readable recording medium is a non-temporary medium that stores information such as data and programs by electrical, magnetic, optical, mechanical, or chemical action and can be read by a computer or the like. a recording medium.
  • Examples of such recording media that can be removed from a computer include flexible disks, magneto-optical disks, CD-ROMs, CD-R/Ws, DVDs, BDs, DATs, magnetic tapes, flash memories, and other memories.
  • recording media There are cards, etc.
  • a hard disk, a ROM, and the like as a recording medium fixed to a computer or the like.
  • SSD can be used as a recording medium that can be removed from a computer or the like, or as a recording medium that is fixed to a computer or the like.
  • the program to be executed by the control device 10 may be stored on a computer connected to a network such as the Internet, and provided by being downloaded via the network.
  • the above-described "unit” can be read as “circuit” or the like.
  • the controller can be read as a control circuit.
  • the power generation system, control device, control method, and program according to the present invention are suitable for application to an engine generator equipped with a speed governor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

A purpose of the present invention is to activate and operate in a stable manner an electric power generator that is required after a supply of electric power from a commercial electric power grid or a commercial electric power supply has stopped. The present invention comprises: an electric power generator that controls generated electric power by being driven by an engine provided with a speed regulator; a dummy load having a load capacity that is set such that the dummy load is capable of consuming generated electric power of the electric power generator when the engine is driving, and is capable of regulating electric power consumption; a dummy-load-regulating unit configured so as to be capable of regulating the electric power consumption of the dummy load; and a control unit capable of controlling the electric power consumption of the dummy load by controlling the dummy-load-regulating unit. A plurality of pairs of dummy loads and dummy-load-regulating units are provided. At an activation time of the electric power generator, the control unit controls at least part of the dummy loads among the plurality of dummy loads, so as to power on said dummy loads with respect to the electric power generator, said dummy loads having a load capacity set to be equal to or greater than a load having a predetermined electric power consumption that does not cause tripping to occur in an activation operation of the electric power generator.

Description

発電システム、制御装置、制御方法、およびプログラムGENERATION SYSTEM, CONTROL DEVICE, CONTROL METHOD, AND PROGRAM
 本発明は、発電システム、制御装置、制御方法、およびプログラムに関する。 The present invention relates to a power generation system, control device, control method, and program.
 電気機器などの電力負荷が設けられた施設には、商用電力系統に連系して発電を行い、発電電力を電力負荷に供給する発電システムが備えられる場合がある。特許文献1には、このような発電システムとして、商用電力系統または常用電源からの受電が停止する停電時において、商用電力系統または常用電源から発電機を切り離した状態で、発電機を駆動する内燃機関を起動させて発電機の自立運転を行い、発電機の発電電圧が確立し安定して発電が行えるようになった段階で、停電時の給電対象とする電力負荷の一部または全部の特定負荷を発電機に投入する技術が開示されている。このような発電システムにおいては、商用電力系統または常用電源からの受電の停止後において、例えば40秒以内程度の短時間で、発電機の発電電圧の確立や電力負荷の投入を可能にすることが求められる(非特許文献1参照)。 Facilities with power loads such as electrical equipment may be equipped with a power generation system that generates power by connecting to the commercial power system and supplies the generated power to the power loads. In Patent Document 1, as such a power generation system, an internal combustion engine that drives a generator in a state where the generator is disconnected from the commercial power system or the normal power supply during a power failure when power reception from the commercial power system or the normal power supply is stopped. When the engine is started and the generator is in self-sustained operation, and the generated voltage of the generator is established and stable power generation is possible, part or all of the power load to be supplied during a power failure is specified. A technique is disclosed for injecting a load into a generator. In such a power generation system, it is possible to establish the power generation voltage of the generator and turn on the power load in a short period of time, for example, within about 40 seconds, after the power supply from the commercial power system or the normal power supply is stopped. (See Non-Patent Document 1).
 また、特許文献2には、模擬負荷制御手段、第1模擬負荷消費電力調整手段および第2模擬負荷消費電力調整手段によって第1模擬負荷と第2模擬負荷とで消費される消費電力が等しくなるように制御する模擬負荷制御を実行する技術が開示されている。特許文献3には、電力負荷の消費電力を計測する電力負荷消費電力計測手段と、発電機の発電電力を消費する模擬負荷と、模擬負荷の消費電力を変更可能な模擬負荷消費電力調整手段と、発電機の発電電力がエンジンを安定運転可能な所定の基準発電電力以上に維持されるように、電力負荷消費電力計測手段の計測結果に基づいて模擬負荷消費電力調整手段を制御する模擬負荷制御手段を備える構成が開示されている。 Further, in Patent Document 2, the power consumption of the first simulated load and the second simulated load are equalized by the simulated load control means, the first simulated load power consumption adjusting means, and the second simulated load power consumption adjusting means. A technique for executing simulated load control is disclosed. Patent Document 3 discloses an electric load power consumption measuring means for measuring the power consumption of an electric load, a simulated load that consumes power generated by a generator, and a simulated load power consumption adjusting means that can change the power consumption of the simulated load. a simulated load control for controlling the simulated load power consumption adjusting means based on the measurement results of the power load power consumption measuring means so that the power generated by the generator is maintained at or above a predetermined reference generated power that enables stable operation of the engine; An arrangement comprising means is disclosed.
特開2007-6595号公報Japanese Patent Application Laid-Open No. 2007-6595 特開2017-184485号公報JP 2017-184485 A 特開2015-109746号公報JP 2015-109746 A
 上述した従来技術による発電システムにおいて、電力負荷の投入または停止によって、電力負荷の変動が生じる。この電力負荷の変動に対して、発電機の運転を安定させるために、模擬負荷を用いて事前に負荷を投入する操作が必要になる。ここで、模擬負荷を事前に投入する際に、模擬負荷の出力を任意に調整するために、特許文献2,3に開示されているように、発電機と模擬負荷との間に模擬負荷の消費電力を調整するための電力調整器を設ける必要がある。 In the power generation system according to the conventional technology described above, the power load fluctuates when the power load is turned on or off. In order to stabilize the operation of the power generator against this power load fluctuation, it is necessary to apply a load in advance using a simulated load. Here, in order to arbitrarily adjust the output of the simulated load when applying the simulated load in advance, as disclosed in Patent Documents 2 and 3, a simulated load is placed between the generator and the simulated load. A power regulator must be provided to regulate power consumption.
 しかしながら、電力調整器を設けることによって、発電システムにおいて模擬負荷に対して電力調整制御を実行する際に、電流の波形を歪ませる高調波が発生してしまい、発電機の運転における力率を低下させる場合がある。発電機の力率が低下すると、発電機を起動させたり運転を継続させたりする際に、発電機の運転を維持することが困難になり、発電機からの電力を消費する本来の電力負荷を投入する前に、発電機が停止する可能性がある。 However, by providing a power regulator, when executing power regulation control for a simulated load in a power generation system, harmonics that distort the current waveform are generated, and the power factor in the operation of the generator is reduced. may cause When the power factor of the generator decreases, it becomes difficult to keep the generator running when starting or continuing operation, and the original power load that consumes the power from the generator is reduced. It is possible that the generator will stop before it can be turned on.
 また、力率を維持できたとしても、模擬負荷の消費電力の投入の仕方によっては、発電機の故障や、故障に繋がる過給機の異音や電力波形の乱れなどの、発電機自体への機械的負荷が大きくなり、発電機の安定した稼動寿命が短くなる事で安定した運転に支障をきたす可能性がある。そのため、商用電力系統や常用電源からの受電の停止後に求められる発電機の起動および運転を長期に亘り安定して実行できる技術が求められている。 In addition, even if the power factor can be maintained, depending on how the power consumption of the simulated load is input, the generator itself may be affected by failure, abnormal noise from the turbocharger that leads to failure, or disturbance of the power waveform. The mechanical load on the generator increases, and the stable operation life of the generator is shortened, which may interfere with stable operation. Therefore, there is a demand for a technology that can stably start and operate a generator over a long period of time, which is required after stopping receiving power from a commercial power system or a normal power source.
 本発明は、上記に鑑みてなされたものであって、その目的は、商用電力系統や常用電源からの受電の停止後に求められる発電機の起動および運転を長期に亘り安定して実行できる発電システム、制御装置、制御方法、およびプログラムを提供することにある。 The present invention has been made in view of the above, and its object is to provide a power generation system capable of stably starting and operating a generator over a long period of time after stopping receiving power from a commercial power system or a normal power supply. , a control device, a control method, and a program.
 (1)上述した課題を解決し、目的を達成するために、本発明の一態様に係る発電システムは、調速機を備える動力機関の駆動によって発電電力を制御する発電機と、前記動力機関が駆動している状態で前記発電機の発電電力を消費可能、かつ消費電力を調整可能に所定の負荷容量が設定される模擬負荷と、前記模擬負荷の消費電力を0から設定された前記所定の負荷容量まで増加させるように調整可能に構成された模擬負荷調整部と、前記模擬負荷調整部を制御することにより前記模擬負荷の消費電力を制御可能な制御部と、を備え、前記模擬負荷および前記模擬負荷調整部は、前記模擬負荷および前記模擬負荷調整部を一対として複数組設けられ、前記複数組の前記模擬負荷は、前記複数組を構成する前記模擬負荷の前記所定の負荷容量の合計が前記発電機の設定出力と略等しく、前記模擬負荷および前記模擬負荷調整部が、前記発電機に対して調整された負荷を互いに独立して投入可能に構成され、前記制御部は、前記複数の模擬負荷調整部のそれぞれに調整信号を出力して、前記発電機の起動時に前記複数の模擬負荷のうちの1つの模擬負荷について、前記発電機に対して無段階で0から前記所定の負荷容量まで瞬時に増加するように投入する第1の投入制御と、前記第1の投入制御の後から前記発電機の発電電力が安定するまでの間、前記1つの模擬負荷における前記所定の負荷容量を維持する維持制御と、前記維持制御の後、前記複数の模擬負荷のうちの前記1つの模擬負荷とは異なる他の1つの模擬負荷に対して、昇負荷レートが、0%/minより大きく60%/min以下を満たすように前記所定の負荷容量まで増加させる第2の投入制御と、を少なくとも含む制御を行う。 (1) In order to solve the above-described problems and achieve the object, a power generation system according to one aspect of the present invention includes a power generator that controls generated power by driving a power engine equipped with a speed governor; a simulated load in which a predetermined load capacity is set so that the power generated by the generator can be consumed while the power generator is driving and the power consumption can be adjusted; and a control unit capable of controlling the power consumption of the simulated load by controlling the simulated load adjustment unit, wherein the simulated load and a plurality of sets of the simulated load adjusting unit are provided with the simulated load and the simulated load adjusting unit as a pair, and the plurality of sets of the simulated loads correspond to the predetermined load capacities of the simulated loads constituting the plurality of sets. The total is substantially equal to the set output of the generator, the simulated load and the simulated load adjustment unit are configured to be able to apply the adjusted load to the generator independently of each other, and the control unit is configured to: An adjustment signal is output to each of a plurality of simulated load adjustment units, and when the generator is started, one simulated load of the plurality of simulated loads is steplessly adjusted from 0 to the predetermined value with respect to the generator. a first closing control for instantaneously increasing the load capacity to the load capacity; and the predetermined load in the one simulated load during a period from after the first closing control until the power generated by the generator stabilizes. maintenance control for maintaining the capacity, and after the maintenance control, the load increase rate is higher than 0%/min for one of the plurality of simulated loads different from the one simulated load. and a second closing control for increasing the load capacity to the predetermined load capacity so as to satisfy the load capacity of 60%/min or less.
 (2)本発明の一態様に係る発電システムは、上記の(1)の発明において、前記第2の投入制御は、前記模擬負荷の負荷を、階段状、または線形状に、前記所定の負荷容量まで増加させる制御である。 (2) In the power generation system according to an aspect of the present invention, in the invention of (1) above, the second input control changes the load of the simulated load stepwise or linearly to the predetermined load. It is a control to increase up to the capacity.
 (3)本発明の一態様に係る発電システムは、上記の(1)または(2)の発明において、前記模擬負荷および前記模擬負荷調整部の組は、2組以上設けられる。 (3) In the power generation system according to one aspect of the present invention, in the above invention (1) or (2), two or more sets of the simulated load and the simulated load adjustment unit are provided.
 (4)本発明の一態様に係る発電システムは、上記の(3)の発明において、前記第2の投入制御によって投入される模擬負荷における昇負荷レートが、0%/minより大きく45%/min以下を満たすように前記所定の負荷容量まで増加させる。 (4) A power generation system according to an aspect of the present invention is the power generation system according to the above (3), in which the load boost rate in the simulated load that is turned on by the second turning-on control is greater than 0%/min and 45%/min. The load capacity is increased to the predetermined load capacity so as to satisfy min or less.
 (5)本発明の一態様に係る発電システムは、上記の(1)~(4)のいずれかの発明において、前記制御部は、前記発電機に対して前記複数の模擬負荷の投入が終了した後、前記模擬負荷と異なる電力負荷に対して、前記発電機による発電電力の供給を開始させ、前記電力負荷による消費電力の変動に対応させて、前記模擬負荷の消費電力を増減させるように前記模擬負荷調整部を制御する。 (5) A power generation system according to an aspect of the present invention is the power generation system according to any one of the above (1) to (4), wherein the control unit finishes inputting the plurality of simulated loads to the generator. After that, supply of power generated by the generator is started to a power load different from the simulated load, and the power consumption of the simulated load is increased or decreased in response to fluctuations in power consumption caused by the power load. It controls the simulated load adjustment unit.
 (6)本発明の一態様に係る制御装置は、調速機を備える動力機関の駆動によって発電電力を制御する発電機の発電電力を消費可能、かつ消費電力を調整可能に所定の負荷容量が設定される複数の模擬負荷と、前記複数の模擬負荷の消費電力をそれぞれ個別に0から設定された前記所定の負荷容量まで増加させるように調整可能に構成され前記複数の模擬負荷と一対に設けられる複数の模擬負荷調整部と、を制御可能な制御部を備える制御装置であって、前記模擬負荷および前記模擬負荷調整部は一対として複数組設けられ、前記複数組の前記模擬負荷は、前記複数組を構成する前記模擬負荷の前記所定の負荷容量の合計が前記発電機の設定出力と略等しく、それぞれの一対の前記模擬負荷および前記模擬負荷調整部が、前記発電機に対して調整された負荷を互いに独立して投入可能に構成され、前記制御部は、前記複数の模擬負荷調整部のそれぞれに調整信号を出力して、前記発電機の起動時に前記複数の模擬負荷のうちの1つの模擬負荷について、前記発電機に対して無段階で0から前記所定の負荷容量まで瞬時に増加するように投入する第1の投入制御と、前記第1の投入制御の後から前記発電機の発電電力が安定するまでの間、前記1つの模擬負荷における前記所定の負荷容量を維持する維持制御と、前記維持制御の後、前記複数の模擬負荷のうちの前記1つの模擬負荷とは異なる他の1つの模擬負荷に対して、昇負荷レートが0%/minより大きく60%/min以下を満たすように前記所定の負荷容量まで増加させる第2の投入制御と、を少なくとも含む制御を行う。 (6) A control device according to an aspect of the present invention is capable of consuming power generated by a generator that controls the power generated by driving a power engine equipped with a speed governor, and having a predetermined load capacity so that the power consumption can be adjusted. A plurality of set simulated loads and a pair of the plurality of simulated loads configured to be adjustable so that the power consumption of each of the plurality of simulated loads can be individually increased from 0 to the predetermined load capacity set. and a control unit capable of controlling a plurality of simulated load adjusting units, wherein the simulated load and the simulated load adjusting unit are provided as a pair in a plurality of pairs, and the plurality of pairs of the simulated loads correspond to the A total of the predetermined load capacities of the simulated loads constituting a plurality of sets is substantially equal to the set output of the generator, and each pair of the simulated load and the simulated load adjustment unit is adjusted to the generator. The control unit outputs an adjustment signal to each of the plurality of simulated load adjusting units so that one of the plurality of simulated loads is applied when the generator is started. For the two simulated loads, a first closing control for steplessly turning on the generator so as to instantaneously increase from 0 to the predetermined load capacity, and after the first turning on control, the generator maintenance control for maintaining the predetermined load capacity of the one simulated load until the generated power stabilizes; and a second closing control for increasing the load capacity to the predetermined load capacity so that the load increase rate is greater than 0%/min and less than or equal to 60%/min.
 (7)本発明の一態様に係る制御方法は、調速機を備える動力機関の駆動によって発電電力を制御する発電機の発電電力を消費可能、かつ消費電力を調整可能に所定の負荷容量が設定される複数の模擬負荷と、前記複数の模擬負荷の消費電力をそれぞれ個別に0から設定された前記所定の負荷容量まで増加させるように調整可能に構成され前記複数の模擬負荷と一対に設けられる複数の模擬負荷調整部と、を制御可能な制御部が実行する制御方法であって、前記模擬負荷および前記模擬負荷調整部は一対として複数組設けられ、前記複数組の前記模擬負荷は、前記複数組を構成する前記模擬負荷の前記所定の負荷容量の合計が前記発電機の設定出力と略等しく、それぞれの一対の前記模擬負荷および前記模擬負荷調整部が、前記発電機に対して調整された負荷を互いに独立して投入可能であり、前記制御部が、前記複数の模擬負荷調整部のそれぞれに調整信号を出力して、前記発電機の起動時に前記複数の模擬負荷のうちの1つの模擬負荷について、前記発電機に対して無段階で0から前記所定の負荷容量まで瞬時に増加するように投入する第1の投入制御と、前記第1の投入制御の後から前記発電機の発電電力が安定するまでの間、前記1つの模擬負荷における前記所定の負荷容量を維持する維持制御と、前記維持制御の後、前記複数の模擬負荷のうちの前記1つの模擬負荷とは異なる他の1つの模擬負荷に対して、昇負荷レートが0%/minより大きく60%/min以下を満たすように前記所定の負荷容量まで増加させる第2の投入制御と、を少なくとも含む制御を行う。 (7) A control method according to an aspect of the present invention can consume the power generated by a power generator that controls the power generated by driving a power engine equipped with a speed governor, and adjust the power consumption so that a predetermined load capacity is provided. A plurality of set simulated loads and a pair of the plurality of simulated loads configured to be adjustable so that the power consumption of each of the plurality of simulated loads can be individually increased from 0 to the predetermined load capacity set. and a control unit capable of controlling a plurality of simulated load adjustment units, wherein a plurality of sets of the simulated load and the simulated load adjuster are provided as a pair, and the plurality of sets of the simulated load are: The sum of the predetermined load capacities of the simulated loads constituting the plurality of sets is substantially equal to the set output of the generator, and each pair of the simulated load and the simulated load adjustment section adjusts the generator. and the control unit outputs an adjustment signal to each of the plurality of simulated load adjusting units to activate one of the plurality of simulated loads when the generator is started. For the two simulated loads, a first closing control for steplessly turning on the generator so as to instantaneously increase from 0 to the predetermined load capacity, and after the first turning on control, the generator maintenance control for maintaining the predetermined load capacity of the one simulated load until the generated power stabilizes; and a second closing control for increasing the load capacity to the predetermined load capacity so that the load increase rate is greater than 0%/min and less than or equal to 60%/min.
 (8)本発明の一態様に係るプログラムは、調速機を備える動力機関の駆動によって発電電力を制御する発電機の発電電力を消費可能、かつ消費電力を調整可能に所定の負荷容量が設定される複数の模擬負荷と、前記複数の模擬負荷の消費電力をそれぞれ個別に0から設定された前記所定の負荷容量まで増加させるように調整可能に構成され前記複数の模擬負荷と一対に設けられる複数の模擬負荷調整部と、を制御可能、かつ前記模擬負荷および前記模擬負荷調整部が一対として複数組設けられ、前記複数組の前記模擬負荷は、前記複数組を構成する前記模擬負荷の前記所定の負荷容量の合計が前記発電機の設定出力と略等しく、それぞれの一対の前記模擬負荷および前記模擬負荷調整部を前記発電機に対して調整した負荷を互いに独立して投入するように制御可能な制御部に、前記複数の模擬負荷調整部のそれぞれに調整信号を出力して、前記発電機の起動時に前記複数の模擬負荷のうちの1つの模擬負荷について、前記発電機に対して無段階で0から前記所定の負荷容量まで瞬時に増加するように投入する第1の投入制御と、前記第1の投入制御の後から前記発電機の発電電力が安定するまでの間、前記1つの模擬負荷における前記所定の負荷容量を維持する維持制御と、前記維持制御の後、前記複数の模擬負荷のうちの前記1つの模擬負荷とは異なる他の1つの模擬負荷に対して、昇負荷レートが0%/minより大きく60%/min以下を満たすように前記所定の負荷容量まで増加させる第2の投入制御と、を少なくとも含む制御を行う。 (8) A program according to an aspect of the present invention can consume power generated by a power generator that controls power generated by driving a power engine equipped with a speed governor, and sets a predetermined load capacity so that the power consumption can be adjusted. and a plurality of simulated loads configured to be adjustable so as to individually increase the power consumption of the plurality of simulated loads from 0 to the predetermined load capacity set, and provided in pairs with the plurality of simulated loads. a plurality of simulated load adjusting units, and a plurality of pairs of the simulated load and the simulated load adjusting unit are provided, and the plurality of sets of the simulated loads correspond to the simulated loads constituting the plurality of sets. The sum of the predetermined load capacities is substantially equal to the set output of the generator, and each pair of the simulated load and the simulated load adjustment unit are controlled so that the adjusted load is applied to the generator independently of each other. outputting an adjustment signal to each of the plurality of simulated load adjustment units to a control unit capable of controlling one of the plurality of simulated loads when the generator is started, the simulated load being ignored for the generator; a first closing control for instantaneously increasing the load capacity from 0 to the predetermined load capacity in stages; maintenance control for maintaining the predetermined load capacity in the simulated load, and after the maintenance control, an increase load rate for another one of the plurality of simulated loads different from the one simulated load. and a second closing control for increasing the load capacity to the predetermined load capacity so that the load capacity is greater than 0%/min and less than or equal to 60%/min.
 本発明に係る発電システム、制御装置、制御方法、およびプログラムによれば、商用電力系統や常用電源からの受電の停止後に求められる発電機の起動および運転を長期に亘り安定して実行することが可能となる。 According to the power generation system, control device, control method, and program according to the present invention, it is possible to stably start and operate a generator over a long period of time after stopping receiving power from a commercial power system or a normal power supply. It becomes possible.
図1は、本発明の実施形態による発電システムを示すブロック図である。FIG. 1 is a block diagram showing a power generation system according to an embodiment of the invention. 図2は、本発明の実施形態による発電システムの制御装置を示すブロック図である。FIG. 2 is a block diagram showing a power generation system control device according to an embodiment of the present invention. 図3は、本発明の実施形態による発電システムの制御装置による制御の一例を示すグラフである。FIG. 3 is a graph showing an example of control by the power generation system control device according to the embodiment of the present invention. 図4は、1つの模擬負荷を制御した場合の模擬負荷の投入率とエンジン発電機の力率との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the input rate of the simulated load and the power factor of the engine generator when one simulated load is controlled. 図5は、複数の模擬負荷を同時に制御した場合の模擬負荷の投入率とエンジン発電機の力率との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the input rate of the simulated loads and the power factor of the engine generator when controlling a plurality of simulated loads simultaneously. 図6は、複数の模擬負荷を個別に制御した場合の模擬負荷の投入率とエンジン発電機の力率との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the input rate of the simulated loads and the power factor of the engine generator when a plurality of simulated loads are individually controlled. 図7は、本発明の実施形態による発電システムの制御装置による制御方法を説明するためのフローチャートである。FIG. 7 is a flow chart for explaining a control method by the power generation system control device according to the embodiment of the present invention. 図8は、本発明の第1の実施形態による発電システムの制御装置による制御方法を説明するためのグラフである。FIG. 8 is a graph for explaining the control method by the power generation system control device according to the first embodiment of the present invention. 図9は、本発明の第1の実施形態による発電システムの効果を説明するための模擬負荷の投入率、発電機の出力、および発電機の力率を示すグラフである。FIG. 9 is a graph showing the input rate of the simulated load, the output of the generator, and the power factor of the generator for explaining the effect of the power generation system according to the first embodiment of the present invention. 図10は、本発明の第1の実施形態による発電システムにおける昇負荷レートごとの負荷設定率および発電出力を示すグラフである。FIG. 10 is a graph showing the load setting ratio and power generation output for each load increase rate in the power generation system according to the first embodiment of the present invention. 図11は、本発明の第1の実施形態による発電システムにおける効果を説明するための表である。FIG. 11 is a table for explaining effects in the power generation system according to the first embodiment of the present invention. 図12は、図11に示す表の定義を説明する表である。FIG. 12 is a table explaining the definition of the table shown in FIG. 図13は、本発明の第2の実施形態による発電システムの制御装置による制御方法を説明するためのグラフである。FIG. 13 is a graph for explaining the control method by the power generation system control device according to the second embodiment of the present invention. 図14は、本発明の第3の実施形態による発電システムの制御装置による制御方法を説明するためのグラフである。FIG. 14 is a graph for explaining the control method by the power generation system control device according to the third embodiment of the present invention.
 以下、本発明の実施形態について図面を参照しつつ説明する。なお、以下の実施形態の全図においては、同一または対応する部分には同一の符号を付す。また、本発明は以下に説明する実施形態によって限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in all the drawings of the following embodiments, the same reference numerals are given to the same or corresponding parts. Moreover, the present invention is not limited to the embodiments described below.
 まず、本発明の実施形態による発電システムについて説明する。以下に説明する実施形態は、エンジン発電機、模擬負荷、および制御部を備える発電システムに関するが、その他の発電システムであってもよい。エンジン発電機20は、調速機(図示せず)が設けられた内燃機関21の駆動によって発電する。エンジン発電機20は、発電電力を電力負荷50に供給する発電時において、所定のエンジン制御部(図示せず)によって、出力が定格出力以下の任意の出力になるように制御される。本発明の実施形態による発電システムは、制御装置10が、電力負荷50の投入、遮断操作、または運転負荷率の変更によるエンジン発電機20の発電電力の変化を低減するように、模擬負荷の消費電力を増加させたり減少させたりするシステムである。図1は、本実施形態による発電システムの構成を示すブロック図である。 First, a power generation system according to an embodiment of the present invention will be described. Although the embodiments described below relate to a power generation system that includes an engine generator, a simulated load, and a controller, other power generation systems are possible. The engine generator 20 generates power by driving an internal combustion engine 21 provided with a speed governor (not shown). The engine generator 20 is controlled by a predetermined engine control unit (not shown) so that the output is an arbitrary output below the rated output during power generation for supplying generated power to the power load 50 . In the power generation system according to the embodiment of the present invention, the control device 10 controls the consumption of the simulated load so as to reduce the change in the power generated by the engine generator 20 due to the input/disconnection operation of the power load 50 or the change in the operating load factor. It is a system that increases or decreases power. FIG. 1 is a block diagram showing the configuration of a power generation system according to this embodiment.
 図1に示すように、実施形態による発電システム1は、制御装置10、エンジン発電機20、模擬負荷消費電力調整器31によって調整される模擬負荷群30、商用電力系統40、および電力負荷50を備える。 As shown in FIG. 1, the power generation system 1 according to the embodiment includes a control device 10, an engine generator 20, a simulated load group 30 adjusted by a simulated load power consumption adjuster 31, a commercial power system 40, and an electric load 50. Prepare.
 発電システム1において、エンジン発電機20の出力側には、出力する電力を計測可能な発電電力計測部61が設けられている。電力負荷50の入力側には、供給される電力を計測可能な電力負荷消費電力計測部62が設けられている。模擬負荷消費電力調整器31の入力側には、供給される電力を計測可能な模擬負荷消費電力計測部63が設けられている。 In the power generation system 1, the output side of the engine generator 20 is provided with a generated power measuring section 61 capable of measuring the output power. An input side of the power load 50 is provided with a power load power consumption measurement unit 62 capable of measuring the power supplied. On the input side of the simulated load power consumption adjuster 31, a simulated load power consumption measurement unit 63 capable of measuring the supplied power is provided.
 発電機としてのエンジン発電機20は、内燃機関21および発電機22を有する。エンジン発電機20は、燃料を用いた内燃機関としてのエンジンによって回転運動を発生させて、発電機22の回転子を回転させることによって発電可能に構成される。なお、内燃機関21は、発電機22によって発電可能な機関であれば、エンジンなどの内燃機関21に限定されない。また、内燃機関21はあくまでも例に過ぎず、内燃機関21の代わりに、蒸気タービンやガスタービンなどの外燃機関や、その他の調速機を備えた発電可能な動力機関を採用することが可能である。 The engine generator 20 as a generator has an internal combustion engine 21 and a generator 22 . The engine generator 20 is configured to be capable of generating power by generating rotational motion with an engine as an internal combustion engine using fuel to rotate the rotor of the generator 22 . Note that the internal combustion engine 21 is not limited to an internal combustion engine 21 such as an engine as long as it is an engine capable of generating power by the generator 22 . Also, the internal combustion engine 21 is merely an example, and instead of the internal combustion engine 21, it is possible to adopt an external combustion engine such as a steam turbine or a gas turbine, or a power engine capable of generating power having another speed governor. is.
 模擬負荷群30は、複数の模擬負荷301,302,303,304を有して構成される。模擬負荷301~304はそれぞれ、所定の電力を消費する例えば負荷抵抗器などから構成される。模擬負荷301~304はそれぞれ、エンジン発電機20の発電電力の少なくとも一部を消費することによって、エンジン発電機20の発電電力の変動を抑制して、安定化させるための負荷であり、電力負荷50とは独立して設けられる。なお、模擬負荷301~304は、エンジン発電機20の発電電力を消費する負荷である点に関しては、電力負荷50と共通する。 The simulated load group 30 is configured with a plurality of simulated loads 301, 302, 303, and 304. Each of the simulated loads 301-304 is composed of, for example, a load resistor that consumes a predetermined amount of power. Each of the simulated loads 301 to 304 consumes at least part of the power generated by the engine generator 20, thereby suppressing fluctuations in the power generated by the engine generator 20 and stabilizing the load. 50 is provided independently. Incidentally, the simulated loads 301 to 304 are common to the power load 50 in that they are loads that consume the power generated by the engine generator 20 .
 模擬負荷調整部としての模擬負荷消費電力調整器31は、制御装置10から入力される調整信号に基づいて、模擬負荷群30が消費する電力を調整する装置である。模擬負荷消費電力調整器31は、模擬負荷301~304のそれぞれに対応した模擬負荷調整器311,312,313,314を有して構成され、複数の模擬負荷301~304をそれぞれ独立に制御可能に構成される。すなわち、模擬負荷301~304はそれぞれ、模擬負荷調整器311~314によって、負荷の大きさを調整可能に構成される。これにより、模擬負荷調整器311~314はそれぞれ、制御装置10から入力される調整信号に基づいて、模擬負荷301~304の消費電力を調整可能に構成される。換言すると、模擬負荷消費電力調整器31は、模擬負荷群30の消費電力を0から設定された所定の負荷容量まで増加させるように調整可能に構成される。調整信号は、模擬負荷群30の消費電力の増減を制御するための情報を含む。 The simulated load power consumption adjuster 31 as a simulated load adjuster is a device that adjusts the power consumed by the simulated load group 30 based on the adjustment signal input from the control device 10 . The simulated load power consumption adjuster 31 includes simulated load adjusters 311, 312, 313, and 314 corresponding to the simulated loads 301 to 304, respectively, and can independently control the plurality of simulated loads 301 to 304. configured to That is, the simulated loads 301 to 304 are configured to be able to adjust the magnitude of the loads by the simulated load adjusters 311 to 314, respectively. Thereby, simulated load adjusters 311 to 314 are configured to be able to adjust the power consumption of simulated loads 301 to 304 based on the adjustment signal input from control device 10, respectively. In other words, the simulated load power consumption adjuster 31 is configured to be adjustable so as to increase the power consumption of the simulated load group 30 from 0 to a set predetermined load capacity. The adjustment signal includes information for controlling an increase or decrease in power consumption of the simulated load group 30 .
 なお、本実施形態においては、模擬負荷群30は、模擬負荷301~304が4台設けられた構成としているが、複数の模擬負荷を有していれば、4台以外であってもよい。また、後述する制御方法を効率よく実行するためには、模擬負荷の台数は、典型的には2台以上10台以下、好適には3台以上6台以下、より好適には4台または5台である。この場合、模擬負荷調整器も、模擬負荷の設置台数に対応して設けられ、模擬負荷と一対で設けられる。すなわち、模擬負荷および模擬負荷調整器の組として、典型的には2組以上10組以下、好適には3組以上6組以下、より好適には4組または5組である。また、それぞれの模擬負荷301~304はそれぞれ、内燃機関21が駆動している状態でエンジン発電機20の発電電力を消費可能、かつ消費電力を調整可能に所定の負荷容量を設定する事が可能である。 In this embodiment, the simulated load group 30 includes four simulated loads 301 to 304, but the number may be other than four as long as there are multiple simulated loads. In order to efficiently execute the control method described later, the number of simulated loads is typically 2 or more and 10 or less, preferably 3 or more and 6 or less, more preferably 4 or 5. It is a table. In this case, the simulated load adjusters are also provided corresponding to the number of installed simulated loads, and are provided in pairs with the simulated loads. That is, the number of pairs of the simulated load and the simulated load adjuster is typically 2 or more and 10 or less, preferably 3 or more and 6 or less, more preferably 4 or 5. Further, each of the simulated loads 301 to 304 can consume power generated by the engine generator 20 while the internal combustion engine 21 is running, and can set a predetermined load capacity so that the power consumption can be adjusted. is.
 商用電力系統40は、例えば電力会社などからの電力系統である。なお、本明細書においては、常用電源なども含めて、商用電力系統40と称する。電力負荷50は、設備を稼働させるために必要な電力が供給される負荷であり、具体的に例えばポンプやモータなどの負荷である。なお、電力負荷50は、例えばポンプやモータに限定されず、従来公知の種々の負荷が用いられる。 The commercial power system 40 is, for example, a power system from a power company. In this specification, the commercial power system 40 is referred to as including the regular power supply. The electric power load 50 is a load to which electric power necessary for operating the facility is supplied, and is specifically a load such as a pump or a motor. Note that the power load 50 is not limited to, for example, a pump or a motor, and conventionally known various loads can be used.
 発電電力計測部61は、エンジン発電機20に接続された電力供給線に接続され、エンジン発電機20が出力した発電電力の計測値を制御装置10に出力する電力計である。電力負荷消費電力計測部62は、電力負荷50に接続された電力供給線に接続され、電力負荷50が消費した消費電力の計測値を制御装置10に出力する電力計である。模擬負荷消費電力計測部63は、模擬負荷群30または模擬負荷消費電力調整器31に接続された電力供給線に接続され、模擬負荷群30が消費した消費電力の計測値を制御装置10に出力する電力計である。なお、模擬負荷消費電力計測部63は、それぞれの模擬負荷301~304の入力側に、それぞれの模擬負荷301~304に対応させて複数台設けてもよい。また、発電電力計測部61、電力負荷消費電力計測部62、および模擬負荷消費電力計測部63は、電力の増減を評価可能な計測器であれば、電力計に限定されず、例えば電流計などの種々の計測器を採用することが可能である。 The generated power measurement unit 61 is a wattmeter that is connected to the power supply line connected to the engine generator 20 and outputs the measured value of the generated power output by the engine generator 20 to the control device 10 . The power load power consumption measurement unit 62 is a power meter that is connected to a power supply line connected to the power load 50 and outputs a measured value of power consumption consumed by the power load 50 to the control device 10 . The simulated load power consumption measurement unit 63 is connected to the power supply line connected to the simulated load group 30 or the simulated load power consumption regulator 31, and outputs the measured value of the power consumption consumed by the simulated load group 30 to the control device 10. It is a power meter that A plurality of simulated load power consumption measurement units 63 may be provided on the input side of each of the simulated loads 301 to 304 so as to correspond to each of the simulated loads 301 to 304 . In addition, the generated power measurement unit 61, the power load power consumption measurement unit 62, and the simulated load power consumption measurement unit 63 are not limited to power meters as long as they are measuring devices capable of evaluating an increase or decrease in power. It is possible to employ a variety of measuring instruments.
 制御装置10は、エンジン発電機20の発電電力、電力負荷50の消費電力、および模擬負荷群30の消費電力の計測値を取得して、模擬負荷消費電力調整器31によって模擬負荷群30の消費電力の増減を制御する装置である。図2は、本実施形態による発電システム1の制御装置10を示すブロック図である。 The control device 10 acquires measured values of the power generated by the engine generator 20, the power consumption of the power load 50, and the power consumption of the simulated load group 30, and adjusts the consumption of the simulated load group 30 by the simulated load power consumption adjuster 31. It is a device that controls the increase and decrease of electric power. FIG. 2 is a block diagram showing the control device 10 of the power generation system 1 according to this embodiment.
 図2に示すように、制御装置10は、判定制御部11、加算部12、差分演算部13、制御感度演算部14、制御出力演算部15、および記憶部16を備える。制御装置10には、それぞれの発電電力計測部61、電力負荷消費電力計測部62、および模擬負荷消費電力計測部63から計測値が入力される。制御装置10は、模擬負荷消費電力調整器31の模擬負荷調整器311~314にそれぞれ、制御信号(調整信号)を出力する。 As shown in FIG. 2, the control device 10 includes a determination control section 11, an addition section 12, a difference calculation section 13, a control sensitivity calculation section 14, a control output calculation section 15, and a storage section 16. Measured values are input to the control device 10 from the generated power measuring unit 61 , the power load power consumption measuring unit 62 , and the simulated load power consumption measuring unit 63 . Control device 10 outputs a control signal (adjustment signal) to each of simulated load regulators 311 to 314 of simulated load power consumption regulator 31 .
 判定制御部11、加算部12、差分演算部13、制御感度演算部14、および制御出力演算部15は、具体的に、ハードウェアを有する、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、FPGA(Field-Programmable Gate Array)などのプロセッサ、およびRAM(Random Access Memory)やROM(Read Only Memory)などの主記憶部(いずれも図示せず)を備える。 The determination control unit 11, the addition unit 12, the difference calculation unit 13, the control sensitivity calculation unit 14, and the control output calculation unit 15 specifically have hardware such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processor). , FPGA (Field-Programmable Gate Array) and other processors, and RAM (Random Access Memory) and ROM (Read Only Memory) and other main storage units (none of which are shown).
 記憶部16は、RAMなどの揮発性メモリ、ROMなどの不揮発性メモリ、EPROM(Erasable Programmable ROM)、ハードディスクドライブ(HDD、Hard Disk Drive)、およびリムーバブルメディアなどから選ばれた記憶媒体から構成される。なお、リムーバブルメディアは、例えば、USB(Universal Serial Bus)メモリ、または、CD(Compact Disc)、DVD(Digital Versatile Disc)、もしくはBD(Blu-ray(登録商標) Disc)のようなディスク記録媒体である。また、外部から装着可能なメモリカードなどのコンピュータ読み取り可能な記録媒体を用いて記憶部16を構成してもよい。記憶部16には、制御装置10の動作を実行するための、オペレーティングシステム(Operating System:OS)、各種プログラム、各種テーブル、各種データベースなどが記憶可能である。ここで、各種プログラムには、本実施形態による模擬負荷群30の消費電力の増減制御を実現する電力増減制御プログラムも含まれる。これらの各種プログラムは、ハードディスク、フラッシュメモリ、CD-ROM、DVD-ROM、フレキシブルディスクなどのコンピュータ読み取り可能な記録媒体に記録して広く流通させることも可能である。 The storage unit 16 is composed of a storage medium selected from volatile memory such as RAM, nonvolatile memory such as ROM, EPROM (Erasable Programmable ROM), hard disk drive (HDD, Hard Disk Drive), and removable media. . Removable media are, for example, USB (Universal Serial Bus) memory, or disc recording media such as CD (Compact Disc), DVD (Digital Versatile Disc), or BD (Blu-ray (registered trademark) Disc). be. Alternatively, the storage unit 16 may be configured using a computer-readable recording medium such as a memory card that can be attached from the outside. The storage unit 16 can store an operating system (OS), various programs, various tables, various databases, and the like for executing the operations of the control device 10 . Here, the various programs include a power increase/decrease control program for realizing increase/decrease control of the power consumption of the simulated load group 30 according to this embodiment. These various programs can be recorded on computer-readable recording media such as hard disks, flash memories, CD-ROMs, DVD-ROMs, flexible disks, etc., and can be widely distributed.
 制御装置10においては、記憶部16に記憶されたプログラムを主記憶部の作業領域にロードして実行し、プログラムの実行を通じて各構成部などを制御することによって、所定の目的に合致した機能を実現できる。本実施形態においては、制御装置10によるプログラムの実行によって、判定制御部11、加算部12、差分演算部13、制御感度演算部14、および制御出力演算部15の処理が実行される。 In the control device 10, the program stored in the storage unit 16 is loaded into the work area of the main storage unit and executed, and by controlling each component through the execution of the program, the function that meets the predetermined purpose can be performed. realizable. In this embodiment, the control device 10 executes a program to execute the processes of the determination control section 11, the addition section 12, the difference calculation section 13, the control sensitivity calculation section 14, and the control output calculation section 15. FIG.
 判定制御部11は、発電電力計測部61から取得する発電電力の計測値と、電力負荷消費電力計測部62および模擬負荷消費電力計測部63の少なくとも一方から取得する消費電力の計測値とに基づいて、制御モードを判定して選択する。判定制御部11は、選択した制御モードに基づいて、模擬負荷消費電力調整器31に制御信号(調整信号)を出力して制御する。 The determination control unit 11 is based on the measured value of generated power acquired from the generated power measuring unit 61 and the measured value of power consumption acquired from at least one of the power load power consumption measuring unit 62 and the simulated load power consumption measuring unit 63. to determine and select the control mode. Based on the selected control mode, the determination control unit 11 outputs a control signal (adjustment signal) to the simulated load power consumption adjuster 31 to control it.
 本実施形態による発電システム1における判定制御部11は、例えば以下の3つの電力制御モード部を有する。本実施形態による発電システム1が備える制御装置10の判定制御部11が、以下の電力制御モードを実行する主たる制御部として機能する。具体的にまず、判定制御部11は例えば、第1電力制御モード部111、第2電力制御モード部112、および第3電力制御モード部113から、1つの制御モード部を選択する。続いて判定制御部11は、選択した電力制御モード部が実行する電力制御モードに基づいて模擬負荷消費電力調整器31の模擬負荷調整器311~314をそれぞれ制御する。これによって、模擬負荷301~304のそれぞれの消費電力を制御して、模擬負荷群30の全体の消費電力を制御する。ここで、第1電力制御モード部111、第2電力制御モード部112、および第3電力制御モード部113のそれぞれが実行する、それぞれの電力制御モードの詳細について説明する。 The determination control unit 11 in the power generation system 1 according to this embodiment has, for example, the following three power control mode units. The determination control unit 11 of the control device 10 included in the power generation system 1 according to this embodiment functions as a main control unit that executes the following power control modes. Specifically, first, the determination control unit 11 selects one control mode unit from the first power control mode unit 111, the second power control mode unit 112, and the third power control mode unit 113, for example. Subsequently, the determination control unit 11 controls the simulated load adjusters 311 to 314 of the simulated load power consumption adjuster 31 based on the power control mode executed by the selected power control mode unit. Thereby, the power consumption of each of the simulated loads 301 to 304 is controlled, and the power consumption of the entire simulated load group 30 is controlled. Details of the power control modes executed by first power control mode section 111, second power control mode section 112, and third power control mode section 113 will now be described.
 判定制御部11が第1電力制御モード部111を選択して実行される第1電力制御モードは、放出電力の減少を開始する電力制御モードである。すなわち、商用電力系統40の停電時においては、電力負荷50において負荷電力は、例えば投入の開始時点などから過渡的に増加する場合がある。この場合、判定制御部11の第1電力制御モード部111は、模擬負荷消費電力調整器31を制御して、模擬負荷群30の消費電力(放出電力)を、電力負荷50の負荷電力の増加分だけ低下させるように変更する。これにより、電力負荷50が消費する負荷電力に合わせて、放出電力が減少され、エンジン発電機20の発電電力を略一定に維持することができる。 The first power control mode executed by the determination control unit 11 selecting the first power control mode unit 111 is a power control mode in which the emission power starts to decrease. That is, during a power outage in the commercial power system 40, the load power of the power load 50 may transiently increase from, for example, the start of power-on. In this case, the first power control mode unit 111 of the determination control unit 11 controls the simulated load power consumption adjuster 31 to increase the power consumption (discharge power) of the simulated load group 30 and increase the load power of the power load 50. change to lower it by As a result, the discharge power is reduced in accordance with the load power consumed by the power load 50, and the power generated by the engine generator 20 can be maintained substantially constant.
 判定制御部11が第2電力制御モード部112を選択して実行される第2電力制御モードは、模擬負荷群30の放出電力の減少や増加を所定時間停止させたり、模擬負荷群30の負荷を所定時間一定に維持したりする電力制御モードである。すなわち、第2電力制御モード部112は、模擬負荷消費電力調整器31を制御して、模擬負荷群30の放出電力が減少しない状態または一定の状態になるように維持する。 In the second power control mode executed by the determination control unit 11 selecting the second power control mode unit 112, the decrease or increase in the emitted power of the simulated load group 30 is stopped for a predetermined time, or the load of the simulated load group 30 is stopped. is maintained constant for a predetermined period of time. That is, the second power control mode unit 112 controls the simulated load power consumption regulator 31 to keep the power emitted from the simulated load group 30 in a state of not decreasing or constant.
 第3電力制御モード部113により実行される第3電力制御モードは、模擬負荷群30の放出電力を増加させる電力制御モードである。すなわち、第3電力制御モード部113は、模擬負荷消費電力調整器31を制御して、模擬負荷群30の放出電力を増加させる。商用電力系統40の停電時においては、電力負荷50における負荷電力が継続して漸近的に減少する場合がある。そこで、第3電力制御モード部113は、模擬負荷消費電力調整器31を制御して、模擬負荷群30における放出電力を、電力負荷50の消費する負荷電力の増加率の絶対値、すなわち減少率よりも大きい増加率で増加させる。換言すると、電力負荷50の負荷電力の低下に追従して低下した発電電力を、模擬負荷群30の放出電力の増加率を、電力負荷50の負荷電力の減少率より大きくすることで調整する。これにより、エンジン発電機20の発電電力を略一定に維持することができる。 The third power control mode executed by the third power control mode unit 113 is a power control mode that increases the power emitted by the simulated load group 30 . That is, the third power control mode section 113 controls the simulated load power consumption adjuster 31 to increase the power emitted from the simulated load group 30 . During a power failure of the commercial power system 40, the load power of the power load 50 may continue to decrease asymptotically. Therefore, the third power control mode unit 113 controls the simulated load power consumption adjuster 31 to adjust the discharge power of the simulated load group 30 to the absolute value of the increase rate of the load power consumed by the power load 50, that is, the decrease rate. Increase at a rate greater than In other words, the generated power that has decreased following the decrease in the load power of the power loads 50 is adjusted by making the increase rate of the discharge power of the simulated load group 30 greater than the decrease rate of the load power of the power loads 50 . As a result, the power generated by the engine generator 20 can be maintained substantially constant.
 以上の第1電力制御モード、第2電力制御モード、および第3電力制御モードを切り替えることによって、エンジン発電機20による発電電力を略一定に維持する制御を、エンジン発電機20に対する電力増減制御という。 The control to keep the power generated by the engine generator 20 substantially constant by switching between the first power control mode, the second power control mode, and the third power control mode is referred to as power increase/decrease control for the engine generator 20. .
 加算部12は、電力負荷消費電力計測部62の計測値と、模擬負荷消費電力計測部63の計測値とを取得して加算し、差分演算部13に出力する。すなわち、加算部12は、模擬負荷群30の消費電力と電力負荷50の消費電力との合計の消費電力を、差分演算部13に出力する。 The adding unit 12 acquires and adds the measured value of the power load power consumption measuring unit 62 and the measured value of the simulated load power consumption measuring unit 63 , and outputs the result to the difference calculating unit 13 . That is, the adder 12 outputs the total power consumption of the simulated load group 30 and the power load 50 to the difference calculator 13 .
 差分演算部13は、模擬負荷群30と電力負荷50との合計の消費電力と、エンジン発電機20の発電電力との差分を演算して、制御出力演算部15に出力する。換言すると、差分演算部13は、発電電力に対する消費電力の差分を演算する演算部である。差分演算部13が発電電力と消費電力との差分を算出することによって、エンジン発電機20による発電電力を略一定にするために必要な模擬負荷群30に対する消費電力の制御値を算出できる。 The difference calculation unit 13 calculates the difference between the total power consumption of the simulated load group 30 and the power load 50 and the power generated by the engine generator 20 and outputs the difference to the control output calculation unit 15 . In other words, the difference calculator 13 is a calculator that calculates the difference between the generated power and the consumed power. By calculating the difference between the generated power and the consumed power by the difference calculation unit 13, it is possible to calculate the control value of the power consumption for the simulated load group 30 necessary to keep the power generated by the engine generator 20 substantially constant.
 制御感度演算部14は、差分演算部13によって求められた、発電電力を略一定にするために必要な模擬負荷群30の消費電力の制御値を、模擬負荷消費電力調整器31に出力する感度を演算する。すなわち、制御感度演算部14は、模擬負荷群30の消費電力の制御値をどの程度の感度で出力するかを演算する。制御感度演算部14は、演算によって得られた感度の情報を制御出力演算部15に出力する。 The control sensitivity calculation unit 14 outputs the control value of the power consumption of the simulated load group 30 required to keep the generated power substantially constant, which is obtained by the difference calculation unit 13, to the simulated load power consumption adjuster 31. to calculate That is, the control sensitivity calculation unit 14 calculates with what degree of sensitivity the control value of the power consumption of the simulated load group 30 is to be output. The control sensitivity calculation unit 14 outputs sensitivity information obtained by the calculation to the control output calculation unit 15 .
 制御出力演算部15は、差分演算部13によって得られた、発電電力を略一定にするために必要な模擬負荷群30の消費電力の制御値と、制御感度演算部14によって得られた感度の情報とを含む制御情報を生成する。制御出力演算部15は、生成した制御情報を判定制御部11に出力する。判定制御部11においては、制御出力演算部15において得られた模擬負荷消費電力調整器31に出力する制御情報を適切な制御信号に変換して、模擬負荷消費電力調整器31に出力する。 The control output calculation unit 15 calculates the control value of the power consumption of the simulated load group 30 required to keep the generated power substantially constant, which is obtained by the difference calculation unit 13, and the sensitivity value obtained by the control sensitivity calculation unit 14. and generating control information that includes: The control output calculator 15 outputs the generated control information to the determination controller 11 . The determination control unit 11 converts the control information to be output to the simulated load power consumption adjuster 31 obtained by the control output calculation unit 15 into an appropriate control signal, and outputs the control signal to the simulated load power consumption adjuster 31 .
 次に、以上のように構成された制御装置10によって実行される制御方法としての模擬負荷群30による消費電力(以下、放出電力という)の制御方法について説明する。まず、本実施形態による模擬負荷群30に対する消費電力の制御方法についての理解を容易にするために、本発明者による鋭意検討について説明する。図3は、本実施形態による発電システム1のエンジン制御部(図示せず)および制御装置10によるエンジン発電機20に対する制御の一例を示すグラフである。 Next, a method of controlling power consumption (hereinafter referred to as "discharged power") by the simulated load group 30 as a control method executed by the control device 10 configured as described above will be described. First, in order to facilitate understanding of the power consumption control method for the simulated load group 30 according to the present embodiment, the inventor's earnest study will be described. FIG. 3 is a graph showing an example of control of the engine generator 20 by the engine control unit (not shown) and the control device 10 of the power generation system 1 according to this embodiment.
 まず、図3に示すように、電力負荷50を有する施設や、商用電力系統40などにおける停電を検知したときに、エンジン発電機20が電力負荷50から解列された状態を想定する。エンジン制御部(図示せず)は、電力負荷50がエンジン発電機20から解列した状態で、エンジン発電機20を無負荷定格速度運転させることにより安定させる。その後、制御装置10により、模擬負荷によるエンジン発電機20の昇負荷運転を開始させる。なお、本明細書においては、電力負荷50がエンジン発電機20から解列した状態で、エンジン発電機20が無負荷定格速度運転によって安定している状態から、模擬負荷群30を用いたエンジン発電機20に対する昇負荷を「起動」という。これにより、エンジン発電機20の電力の放出が開始されて出力が増加する。エンジン発電機20が起動を開始した起動開始時点T1から所定の起動時間だけ経過すると、エンジン発電機20の起動動作が終了する。起動動作の終了時においては、エンジン発電機20が整定して発電電力が安定して、電力負荷50を投入可能になる(安定時点T2)。エンジン発電機20の発電電力が安定して安定時点T2が経過すると、電力負荷50の投入が開始される(負荷投入開始時点T3)。 First, as shown in FIG. 3, it is assumed that the engine generator 20 is disconnected from the power load 50 when a power failure is detected in a facility having the power load 50 or in the commercial power system 40 or the like. An engine control unit (not shown) stabilizes the engine generator 20 by operating the engine generator 20 at the no-load rated speed in a state in which the power load 50 is disconnected from the engine generator 20 . After that, the control device 10 starts load increasing operation of the engine generator 20 with the simulated load. It should be noted that in the present specification, engine power generation using the simulated load group 30 is performed from a state in which the engine generator 20 is stabilized by no-load rated speed operation while the power load 50 is disconnected from the engine generator 20. The lifting load on the machine 20 is called "starting". This causes the engine generator 20 to start discharging electric power and increase the output. When a predetermined starting time elapses from the start time T1 at which the engine generator 20 starts to start, the starting operation of the engine generator 20 ends. At the end of the starting operation, the engine generator 20 stabilizes and the generated power becomes stable, and the power load 50 can be turned on (stabilization time T 2 ). When the power generated by the engine generator 20 is stabilized and the stable time point T2 has passed, the power load 50 starts to be applied (load application start time point T3 ).
 負荷投入開始時点T3においてエンジン発電機20の発電電力に電力負荷50が投入されると、制御装置10によって電力増減制御が実行され、電力負荷50が消費する負荷電力に応じて放出電力が調整される。本実施形態においては、以下の(A)式に従って負荷電力の増減に対応して放出電力を増減させることにより、エンジン発電機20による発電電力を略一定に維持することができる。これにより、発電システム1において、放出電力の電力増減制御により、エンジン発電機20を一定負荷で運転させて、大きな負荷変動によるエンジン発電機20における内燃機関21の失速を回避することができる。
 放出電力=発電電力-負荷電力 …(A)
When the power load 50 is applied to the power generated by the engine generator 20 at the load application start time T3 , the power increase/decrease control is executed by the control device 10, and the discharge power is adjusted according to the load power consumed by the power load 50. be done. In this embodiment, the power generated by the engine generator 20 can be maintained substantially constant by increasing or decreasing the discharge power according to the increase or decrease in the load power according to the following formula (A). As a result, in the power generation system 1, the engine generator 20 can be operated at a constant load by the power increase/decrease control of the discharged power, and the stall of the internal combustion engine 21 in the engine generator 20 due to large load fluctuations can be avoided.
Emitted power = Generated power - Load power … (A)
 ここで、エンジン発電機20の起動の開始時点においては、模擬負荷のみで昇負荷させ、かつエンジン発電機20を安定して昇負荷させるために、模擬負荷による消費電力を線形状に増加させることが好ましい。しかしながら、本発明者は、従来の発電システムにおいてエンジン発電機20を起動させる場合、模擬負荷のみで昇負荷させ、かつエンジン発電機20を安定して昇負荷させるために、模擬負荷による消費電力を線形状に増加させていくと、力率が急激に低下してしまってエンジン発電機20にトリップが生じる場合があることを知見した。すなわち、本発明者は、起動開始時点T1においてエンジン発電機20を起動させる場合に、図3に示す時間帯(起動期間δ1)においてエンジン発電機20がトリップする場合があることを知見した。 Here, at the start of the start of the engine generator 20, the power consumption by the simulated load is increased linearly in order to increase the load only with the simulated load and to increase the load of the engine generator 20 stably. is preferred. However, when the engine generator 20 is started in the conventional power generation system, the present inventors have found that the power consumption by the simulated load is reduced in order to increase the load only with the simulated load and to increase the load of the engine generator 20 stably. It has been found that if the power factor is linearly increased, the power factor may suddenly drop, causing the engine generator 20 to trip. That is, the inventors have found that when the engine generator 20 is activated at the activation start time T1 , the engine generator 20 may trip during the time period (activation period δ1) shown in FIG.
 そこで、本発明者は、電力負荷50に相当する負荷を用いてあらかじめ所定の負荷(以下、初期負荷)を投入させた状態でエンジン発電機20を起動させ、模擬負荷群30の負荷投入率MV(%)とエンジン発電機20の力率との関係について実験を行った。なお、本明細書において、負荷投入率(MV)(%)とは、設定出力に対する模擬負荷の出力の割合(%)で定義されるが、これは負荷設定率ともほぼ同義であるため、以下、負荷設定率(以下、MVともいう)(%)と称する。図4、図5、および図6はそれぞれ、本発明者が発電システム1において行った、1つの模擬負荷が設けられた場合、複数の模擬負荷が設けられた場合、および複数の模擬負荷を個別に制御した場合の実験における、模擬負荷の投入率とエンジン発電機の力率との関係を示すグラフである。 Therefore, the present inventor started the engine generator 20 in a state in which a predetermined load (hereinafter referred to as an initial load) was applied in advance using a load corresponding to the electric load 50, and the load application rate MV of the simulated load group 30 (%) and the power factor of the engine generator 20 was tested. In this specification, the load input rate (MV) (%) is defined as the ratio (%) of the simulated load output to the set output. , a load setting ratio (hereinafter also referred to as MV) (%). FIGS. 4, 5, and 6 respectively show the case where one simulated load is provided, the case where a plurality of simulated loads are provided, and the case where a plurality of simulated loads are provided, respectively, which the present inventor performed in the power generation system 1. 10 is a graph showing the relationship between the input rate of the simulated load and the power factor of the engine generator in the experiment when the control is performed to .
 まず、本発明者は、模擬負荷群30のうちの1台の模擬負荷301を用いて実験を行った。ここで、初期負荷をエンジン発電機20の設定出力に対してそれぞれ、20%、15%、10%、および5%にした。その結果を図4に示す。なお、模擬負荷301の最大の負荷は150kWとした。なお、設定出力は規定出力とも称される。ここで、設定出力とは、停電時において発電設備を自立運転させる際に、電力負荷の変動に対してエンジン発電機20の運転を安定させるために必要な模擬負荷群30の総容量である。また、模擬負荷群30は、停電時に施設が自立運転する際に消費する電力負荷50とは異なり、施設にとって必ずしも必要としない負荷である。加えて、例えば負荷抵抗器を用いる場合、図3に示す放出電力は電力を熱に変換し、大気へ放出することにより、エネルギー的には非効率となる。これにより、模擬負荷群30の総容量は、第1に停電時に施設が自立運転する際に消費する電力負荷50の総容量を確保し、第2に各電力負荷の始動方式に伴う過渡的な電力変動が発生しても安定して発電設備の運転を維持可能な最小容量によって決定する必要がある。さらに、電力負荷50の総容量は、発電設備において確実に給電できる容量であることから、定格出力以下となり、施設によっては、商用電力系統40と接続されている場合に設備の電力負荷50への給電に加えて、売電することもある。そのため、設定出力は、発電設備の定格出力とは必ずしも一致せず、設定出力が定格出力未満(設定出力<定格出力)になる場合もある。 First, the inventor conducted an experiment using one simulated load 301 in the simulated load group 30 . Here, the initial load was set to 20%, 15%, 10%, and 5% of the set output of the engine generator 20, respectively. The results are shown in FIG. Note that the maximum load of the simulated load 301 was set to 150 kW. Note that the set output is also called a specified output. Here, the set output is the total capacity of the simulated load group 30 required for stabilizing the operation of the engine generator 20 against fluctuations in the electric power load when the power generating equipment is operated in a self-sustained manner during a power failure. Moreover, the simulated load group 30 is a load that is not necessarily required for the facility, unlike the power load 50 that is consumed when the facility operates in a self-supporting manner during a power outage. In addition, when using, for example, load resistors, the emitted power shown in FIG. 3 is energetically inefficient by converting power to heat and releasing it to the atmosphere. As a result, the total capacity of the simulated load group 30 firstly secures the total capacity of the power loads 50 consumed when the facility operates in a self-sustained manner during a power outage, and secondly, the transient It is necessary to determine the minimum capacity that can stably maintain the operation of the power generation facility even if power fluctuations occur. Furthermore, since the total capacity of the power load 50 is a capacity that can be reliably supplied by the power generation equipment, it will be below the rated output, and depending on the facility, when it is connected to the commercial power system 40, the power load 50 of the equipment In addition to power supply, electricity may also be sold. Therefore, the set output does not necessarily match the rated output of the power generation equipment, and the set output may be less than the rated output (set output < rated output).
 図4から、初期負荷を20%にした場合、模擬負荷301のMVを0%から増加させるのに伴って力率が1から低下し、MV(%)が約40%~50%で力率が最小の0.93程度にまで低下することがわかる。また、模擬負荷301のMVを40%から増加させるのに伴って力率は0.93から1まで増加することが分かる。同様に、初期負荷を15%にした場合、模擬負荷301のMVを0%から100%まで増加させる間に、力率は、MV(%)が約40%程度で最小の0.9程度にまで低下した後に1まで増加することが分かる。初期負荷を10%にした場合には、模擬負荷301のMV(%)を0%から100%まで増加させる間に、力率は、MV(%)が約40%程度で最小の0.85程度にまで低下した後に1まで増加することが分かる。ここで、本発明者がさらに検討を行ったところ、模擬負荷301のMV(%)が約40%~50%の場合に力率が最小となるのは、高調波の発生に起因することを知見するに至った。 From FIG. 4, when the initial load is 20%, the power factor decreases from 1 as the MV of the simulated load 301 is increased from 0%, and when the MV (%) is about 40% to 50%, the power factor is reduced to a minimum of about 0.93. Also, it can be seen that the power factor increases from 0.93 to 1 as the MV of the simulated load 301 is increased from 40%. Similarly, when the initial load is 15%, while the MV of the simulated load 301 is increased from 0% to 100%, the power factor is reduced to about 0.9 when the MV (%) is about 40%. It can be seen that it decreases to 1 and then increases to 1. When the initial load is 10%, while the MV (%) of the simulated load 301 is increased from 0% to 100%, the power factor is the minimum 0.85 when the MV (%) is about 40%. It can be seen that it increases to 1 after decreasing to about . As a result of further investigation by the present inventor, it was found that the reason why the power factor is minimized when the MV (%) of the simulated load 301 is approximately 40% to 50% is due to the generation of harmonics. I came to know.
 さらに、初期負荷を5%にした場合には、模擬負荷301のMVを0%から増加させると、増加の途中でエンジン発電機20の重故障発報条件cosθmin以下になって、エンジン発電機20がトリップすることが判明した。具体的に、エンジン発電機20の設定出力が600kWである場合には、初期負荷を30kW以下にすると、模擬負荷301のMV(%)を増加させて負荷を100%にするまで上昇(以下、昇負荷)させることが困難になることが判明した。換言すると、初期負荷は本来0%とすべきであるが、初期負荷を5%とした場合でも模擬負荷301のMV、すなわち消費電力の設定を増加させるのに伴って力率が急激に低下し、エンジン発電機20の重故障条件に到達してしまう。そのため、初期負荷を0%としてエンジン発電機20の昇負荷を実行させることは、極めて困難であることが判明した。 Furthermore, when the initial load is set to 5%, when the MV of the simulated load 301 is increased from 0%, it falls below the serious failure notification condition cos θ min of the engine generator 20 during the increase, and the engine generator 20 was found to trip. Specifically, when the set output of the engine generator 20 is 600 kW, if the initial load is set to 30 kW or less, the MV (%) of the simulated load 301 is increased until the load reaches 100% (hereinafter referred to as It turned out that it becomes difficult to raise the load). In other words, the initial load should be 0%, but even if the initial load is 5%, the power factor drops sharply as the MV of the simulated load 301, that is, the power consumption, is increased. , the serious failure condition of the engine generator 20 is reached. Therefore, it turned out to be extremely difficult to increase the load of the engine generator 20 with the initial load set to 0%.
 本発明者は、模擬負荷を複数、例えば複数の模擬負荷301,302を設け、模擬負荷301,302を併せて昇負荷させてエンジン発電機20を起動させる実験を行った。なお、模擬負荷301,302の最大の負荷は2台分で(2×150=)300kWとした。その結果を図5に示す。図5から、この場合においても、エンジン発電機20の昇負荷における傾向は、図4と同様であることが分かる。また、初期負荷を10%とした場合に、模擬負荷301のMV(%)を0%から増加させると、増加の途中で重故障発報条件cosθmin以下になって、エンジン発電機20がトリップすることが判明した。具体的に、エンジン発電機20の設定出力が600kWである場合には、初期負荷を60kW以下にすると、エンジン発電機20を昇負荷させることが困難になることが判明した。 The present inventor conducted an experiment in which a plurality of simulated loads, for example, a plurality of simulated loads 301 and 302 were provided, and the simulated loads 301 and 302 were increased together to start the engine generator 20 . Note that the maximum load of the simulated loads 301 and 302 was set to 300 kW for two units (2×150=). The results are shown in FIG. It can be seen from FIG. 5 that in this case also, the tendency of the load increase of the engine generator 20 is the same as in FIG. When the MV (%) of the simulated load 301 is increased from 0% when the initial load is 10%, the engine generator 20 trips when the MV (%) of the simulated load 301 falls below the serious failure notification condition cos θ min during the increase. It turned out to do. Specifically, when the set output of the engine generator 20 is 600 kW, it has become difficult to increase the load of the engine generator 20 if the initial load is set to 60 kW or less.
 さらに、本発明者は、模擬負荷を複数、例えば複数の模擬負荷301~304を設け、模擬負荷301~304を1台ずつ順に、MV(%)を0%から100%に増加させて、エンジン発電機20を昇負荷させる実験を行った。なお、模擬負荷301~304は1台当たりの負荷は、150kWとした。その結果を図6に示す。図6から、この場合においても、エンジン発電機20の昇負荷における傾向は、図4と同様であることが分かる。すなわち、複数の模擬負荷301~304のMV(%)を1台ずつ増加させていくと、1台目の模擬負荷301の段階で、図4と同等の条件になるため、模擬負荷301のMV(%)を0%から増加させると、増加の途中で重故障発報条件cosθmin以下になって、エンジン発電機20がトリップしてしまう。 Furthermore, the present inventor provides a plurality of simulated loads, for example, a plurality of simulated loads 301 to 304, and sequentially increases the MV (%) from 0% to 100% for the simulated loads 301 to 304 one by one, and the engine An experiment was conducted to increase the load on the generator 20 . The simulated loads 301 to 304 each have a load of 150 kW. The results are shown in FIG. It can be seen from FIG. 6 that in this case also, the tendency of the load increase of the engine generator 20 is the same as in FIG. That is, when the MV (%) of the plurality of simulated loads 301 to 304 are increased one by one, the conditions for the first simulated load 301 are the same as those in FIG. If (%) is increased from 0%, it becomes less than or equal to the critical failure notification condition cos θ min in the middle of the increase, causing the engine generator 20 to trip.
 本発明者は、以上の実験に基づいて、さらに鋭意検討を行い、エンジン発電機20をトリップさせることなく、起動時の昇負荷を実現する制御方法を案出した。すなわち、本発明者は、エンジン発電機20に対して互いに独立して負荷を投入可能な複数の模擬負荷を設け、複数の模擬負荷をエンジン発電機20に投入する際に、一部の模擬負荷として1台目の模擬負荷の負荷容量をあらかじめ設定された負荷容量まで無段階で瞬時に上昇させ、残部の模擬負荷である2台目以降の模擬負荷に関しては、1台ずつ順次、設定された負荷容量まで増加させるように制御する制御方法を案出した。ここで、1台目の模擬負荷を無段階で上昇させる負荷容量は、エンジン発電機20が負荷投入に伴う周波数低下や不足電圧によるトリップを生じない負荷容量以下に選択される。本実施形態においては、例えば模擬負荷として負荷抵抗器でそれぞれ構成し、全体負荷容量が約400kWとする場合、エンジン発電機20の場合では定格出力(585kW)の25%(約145kW)がトリップを生じない負荷容量の上限になる。そのため、4台の模擬負荷で全体負荷容量を均等に分担させる、すなわち、それぞれの負荷容量は約100kWとなる。以下に説明する本発明は、本発明者による以上の鋭意検討により案出されたものである。 Based on the above experiments, the present inventors conducted further intensive studies and devised a control method for increasing the load at startup without causing the engine generator 20 to trip. That is, the inventor provides a plurality of simulated loads that can be applied to the engine generator 20 independently of each other, and when applying the plurality of simulated loads to the engine generator 20, The load capacity of the first simulated load is increased steplessly and instantaneously to the preset load capacity, and the second and subsequent simulated loads, which are the remaining simulated loads, are sequentially set one by one. A control method was devised to increase the load capacity. Here, the load capacity for steplessly increasing the simulated load of the first unit is selected below the load capacity that does not cause the engine generator 20 to trip due to frequency drop or insufficient voltage due to load application. In this embodiment, for example, load resistors are used as simulated loads, and when the total load capacity is about 400 kW, in the case of the engine generator 20, 25% (about 145 kW) of the rated output (585 kW) trips. This is the upper limit of the load capacity that does not occur. Therefore, the total load capacity is evenly distributed among the four simulated loads, that is, the load capacity of each is approximately 100 kW. The present invention described below has been devised through the above earnest studies by the inventors of the present invention.
 次に、本発明の第1の実施形態における制御装置10による制御方法について説明する。図7は、第1の実施形態における制御装置による制御方法を説明するためのフローチャートである。図8は、第1の実施形態における制御装置10による図7に対応する制御の一例を示すグラフである。図8に示すSTは、図7に示すステップに相当する。図7に示すフローチャートは、商用電力系統40が停電状態になってエンジン発電機20が電力負荷50から解列された後、エンジン発電機20の起動で開始される。 Next, a control method by the control device 10 according to the first embodiment of the present invention will be described. FIG. 7 is a flowchart for explaining a control method by the control device according to the first embodiment. FIG. 8 is a graph showing an example of control corresponding to FIG. 7 by the control device 10 in the first embodiment. ST shown in FIG. 8 corresponds to the steps shown in FIG. The flowchart shown in FIG. 7 is started by starting the engine generator 20 after the commercial power system 40 is in a power failure state and the engine generator 20 is disconnected from the power load 50 .
 図7および図8に示すように、ステップST1において制御装置10は、エンジン発電機20の起動時に、複数台の模擬負荷301~304のうちの1台の模擬負荷301の負荷を投入する調整信号を、模擬負荷消費電力調整器31に対して出力する。なお、「エンジン発電機20の起動時」とは、エンジン発電機20の仕様や性能(スペック)などによって変動はあるものの、所定のエンジン制御部(図示せず)によるエンジン発電機20に対する昇負荷の指示がされた時点に対する前後の短時間の時間間隔、第1の実施形態によるエンジン発電機20においては、例えば±1秒程度の時間間隔を意味する。すなわち、制御装置10は、模擬負荷消費電力調整器31の模擬負荷調整器311に調整信号を出力して、模擬負荷301をエンジン発電機20に投入する。ここで、本実施形態においては、第1の投入制御として、模擬負荷301の負荷が0%から100%にステップ状に増加するようにエンジン発電機20に投入する。すなわち、エンジン発電機20に投入する模擬負荷301の負荷容量を、0%から100%まで瞬間的に増加させる第1の投入制御を行う。ここで、図7に示す例では模擬負荷301の100%の負荷容量を、エンジン発電機20の設定出力に対してX%の負荷容量に設定することで、エンジン発電機20の起動時に直前に、エンジン発電機20に対して設定出力のX%の負荷がステップ状に投入される。なお、X%は、エンジン発電機20のトリップが生じない負荷容量以下であれば種々の値を採用できる。第1の実施形態においては、4台の模擬負荷301~304の負荷容量を互いに等しくしつつ、合計の負荷容量をエンジン発電機20の設定出力と略等しくしている。これにより、模擬負荷301~304のそれぞれの負荷容量は、エンジン発電機20の設定出力の25%になる。なお、模擬負荷301~304の負荷容量をそれぞれ異なる負荷容量とすることも可能である。 As shown in FIGS. 7 and 8, in step ST1, control device 10 applies an adjustment signal to apply load of one of simulated loads 301 to 304 when engine generator 20 is started. is output to the simulated load power consumption regulator 31 . It should be noted that "at the start of the engine generator 20" means that although there are variations depending on the specifications and performance (specs) of the engine generator 20, there is no increase in load on the engine generator 20 by a predetermined engine control unit (not shown). In the case of the engine generator 20 according to the first embodiment, it means a time interval of about ±1 second, for example. That is, control device 10 outputs an adjustment signal to simulated load adjuster 311 of simulated load power consumption adjuster 31 to apply simulated load 301 to engine generator 20 . Here, in the present embodiment, as the first input control, the load of the simulated load 301 is input to the engine generator 20 so as to increase stepwise from 0% to 100%. That is, the first input control is performed to instantaneously increase the load capacity of the simulated load 301 to be input to the engine generator 20 from 0% to 100%. Here, in the example shown in FIG. 7, by setting the load capacity of 100% of the simulated load 301 to the load capacity of X% of the set output of the engine generator 20, immediately before the start of the engine generator 20 , a load of X% of the set output is applied to the engine generator 20 stepwise. Various values of X% can be adopted as long as they are equal to or less than the load capacity at which the engine generator 20 does not trip. In the first embodiment, the load capacities of the four simulated loads 301 to 304 are made equal to each other, and the total load capacity is made substantially equal to the set output of the engine generator 20 . As a result, the load capacity of each of the simulated loads 301-304 becomes 25% of the set output of the engine generator 20. FIG. It should be noted that the load capacities of the simulated loads 301 to 304 can be set to different load capacities.
 その後、ステップST2に移行して、制御装置10は、1台目の模擬負荷301の投入に伴うエンジン発電機20の出力の変動が安定したか否かを判定する。エンジン発電機20に対して模擬負荷301の負荷容量の0%から100%までを瞬間的に投入すると、エンジン発電機20が整定、つまり発電出力が安定するまで一定の期間を要する場合がある。制御装置10は、エンジン発電機20の発電電力の出力が整定するまでの間(ステップST2:No)、ステップST2においてエンジン発電機20の出力が安定するまで待機する。制御装置10が、エンジン発電機20の出力が安定状態であると判定した場合(ステップST2:Yes)、ステップST3に移行する。 After that, the process proceeds to step ST2, and the control device 10 determines whether or not the fluctuation of the output of the engine generator 20 accompanying the application of the first simulated load 301 has stabilized. When 0% to 100% of the load capacity of the simulated load 301 is instantaneously applied to the engine generator 20, it may take a certain period of time for the engine generator 20 to settle, that is, to stabilize the power generation output. The control device 10 waits until the output of the engine generator 20 stabilizes in step ST2 until the output of the generated power of the engine generator 20 stabilizes (step ST2: No). When the control device 10 determines that the output of the engine generator 20 is in a stable state (step ST2: Yes), the process proceeds to step ST3.
 ステップST3において制御装置10は、複数台の模擬負荷301~304から2台目以降、ここでは2台目の模擬負荷302を、エンジン発電機20に対して、負荷容量の0%から100%まで線形状または階段状に投入させる。すなわち、制御装置10は、調整信号を模擬負荷調整器312に出力して模擬負荷302の負荷を制御することにより、エンジン発電機20に対して模擬負荷302の負荷を0%から増加させつつ100%まで投入する。これにより、エンジン発電機20に対して投入される負荷容量は、エンジン発電機20の設定出力のX%からY%まで増加する。図8に示す例では、模擬負荷302の負荷を線形的に増加させてエンジン発電機20の設定出力のX%からY%まで投入している。なお、第1の実施形態においてY%は、例えば50%である。 In step ST3, the control device 10 selects the second and subsequent simulated loads 301 to 304, here the second simulated load 302, from the load capacity of the engine generator 20 from 0% to 100%. Throw in a linear or stepped pattern. That is, control device 10 outputs an adjustment signal to simulated load adjuster 312 to control the load of simulated load 302, thereby increasing the load of simulated load 302 from 0% to engine generator 20 while increasing the load of simulated load 302 to 100%. %. As a result, the load capacity applied to the engine generator 20 increases from X% of the set output of the engine generator 20 to Y%. In the example shown in FIG. 8 , the load of the simulated load 302 is linearly increased to apply from X% to Y% of the set output of the engine generator 20 . Note that Y% is, for example, 50% in the first embodiment.
 ここで、模擬負荷302の負荷を増加させてMVをエンジン発電機20の設定出力のX%からY%まで投入する場合の昇負荷レートα(%/min)として、0%/minより大きく60%/min以下とする。ここで、第1の実施形態においては、昇負荷レートαを例えば60(%/min)とする。なお、昇負荷レートを60(%/min)以下とする理由の詳細については後述する。 Here, the load increase rate α (%/min) when increasing the load of the simulated load 302 and turning on the MV from X% to Y% of the set output of the engine generator 20 is 60% greater than 0%/min. %/min or less. Here, in the first embodiment, the load increase rate α is set to 60 (%/min), for example. The details of the reason for setting the load increase rate to 60 (%/min) or less will be described later.
 ここで、本明細書における昇負荷レートα(%/min)の定義について説明する。まず、昇負荷レートαにおける「%」は、負荷設定率であるMV(%)の「%」を意味する。また、昇負荷レートαの対象となる時間は、図8に示す第1の投入制御および維持制御が完了した時点TST2、すなわちステップST2の完了時点であるMVがX%の時点から、MVが100%となる所定の負荷になるまでの時間以下の時間であって、発電設備の出力規模や接続される模擬負荷の台数なども影響するが、少なくとも10秒以上の時間を必要とするものである。すなわち、MVが、X%になって安定した時点から100%になるまでの時間や、X%になって安定した時点からY%になるまでの時間、Y%からZ%になるまでの時間、Y%から100%になるまでの時間、X%になって安定した時点からZ%になるまでの時間であって、10秒以上の時間である。換言すると、制御装置10が、エンジン発電機20の出力が安定状態であると判定した時点から、MVが100%になるまでの時間内における任意の時間であって10秒以上の時間を、昇負荷レートαの対象時間とする。なお、昇負荷レートαはステップ状、すなわち負荷をMVまで瞬時に投入するような無段階投入ではなく、目標とするMV(%)になるまで所定の時間を要する投入方法である。ステップST3においては、昇負荷レートαを例えば60(%/min)とし、模擬負荷302の負荷を0%から100%まで線形的に増加させる。第1の実施形態において具体的に例えば、X%が25%でありY%が50%である場合、X%からY%まで増加させる時間tは、(50-25)/60(min)以下とすることが好ましい。 Here, the definition of the load increase rate α (%/min) in this specification will be explained. First, "%" in the load increase rate α means "%" of MV (%), which is the load setting rate. Further, the target time of the load increase rate α is the time T ST2 when the first closing control and the maintenance control shown in FIG. This is less than the time required for the load to reach 100%, and is affected by the output scale of the power generation facility and the number of connected simulated loads, but at least 10 seconds or longer is required. be. That is, the time from when MV stabilizes at X% to 100%, the time from when it stabilizes at X% to Y%, and the time from Y% to Z% , the time from Y% to 100%, and the time from the time when it stabilizes at X% to the time when it reaches Z%, which is 10 seconds or longer. In other words, an arbitrary time of 10 seconds or more within the time from when the control device 10 determines that the output of the engine generator 20 is in a stable state to when the MV reaches 100% is increased. The target time for the load rate α. Note that the load increase rate α is stepped, that is, it is not a stepless input that instantaneously applies the load up to the MV, but a method that requires a predetermined time to reach the target MV (%). In step ST3, the load increase rate α is set to 60 (%/min), for example, and the load of the simulated load 302 is linearly increased from 0% to 100%. Specifically in the first embodiment, for example, when X% is 25% and Y% is 50%, the time t to increase from X% to Y% is (50-25) / 60 (min) or less It is preferable to
 次に、ステップST4に移行して制御装置10は、複数台の模擬負荷301~304から2台目以降、ここでは3台目の模擬負荷303を、エンジン発電機20に対して、負荷容量の0%から100%まで線形状または階段状に投入させる。すなわち、制御装置10は、調整信号を模擬負荷調整器313に出力して模擬負荷303の負荷を制御することにより、エンジン発電機20に対して模擬負荷303の負荷を0%から増加させつつ100%まで投入する。これにより、エンジン発電機20に対して投入される負荷容量は、エンジン発電機20の設定出力のY%からZ%まで増加する。この場合においても、昇負荷レートαは0%/minより大きく60%/min以下(0<α≦60)を満たす形とする。図8に示す例では、模擬負荷303の負荷を線形的に増加させてエンジン発電機20の設定出力のY%からZ%まで投入している。なお、第1の実施形態においてZ%は、例えば75%である。 Next, in step ST4, the control device 10 selects the second and subsequent simulated loads 303 from the plurality of simulated loads 301 to 304, here the third simulated load 303, to the engine generator 20 so that the engine generator 20 has a load capacity. Input linearly or stepwise from 0% to 100%. That is, the control device 10 outputs an adjustment signal to the simulated load adjuster 313 to control the load of the simulated load 303, thereby increasing the load of the simulated load 303 from 0% to the engine generator 20 to 100%. %. As a result, the load capacity applied to the engine generator 20 increases from Y% of the set output of the engine generator 20 to Z%. Also in this case, the load increase rate α is set to satisfy the condition of more than 0%/min and 60%/min or less (0<α≦60). In the example shown in FIG. 8 , the load of the simulated load 303 is linearly increased to apply from Y % to Z % of the set output of the engine generator 20 . Note that Z % is, for example, 75% in the first embodiment.
 次に、図7に示すステップST5に移行して制御装置10は、複数台の模擬負荷301~304から2台目以降、ここでは4台目の模擬負荷304を、エンジン発電機20に対して、負荷容量の0%から100%まで線形状または階段状に投入させる。すなわち、制御装置10は、調整信号を模擬負荷調整器314に出力して模擬負荷304の負荷を制御することにより、昇負荷レートα(%/min)を0<α≦60としつつ、エンジン発電機20に対して模擬負荷304の負荷を0%から増加させて100%まで投入する。これにより、エンジン発電機20に対して投入される負荷容量は、エンジン発電機20の設定出力のZ%から100%まで増加する。図8に示す例では、模擬負荷304の負荷を線形的に増加させてエンジン発電機20の設定出力のZ%から100%まで投入している。 Next, the controller 10 shifts to step ST5 shown in FIG. , linearly or stepwise from 0% to 100% of the load capacity. That is, the control device 10 controls the load of the simulated load 304 by outputting the adjustment signal to the simulated load adjuster 314 so that the engine power generation is The simulated load 304 is increased from 0% to 100% with respect to the aircraft 20 . As a result, the load capacity applied to the engine generator 20 increases from Z% of the set output of the engine generator 20 to 100%. In the example shown in FIG. 8 , the load of the simulated load 304 is linearly increased from Z% of the set output of the engine generator 20 to 100%.
 なお、上述したX%、Y%、およびZ%はそれぞれ任意に設定することが可能である。すなわち、模擬負荷301~304に対して任意の制御範囲を割り当てて、それぞれの模擬負荷301~304に対して個別に制御して、昇負荷レートαは0%/minより大きく60%/min以下(0<α≦60)としつつ、それぞれの模擬負荷301~304におけるMVを0%から100%まで増加させる。その結果、模擬負荷群30におけるMVを100%にした場合に、エンジン発電機20の設定出力、例えば定格出力の70%程度まで負荷が投入される。 It should be noted that the above-mentioned X%, Y%, and Z% can each be set arbitrarily. That is, an arbitrary control range is assigned to the simulated loads 301 to 304, each of the simulated loads 301 to 304 is individually controlled, and the load increase rate α is greater than 0%/min and less than or equal to 60%/min. While (0<α≦60), the MV at each of the simulated loads 301 to 304 is increased from 0% to 100%. As a result, when the MV in the simulated load group 30 is set to 100%, the load is applied up to the set output of the engine generator 20, for example, about 70% of the rated output.
 その後、ステップST6に移行して制御装置10は、例えば施設などに設けられた電力負荷50をエンジン発電機20に投入できる条件(電力負荷投入条件)が成立したか否か、すなわち、エンジン発電機20による発電電力の出力が安定したか否か判定する。制御装置10は、エンジン発電機20からの発電電力の出力が安定するまで電力負荷50の投入は待機される(ステップST6:No)。一方、制御装置10が、エンジン発電機20の電力負荷投入条件が成立したと判定した場合(ステップST6:Yes)、ステップST7に移行する。 After that, the process proceeds to step ST6, and the control device 10 determines whether or not a condition (power load input condition) for inputting the power load 50 provided in the facility or the like to the engine generator 20 has been established. It is determined whether or not the output of the power generated by 20 has stabilized. The control device 10 waits until the output of the generated power from the engine generator 20 stabilizes before the power load 50 is turned on (step ST6: No). On the other hand, when the control device 10 determines that the power load input condition of the engine generator 20 is satisfied (step ST6: Yes), the process proceeds to step ST7.
 ステップST7において制御装置10は、電力負荷50をエンジン発電機20に投入するとともに、第1~第3電力制御モードを選択して制御する電力増減制御を開始する。ステップST7における電力増減制御において制御装置10は、模擬負荷調整器311~314に対して調整信号を出力して、電力負荷50の負荷電力の増減に応じて、模擬負荷301~304の負荷を調整する。これによって、上述した(A)式に示すように、エンジン発電機20の発電電力を略一定に制御する。以上により、第1の実施形態による制御装置10によるエンジン発電機20に投入する負荷の制御処理、すなわち模擬負荷群30および模擬負荷消費電力調整器31に対する制御処理が終了する。 In step ST7, the control device 10 applies the power load 50 to the engine generator 20, and selects the first to third power control modes to start power increase/decrease control. In the power increase/decrease control in step ST7, the control device 10 outputs adjustment signals to the simulated load adjusters 311 to 314, and adjusts the loads of the simulated loads 301 to 304 according to the increase/decrease in the load power of the power load 50. do. As a result, the electric power generated by the engine generator 20 is controlled to be substantially constant, as shown in the above formula (A). As described above, the control processing of the load to be applied to the engine generator 20 by the control device 10 according to the first embodiment, that is, the control processing for the simulated load group 30 and the simulated load power consumption adjuster 31 is completed.
 上述した実施形態による制御処理は、図3に示す起動期間δ1に対して適用する場合を例に説明したが、電力負荷50が投入された後の稼働期間δ2においても、同様の制御を実行することができる。すなわち、制御装置10による電力増減制御において、模擬負荷群30における模擬負荷301~304を同時に制御する方法以外にも、これらの模擬負荷301~304を個別に制御して、必要とされる放出電力を消費する模擬負荷301~304を順次投入することにより、エンジン発電機20における力率の低下を抑制できるので、放出電力の制御をより安定して実行することが可能になる。 Although the control processing according to the above-described embodiment has been described as an example in which it is applied to the start-up period δ1 shown in FIG. be able to. That is, in the power increase/decrease control by the control device 10, in addition to the method of simultaneously controlling the simulated loads 301 to 304 in the simulated load group 30, these simulated loads 301 to 304 can be individually controlled to obtain the required emitted power. By sequentially turning on the simulated loads 301 to 304 that consume the power, it is possible to suppress a decrease in the power factor of the engine generator 20, so that it is possible to more stably control the emitted power.
 以上説明した第1の実施形態による制御方法によって、互いに負荷容量が等しい4台のヒータをそれぞれ模擬負荷301~304として用い、エンジン発電機20を起動させた場合のグラフを図9に示す。なお、昇負荷レートαを45(%/min)とする。図9において、横軸は、1台目の無段階での昇負荷後の維持期間経過後、2台目以降の模擬負荷の昇負荷が開始してからの経過時間(s)を示し、左縦軸に対しては、エンジン発電機20の出力した電力を点線、4台のヒータの出力した電力の合計を実線、上述した第1の実施形態による制御方法によって4台のヒータを制御した場合の全体のMV(ここでは、ヒータ電流制御によるMV(%))を一点鎖線として示す。右縦軸に対しては、エンジン発電機20の力率を2点鎖線で示す。なお、2本の太破線は、重故障発報条件の一例を示し、上の太破線は力率が0.79(20秒で発報)、下の破線は力率が0.7(5秒で発報)である。 FIG. 9 shows a graph when the engine generator 20 is started using four heaters having the same load capacity as the simulated loads 301 to 304, respectively, according to the control method according to the first embodiment described above. Assume that the load increase rate α is 45 (%/min). In FIG. 9, the horizontal axis represents the elapsed time (s) from the start of the simulated load increase of the second and subsequent units after the lapse of the maintenance period after the stepless load increase of the first unit. On the vertical axis, the power output by the engine generator 20 is represented by a dotted line, the total power output by the four heaters is represented by a solid line, and the four heaters are controlled by the control method according to the first embodiment. MV of the whole (here, MV (%) by heater current control) is shown as a dashed line. On the right vertical axis, the power factor of the engine generator 20 is indicated by a chain double-dashed line. The two thick dashed lines show an example of conditions for issuing a major failure alarm. second).
 図9から、1台目のヒータ(模擬負荷301)の負荷を瞬間的に0~100%まで増加させて、エンジン発電機20の設定出力の25%まで瞬間的に投入していることにより、1台目のヒータ(模擬負荷301)の模擬負荷調整器311がパススルー状態になって、力率の低下を解消できていることが分かる。すなわち、図9から、2台目のヒータ(模擬負荷302)の負荷を線形状に増加させた場合であっても、エンジン発電機20の力率は0,95程度までの低下にとどまっていることが分かる。なお、3台目、4台目のヒータ(模擬負荷303,304)の負荷を線形状に増加させた場合であっても、ヒータをそれぞれ個別に制御することによって、重故障発報条件に対して十分な力率の裕度を確保できることが分かる。 From FIG. 9, by instantaneously increasing the load of the first heater (simulated load 301) from 0 to 100% and instantaneously turning on 25% of the set output of the engine generator 20, It can be seen that the simulated load regulator 311 of the first heater (simulated load 301) is in a pass-through state, and the decrease in power factor can be resolved. That is, from FIG. 9, even when the load of the second heater (simulated load 302) is linearly increased, the power factor of the engine generator 20 is only reduced to about 0.95. I understand. Even when the loads of the third and fourth heaters (simulated loads 303 and 304) are linearly increased, the heaters can be individually controlled to respond to the serious failure notification condition. It can be seen that a sufficient margin of power factor can be ensured.
 本発明者の知見によれば、エンジン発電機20の力率は、投入された負荷が消費する「有効電力」と「無効電力」との割合から導出される。また、1台目の模擬負荷301をステップ状にX%まで、上述した第1の実施形態においては25%まで瞬間的に増加させて投入すると、模擬負荷調整器311における0%および100%においては、力率の低下が生じない(図4~図6参照)。そのため、1台目の模擬負荷調整器311による模擬負荷301を投入する負荷容量の設定を100%とすることによって、エンジン発電機20の力率の低下を招くことなく、さらなる模擬負荷302~304を投入することができる。2台目以降の模擬負荷302~304を、階段状、または線形状に投入させた場合であっても、すでに模擬負荷301によって力率の低下が生じない負荷が投入されていることから、無効電力が増加したとしても、極端な力率の低下が生じないと考えられる。さらに、順次投入される模擬負荷302~304の台数が増加するのに従って、模擬負荷301~304の全体に対する力率が1となる負荷の割合が増加するため、力率が低下する影響に関しては、投入された模擬負荷の台数に伴って緩和される。そのため、図9に示すように、模擬負荷302~304に相当する2台目~4台目のヒータをエンジン発電機20の負荷として投入した場合に、力率の低下量がヒータの台数の増加に伴って減少していると考えられる。 According to the findings of the present inventor, the power factor of the engine generator 20 is derived from the ratio of "active power" and "reactive power" consumed by the applied load. In addition, when the first simulated load 301 is stepwise increased to X%, or up to 25% in the first embodiment described above, and is instantaneously applied, at 0% and 100% in the simulated load adjuster 311 , there is no reduction in power factor (see FIGS. 4-6). Therefore, by setting the load capacity for applying the simulated load 301 by the first simulated load adjuster 311 to 100%, further simulated loads 302 to 304 can be obtained without causing a decrease in the power factor of the engine generator 20. can be put in. Even if the second and subsequent simulated loads 302 to 304 are applied stepwise or linearly, the simulated load 301 has already applied a load that does not cause a drop in power factor. Even if the power increases, it is considered that a drastic drop in the power factor will not occur. Furthermore, as the number of the simulated loads 302 to 304 that are sequentially applied increases, the ratio of the loads with a power factor of 1 to the total of the simulated loads 301 to 304 increases. It is mitigated according to the number of simulated loads that are input. Therefore, as shown in FIG. 9, when the second to fourth heaters corresponding to the simulated loads 302 to 304 are turned on as the loads of the engine generator 20, the amount of decrease in the power factor increases as the number of heaters increases. It is thought that the
 また、第1の実施形態による制御方法によって、内燃機関21としてガスエンジンを用いるとともに、4台のヒータをそれぞれ模擬負荷301~304として用いた実験条件として、昇負荷レートαを種々の値に変更させて実験を行った。なお、この実験においては、内燃機関21としてのガスエンジンの定格出力を例えば585kWとし、設定出力を定格出力の70%程度の410kWとしている。図10は、このような実験条件下において、エンジン発電機20を起動させた場合のグラフを示す。なお、図10において、左縦軸に対しては、エンジン発電機20の出力した電力を、昇負荷レートαごとにそれぞれ、実線(94%/min)、点線(60%/min)、破線(45%/min)、二点鎖線(24%/min)、および一点鎖線(12%/min)として示す。左縦軸に対しては上側のグラフが対応する。一方、右縦軸に対しては、第1の実施形態による制御方法によって4台のヒータを制御した場合の全体のMV(ここではヒータ電流制御によるMV(%))を、昇負荷レートαごとにそれぞれ、実線(94%/min)、点線(60%/min)、破線(45%/min)、二点鎖線(24%/min)、および一点鎖線(12%/min)として示す。それぞれのグラフは、MV(%)の上昇とともに弧を描きながら昇負荷されている。昇負荷レートαが異なるため、任意の発電出力に到達する時間には差があり、これに伴って弧の形状は異なるものの、昇負荷レートα以外の要因、例えば、発電電圧や力率の低下に伴い、任意のMV(%)における発電出力が他の条件よりも低くなっている、または、ノッキングなどの機械的不具合が発生し、発電出力のグラフが瞬間的または周期的に変動するなどのグラフ形状の違いは確認できない。 Further, according to the control method according to the first embodiment, a gas engine is used as the internal combustion engine 21, and four heaters are used as simulated loads 301 to 304, respectively. We conducted an experiment. In this experiment, the gas engine as the internal combustion engine 21 has a rated output of 585 kW, for example, and a set output of 410 kW, which is about 70% of the rated output. FIG. 10 shows a graph when the engine generator 20 is started under such experimental conditions. In FIG. 10 , the left vertical axis represents the power output from the engine generator 20 for each load increase rate α, with a solid line (94%/min), a dotted line (60%/min), and a dashed line ( 45%/min), dashed-double-dotted line (24%/min), and dashed-dotted line (12%/min). The upper graph corresponds to the left vertical axis. On the other hand, on the right vertical axis, the total MV when four heaters are controlled by the control method according to the first embodiment (here, MV (%) by heater current control) is plotted for each load increase rate α. are shown as a solid line (94%/min), a dotted line (60%/min), a dashed line (45%/min), a two-dot chain line (24%/min), and a one-dot chain line (12%/min), respectively. Each graph is loaded while drawing an arc with the rise of MV (%). Since the load rising rate α is different, there is a difference in the time to reach an arbitrary power generation output, and although the shape of the arc differs accordingly, factors other than the rising load rate α, such as a decrease in the generated voltage and power factor Along with this, the power output at an arbitrary MV (%) is lower than other conditions, or mechanical problems such as knocking occur, and the power output graph fluctuates momentarily or periodically. The difference in graph shape cannot be confirmed.
 本発明者は、図10に示す5つの条件によってエンジン発電機20を起動させて、故障の発生の有無の検証を行った。その結果を図11に示す。ここで、これらの5つの条件によってエンジン発電機20を起動させ、故障の発生有無や発電電力(電圧、周波数、力率)、燃焼室温度、および冷却水温度のトレンドの安定性評価を行い、エンジン発電機20に与える負荷の影響度の評価を◎(故障無し)、〇(軽故障)、△(重故障)で表した。また、図12は、図11に示す評価のそれぞれの評価項目の判定基準を示す。 The inventor started the engine generator 20 under the five conditions shown in FIG. 10 and verified whether or not a failure occurred. The results are shown in FIG. Here, the engine generator 20 is started under these five conditions, and the presence or absence of failure, the generated power (voltage, frequency, power factor), the combustion chamber temperature, and the stability of the cooling water temperature trends are evaluated. The degree of influence of the load on the engine generator 20 is represented by ⊚ (no failure), ∘ (slight failure), and Δ (severe failure). Also, FIG. 12 shows criteria for each evaluation item of the evaluation shown in FIG.
 図11から、昇負荷レートαを12%/min,24%/min、45%/minとした場合に、エンジン発電機20において軽故障が発生することもなく、昇負荷を安定して実行できることが分かる。昇負荷レートを60%/minとした場合、過渡的な軽故障、すなわち負荷の変動による一時的な冷却水温度の上昇などの発生が確認されたが、負荷の変動が完了した後は自動で正常状態に復帰したことが確認され、エンジン発電機20の起動に問題がないことが確認された。昇負荷レートαを94%/minとした場合、エンジン発電機20においては、燃焼室温度上昇や冷却水温度上昇に関する軽故障の発生のみならず、負荷変動完了後も冷却水温度がハンチングを続け、軽故障の発報と自動復帰を繰り返す現象が確認された。また、昇負荷レートが大きいことから電圧や周波数が整定値を維持できなくなり、一時的に増減する現象が確認された。その他、力率自体は維持できるものの、過給機からのサージング音が発生するなどの機械的な負荷も極めて大きいことが確認され、重故障の発生の可能性も懸念されることから、発電設備の状況を勘案すると昇負荷レートとしては、あまり好ましくないことが確認された。 From FIG. 11, when the load boost rate α is set to 12%/min, 24%/min, and 45%/min, minor failures do not occur in the engine generator 20, and load boosting can be executed stably. I understand. When the load increase rate was set to 60%/min, it was confirmed that transient minor failures, i.e. temporary increases in cooling water temperature due to load fluctuations, occurred. It was confirmed that the normal state had been restored, and that there was no problem in starting the engine generator 20 . When the load increase rate α is set to 94%/min, in the engine generator 20, not only minor failures related to the combustion chamber temperature rise and cooling water temperature rise occur, but the cooling water temperature continues to hunt even after the load change is completed. , a phenomenon was confirmed in which the alarm of a minor failure and the automatic recovery were repeated. In addition, it was confirmed that the voltage and frequency could not maintain the set values due to the large load increase rate, and the phenomenon of temporary increase and decrease was confirmed. In addition, although the power factor itself can be maintained, it was confirmed that the mechanical load such as the surging noise from the turbocharger was extremely large, and there was concern about the possibility of a serious failure. Considering the current situation, it was confirmed that it is not very favorable as a load raising rate.
 さらに、本発明者は、MV(%)を、エンジン発電機20の設定出力のX%からY%まで、Y%からZ%まで、またはZ%から100%まで増加させる際に、昇負荷レートを60(%/min)より大きくして負荷をステップ状に増加させる方法についても検討を行った。 Furthermore, the inventors found that when increasing the MV (%) from X% to Y%, from Y% to Z%, or from Z% to 100% of the set output of the engine generator 20, the load rate is greater than 60 (%/min) to stepwise increase the load.
 本発明者は、動力機関として例えば蒸気タービンを用いた場合について検討を行ったところ、昇負荷をステップ状に行った場合に、蒸気タービンに急激な負荷変動を与えてしまう点に着目した。この場合、蒸気タービンに与える急激な負荷変動に起因して、トルクやエンタルピの変化も大きくなり、熱応力による材料の劣化、タービン軸の振動、および車室から車軸間の伸び差による接触などの不具合を生じる可能性が高くなる。そのため、負荷の増加をステップ状に行うことは好ましくないことが判明した。これに対し、第1の実施形態のように、昇負荷を線形状または階段状に行うと、無段階ではない一定期間での負荷の増加、または無段階ではない一定期間での負荷の増加後に発電設備を安定させるための整定期間が設けられることになるため、ステップ状に負荷を増加させる場合に生じる問題点を抑制することが可能になる。 The present inventor studied a case where, for example, a steam turbine was used as the power engine, and noticed that if the load was increased stepwise, the steam turbine would experience sudden load fluctuations. In this case, due to sudden load fluctuations on the steam turbine, changes in torque and enthalpy also increase, leading to deterioration of materials due to thermal stress, vibration of the turbine shaft, and contact due to differential elongation between the casing and the axle. more likely to cause problems. Therefore, it was found that it is not preferable to increase the load stepwise. On the other hand, if the load is increased linearly or stepwise as in the first embodiment, the load increases in a non-stepped constant period, or after the load increases in a non-stepped constant period Since a settling period is provided for stabilizing the power generation equipment, it is possible to suppress problems that occur when the load is increased stepwise.
 本発明者は、以上のようにして得た知見から、昇負荷レートα(%/min)としては0%/minより大きく60%/min以下(0<α≦60)とすることが好ましいことを想到した。さらに、本発明者が蒸気タービンやその他の動力機関に対して同様に検討を行ったところ、昇負荷レートαとしては、0%/minより大きく60%/min以下(0<α≦60)が好ましく、45%/min以上60%/min以下(45≦α≦60)がより好ましいことが確認された。 From the findings obtained by the present inventors as described above, the load increase rate α (%/min) is preferably greater than 0%/min and 60%/min or less (0<α≦60). I came up with Furthermore, when the present inventor conducted similar studies on steam turbines and other power engines, the load increase rate α was greater than 0%/min and 60%/min or less (0<α≦60). It was confirmed that 45%/min or more and 60%/min or less (45≦α≦60) is more preferable.
 以上説明した、本発明の第1の実施形態によれば、互いに独立に制御可能な複数台の模擬負荷301~304を、エンジン発電機20に負荷を投入可能な状態で接続させ、エンジン発電機20の起動時において、少なくとも1台の模擬負荷301を制御する模擬負荷調整器311に対して、少なくともエンジン発電機20がトリップしない負荷容量を、0%から100%までステップ状に瞬時に投入していることにより、残りの模擬負荷302~304をそれぞれ、順次0%から100%まで増加させるように投入した場合においても、エンジン発電機20を、トリップを回避しつつ安定して起動させることが可能になる。 According to the first embodiment of the present invention described above, a plurality of independently controllable simulated loads 301 to 304 are connected to the engine generator 20 in a state in which the load can be applied, and the engine generator 20, a load capacity that does not trip at least the engine generator 20 is instantaneously stepped from 0% to 100% to the simulated load regulator 311 that controls at least one simulated load 301. As a result, even when the remaining simulated loads 302 to 304 are sequentially increased from 0% to 100%, the engine generator 20 can be stably started while avoiding tripping. be possible.
 (第2の実施形態による制御方法)
 次に、本発明の第2の実施形態における制御装置10による制御方法について説明する。第2の実施形態による制御方法を示すフローチャートは、図7に示す第1の実施形態と同様である。第2の実施形態による制御方法としては、それぞれの模擬負荷301~304が互いに異なる昇負荷レート(線形)で昇負荷される場合について説明する。
(Control method according to the second embodiment)
Next, a control method by the control device 10 according to the second embodiment of the present invention will be described. A flowchart showing the control method according to the second embodiment is the same as that of the first embodiment shown in FIG. As a control method according to the second embodiment, a case where the respective simulated loads 301 to 304 are boosted at different load boost rates (linear) will be described.
 図13は、第2の実施形態における制御装置10による図7に対応する制御の一例を示すグラフである。図13に示すSTは、図7に示すステップに相当する。図7に示すフローチャートは、第1の実施形態と同様に、商用電力系統40が停電状態になってエンジン発電機20が電力負荷50から解列された後、エンジン発電機20の起動で開始される。 FIG. 13 is a graph showing an example of control corresponding to FIG. 7 by the control device 10 in the second embodiment. ST shown in FIG. 13 corresponds to the steps shown in FIG. As in the first embodiment, the flowchart shown in FIG. 7 is started by activating the engine generator 20 after the commercial power system 40 is in a power failure state and the engine generator 20 is disconnected from the power load 50. be.
 第2の実施形態においては、図7および図13に示すように、第1の実施形態と同様にしてステップST1,ST2を実行する。制御装置10が、エンジン発電機20の出力が安定状態であると判定した場合(ステップST2:Yes)、ステップST3に移行する。ステップST3において制御装置10は、第2の投入制御として、複数台の模擬負荷301~304から2台目以降、ここでは2台目の模擬負荷302を、エンジン発電機20に対して、時点TST2から時点TST3までの間で負荷容量の0%から100%まで線形状または階段状に投入させる。すなわち、制御装置10は、調整信号を模擬負荷調整器312に出力して模擬負荷302の負荷を制御することにより、エンジン発電機20に対して模擬負荷302の負荷を、昇負荷レートを60(%/min)以下としつつY%まで増加させる。なお、図13において、太点線は、昇負荷レートが60(%/min)を示す。これにより、エンジン発電機20に対して投入される負荷容量は、エンジン発電機20の設定出力のX%からY%まで増加する。図13に示す例では、傾きを60(%/min)以下の例えば45(%/min)としつつ、模擬負荷302の負荷を線形的に増加させてエンジン発電機20の設定出力のX%からY%まで投入している。なお、第2の実施形態においてY%は、例えば50%である。 In the second embodiment, as shown in FIGS. 7 and 13, steps ST1 and ST2 are executed in the same manner as in the first embodiment. When the control device 10 determines that the output of the engine generator 20 is in a stable state (step ST2: Yes), the process proceeds to step ST3. In step ST3, as the second input control, the control device 10 selects the second and later simulated loads 301 to 304 from the plurality of simulated loads 301 to 304, here the second simulated load 302, to the engine generator 20 at time T From ST2 to time TST3 , the load capacity is applied linearly or stepwise from 0% to 100%. That is, the control device 10 controls the load of the simulated load 302 by outputting the adjustment signal to the simulated load adjuster 312, thereby adjusting the load of the simulated load 302 to the engine generator 20 and increasing the load-up rate to 60 ( %/min) while increasing to Y %. In FIG. 13, the thick dotted line indicates the load increase rate of 60 (%/min). As a result, the load capacity applied to the engine generator 20 increases from X% of the set output of the engine generator 20 to Y%. In the example shown in FIG. 13, the load of the simulated load 302 is linearly increased while the slope is set to 60 (%/min) or less, for example, 45 (%/min), and the set output of the engine generator 20 is increased from X% We have invested up to Y%. Note that Y% is, for example, 50% in the second embodiment.
 次に、ステップST4に移行して制御装置10は、複数台の模擬負荷301~304から2台目以降、ここでは3台目の模擬負荷303を、エンジン発電機20に対して、時点TST3から時点TST4までの間で負荷容量の0%から100%まで線形状または階段状に投入させる。すなわち、制御装置10は、調整信号を模擬負荷調整器313に出力して模擬負荷303の負荷を制御することにより、昇負荷レートを60(%/min)以下としつつ、エンジン発電機20に対して模擬負荷303の負荷を、エンジン発電機20の設定出力のY%からZ%まで増加させる。図13に示す例では、傾きを60(%/min)以下の例えば60(%/min)としつつ、模擬負荷303の負荷を線形的に増加させてエンジン発電機20の設定出力のY%からZ%まで投入している。なお、第2の実施形態においてZ%は、例えば75%である。 Next, in step ST4, the control device 10 selects the second and subsequent simulated loads 303 from the plurality of simulated loads 301 to 304, here the third simulated load 303, to the engine generator 20 at time T ST3. to time T ST4 , the load capacity is applied linearly or stepwise from 0% to 100%. That is, the control device 10 controls the load of the simulated load 303 by outputting the adjustment signal to the simulated load adjuster 313, so that the load increase rate is set to 60 (%/min) or less, and the engine generator 20 to increase the load of the simulated load 303 from Y% of the set output of the engine generator 20 to Z%. In the example shown in FIG. 13, the load of the simulated load 303 is linearly increased while the slope is set to 60 (%/min) or less, for example, 60 (%/min), and the set output of the engine generator 20 is increased from Y%. We have invested up to Z%. Note that Z % is, for example, 75% in the second embodiment.
 次に、ステップST5に移行して制御装置10は、複数台の模擬負荷301~304から2台目以降、ここでは4台目の模擬負荷304を、エンジン発電機20に対して、時点TST4から時点T2A(TST5)までの間で負荷容量の0%から100%まで線形状または階段状に投入させる。すなわち、制御装置10は、調整信号を模擬負荷調整器314に出力して模擬負荷304の負荷を制御することにより、昇負荷レートを(60%/min)以下としつつ、エンジン発電機20に対して模擬負荷304の負荷を、エンジン発電機20の設定出力のZ%から100%まで増加させる。図13に示す例では、模擬負荷304の負荷を、昇負荷レートを60(%/min)以下の45(%/min)としつつ、線形的に増加させてエンジン発電機20の設定出力のZ%から100%まで投入している。 Next, in step ST5, the control device 10 selects the second and subsequent simulated loads 304 from the plurality of simulated loads 301 to 304, here the fourth simulated load 304, to the engine generator 20 at time T ST4 . from 0% to 100% of the load capacity in a linear or stepwise manner from time T 2A (T ST5 ). That is, the control device 10 controls the load of the simulated load 304 by outputting the adjustment signal to the simulated load adjuster 314 so that the engine generator 20 is to increase the load of the simulated load 304 from Z% of the set output of the engine generator 20 to 100%. In the example shown in FIG. 13, the load of the simulated load 304 is linearly increased while the load-up rate is set to 45 (%/min) below 60 (%/min) to set the output Z of the engine generator 20. % to 100%.
 上述したX%、Y%、およびZ%はそれぞれ任意に設定することが可能である。すなわち、模擬負荷301~304に対して任意の制御範囲を割り当てて、それぞれの模擬負荷301~304に対して個別に制御して、それぞれの模擬負荷301~304における負荷設定率であるMVを0%から100%まで増加させる。その結果、模擬負荷群30におけるMVを100%にした場合に、エンジン発電機20の設定出力まで負荷が投入される。 The above X%, Y%, and Z% can be set arbitrarily. That is, an arbitrary control range is assigned to the simulated loads 301 to 304, each of the simulated loads 301 to 304 is individually controlled, and MV, which is the load setting ratio of each of the simulated loads 301 to 304, is set to 0. % to 100%. As a result, when the MV in the simulated load group 30 is set to 100%, the load is applied up to the set output of the engine generator 20 .
 上述したステップST3,ST4,ST5における、制御装置10による負荷の増加においては、図13中太線で示すように、それぞれの模擬負荷301~304における昇負荷レートをそれぞれ独立して設定されている。この場合、負荷の増加における発電出力の傾向は、図13に示すように折れ線状になる。ここで、昇負荷レートはそれぞれ以下の(1-1)式、(1-2)式、および(1-3)式に示すように導出される。
 ステップST3の昇負荷レート=(Y-X)/(TST3-TST2)…(1-1)
 ステップST4の昇負荷レート=(Z-Y)/(TST4-TST3)…(1-2)
 ステップST5の昇負荷レート=(100-Z)/(TST5-TST4)…(1-3)
 第2の実施形態においては、(1-1)式~(1-3)式に示す昇負荷レートは、上限値の60%/min以下(図13において(100-X)/(T2-TST2)以下)である必要がある。
When the load is increased by the control device 10 in steps ST3, ST4, and ST5 described above, as indicated by the thick line in FIG. 13, the load increase rate for each of the simulated loads 301 to 304 is set independently. In this case, the tendency of the power generation output as the load increases becomes a polygonal line as shown in FIG. Here, the boost rate is derived as shown in the following equations (1-1), (1-2) and (1-3) respectively.
Boost rate of step ST3 = (Y - X) / (T ST3 - T ST2 ) (1-1)
Boost rate of step ST4 = (ZY) / (T ST4 - T ST3 ) (1-2)
Boost rate of step ST5=(100-Z)/(T ST5 -T ST4 ) (1-3)
In the second embodiment, the load boost rate shown in formulas (1-1) to (1-3) is 60%/min or less of the upper limit ((100-X)/(T 2 - T ST2 ) below).
 その後、第1の実施形態と同様にして、ステップST6,ST7を実行する。以上により、第2の実施形態による制御装置10によるエンジン発電機20に投入する負荷の制御処理、すなわち模擬負荷群30および模擬負荷消費電力調整器31に対する制御処理が終了する。 After that, steps ST6 and ST7 are executed in the same manner as in the first embodiment. As described above, the control processing of the load to be applied to the engine generator 20 by the control device 10 according to the second embodiment, that is, the control processing for the simulated load group 30 and the simulated load power consumption adjuster 31 is completed.
 第2の実施形態によれば、エンジン発電機20の起動において、昇負荷レートを60(%/min)以下として負荷投入していることにより、第1の実施形態と同様の効果を得ることができる。 According to the second embodiment, when the engine generator 20 is started, the load is applied at a load increase rate of 60 (%/min) or less, so that the same effect as in the first embodiment can be obtained. can.
 (第3の実施形態による制御方法)
 次に、本発明の第3の実施形態における制御装置10による制御方法について説明する。第3の実施形態による制御方法を示すフローチャートは、図7に示す第1の実施形態と同様である。第3の実施形態による制御方法としては、それぞれの模擬負荷301~304が互いに異なる昇負荷レートで階段状、すなわち所定時間の負荷維持制御を間に挟みつつ昇負荷する場合について説明する。
(Control method according to the third embodiment)
Next, a control method by the control device 10 according to the third embodiment of the present invention will be described. A flow chart showing the control method according to the third embodiment is the same as that of the first embodiment shown in FIG. As a control method according to the third embodiment, a case where the respective simulated loads 301 to 304 are increased at different load increase rates in a stepwise manner, that is, while load maintenance control is performed for a predetermined period of time, will be described.
 図14は、第3の実施形態における制御装置10による図7に対応する制御の一例を示すグラフである。図14に示すSTは、図7に示すステップに相当する。図7に示すフローチャートは、第1の実施形態と同様に、商用電力系統40が停電状態になってエンジン発電機20が電力負荷50から解列された後、エンジン発電機20の起動で開始される。 FIG. 14 is a graph showing an example of control corresponding to FIG. 7 by the control device 10 in the third embodiment. ST shown in FIG. 14 corresponds to the steps shown in FIG. As in the first embodiment, the flowchart shown in FIG. 7 is started by activating the engine generator 20 after the commercial power system 40 is in a power failure state and the engine generator 20 is disconnected from the power load 50. be.
 第3の実施形態においては、図7および図14に示すように、第1の実施形態と同様にしてステップST1,ST2を実行する。制御装置10が、エンジン発電機20の出力が安定状態であると判定した場合(ステップST2:Yes)、ステップST3に移行する。ステップST3において制御装置10は、第2の投入制御として、複数台の模擬負荷301~304から2台目以降、ここでは2台目の模擬負荷302を、エンジン発電機20に対して、時点TST2から時点TST3eまでの間で負荷容量の0%から100%まで線形状に投入させる。すなわち、制御装置10は、調整信号を模擬負荷調整器312に出力して模擬負荷302の負荷を制御することにより、エンジン発電機20に対して模擬負荷302の負荷を、昇負荷レートを60(%/min)以下としつつY%まで増加させる。なお、図14において、太点線は、昇負荷レートが60(%/min)を示す。これにより、エンジン発電機20に対して投入される負荷容量は、エンジン発電機20の設定出力のX%からY%まで増加する。図14に示す例では、傾きを60(%/min)以下の45(%/min)としつつ、模擬負荷302の負荷を線形的に増加させてエンジン発電機20の設定出力のX%からY%まで投入している。なお、第3の実施形態においてY%は、50%である。 In the third embodiment, as shown in FIGS. 7 and 14, steps ST1 and ST2 are executed in the same manner as in the first embodiment. When the control device 10 determines that the output of the engine generator 20 is in a stable state (step ST2: Yes), the process proceeds to step ST3. In step ST3, as the second input control, the control device 10 selects the second and later simulated loads 301 to 304 from the plurality of simulated loads 301 to 304, here the second simulated load 302, to the engine generator 20 at time T From ST2 to time TST3e , the load capacity is linearly applied from 0% to 100%. That is, the control device 10 controls the load of the simulated load 302 by outputting the adjustment signal to the simulated load adjuster 312, thereby adjusting the load of the simulated load 302 to the engine generator 20 and increasing the load-up rate to 60 ( %/min) while increasing to Y%. In addition, in FIG. 14, the thick dotted line indicates a load increase rate of 60 (%/min). As a result, the load capacity applied to the engine generator 20 increases from X% of the set output of the engine generator 20 to Y%. In the example shown in FIG. 14, the load of the simulated load 302 is linearly increased while the slope is set to 45 (%/min) below 60 (%/min) to increase the set output of the engine generator 20 from X% to Y We have invested up to %. Note that Y% is 50% in the third embodiment.
 次に、ステップST4に移行して制御装置10は、複数台の模擬負荷301~304から2台目以降、ここでは3台目の模擬負荷303を、エンジン発電機20に対して、時点TST3eから時点TST4eまでの間で負荷容量の0%から100%まで階段状に投入させる。すなわち、制御装置10は、調整信号を模擬負荷調整器313に出力して模擬負荷303の負荷を制御することにより、一定の負荷維持制御時間および昇負荷レートを、60(%/min)以下を含みつつ、エンジン発電機20に対して模擬負荷303の負荷を、エンジン発電機20の設定出力のY%からZ%まで増加させる。図14に示す例では、時点TST3eから時点TST4sまでの間において負荷の増加率を0(%/min)として投入負荷を一定に維持する制御を行った後、時点TST4sから時点TST4eまで、模擬負荷303の負荷の模擬負荷レートを60(%/min)にしつつ線形的に増加させて、エンジン発電機20の設定出力のY%からZ%まで投入する。なお、第3の実施形態においてZ%は、75%である。なお、第3の実施形態において、上述したように一定の負荷維持制御の時間を設けている理由は、発電設備(蒸気タービン)によっては、負荷を急激に上げた場合にケーシングと車軸の熱膨張の差が大きくなり、接触や故障の原因となったり、材料の疲労破壊などのリスクが増加したりするため、温度環境に発電設備自体を慣らす意味で必要となる場合があるものである。 Next, in step ST4, the control device 10 selects the second and subsequent simulated loads 303 from the plurality of simulated loads 301 to 304, here the third simulated load 303, to the engine generator 20 at time T ST3e . to time TST4e , the load capacity is stepped from 0% to 100%. That is, control device 10 controls the load of simulated load 303 by outputting an adjustment signal to simulated load adjuster 313, thereby reducing the constant load maintenance control time and load increase rate to 60 (%/min) or less. While including, the load of the simulated load 303 on the engine generator 20 is increased from Y% to Z% of the set output of the engine generator 20 . In the example shown in FIG. 14, after the load increase rate is set to 0 (% / min) from time T ST3e to time T ST4s and control is performed to keep the applied load constant, , the simulated load rate of the simulated load 303 is set to 60 (%/min) and linearly increased, and the set output of the engine generator 20 is increased from Y% to Z%. Note that Z% is 75% in the third embodiment. In the third embodiment, the reason why the constant load maintenance control time is provided as described above is that depending on the power generation equipment (steam turbine), thermal expansion of the casing and the axle may occur when the load is suddenly increased. The difference in temperature increases, causing contact and failure, and increasing the risk of material fatigue failure.
 次に、ステップST5に移行して制御装置10は、複数台の模擬負荷301~304から2台目以降、ここでは4台目の模擬負荷304を、エンジン発電機20に対して、時点TST4eから時点T2A(TST5e)までの間で負荷容量の0%から100%まで階段状に投入させる。すなわち、制御装置10は、調整信号を模擬負荷調整器314に出力して模擬負荷304の負荷を制御することにより、一定の負荷維持制御時間および昇負荷レートを、60(%/min)以下を含みつつ、エンジン発電機20に対して模擬負荷304の負荷を、エンジン発電機20の設定出力のZ%から100%まで増加させる。図14に示す例では、時点TST4eから時点TST5sまでの間において負荷の増加率を0%/minとして投入負荷を一定とした後、時点TST5sから時点TST2A(TST5e)まで、模擬負荷303の負荷の増加率を60(%/min)にしつつ線形的に増加させて、エンジン発電機20の設定出力のY%からZ%まで投入する。 Next, in step ST5, the control device 10 selects the second and subsequent simulated loads 304 from the plurality of simulated loads 301 to 304, here the fourth simulated load 304, to the engine generator 20 at time T ST4e. to time T 2A (T ST5e ), the load capacity is stepped from 0% to 100%. That is, control device 10 controls the load of simulated load 304 by outputting an adjustment signal to simulated load adjuster 314, thereby reducing the constant load maintenance control time and load increase rate to 60 (%/min) or less. While including, the load of the simulated load 304 on the engine generator 20 is increased from Z% of the set output of the engine generator 20 to 100%. In the example shown in FIG. 14, after the input load is kept constant by setting the load increase rate to 0%/min from time T ST4e to time T ST5s , simulation is performed from time T ST5s to time T ST2A (T ST5e ). The load increase rate of the load 303 is increased linearly at 60 (%/min), and the set output of the engine generator 20 is increased from Y% to Z%.
 上述したX%、Y%、およびZ%はそれぞれ任意に設定することが可能である。すなわち、模擬負荷301~304に対して任意の制御範囲を割り当てて、それぞれの模擬負荷301~304に対して個別に制御して、それぞれの模擬負荷301~304における負荷設定率であるMVを0%から100%まで増加させる。その結果、模擬負荷群30におけるMVを100%にした場合に、エンジン発電機20の設定出力まで負荷が投入される。 The above X%, Y%, and Z% can be set arbitrarily. That is, an arbitrary control range is assigned to the simulated loads 301 to 304, each of the simulated loads 301 to 304 is individually controlled, and MV, which is the load setting ratio of each of the simulated loads 301 to 304, is set to 0. % to 100%. As a result, when the MV in the simulated load group 30 is set to 100%, the load is applied up to the set output of the engine generator 20 .
 上述したステップST3,ST4,ST5における、制御装置10による負荷の増加においては、図14中太線で示すように、それぞれの模擬負荷301~304における昇負荷レートをそれぞれ独立して設定されている。この場合、負荷の増加における発電出力の傾向は、図14に示すように折れ線状になる。ここで、昇負荷レートはそれぞれ以下の(2-1)式、(2-2)式、および(2-3)式に示すように導出される。
 ステップST3の昇負荷レート=(Y-X)/(TST3e-TST2)…(2-1)
 ステップST4の昇負荷レート=(Z-Y)/(TST4e-TST4s)…(2-2)
 ステップST5の昇負荷レート=(100-Z)/(TST5e-TST5s)…(2-3)
 第3の実施形態においては、(2-1)式~(2-3)式に示す昇負荷レートは、上限値の60%/min以下(図14において(100-X)/(T2-TST2)以下)である必要がある。
When the load is increased by the control device 10 in steps ST3, ST4, and ST5 described above, as indicated by the thick line in FIG. 14, the load increase rate for each of the simulated loads 301 to 304 is set independently. In this case, the tendency of the power generation output as the load increases becomes a polygonal line as shown in FIG. Here, the boost rate is derived as shown in the following equations (2-1), (2-2) and (2-3) respectively.
Boosting load rate of step ST3=(Y−X)/(T ST3e −T ST2 ) (2-1)
Boosting load rate of step ST4=(Z−Y)/(T ST4e −T ST4s ) (2-2)
Boost rate of step ST5 = (100-Z)/(T ST5e - T ST5s ) (2-3)
In the third embodiment, the load boost rate shown in formulas (2-1) to (2-3) is 60%/min or less of the upper limit ((100-X)/(T 2 - T ST2 ) below).
 その後、第1および第2の実施形態と同様にして、ステップST6,ST7を実行する。以上により、第3の実施形態による制御装置10によるエンジン発電機20に投入する負荷の制御処理、すなわち模擬負荷群30および模擬負荷消費電力調整器31に対する制御処理が終了する。 After that, steps ST6 and ST7 are executed in the same manner as in the first and second embodiments. As described above, the control processing of the load to be applied to the engine generator 20 by the control device 10 according to the third embodiment, that is, the control processing for the simulated load group 30 and the simulated load power consumption adjuster 31 is completed.
 第3の実施形態によれば、エンジン発電機20の起動において、昇負荷レートを60%/min以下として負荷投入していることにより、第1および第2の実施形態と同様の効果を得ることができる。 According to the third embodiment, when the engine generator 20 is started, the load is applied at a load increase rate of 60%/min or less, thereby obtaining the same effects as those of the first and second embodiments. can be done.
 以上、本発明の実施形態について具体的に説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。例えば、上述の実施形態において挙げた数値はあくまでも例に過ぎず、必要に応じてこれと異なる数値を用いてもよく、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。 Although the embodiments of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments, and various modifications are possible based on the technical ideas of the present invention. For example, the numerical values given in the above-described embodiments are merely examples, and different numerical values may be used if desired. is not limited.
 (記録媒体)
 上述の実施形態において、制御装置10が実行する処理方法を実行させるプログラムを、コンピュータその他の機械などの装置(以下、コンピュータなど、という)が読み取り可能な記録媒体に記録することができる。コンピュータなどに、この記録媒体のプログラムを読み込ませて実行させることにより、当該コンピュータなどが制御装置10として機能する。ここで、コンピュータなどが読み取り可能な記録媒体とは、データやプログラムなどの情報を電気的、磁気的、光学的、機械的、または化学的作用によって蓄積し、コンピュータなどから読み取ることができる非一時的な記録媒体をいう。このような記録媒体のうちのコンピュータなどから取り外し可能なものとしては、例えばフレキシブルディスク、光磁気ディスク、CD-ROM、CD-R/W、DVD、BD、DAT、磁気テープ、フラッシュメモリなどのメモリカードなどがある。また、コンピュータなどに固定された記録媒体としてハードディスク、ROMなどがある。さらに、SSDは、コンピュータなどから取り外し可能な記録媒体としても、コンピュータなどに固定された記録媒体としても利用可能である。
(recoding media)
In the above-described embodiment, the program for executing the processing method executed by the control device 10 can be recorded in a recording medium readable by a device such as a computer or other machine (hereinafter referred to as a computer or the like). The computer or the like functions as the control device 10 by causing the computer or the like to read and execute the program of the recording medium. Here, a computer-readable recording medium is a non-temporary medium that stores information such as data and programs by electrical, magnetic, optical, mechanical, or chemical action and can be read by a computer or the like. a recording medium. Examples of such recording media that can be removed from a computer include flexible disks, magneto-optical disks, CD-ROMs, CD-R/Ws, DVDs, BDs, DATs, magnetic tapes, flash memories, and other memories. There are cards, etc. In addition, there are a hard disk, a ROM, and the like as a recording medium fixed to a computer or the like. Furthermore, SSD can be used as a recording medium that can be removed from a computer or the like, or as a recording medium that is fixed to a computer or the like.
 また、実施形態による制御装置10に実行させるプログラムは、インターネットなどのネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。 Also, the program to be executed by the control device 10 according to the embodiment may be stored on a computer connected to a network such as the Internet, and provided by being downloaded via the network.
(その他の実施形態)
 上述した実施形態においては、上述した「部」を「回路」などに読み替えることができる。例えば、制御部は、制御回路に読み替えることができる。
(Other embodiments)
In the above-described embodiments, the above-described "unit" can be read as "circuit" or the like. For example, the controller can be read as a control circuit.
 なお、本明細書におけるフローチャートの説明では、「まず」、「次に」、「その後」、「続いて」などの表現を用いてステップ間の処理の前後関係を明示していたが、本実施の形態を実施するために必要な処理の順序は、それらの表現によって一意的に定められるわけではない。すなわち、本明細書で記載したフローチャートにおける処理の順序は、矛盾のない範囲で変更することができる。 In the description of the flowcharts in this specification, expressions such as “first”, “next”, “after”, and “following” are used to clearly indicate the anteroposterior relationship of processing between steps. The order of operations required to implement aspects of is not uniquely defined by those representations. That is, the order of processing in the flow charts described herein can be changed within a consistent range.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。本開示のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付のクレームおよびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. The broader aspects of the disclosure are not limited to the specific details and representative embodiments shown and described above. Accordingly, various changes may be made without departing from the spirit or scope of the general inventive concept defined by the appended claims and equivalents thereof.
 本発明に係る発電システム、制御装置、制御方法、およびプログラムは、調速機を備えたエンジン発電機に適用して好適なものである。 The power generation system, control device, control method, and program according to the present invention are suitable for application to an engine generator equipped with a speed governor.
1 発電システム
10 制御装置
11 判定制御部
12 加算部
13 差分演算部
14 制御感度演算部
15 制御出力演算部
16 記憶部
20 エンジン発電機
21 内燃機関
22 発電機
30 模擬負荷群
31 模擬負荷消費電力調整器
40 商用電力系統
50 電力負荷
61 発電電力計測部
62 電力負荷消費電力計測部
63 模擬負荷消費電力計測部
111 第1電力制御モード部
112 第2電力制御モード部
113 第3電力制御モード部
301,302,303,304 模擬負荷
311,312,313,314 模擬負荷調整器
1 power generation system 10 control device 11 determination control unit 12 addition unit 13 difference calculation unit 14 control sensitivity calculation unit 15 control output calculation unit 16 storage unit 20 engine generator 21 internal combustion engine 22 generator 30 simulated load group 31 simulated load power consumption adjustment device 40 commercial power system 50 power load 61 generated power measuring unit 62 power load power consumption measuring unit 63 simulated load power consumption measuring unit 111 first power control mode unit 112 second power control mode unit 113 third power control mode unit 301, 302, 303, 304 Simulated loads 311, 312, 313, 314 Simulated load adjusters

Claims (8)

  1.  調速機を備える動力機関の駆動によって発電電力を制御する発電機と、
     前記動力機関が駆動している状態で前記発電機の発電電力を消費可能、かつ消費電力を調整可能に所定の負荷容量が設定される模擬負荷と、
     前記模擬負荷の消費電力を0から設定された前記所定の負荷容量まで増加させるように調整可能に構成された模擬負荷調整部と、
     前記模擬負荷調整部を制御することにより前記模擬負荷の消費電力を制御可能な制御部と、
     を備え、
     前記模擬負荷および前記模擬負荷調整部は、前記模擬負荷および前記模擬負荷調整部を一対として複数組設けられ、前記複数組の前記模擬負荷は、前記複数組を構成する前記模擬負荷の前記所定の負荷容量の合計が前記発電機の設定出力と略等しく、前記模擬負荷および前記模擬負荷調整部が、前記発電機に対して調整された負荷を互いに独立して投入可能に構成され、
     前記制御部は、
     前記複数の模擬負荷調整部のそれぞれに調整信号を出力して、前記発電機の起動時に前記複数の模擬負荷のうちの1つの模擬負荷について、前記発電機に対して無段階で0から前記所定の負荷容量まで瞬時に増加するように投入する第1の投入制御と、
     前記第1の投入制御の後から前記発電機の発電電力が安定するまでの間、前記1つの模擬負荷における前記所定の負荷容量を維持する維持制御と、
     前記維持制御の後、前記複数の模擬負荷のうちの前記1つの模擬負荷とは異なる他の1つの模擬負荷に対して、昇負荷レートが、0%/minより大きく60%/min以下を満たすように前記所定の負荷容量まで増加させる第2の投入制御と、
     を少なくとも含む制御を行う
     発電システム。
    a generator that controls generated power by driving a power engine equipped with a speed governor;
    a simulated load that can consume the power generated by the generator while the power engine is running and that has a predetermined load capacity set so that the power consumption can be adjusted;
    a simulated load adjustment unit configured to be adjustable so as to increase the power consumption of the simulated load from 0 to the predetermined load capacity set;
    a control unit capable of controlling power consumption of the simulated load by controlling the simulated load adjustment unit;
    with
    A plurality of pairs of the simulated load and the simulated load adjustment unit are provided, and the plurality of pairs of the simulated loads are the predetermined values of the simulated loads constituting the plurality of pairs. The total load capacity is substantially equal to the set output of the generator, and the simulated load and the simulated load adjustment unit are configured to be able to apply the adjusted load to the generator independently of each other,
    The control unit
    An adjustment signal is output to each of the plurality of simulated load adjustment units, and when the generator is started, one simulated load of the plurality of simulated loads is steplessly adjusted from 0 to the predetermined load with respect to the generator. a first closing control for instantaneously increasing the load capacity of
    maintenance control for maintaining the predetermined load capacity in the one simulated load from after the first input control until the power generated by the generator is stabilized;
    After the maintenance control, the load boost rate satisfies more than 0%/min and 60%/min or less for one of the plurality of simulated loads that is different from the one simulated load. a second closing control that increases up to the predetermined load capacity,
    A power generation system that performs control including at least a
  2.  前記第2の投入制御は、
     前記模擬負荷の負荷を、階段状、または線形状に、前記所定の負荷容量まで増加させる制御である
     請求項1に記載の発電システム。
    The second input control is
    The power generation system according to claim 1, wherein the load of the simulated load is increased stepwise or linearly to the predetermined load capacity.
  3.  前記模擬負荷および前記模擬負荷調整部の組は、2組以上設けられる
     請求項1または2に記載の発電システム。
    The power generation system according to claim 1 or 2, wherein two or more sets of the simulated load and the simulated load adjustment unit are provided.
  4.  前記第2の投入制御によって投入される模擬負荷における昇負荷レートが、0%/minより大きく45%/min以下を満たすように前記所定の負荷容量まで増加させる
     請求項3に記載の発電システム。
    4. The power generation system according to claim 3, wherein the load increase rate of the simulated load applied by the second application control is increased to the predetermined load capacity so as to satisfy a value greater than 0%/min and equal to or less than 45%/min.
  5.  前記制御部は、
     前記発電機に対して前記複数の模擬負荷の投入が終了した後、前記模擬負荷と異なる電力負荷に対して、前記発電機による発電電力の供給を開始させ、
     前記電力負荷による消費電力の変動に対応させて、前記模擬負荷の消費電力を増減させるように前記模擬負荷調整部を制御する
     請求項1に記載の発電システム。
    The control unit
    After the plurality of simulated loads have been applied to the generator, supply of power generated by the generator to a power load different from the simulated load is started;
    The power generation system according to claim 1, wherein the simulated load adjuster is controlled to increase or decrease the power consumption of the simulated load in response to fluctuations in power consumption due to the power load.
  6.  調速機を備える動力機関の駆動によって発電電力を制御する発電機の発電電力を消費可能、かつ消費電力を調整可能に所定の負荷容量が設定される複数の模擬負荷と、前記複数の模擬負荷の消費電力をそれぞれ個別に0から設定された前記所定の負荷容量まで増加させるように調整可能に構成され前記複数の模擬負荷と一対に設けられる複数の模擬負荷調整部と、を制御可能な制御部を備える制御装置であって、
     前記模擬負荷および前記模擬負荷調整部は一対として複数組設けられ、前記複数組の前記模擬負荷は、前記複数組を構成する前記模擬負荷の前記所定の負荷容量の合計が前記発電機の設定出力と略等しく、それぞれの一対の前記模擬負荷および前記模擬負荷調整部が、前記発電機に対して調整された負荷を互いに独立して投入可能に構成され、
     前記制御部は、
     前記複数の模擬負荷調整部のそれぞれに調整信号を出力して、前記発電機の起動時に前記複数の模擬負荷のうちの1つの模擬負荷について、前記発電機に対して無段階で0から前記所定の負荷容量まで瞬時に増加するように投入する第1の投入制御と、
     前記第1の投入制御の後から前記発電機の発電電力が安定するまでの間、前記1つの模擬負荷における前記所定の負荷容量を維持する維持制御と、
     前記維持制御の後、前記複数の模擬負荷のうちの前記1つの模擬負荷とは異なる他の1つの模擬負荷に対して、昇負荷レートが0%/minより大きく60%/min以下を満たすように前記所定の負荷容量まで増加させる第2の投入制御と、
     を少なくとも含む制御を行う
     制御装置。
    a plurality of simulated loads configured to have predetermined load capacities that are capable of consuming power generated by a generator that controls the generated power by driving a power engine equipped with a speed governor and that are capable of adjusting the power consumption; and the plurality of simulated loads. A control capable of controlling the plurality of simulated loads and the plurality of simulated load adjustment units provided in pairs, configured to be adjustable so as to individually increase the power consumption of from 0 to the predetermined load capacity set. A control device comprising:
    A plurality of sets of the simulated load and the simulated load adjustment unit are provided as a pair, and the plurality of sets of the simulated loads are the total of the predetermined load capacities of the simulated loads that constitute the plurality of sets. substantially equal to each other, each pair of the simulated load and the simulated load adjustment unit is configured to be able to apply the adjusted load to the generator independently of each other,
    The control unit
    An adjustment signal is output to each of the plurality of simulated load adjustment units, and when the generator is started, one simulated load of the plurality of simulated loads is steplessly adjusted from 0 to the predetermined load with respect to the generator. a first closing control for instantaneously increasing the load capacity to
    maintenance control for maintaining the predetermined load capacity in the one simulated load from after the first input control until the power generated by the generator is stabilized;
    After the maintenance control, for one of the plurality of simulated loads that is different from the one simulated load, the load increase rate is greater than 0%/min and less than or equal to 60%/min. a second closing control for increasing the load capacity to the predetermined load capacity;
    A control device that performs control including at least
  7.  調速機を備える動力機関の駆動によって発電電力を制御する発電機の発電電力を消費可能、かつ消費電力を調整可能に所定の負荷容量が設定される複数の模擬負荷と、前記複数の模擬負荷の消費電力をそれぞれ個別に0から設定された前記所定の負荷容量まで増加させるように調整可能に構成され前記複数の模擬負荷と一対に設けられる複数の模擬負荷調整部と、を制御可能な制御部が実行する制御方法であって、
     前記模擬負荷および前記模擬負荷調整部は一対として複数組設けられ、前記複数組の前記模擬負荷は、前記複数組を構成する前記模擬負荷の前記所定の負荷容量の合計が前記発電機の設定出力と略等しく、それぞれの一対の前記模擬負荷および前記模擬負荷調整部が、前記発電機に対して調整された負荷を互いに独立して投入可能であり、
     前記制御部が、
     前記複数の模擬負荷調整部のそれぞれに調整信号を出力して、前記発電機の起動時に前記複数の模擬負荷のうちの1つの模擬負荷について、前記発電機に対して無段階で0から前記所定の負荷容量まで瞬時に増加するように投入する第1の投入制御と、
     前記第1の投入制御の後から前記発電機の発電電力が安定するまでの間、前記1つの模擬負荷における前記所定の負荷容量を維持する維持制御と、
     前記維持制御の後、前記複数の模擬負荷のうちの前記1つの模擬負荷とは異なる他の1つの模擬負荷に対して、昇負荷レートが0%/minより大きく60%/min以下を満たすように前記所定の負荷容量まで増加させる第2の投入制御と、
     を少なくとも含む制御を行う
     制御方法。
    a plurality of simulated loads configured to have predetermined load capacities that are capable of consuming power generated by a generator that controls the generated power by driving a power engine equipped with a speed governor and that are capable of adjusting the power consumption; and the plurality of simulated loads. A control capable of controlling the plurality of simulated loads and the plurality of simulated load adjustment units provided in pairs, configured to be adjustable so as to individually increase the power consumption of from 0 to the predetermined load capacity set. A control method executed by the
    A plurality of sets of the simulated load and the simulated load adjustment unit are provided as a pair, and the plurality of sets of the simulated loads are the total of the predetermined load capacities of the simulated loads that constitute the plurality of sets. and each pair of the simulated load and the simulated load adjustment unit can independently apply the adjusted load to the generator,
    The control unit
    An adjustment signal is output to each of the plurality of simulated load adjustment units, and when the generator is started, one simulated load of the plurality of simulated loads is steplessly adjusted from 0 to the predetermined load with respect to the generator. a first closing control for instantaneously increasing the load capacity of
    maintenance control for maintaining the predetermined load capacity in the one simulated load from after the first input control until the power generated by the generator is stabilized;
    After the maintenance control, for one of the plurality of simulated loads that is different from the one simulated load, the load increase rate is greater than 0%/min and less than or equal to 60%/min. a second closing control for increasing the load capacity to the predetermined load capacity;
    A control method that performs control including at least
  8.  調速機を備える動力機関の駆動によって発電電力を制御する発電機の発電電力を消費可能、かつ消費電力を調整可能に所定の負荷容量が設定される複数の模擬負荷と、前記複数の模擬負荷の消費電力をそれぞれ個別に0から設定された前記所定の負荷容量まで増加させるように調整可能に構成され前記複数の模擬負荷と一対に設けられる複数の模擬負荷調整部と、を制御可能、かつ前記模擬負荷および前記模擬負荷調整部が一対として複数組設けられ、前記複数組の前記模擬負荷は、前記複数組を構成する前記模擬負荷の前記所定の負荷容量の合計が前記発電機の設定出力と略等しく、それぞれの一対の前記模擬負荷および前記模擬負荷調整部を前記発電機に対して調整した負荷を互いに独立して投入するように制御可能な制御部に、
     前記複数の模擬負荷調整部のそれぞれに調整信号を出力して、前記発電機の起動時に前記複数の模擬負荷のうちの1つの模擬負荷について、前記発電機に対して無段階で0から前記所定の負荷容量まで瞬時に増加するように投入する第1の投入制御と、
     前記第1の投入制御の後から前記発電機の発電電力が安定するまでの間、前記1つの模擬負荷における前記所定の負荷容量を維持する維持制御と、
     前記維持制御の後、前記複数の模擬負荷のうちの前記1つの模擬負荷とは異なる他の1つの模擬負荷に対して、昇負荷レートが0%/minより大きく60%/min以下を満たすように前記所定の負荷容量まで増加させる第2の投入制御と、
     を少なくとも含む制御を行う
     ことを実行させるプログラム。
    a plurality of simulated loads configured to have predetermined load capacities that are capable of consuming power generated by a generator that controls the generated power by driving a power engine equipped with a speed governor and that are capable of adjusting the power consumption; and the plurality of simulated loads. a plurality of simulated load adjusters provided in pairs with the plurality of simulated loads configured to be individually adjustable to increase the power consumption of each from 0 to the predetermined load capacity set, and A plurality of sets of the simulated load and the simulated load adjustment unit are provided as a pair, and the plurality of sets of the simulated loads are the total of the predetermined load capacities of the simulated loads constituting the plurality of sets, and the set output of the generator substantially equivalent to, a control unit capable of controlling each pair of the simulated load and the simulated load adjustment unit so as to independently apply the adjusted load to the generator,
    An adjustment signal is output to each of the plurality of simulated load adjustment units, and when the generator is started, one simulated load of the plurality of simulated loads is steplessly adjusted from 0 to the predetermined load with respect to the generator. a first closing control for instantaneously increasing the load capacity to
    maintenance control for maintaining the predetermined load capacity in the one simulated load from after the first input control until the power generated by the generator is stabilized;
    After the maintenance control, for one of the plurality of simulated loads that is different from the one simulated load, the load increase rate is greater than 0%/min and less than or equal to 60%/min. a second closing control for increasing the load capacity to the predetermined load capacity;
    A program that causes the execution of a control that includes at least
PCT/JP2022/041069 2021-11-04 2022-11-02 Electric power generation system, control device, control method, and program WO2023080174A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022573381A JPWO2023080174A1 (en) 2021-11-04 2022-11-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/040588 WO2023079626A1 (en) 2021-11-04 2021-11-04 Power generation system, control device, control method, and program
JPPCT/JP2021/040588 2021-11-04

Publications (1)

Publication Number Publication Date
WO2023080174A1 true WO2023080174A1 (en) 2023-05-11

Family

ID=86240802

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/040588 WO2023079626A1 (en) 2021-11-04 2021-11-04 Power generation system, control device, control method, and program
PCT/JP2022/041069 WO2023080174A1 (en) 2021-11-04 2022-11-02 Electric power generation system, control device, control method, and program

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040588 WO2023079626A1 (en) 2021-11-04 2021-11-04 Power generation system, control device, control method, and program

Country Status (2)

Country Link
JP (2) JPWO2023079626A1 (en)
WO (2) WO2023079626A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195491A (en) * 2015-03-31 2016-11-17 大阪瓦斯株式会社 Power generating system
JP2017184485A (en) * 2016-03-30 2017-10-05 大阪瓦斯株式会社 Power generation system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6230394B2 (en) * 2013-12-04 2017-11-15 大阪瓦斯株式会社 Power generation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195491A (en) * 2015-03-31 2016-11-17 大阪瓦斯株式会社 Power generating system
JP2017184485A (en) * 2016-03-30 2017-10-05 大阪瓦斯株式会社 Power generation system

Also Published As

Publication number Publication date
WO2023079626A1 (en) 2023-05-11
JPWO2023080174A1 (en) 2023-05-11
JPWO2023079626A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP6087076B2 (en) System and apparatus for controlling power generation
JP7333787B2 (en) Advanced uninterruptible power supply module controller and method of operation
JP5091256B2 (en) Operation method of power generation equipment
JP5177382B2 (en) Power system frequency controller using natural energy power generation equipment
EP2792858B1 (en) Steam turbine power plant
US7573243B2 (en) Generator control arrangement
JP2000310128A (en) Gas turbine generator having additional capacity control device
JP2019027398A (en) Combined cycle power generation plant, and control method of combined cycle power generation plant
KR101893689B1 (en) Gas Turbine System and Controlling Method thereof
JP5546541B2 (en) Gas turbine and operation method thereof
WO2023080174A1 (en) Electric power generation system, control device, control method, and program
JP2016082740A (en) Operation control method for power generation facility, and operation control device
JP6852828B1 (en) Power generation systems, controls, control methods, and programs
JP2014163378A (en) Method for providing frequency response to combined cycle power plant
CN110832251B (en) Fuel reduction rate output system, fuel reduction rate output method, and storage medium
JPS59231305A (en) Method and device for controlling flow rate of liquid to steam generator
CN112615575A (en) Method and system for fast load support for grid frequency transient events
JP6763629B2 (en) Gas turbine control device, gas turbine control method
WO2023079698A1 (en) Power generation system, control device, control method, and program
WO2019078309A1 (en) Gas turbine control device, gas turbine control method, and program
JP2020506664A (en) Power supply method to power supply network
JP7310930B1 (en) GENERATION SYSTEM, CONTROL DEVICE, CONTROL METHOD, AND PROGRAM
JP2014062491A (en) Turbine control device, turbine control method and turbine control program
JP6781613B2 (en) Control systems, steam turbines, power plants and control methods
JP2023077780A (en) Power control system, power control method, and program

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022573381

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889994

Country of ref document: EP

Kind code of ref document: A1