WO2023079626A1 - Power generation system, control device, control method, and program - Google Patents

Power generation system, control device, control method, and program Download PDF

Info

Publication number
WO2023079626A1
WO2023079626A1 PCT/JP2021/040588 JP2021040588W WO2023079626A1 WO 2023079626 A1 WO2023079626 A1 WO 2023079626A1 JP 2021040588 W JP2021040588 W JP 2021040588W WO 2023079626 A1 WO2023079626 A1 WO 2023079626A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
power
simulated
generator
loads
Prior art date
Application number
PCT/JP2021/040588
Other languages
French (fr)
Japanese (ja)
Inventor
仁哉 稻月
純一 富永
郁郎 西田
博之 古瀬
Original Assignee
Jfeエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeエンジニアリング株式会社 filed Critical Jfeエンジニアリング株式会社
Priority to PCT/JP2021/040588 priority Critical patent/WO2023079626A1/en
Priority to JP2021569086A priority patent/JPWO2023079626A1/ja
Priority to JP2022573381A priority patent/JPWO2023080174A1/ja
Priority to PCT/JP2022/041069 priority patent/WO2023080174A1/en
Publication of WO2023079626A1 publication Critical patent/WO2023079626A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/08Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems requiring starting of a prime-mover
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator

Definitions

  • the present invention relates to a power generation system, control device, control method, and program.
  • FIG. 1 Facilities with power loads such as electrical equipment may be equipped with a power generation system that generates power by connecting to the commercial power system and supplies the generated power to the power loads.
  • a power generation system an internal combustion engine that drives a generator in a state where the generator is disconnected from the commercial power system or the normal power supply during a power failure when power reception from the commercial power system or the normal power supply is stopped.
  • the engine is started and the generator is in self-sustained operation, and the generated voltage of the generator is established and stable power generation is possible, part or all of the power load to be supplied during a power failure is specified.
  • a technique is disclosed for injecting a load into a generator.
  • Non-Patent Document 1 In such a power generation system, it is possible to establish the power generation voltage of the generator and turn on the power load in a short period of time, for example, within about 40 seconds, after the power supply from the commercial power system or the normal power supply is stopped. (See Non-Patent Document 1).
  • Patent Document 2 the power consumption of the first simulated load and the second simulated load are equalized by the simulated load control means, the first simulated load power consumption adjusting means, and the second simulated load power consumption adjusting means.
  • a technique for executing simulated load control is disclosed.
  • Patent Document 3 discloses an electric load power consumption measuring means for measuring the power consumption of an electric load, a simulated load that consumes power generated by a generator, and a simulated load power consumption adjusting means that can change the power consumption of the simulated load.
  • a simulated load control for controlling the simulated load power consumption adjusting means based on the measurement results of the power load power consumption measuring means so that the power generated by the generator is maintained at or above a predetermined reference generated power that enables stable operation of the engine;
  • the power load fluctuates when the power load is turned on or off.
  • a simulated load is placed between the generator and the simulated load.
  • a power regulator must be provided to regulate power consumption.
  • the present invention has been made in view of the above, and its object is to provide a power generation system and a control device that can stably start and operate a generator after stopping receiving power from a commercial power system or a normal power supply. , a control method, and a program.
  • a power generation system includes a generator that controls generated power by driving an internal combustion engine having a speed governor; a simulated load whose load capacity is set so as to be able to consume the power generated by the generator and adjust the power consumption in a state where the simulated load is in a state where the power is being consumed; and a simulated load adjustment unit configured to be able to adjust the power consumption of the simulated load; a control unit capable of controlling the power consumption of the simulated load by controlling the simulated load adjusting unit, wherein a plurality of pairs of the simulated load and the simulated load adjusting unit are provided; At least one of the plurality of simulated loads, at least a portion of which the load capacity is set to be greater than or equal to a load that consumes a predetermined power consumption that does not cause a trip in the startup operation of the generator, when the generator is started, Control to turn on the generator.
  • control unit outputs an adjustment signal to the simulated load adjustment unit, and during the starting operation of the generator, the partial simulated load are applied, the remaining simulated loads of the plurality of simulated loads are sequentially applied to the generator.
  • control unit increases the load of the remaining simulated load on the generator stepwise, stepwise, or linearly. Control the input.
  • two or more sets of the simulated load and the simulated load adjustment unit are provided.
  • the control unit for a power load different from the simulated load, the simulated load adjuster is controlled so as to start supplying power generated by the generator and increase or decrease the power consumption of the simulated load in response to fluctuations in power consumption due to the power load.
  • a control device is a plurality of power generators that can consume power generated by a generator that controls power generated by driving an internal combustion engine that includes a speed governor, and whose load capacities are set so that the power consumption can be adjusted.
  • a control device comprising a control unit capable of controlling a simulated load and a plurality of simulated load adjustment units configured to individually adjust the power consumption of the plurality of simulated loads and provided in pairs with the plurality of simulated loads. wherein, when the generator is started, the control unit sets the load capacity to be equal to or higher than a load that consumes a predetermined power consumption that does not cause a trip in the start-up operation of the generator, among the plurality of simulated loads. at least a portion of the simulated load that has been generated is controlled to be applied to the generator.
  • a control method includes a plurality of load capacities that can consume power generated by a generator that controls power generated by driving an internal combustion engine that includes a speed governor, and whose load capacities are set so that the power consumption can be adjusted.
  • a program includes a plurality of simulations in which power generated by a generator that controls generated power by driving an internal combustion engine including a speed governor can be consumed, and load capacities are set so that the power consumption can be adjusted.
  • a control unit capable of controlling a load and a plurality of simulated load adjustment units configured to be able to individually adjust the power consumption of the plurality of simulated loads and provided in pairs with the plurality of simulated loads; At the time of start-up, among the plurality of simulated loads, at least a portion of the simulated loads having the load capacity set to be equal to or higher than a load that consumes a predetermined power consumption that does not cause a trip during the start-up operation of the power generator. Execute the control to turn on the machine.
  • the control device According to the power generation system, the control device, the control method, and the program according to the present invention, it is possible to stably start and operate the power generator after stopping receiving power from the commercial power system or the normal power supply. .
  • FIG. 1 is a block diagram showing a power generation system according to one embodiment of the invention.
  • FIG. 2 is a block diagram showing a power generation system control device according to an embodiment of the present invention.
  • FIG. 3 is a graph showing an example of control by the power generation system control device according to one embodiment of the present invention.
  • FIG. 4 is a graph showing the relationship between the input rate of the simulated load and the power factor of the engine generator when one simulated load is controlled.
  • FIG. 5 is a graph showing the relationship between the input rate of the simulated loads and the power factor of the engine generator when controlling a plurality of simulated loads simultaneously.
  • FIG. 6 is a graph showing the relationship between the input rate of the simulated loads and the power factor of the engine generator when a plurality of simulated loads are individually controlled.
  • FIG. 1 is a block diagram showing a power generation system according to one embodiment of the invention.
  • FIG. 2 is a block diagram showing a power generation system control device according to an embodiment of the present invention.
  • FIG. 7 is a flow chart for explaining a control method by a power generation system control device according to an embodiment of the present invention.
  • FIG. 8 is a graph for explaining a control method by the power generation system control device according to one embodiment of the present invention.
  • FIG. 9 is a graph showing a simulated load input rate, generator output, and generator power factor for explaining the effect of the power generation system according to one embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of a power generation system according to this embodiment.
  • a power generation system 1 includes a control device 10, an engine generator 20, a simulated load group 30 adjusted by a simulated load power consumption regulator 31, a commercial power system 40, and a power load 50. Prepare.
  • the output side of the engine generator 20 is provided with a generated power measuring section 61 capable of measuring the output power.
  • An input side of the power load 50 is provided with a power load power consumption measurement unit 62 capable of measuring the power supplied.
  • a simulated load power consumption measurement unit 63 capable of measuring the supplied power is provided.
  • the engine generator 20 as a generator has an internal combustion engine 21 and a generator 22 .
  • the engine generator 20 is configured to be capable of generating power by generating rotational motion with an engine as an internal combustion engine using fuel to rotate the rotor of the generator 22 .
  • the internal combustion engine 21 is not limited to an internal combustion engine 21 such as an engine as long as it is an engine capable of generating power by the generator 22 .
  • the simulated load group 30 is configured with a plurality of simulated loads 301, 302, 303, and 304.
  • Each of the simulated loads 301-304 is composed of, for example, a load resistor that consumes a predetermined amount of power.
  • Each of the simulated loads 301 to 304 consumes at least part of the power generated by the engine generator 20, thereby suppressing fluctuations in the power generated by the engine generator 20 and stabilizing the load. 50 is provided independently.
  • the simulated loads 301 to 304 are common to the power load 50 in that they are loads that consume the power generated by the engine generator 20 .
  • the simulated load power consumption adjuster 31 as a simulated load adjuster is a device that adjusts the power consumed by the simulated load group 30 based on the adjustment signal input from the control device 10 .
  • the simulated load power consumption adjuster 31 includes simulated load adjusters 311, 312, 313, and 314 corresponding to the simulated loads 301 to 304, respectively, and can independently control the plurality of simulated loads 301 to 304. configured to That is, the simulated loads 301 to 304 are configured to be able to adjust the magnitude of the loads by the simulated load adjusters 311 to 314, respectively. Thereby, simulated load adjusters 311 to 314 are configured to be able to adjust the power consumption of simulated loads 301 to 304 based on the adjustment signal input from control device 10, respectively.
  • the adjustment signal includes information for controlling an increase or decrease in power consumption of the simulated load group 30 .
  • the simulated load group 30 includes four simulated loads 301 to 304, but the number may be other than four as long as there are multiple simulated loads.
  • the number of simulated loads is typically 2 or more and 10 or less, preferably 3 or more and 6 or less, more preferably 4 or 5. It is a table.
  • the simulated load adjusters are also provided corresponding to the number of installed simulated loads, and are provided in pairs with the simulated loads. That is, the number of pairs of the simulated load and the simulated load adjuster is typically 2 or more and 10 or less, preferably 3 or more and 6 or less, more preferably 4 or 5.
  • the commercial power system 40 is, for example, a power system from a power company. In this specification, the commercial power system 40 is referred to as including the regular power supply.
  • the electric power load 50 is a load to which electric power necessary for operating the facility is supplied, and is specifically a load such as a pump or a motor. Note that the power load 50 is not limited to, for example, a pump or a motor, and conventionally known various loads can be used.
  • the generated power measurement unit 61 is a wattmeter that is connected to the power supply line connected to the engine generator 20 and outputs the measured value of the generated power output by the engine generator 20 to the control device 10 .
  • the power load power consumption measurement unit 62 is a power meter that is connected to a power supply line connected to the power load 50 and outputs a measured value of power consumption consumed by the power load 50 to the control device 10 .
  • the simulated load power consumption measurement unit 63 is connected to the power supply line connected to the simulated load group 30 or the simulated load power consumption regulator 31, and outputs the measured value of the power consumption consumed by the simulated load group 30 to the control device 10.
  • a plurality of simulated load power consumption measurement units 63 may be provided on the input side of each of the simulated loads 301 to 304 so as to correspond to each of the simulated loads 301 to 304 .
  • the generated power measurement unit 61, the power load power consumption measurement unit 62, and the simulated load power consumption measurement unit 63 are not limited to power meters as long as they are measuring devices capable of evaluating an increase or decrease in power. It is possible to employ a variety of measuring instruments.
  • the control device 10 acquires measured values of the power generated by the engine generator 20, the power consumption of the power load 50, and the power consumption of the simulated load group 30, and adjusts the consumption of the simulated load group 30 by the simulated load power consumption adjuster 31. It is a device that controls the increase and decrease of electric power.
  • FIG. 2 is a block diagram showing the control device 10 of the power generation system 1 according to this embodiment.
  • the control device 10 includes a determination control section 11, an addition section 12, a difference calculation section 13, a control sensitivity calculation section 14, a control output calculation section 15, and a storage section 16. Measured values are input to the control device 10 from the generated power measuring unit 61 , the power load power consumption measuring unit 62 , and the simulated load power consumption measuring unit 63 . Control device 10 outputs a control signal (adjustment signal) to each of simulated load regulators 311 to 314 of simulated load power consumption regulator 31 .
  • the determination control unit 11, the addition unit 12, the difference calculation unit 13, the control sensitivity calculation unit 14, and the control output calculation unit 15 specifically have hardware such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processor). , FPGA (Field-Programmable Gate Array) and other processors, and RAM (Random Access Memory) and ROM (Read Only Memory) and other main storage units (none of which are shown).
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • FPGA Field-Programmable Gate Array
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the storage unit 16 is composed of a storage medium selected from volatile memory such as RAM, nonvolatile memory such as ROM, EPROM (Erasable Programmable ROM), hard disk drive (HDD, Hard Disk Drive), and removable media.
  • Removable media are, for example, USB (Universal Serial Bus) memory, or disc recording media such as CD (Compact Disc), DVD (Digital Versatile Disc), or BD (Blu-ray (registered trademark) Disc).
  • the storage unit 16 may be configured using a computer-readable recording medium such as a memory card that can be attached from the outside.
  • the storage unit 16 can store an operating system (OS), various programs, various tables, various databases, and the like for executing the operations of the control device 10 .
  • OS operating system
  • various programs various tables, various databases, and the like for executing the operations of the control device 10 .
  • the various programs include a power increase/decrease control program for realizing increase/decrease control of the power consumption of the simulated load group 30 according to this embodiment.
  • These various programs can be recorded on computer-readable recording media such as hard disks, flash memories, CD-ROMs, DVD-ROMs, flexible disks, etc., and can be widely distributed.
  • control device 10 the program stored in the storage unit 16 is loaded into the work area of the main storage unit and executed, and by controlling each component through the execution of the program, the function that meets the predetermined purpose can be performed. realizable.
  • the control device 10 executes a program to execute the processes of the determination control section 11, the addition section 12, the difference calculation section 13, the control sensitivity calculation section 14, and the control output calculation section 15. FIG.
  • the determination control unit 11 is based on the measured value of generated power acquired from the generated power measuring unit 61 and the measured value of power consumption acquired from at least one of the power load power consumption measuring unit 62 and the simulated load power consumption measuring unit 63. to determine and select the control mode. Based on the selected control mode, the determination control unit 11 outputs a control signal (adjustment signal) to the simulated load power consumption adjuster 31 to control it.
  • the determination control unit 11 in the power generation system 1 has, for example, the following three power control mode units.
  • the determination control unit 11 of the control device 10 included in the power generation system 1 according to this embodiment functions as a main control unit that executes the following power control modes. Specifically, first, the determination control unit 11 selects one control mode unit from the first power control mode unit 111, the second power control mode unit 112, and the third power control mode unit 113, for example. Subsequently, the determination control unit 11 controls the simulated load adjusters 311 to 314 of the simulated load power consumption adjuster 31 based on the power control mode executed by the selected power control mode unit.
  • the first power control mode executed by the determination control unit 11 selecting the first power control mode unit 111 is a power control mode in which the emission power starts to decrease. That is, during a power outage in the commercial power system 40, the load power of the power load 50 may transiently increase from, for example, the start of power-on.
  • the first power control mode unit 111 of the determination control unit 11 controls the simulated load power consumption adjuster 31 to increase the power consumption (discharge power) of the simulated load group 30 and increase the load power of the power load 50. change to lower it by As a result, the discharge power is reduced in accordance with the load power consumed by the power load 50, and the power generated by the engine generator 20 can be maintained substantially constant.
  • the decrease or increase in the emitted power of the simulated load group 30 is stopped for a predetermined time, or the load of the simulated load group 30 is stopped. is maintained constant for a predetermined period of time. That is, the second power control mode unit 112 controls the simulated load power consumption regulator 31 to keep the power emitted from the simulated load group 30 in a state of not decreasing or constant.
  • the third power control mode executed by the third power control mode unit 113 is a power control mode that increases the power emitted by the simulated load group 30 . That is, the third power control mode section 113 controls the simulated load power consumption adjuster 31 to increase the power emitted from the simulated load group 30 . During a power failure of the commercial power system 40, the load power of the power load 50 may continue to decrease asymptotically. Therefore, the third power control mode unit 113 controls the simulated load power consumption adjuster 31 to adjust the discharge power of the simulated load group 30 to the absolute value of the increase rate of the load power consumed by the power load 50, that is, the decrease rate.
  • the generated power that has decreased following the decrease in the load power of the power loads 50 is adjusted by making the increase rate of the discharge power of the simulated load group 30 greater than the decrease rate of the load power of the power loads 50 .
  • the power generated by the engine generator 20 can be maintained substantially constant.
  • the control to keep the power generated by the engine generator 20 substantially constant by switching between the first power control mode, the second power control mode, and the third power control mode is referred to as power increase/decrease control for the engine generator 20. .
  • the adding unit 12 acquires and adds the measured value of the power load power consumption measuring unit 62 and the measured value of the simulated load power consumption measuring unit 63 , and outputs the result to the difference calculating unit 13 . That is, the adder 12 outputs the total power consumption of the simulated load group 30 and the power load 50 to the difference calculator 13 .
  • the difference calculation unit 13 calculates the difference between the total power consumption of the simulated load group 30 and the power load 50 and the power generated by the engine generator 20 and outputs the difference to the control output calculation unit 15 .
  • the difference calculator 13 is a calculator that calculates the difference between the generated power and the consumed power. By calculating the difference between the generated power and the consumed power by the difference calculation unit 13, it is possible to calculate the control value of the power consumption for the simulated load group 30 necessary to keep the power generated by the engine generator 20 substantially constant.
  • the control sensitivity calculation unit 14 outputs the control value of the power consumption of the simulated load group 30 required to keep the generated power substantially constant, which is obtained by the difference calculation unit 13, to the simulated load power consumption adjuster 31. to calculate That is, the control sensitivity calculation unit 14 calculates with what degree of sensitivity the control value of the power consumption of the simulated load group 30 is to be output.
  • the control sensitivity calculation unit 14 outputs sensitivity information obtained by the calculation to the control output calculation unit 15 .
  • the control output calculation unit 15 calculates the control value of the power consumption of the simulated load group 30 required to keep the generated power substantially constant, which is obtained by the difference calculation unit 13, and the sensitivity value obtained by the control sensitivity calculation unit 14. and generating control information that includes:
  • the control output calculator 15 outputs the generated control information to the determination controller 11 .
  • the determination control unit 11 converts the control information to be output to the simulated load power consumption adjuster 31 obtained by the control output calculation unit 15 into an appropriate control signal, and outputs the control signal to the simulated load power consumption adjuster 31 .
  • FIG. 3 is a graph showing an example of control of the engine generator 20 by the engine control unit (not shown) and the control device 10 of the power generation system 1 according to this embodiment.
  • FIG. 3 it is assumed that the engine generator 20 is disconnected from the power load 50 when a power failure is detected in a facility having the power load 50 or in the commercial power system 40 or the like.
  • An engine control unit (not shown) stabilizes the engine generator 20 by operating the engine generator 20 at the no-load rated speed in a state in which the power load 50 is disconnected from the engine generator 20 .
  • the control device 10 starts load increasing operation of the engine generator 20 with the simulated load.
  • engine power generation using the simulated load group 30 is performed from a state in which the engine generator 20 is stabilized by no-load rated speed operation while the power load 50 is disconnected from the engine generator 20.
  • the lifting load on the machine 20 is called "starting".
  • a predetermined starting time elapses from the start time T1 at which the engine generator 20 starts to start
  • the starting operation of the engine generator 20 ends.
  • the engine generator 20 stabilizes and the generated power becomes stable, and the power load 50 can be turned on (stabilization time T 2 ).
  • the power load 50 starts to be applied (load application start time point T3 ).
  • the power increase/decrease control is executed by the control device 10, and the discharge power is adjusted according to the load power consumed by the power load 50. be done.
  • the power generated by the engine generator 20 can be maintained substantially constant by increasing or decreasing the discharge power according to the increase or decrease in the load power according to the following formula (A).
  • the engine generator 20 can be operated at a constant load by the power increase/decrease control of the discharged power, and the stall of the internal combustion engine 21 in the engine generator 20 due to large load fluctuations can be avoided.
  • Emitted power Generated power - Load power ... (A)
  • the power consumption by the simulated load is increased linearly in order to increase the load only with the simulated load and to increase the load of the engine generator 20 stably. is preferred.
  • the present inventors have found that the power consumption by the simulated load is reduced in order to increase the load only with the simulated load and to increase the load of the engine generator 20 stably. It has been found that if the power factor is linearly increased, the power factor may suddenly drop, causing the engine generator 20 to trip. That is, the inventors have found that when the engine generator 20 is activated at the activation start time T1 , the engine generator 20 may trip during the time period (activation period ⁇ 1) shown in FIG.
  • the present inventor started the engine generator 20 in a state in which a predetermined load (hereinafter referred to as an initial load) was applied in advance using a load corresponding to the electric load 50, and the load application rate MV of the simulated load group 30 (%) and the power factor of the engine generator 20 was tested.
  • FIGS. 4, 5, and 6 respectively show the case where one simulated load is provided, the case where a plurality of simulated loads are provided, and the case where a plurality of simulated loads are provided, respectively, which the present inventor performed in the power generation system 1.
  • 10 is a graph showing the relationship between the input rate of the simulated load and the power factor of the engine generator in the experiment when the control is performed to .
  • the inventor conducted an experiment using one simulated load 301 in the simulated load group 30 .
  • the initial load was set to 20%, 15%, 10%, and 5% of the set output of the engine generator 20, respectively.
  • the results are shown in FIG. Note that the maximum load of the simulated load 301 was set to 150 kW. Note that the set output is also called a specified output.
  • the power factor decreases from 1 as the load throwing rate MV of the simulated load 301 is increased from 0%, and the load throwing rate MV is about 40% to 50%. It can be seen that the power factor drops to the minimum of about 0.93 at . Also, it can be seen that the power factor increases from 0.93 to 1 as the load input rate MV of the simulated load 301 is increased from 40%. Similarly, when the initial load is 15%, while the load throwing rate MV of the simulated load 301 is increased from 0% to 100%, the power factor reaches its minimum value of 0.00 at a load throwing rate MV of about 40%. It can be seen that it decreases to about 9 and then increases to 1.
  • the power factor is the minimum 0.85 when the load throwing factor MV is about 40%. It can be seen that it increases to 1 after decreasing to about .
  • the reason why the power factor is minimized when the load input rate MV of the simulated load 301 is approximately 40% to 50% is due to the generation of harmonics. I came to know.
  • the initial load when the initial load is set to 5%, when the load input rate MV of the simulated load 301 is increased from 0%, it falls below the serious failure notification condition cos ⁇ min of the engine generator 20 in the middle of the increase. It was found that the engine generator 20 tripped. Specifically, when the set output of the engine generator 20 is 600 kW, if the initial load is set to 30 kW or less, the load input rate MV of the simulated load 301 is increased until the load input rate reaches 100%. (hereinafter referred to as load increase) becomes difficult. In other words, the initial load should be 0%. , and the engine generator 20 reaches a serious failure condition. Therefore, it turned out to be extremely difficult to increase the load of the engine generator 20 with the initial load set to 0%.
  • load increase load increase
  • the present inventor conducted an experiment in which a plurality of simulated loads, for example, a plurality of simulated loads 301 and 302 were provided, and the simulated loads 301 and 302 were increased together to start the engine generator 20 .
  • the results are shown in FIG. It can be seen from FIG. 5 that in this case also, the tendency of the load increase of the engine generator 20 is the same as in FIG.
  • the initial load is 10%
  • the load input rate MV of the simulated load 301 is increased from 0%, it falls below the serious failure notification condition cos ⁇ min during the increase, causing the engine generator 20 to trip. It turned out to do.
  • the set output of the engine generator 20 is 600 kW, it has become difficult to increase the load of the engine generator 20 if the initial load is set to 60 kW or less.
  • the present inventor provides a plurality of simulated loads, for example, a plurality of simulated loads 301 to 304, sequentially increases the load input rate MV from 0% to 100%, and increases the simulated loads 301 to 304 one by one.
  • An experiment was conducted to increase the load on the generator 20 .
  • the simulated loads 301 to 304 each have a load of 150 kW.
  • the results are shown in FIG. It can be seen from FIG. 6 that in this case also, the tendency of the load increase of the engine generator 20 is the same as in FIG. That is, when the load input rates MV of the plurality of simulated loads 301 to 304 are increased one by one, the conditions for the first simulated load 301 are the same as those in FIG. If the input rate MV is increased from 0%, it falls below the serious failure notification condition cos ⁇ min during the increase, causing the engine generator 20 to trip.
  • the present inventors conducted further intensive studies and devised a control method for increasing the load at startup without causing the engine generator 20 to trip. That is, the inventor provides a plurality of simulated loads that can be applied to the engine generator 20 independently of each other, and when applying the plurality of simulated loads to the engine generator 20, The load capacity of the first simulated load is increased steplessly and instantaneously to the preset load capacity, and the second and subsequent simulated loads, which are the remaining simulated loads, are sequentially set one by one.
  • a control method was devised to increase the load capacity.
  • the load capacity for steplessly increasing the simulated load of the first unit is selected to be greater than or equal to the load capacity at which the engine generator 20 does not trip.
  • the present invention described below has been devised through the above earnest studies by the inventors of the present invention.
  • FIG. 7 is a flow chart for explaining the control method by the control device in this embodiment.
  • FIG. 8 is a graph showing an example of control corresponding to FIG. 7 by the control device 10 in this embodiment. ST shown in FIG. 8 corresponds to the steps shown in FIG.
  • the flowchart shown in FIG. 7 is started by starting the engine generator 20 after the commercial power system 40 is in a power failure state and the engine generator 20 is disconnected from the power load 50 .
  • control device 10 applies an adjustment signal to apply load of one of simulated loads 301 to 304 when engine generator 20 is started. is output to the simulated load power consumption regulator 31 .
  • "at the start of the engine generator 20” means that although there are variations depending on the specifications and performance (specs) of the engine generator 20, there is no increase in load on the engine generator 20 by a predetermined engine control unit (not shown). In the case of the engine generator 20 according to the present embodiment, it means a time interval of about ⁇ 1 second, for example. That is, control device 10 outputs an adjustment signal to simulated load adjuster 311 of simulated load power consumption adjuster 31 to apply simulated load 301 to engine generator 20 .
  • the load of the simulated load 301 is applied to the engine generator 20 so as to increase stepwise from 0% to 100%. That is, the load capacity of the simulated load 301 applied to the engine generator 20 is instantaneously increased from 0% to 100%.
  • the load capacity of the simulated load 301 applied to the engine generator 20 is instantaneously increased from 0% to 100%.
  • a load of X% of the set output is applied to the engine generator 20 stepwise.
  • Various values can be adopted for X% as long as it is equal to or greater than the load capacity at which the engine generator 20 does not trip.
  • the load capacities of the four simulated loads 301 to 304 are made equal to each other, and the total load capacity is made substantially equal to the set output of the engine generator 20 .
  • the load capacity of each of the simulated loads 301-304 becomes 25% of the set output of the engine generator 20.
  • FIG. It should be noted that the load capacities of the simulated loads 301 to 304 can be set to different load capacities.
  • step ST2 the control device 10 determines whether or not the fluctuation of the output of the engine generator 20 accompanying the application of the first simulated load 301 has stabilized.
  • the control device 10 determines whether or not the fluctuation of the output of the engine generator 20 accompanying the application of the first simulated load 301 has stabilized.
  • step ST3 the control device 10 selects the second and subsequent simulated loads 301 to 304, here the second simulated load 302, from the load capacity of the engine generator 20 from 0% to 100%. Inject linearly, stepwise, or stepwise. That is, control device 10 outputs an adjustment signal to simulated load adjuster 312 to control the load of simulated load 302, thereby increasing the load of simulated load 302 from 0% to engine generator 20 while increasing the load of simulated load 302 to 100%. %. As a result, the load capacity applied to the engine generator 20 increases from X% of the set output of the engine generator 20 to Y%. In the example shown in FIG. 8 , the load of the simulated load 302 is linearly increased to apply from X% to Y% of the set output of the engine generator 20 . Note that Y% in this embodiment is, for example, 50%.
  • step ST4 the control device 10 selects the second and subsequent simulated loads 303 from the plurality of simulated loads 301 to 304, here the third simulated load 303, to the engine generator 20 so that the engine generator 20 has a load capacity. Dosing from 0% to 100% linearly, stepwise, or stepwise. That is, the control device 10 outputs an adjustment signal to the simulated load adjuster 313 to control the load of the simulated load 303, thereby increasing the load of the simulated load 303 from 0% to the engine generator 20 to 100%. %. As a result, the load capacity applied to the engine generator 20 increases from Y% of the set output of the engine generator 20 to Z%. In the example shown in FIG. 8 , the load of the simulated load 303 is linearly increased to apply from Y % to Z % of the set output of the engine generator 20 . Note that Z % in this embodiment is, for example, 75%.
  • the above X%, Y%, and Z% can be set arbitrarily. That is, an arbitrary control range is assigned to the simulated loads 301 to 304, each of the simulated loads 301 to 304 is individually controlled, and the load input rate MV of each of the simulated loads 301 to 304 is increased from 0% to Increase to 100%. As a result, when the load application rate MV in the simulated load group 30 is set to 100%, the load is applied up to the set output of the engine generator 20, for example, about 70% of the rated output.
  • step ST5 the control device 10 selects the second and subsequent simulated loads 301 to 304, here the fourth simulated load 304, from the plurality of simulated loads 301 to 304, to the engine generator 20. Dosing from 0% to 100% linearly, stepwise, or stepwise. That is, the control device 10 outputs an adjustment signal to the simulated load adjuster 314 to control the load of the simulated load 304, thereby increasing the load of the simulated load 304 from 0% to the engine generator 20 to 100%. %. As a result, the load capacity applied to the engine generator 20 increases from Z% of the set output of the engine generator 20 to 100%. In the example shown in FIG. 8 , the load of the simulated load 304 is linearly increased from Z% of the set output of the engine generator 20 to 100%.
  • step ST5 the control device 10 determines whether or not a condition (power load input condition) for inputting the power load 50 provided in the facility or the like to the engine generator 20 has been established. It is determined whether or not the output of the power generated by 20 has stabilized.
  • the control device 10 waits until the output of the generated power from the engine generator 20 stabilizes before the power load 50 is turned on (step ST6: No).
  • step ST6: Yes the process proceeds to step ST7.
  • step ST7 the control device 10 applies the power load 50 to the engine generator 20, and selects the first to third power control modes to start power increase/decrease control.
  • the control device 10 outputs adjustment signals to the simulated load adjusters 311 to 314, and adjusts the loads of the simulated loads 301 to 304 according to the increase/decrease in the load power of the power load 50. do.
  • the electric power generated by the engine generator 20 is controlled to be substantially constant, as shown in the above formula (A).
  • the control processing of the load to be applied to the engine generator 20 by the control device 10 according to the present embodiment that is, the control processing for the simulated load group 30 and the simulated load power consumption adjuster 31 is completed.
  • control process according to the above-described embodiment is applied to the start-up period ⁇ 1 shown in FIG. can do. That is, in the power increase/decrease control by the control device 10, in addition to the method of simultaneously controlling the simulated loads 301 to 304 in the simulated load group 30, these simulated loads 301 to 304 can be individually controlled to obtain the required emitted power. By sequentially turning on the simulated loads 301 to 304 that consume the power, it is possible to suppress a decrease in the power factor of the engine generator 20, so that it is possible to more stably control the emitted power.
  • FIG. 9 shows a graph when the engine generator 20 is started using the four heaters having the same load capacity as the simulated loads 301 to 304, respectively, according to the control method according to the present embodiment described above.
  • the power output by the engine generator 20 is represented by a dotted line
  • the total power output by the four heaters is represented by a solid line
  • the four heaters are controlled by the control method according to the above-described embodiment.
  • the overall load application rate MV (heater current control MV (%)) under control is indicated by a dashed line.
  • the power factor of the engine generator 20 is indicated by a chain double-dashed line.
  • the two thick dashed lines show an example of conditions for issuing a major failure alarm. second).
  • the power factor of the engine generator 20 is derived from the ratio of "active power” and "reactive power” consumed by the applied load.
  • the first simulated load 301 is stepwise increased to X%, or up to 25% in the above-described embodiment, instantaneously, when the simulated load adjuster 311 is 0% and 100%, No power factor drop occurs (see FIGS. 4-6). Therefore, by setting the load capacity for applying the simulated load 301 by the first simulated load adjuster 311 to 100%, further simulated loads 302 to 304 can be obtained without causing a decrease in the power factor of the engine generator 20. can be put in.
  • the simulated load 301 has already applied a load that does not cause a drop in power factor. Therefore, even if the reactive power increases, it is considered that the power factor does not drop significantly. Furthermore, as the number of the simulated loads 302 to 304 that are sequentially applied increases, the ratio of the loads with a power factor of 1 to the total of the simulated loads 301 to 304 increases. It is mitigated according to the number of simulated loads that are input. Therefore, as shown in FIG. 9, when the second to fourth heaters corresponding to the simulated loads 302 to 304 are turned on as the loads of the engine generator 20, the amount of decrease in the power factor increases as the number of heaters increases. It is thought that the
  • a plurality of simulated loads 301 to 304 that can be controlled independently of each other are connected to the engine generator 20 in a state in which the load can be applied, and the engine generator 20 At startup, a load capacity that does not trip at least the engine generator 20 is instantaneously applied stepwise from 0% to 100% to the simulated load adjuster 311 that controls at least one simulated load 301.
  • the engine generator 20 can be stably started while avoiding tripping.
  • the program for executing the processing method executed by the control device 10 can be recorded in a recording medium readable by a device such as a computer or other machine (hereinafter referred to as a computer or the like).
  • the computer or the like functions as the control device 10 by causing the computer or the like to read and execute the program of the recording medium.
  • a computer-readable recording medium is a non-temporary medium that stores information such as data and programs by electrical, magnetic, optical, mechanical, or chemical action and can be read by a computer or the like. a recording medium.
  • Examples of such recording media that can be removed from a computer include flexible disks, magneto-optical disks, CD-ROMs, CD-R/Ws, DVDs, BDs, DATs, magnetic tapes, flash memories, and other memories.
  • recording media There are cards, etc.
  • a hard disk, a ROM, and the like as a recording medium fixed to a computer or the like.
  • SSD can be used as a recording medium that can be removed from a computer or the like, or as a recording medium that is fixed to a computer or the like.
  • the program to be executed by the control device 10 may be stored on a computer connected to a network such as the Internet, and provided by being downloaded via the network.
  • the above-described "unit” can be read as “circuit” or the like.
  • the controller can be read as a control circuit.
  • the power generation system, control device, control method, and program according to the present invention are suitable for application to an engine generator equipped with a speed governor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The purpose of the present invention is stable activation and driving a power generator, which is required after stoppage of the reception of electric power from a commercial electric power system or a normal power supply. The present invention comprises: a power generator which controls generated power by the driving of an internal combustion engine provided with a speed governor; simulated loads in which a load capacity is set so as to be able to consume the generated power of the power generator and be able to adjust power consumption in a state in which the internal combustion engine is driven; simulated load adjustment units which are capable of adjusting the power consumption of the simulated loads; and a control unit which is capable of controlling the power consumption of the simulated load by controlling the simulated load adjustment unit. The simulated loads and the simulated load adjustment units are provided in a plurality of pairs. When the power generator is activated, the control unit performs control to introduce, with respect to the power generator, at least some of the simulated loads, among the plurality of simulated loads, in which load capacities are set to be equal to or greater than a load of prescribed power consumption that does not cause tripping in the activation operation of the power generator.

Description

発電システム、制御装置、制御方法、およびプログラムGENERATION SYSTEM, CONTROL DEVICE, CONTROL METHOD, AND PROGRAM
 本発明は、発電システム、制御装置、制御方法、およびプログラムに関する。 The present invention relates to a power generation system, control device, control method, and program.
 電気機器などの電力負荷が設けられた施設には、商用電力系統に連系して発電を行い、発電電力を電力負荷に供給する発電システムが備えられる場合がある。特許文献1には、このような発電システムとして、商用電力系統または常用電源からの受電が停止する停電時において、商用電力系統または常用電源から発電機を切り離した状態で、発電機を駆動する内燃機関を起動させて発電機の自立運転を行い、発電機の発電電圧が確立し安定して発電が行えるようになった段階で、停電時の給電対象とする電力負荷の一部または全部の特定負荷を発電機に投入する技術が開示されている。このような発電システムにおいては、商用電力系統または常用電源からの受電の停止後において、例えば40秒以内程度の短時間で、発電機の発電電圧の確立や電力負荷の投入を可能にすることが求められる(非特許文献1参照)。 Facilities with power loads such as electrical equipment may be equipped with a power generation system that generates power by connecting to the commercial power system and supplies the generated power to the power loads. In Patent Document 1, as such a power generation system, an internal combustion engine that drives a generator in a state where the generator is disconnected from the commercial power system or the normal power supply during a power failure when power reception from the commercial power system or the normal power supply is stopped. When the engine is started and the generator is in self-sustained operation, and the generated voltage of the generator is established and stable power generation is possible, part or all of the power load to be supplied during a power failure is specified. A technique is disclosed for injecting a load into a generator. In such a power generation system, it is possible to establish the power generation voltage of the generator and turn on the power load in a short period of time, for example, within about 40 seconds, after the power supply from the commercial power system or the normal power supply is stopped. (See Non-Patent Document 1).
 また、特許文献2には、模擬負荷制御手段、第1模擬負荷消費電力調整手段および第2模擬負荷消費電力調整手段によって第1模擬負荷と第2模擬負荷とで消費される消費電力が等しくなるように制御する模擬負荷制御を実行する技術が開示されている。特許文献3には、電力負荷の消費電力を計測する電力負荷消費電力計測手段と、発電機の発電電力を消費する模擬負荷と、模擬負荷の消費電力を変更可能な模擬負荷消費電力調整手段と、発電機の発電電力がエンジンを安定運転可能な所定の基準発電電力以上に維持されるように、電力負荷消費電力計測手段の計測結果に基づいて模擬負荷消費電力調整手段を制御する模擬負荷制御手段を備える構成が開示されている。 Further, in Patent Document 2, the power consumption of the first simulated load and the second simulated load are equalized by the simulated load control means, the first simulated load power consumption adjusting means, and the second simulated load power consumption adjusting means. A technique for executing simulated load control is disclosed. Patent Document 3 discloses an electric load power consumption measuring means for measuring the power consumption of an electric load, a simulated load that consumes power generated by a generator, and a simulated load power consumption adjusting means that can change the power consumption of the simulated load. a simulated load control for controlling the simulated load power consumption adjusting means based on the measurement results of the power load power consumption measuring means so that the power generated by the generator is maintained at or above a predetermined reference generated power that enables stable operation of the engine; An arrangement comprising means is disclosed.
特開2007-6595号公報Japanese Patent Application Laid-Open No. 2007-6595 特開2017-184485号公報JP 2017-184485 A 特開2015-109746号公報JP 2015-109746 A
 上述した従来技術による発電システムにおいて、電力負荷の投入または停止によって、電力負荷の変動が生じる。この電力負荷の変動に対して、発電機の運転を安定させるために、模擬負荷を用いて事前に負荷を投入する操作が必要になる。ここで、模擬負荷を事前に投入する際に、模擬負荷の出力を任意に調整するために、特許文献2,3に開示されているように、発電機と模擬負荷との間に模擬負荷の消費電力を調整するための電力調整器を設ける必要がある。 In the power generation system according to the conventional technology described above, the power load fluctuates when the power load is turned on or off. In order to stabilize the operation of the power generator against this power load fluctuation, it is necessary to apply a load in advance using a simulated load. Here, in order to arbitrarily adjust the output of the simulated load when applying the simulated load in advance, as disclosed in Patent Documents 2 and 3, a simulated load is placed between the generator and the simulated load. A power regulator must be provided to regulate power consumption.
 しかしながら、電力調整器を設けることによって、発電システムにおいて模擬負荷に対して電力調整制御を実行する際に、電流の波形を歪ませる高調波が発生してしまい、発電機の運転における力率を低下させる場合がある。発電機の力率が低下すると、発電機を起動させたり運転を継続させたりする際に、発電機の運転を維持することが困難になり、発電機からの電力を消費する本来の電力負荷を投入する前に、発電機が停止する可能性がある。そのため、商用電力系統や常用電源からの受電の停止後に求められる発電機の起動および運転を安定して実行できる技術が求められている。 However, by providing a power regulator, when executing power regulation control for a simulated load in a power generation system, harmonics that distort the current waveform are generated, and the power factor in the operation of the generator is reduced. may cause When the power factor of the generator decreases, it becomes difficult to keep the generator running when starting or continuing operation, and the original power load that consumes the power from the generator is reduced. It is possible that the generator will stop before it can be turned on. Therefore, there is a demand for a technology that can stably start and operate a generator after power supply from the commercial power system or normal power supply is stopped.
 本発明は、上記に鑑みてなされたものであって、その目的は、商用電力系統や常用電源からの受電の停止後に求められる発電機の起動および運転を安定して実行できる発電システム、制御装置、制御方法、およびプログラムを提供することにある。 The present invention has been made in view of the above, and its object is to provide a power generation system and a control device that can stably start and operate a generator after stopping receiving power from a commercial power system or a normal power supply. , a control method, and a program.
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る発電システムは、調速機を備える内燃機関の駆動によって発電電力を制御する発電機と、前記内燃機関が駆動している状態で前記発電機の発電電力を消費可能、かつ消費電力を調整可能に負荷容量が設定される模擬負荷と、前記模擬負荷の消費電力を調整可能に構成された模擬負荷調整部と、前記模擬負荷調整部を制御することにより前記模擬負荷の消費電力を制御可能な制御部と、を備え、前記模擬負荷および前記模擬負荷調整部が一対で複数設けられ、前記制御部は、前記発電機の起動時において、前記複数の模擬負荷のうち、前記発電機の起動動作においてトリップが生じない所定の消費電力を消費する負荷以上に前記負荷容量が設定された少なくとも一部の模擬負荷を、前記発電機に対して投入するように制御する。 In order to solve the above-described problems and achieve the object, a power generation system according to one aspect of the present invention includes a generator that controls generated power by driving an internal combustion engine having a speed governor; a simulated load whose load capacity is set so as to be able to consume the power generated by the generator and adjust the power consumption in a state where the simulated load is in a state where the power is being consumed; and a simulated load adjustment unit configured to be able to adjust the power consumption of the simulated load; a control unit capable of controlling the power consumption of the simulated load by controlling the simulated load adjusting unit, wherein a plurality of pairs of the simulated load and the simulated load adjusting unit are provided; At least one of the plurality of simulated loads, at least a portion of which the load capacity is set to be greater than or equal to a load that consumes a predetermined power consumption that does not cause a trip in the startup operation of the generator, when the generator is started, Control to turn on the generator.
 本発明の一態様に係る発電システムは、上記の発明において、前記制御部は、前記模擬負荷調整部に調整信号を出力して、前記発電機の起動動作の間において、前記一部の模擬負荷を投入した後、前記複数の模擬負荷のうちの残部の模擬負荷を、前記発電機に対して順次投入する制御を行う。 In the power generation system according to one aspect of the present invention, in the above invention, the control unit outputs an adjustment signal to the simulated load adjustment unit, and during the starting operation of the generator, the partial simulated load are applied, the remaining simulated loads of the plurality of simulated loads are sequentially applied to the generator.
 本発明の一態様に係る発電システムは、上記の発明において、前記制御部は、前記発電機に対して、前記残部の模擬負荷の負荷を、ステップ状、階段状、または線形状に増加させて投入する制御を行う。 In the power generation system according to an aspect of the present invention, in the above invention, the control unit increases the load of the remaining simulated load on the generator stepwise, stepwise, or linearly. Control the input.
 本発明の一態様に係る発電システムは、上記の発明において、前記模擬負荷および前記模擬負荷調整部が、2組以上設けられる。 In the power generation system according to one aspect of the present invention, in the above invention, two or more sets of the simulated load and the simulated load adjustment unit are provided.
 本発明の一態様に係る発電システムは、上記の発明において、前記制御部は、前記発電機に対して前記複数の模擬負荷の投入が終了した後、前記模擬負荷と異なる電力負荷に対して、前記発電機による発電電力の供給を開始させ、前記電力負荷による消費電力の変動に対応させて、前記模擬負荷の消費電力を増減させるように前記模擬負荷調整部を制御する。 In the power generation system according to one aspect of the present invention, in the above invention, after the plurality of simulated loads are applied to the generator, the control unit, for a power load different from the simulated load, The simulated load adjuster is controlled so as to start supplying power generated by the generator and increase or decrease the power consumption of the simulated load in response to fluctuations in power consumption due to the power load.
 本発明の一態様に係る制御装置は、調速機を備える内燃機関の駆動によって発電電力を制御する発電機の発電電力を消費可能、かつ消費電力を調整可能に負荷容量が設定される複数の模擬負荷と、前記複数の模擬負荷の消費電力をそれぞれ個別に調整可能に構成され前記複数の模擬負荷と一対に設けられる複数の模擬負荷調整部と、を制御可能な制御部を備える制御装置であって、前記制御部は、前記発電機の起動時において、前記複数の模擬負荷のうち、前記発電機の起動動作においてトリップが生じない所定の消費電力を消費する負荷以上に前記負荷容量が設定された少なくとも一部の模擬負荷を、前記発電機に対して投入するように制御する。 A control device according to an aspect of the present invention is a plurality of power generators that can consume power generated by a generator that controls power generated by driving an internal combustion engine that includes a speed governor, and whose load capacities are set so that the power consumption can be adjusted. A control device comprising a control unit capable of controlling a simulated load and a plurality of simulated load adjustment units configured to individually adjust the power consumption of the plurality of simulated loads and provided in pairs with the plurality of simulated loads. wherein, when the generator is started, the control unit sets the load capacity to be equal to or higher than a load that consumes a predetermined power consumption that does not cause a trip in the start-up operation of the generator, among the plurality of simulated loads. at least a portion of the simulated load that has been generated is controlled to be applied to the generator.
 本発明の一態様に係る制御方法は、調速機を備える内燃機関の駆動によって発電電力を制御する発電機の発電電力を消費可能、かつ消費電力を調整可能に負荷容量が設定される複数の模擬負荷と、前記複数の模擬負荷の消費電力をそれぞれ個別に調整可能に構成され前記複数の模擬負荷と一対に設けられる複数の模擬負荷調整部と、を制御可能な制御部が実行する制御方法であって、前記制御部が、前記発電機の起動時において、前記複数の模擬負荷のうち、前記発電機の起動動作においてトリップが生じない所定の消費電力を消費する負荷以上に前記負荷容量が設定された少なくとも一部の模擬負荷を、前記発電機に対して投入するように制御する。 A control method according to an aspect of the present invention includes a plurality of load capacities that can consume power generated by a generator that controls power generated by driving an internal combustion engine that includes a speed governor, and whose load capacities are set so that the power consumption can be adjusted. A control method executed by a control unit capable of controlling a simulated load and a plurality of simulated load adjustment units configured to individually adjust the power consumption of the plurality of simulated loads and provided in pairs with the plurality of simulated loads. wherein, when the generator is started, the load capacity is greater than or equal to a load that consumes a predetermined power consumption that does not cause a trip in the startup operation of the generator, among the plurality of simulated loads. At least part of the set simulated load is controlled to be applied to the generator.
 本発明の一態様に係るプログラムは、調速機を備える内燃機関の駆動によって発電電力を制御する発電機の発電電力を消費可能、かつ消費電力を調整可能に負荷容量が設定される複数の模擬負荷と、前記複数の模擬負荷の消費電力をそれぞれ個別に調整可能に構成され前記複数の模擬負荷と一対に設けられる複数の模擬負荷調整部と、を制御可能な制御部に、前記発電機の起動時において、前記複数の模擬負荷のうち、前記発電機の起動動作においてトリップが生じない所定の消費電力を消費する負荷以上に前記負荷容量が設定された少なくとも一部の模擬負荷を、前記発電機に対して投入するように制御することを実行させる。 A program according to an aspect of the present invention includes a plurality of simulations in which power generated by a generator that controls generated power by driving an internal combustion engine including a speed governor can be consumed, and load capacities are set so that the power consumption can be adjusted. a control unit capable of controlling a load and a plurality of simulated load adjustment units configured to be able to individually adjust the power consumption of the plurality of simulated loads and provided in pairs with the plurality of simulated loads; At the time of start-up, among the plurality of simulated loads, at least a portion of the simulated loads having the load capacity set to be equal to or higher than a load that consumes a predetermined power consumption that does not cause a trip during the start-up operation of the power generator. Execute the control to turn on the machine.
 本発明に係る発電システム、制御装置、制御方法、およびプログラムによれば、商用電力系統や常用電源からの受電の停止後に求められる発電機の起動および運転を安定して実行することが可能となる。 According to the power generation system, the control device, the control method, and the program according to the present invention, it is possible to stably start and operate the power generator after stopping receiving power from the commercial power system or the normal power supply. .
図1は、本発明の一実施形態による発電システムを示すブロック図である。FIG. 1 is a block diagram showing a power generation system according to one embodiment of the invention. 図2は、本発明の一実施形態による発電システムの制御装置を示すブロック図である。FIG. 2 is a block diagram showing a power generation system control device according to an embodiment of the present invention. 図3は、本発明の一実施形態による発電システムの制御装置による制御の一例を示すグラフである。FIG. 3 is a graph showing an example of control by the power generation system control device according to one embodiment of the present invention. 図4は、1つの模擬負荷を制御した場合の模擬負荷の投入率とエンジン発電機の力率との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the input rate of the simulated load and the power factor of the engine generator when one simulated load is controlled. 図5は、複数の模擬負荷を同時に制御した場合の模擬負荷の投入率とエンジン発電機の力率との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the input rate of the simulated loads and the power factor of the engine generator when controlling a plurality of simulated loads simultaneously. 図6は、複数の模擬負荷を個別に制御した場合の模擬負荷の投入率とエンジン発電機の力率との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the input rate of the simulated loads and the power factor of the engine generator when a plurality of simulated loads are individually controlled. 図7は、本発明の一実施形態による発電システムの制御装置による制御方法を説明するためのフローチャートである。FIG. 7 is a flow chart for explaining a control method by a power generation system control device according to an embodiment of the present invention. 図8は、本発明の一実施形態による発電システムの制御装置による制御方法を説明するためのグラフである。FIG. 8 is a graph for explaining a control method by the power generation system control device according to one embodiment of the present invention. 図9は、本発明の一実施形態による発電システムの効果を説明するための模擬負荷の投入率、発電機の出力、および発電機の力率を示すグラフである。FIG. 9 is a graph showing a simulated load input rate, generator output, and generator power factor for explaining the effect of the power generation system according to one embodiment of the present invention.
 以下、本発明の一実施形態について図面を参照しつつ説明する。なお、以下の一実施形態の全図においては、同一または対応する部分には同一の符号を付す。また、本発明は以下に説明する一実施形態によって限定されるものではない。 An embodiment of the present invention will be described below with reference to the drawings. In addition, in all the drawings of the following one embodiment, the same reference numerals are given to the same or corresponding parts. Moreover, the present invention is not limited to the one embodiment described below.
 まず、本発明の一実施形態による発電システムについて説明する。以下に説明する一実施形態は、エンジン発電機、模擬負荷、および制御部を備える発電システムに関するが、その他の発電システムであってもよい。エンジン発電機20は、調速機(図示せず)が設けられた内燃機関21の駆動によって発電する。エンジン発電機20は、発電電力を電力負荷50に供給する発電時において、所定のエンジン制御部(図示せず)によって、出力が定格出力以下の任意の出力になるように制御される。本発明の一実施形態による発電システムは、制御装置10が、電力負荷50の投入、遮断操作、または運転負荷率の変更によるエンジン発電機20の発電電力の変化を低減するように、模擬負荷の消費電力を増加させたり減少させたりするシステムである。図1は、本実施形態による発電システムの構成を示すブロック図である。 First, a power generation system according to one embodiment of the present invention will be described. Although one embodiment described below relates to a power generation system that includes an engine generator, a simulated load, and a controller, other power generation systems are possible. The engine generator 20 generates power by driving an internal combustion engine 21 provided with a speed governor (not shown). The engine generator 20 is controlled by a predetermined engine control unit (not shown) so that the output is an arbitrary output below the rated output during power generation for supplying generated power to the power load 50 . In the power generation system according to one embodiment of the present invention, the control device 10 controls the simulated load so as to reduce changes in the power generated by the engine generator 20 due to input/disconnect operations of the power load 50 or changes in the operating load factor. It is a system that increases or decreases power consumption. FIG. 1 is a block diagram showing the configuration of a power generation system according to this embodiment.
 図1に示すように、一実施形態による発電システム1は、制御装置10、エンジン発電機20、模擬負荷消費電力調整器31によって調整される模擬負荷群30、商用電力系統40、および電力負荷50を備える。 As shown in FIG. 1, a power generation system 1 according to one embodiment includes a control device 10, an engine generator 20, a simulated load group 30 adjusted by a simulated load power consumption regulator 31, a commercial power system 40, and a power load 50. Prepare.
 発電システム1において、エンジン発電機20の出力側には、出力する電力を計測可能な発電電力計測部61が設けられている。電力負荷50の入力側には、供給される電力を計測可能な電力負荷消費電力計測部62が設けられている。模擬負荷消費電力調整器31の入力側には、供給される電力を計測可能な模擬負荷消費電力計測部63が設けられている。 In the power generation system 1, the output side of the engine generator 20 is provided with a generated power measuring section 61 capable of measuring the output power. An input side of the power load 50 is provided with a power load power consumption measurement unit 62 capable of measuring the power supplied. On the input side of the simulated load power consumption adjuster 31, a simulated load power consumption measurement unit 63 capable of measuring the supplied power is provided.
 発電機としてのエンジン発電機20は、内燃機関21および発電機22を有する。エンジン発電機20は、燃料を用いた内燃機関としてのエンジンによって回転運動を発生させて、発電機22の回転子を回転させることによって発電可能に構成される。なお、内燃機関21は、発電機22によって発電可能な機関であれば、エンジンなどの内燃機関21に限定されない。 The engine generator 20 as a generator has an internal combustion engine 21 and a generator 22 . The engine generator 20 is configured to be capable of generating power by generating rotational motion with an engine as an internal combustion engine using fuel to rotate the rotor of the generator 22 . Note that the internal combustion engine 21 is not limited to an internal combustion engine 21 such as an engine as long as it is an engine capable of generating power by the generator 22 .
 模擬負荷群30は、複数の模擬負荷301,302,303,304を有して構成される。模擬負荷301~304はそれぞれ、所定の電力を消費する例えば負荷抵抗器などから構成される。模擬負荷301~304はそれぞれ、エンジン発電機20の発電電力の少なくとも一部を消費することによって、エンジン発電機20の発電電力の変動を抑制して、安定化させるための負荷であり、電力負荷50とは独立して設けられる。なお、模擬負荷301~304は、エンジン発電機20の発電電力を消費する負荷である点に関しては、電力負荷50と共通する。 The simulated load group 30 is configured with a plurality of simulated loads 301, 302, 303, and 304. Each of the simulated loads 301-304 is composed of, for example, a load resistor that consumes a predetermined amount of power. Each of the simulated loads 301 to 304 consumes at least part of the power generated by the engine generator 20, thereby suppressing fluctuations in the power generated by the engine generator 20 and stabilizing the load. 50 is provided independently. Incidentally, the simulated loads 301 to 304 are common to the power load 50 in that they are loads that consume the power generated by the engine generator 20 .
 模擬負荷調整部としての模擬負荷消費電力調整器31は、制御装置10から入力される調整信号に基づいて、模擬負荷群30が消費する電力を調整する装置である。模擬負荷消費電力調整器31は、模擬負荷301~304のそれぞれに対応した模擬負荷調整器311,312,313,314を有して構成され、複数の模擬負荷301~304をそれぞれ独立に制御可能に構成される。すなわち、模擬負荷301~304はそれぞれ、模擬負荷調整器311~314によって、負荷の大きさを調整可能に構成される。これにより、模擬負荷調整器311~314はそれぞれ、制御装置10から入力される調整信号に基づいて、模擬負荷301~304の消費電力を調整可能に構成される。調整信号は、模擬負荷群30の消費電力の増減を制御するための情報を含む。 The simulated load power consumption adjuster 31 as a simulated load adjuster is a device that adjusts the power consumed by the simulated load group 30 based on the adjustment signal input from the control device 10 . The simulated load power consumption adjuster 31 includes simulated load adjusters 311, 312, 313, and 314 corresponding to the simulated loads 301 to 304, respectively, and can independently control the plurality of simulated loads 301 to 304. configured to That is, the simulated loads 301 to 304 are configured to be able to adjust the magnitude of the loads by the simulated load adjusters 311 to 314, respectively. Thereby, simulated load adjusters 311 to 314 are configured to be able to adjust the power consumption of simulated loads 301 to 304 based on the adjustment signal input from control device 10, respectively. The adjustment signal includes information for controlling an increase or decrease in power consumption of the simulated load group 30 .
 なお、本実施形態においては、模擬負荷群30は、模擬負荷301~304が4台設けられた構成としているが、複数の模擬負荷を有していれば、4台以外であってもよい。また、後述する制御方法を効率よく実行するためには、模擬負荷の台数は、典型的には2台以上10台以下、好適には3台以上6台以下、より好適には4台または5台である。この場合、模擬負荷調整器も、模擬負荷の設置台数に対応して設けられ、模擬負荷と一対で設けられる。すなわち、模擬負荷および模擬負荷調整器の組として、典型的には2組以上10組以下、好適には3組以上6組以下、より好適には4組または5組である。 In this embodiment, the simulated load group 30 includes four simulated loads 301 to 304, but the number may be other than four as long as there are multiple simulated loads. In order to efficiently execute the control method described later, the number of simulated loads is typically 2 or more and 10 or less, preferably 3 or more and 6 or less, more preferably 4 or 5. It is a table. In this case, the simulated load adjusters are also provided corresponding to the number of installed simulated loads, and are provided in pairs with the simulated loads. That is, the number of pairs of the simulated load and the simulated load adjuster is typically 2 or more and 10 or less, preferably 3 or more and 6 or less, more preferably 4 or 5.
 商用電力系統40は、例えば電力会社などからの電力系統である。なお、本明細書においては、常用電源なども含めて、商用電力系統40と称する。電力負荷50は、設備を稼働させるために必要な電力が供給される負荷であり、具体的に例えばポンプやモータなどの負荷である。なお、電力負荷50は、例えばポンプやモータに限定されず、従来公知の種々の負荷が用いられる。 The commercial power system 40 is, for example, a power system from a power company. In this specification, the commercial power system 40 is referred to as including the regular power supply. The electric power load 50 is a load to which electric power necessary for operating the facility is supplied, and is specifically a load such as a pump or a motor. Note that the power load 50 is not limited to, for example, a pump or a motor, and conventionally known various loads can be used.
 発電電力計測部61は、エンジン発電機20に接続された電力供給線に接続され、エンジン発電機20が出力した発電電力の計測値を制御装置10に出力する電力計である。電力負荷消費電力計測部62は、電力負荷50に接続された電力供給線に接続され、電力負荷50が消費した消費電力の計測値を制御装置10に出力する電力計である。模擬負荷消費電力計測部63は、模擬負荷群30または模擬負荷消費電力調整器31に接続された電力供給線に接続され、模擬負荷群30が消費した消費電力の計測値を制御装置10に出力する電力計である。なお、模擬負荷消費電力計測部63は、それぞれの模擬負荷301~304の入力側に、それぞれの模擬負荷301~304に対応させて複数台設けてもよい。また、発電電力計測部61、電力負荷消費電力計測部62、および模擬負荷消費電力計測部63は、電力の増減を評価可能な計測器であれば、電力計に限定されず、例えば電流計などの種々の計測器を採用することが可能である。 The generated power measurement unit 61 is a wattmeter that is connected to the power supply line connected to the engine generator 20 and outputs the measured value of the generated power output by the engine generator 20 to the control device 10 . The power load power consumption measurement unit 62 is a power meter that is connected to a power supply line connected to the power load 50 and outputs a measured value of power consumption consumed by the power load 50 to the control device 10 . The simulated load power consumption measurement unit 63 is connected to the power supply line connected to the simulated load group 30 or the simulated load power consumption regulator 31, and outputs the measured value of the power consumption consumed by the simulated load group 30 to the control device 10. It is a power meter that A plurality of simulated load power consumption measurement units 63 may be provided on the input side of each of the simulated loads 301 to 304 so as to correspond to each of the simulated loads 301 to 304 . In addition, the generated power measurement unit 61, the power load power consumption measurement unit 62, and the simulated load power consumption measurement unit 63 are not limited to power meters as long as they are measuring devices capable of evaluating an increase or decrease in power. It is possible to employ a variety of measuring instruments.
 制御装置10は、エンジン発電機20の発電電力、電力負荷50の消費電力、および模擬負荷群30の消費電力の計測値を取得して、模擬負荷消費電力調整器31によって模擬負荷群30の消費電力の増減を制御する装置である。図2は、本実施形態による発電システム1の制御装置10を示すブロック図である。 The control device 10 acquires measured values of the power generated by the engine generator 20, the power consumption of the power load 50, and the power consumption of the simulated load group 30, and adjusts the consumption of the simulated load group 30 by the simulated load power consumption adjuster 31. It is a device that controls the increase and decrease of electric power. FIG. 2 is a block diagram showing the control device 10 of the power generation system 1 according to this embodiment.
 図2に示すように、制御装置10は、判定制御部11、加算部12、差分演算部13、制御感度演算部14、制御出力演算部15、および記憶部16を備える。制御装置10には、それぞれの発電電力計測部61、電力負荷消費電力計測部62、および模擬負荷消費電力計測部63から計測値が入力される。制御装置10は、模擬負荷消費電力調整器31の模擬負荷調整器311~314にそれぞれ、制御信号(調整信号)を出力する。 As shown in FIG. 2, the control device 10 includes a determination control section 11, an addition section 12, a difference calculation section 13, a control sensitivity calculation section 14, a control output calculation section 15, and a storage section 16. Measured values are input to the control device 10 from the generated power measuring unit 61 , the power load power consumption measuring unit 62 , and the simulated load power consumption measuring unit 63 . Control device 10 outputs a control signal (adjustment signal) to each of simulated load regulators 311 to 314 of simulated load power consumption regulator 31 .
 判定制御部11、加算部12、差分演算部13、制御感度演算部14、および制御出力演算部15は、具体的に、ハードウェアを有する、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、FPGA(Field-Programmable Gate Array)などのプロセッサ、およびRAM(Random Access Memory)やROM(Read Only Memory)などの主記憶部(いずれも図示せず)を備える。 The determination control unit 11, the addition unit 12, the difference calculation unit 13, the control sensitivity calculation unit 14, and the control output calculation unit 15 specifically have hardware such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processor). , FPGA (Field-Programmable Gate Array) and other processors, and RAM (Random Access Memory) and ROM (Read Only Memory) and other main storage units (none of which are shown).
 記憶部16は、RAMなどの揮発性メモリ、ROMなどの不揮発性メモリ、EPROM(Erasable Programmable ROM)、ハードディスクドライブ(HDD、Hard Disk Drive)、およびリムーバブルメディアなどから選ばれた記憶媒体から構成される。なお、リムーバブルメディアは、例えば、USB(Universal Serial Bus)メモリ、または、CD(Compact Disc)、DVD(Digital Versatile Disc)、もしくはBD(Blu-ray(登録商標) Disc)のようなディスク記録媒体である。また、外部から装着可能なメモリカードなどのコンピュータ読み取り可能な記録媒体を用いて記憶部16を構成してもよい。記憶部16には、制御装置10の動作を実行するための、オペレーティングシステム(Operating System:OS)、各種プログラム、各種テーブル、各種データベースなどが記憶可能である。ここで、各種プログラムには、本実施形態による模擬負荷群30の消費電力の増減制御を実現する電力増減制御プログラムも含まれる。これらの各種プログラムは、ハードディスク、フラッシュメモリ、CD-ROM、DVD-ROM、フレキシブルディスクなどのコンピュータ読み取り可能な記録媒体に記録して広く流通させることも可能である。 The storage unit 16 is composed of a storage medium selected from volatile memory such as RAM, nonvolatile memory such as ROM, EPROM (Erasable Programmable ROM), hard disk drive (HDD, Hard Disk Drive), and removable media. . Removable media are, for example, USB (Universal Serial Bus) memory, or disc recording media such as CD (Compact Disc), DVD (Digital Versatile Disc), or BD (Blu-ray (registered trademark) Disc). be. Alternatively, the storage unit 16 may be configured using a computer-readable recording medium such as a memory card that can be attached from the outside. The storage unit 16 can store an operating system (OS), various programs, various tables, various databases, and the like for executing the operations of the control device 10 . Here, the various programs include a power increase/decrease control program for realizing increase/decrease control of the power consumption of the simulated load group 30 according to this embodiment. These various programs can be recorded on computer-readable recording media such as hard disks, flash memories, CD-ROMs, DVD-ROMs, flexible disks, etc., and can be widely distributed.
 制御装置10においては、記憶部16に記憶されたプログラムを主記憶部の作業領域にロードして実行し、プログラムの実行を通じて各構成部などを制御することによって、所定の目的に合致した機能を実現できる。本実施形態においては、制御装置10によるプログラムの実行によって、判定制御部11、加算部12、差分演算部13、制御感度演算部14、および制御出力演算部15の処理が実行される。 In the control device 10, the program stored in the storage unit 16 is loaded into the work area of the main storage unit and executed, and by controlling each component through the execution of the program, the function that meets the predetermined purpose can be performed. realizable. In this embodiment, the control device 10 executes a program to execute the processes of the determination control section 11, the addition section 12, the difference calculation section 13, the control sensitivity calculation section 14, and the control output calculation section 15. FIG.
 判定制御部11は、発電電力計測部61から取得する発電電力の計測値と、電力負荷消費電力計測部62および模擬負荷消費電力計測部63の少なくとも一方から取得する消費電力の計測値とに基づいて、制御モードを判定して選択する。判定制御部11は、選択した制御モードに基づいて、模擬負荷消費電力調整器31に制御信号(調整信号)を出力して制御する。 The determination control unit 11 is based on the measured value of generated power acquired from the generated power measuring unit 61 and the measured value of power consumption acquired from at least one of the power load power consumption measuring unit 62 and the simulated load power consumption measuring unit 63. to determine and select the control mode. Based on the selected control mode, the determination control unit 11 outputs a control signal (adjustment signal) to the simulated load power consumption adjuster 31 to control it.
 本実施形態による発電システム1における判定制御部11は、例えば以下の3つの電力制御モード部を有する。本実施形態による発電システム1が備える制御装置10の判定制御部11が、以下の電力制御モードを実行する主たる制御部として機能する。具体的にまず、判定制御部11は例えば、第1電力制御モード部111、第2電力制御モード部112、および第3電力制御モード部113から、1つの制御モード部を選択する。続いて判定制御部11は、選択した電力制御モード部が実行する電力制御モードに基づいて模擬負荷消費電力調整器31の模擬負荷調整器311~314をそれぞれ制御する。これによって、模擬負荷301~304のそれぞれの消費電力を制御して、模擬負荷群30の全体の消費電力を制御する。ここで、第1電力制御モード部111、第2電力制御モード部112、および第3電力制御モード部113のそれぞれが実行する、それぞれの電力制御モードの詳細について説明する。 The determination control unit 11 in the power generation system 1 according to this embodiment has, for example, the following three power control mode units. The determination control unit 11 of the control device 10 included in the power generation system 1 according to this embodiment functions as a main control unit that executes the following power control modes. Specifically, first, the determination control unit 11 selects one control mode unit from the first power control mode unit 111, the second power control mode unit 112, and the third power control mode unit 113, for example. Subsequently, the determination control unit 11 controls the simulated load adjusters 311 to 314 of the simulated load power consumption adjuster 31 based on the power control mode executed by the selected power control mode unit. Thereby, the power consumption of each of the simulated loads 301 to 304 is controlled, and the power consumption of the entire simulated load group 30 is controlled. Details of the power control modes executed by first power control mode section 111, second power control mode section 112, and third power control mode section 113 will now be described.
 判定制御部11が第1電力制御モード部111を選択して実行される第1電力制御モードは、放出電力の減少を開始する電力制御モードである。すなわち、商用電力系統40の停電時においては、電力負荷50において負荷電力は、例えば投入の開始時点などから過渡的に増加する場合がある。この場合、判定制御部11の第1電力制御モード部111は、模擬負荷消費電力調整器31を制御して、模擬負荷群30の消費電力(放出電力)を、電力負荷50の負荷電力の増加分だけ低下させるように変更する。これにより、電力負荷50が消費する負荷電力に合わせて、放出電力が減少され、エンジン発電機20の発電電力を略一定に維持することができる。 The first power control mode executed by the determination control unit 11 selecting the first power control mode unit 111 is a power control mode in which the emission power starts to decrease. That is, during a power outage in the commercial power system 40, the load power of the power load 50 may transiently increase from, for example, the start of power-on. In this case, the first power control mode unit 111 of the determination control unit 11 controls the simulated load power consumption adjuster 31 to increase the power consumption (discharge power) of the simulated load group 30 and increase the load power of the power load 50. change to lower it by As a result, the discharge power is reduced in accordance with the load power consumed by the power load 50, and the power generated by the engine generator 20 can be maintained substantially constant.
 判定制御部11が第2電力制御モード部112を選択して実行される第2電力制御モードは、模擬負荷群30の放出電力の減少や増加を所定時間停止させたり、模擬負荷群30の負荷を所定時間一定に維持したりする電力制御モードである。すなわち、第2電力制御モード部112は、模擬負荷消費電力調整器31を制御して、模擬負荷群30の放出電力が減少しない状態または一定の状態になるように維持する。 In the second power control mode executed by the determination control unit 11 selecting the second power control mode unit 112, the decrease or increase in the emitted power of the simulated load group 30 is stopped for a predetermined time, or the load of the simulated load group 30 is stopped. is maintained constant for a predetermined period of time. That is, the second power control mode unit 112 controls the simulated load power consumption regulator 31 to keep the power emitted from the simulated load group 30 in a state of not decreasing or constant.
 第3電力制御モード部113により実行される第3電力制御モードは、模擬負荷群30の放出電力を増加させる電力制御モードである。すなわち、第3電力制御モード部113は、模擬負荷消費電力調整器31を制御して、模擬負荷群30の放出電力を増加させる。商用電力系統40の停電時においては、電力負荷50における負荷電力が継続して漸近的に減少する場合がある。そこで、第3電力制御モード部113は、模擬負荷消費電力調整器31を制御して、模擬負荷群30における放出電力を、電力負荷50の消費する負荷電力の増加率の絶対値、すなわち減少率よりも大きい増加率で増加させる。換言すると、電力負荷50の負荷電力の低下に追従して低下した発電電力を、模擬負荷群30の放出電力の増加率を、電力負荷50の負荷電力の減少率より大きくすることで調整する。これにより、エンジン発電機20の発電電力を略一定に維持することができる。 The third power control mode executed by the third power control mode unit 113 is a power control mode that increases the power emitted by the simulated load group 30 . That is, the third power control mode section 113 controls the simulated load power consumption adjuster 31 to increase the power emitted from the simulated load group 30 . During a power failure of the commercial power system 40, the load power of the power load 50 may continue to decrease asymptotically. Therefore, the third power control mode unit 113 controls the simulated load power consumption adjuster 31 to adjust the discharge power of the simulated load group 30 to the absolute value of the increase rate of the load power consumed by the power load 50, that is, the decrease rate. Increase at a rate greater than In other words, the generated power that has decreased following the decrease in the load power of the power loads 50 is adjusted by making the increase rate of the discharge power of the simulated load group 30 greater than the decrease rate of the load power of the power loads 50 . As a result, the power generated by the engine generator 20 can be maintained substantially constant.
 以上の第1電力制御モード、第2電力制御モード、および第3電力制御モードを切り替えることによって、エンジン発電機20による発電電力を略一定に維持する制御を、エンジン発電機20に対する電力増減制御という。 The control to keep the power generated by the engine generator 20 substantially constant by switching between the first power control mode, the second power control mode, and the third power control mode is referred to as power increase/decrease control for the engine generator 20. .
 加算部12は、電力負荷消費電力計測部62の計測値と、模擬負荷消費電力計測部63の計測値とを取得して加算し、差分演算部13に出力する。すなわち、加算部12は、模擬負荷群30の消費電力と電力負荷50の消費電力との合計の消費電力を、差分演算部13に出力する。 The adding unit 12 acquires and adds the measured value of the power load power consumption measuring unit 62 and the measured value of the simulated load power consumption measuring unit 63 , and outputs the result to the difference calculating unit 13 . That is, the adder 12 outputs the total power consumption of the simulated load group 30 and the power load 50 to the difference calculator 13 .
 差分演算部13は、模擬負荷群30と電力負荷50との合計の消費電力と、エンジン発電機20の発電電力との差分を演算して、制御出力演算部15に出力する。換言すると、差分演算部13は、発電電力に対する消費電力の差分を演算する演算部である。差分演算部13が発電電力と消費電力との差分を算出することによって、エンジン発電機20による発電電力を略一定にするために必要な模擬負荷群30に対する消費電力の制御値を算出できる。 The difference calculation unit 13 calculates the difference between the total power consumption of the simulated load group 30 and the power load 50 and the power generated by the engine generator 20 and outputs the difference to the control output calculation unit 15 . In other words, the difference calculator 13 is a calculator that calculates the difference between the generated power and the consumed power. By calculating the difference between the generated power and the consumed power by the difference calculation unit 13, it is possible to calculate the control value of the power consumption for the simulated load group 30 necessary to keep the power generated by the engine generator 20 substantially constant.
 制御感度演算部14は、差分演算部13によって求められた、発電電力を略一定にするために必要な模擬負荷群30の消費電力の制御値を、模擬負荷消費電力調整器31に出力する感度を演算する。すなわち、制御感度演算部14は、模擬負荷群30の消費電力の制御値をどの程度の感度で出力するかを演算する。制御感度演算部14は、演算によって得られた感度の情報を制御出力演算部15に出力する。 The control sensitivity calculation unit 14 outputs the control value of the power consumption of the simulated load group 30 required to keep the generated power substantially constant, which is obtained by the difference calculation unit 13, to the simulated load power consumption adjuster 31. to calculate That is, the control sensitivity calculation unit 14 calculates with what degree of sensitivity the control value of the power consumption of the simulated load group 30 is to be output. The control sensitivity calculation unit 14 outputs sensitivity information obtained by the calculation to the control output calculation unit 15 .
 制御出力演算部15は、差分演算部13によって得られた、発電電力を略一定にするために必要な模擬負荷群30の消費電力の制御値と、制御感度演算部14によって得られた感度の情報とを含む制御情報を生成する。制御出力演算部15は、生成した制御情報を判定制御部11に出力する。判定制御部11においては、制御出力演算部15において得られた模擬負荷消費電力調整器31に出力する制御情報を適切な制御信号に変換して、模擬負荷消費電力調整器31に出力する。 The control output calculation unit 15 calculates the control value of the power consumption of the simulated load group 30 required to keep the generated power substantially constant, which is obtained by the difference calculation unit 13, and the sensitivity value obtained by the control sensitivity calculation unit 14. and generating control information that includes: The control output calculator 15 outputs the generated control information to the determination controller 11 . The determination control unit 11 converts the control information to be output to the simulated load power consumption adjuster 31 obtained by the control output calculation unit 15 into an appropriate control signal, and outputs the control signal to the simulated load power consumption adjuster 31 .
 次に、以上のように構成された制御装置10によって実行される制御方法としての模擬負荷群30による消費電力(以下、放出電力という)の制御方法について説明する。まず、本実施形態による模擬負荷群30に対する消費電力の制御方法についての理解を容易にするために、本発明者による鋭意検討について説明する。図3は、本実施形態による発電システム1のエンジン制御部(図示せず)および制御装置10によるエンジン発電機20に対する制御の一例を示すグラフである。 Next, a method of controlling power consumption (hereinafter referred to as "discharged power") by the simulated load group 30 as a control method executed by the control device 10 configured as described above will be described. First, in order to facilitate understanding of the power consumption control method for the simulated load group 30 according to the present embodiment, the inventor's earnest study will be described. FIG. 3 is a graph showing an example of control of the engine generator 20 by the engine control unit (not shown) and the control device 10 of the power generation system 1 according to this embodiment.
 まず、図3に示すように、電力負荷50を有する施設や、商用電力系統40などにおける停電を検知したときに、エンジン発電機20が電力負荷50から解列された状態を想定する。エンジン制御部(図示せず)は、電力負荷50がエンジン発電機20から解列した状態で、エンジン発電機20を無負荷定格速度運転させることにより安定させる。その後、制御装置10により、模擬負荷によるエンジン発電機20の昇負荷運転を開始させる。なお、本明細書においては、電力負荷50がエンジン発電機20から解列した状態で、エンジン発電機20が無負荷定格速度運転によって安定している状態から、模擬負荷群30を用いたエンジン発電機20に対する昇負荷を「起動」という。これにより、エンジン発電機20の電力の放出が開始されて出力が増加する。エンジン発電機20が起動を開始した起動開始時点T1から所定の起動時間だけ経過すると、エンジン発電機20の起動動作が終了する。起動動作の終了時においては、エンジン発電機20が整定して発電電力が安定して、電力負荷50を投入可能になる(安定時点T2)。エンジン発電機20の発電電力が安定して安定時点T2が経過すると、電力負荷50の投入が開始される(負荷投入開始時点T3)。 First, as shown in FIG. 3, it is assumed that the engine generator 20 is disconnected from the power load 50 when a power failure is detected in a facility having the power load 50 or in the commercial power system 40 or the like. An engine control unit (not shown) stabilizes the engine generator 20 by operating the engine generator 20 at the no-load rated speed in a state in which the power load 50 is disconnected from the engine generator 20 . After that, the control device 10 starts load increasing operation of the engine generator 20 with the simulated load. It should be noted that in the present specification, engine power generation using the simulated load group 30 is performed from a state in which the engine generator 20 is stabilized by no-load rated speed operation while the power load 50 is disconnected from the engine generator 20. The lifting load on the machine 20 is called "starting". This causes the engine generator 20 to start discharging electric power and increase the output. When a predetermined starting time elapses from the start time T1 at which the engine generator 20 starts to start, the starting operation of the engine generator 20 ends. At the end of the starting operation, the engine generator 20 stabilizes and the generated power becomes stable, and the power load 50 can be turned on (stabilization time T 2 ). When the power generated by the engine generator 20 is stabilized and the stable time point T2 has passed, the power load 50 starts to be applied (load application start time point T3 ).
 負荷投入開始時点T3においてエンジン発電機20の発電電力に電力負荷50が投入されると、制御装置10によって電力増減制御が実行され、電力負荷50が消費する負荷電力に応じて放出電力が調整される。本実施形態においては、以下の(A)式に従って負荷電力の増減に対応して放出電力を増減させることにより、エンジン発電機20による発電電力を略一定に維持することができる。これにより、発電システム1において、放出電力の電力増減制御により、エンジン発電機20を一定負荷で運転させて、大きな負荷変動によるエンジン発電機20における内燃機関21の失速を回避することができる。
 放出電力=発電電力-負荷電力 …(A)
When the power load 50 is applied to the power generated by the engine generator 20 at the load application start time T3 , the power increase/decrease control is executed by the control device 10, and the discharge power is adjusted according to the load power consumed by the power load 50. be done. In this embodiment, the power generated by the engine generator 20 can be maintained substantially constant by increasing or decreasing the discharge power according to the increase or decrease in the load power according to the following formula (A). As a result, in the power generation system 1, the engine generator 20 can be operated at a constant load by the power increase/decrease control of the discharged power, and the stall of the internal combustion engine 21 in the engine generator 20 due to large load fluctuations can be avoided.
Emitted power = Generated power - Load power … (A)
 ここで、エンジン発電機20の起動の開始時点においては、模擬負荷のみで昇負荷させ、かつエンジン発電機20を安定して昇負荷させるために、模擬負荷による消費電力を線形状に増加させることが好ましい。しかしながら、本発明者は、従来の発電システムにおいてエンジン発電機20を起動させる場合、模擬負荷のみで昇負荷させ、かつエンジン発電機20を安定して昇負荷させるために、模擬負荷による消費電力を線形状に増加させていくと、力率が急激に低下してしまってエンジン発電機20にトリップが生じる場合があることを知見した。すなわち、本発明者は、起動開始時点T1においてエンジン発電機20を起動させる場合に、図3に示す時間帯(起動期間δ1)においてエンジン発電機20がトリップする場合があることを知見した。 Here, at the start of the start of the engine generator 20, the power consumption by the simulated load is increased linearly in order to increase the load only with the simulated load and to increase the load of the engine generator 20 stably. is preferred. However, when the engine generator 20 is started in the conventional power generation system, the present inventors have found that the power consumption by the simulated load is reduced in order to increase the load only with the simulated load and to increase the load of the engine generator 20 stably. It has been found that if the power factor is linearly increased, the power factor may suddenly drop, causing the engine generator 20 to trip. That is, the inventors have found that when the engine generator 20 is activated at the activation start time T1 , the engine generator 20 may trip during the time period (activation period δ1) shown in FIG.
 そこで、本発明者は、電力負荷50に相当する負荷を用いてあらかじめ所定の負荷(以下、初期負荷)を投入させた状態でエンジン発電機20を起動させ、模擬負荷群30の負荷投入率MV(%)とエンジン発電機20の力率との関係について実験を行った。図4、図5、および図6はそれぞれ、本発明者が発電システム1において行った、1つの模擬負荷が設けられた場合、複数の模擬負荷が設けられた場合、および複数の模擬負荷を個別に制御した場合の実験における、模擬負荷の投入率とエンジン発電機の力率との関係を示すグラフである。 Therefore, the present inventor started the engine generator 20 in a state in which a predetermined load (hereinafter referred to as an initial load) was applied in advance using a load corresponding to the electric load 50, and the load application rate MV of the simulated load group 30 (%) and the power factor of the engine generator 20 was tested. FIGS. 4, 5, and 6 respectively show the case where one simulated load is provided, the case where a plurality of simulated loads are provided, and the case where a plurality of simulated loads are provided, respectively, which the present inventor performed in the power generation system 1. 10 is a graph showing the relationship between the input rate of the simulated load and the power factor of the engine generator in the experiment when the control is performed to .
 まず、本発明者は、模擬負荷群30のうちの1台の模擬負荷301を用いて実験を行った。ここで、初期負荷をエンジン発電機20の設定出力に対してそれぞれ、20%、15%、10%、および5%にした。その結果を図4に示す。なお、模擬負荷301の最大の負荷は150kWとした。なお、設定出力は規定出力とも称される。 First, the inventor conducted an experiment using one simulated load 301 in the simulated load group 30 . Here, the initial load was set to 20%, 15%, 10%, and 5% of the set output of the engine generator 20, respectively. The results are shown in FIG. Note that the maximum load of the simulated load 301 was set to 150 kW. Note that the set output is also called a specified output.
 図4から、初期負荷を20%にした場合、模擬負荷301の負荷投入率MVを0%から増加させるのに伴って力率が1から低下し、負荷投入率MVが約40%~50%で力率が最小の0.93程度にまで低下することがわかる。また、模擬負荷301の負荷投入率MVを40%から増加させるのに伴って力率は0.93から1まで増加することが分かる。同様に、初期負荷を15%にした場合、模擬負荷301の負荷投入率MVを0%から100%まで増加させる間に、力率は、負荷投入率MVが約40%程度で最小の0.9程度にまで低下した後に1まで増加することが分かる。初期負荷を10%にした場合には、模擬負荷301の負荷投入率MVを0%から100%まで増加させる間に、力率は、負荷投入率MVが約40%程度で最小の0.85程度にまで低下した後に1まで増加することが分かる。ここで、本発明者がさらに検討を行ったところ、模擬負荷301の負荷投入率MVが約40%~50%の場合に力率が最小となるのは、高調波の発生に起因することを知見するに至った。 From FIG. 4, when the initial load is 20%, the power factor decreases from 1 as the load throwing rate MV of the simulated load 301 is increased from 0%, and the load throwing rate MV is about 40% to 50%. It can be seen that the power factor drops to the minimum of about 0.93 at . Also, it can be seen that the power factor increases from 0.93 to 1 as the load input rate MV of the simulated load 301 is increased from 40%. Similarly, when the initial load is 15%, while the load throwing rate MV of the simulated load 301 is increased from 0% to 100%, the power factor reaches its minimum value of 0.00 at a load throwing rate MV of about 40%. It can be seen that it decreases to about 9 and then increases to 1. When the initial load is 10%, while the load throwing factor MV of the simulated load 301 is increased from 0% to 100%, the power factor is the minimum 0.85 when the load throwing factor MV is about 40%. It can be seen that it increases to 1 after decreasing to about . Here, as a result of further investigation by the present inventors, it was found that the reason why the power factor is minimized when the load input rate MV of the simulated load 301 is approximately 40% to 50% is due to the generation of harmonics. I came to know.
 さらに、初期負荷を5%にした場合には、模擬負荷301の負荷投入率MVを0%から増加させると、増加の途中でエンジン発電機20の重故障発報条件cosθmin以下になって、エンジン発電機20がトリップすることが判明した。具体的に、エンジン発電機20の設定出力が600kWである場合には、初期負荷を30kW以下にすると、模擬負荷301の負荷投入率MVを増加させて負荷を投入率が100%になるまで上昇(以下、昇負荷)させることが困難になることが判明した。換言すると、初期負荷は本来0%とすべきであるが、初期負荷を5%とした場合でも模擬負荷301の負荷投入率MV、すなわち消費電力の設定を増加させるのに伴って力率が急激に低下し、エンジン発電機20の重故障条件に到達してしまう。そのため、初期負荷を0%としてエンジン発電機20の昇負荷を実行させることは、極めて困難であることが判明した。 Furthermore, when the initial load is set to 5%, when the load input rate MV of the simulated load 301 is increased from 0%, it falls below the serious failure notification condition cos θ min of the engine generator 20 in the middle of the increase. It was found that the engine generator 20 tripped. Specifically, when the set output of the engine generator 20 is 600 kW, if the initial load is set to 30 kW or less, the load input rate MV of the simulated load 301 is increased until the load input rate reaches 100%. (hereinafter referred to as load increase) becomes difficult. In other words, the initial load should be 0%. , and the engine generator 20 reaches a serious failure condition. Therefore, it turned out to be extremely difficult to increase the load of the engine generator 20 with the initial load set to 0%.
 本発明者は、模擬負荷を複数、例えば複数の模擬負荷301,302を設け、模擬負荷301,302を併せて昇負荷させてエンジン発電機20を起動させる実験を行った。なお、模擬負荷301,302の最大の負荷は2台分で(2×150=)300kWとした。その結果を図5に示す。図5から、この場合においても、エンジン発電機20の昇負荷における傾向は、図4と同様であることが分かる。また、初期負荷を10%とした場合に、模擬負荷301の負荷投入率MVを0%から増加させると、増加の途中で重故障発報条件cosθmin以下になって、エンジン発電機20がトリップすることが判明した。具体的に、エンジン発電機20の設定出力が600kWである場合には、初期負荷を60kW以下にすると、エンジン発電機20を昇負荷させることが困難になることが判明した。 The present inventor conducted an experiment in which a plurality of simulated loads, for example, a plurality of simulated loads 301 and 302 were provided, and the simulated loads 301 and 302 were increased together to start the engine generator 20 . Note that the maximum load of the simulated loads 301 and 302 was set to 300 kW for two units (2×150=). The results are shown in FIG. It can be seen from FIG. 5 that in this case also, the tendency of the load increase of the engine generator 20 is the same as in FIG. In addition, when the initial load is 10%, when the load input rate MV of the simulated load 301 is increased from 0%, it falls below the serious failure notification condition cos θ min during the increase, causing the engine generator 20 to trip. It turned out to do. Specifically, when the set output of the engine generator 20 is 600 kW, it has become difficult to increase the load of the engine generator 20 if the initial load is set to 60 kW or less.
 さらに、本発明者は、模擬負荷を複数、例えば複数の模擬負荷301~304を設け、模擬負荷301~304を1台ずつ順に、負荷投入率MVを0%から100%に増加させて、エンジン発電機20を昇負荷させる実験を行った。なお、模擬負荷301~304は1台当たりの負荷は、150kWとした。その結果を図6に示す。図6から、この場合においても、エンジン発電機20の昇負荷における傾向は、図4と同様であることが分かる。すなわち、複数の模擬負荷301~304の負荷投入率MVを1台ずつ増加させていくと、1台目の模擬負荷301の段階で、図4と同等の条件になるため、模擬負荷301の負荷投入率MVを0%から増加させると、増加の途中で重故障発報条件cosθmin以下になって、エンジン発電機20がトリップしてしまう。 Furthermore, the present inventor provides a plurality of simulated loads, for example, a plurality of simulated loads 301 to 304, sequentially increases the load input rate MV from 0% to 100%, and increases the simulated loads 301 to 304 one by one. An experiment was conducted to increase the load on the generator 20 . The simulated loads 301 to 304 each have a load of 150 kW. The results are shown in FIG. It can be seen from FIG. 6 that in this case also, the tendency of the load increase of the engine generator 20 is the same as in FIG. That is, when the load input rates MV of the plurality of simulated loads 301 to 304 are increased one by one, the conditions for the first simulated load 301 are the same as those in FIG. If the input rate MV is increased from 0%, it falls below the serious failure notification condition cos θ min during the increase, causing the engine generator 20 to trip.
 本発明者は、以上の実験に基づいて、さらに鋭意検討を行い、エンジン発電機20をトリップさせることなく、起動時の昇負荷を実現する制御方法を案出した。すなわち、本発明者は、エンジン発電機20に対して互いに独立して負荷を投入可能な複数の模擬負荷を設け、複数の模擬負荷をエンジン発電機20に投入する際に、一部の模擬負荷として1台目の模擬負荷の負荷容量をあらかじめ設定された負荷容量まで無段階で瞬時に上昇させ、残部の模擬負荷である2台目以降の模擬負荷に関しては、1台ずつ順次、設定された負荷容量まで増加させるように制御する制御方法を案出した。ここで、1台目の模擬負荷を無段階で上昇させる負荷容量は、エンジン発電機20がトリップを生じない負荷容量以上に選択される。以下に説明する本発明は、本発明者による以上の鋭意検討により案出されたものである。 Based on the above experiments, the present inventors conducted further intensive studies and devised a control method for increasing the load at startup without causing the engine generator 20 to trip. That is, the inventor provides a plurality of simulated loads that can be applied to the engine generator 20 independently of each other, and when applying the plurality of simulated loads to the engine generator 20, The load capacity of the first simulated load is increased steplessly and instantaneously to the preset load capacity, and the second and subsequent simulated loads, which are the remaining simulated loads, are sequentially set one by one. A control method was devised to increase the load capacity. Here, the load capacity for steplessly increasing the simulated load of the first unit is selected to be greater than or equal to the load capacity at which the engine generator 20 does not trip. The present invention described below has been devised through the above earnest studies by the inventors of the present invention.
 次に、本実施形態における制御装置10による制御方法について説明する。図7は、本実施形態における制御装置による制御方法を説明するためのフローチャートである。図8は、本実施形態における制御装置10による図7に対応する制御の一例を示すグラフである。図8に示すSTは、図7に示すステップに相当する。図7に示すフローチャートは、商用電力系統40が停電状態になってエンジン発電機20が電力負荷50から解列された後、エンジン発電機20の起動で開始される。 Next, a control method by the control device 10 in this embodiment will be described. FIG. 7 is a flow chart for explaining the control method by the control device in this embodiment. FIG. 8 is a graph showing an example of control corresponding to FIG. 7 by the control device 10 in this embodiment. ST shown in FIG. 8 corresponds to the steps shown in FIG. The flowchart shown in FIG. 7 is started by starting the engine generator 20 after the commercial power system 40 is in a power failure state and the engine generator 20 is disconnected from the power load 50 .
 図7および図8に示すように、ステップST1において制御装置10は、エンジン発電機20の起動時に、複数台の模擬負荷301~304のうちの1台の模擬負荷301の負荷を投入する調整信号を、模擬負荷消費電力調整器31に対して出力する。なお、「エンジン発電機20の起動時」とは、エンジン発電機20の仕様や性能(スペック)などによって変動はあるものの、所定のエンジン制御部(図示せず)によるエンジン発電機20に対する昇負荷の指示がされた時点に対する前後の短時間の時間間隔、本実施形態によるエンジン発電機20においては、例えば±1秒程度の時間間隔を意味する。すなわち、制御装置10は、模擬負荷消費電力調整器31の模擬負荷調整器311に調整信号を出力して、模擬負荷301をエンジン発電機20に投入する。ここで、模擬負荷301の負荷が0%から100%にステップ状に増加するようにエンジン発電機20に投入する。すなわち、エンジン発電機20に投入する模擬負荷301の負荷容量を、0%から100%まで瞬間的に増加させる。ここで、図7に示す例では模擬負荷301の100%の負荷容量を、エンジン発電機20の設定出力に対してX%の負荷容量に設定することで、エンジン発電機20の起動時に直前に、エンジン発電機20に対して設定出力のX%の負荷がステップ状に投入される。なお、X%は、エンジン発電機20のトリップが生じない負荷容量以上であれば種々の値を採用できる。本実施形態においては、4台の模擬負荷301~304の負荷容量を互いに等しくしつつ、合計の負荷容量をエンジン発電機20の設定出力と略等しくしている。これにより、模擬負荷301~304のそれぞれの負荷容量は、エンジン発電機20の設定出力の25%になる。なお、模擬負荷301~304の負荷容量をそれぞれ異なる負荷容量とすることも可能である。 As shown in FIGS. 7 and 8, in step ST1, control device 10 applies an adjustment signal to apply load of one of simulated loads 301 to 304 when engine generator 20 is started. is output to the simulated load power consumption regulator 31 . It should be noted that "at the start of the engine generator 20" means that although there are variations depending on the specifications and performance (specs) of the engine generator 20, there is no increase in load on the engine generator 20 by a predetermined engine control unit (not shown). In the case of the engine generator 20 according to the present embodiment, it means a time interval of about ±1 second, for example. That is, control device 10 outputs an adjustment signal to simulated load adjuster 311 of simulated load power consumption adjuster 31 to apply simulated load 301 to engine generator 20 . Here, the load of the simulated load 301 is applied to the engine generator 20 so as to increase stepwise from 0% to 100%. That is, the load capacity of the simulated load 301 applied to the engine generator 20 is instantaneously increased from 0% to 100%. Here, in the example shown in FIG. 7, by setting the load capacity of 100% of the simulated load 301 to the load capacity of X% of the set output of the engine generator 20, immediately before the start of the engine generator 20 , a load of X% of the set output is applied to the engine generator 20 stepwise. Various values can be adopted for X% as long as it is equal to or greater than the load capacity at which the engine generator 20 does not trip. In this embodiment, the load capacities of the four simulated loads 301 to 304 are made equal to each other, and the total load capacity is made substantially equal to the set output of the engine generator 20 . As a result, the load capacity of each of the simulated loads 301-304 becomes 25% of the set output of the engine generator 20. FIG. It should be noted that the load capacities of the simulated loads 301 to 304 can be set to different load capacities.
 その後、ステップST2に移行して、制御装置10は、1台目の模擬負荷301の投入に伴うエンジン発電機20の出力の変動が安定したか否かを判定する。エンジン発電機20に対して模擬負荷301の負荷容量の0%から100%までを瞬間的に投入すると、エンジン発電機20が整定、つまり発電出力が安定するまで一定の期間を要する場合がある。エンジン発電機20の発電電力の出力が整定するまでの間(ステップST2:No)、ステップST2においてエンジン発電機20の出力が安定するまで待機する。制御装置10が、エンジン発電機20の出力が安定状態であると判定した場合(ステップST2:Yes)、ステップST3に移行する。 After that, the process proceeds to step ST2, and the control device 10 determines whether or not the fluctuation of the output of the engine generator 20 accompanying the application of the first simulated load 301 has stabilized. When 0% to 100% of the load capacity of the simulated load 301 is instantaneously applied to the engine generator 20, it may take a certain period of time for the engine generator 20 to settle, that is, to stabilize the power generation output. Until the output of the generated electric power of the engine generator 20 stabilizes (step ST2: No), it waits until the output of the engine generator 20 stabilizes in step ST2. When the control device 10 determines that the output of the engine generator 20 is in a stable state (step ST2: Yes), the process proceeds to step ST3.
 ステップST3において制御装置10は、複数台の模擬負荷301~304から2台目以降、ここでは2台目の模擬負荷302を、エンジン発電機20に対して、負荷容量の0%から100%まで線形状、ステップ状、または階段状に投入させる。すなわち、制御装置10は、調整信号を模擬負荷調整器312に出力して模擬負荷302の負荷を制御することにより、エンジン発電機20に対して模擬負荷302の負荷を0%から増加させつつ100%まで投入する。これにより、エンジン発電機20に対して投入される負荷容量は、エンジン発電機20の設定出力のX%からY%まで増加する。図8に示す例では、模擬負荷302の負荷を線形的に増加させてエンジン発電機20の設定出力のX%からY%まで投入している。なお、本実施形態においてY%は、例えば50%である。 In step ST3, the control device 10 selects the second and subsequent simulated loads 301 to 304, here the second simulated load 302, from the load capacity of the engine generator 20 from 0% to 100%. Inject linearly, stepwise, or stepwise. That is, control device 10 outputs an adjustment signal to simulated load adjuster 312 to control the load of simulated load 302, thereby increasing the load of simulated load 302 from 0% to engine generator 20 while increasing the load of simulated load 302 to 100%. %. As a result, the load capacity applied to the engine generator 20 increases from X% of the set output of the engine generator 20 to Y%. In the example shown in FIG. 8 , the load of the simulated load 302 is linearly increased to apply from X% to Y% of the set output of the engine generator 20 . Note that Y% in this embodiment is, for example, 50%.
 次に、ステップST4に移行して制御装置10は、複数台の模擬負荷301~304から2台目以降、ここでは3台目の模擬負荷303を、エンジン発電機20に対して、負荷容量の0%から100%まで線形状、ステップ状、または階段状に投入させる。すなわち、制御装置10は、調整信号を模擬負荷調整器313に出力して模擬負荷303の負荷を制御することにより、エンジン発電機20に対して模擬負荷303の負荷を0%から増加させつつ100%まで投入する。これにより、エンジン発電機20に対して投入される負荷容量は、エンジン発電機20の設定出力のY%からZ%まで増加する。図8に示す例では、模擬負荷303の負荷を線形的に増加させてエンジン発電機20の設定出力のY%からZ%まで投入している。なお、本実施形態においてZ%は、例えば75%である。 Next, in step ST4, the control device 10 selects the second and subsequent simulated loads 303 from the plurality of simulated loads 301 to 304, here the third simulated load 303, to the engine generator 20 so that the engine generator 20 has a load capacity. Dosing from 0% to 100% linearly, stepwise, or stepwise. That is, the control device 10 outputs an adjustment signal to the simulated load adjuster 313 to control the load of the simulated load 303, thereby increasing the load of the simulated load 303 from 0% to the engine generator 20 to 100%. %. As a result, the load capacity applied to the engine generator 20 increases from Y% of the set output of the engine generator 20 to Z%. In the example shown in FIG. 8 , the load of the simulated load 303 is linearly increased to apply from Y % to Z % of the set output of the engine generator 20 . Note that Z % in this embodiment is, for example, 75%.
 上述したX%、Y%、およびZ%はそれぞれ任意に設定することが可能である。すなわち、模擬負荷301~304に対して任意の制御範囲を割り当てて、それぞれの模擬負荷301~304に対して個別に制御して、それぞれの模擬負荷301~304における負荷投入率MVを0%から100%まで増加させる。その結果、模擬負荷群30における負荷投入率MVを100%にした場合に、エンジン発電機20の設定出力、例えば定格出力の70%程度まで負荷が投入される。 The above X%, Y%, and Z% can be set arbitrarily. That is, an arbitrary control range is assigned to the simulated loads 301 to 304, each of the simulated loads 301 to 304 is individually controlled, and the load input rate MV of each of the simulated loads 301 to 304 is increased from 0% to Increase to 100%. As a result, when the load application rate MV in the simulated load group 30 is set to 100%, the load is applied up to the set output of the engine generator 20, for example, about 70% of the rated output.
 次に、ステップST5に移行して制御装置10は、複数台の模擬負荷301~304から2台目以降、ここでは4台目の模擬負荷304を、エンジン発電機20に対して、負荷容量の0%から100%まで線形状、ステップ状、または階段状に投入させる。すなわち、制御装置10は、調整信号を模擬負荷調整器314に出力して模擬負荷304の負荷を制御することにより、エンジン発電機20に対して模擬負荷304の負荷を0%から増加させつつ100%まで投入する。これにより、エンジン発電機20に対して投入される負荷容量は、エンジン発電機20の設定出力のZ%から100%まで増加する。図8に示す例では、模擬負荷304の負荷を線形的に増加させてエンジン発電機20の設定出力のZ%から100%まで投入している。 Next, in step ST5, the control device 10 selects the second and subsequent simulated loads 301 to 304, here the fourth simulated load 304, from the plurality of simulated loads 301 to 304, to the engine generator 20. Dosing from 0% to 100% linearly, stepwise, or stepwise. That is, the control device 10 outputs an adjustment signal to the simulated load adjuster 314 to control the load of the simulated load 304, thereby increasing the load of the simulated load 304 from 0% to the engine generator 20 to 100%. %. As a result, the load capacity applied to the engine generator 20 increases from Z% of the set output of the engine generator 20 to 100%. In the example shown in FIG. 8 , the load of the simulated load 304 is linearly increased from Z% of the set output of the engine generator 20 to 100%.
 その後、ステップST5に移行して制御装置10は、例えば施設などに設けられた電力負荷50をエンジン発電機20に投入できる条件(電力負荷投入条件)が成立したか否か、すなわち、エンジン発電機20による発電電力の出力が安定したか否か判定する。制御装置10は、エンジン発電機20からの発電電力の出力が安定するまで電力負荷50の投入は待機される(ステップST6:No)。一方、制御装置10が、エンジン発電機20の電力負荷投入条件が成立したと判定した場合(ステップST6:Yes)、ステップST7に移行する。 After that, the process proceeds to step ST5, and the control device 10 determines whether or not a condition (power load input condition) for inputting the power load 50 provided in the facility or the like to the engine generator 20 has been established. It is determined whether or not the output of the power generated by 20 has stabilized. The control device 10 waits until the output of the generated power from the engine generator 20 stabilizes before the power load 50 is turned on (step ST6: No). On the other hand, when the control device 10 determines that the power load input condition of the engine generator 20 is satisfied (step ST6: Yes), the process proceeds to step ST7.
 ステップST7において制御装置10は、電力負荷50をエンジン発電機20に投入するとともに、第1~第3電力制御モードを選択して制御する電力増減制御を開始する。ステップST7における電力増減制御において制御装置10は、模擬負荷調整器311~314に対して調整信号を出力して、電力負荷50の負荷電力の増減に応じて、模擬負荷301~304の負荷を調整する。これによって、上述した(A)式に示すように、エンジン発電機20の発電電力を略一定に制御する。以上により、本実施形態による制御装置10によるエンジン発電機20に投入する負荷の制御処理、すなわち模擬負荷群30および模擬負荷消費電力調整器31に対する制御処理が終了する。 In step ST7, the control device 10 applies the power load 50 to the engine generator 20, and selects the first to third power control modes to start power increase/decrease control. In the power increase/decrease control in step ST7, the control device 10 outputs adjustment signals to the simulated load adjusters 311 to 314, and adjusts the loads of the simulated loads 301 to 304 according to the increase/decrease in the load power of the power load 50. do. As a result, the electric power generated by the engine generator 20 is controlled to be substantially constant, as shown in the above formula (A). As described above, the control processing of the load to be applied to the engine generator 20 by the control device 10 according to the present embodiment, that is, the control processing for the simulated load group 30 and the simulated load power consumption adjuster 31 is completed.
 上述した一実施形態による制御処理は、図3に示す起動期間δ1に対して適用する場合を例に説明したが、電力負荷50が投入された後の稼働期間δ2においても、同様の制御を実行することができる。すなわち、制御装置10による電力増減制御において、模擬負荷群30における模擬負荷301~304を同時に制御する方法以外にも、これらの模擬負荷301~304を個別に制御して、必要とされる放出電力を消費する模擬負荷301~304を順次投入することにより、エンジン発電機20における力率の低下を抑制できるので、放出電力の制御をより安定して実行することが可能になる。 Although the control process according to the above-described embodiment is applied to the start-up period δ1 shown in FIG. can do. That is, in the power increase/decrease control by the control device 10, in addition to the method of simultaneously controlling the simulated loads 301 to 304 in the simulated load group 30, these simulated loads 301 to 304 can be individually controlled to obtain the required emitted power. By sequentially turning on the simulated loads 301 to 304 that consume the power, it is possible to suppress a decrease in the power factor of the engine generator 20, so that it is possible to more stably control the emitted power.
 以上説明した本実施形態による制御方法によって、互いに負荷容量が等しい4台のヒータをそれぞれ模擬負荷301~304として用い、エンジン発電機20を起動させた場合のグラフを図9に示す。図9において、左縦軸に対しては、エンジン発電機20の出力した電力を点線、4台のヒータの出力した電力の合計を実線、上述した一実施形態による制御方法によって4台のヒータを制御した場合の全体の負荷投入率MV(ヒータ電流制御MV(%))を一点鎖線として示す。右縦軸に対しては、エンジン発電機20の力率を2点鎖線で示す。なお、2本の太破線は、重故障発報条件の一例を示し、上の太破線は力率が0.79(20秒で発報)、下の破線は力率が0.7(5秒で発報)である。 FIG. 9 shows a graph when the engine generator 20 is started using the four heaters having the same load capacity as the simulated loads 301 to 304, respectively, according to the control method according to the present embodiment described above. In FIG. 9, on the left vertical axis, the power output by the engine generator 20 is represented by a dotted line, the total power output by the four heaters is represented by a solid line, and the four heaters are controlled by the control method according to the above-described embodiment. The overall load application rate MV (heater current control MV (%)) under control is indicated by a dashed line. On the right vertical axis, the power factor of the engine generator 20 is indicated by a chain double-dashed line. The two thick dashed lines show an example of conditions for issuing a major failure alarm. second).
 図9から、1台目のヒータ(模擬負荷301)の負荷を瞬間的に0~100%まで増加させて、エンジン発電機20の設定出力の25%まで瞬間的に投入していることにより、1台目のヒータ(模擬負荷301)の模擬負荷調整器311がパススルー状態になって、力率の低下を解消できていることが分かる。すなわち、図9から、2台目のヒータ(模擬負荷302)の負荷を線形状に増加させた場合であっても、エンジン発電機20の力率は0,95程度までの低下にとどまっていることが分かる。なお、3台目、4台目のヒータ(模擬負荷303,304)の負荷を線形状に増加させた場合であっても、ヒータをそれぞれ個別に制御することによって、重故障発報条件に対して十分な力率の裕度を確保できることが分かる。 From FIG. 9, by instantaneously increasing the load of the first heater (simulated load 301) from 0 to 100% and instantaneously turning on 25% of the set output of the engine generator 20, It can be seen that the simulated load regulator 311 of the first heater (simulated load 301) is in a pass-through state, and the decrease in power factor can be resolved. That is, from FIG. 9, even when the load of the second heater (simulated load 302) is linearly increased, the power factor of the engine generator 20 is only reduced to about 0.95. I understand. Even when the loads of the third and fourth heaters (simulated loads 303 and 304) are linearly increased, the heaters can be individually controlled to respond to the serious failure notification condition. It can be seen that a sufficient margin of power factor can be ensured.
 本発明者の知見によれば、エンジン発電機20の力率は、投入された負荷が消費する「有効電力」と「無効電力」との割合から導出される。また、1台目の模擬負荷301をステップ状にX%まで、上述した一実施形態においては25%まで瞬間的に増加させて投入すると、模擬負荷調整器311における0%および100%においては、力率の低下が生じない(図4~図6参照)。そのため、1台目の模擬負荷調整器311による模擬負荷301を投入する負荷容量の設定を100%とすることによって、エンジン発電機20の力率の低下を招くことなく、さらなる模擬負荷302~304を投入することができる。2台目以降の模擬負荷302~304を、階段状、ステップ状、または線形状に投入させた場合であっても、すでに模擬負荷301によって力率の低下が生じない負荷が投入されていることから、無効電力が増加したとしても、極端な力率の低下が生じないと考えられる。さらに、順次投入される模擬負荷302~304の台数が増加するのに従って、模擬負荷301~304の全体に対する力率が1となる負荷の割合が増加するため、力率が低下する影響に関しては、投入された模擬負荷の台数に伴って緩和される。そのため、図9に示すように、模擬負荷302~304に相当する2台目~4台目のヒータをエンジン発電機20の負荷として投入した場合に、力率の低下量がヒータの台数の増加に伴って減少していると考えられる。 According to the findings of the present inventor, the power factor of the engine generator 20 is derived from the ratio of "active power" and "reactive power" consumed by the applied load. In addition, when the first simulated load 301 is stepwise increased to X%, or up to 25% in the above-described embodiment, instantaneously, when the simulated load adjuster 311 is 0% and 100%, No power factor drop occurs (see FIGS. 4-6). Therefore, by setting the load capacity for applying the simulated load 301 by the first simulated load adjuster 311 to 100%, further simulated loads 302 to 304 can be obtained without causing a decrease in the power factor of the engine generator 20. can be put in. Even if the simulated loads 302 to 304 of the second and subsequent units are applied in a stepped, stepped, or linear manner, the simulated load 301 has already applied a load that does not cause a drop in power factor. Therefore, even if the reactive power increases, it is considered that the power factor does not drop significantly. Furthermore, as the number of the simulated loads 302 to 304 that are sequentially applied increases, the ratio of the loads with a power factor of 1 to the total of the simulated loads 301 to 304 increases. It is mitigated according to the number of simulated loads that are input. Therefore, as shown in FIG. 9, when the second to fourth heaters corresponding to the simulated loads 302 to 304 are turned on as the loads of the engine generator 20, the amount of decrease in the power factor increases as the number of heaters increases. It is thought that the
 以上説明した、本発明の一実施形態によれば、互いに独立に制御可能な複数台の模擬負荷301~304を、エンジン発電機20に負荷を投入可能な状態で接続させ、エンジン発電機20の起動時において、少なくとも1台の模擬負荷301を制御する模擬負荷調整器311に対して、少なくともエンジン発電機20がトリップしない負荷容量を、0%から100%までステップ状に瞬時に投入していることにより、残りの模擬負荷302~304をそれぞれ、順次0%から100%まで増加させるように投入した場合においても、エンジン発電機20を、トリップを回避しつつ安定して起動させることが可能になる。 According to the embodiment of the present invention described above, a plurality of simulated loads 301 to 304 that can be controlled independently of each other are connected to the engine generator 20 in a state in which the load can be applied, and the engine generator 20 At startup, a load capacity that does not trip at least the engine generator 20 is instantaneously applied stepwise from 0% to 100% to the simulated load adjuster 311 that controls at least one simulated load 301. As a result, even when the remaining simulated loads 302 to 304 are sequentially increased from 0% to 100%, the engine generator 20 can be stably started while avoiding tripping. Become.
 以上、本発明の一実施形態について具体的に説明したが、本発明は、上述の一実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。例えば、上述の一実施形態において挙げた数値はあくまでも例に過ぎず、必要に応じてこれと異なる数値を用いてもよく、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。 Although one embodiment of the present invention has been specifically described above, the present invention is not limited to the above-described one embodiment, and various modifications are possible based on the technical idea of the present invention. For example, the numerical values given in one embodiment above are merely examples, and different numerical values may be used if desired. The invention is not limited.
 (記録媒体)
 上述の一実施形態において、制御装置10が実行する処理方法を実行させるプログラムを、コンピュータその他の機械などの装置(以下、コンピュータなど、という)が読み取り可能な記録媒体に記録することができる。コンピュータなどに、この記録媒体のプログラムを読み込ませて実行させることにより、当該コンピュータなどが制御装置10として機能する。ここで、コンピュータなどが読み取り可能な記録媒体とは、データやプログラムなどの情報を電気的、磁気的、光学的、機械的、または化学的作用によって蓄積し、コンピュータなどから読み取ることができる非一時的な記録媒体をいう。このような記録媒体のうちのコンピュータなどから取り外し可能なものとしては、例えばフレキシブルディスク、光磁気ディスク、CD-ROM、CD-R/W、DVD、BD、DAT、磁気テープ、フラッシュメモリなどのメモリカードなどがある。また、コンピュータなどに固定された記録媒体としてハードディスク、ROMなどがある。さらに、SSDは、コンピュータなどから取り外し可能な記録媒体としても、コンピュータなどに固定された記録媒体としても利用可能である。
(recoding media)
In the above-described embodiment, the program for executing the processing method executed by the control device 10 can be recorded in a recording medium readable by a device such as a computer or other machine (hereinafter referred to as a computer or the like). The computer or the like functions as the control device 10 by causing the computer or the like to read and execute the program of the recording medium. Here, a computer-readable recording medium is a non-temporary medium that stores information such as data and programs by electrical, magnetic, optical, mechanical, or chemical action and can be read by a computer or the like. a recording medium. Examples of such recording media that can be removed from a computer include flexible disks, magneto-optical disks, CD-ROMs, CD-R/Ws, DVDs, BDs, DATs, magnetic tapes, flash memories, and other memories. There are cards, etc. In addition, there are a hard disk, a ROM, and the like as a recording medium fixed to a computer or the like. Furthermore, SSD can be used as a recording medium that can be removed from a computer or the like, or as a recording medium that is fixed to a computer or the like.
 また、一実施形態による制御装置10に実行させるプログラムは、インターネットなどのネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。 Also, the program to be executed by the control device 10 according to one embodiment may be stored on a computer connected to a network such as the Internet, and provided by being downloaded via the network.
(その他の実施形態)
 上述した一実施形態においては、上述した「部」を「回路」などに読み替えることができる。例えば、制御部は、制御回路に読み替えることができる。
(Other embodiments)
In the above-described embodiment, the above-described "unit" can be read as "circuit" or the like. For example, the controller can be read as a control circuit.
 なお、本明細書におけるフローチャートの説明では、「まず」、「次に」、「その後」、「続いて」などの表現を用いてステップ間の処理の前後関係を明示していたが、本実施の形態を実施するために必要な処理の順序は、それらの表現によって一意的に定められるわけではない。すなわち、本明細書で記載したフローチャートにおける処理の順序は、矛盾のない範囲で変更することができる。 In the description of the flowcharts in this specification, expressions such as “first”, “next”, “after”, and “following” are used to clearly indicate the anteroposterior relationship of processing between steps. The order of operations required to implement aspects of is not uniquely defined by those representations. That is, the order of processing in the flow charts described herein can be changed within a consistent range.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。本開示のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付のクレームおよびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. The broader aspects of the disclosure are not limited to the specific details and representative embodiments shown and described above. Accordingly, various changes may be made without departing from the spirit or scope of the general inventive concept defined by the appended claims and equivalents thereof.
 本発明に係る発電システム、制御装置、制御方法、およびプログラムは、調速機を備えたエンジン発電機に適用して好適なものである。 The power generation system, control device, control method, and program according to the present invention are suitable for application to an engine generator equipped with a speed governor.
1 発電システム
10 制御装置
11 判定制御部
12 加算部
13 差分演算部
14 制御感度演算部
15 制御出力演算部
16 記憶部
20 エンジン発電機
21 内燃機関
22 発電機
30 模擬負荷群
31 模擬負荷消費電力調整器
40 商用電力系統
50 電力負荷
61 発電電力計測部
62 電力負荷消費電力計測部
63 模擬負荷消費電力計測部
111 第1電力制御モード部
112 第2電力制御モード部
113 第3電力制御モード部
301,302,303,304 模擬負荷
311,312,313,314 模擬負荷調整器 
1 power generation system 10 control device 11 determination control unit 12 addition unit 13 difference calculation unit 14 control sensitivity calculation unit 15 control output calculation unit 16 storage unit 20 engine generator 21 internal combustion engine 22 generator 30 simulated load group 31 simulated load power consumption adjustment device 40 commercial power system 50 power load 61 generated power measuring unit 62 power load power consumption measuring unit 63 simulated load power consumption measuring unit 111 first power control mode unit 112 second power control mode unit 113 third power control mode unit 301, 302, 303, 304 Simulated loads 311, 312, 313, 314 Simulated load adjusters

Claims (8)

  1.  調速機を備える内燃機関の駆動によって発電電力を制御する発電機と、
     前記内燃機関が駆動している状態で前記発電機の発電電力を消費可能、かつ消費電力を調整可能に負荷容量が設定される模擬負荷と、
     前記模擬負荷の消費電力を調整可能に構成された模擬負荷調整部と、
     前記模擬負荷調整部を制御することにより前記模擬負荷の消費電力を制御可能な制御部と、を備え、
     前記模擬負荷および前記模擬負荷調整部が一対で複数設けられ、
     前記制御部は、
     前記発電機の起動時において、前記複数の模擬負荷のうち、前記発電機の起動動作においてトリップが生じない所定の消費電力を消費する負荷以上に前記負荷容量が設定された少なくとも一部の模擬負荷を、前記発電機に対して投入するように制御する
     発電システム。
    a generator that controls generated power by driving an internal combustion engine equipped with a speed governor;
    a simulated load whose load capacity is set such that the power generated by the generator can be consumed while the internal combustion engine is running, and the power consumption can be adjusted;
    a simulated load adjustment unit configured to be able to adjust the power consumption of the simulated load;
    a control unit capable of controlling power consumption of the simulated load by controlling the simulated load adjustment unit;
    A plurality of pairs of the simulated load and the simulated load adjustment unit are provided,
    The control unit
    At least one of the plurality of simulated loads for which the load capacity is set to be greater than or equal to a load that consumes a predetermined power consumption that does not cause a trip during the startup operation of the generator when the generator is started. to the power generator.
  2.  前記制御部は、
     前記模擬負荷調整部に調整信号を出力して、前記発電機の起動動作の間において、前記一部の模擬負荷を投入した後、前記複数の模擬負荷のうちの残部の模擬負荷を、前記発電機に対して順次投入する制御を行う
     請求項1に記載の発電システム。
    The control unit
    After outputting an adjustment signal to the simulated load adjustment unit and inputting the part of the simulated load during the startup operation of the generator, the remaining simulated load of the plurality of simulated loads is adjusted to the power generation. 2. The power generation system according to claim 1, wherein control is performed to sequentially turn on the generators.
  3.  前記制御部は、前記発電機に対して、前記残部の模擬負荷の負荷を、ステップ状、階段状、または線形状に増加させて投入する制御を行う
     請求項2に記載の発電システム。
    3. The power generation system according to claim 2, wherein the control unit controls the generator so that the load of the remaining simulated load is increased stepwise, stepwise, or linearly.
  4.  前記模擬負荷および前記模擬負荷調整部が、2組以上設けられる
     請求項1~3のいずれか1項に記載の発電システム。
    The power generation system according to any one of claims 1 to 3, wherein two or more sets of the simulated load and the simulated load adjustment unit are provided.
  5.  前記制御部は、
     前記発電機に対して前記複数の模擬負荷の投入が終了した後、前記模擬負荷と異なる電力負荷に対して、前記発電機による発電電力の供給を開始させ、
     前記電力負荷による消費電力の変動に対応させて、前記模擬負荷の消費電力を増減させるように前記模擬負荷調整部を制御する
     請求項1~4のいずれか1項に記載の発電システム。
    The control unit
    After the plurality of simulated loads have been applied to the generator, supply of power generated by the generator to a power load different from the simulated load is started;
    The power generation system according to any one of claims 1 to 4, wherein the simulated load adjuster is controlled so as to increase or decrease the power consumption of the simulated load in response to fluctuations in power consumption due to the power load.
  6.  調速機を備える内燃機関の駆動によって発電電力を制御する発電機の発電電力を消費可能、かつ消費電力を調整可能に負荷容量が設定される複数の模擬負荷と、前記複数の模擬負荷の消費電力をそれぞれ個別に調整可能に構成され前記複数の模擬負荷と一対に設けられる複数の模擬負荷調整部と、を制御可能な制御部を備える制御装置であって、
     前記制御部は、
     前記発電機の起動時において、前記複数の模擬負荷のうち、前記発電機の起動動作においてトリップが生じない所定の消費電力を消費する負荷以上に前記負荷容量が設定された少なくとも一部の模擬負荷を、前記発電機に対して投入するように制御する
     制御装置。
    A plurality of simulated loads that can consume power generated by a generator that controls generated power by driving an internal combustion engine that has a speed governor, and whose load capacities are set so that the power consumption can be adjusted; and consumption of the plurality of simulated loads. A control device comprising a control unit capable of controlling the plurality of simulated loads configured to be able to adjust power individually and a plurality of simulated load adjusting units provided in pairs with the plurality of simulated loads,
    The control unit
    At least one of the plurality of simulated loads for which the load capacity is set to be greater than or equal to a load that consumes a predetermined power consumption that does not cause a trip during the startup operation of the generator when the generator is started. to the generator.
  7.  調速機を備える内燃機関の駆動によって発電電力を制御する発電機の発電電力を消費可能、かつ消費電力を調整可能に負荷容量が設定される複数の模擬負荷と、前記複数の模擬負荷の消費電力をそれぞれ個別に調整可能に構成され前記複数の模擬負荷と一対に設けられる複数の模擬負荷調整部と、を制御可能な制御部が実行する制御方法であって、
     前記制御部が、
     前記発電機の起動時において、前記複数の模擬負荷のうち、前記発電機の起動動作においてトリップが生じない所定の消費電力を消費する負荷以上に前記負荷容量が設定された少なくとも一部の模擬負荷を、前記発電機に対して投入するように制御する
     制御方法。
    A plurality of simulated loads that can consume power generated by a generator that controls generated power by driving an internal combustion engine that has a speed governor, and whose load capacities are set so that the power consumption can be adjusted; and consumption of the plurality of simulated loads. A control method executed by a control unit capable of controlling a plurality of simulated load adjusting units provided in pairs with the plurality of simulated loads configured to be able to adjust power individually,
    The control unit
    At least one of the plurality of simulated loads for which the load capacity is set to be greater than or equal to a load that consumes a predetermined power consumption that does not cause a trip during the startup operation of the generator when the generator is started. is controlled to be applied to the generator.
  8.  調速機を備える内燃機関の駆動によって発電電力を制御する発電機の発電電力を消費可能、かつ消費電力を調整可能に負荷容量が設定される複数の模擬負荷と、前記複数の模擬負荷の消費電力をそれぞれ個別に調整可能に構成され前記複数の模擬負荷と一対に設けられる複数の模擬負荷調整部と、を制御可能な制御部に、
     前記発電機の起動時において、前記複数の模擬負荷のうち、前記発電機の起動動作においてトリップが生じない所定の消費電力を消費する負荷以上に前記負荷容量が設定された少なくとも一部の模擬負荷を、前記発電機に対して投入するように制御する
     ことを実行させるプログラム。 
    A plurality of simulated loads that can consume power generated by a generator that controls generated power by driving an internal combustion engine that has a speed governor, and whose load capacities are set so that the power consumption can be adjusted; and consumption of the plurality of simulated loads. a control unit capable of controlling a plurality of simulated load adjustment units provided in pairs with the plurality of simulated loads configured to be able to individually adjust power,
    At least one of the plurality of simulated loads for which the load capacity is set to be greater than or equal to a load that consumes a predetermined power consumption that does not cause a trip during the startup operation of the generator when the generator is started. to the generator so that it is turned on.
PCT/JP2021/040588 2021-11-04 2021-11-04 Power generation system, control device, control method, and program WO2023079626A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/040588 WO2023079626A1 (en) 2021-11-04 2021-11-04 Power generation system, control device, control method, and program
JP2021569086A JPWO2023079626A1 (en) 2021-11-04 2021-11-04
JP2022573381A JPWO2023080174A1 (en) 2021-11-04 2022-11-02
PCT/JP2022/041069 WO2023080174A1 (en) 2021-11-04 2022-11-02 Electric power generation system, control device, control method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040588 WO2023079626A1 (en) 2021-11-04 2021-11-04 Power generation system, control device, control method, and program

Publications (1)

Publication Number Publication Date
WO2023079626A1 true WO2023079626A1 (en) 2023-05-11

Family

ID=86240802

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/040588 WO2023079626A1 (en) 2021-11-04 2021-11-04 Power generation system, control device, control method, and program
PCT/JP2022/041069 WO2023080174A1 (en) 2021-11-04 2022-11-02 Electric power generation system, control device, control method, and program

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041069 WO2023080174A1 (en) 2021-11-04 2022-11-02 Electric power generation system, control device, control method, and program

Country Status (2)

Country Link
JP (2) JPWO2023079626A1 (en)
WO (2) WO2023079626A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109746A (en) * 2013-12-04 2015-06-11 大阪瓦斯株式会社 Power generation system
JP2017184485A (en) * 2016-03-30 2017-10-05 大阪瓦斯株式会社 Power generation system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195491A (en) * 2015-03-31 2016-11-17 大阪瓦斯株式会社 Power generating system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109746A (en) * 2013-12-04 2015-06-11 大阪瓦斯株式会社 Power generation system
JP2017184485A (en) * 2016-03-30 2017-10-05 大阪瓦斯株式会社 Power generation system

Also Published As

Publication number Publication date
WO2023080174A1 (en) 2023-05-11
JPWO2023080174A1 (en) 2023-05-11
JPWO2023079626A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP5907497B2 (en) Storage battery control device, storage battery control method, and storage battery system
JP2022160684A (en) Advanced uninterruptible power module controller and method of operating the same
US20160352114A1 (en) Storage battery control device, storage battery control method, and storage battery control system
JP7071051B2 (en) Methods and systems for managing power systems
CA2826330A1 (en) Control arrangement and method for regulating the output voltage of a dc source power converter connected to a multi-source dc system
TW201813278A (en) Efficient motor control
US20120062166A1 (en) Integrated Fuel Processor and Fuel Cell System Control Method
JP6852828B1 (en) Power generation systems, controls, control methods, and programs
JP2017099148A (en) Power management system and power management method
WO2023079626A1 (en) Power generation system, control device, control method, and program
KR20150115063A (en) Enegy management apparatus for controlling reference power and method thereof
US20230109810A1 (en) Variable enhanced processor performance
CN110832251A (en) Fuel reduction rate output system, fuel reduction rate output method, and fuel reduction rate output program
WO2023079698A1 (en) Power generation system, control device, control method, and program
JP2008228422A (en) Method for controlling dispersed power supplies
JP7310930B1 (en) GENERATION SYSTEM, CONTROL DEVICE, CONTROL METHOD, AND PROGRAM
KR20070095213A (en) Clock frequency variation of a clocked current consumer
JP6763629B2 (en) Gas turbine control device, gas turbine control method
CN114167963B (en) Fan control management method, device, equipment and machine-readable storage medium
CN102834995A (en) System and method for balancing input current with parallel power supplies
JP2020506664A (en) Power supply method to power supply network
WO2013046546A1 (en) Control device, integrated circuit, control method, and program
KR200490997Y1 (en) System for testing performance of motor
JP2023077780A (en) Power control system, power control method, and program
CN112260596B (en) Generator stator current overcurrent control method and related device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2021569086

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963223

Country of ref document: EP

Kind code of ref document: A1