WO2023079991A1 - Production method for wedge-shaped glass - Google Patents

Production method for wedge-shaped glass Download PDF

Info

Publication number
WO2023079991A1
WO2023079991A1 PCT/JP2022/039405 JP2022039405W WO2023079991A1 WO 2023079991 A1 WO2023079991 A1 WO 2023079991A1 JP 2022039405 W JP2022039405 W JP 2022039405W WO 2023079991 A1 WO2023079991 A1 WO 2023079991A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
wedge
wedge angle
management position
width direction
Prior art date
Application number
PCT/JP2022/039405
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 上垣内
準一郎 加瀬
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2023557951A priority Critical patent/JPWO2023079991A1/ja
Priority to CN202280073956.7A priority patent/CN118251369A/en
Publication of WO2023079991A1 publication Critical patent/WO2023079991A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/037Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors

Definitions

  • the present invention relates to a method for manufacturing wedge-shaped glass.
  • the sheet glass manufactured by the float method is generally flat sheet glass with little thickness deviation.
  • HUD head-up display
  • the use of wedge-shaped glass with a non-uniform thickness makes it difficult for the driver to can reduce the double image that is a problem when visually recognizing the scenery outside the vehicle or the information displayed by the HUD.
  • a method for producing wedge-shaped glass a plurality of top rolls are brought into contact with one end of a glass ribbon traveling on a molten metal bath (float bath), and the cross section in the width direction orthogonal to the traveling direction is convex, concave, or tapered.
  • a method of obtaining a wedge-shaped glass product part by molding a glass base plate as a mold and cutting the glass base plate has been studied (see Patent Documents 1 to 3, for example).
  • the position of the glass base plate in the width direction changes. Therefore, the position in the width direction where the glass base plate is cut also fluctuates, and the wedge angle and plate thickness of the obtained glass product part also fluctuate. As a result, the wedge angle of the wedge-shaped glass cannot be maintained within a predetermined range.
  • the HUD display area when the wedge angle in the area of the wedge-shaped glass used as the HUD (hereinafter sometimes referred to as the HUD display area) cannot be maintained within a predetermined range, it is possible to effectively suppress double images in the HUD display area. I can't do it.
  • a glass base plate having a plate thickness change portion along the width direction is conveyed by a plurality of transfer rolls, and a longitudinal cutting line is formed in the longitudinal direction of the glass base plate by a vertical cutter.
  • a horizontal line is formed in the width direction of the glass base plate by a crossing machine, and a bending stress is applied to the glass base plate by a horizontal folding machine, thereby cutting the glass base plate along the horizontal line.
  • a glass member is formed, and a bending stress is applied to the glass member by a vertical folding machine, thereby cutting the glass member along the vertical cutting line, dividing unnecessary portions, and forming a wedge-shaped glass product portion.
  • a method for manufacturing wedge-shaped glass characterized in that the wedge angle at the management position X is controlled such that the difference from the ideal wedge angle at the predetermined management position X is within a predetermined range. be.
  • the longitudinal cutter can be controlled based on the wedge angle at the management position X. Therefore, a wedge-shaped glass product portion can be cut out from an appropriate position on the glass plate so that the wedge angle at the management position X is within a predetermined range.
  • FIG. 1(a) to 1(c) are cross-sectional views in the width direction of a glass base plate for wedge-shaped glass
  • FIG. 1(a) is an example of a convex type
  • FIG. 1(b) is an example of a concave type
  • FIG. 1(c) is an example of a tapered type.
  • FIG. 2 is a plan view showing the first embodiment of the wedge-shaped glass manufacturing method.
  • FIG. 3 is a plan view showing a second embodiment of the wedge-shaped glass manufacturing method.
  • 4A is a plan view showing a wedge angle detection method for the management position X.
  • FIG. 4B is a plan view showing a wedge angle detection method for the management position X.
  • FIG. 4C is a plan view showing a wedge angle detection method for the management position X.
  • FIG. 1(a) to 1(c) are cross-sectional views in the width direction of a glass base plate for wedge-shaped glass
  • FIG. 1(a) is an example of a convex type
  • FIG. 1(b) is an example of a concave type
  • FIG. 1(c) is an example of a tapered type.
  • FIG. 2 is a plan view showing the first embodiment of the wedge-shaped glass manufacturing method. The raw glass plate 10 is cut and inspected while being continuously transported in the wedge-shaped glass manufacturing apparatus 100 to become wedge-shaped glass product parts 11A and 11B.
  • the glass base plate 10 shown in FIG. 2 has a plate thickness change portion along the width direction of the glass base plate 10, that is, the B direction (hereinafter sometimes simply referred to as the width direction).
  • the plate thickness changing portion of the glass base plate 10 is obtained, for example, by bringing a plurality of top rolls into contact with one end of a glass ribbon traveling on a molten metal bath (float bath), and adjusting the peripheral speed and pressing force of the top rolls. can be molded with
  • the plate thickness change portion can also be adjusted by the temperature distribution in the width direction of the glass ribbon and the traveling speed of the glass ribbon.
  • the cross section in the width direction of the glass plate 10 is convex as shown in FIG. 1(a).
  • the glass base plate 10 includes ear portions 12A and 12B located on both sides in the width direction, a central portion 13 including the thickest region, and a first glass product positioned between the ear portions 12A and the central portion 13. It is composed of a portion 11A and a second glass product portion 11B located between the ear portion 12B and the central portion 13. As shown in FIG.
  • the glass product parts 11A and 11B are parts that will eventually become products.
  • the glass base plate may be a glass base plate 20 having a concave cross section in the width direction, as shown in FIG. 1(b).
  • the glass base plate 20 includes ear portions 22A and 22B located on both sides in the width direction, a center portion 23 including the thinnest region, and a first glass product located between the ear portions 22A and the center portion 23. It consists of a portion 21A and a second glassware portion 21B located between the ear portion 22B and the central portion 23. As shown in FIG.
  • the glass base plate may be a glass base plate 30 having a tapered cross section in the width direction, as shown in FIG. 1(c).
  • the raw glass plate 30 is composed of ear portions 32A and 32B located on both sides in the width direction, and a glass product portion 31 located between the ear portions 32A and 32B.
  • the glass base plate 20 or the glass base plate 30 can be similarly implemented.
  • the glass product portions 11A and 11B of the glass plate 10 correspond to the glass product portions 21A and 21B of the glass plate 20 and the glass product portion 31 of the glass plate 30 .
  • the ear portions 12A and 12B of the raw glass plate 10 correspond to the ear portions 22A and 22B of the raw glass plate 20 and the ear portions 32A and 32B of the raw glass plate 30, respectively.
  • the central portion 13 of the glass plate 10 corresponds to the central portion 23 of the glass plate 20 .
  • the glass base plate 10 molded so as to have a plate thickness change portion in the width direction is moved in the longitudinal direction of the glass base plate 10, that is, in the A direction (hereinafter simply referred to as the longitudinal direction) by a plurality of transport rolls 110 shown in FIG. is transported to The transport rolls 110 are arranged at a constant pitch distance along the transport path, and are rotated by being driven by a rotation driving means (not shown).
  • Vertical cutting lines L1 to L4 are scribe lines for separating the glass base plate 10 into glass product parts 11A and 11B, ear parts 12A and 12B, and the central part 13.
  • a vertical cutting line L1 is formed at the boundary between the glass product portion 11A and the ear portion 12A.
  • a vertical cutting line L2 is formed at the boundary between the glass product portion 11B and the ear portion 12B.
  • a vertical cutting line L3 is formed at the boundary between the glass product portion 11A and the central portion 13.
  • a vertical cutting line L4 is formed at the boundary between the glass product portion 11B and the central portion 13. As shown in FIG.
  • the vertical cutter 120 is capable of advancing and retreating in the plate thickness direction of the raw glass plate, that is, in the C direction (hereinafter sometimes simply referred to as the plate thickness direction) and moving in the width direction, and includes a plurality of cutters 121. ing. By advancing each cutter 121 toward the main surface of the glass (in the direction opposite to the C direction), the cutter 121 is brought into contact with the glass base plate 10 with a prescribed pressing force, and the glass base plate 10 is cut along the longitudinal cut line L1 to L4 is processed.
  • the positions of the longitudinal cutting lines L1 to L4 in the glass plate 10 in the width direction can be controlled by adjusting the positions of the cutters 121 in the width direction.
  • the transverse line L5 is a scribe line for cutting out the glass member 10P from the glass base plate 10.
  • the crossing machine 130 includes a cutter 131 that can move forward and backward in the plate thickness direction (direction C) and move in the plane direction perpendicular to the plate thickness direction.
  • a cutter 131 that can move forward and backward in the plate thickness direction (direction C) and move in the plane direction perpendicular to the plate thickness direction.
  • the cutter 131 is brought into contact with the glass base plate 10 with a prescribed pressing force.
  • a transverse line L ⁇ b>5 is processed in the width direction of the glass plate 10 .
  • the horizontal folding machine 140 is provided with a pressing roll (not shown) that can move forward and backward in the plate thickness direction.
  • the horizontal folding machine 140 presses the raw glass plate 10 with a pressing roll from below the raw glass plate 10, applies a bending stress along the longitudinal direction about the horizontal line L5, and bends along the horizontal line L5.
  • a glass base plate 10 is folded. As a result, the glass member 10P is cut out from the glass base plate 10. Next, as shown in FIG.
  • the glass member 10P cut out from the glass base plate 10 is moved from the transport roll 110 to the transport roll 111 having a width direction shorter than that of the transport roll 110 .
  • the first vertical folding machine 150 includes support rolls that support the tabs 12A and 12B of the glass member 10P from below in the C direction, and pressing projections that press from above (not shown).
  • the pressing projection and the support roll are movable in the width direction. Also, the support roll is rotatable in the longitudinal direction.
  • the first vertical folding machine 150 supports the ear portions 12A and 12B from the lower side in the C direction with support rolls and presses them from the upper side in the C direction with pressing projections, thereby reducing the bending stress along the width direction. and fold the ears 12A and 12B along the longitudinal cutting lines L1 and L2. As a result, a glass member 10Q having no ear portion is cut out from the glass member 10P.
  • the position in the width direction where the first vertical folding machine 150 applies bending stress to the glass plate 10 can be controlled by adjusting the positions in the width direction of the support rolls and the pressing projections.
  • the ear portions 12A and 12B separated from the glass member 10P can be removed from the conveying path as unnecessary portions by pulling them below the conveying rolls 111 having a short widthwise length.
  • the glass member 10Q that is cut out from the glass member 10P and does not have ear portions is moved from the transport roll 111 having a short widthwise length to the transport roll 110 .
  • the glass member 10Q having no ears conveyed by the conveying rolls 110 is applied with a bending stress by the second vertical folding machine 160 shown in FIG. It is divided into product portions 11A and 11B and a central portion 13 which is an unnecessary portion.
  • the second vertical folding machine 160 has a pressing roll (not shown) that can move forward and backward in the plate thickness direction and in the width direction.
  • the second vertical folding machine 160 presses the glass member 10Q with a pressing roll from below the glass member 10Q having no ear portion, and applies a bending stress along the width direction centering on the longitudinal cutting lines L3 and L4. and fold along vertical cut lines L3 and L4. Thereby, the glass product portions 11A and 11B are cut out from the glass member 10Q having no ear portion.
  • the position in the width direction where the second vertical folding machine 160 applies bending stress to the glass plate 10 can be controlled by adjusting the position in the width direction of the pressing rolls.
  • the separating device 170 is arranged between the two transport rolls 110 and has a separating roll or a separating projection (not shown).
  • the glass product portions 11A and 11B and the central portion 13 are passed over separating rolls or separating projections, thereby widening the distance between the members.
  • the positions in the width direction of the glass product parts 11A and 11B after passing through the separating device 170 can be controlled by adjusting the positions of the separating rolls or separating projections.
  • FIG. 4A is a plan view showing a wedge angle detection method for the management position X.
  • the management position X of the glass product portion 11A is located at a predetermined distance from one end E1 of the glass product portion 11A.
  • the management position X of the glass product portion 11B is located at a predetermined distance from one end E2 of the glass product portion 11B.
  • the wedge angles at the management position X of the glassware parts 11A and 11B are the thickness at the management position Y moved in the width direction from the management position X and the wedge angle at the management position Z moved in the width direction opposite to the management position Y from the management position X. It is calculated from the thickness and the distance between the management positions Y and Z in the width direction.
  • the wedge angle ⁇ at the management position X is calculated from the following relational expression (1).
  • Wedge angle at management position X (unit: mrad)
  • T Y Plate thickness of the glass product part at control position Y (unit: mm)
  • T Z Plate thickness of the glass part at the control position Z (unit: mm)
  • d width direction distance between control position Y and control position Z (unit: mm)
  • the inspection device 180 includes four plate thickness measuring devices 181 movable in the width direction and a sensor 182, as shown in FIG. 4A.
  • a sensor 182 identifies the positions in the width direction of one end E1 of the glass product portion 11A and one end E2 of the glass product portion 11B. Based on the positions of one end E1 and one end E2, each plate thickness measuring device 181 is moved to the vicinity of control position Y and control position Z of glass product sections 11A and 11B, respectively, and the plate thickness at each control position is measured. As described above, the wedge angle at the management position X of the glass product parts 11A and 11B is calculated.
  • the wedge angle of the glass product portion 11A (or 11B) at the management position X detected by the inspection device 180 while being transported by the transport roll 110 is the movement of the glass product portion 11A (or 11B) by the transport roll 110. It is preferably within plus or minus 0.1 mrad with respect to the actual wedge angle at the management position X of the glass product portion 11A (or 11B), which is detected in the stopped state. Within plus or minus 0.1 mrad, the measurement accuracy of the wedge angle can be maintained during transportation.
  • the difference between the wedge angle and the actual wedge angle is preferably within plus or minus 0.05 mrad, more preferably within plus or minus 0.03 mrad. Note that this can also be applied to the second embodiment.
  • the widthwise distance between the management position Y and the management position Z is preferably 50 mm or more and 250 mm or less. If it is 50 mm or more, it is possible to suppress measurement errors due to vibration propagated from the transport roll 110 . If the distance is 250 mm or less, the control position Y and the control position Z where the plate thickness is measured are located at a short distance from the control position X, so the wedge angle at the control position X can be calculated with high accuracy. More preferably, the distance in the width direction between the management position Y and the management position Z is 70 mm or more and 230 mm or less. The distance in the width direction between the management position Y and the management position Z is appropriately selected according to the distance between the pitches of the transport rolls 110 and the transport speed. Note that this can also be applied to the second embodiment.
  • the management position X is located within the head-up display display area (hereinafter sometimes referred to as HUD display area). It is preferable to be located in the center of the head-up display display area. Note that this can also be applied to the second embodiment.
  • the HUD display area is a display area that displays information by reflecting the projected image from inside the vehicle.
  • the HUD display area rotates the mirror that constitutes the HUD placed inside the vehicle, and when viewed from point V1 defined in JIS R3212:2015, the light from the mirror that constitutes the HUD illuminates the windshield. range, defined as
  • the control device 190 controls the wedge-shaped glass manufacturing apparatus 100 based on the wedge angle of the management position X located within the HUD display area, thereby improving the accuracy of maintaining the wedge angle in the HUD display area within a predetermined range.
  • the wedge angle at the management position X calculated by the inspection device 180 is transmitted to the control device 190 shown in FIG.
  • the control device 190 controls the wedge-shaped glass manufacturing apparatus 100 based on the transmitted trend of the wedge angle so that the difference between the wedge angle at the control position X and the ideal wedge angle at the control position X is predetermined. Control within the range.
  • the wedge angle trend means the time transition of the wedge angle transmitted to the control device 190 .
  • the control device 190 changes the positions of the vertical cutting lines L1 to L4 in the width direction based on the increase or decrease in the wedge angle at the management position X.
  • the widthwise positions of the vertical cutting lines L1 to L4 can be moved by changing the widthwise positions of the cutters 121 provided in the vertical cutting machine 120 by the control device 190 .
  • the glass product portions 11A and 11B can be cut out from appropriate positions on the glass plate 10 so that the wedge angle at the management position X is close to the ideal wedge angle.
  • the control device 190 changes the position in the width direction where the first vertical folder 150 and the second vertical folder 160 apply bending stress based on the transmitted wedge angle trend and the positional change of the vertical cutting line. It is preferable to let The position in the width direction of the bending stress applied by the first vertical folder 150 can be moved by changing the positions in the width direction of the pressing protrusions and the support rolls provided in the first vertical folder 150. . The position in the width direction of the bending stress applied by the second vertical folder 160 can be moved by changing the position in the width direction of the pressing rolls provided in the second vertical folder 160 . Thereby, the glass product portions 11A and 11B can be cut out from appropriate positions on the glass base plate 10 with higher accuracy.
  • the control device 190 may control the separating device 170 based on the wedge angle at the management position X. Further, the control device 190 may change the positions of the separating rolls or separating projections provided in the separating device 170 based on the transmitted trend of the wedge angle and the change in the position of the vertical cutting line. Thereby, the position of the width direction of the glass product parts 11A and 11B on the transport roll 110 after passing through the separating device 170 can be appropriately adjusted.
  • the control device 190 controls the wedge angles of the glass product sections 11A and 11B at the management position X so that the difference from the ideal wedge angle at the predetermined management position X is within a predetermined range.
  • the difference from the ideal wedge angle is preferably controlled within plus or minus 0.1 mrad, more preferably within plus or minus 0.05 mrad, and preferably within plus or minus 0.03 mrad. is more preferably controlled to Note that this can also be applied to the second embodiment.
  • the control device 190 instructs the wedge-shaped glass manufacturing apparatus 100 that the wedge angle within the HUD display area of the glass product sections 11A and 11B is 0.2 mrad or more and 1.5 mrad or less. More preferably, it is controlled to be 0.2 mrad or more and 0.9 mrad or less, and more preferably 0.3 mrad or more and 0.8 mrad or less. Note that this can also be applied to the second embodiment.
  • the double image is reduced. is suppressed to a level that is hardly a problem in the market, and if it is 0.3 mrad or more and 0.8 mrad or less, the double image is suppressed to a level below the minimum visual acuity resolution of 0.7 required for a normal car license. be done.
  • the HUD display area may vary depending on the mounting angle of the windshield and the mounting angle and position of the illuminator that displays information on the windshield. An optimal wedge angle is selected.
  • FIG. 3 is a plan view showing a second embodiment of the wedge-shaped glass manufacturing method.
  • the glass base plate 10 formed to have a plate thickness change portion in the width direction is continuously transported in the wedge-shaped glass manufacturing apparatus 200, cut and inspected, This results in wedge-shaped glassware portions 11A and 11B.
  • the glass base plate 10 is transported by a plurality of transport rolls 210 shown in FIG.
  • the plurality of transport rolls 210 are arranged at a constant pitch distance along the longitudinal direction (direction A) of the glass base plate on the main transport path 201 .
  • the sub-transport path 202 they are arranged at a constant pitch distance along the width direction (B direction) of the glass base plate 10 .
  • the glass member 10P is cut out from the glass base plate 10 by the horizontal folding machine 240, moved to the transportation roll 211 whose length in the width direction is shorter than the transportation roll 210, and is cut from the glass member 10P by the first vertical folding machine 250.
  • the glass member 10Q having no edge is cut out, and the ear portions 12A and 12B are removed from the conveying path as unnecessary portions.
  • the vertical cutter 220, the transverse machine 230, the horizontal folder 240, and the first vertical folder 250 are, for example, the vertical cutter 120, the horizontal machine 130, the horizontal folder 140, and the first vertical folder of the first embodiment. It may be the same as the folding machine 150 .
  • the glass member 10Q having no lugs moves from the conveying rolls 211 having a short widthwise length on the main conveying path 201 to the conveying rolls 210 on the sub conveying path 202, and is conveyed in the width direction.
  • a bending stress is applied to the glass member 10Q having no lugs by the second vertical folding machine 260, and it is folded along the vertical cut lines L3 and L4, thereby forming the glass product portions 11A and 11B and the unnecessary portions. It is divided into a central portion 13 which is .
  • the second vertical folding machine 260 is provided with pressing rolls that can move back and forth in the plate thickness direction (not shown).
  • the second vertical folding machine 260 presses the glass base plate 10 from below the glass member 10Q having no lugs with a pressing roll to apply a bending stress along the width direction centering on the vertical cutting lines L3 and L4. Act and fold along vertical cutting lines L3 and L4. Thereby, the glass product portions 11A and 11B are cut out from the glass member 10Q having no ear portion.
  • the second vertical folding machine 260 can automatically control the timing of applying bending stress by the pressing rolls.
  • the separating device 170 described in the first embodiment may not be installed on the sub-conveyance path 202 .
  • FIG. 4B and 4C are plan views showing a wedge angle detection method for the management position X.
  • FIG. The inspection device 280 includes a board thickness measuring device 281 as shown in FIG. 4B.
  • the plate thickness measuring device measures the plate thickness along the width direction L6 of the glass product portions 11A and 11B so as to include the management position X. As shown in FIG. As a result, a plate thickness profile as shown in FIG. 4C is created, and plate thicknesses at the control position Y and the control position Z are obtained.
  • the wedge angle at the management position X of the glass product parts 11A and 11B is calculated.
  • the inspection device 280 can measure the plate thickness and calculate the wedge angle with a simpler mechanism than in the first embodiment.
  • Control device The wedge angle at the management position X calculated by the inspection device 280 is transmitted to the control device 290 shown in FIG.
  • the control device 290 controls the wedge-shaped glass manufacturing apparatus 200 based on the transmitted trend of the wedge angle so that the difference between the wedge angle at the control position X and the ideal wedge angle at the control position X is predetermined. Control within the range.
  • the control device 290 changes the widthwise position of each cutter 221 provided in the vertical cutting machine 220 based on the trend of the wedge angle, thereby adjusting the vertical cutting lines L1 to L4 in the width direction. move the position of Thereby, the glass product portions 11A and 11B can be cut out from appropriate positions on the glass plate 10 so that the wedge angle at the management position X is close to the ideal wedge angle.
  • the control device 290 changes the position in the width direction where the first vertical folder 250 and the second vertical folder 260 apply bending stress based on the transmitted wedge angle trend and the position change of the vertical cutting line. It is preferable to let The position in the width direction of the bending stress applied by the first vertical folder 250 can be moved by changing the positions in the width direction of the pressing projections and the support rolls provided in the first vertical folder 250. . The position in the width direction of the bending stress applied by the second vertical folder 260 can be moved by changing the timing at which the pressing rolls of the second vertical folder 260 apply the bending stress. Thereby, the glass product portions 11A and 11B can be cut out from appropriate positions on the glass base plate 10 with higher accuracy.
  • the difference between the maximum thickness and the minimum thickness of the wedge-shaped glass manufactured by the manufacturing method according to one embodiment of the present invention is preferably 0.1 mm or more. If the thickness is 0.1 mm or more, it is possible to suppress the occurrence of double images when the glass is used as information display glass even when it is installed in an automobile as a windshield with a large angle with respect to the horizontal.
  • the difference between the maximum thickness and the minimum thickness of the wedge-shaped glass may be 0.3 mm or more, or may be 0.5 mm or more. On the other hand, the difference between the maximum thickness and the minimum thickness of the wedge-shaped glass may be 1.5 mm or less, 1.2 mm or less, or 1.0 mm or less.
  • the main surface of the wedge-shaped glass manufactured by the manufacturing method according to one embodiment of the present invention preferably has a maximum roughness curve height Rz of 0.3 ⁇ m or less at a reference length of 25 mm specified in JISB0601:2001. If the Rz is 0.3 ⁇ m or less, when the plate glass is used as information display glass, the scenery seen through the glass is less likely to be distorted, and the reflection image when information is displayed on the plate glass is less likely to be distorted.
  • the roughness curve is represented by a shape waveform.
  • Rz is more preferably 0.25 ⁇ m or less, even more preferably 0.2 ⁇ m or less.
  • the use of the wedge-shaped glass manufactured by the manufacturing method according to one embodiment of the present invention is not limited to windshields for automobiles, and may be windshields for automobiles and trains, or windshields for motorcycles. Any glass may be used as long as it can display. Moreover, it is not limited to the information display glass for vehicles, and can be used for various other information display glasses. Furthermore, it can be used for various devices that utilize continuous changes in transmission characteristics, even for applications other than information display.
  • a wedge-shaped glass was manufactured from a glass base plate having a convex cross section in a glass manufacturing apparatus having a main transport path and a sub-transport path vertically connected to the main transport path.
  • a longitudinal cutter, a crosser, a horizontal folding machine, and the first vertical folding machine were installed on the main transport path, and a second vertical folding machine and an inspection device were installed on the double transport path.
  • the inspection device calculated the wedge angle at the control position X of the glass product part from the thickness at the control position Y, the thickness at the control position Z, and the distance between the control positions Y and Z in the width direction.
  • the glass manufacturing apparatus includes a control device, and based on the wedge angle at the management position X of the glass product part detected by the inspection device, the width direction position of each cutter provided in the vertical cutter, the first vertical folding The control device controlled the widthwise positions of the pressing projections and support rolls provided in the folding machine, and the timing at which the pressing rolls provided in the second vertical folding machine applied the bending stress.
  • the distance between the pitches of the conveying rolls of the glass manufacturing apparatus was 150 mm, and the conveying speed was 1800 m/h.
  • the management position Y, the management position X, and the management position Z are arranged in order in the width direction from the side where the plate thickness of the glass product part is small to the side where the plate thickness is large. It was located at the midpoint of the control position Z.
  • the management position X is located 17 inches (431.8 mm) in the width direction from the end (L1 or L2) of the glass product portion where the plate thickness is small.
  • the angle ⁇ i was 0.36 mrad.
  • the wedge angle ⁇ at the management position X of the glass product part being transported was detected by changing the width direction distance d between the management position Y and the management position Z. Then, it was compared with the actual wedge angle ⁇ r at the control position X of the glass product portion detected in the stopped state. Under the conditions of Examples 1 to 7, 20 glass product parts were verified, and the absolute value of the difference ⁇ - ⁇ r between the wedge angle ⁇ and the actual wedge angle ⁇ r was 0.1 mrad in one or more glass product parts. If the absolute value of the difference ⁇ - ⁇ r between the wedge angle ⁇ and the actual wedge angle ⁇ r is 0.1 mrad or less in all the 20 glass parts, the value is entered in Table 1 as x. ⁇ means that the wedge angle at the control position X of the glass product part being transported can be measured with high accuracy, and ⁇ means the opposite.
  • Examples 1 and 7 had a distance d of less than 50 mm or greater than 250 mm and an absolute value of ⁇ - ⁇ r of greater than 0.1 mrad for one or more glassware parts.
  • the distance d was 100 mm or more and 250 mm or less, and the absolute value of ⁇ ⁇ r was 0.1 mrad or less for all the 20 glass products.
  • the wedge angle ⁇ at the management position X of the glass product part detected during transportation is equal to that of the glass product part detected in the stopped state. It was found that the difference from the actual wedge angle ⁇ r at the control position X of is small and can be detected with high accuracy. Thereby, based on the highly accurate wedge angle trend transmitted from the inspection device, the control device can determine the position of the vertical cutting line formed by the vertical cutting machine and the position of the bending stress applied by the vertical folding machine. It is possible to control the glass manufacturing equipment with high precision.
  • Example 8 was obtained by continuously producing 100 glass products under machine control.
  • Example 9 is obtained by measuring the wedge angle ⁇ under the conditions of Example 4.
  • Example 8 the absolute value of the difference ⁇ - ⁇ i between the wedge angle ⁇ at the control position X of the manufactured glass product and the ideal wedge angle ⁇ i (0.36 mrad) at the predetermined control position X is 100. It was 0.1 mrad or less in all of the glass products, and the wedge angle ⁇ could be kept within a predetermined range.
  • Example 9 in three glass product parts out of 100, the wedge angle ⁇ at the control position X of the manufactured glass product part and the ideal wedge angle ⁇ i (0. 36 mrad), the absolute value of the difference ⁇ i exceeded 0.1 mrad, and the wedge angle ⁇ could not be kept within the predetermined range.
  • control device controls the vertical cutter, the first vertical folding machine, and the second vertical folding machine based on the trend of the wedge angle ⁇ detected by the inspection device, thereby manufacturing glass products It was confirmed that the wedge angle .delta.
  • the wedge angle of the wedge-shaped glass cut out from the glass base plate can be brought closer to a predetermined target value, and a wedge-shaped glass that can be used for various purposes can be obtained.
  • SYMBOLS 10 Convex glass plate, 11A... Glass part of glass plate 10, 11B... Glass part of glass plate 10, 12A... Edge of glass plate 10, 12B... Ear of glass plate 10 , 13... Central portion of glass plate 10 20... Concave glass plate 21A... Glass product portion of glass plate 20 21B... Glass product portion of glass plate 20 22A... Edge of glass plate 20 , 22B... Ear portion of the glass plate 20, 23... Central portion of the glass plate 20, 30... Tapered glass plate, 31... Glass product portion of the glass plate 30, 32A... Ear portion of the glass plate 30 , 32B... ear portion of glass plate 30, 100... wedge-shaped glass manufacturing apparatus, 110... transport roll, 111... transport roll shorter in width direction than transport roll 110, 120...
  • first vertical folder 260 Second vertical folding machine 280 Inspection device 281 Plate thickness measuring device 290
  • Control device L1 Vertical cut line formed at boundary between glass product portion 11A and ear portion 12A L2 Glass product Vertical cutting line formed on the boundary between the portion 11B and the ear portion 12B L3: Vertical cutting line formed on the boundary between the glass product portion 11A and the central portion 13 L4: on the boundary between the glass product portion 11B and the central portion 13 Longitudinal cutting line to be formed, L5... Horizontal line, L6... Width direction line along which plate thickness is measured by inspection device, E1... One end of glass product part 11A, E2... One end of glass product part 11B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

The present invention involves: cutting a glass material sheet along a lateral cutting line by applying a bending stress to the glass material sheet using a lateral cleaving machine to form a glass member; cutting the glass member along a longitudinal cutting line by applying a bending stress to the glass member using a longitudinal cutting machine; separating unnecessary portions to form a wedge-shaped glass product portion; detecting a wedge angle at a management position X of the glass product portion by an inspection device; and controlling the position in the width direction of the longitudinal cutting line formed by the longitudinal cutting machine on the basis of the wedge angle at the management position X, to control the wedge angle at the management position X so that the difference between said wedge angle and a predetermined ideal wedge angle at the management position X falls within a predetermined range.

Description

楔形ガラスの製造方法Method for manufacturing wedge-shaped glass
 本発明は楔形ガラスの製造方法に関する。 The present invention relates to a method for manufacturing wedge-shaped glass.
 フロート法により製造される板ガラスは、板厚偏差の少ない平坦な板ガラスが一般的である。しかし、例えば、自動車のフロントガラスに情報を表示するヘッドアップディスプレイ(Headupdisplay、以下、HUDとも称する。)機能を有したフロントガラスでは、厚さが一定ではない楔形ガラスを使用することで、運転者が車外の風景やHUDにより表示された情報を視認する際に問題となる、2重像を低減できることが知られている。 The sheet glass manufactured by the float method is generally flat sheet glass with little thickness deviation. However, for example, in a windshield having a head-up display (hereinafter also referred to as HUD) function for displaying information on the windshield of an automobile, the use of wedge-shaped glass with a non-uniform thickness makes it difficult for the driver to can reduce the double image that is a problem when visually recognizing the scenery outside the vehicle or the information displayed by the HUD.
 楔形ガラスの製造方法としては、溶融金属浴(フロートバス)上を進行するガラスリボンの一端に複数のトップロールを当接させ、進行方向に直交する幅方向の断面が凸型又は凹型、或いはテーパー型であるガラス素板を成形し、ガラス素板を切断して楔形のガラス製品部を得る方法が検討されている(例えば、特許文献1~3参照)。 As a method for producing wedge-shaped glass, a plurality of top rolls are brought into contact with one end of a glass ribbon traveling on a molten metal bath (float bath), and the cross section in the width direction orthogonal to the traveling direction is convex, concave, or tapered. A method of obtaining a wedge-shaped glass product part by molding a glass base plate as a mold and cutting the glass base plate has been studied (see Patent Documents 1 to 3, for example).
国際公開第2016/117650号WO2016/117650 日本国特開2019-73509号公報Japanese Patent Application Laid-Open No. 2019-73509 米国特許第7122242号明細書U.S. Pat. No. 7,122,242
 ところで、楔形ガラスの製造工程においてガラスリボンが蛇行すると、ガラス素板の幅方向の位置が変動する。そのため、ガラス素板を切断する幅方向の位置も変動し、得られたガラス製品部が有する楔角や板厚も変動する。これにより、楔形ガラスの楔角を予め定められた範囲の値に保つことができなくなる。特に、楔形ガラスのHUDとして使用される領域(以下、HUD表示領域と称する場合がある)における楔角を所定範囲内に保持できない場合、HUD表示領域における二重像の抑制を効果的に行うことができなくなる。 By the way, if the glass ribbon meanders in the manufacturing process of wedge-shaped glass, the position of the glass base plate in the width direction changes. Therefore, the position in the width direction where the glass base plate is cut also fluctuates, and the wedge angle and plate thickness of the obtained glass product part also fluctuate. As a result, the wedge angle of the wedge-shaped glass cannot be maintained within a predetermined range. In particular, when the wedge angle in the area of the wedge-shaped glass used as the HUD (hereinafter sometimes referred to as the HUD display area) cannot be maintained within a predetermined range, it is possible to effectively suppress double images in the HUD display area. I can't do it.
 本発明はこのような事情に鑑みてなされたもので、ガラス素板から切り出した楔形ガラスの楔角を、予め定められた範囲内に保つ、楔形ガラスの製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for manufacturing wedge-shaped glass that maintains the wedge angle of wedge-shaped glass cut out from a glass plate within a predetermined range. .
 本発明の楔形ガラス製造方法は、幅方向に沿って板厚変化部を備えるガラス素板を、複数の搬送ロールによって搬送しつつ、縦切機によって前記ガラス素板の長手方向に縦切線を形成し、横切機によって前記ガラス素板の幅方向に横切線を形成し、横折機によって前記ガラス素板に曲げ応力を印可することで、前記横切線に沿って前記ガラス素板を切断し、ガラス部材を形成し、縦折機によって前記ガラス部材に曲げ応力を印可することで、前記縦切線に沿って前記ガラス部材を切断し、不要部を分断し、楔形のガラス製品部を形成し、検査装置によって前記ガラス製品部の管理位置Xにおける楔角を検出し、前記管理位置Xにおける前記楔角に基づいて、前記縦切機によって形成される前記縦切線の幅方向の位置を制御することで、前記管理位置Xにおける前記楔角を、予め定められた前記管理位置Xにおける理想楔角との差が所定範囲内となるように制御することを特徴とする、楔形ガラスの製造方法である。 In the wedge-shaped glass manufacturing method of the present invention, a glass base plate having a plate thickness change portion along the width direction is conveyed by a plurality of transfer rolls, and a longitudinal cutting line is formed in the longitudinal direction of the glass base plate by a vertical cutter. Then, a horizontal line is formed in the width direction of the glass base plate by a crossing machine, and a bending stress is applied to the glass base plate by a horizontal folding machine, thereby cutting the glass base plate along the horizontal line. A glass member is formed, and a bending stress is applied to the glass member by a vertical folding machine, thereby cutting the glass member along the vertical cutting line, dividing unnecessary portions, and forming a wedge-shaped glass product portion. and detecting the wedge angle at the control position X of the glass product part by an inspection device, and controlling the position of the vertical cutting line formed by the vertical cutting machine in the width direction based on the wedge angle at the control position X. A method for manufacturing wedge-shaped glass, characterized in that the wedge angle at the management position X is controlled such that the difference from the ideal wedge angle at the predetermined management position X is within a predetermined range. be.
 本発明によれば、管理位置Xにおける楔角に基づいて縦切機を制御することができる。したがって、管理位置Xにおける楔角が所定範囲内となるように、ガラス素板上の適切な位置から楔形のガラス製品部を切り出すことができる。 According to the present invention, the longitudinal cutter can be controlled based on the wedge angle at the management position X. Therefore, a wedge-shaped glass product portion can be cut out from an appropriate position on the glass plate so that the wedge angle at the management position X is within a predetermined range.
図1(a)~(c)は楔形ガラス用ガラス素板の幅方向の断面図であり、図1(a)は凸型の例であり、図1(b)は凹型の例であり、図1(c)テーパー型の例である。1(a) to 1(c) are cross-sectional views in the width direction of a glass base plate for wedge-shaped glass, FIG. 1(a) is an example of a convex type, FIG. 1(b) is an example of a concave type, FIG. 1(c) is an example of a tapered type. 図2は楔形ガラス製造方法の第1の実施形態を示す平面図である。FIG. 2 is a plan view showing the first embodiment of the wedge-shaped glass manufacturing method. 図3は楔形ガラス製造方法の第2の実施形態を示す平面図である。FIG. 3 is a plan view showing a second embodiment of the wedge-shaped glass manufacturing method. 図4Aは管理位置Xの楔角検出方法を示す平面図である。4A is a plan view showing a wedge angle detection method for the management position X. FIG. 図4Bは管理位置Xの楔角検出方法を示す平面図である。4B is a plan view showing a wedge angle detection method for the management position X. FIG. 図4Cは管理位置Xの楔角検出方法を示す平面図である。4C is a plan view showing a wedge angle detection method for the management position X. FIG.
 以下、本発明の第1の実施形態、及び第2の実施形態について説明するが、本発明は以下に説明する実施形態に制限されるものではない。本発明の範囲を逸脱すること無く、多くの手法により変更を行うことができる。 A first embodiment and a second embodiment of the present invention will be described below, but the present invention is not limited to the embodiments described below. Changes can be made in many ways without departing from the scope of the invention.
 〔第1の実施形態〕
 図1(a)~(c)は楔形ガラス用ガラス素板の幅方向の断面図であり、図1(a)は凸型の例であり、図1(b)は凹型の例であり、図1(c)はテーパー型の例である。図2は、楔形ガラス製造方法の第1の実施形態を示す平面図である。ガラス素板10は、楔形ガラス製造装置100において連続的に搬送されつつ、切断および検査がなされ、楔形のガラス製品部11A及び11Bとなる。
[First Embodiment]
1(a) to 1(c) are cross-sectional views in the width direction of a glass base plate for wedge-shaped glass, FIG. 1(a) is an example of a convex type, FIG. 1(b) is an example of a concave type, FIG. 1(c) is an example of a tapered type. FIG. 2 is a plan view showing the first embodiment of the wedge-shaped glass manufacturing method. The raw glass plate 10 is cut and inspected while being continuously transported in the wedge-shaped glass manufacturing apparatus 100 to become wedge-shaped glass product parts 11A and 11B.
 <ガラス素板>
 図2に示すガラス素板10はガラス素板10の幅方向、つまりB方向(以下、単に幅方向という場合がある)に沿って板厚変化部を備える。ガラス素板10の板厚変化部は、例えば、溶融金属浴(フロートバス)上を進行するガラスリボンの一端に複数のトップロールを当接させ、トップロールの周速度や押圧力を調整することで成形できる。ガラスリボンの幅方向の温度分布や、ガラスリボンの進行速度によっても、板厚変化部を調整することができる。
<Glass plate>
The glass base plate 10 shown in FIG. 2 has a plate thickness change portion along the width direction of the glass base plate 10, that is, the B direction (hereinafter sometimes simply referred to as the width direction). The plate thickness changing portion of the glass base plate 10 is obtained, for example, by bringing a plurality of top rolls into contact with one end of a glass ribbon traveling on a molten metal bath (float bath), and adjusting the peripheral speed and pressing force of the top rolls. can be molded with The plate thickness change portion can also be adjusted by the temperature distribution in the width direction of the glass ribbon and the traveling speed of the glass ribbon.
 ガラス素板10の幅方向の断面は、図1(a)に示すように凸型である。ガラス素板10は、幅方向の両側に位置する耳部12A及び12Bと、最も板厚が厚い領域を含む中央部13と、耳部12Aと中央部13の間に位置する第1のガラス製品部11Aと、耳部12Bと中央部13の間に位置する第2のガラス製品部11Bと、で構成される。ガラス製品部11A及び11Bは、最終的に製品となる部分である。 The cross section in the width direction of the glass plate 10 is convex as shown in FIG. 1(a). The glass base plate 10 includes ear portions 12A and 12B located on both sides in the width direction, a central portion 13 including the thickest region, and a first glass product positioned between the ear portions 12A and the central portion 13. It is composed of a portion 11A and a second glass product portion 11B located between the ear portion 12B and the central portion 13. As shown in FIG. The glass product parts 11A and 11B are parts that will eventually become products.
 ガラス素板は、図1(b)に示すような、幅方向の断面が凹型であるガラス素板20であってもよい。ガラス素板20は、幅方向の両側に位置する耳部22A及び22Bと、最も板厚が薄い領域を含む中央部23と、耳部22Aと中央部23の間に位置する第1のガラス製品部21Aと、耳部22Bと中央部23の間に位置する第2のガラス製品部21Bと、で構成される。 The glass base plate may be a glass base plate 20 having a concave cross section in the width direction, as shown in FIG. 1(b). The glass base plate 20 includes ear portions 22A and 22B located on both sides in the width direction, a center portion 23 including the thinnest region, and a first glass product located between the ear portions 22A and the center portion 23. It consists of a portion 21A and a second glassware portion 21B located between the ear portion 22B and the central portion 23. As shown in FIG.
 ガラス素板は、図1(c)に示すような、幅方向の断面がテーパー型であるガラス素板30であってもよい。ガラス素板30は、幅方向の両側に位置する耳部32A及び32Bと、耳部32Aと耳部32Bの間に位置するガラス製品部31と、で構成される。なお、ガラス素板30の幅方向の断面において、必ずしも全ての領域がテーパー型である必要はなく、一部の領域のみがテーパー型であってもよい。 The glass base plate may be a glass base plate 30 having a tapered cross section in the width direction, as shown in FIG. 1(c). The raw glass plate 30 is composed of ear portions 32A and 32B located on both sides in the width direction, and a glass product portion 31 located between the ear portions 32A and 32B. In addition, in the cross section of the glass base plate 30 in the width direction, not all regions need to be tapered, and only a part of the regions may be tapered.
 以下、ガラス素板10を用いた実施の形態について述べるが、ガラス素板20又はガラス素板30についても同様に実施することができる。その場合、ガラス素板10のガラス製品部11A及び11Bは、ガラス素板20のガラス製品部21A及び21Bと、ガラス素板30のガラス製品部31に対応する。ガラス素板10の耳部12A及び12Bは、ガラス素板20の耳部22A及び22Bと、ガラス素板30の耳部32A及び32Bに対応する。ガラス素板10の中央部13は、ガラス素板20の中央部23に対応する。 Although the embodiment using the glass base plate 10 will be described below, the glass base plate 20 or the glass base plate 30 can be similarly implemented. In that case, the glass product portions 11A and 11B of the glass plate 10 correspond to the glass product portions 21A and 21B of the glass plate 20 and the glass product portion 31 of the glass plate 30 . The ear portions 12A and 12B of the raw glass plate 10 correspond to the ear portions 22A and 22B of the raw glass plate 20 and the ear portions 32A and 32B of the raw glass plate 30, respectively. The central portion 13 of the glass plate 10 corresponds to the central portion 23 of the glass plate 20 .
 <搬送ロール>
 幅方向に板厚変化部を備えるように成形されたガラス素板10は、図2に示す複数の搬送ロール110によって、ガラス素板10の長手方向、つまりA方向(以下、単に長手方向という場合がある)に搬送される。搬送ロール110は、搬送路に沿って一定のピッチ間距離で配置されており、図示しない回転駆動手段に駆動されて回転する。
<Transport roll>
The glass base plate 10 molded so as to have a plate thickness change portion in the width direction is moved in the longitudinal direction of the glass base plate 10, that is, in the A direction (hereinafter simply referred to as the longitudinal direction) by a plurality of transport rolls 110 shown in FIG. is transported to The transport rolls 110 are arranged at a constant pitch distance along the transport path, and are rotated by being driven by a rotation driving means (not shown).
 <縦切機>
 搬送ロール110によって搬送されるガラス素板10は、図2に示す縦切機120によって長手方向に縦切線L1~L4が形成される。
<Vertical cutter>
Vertical cut lines L1 to L4 are formed in the longitudinal direction of the glass base plate 10 transported by the transport rolls 110 by the vertical cutter 120 shown in FIG.
 縦切線L1~L4は、ガラス素板10を、ガラス製品部11A及び11Bと、耳部12A及び12Bと、中央部13と、に分離するためのスクライブ線である。縦切線L1は、ガラス製品部11Aと耳部12Aとの境界に形成される。縦切線L2は、ガラス製品部11Bと耳部12Bとの境界に形成される。縦切線L3は、ガラス製品部11Aと中央部13との境界に形成される。縦切線L4は、ガラス製品部11Bと中央部13との境界に形成される。 Vertical cutting lines L1 to L4 are scribe lines for separating the glass base plate 10 into glass product parts 11A and 11B, ear parts 12A and 12B, and the central part 13. A vertical cutting line L1 is formed at the boundary between the glass product portion 11A and the ear portion 12A. A vertical cutting line L2 is formed at the boundary between the glass product portion 11B and the ear portion 12B. A vertical cutting line L3 is formed at the boundary between the glass product portion 11A and the central portion 13. As shown in FIG. A vertical cutting line L4 is formed at the boundary between the glass product portion 11B and the central portion 13. As shown in FIG.
 縦切機120は、ガラス素板の板厚方向、つまりC方向(以下、単に板厚方向という場合がある)への進退、及び幅方向への移動が可能であり、複数のカッター121を備えている。各カッター121を、ガラス主表面に向けて(C方向と反対方向に)進行させることにより、カッター121が規定の押圧力でガラス素板10に当接され、ガラス素板10に縦切線L1~L4が加工される。 The vertical cutter 120 is capable of advancing and retreating in the plate thickness direction of the raw glass plate, that is, in the C direction (hereinafter sometimes simply referred to as the plate thickness direction) and moving in the width direction, and includes a plurality of cutters 121. ing. By advancing each cutter 121 toward the main surface of the glass (in the direction opposite to the C direction), the cutter 121 is brought into contact with the glass base plate 10 with a prescribed pressing force, and the glass base plate 10 is cut along the longitudinal cut line L1 to L4 is processed.
 ガラス素板10における縦切線L1~L4の幅方向の位置は、各カッター121の幅方向の位置を調整することにより制御可能である。 The positions of the longitudinal cutting lines L1 to L4 in the glass plate 10 in the width direction can be controlled by adjusting the positions of the cutters 121 in the width direction.
 <横切機>
 搬送ロール110によって搬送されるガラス素板10は、縦切線L1~L4が形成された後、図2に示す横切機130によって幅方向に横切線L5が形成される。
<Cross machine>
After vertical cut lines L1 to L4 are formed on the glass base plate 10 conveyed by the conveying rolls 110, a transverse line L5 is formed in the width direction by the transverse machine 130 shown in FIG.
 横切線L5は、ガラス素板10からガラス部材10Pを切り出すためのスクライブ線である。 The transverse line L5 is a scribe line for cutting out the glass member 10P from the glass base plate 10.
 横切機130は、板厚方向(C方向)への進退、及び板厚方向に垂直な面方向への移動が可能である、カッター131を備えている。カッター131をガラス主表面に向けて(C方向と反対方向に)進行させることにより、カッター131が規定の押圧力でガラス素板10に当接される。当接されたカッター131を、ガラス素板10の搬送速度に同期して、長手方向に対して斜行移動させることにより、ガラス素板10の幅方向に横切線L5が加工される。 The crossing machine 130 includes a cutter 131 that can move forward and backward in the plate thickness direction (direction C) and move in the plane direction perpendicular to the plate thickness direction. By advancing the cutter 131 toward the glass main surface (in the direction opposite to the direction C), the cutter 131 is brought into contact with the glass base plate 10 with a prescribed pressing force. By moving the abutting cutter 131 obliquely with respect to the longitudinal direction in synchronization with the conveying speed of the glass plate 10 , a transverse line L<b>5 is processed in the width direction of the glass plate 10 .
 <横折機>
 搬送ロールに110によって搬送されるガラス素板10は、横切線L5が形成された後、図2に示す横折機140によって曲げ応力が印可され、横切線L5に沿って折られることで、ガラス部材10Pが切り出される。
<Horizontal folding machine>
After the traversing line L5 is formed on the glass base plate 10 conveyed by the conveying rolls 110, a bending stress is applied by the horizontal folding machine 140 shown in FIG. A member 10P is cut out.
 横折機140は、板厚方向に進退可能である押圧用ロールを備えている(図示しない)。横折機140は、ガラス素板10の下側から押圧用ロールでガラス素板10を押圧し、横切線L5を中心にして長手方向に沿った曲げ応力を作用させ、横切線L5に沿ってガラス素板10を折る。これにより、ガラス素板10からガラス部材10Pを切り出す。 The horizontal folding machine 140 is provided with a pressing roll (not shown) that can move forward and backward in the plate thickness direction. The horizontal folding machine 140 presses the raw glass plate 10 with a pressing roll from below the raw glass plate 10, applies a bending stress along the longitudinal direction about the horizontal line L5, and bends along the horizontal line L5. A glass base plate 10 is folded. As a result, the glass member 10P is cut out from the glass base plate 10. Next, as shown in FIG.
 ガラス素板10から切り出されたガラス部材10Pは、搬送ロール110から、搬送ロール110よりも幅方向の長さが短い搬送ロール111に移動される。 The glass member 10P cut out from the glass base plate 10 is moved from the transport roll 110 to the transport roll 111 having a width direction shorter than that of the transport roll 110 .
 <第1の縦折機>
 幅方向の長さが短い搬送ロール111によって搬送されるガラス部材10Pは、図2に示す第1の縦折機150によって曲げ応力が印可され、縦切線L1及びL2に沿って折られることで、耳部12A及び12Bが分断され、耳部を有さないガラス部材10Qが切り出される。
<First vertical folding machine>
The glass member 10P transported by the transport rolls 111 having a short width direction is applied with a bending stress by the first vertical folding machine 150 shown in FIG. The ear portions 12A and 12B are separated, and the glass member 10Q without the ear portions is cut out.
 第1の縦折機150は、ガラス部材10Pの耳部12A及び12Bを、C方向の下側から支持する支持ロールと、上側から押圧する押圧用突起と、を備えている(図示しない)。押圧用突起及び支持ロールは幅方向に移動可能である。また、支持ロールは長手方向に回転自在である。 The first vertical folding machine 150 includes support rolls that support the tabs 12A and 12B of the glass member 10P from below in the C direction, and pressing projections that press from above (not shown). The pressing projection and the support roll are movable in the width direction. Also, the support roll is rotatable in the longitudinal direction.
 第1の縦折機150は、耳部12A及び12Bを、C方向の下側から支持ロールで支持し、C方向の上側から押圧用突起で押圧することで、幅方向に沿った曲げ応力を作用させ、縦切線L1及びL2に沿って耳部12A及び12Bを折る。これにより、ガラス部材10Pから耳部を有さないガラス部材10Qを切り出す。 The first vertical folding machine 150 supports the ear portions 12A and 12B from the lower side in the C direction with support rolls and presses them from the upper side in the C direction with pressing projections, thereby reducing the bending stress along the width direction. and fold the ears 12A and 12B along the longitudinal cutting lines L1 and L2. As a result, a glass member 10Q having no ear portion is cut out from the glass member 10P.
 第1の縦折機150がガラス素板10に曲げ応力を付加する幅方向の位置は、支持ロール及び押圧用突起の幅方向の位置を調整することにより制御可能である。 The position in the width direction where the first vertical folding machine 150 applies bending stress to the glass plate 10 can be controlled by adjusting the positions in the width direction of the support rolls and the pressing projections.
 ガラス部材10Pから分離された耳部12A及び12Bは不要部として、幅方向の長さが短い搬送ロール111の下方に引き込むことで、搬送路から除くことができる。一方で、ガラス部材10Pから切り出された耳部を有さないガラス部材10Qは、幅方向の長さが短い搬送ロール111から搬送ロール110に移動される。 The ear portions 12A and 12B separated from the glass member 10P can be removed from the conveying path as unnecessary portions by pulling them below the conveying rolls 111 having a short widthwise length. On the other hand, the glass member 10Q that is cut out from the glass member 10P and does not have ear portions is moved from the transport roll 111 having a short widthwise length to the transport roll 110 .
 <第2の縦折機>
 搬送ロール110によって搬送される耳部を有さないガラス部材10Qは、図2に示す第2の縦折機160によって曲げ応力が印可され、縦切線L3及びL4に沿って折られることで、ガラス製品部11A及び11Bと、不要部である中央部13と、に分断される。
<Second vertical folding machine>
The glass member 10Q having no ears conveyed by the conveying rolls 110 is applied with a bending stress by the second vertical folding machine 160 shown in FIG. It is divided into product portions 11A and 11B and a central portion 13 which is an unnecessary portion.
 第2の縦折機160は、板厚方向への進退、及び幅方向への移動が可能である、押圧用ロールを備えている(図示しない)。第2の縦折機160は、耳部を有さないガラス部材10Qの下から押圧用ロールでガラス部材10Qを押圧し、縦切線L3及びL4を中心にして幅方向に沿った曲げ応力を作用させ、縦切線L3及びL4に沿って折る。これにより、耳部を有さないガラス部材10Qから、ガラス製品部11A及び11Bを切り出す。 The second vertical folding machine 160 has a pressing roll (not shown) that can move forward and backward in the plate thickness direction and in the width direction. The second vertical folding machine 160 presses the glass member 10Q with a pressing roll from below the glass member 10Q having no ear portion, and applies a bending stress along the width direction centering on the longitudinal cutting lines L3 and L4. and fold along vertical cut lines L3 and L4. Thereby, the glass product portions 11A and 11B are cut out from the glass member 10Q having no ear portion.
 第2の縦折機160がガラス素板10に曲げ応力を付加する幅方向の位置は、押圧用ロールの幅方向の位置を調整することにより制御可能である。 The position in the width direction where the second vertical folding machine 160 applies bending stress to the glass plate 10 can be controlled by adjusting the position in the width direction of the pressing rolls.
 <セパレート装置>
 耳部を有さないガラス部材10Qから切り出された、ガラス製品部11A及び11Bと、中央部13とは、図2に示すセパレート装置170によって幅方向に分離される。
<Separator device>
The glass product portions 11A and 11B and the central portion 13 cut out from the glass member 10Q having no ear portion are separated in the width direction by the separating device 170 shown in FIG.
 セパレート装置170は、2つの搬送ロール110の間に配置されており、セパレート用ロール又はセパレート用突起を備える(図示しない)。ガラス製品部11A及び11Bと、中央部13とは、セパレート用ロール又はセパレート用突起上を通過することで、部材同士の間隔が広げられる。 The separating device 170 is arranged between the two transport rolls 110 and has a separating roll or a separating projection (not shown). The glass product portions 11A and 11B and the central portion 13 are passed over separating rolls or separating projections, thereby widening the distance between the members.
 セパレート装置170を通過した後のガラス製品部11A及び11Bの幅方向の位置は、セパレート用ロール又はセパレート用突起の位置を調整することにより制御可能である。 The positions in the width direction of the glass product parts 11A and 11B after passing through the separating device 170 can be controlled by adjusting the positions of the separating rolls or separating projections.
 <検査装置>
 セパレート装置170を通過し、搬送ロール110によって搬送されるガラス製品部11A及び11Bは、図2に示す検査装置180によって、管理位置Xにおける楔角が検出される。
<Inspection device>
The wedge angle at the management position X is detected by the inspection device 180 shown in FIG.
 図4Aは管理位置Xの楔角検出方法を示す平面図である。図4Aに示すように、ガラス製品部11Aの管理位置Xは、ガラス製品部11Aの一端E1から予め定められた距離だけ離れた位置にある。同様に、ガラス製品部11Bの管理位置Xは、ガラス製品部11Bの一端E2から予め定められた距離だけ離れた位置にある。 4A is a plan view showing a wedge angle detection method for the management position X. FIG. As shown in FIG. 4A, the management position X of the glass product portion 11A is located at a predetermined distance from one end E1 of the glass product portion 11A. Similarly, the management position X of the glass product portion 11B is located at a predetermined distance from one end E2 of the glass product portion 11B.
 ガラス製品部11A及び11Bの管理位置Xにおける楔角は、管理位置Xから幅方向に移動した管理位置Yにおける厚さと、管理位置Xから管理位置Yと反対の幅方向に移動した管理位置Zにおける厚さと、管理位置Yと管理位置Zの幅方向の距離から算出される。 The wedge angles at the management position X of the glassware parts 11A and 11B are the thickness at the management position Y moved in the width direction from the management position X and the wedge angle at the management position Z moved in the width direction opposite to the management position Y from the management position X. It is calculated from the thickness and the distance between the management positions Y and Z in the width direction.
 管理位置Yと管理位置Zの中点に管理位置Xが位置する場合、管理位置Xにおける楔角δは、下記関係式(1)から算出される。 When the management position X is positioned at the midpoint between the management positions Y and Z, the wedge angle δ at the management position X is calculated from the following relational expression (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
δ:管理位置Xにおける楔角(単位mrad)
Y:管理位置Yにおけるガラス製品部の板厚(単位mm)
Z:管理位置Zにおけるガラス製品部の板厚(単位mm)
d:管理位置Yと管理位置Zの幅方向の距離(単位mm)
δ: Wedge angle at management position X (unit: mrad)
T Y : Plate thickness of the glass product part at control position Y (unit: mm)
T Z : Plate thickness of the glass part at the control position Z (unit: mm)
d: width direction distance between control position Y and control position Z (unit: mm)
 検査装置180は、図4Aに示すように、幅方向に移動可能な4台の板厚測定装置181と、センサー182と、を備えている。センサー182によってガラス製品部11Aの一端E1と、ガラス製品部11Bの一端E2と、の幅方向の位置を特定する。一端E1及び一端E2の位置に基づいて、各板厚測定装置181をガラス製品部11A及び11Bの管理位置Y及び管理位置Z付近にそれぞれ移動させ、各管理位置における板厚を測定する。以上により、ガラス製品部11A及び11Bの管理位置Xにおける楔角が算出される。 The inspection device 180 includes four plate thickness measuring devices 181 movable in the width direction and a sensor 182, as shown in FIG. 4A. A sensor 182 identifies the positions in the width direction of one end E1 of the glass product portion 11A and one end E2 of the glass product portion 11B. Based on the positions of one end E1 and one end E2, each plate thickness measuring device 181 is moved to the vicinity of control position Y and control position Z of glass product sections 11A and 11B, respectively, and the plate thickness at each control position is measured. As described above, the wedge angle at the management position X of the glass product parts 11A and 11B is calculated.
 ここで、搬送ロール110によって搬送されつつ、検査装置180によって検出される、管理位置Xにおけるガラス製品部11A(又は11B)の楔角は、搬送ロール110によるガラス製品部11A(又は11B)の移動を停止した状態で検出される、ガラス製品部11A(又は11B)の管理位置Xにおける実楔角に対して、プラスマイナス0.1mrad以内であることが好ましい。プラスマイナス0.1mrad以内であれば、搬送中における楔角の測定精度を保つことができる。楔角と実楔角との差は、プラスマイナス0.05mrad以内あることがより好ましく、プラスマイナス0.03mrad以内あることがさらに好ましい。なお、これは第2の実施形態にも適用できる。 Here, the wedge angle of the glass product portion 11A (or 11B) at the management position X detected by the inspection device 180 while being transported by the transport roll 110 is the movement of the glass product portion 11A (or 11B) by the transport roll 110. It is preferably within plus or minus 0.1 mrad with respect to the actual wedge angle at the management position X of the glass product portion 11A (or 11B), which is detected in the stopped state. Within plus or minus 0.1 mrad, the measurement accuracy of the wedge angle can be maintained during transportation. The difference between the wedge angle and the actual wedge angle is preferably within plus or minus 0.05 mrad, more preferably within plus or minus 0.03 mrad. Note that this can also be applied to the second embodiment.
 管理位置Yと管理位置Zの幅方向の距離は、50mm以上250mm以下であることが好ましい。50mm以上であれば、搬送ロール110から伝搬される振動による測定誤差を抑制することができる。250mm以下であれば、板厚を測定する管理位置Y及び管理位置Zは管理位置Xから近い距離に存在するため、管理位置Xにおける楔角を高精度で算出できる。管理位置Yと管理位置Zの幅方向の距離は、70mm以上230mm以下であることがより好ましい。管理位置Yと管理位置Zの幅方向の距離は搬送ロール110のピッチ間距離や搬送速度に応じて、適切に選択される。なお、これは第2の実施形態にも適用できる。 The widthwise distance between the management position Y and the management position Z is preferably 50 mm or more and 250 mm or less. If it is 50 mm or more, it is possible to suppress measurement errors due to vibration propagated from the transport roll 110 . If the distance is 250 mm or less, the control position Y and the control position Z where the plate thickness is measured are located at a short distance from the control position X, so the wedge angle at the control position X can be calculated with high accuracy. More preferably, the distance in the width direction between the management position Y and the management position Z is 70 mm or more and 230 mm or less. The distance in the width direction between the management position Y and the management position Z is appropriately selected according to the distance between the pitches of the transport rolls 110 and the transport speed. Note that this can also be applied to the second embodiment.
 ガラス製品部11A又は11Bを、車両のフロントガラスや窓ガラスとして取り付け、ヘッドアップディスプレイとして使用する場合、管理位置Xはヘッドアップディスプレイ表示領域(以下、HUD表示領域と称する場合がある)内に位置することが好ましく、ヘッドアップディスプレイ表示領域の中心に位置することがより好ましい。なお、これは第2の実施形態にも適用できる。 When the glass product portion 11A or 11B is attached as a vehicle windshield or window glass and used as a head-up display, the management position X is located within the head-up display display area (hereinafter sometimes referred to as HUD display area). It is preferable to be located in the center of the head-up display display area. Note that this can also be applied to the second embodiment.
 HUD表示領域とは、車内からの投影像を反射して情報を表示する表示領域である。HUD表示領域は、車内に配置させたHUDを構成する鏡を回転させ、JIS R3212:2015で規定されるV1点から見た際に、HUDを構成する鏡からの光がフロントガラスに照射される範囲、として定められる。 The HUD display area is a display area that displays information by reflecting the projected image from inside the vehicle. The HUD display area rotates the mirror that constitutes the HUD placed inside the vehicle, and when viewed from point V1 defined in JIS R3212:2015, the light from the mirror that constitutes the HUD illuminates the windshield. range, defined as
 HUD表示領域内に位置する管理位置Xの楔角に基づいて、制御装置190が楔形ガラス製造装置100を制御することで、HUD表示領域における楔角を所定範囲内に維持する精度が向上する。 The control device 190 controls the wedge-shaped glass manufacturing apparatus 100 based on the wedge angle of the management position X located within the HUD display area, thereby improving the accuracy of maintaining the wedge angle in the HUD display area within a predetermined range.
<制御装置>
 検査装置180によって算出された管理位置Xにおける楔角は、図2に示す制御装置190に伝達される。制御装置190は、伝達された楔角のトレンドに基づいて楔形ガラス製造装置100を制御することで、管理位置Xにおける楔角を、予め定められた管理位置Xにおける理想楔角との差が所定範囲内となるように制御する。ここで、楔角のトレンドとは、制御装置190に伝達される楔角の時間推移を意味する。
<Control device>
The wedge angle at the management position X calculated by the inspection device 180 is transmitted to the control device 190 shown in FIG. The control device 190 controls the wedge-shaped glass manufacturing apparatus 100 based on the transmitted trend of the wedge angle so that the difference between the wedge angle at the control position X and the ideal wedge angle at the control position X is predetermined. Control within the range. Here, the wedge angle trend means the time transition of the wedge angle transmitted to the control device 190 .
 制御装置190は、管理位置Xにおける楔角の増減に基づいて、縦切線L1~L4の幅方向の位置を変化させる。縦切線L1~L4の幅方向の位置は、制御装置190によって、縦切機120が備える各カッター121の幅方向の位置を変化させることで、移動させることができる。これにより、管理位置Xにおける楔角が理想楔角に近くなるように、ガラス素板10上の適切な位置からガラス製品部11A及び11Bを切り出すことができる。 The control device 190 changes the positions of the vertical cutting lines L1 to L4 in the width direction based on the increase or decrease in the wedge angle at the management position X. The widthwise positions of the vertical cutting lines L1 to L4 can be moved by changing the widthwise positions of the cutters 121 provided in the vertical cutting machine 120 by the control device 190 . Thereby, the glass product portions 11A and 11B can be cut out from appropriate positions on the glass plate 10 so that the wedge angle at the management position X is close to the ideal wedge angle.
 制御装置190は、伝達された楔角のトレンドや、縦切線の位置変化に基づいて、第1の縦折機150及び第2の縦折機160が曲げ応力を印可する幅方向の位置を変化させることが好ましい。第1の縦折機150が印可する曲げ応力の幅方向の位置は、第1の縦折機150が備える押圧用突起及び支持ロールの幅方向の位置を変化させることで、移動させることができる。第2の縦折機160が印可する曲げ応力の幅方向の位置は、第2の縦折機160が備える押圧用ロールの幅方向の位置を変化させることで、移動させることができる。これにより、より高精度に、ガラス素板10上の適切な位置からガラス製品部11A及び11Bを切り出すことができる。 The control device 190 changes the position in the width direction where the first vertical folder 150 and the second vertical folder 160 apply bending stress based on the transmitted wedge angle trend and the positional change of the vertical cutting line. It is preferable to let The position in the width direction of the bending stress applied by the first vertical folder 150 can be moved by changing the positions in the width direction of the pressing protrusions and the support rolls provided in the first vertical folder 150. . The position in the width direction of the bending stress applied by the second vertical folder 160 can be moved by changing the position in the width direction of the pressing rolls provided in the second vertical folder 160 . Thereby, the glass product portions 11A and 11B can be cut out from appropriate positions on the glass base plate 10 with higher accuracy.
 制御装置190は、管理位置Xにおける楔角に基づいて、セパレート装置170を制御してもよい。
 また、制御装置190は、伝達された楔角のトレンドや、縦切線の位置変化に基づいて、セパレート装置170が備えるセパレート用ロール又はセパレート用突起の位置を変化させてもよい。これにより、セパレート装置170を通過した後の、搬送ロール110上のガラス製品部11A及び11Bの幅方向の位置を適切に調整することができる。
The control device 190 may control the separating device 170 based on the wedge angle at the management position X.
Further, the control device 190 may change the positions of the separating rolls or separating projections provided in the separating device 170 based on the transmitted trend of the wedge angle and the change in the position of the vertical cutting line. Thereby, the position of the width direction of the glass product parts 11A and 11B on the transport roll 110 after passing through the separating device 170 can be appropriately adjusted.
 制御装置190は、ガラス製品部11A及び11Bの管理位置Xにおける楔角を、予め定められた管理位置Xにおける理想楔角との差が所定範囲内となるように制御する。理想楔角との差は、プラスマイナス0.1mrad以内となるように制御することが好ましく、プラスマイナス0.05mrad以内となるように制御することがより好ましく、プラスマイナス0.03mrad以内となるように制御することがさらに好ましい。なお、これは第2の実施形態にも適用できる。 The control device 190 controls the wedge angles of the glass product sections 11A and 11B at the management position X so that the difference from the ideal wedge angle at the predetermined management position X is within a predetermined range. The difference from the ideal wedge angle is preferably controlled within plus or minus 0.1 mrad, more preferably within plus or minus 0.05 mrad, and preferably within plus or minus 0.03 mrad. is more preferably controlled to Note that this can also be applied to the second embodiment.
 管理位置XがHUD表示領域内に位置する場合、制御装置190は楔形ガラス製造装置100に対し、ガラス製品部11A及び11BのHUD表示領域内における楔角が、0.2mrad以上1.5mrad以下となるように制御することが好ましく、0.2mrad以上0.9mrad以下となるように制御することがより好ましく、0.3mrad以上0.8mrad以下となるように制御することがさらに好ましい。なお、これは第2の実施形態にも適用できる。 When the management position X is located within the HUD display area, the control device 190 instructs the wedge-shaped glass manufacturing apparatus 100 that the wedge angle within the HUD display area of the glass product sections 11A and 11B is 0.2 mrad or more and 1.5 mrad or less. More preferably, it is controlled to be 0.2 mrad or more and 0.9 mrad or less, and more preferably 0.3 mrad or more and 0.8 mrad or less. Note that this can also be applied to the second embodiment.
 ガラス製品部11A及び11BのHUD表示領域内における楔角が、0.2mrad以上1.5mrad以下であれば、二重像は減少され、0.2mrad以上0.9mrad以下であれば、二重像は市場においてほとんど問題とはならないレベルに抑制され、0.3mrad以上0.8mrad以下であれば、二重像は車の普通免許で必要とされる最低視力0.7の分解能を下回るレベルに抑制される。 If the wedge angle in the HUD display area of the glass product parts 11A and 11B is 0.2 mrad or more and 1.5 mrad or less, the double image is reduced. is suppressed to a level that is hardly a problem in the market, and if it is 0.3 mrad or more and 0.8 mrad or less, the double image is suppressed to a level below the minimum visual acuity resolution of 0.7 required for a normal car license. be done.
 ガラス製品部11A及び11Bとして得られた楔形ガラスを、例えば自動車のフロントガラスとして用いる場合、フロントガラスの取り付け角度、及びフロントガラスに情報を表示させる照射機の取り付け角度と位置によって、HUD表示領域の最適な楔角が選択される。 When the wedge-shaped glass obtained as the glass product parts 11A and 11B is used, for example, as the windshield of an automobile, the HUD display area may vary depending on the mounting angle of the windshield and the mounting angle and position of the illuminator that displays information on the windshield. An optimal wedge angle is selected.
 〔第2の実施形態〕
 図3は、楔形ガラス製造方法の第2の実施形態を示す平面図である。第1の実施形態と同様の方法で、幅方向に板厚変化部を備えるように成形されたガラス素板10は、楔形ガラス製造装置200において連続的に搬送されつつ、切断および検査がなされ、楔形のガラス製品部11A及び11Bとなる。
[Second embodiment]
FIG. 3 is a plan view showing a second embodiment of the wedge-shaped glass manufacturing method. By the same method as in the first embodiment, the glass base plate 10 formed to have a plate thickness change portion in the width direction is continuously transported in the wedge-shaped glass manufacturing apparatus 200, cut and inspected, This results in wedge-shaped glassware portions 11A and 11B.
 図3に示す楔形ガラス製造装置200は、主搬送路201と、主搬送路201に対して垂直に接続する副搬送路202と、を備える。なお、楔形ガラス製造装置200には、副搬送路202以外の副搬送路が備えられていてもよい。 A wedge-shaped glass manufacturing apparatus 200 shown in FIG. Note that the wedge-shaped glass manufacturing apparatus 200 may be provided with a sub-transport path other than the sub-transport path 202 .
 <搬送ロール>
 ガラス素板10は、図3に示す複数の搬送ロール210によって搬送される。複数の搬送ロール210は、主搬送路201ではガラス素板の長手方向(A方向)に沿って一定のピッチ間距離で配置されている。一方で、副搬送路202ではガラス素板10の幅方向(B方向)に沿って一定のピッチ間距離で配置されている。
<Transport roll>
The glass base plate 10 is transported by a plurality of transport rolls 210 shown in FIG. The plurality of transport rolls 210 are arranged at a constant pitch distance along the longitudinal direction (direction A) of the glass base plate on the main transport path 201 . On the other hand, in the sub-transport path 202 , they are arranged at a constant pitch distance along the width direction (B direction) of the glass base plate 10 .
 主搬送路201では、第1の実施形態と同様に、縦切機220によってガラス素板10に縦切線L1~L4を形成し、横切機230によってガラス素板10に横切線L5を形成し、横折機240によってガラス素板10からガラス部材10Pを切り出し、搬送ロール210よりも幅方向の長さが短い搬送ロール211に移動し、第1の縦折機250によってガラス部材10Pから耳部を有さないガラス部材10Qを切り出し、耳部12A及び12Bは不要部として搬送路から除く。縦切機220、横切機230、横折機240、第1の縦折機250は、例えば第1の実施形態の縦切機120、横切機130、横折機140、第1の縦折機150と同じであってよい。 In the main transport path 201, as in the first embodiment, vertical cutting lines L1 to L4 are formed on the glass base plate 10 by the vertical cutting machine 220, and a horizontal line L5 is formed on the glass base plate 10 by the horizontal cutting machine 230. , the glass member 10P is cut out from the glass base plate 10 by the horizontal folding machine 240, moved to the transportation roll 211 whose length in the width direction is shorter than the transportation roll 210, and is cut from the glass member 10P by the first vertical folding machine 250. The glass member 10Q having no edge is cut out, and the ear portions 12A and 12B are removed from the conveying path as unnecessary portions. The vertical cutter 220, the transverse machine 230, the horizontal folder 240, and the first vertical folder 250 are, for example, the vertical cutter 120, the horizontal machine 130, the horizontal folder 140, and the first vertical folder of the first embodiment. It may be the same as the folding machine 150 .
 <第2の縦折機>
 耳部を有さないガラス部材10Qは、主搬送路201にある幅方向の長さが短い搬送ロール211から副搬送路202にある搬送ロール210へ移動し、幅方向に搬送される。そして、耳部を有さないガラス部材10Qは、第2の縦折機260によって曲げ応力が印可され、縦切線L3及びL4に沿って折られることで、ガラス製品部11A及び11Bと、不要部である中央部13とに分断される。
<Second vertical folding machine>
The glass member 10Q having no lugs moves from the conveying rolls 211 having a short widthwise length on the main conveying path 201 to the conveying rolls 210 on the sub conveying path 202, and is conveyed in the width direction. A bending stress is applied to the glass member 10Q having no lugs by the second vertical folding machine 260, and it is folded along the vertical cut lines L3 and L4, thereby forming the glass product portions 11A and 11B and the unnecessary portions. It is divided into a central portion 13 which is .
 第2の縦折機260は、板厚方向に進退可能である押圧用ロールを備えている(図示しない)。第2の縦折機260は、耳部を有さないガラス部材10Qの下から押圧用ロールでガラス素板10を押圧し、縦切線L3及びL4を中心にして幅方向に沿った曲げ応力を作用させ、縦切線L3及びL4に沿って折る。これにより、耳部を有さないガラス部材10Qから、ガラス製品部11A及び11Bを切り出す。 The second vertical folding machine 260 is provided with pressing rolls that can move back and forth in the plate thickness direction (not shown). The second vertical folding machine 260 presses the glass base plate 10 from below the glass member 10Q having no lugs with a pressing roll to apply a bending stress along the width direction centering on the vertical cutting lines L3 and L4. Act and fold along vertical cutting lines L3 and L4. Thereby, the glass product portions 11A and 11B are cut out from the glass member 10Q having no ear portion.
 第2の縦折機260は、押圧用ロールにより曲げ応力を印可するタイミングを自動で制御することが可能である。 The second vertical folding machine 260 can automatically control the timing of applying bending stress by the pressing rolls.
 <セパレート装置>
 副搬送路202では、第1の実施形態に記載されたセパレート装置170は、設置しなくてもよい。
<Separator device>
The separating device 170 described in the first embodiment may not be installed on the sub-conveyance path 202 .
 <検査装置>
 副搬送路202では、搬送ロール210によって搬送されるガラス製品部11A及び11Bは、図3に示す検査装置280によって、管理位置Xにおける楔角測定を検出される。
<Inspection device>
In the sub-transport path 202, the wedge angle measurement at the management position X is detected by the inspection device 280 shown in FIG.
 図4B及び図4Cは管理位置Xの楔角検出方法を示す平面図である。検査装置280は、図4Bに示すように、板厚測定装置281を備えている。板厚測定装置は、管理位置Xを含むようにガラス製品部11A及び11Bの幅方向L6に沿って板厚を測定する。これにより、図4Cに示すような板厚プロファイルが作成され、管理位置Y及び管理位置Zの板厚が求められる。以上により、ガラス製品部11A及び11Bの管理位置Xにおける楔角が算出される。ガラス製品部11A及び11Bが幅方向に搬送されることで、検査装置280は、第1の実施形態よりも簡易な仕組みで板厚を測定し、楔角を算出できる。 4B and 4C are plan views showing a wedge angle detection method for the management position X. FIG. The inspection device 280 includes a board thickness measuring device 281 as shown in FIG. 4B. The plate thickness measuring device measures the plate thickness along the width direction L6 of the glass product portions 11A and 11B so as to include the management position X. As shown in FIG. As a result, a plate thickness profile as shown in FIG. 4C is created, and plate thicknesses at the control position Y and the control position Z are obtained. As described above, the wedge angle at the management position X of the glass product parts 11A and 11B is calculated. By conveying the glass product parts 11A and 11B in the width direction, the inspection device 280 can measure the plate thickness and calculate the wedge angle with a simpler mechanism than in the first embodiment.
 <制御装置>
 検査装置280によって算出された管理位置Xにおける楔角は、図3に示す制御装置290に伝達される。制御装置290は、伝達された楔角のトレンドに基づいて楔形ガラス製造装置200を制御することで、管理位置Xにおける楔角を、予め定められた管理位置Xにおける理想楔角との差が所定範囲内となるように制御する。
<Control device>
The wedge angle at the management position X calculated by the inspection device 280 is transmitted to the control device 290 shown in FIG. The control device 290 controls the wedge-shaped glass manufacturing apparatus 200 based on the transmitted trend of the wedge angle so that the difference between the wedge angle at the control position X and the ideal wedge angle at the control position X is predetermined. Control within the range.
 制御装置290は、第1の実施形態と同様に、楔角のトレンドに基づいて、縦切機220が備える各カッター221の幅方向の位置を変化させることによって、縦切線L1~L4の幅方向の位置を移動させる。これにより、管理位置Xにおける楔角が理想楔角に近くなるように、ガラス素板10上の適切な位置からガラス製品部11A及び11Bを切り出すことができる。 As in the first embodiment, the control device 290 changes the widthwise position of each cutter 221 provided in the vertical cutting machine 220 based on the trend of the wedge angle, thereby adjusting the vertical cutting lines L1 to L4 in the width direction. move the position of Thereby, the glass product portions 11A and 11B can be cut out from appropriate positions on the glass plate 10 so that the wedge angle at the management position X is close to the ideal wedge angle.
 制御装置290は、伝達された楔角のトレンドや、縦切線の位置変化に基づいて、第1の縦折機250及び第2の縦折機260が曲げ応力を印可する幅方向の位置を変化させることが好ましい。第1の縦折機250が印可する曲げ応力の幅方向の位置は、第1の縦折機250が備える押圧用突起及び支持ロールの幅方向の位置を変化させることで、移動させることができる。第2の縦折機260が印可する曲げ応力の幅方向の位置は、第2の縦折機260が備える押圧用ロールが曲げ応力を印可するタイミングを変化させることで、移動させることができる。これにより、より高精度に、ガラス素板10上の適切な位置からガラス製品部11A及び11Bを切り出すことができる。 The control device 290 changes the position in the width direction where the first vertical folder 250 and the second vertical folder 260 apply bending stress based on the transmitted wedge angle trend and the position change of the vertical cutting line. It is preferable to let The position in the width direction of the bending stress applied by the first vertical folder 250 can be moved by changing the positions in the width direction of the pressing projections and the support rolls provided in the first vertical folder 250. . The position in the width direction of the bending stress applied by the second vertical folder 260 can be moved by changing the timing at which the pressing rolls of the second vertical folder 260 apply the bending stress. Thereby, the glass product portions 11A and 11B can be cut out from appropriate positions on the glass base plate 10 with higher accuracy.
 〔楔形ガラス〕
 本発明の一実施形態に係る製造方法により製造される楔形ガラスの板厚の最大値と最小値との差は、0.1mm以上であることが好ましい。0.1mm以上であれば、水平に対する角度が大きいフロントガラスとして自動車に取り付けた場合でも、情報表示用ガラスとして用いたときに2重像の発生を抑制することができる。楔形ガラスの板厚の最大値と最小値との差は0.3mm以上であってもよく、0.5mm以上であってもよい。一方、楔形ガラスの板厚の最大値と最小値との差は、1.5mm以下であってもよく、1.2mm以下であってもよく、1.0mm以下であってもよい。自動車のフロントガラスとして楔形ガラスを用いる場合、フロントガラスの取り付け角度、及びフロントガラスに情報を表示させる照射機の取り付け角度と位置によって、最適な楔形ガラスの厚さの最大値と最小値との差が選択される。
[Wedge-shaped glass]
The difference between the maximum thickness and the minimum thickness of the wedge-shaped glass manufactured by the manufacturing method according to one embodiment of the present invention is preferably 0.1 mm or more. If the thickness is 0.1 mm or more, it is possible to suppress the occurrence of double images when the glass is used as information display glass even when it is installed in an automobile as a windshield with a large angle with respect to the horizontal. The difference between the maximum thickness and the minimum thickness of the wedge-shaped glass may be 0.3 mm or more, or may be 0.5 mm or more. On the other hand, the difference between the maximum thickness and the minimum thickness of the wedge-shaped glass may be 1.5 mm or less, 1.2 mm or less, or 1.0 mm or less. When wedge-shaped glass is used as the windshield of an automobile, the difference between the maximum and minimum thickness of the optimal wedge-shaped glass depending on the installation angle of the windshield and the installation angle and position of the illuminator that displays information on the windshield. is selected.
 本発明の一実施形態に係る製造方法により製造される楔形ガラスの主表面は、JISB0601:2001規定の基準長さ25mmにおける粗さ曲線の最大高さRzが0.3μm以下であることが好ましい。Rzが0.3μm以下であれば、板ガラスを情報表示用ガラスとして用いた場合に、ガラスを通して見た景色が歪みにくく、板ガラスに情報を表示させたときの反射像が歪みにくい。ここで、粗さ曲線は形状波形により表される。Rzは、0.25μm以下がより好ましく、0.2μm以下がさらに好ましい。 The main surface of the wedge-shaped glass manufactured by the manufacturing method according to one embodiment of the present invention preferably has a maximum roughness curve height Rz of 0.3 μm or less at a reference length of 25 mm specified in JISB0601:2001. If the Rz is 0.3 μm or less, when the plate glass is used as information display glass, the scenery seen through the glass is less likely to be distorted, and the reflection image when information is displayed on the plate glass is less likely to be distorted. Here, the roughness curve is represented by a shape waveform. Rz is more preferably 0.25 μm or less, even more preferably 0.2 μm or less.
 本発明の一実施形態に係る製造方法により製造される楔形ガラスの用途は、自動車用のフロントガラスに限定されず、自動車や電車の窓ガラス、或いはオートバイの風防ガラスであってもよく、情報を表示できればいずれのガラスであってもよい。また、乗り物の情報表示用のガラスに限定されず、その他各種の情報表示用ガラスに使用できる。さらに、情報表示以外の用途でも、連続的な透過特性変化を利用した様々な装置に使用できる。 The use of the wedge-shaped glass manufactured by the manufacturing method according to one embodiment of the present invention is not limited to windshields for automobiles, and may be windshields for automobiles and trains, or windshields for motorcycles. Any glass may be used as long as it can display. Moreover, it is not limited to the information display glass for vehicles, and can be used for various other information display glasses. Furthermore, it can be used for various devices that utilize continuous changes in transmission characteristics, even for applications other than information display.
 本発明の実施例について説明する。
 主搬送路と、主搬送路に対して垂直に接続する副搬送路を備えるガラス製造装置において、断面が凸型のガラス素板から楔形ガラスを製造した。主搬送路には、縦切機、横切機、横折機、第1の縦折機が設置されており、複搬送路には、第2の縦折機、検査装置が設置されていた。検査装置は、ガラス製品部の管理位置Xにおける楔角を、管理位置Yにおける厚さと、管理位置Zにおける厚さと、管理位置Yと管理位置Zの幅方向の距離と、から算出した。また、ガラス製造装置は制御装置を備えており、検査装置が検出したガラス製品部の管理位置Xにおける楔角に基づいて、縦切機が備える各カッターの幅方向の位置、第1の縦折機が備える押圧用突起及び支持ロールの幅方向の位置、及び第2の縦折機が備える押圧用ロールが曲げ応力を印可するタイミングを、制御装置によって制御した。
An embodiment of the present invention will be described.
A wedge-shaped glass was manufactured from a glass base plate having a convex cross section in a glass manufacturing apparatus having a main transport path and a sub-transport path vertically connected to the main transport path. A longitudinal cutter, a crosser, a horizontal folding machine, and the first vertical folding machine were installed on the main transport path, and a second vertical folding machine and an inspection device were installed on the double transport path. . The inspection device calculated the wedge angle at the control position X of the glass product part from the thickness at the control position Y, the thickness at the control position Z, and the distance between the control positions Y and Z in the width direction. In addition, the glass manufacturing apparatus includes a control device, and based on the wedge angle at the management position X of the glass product part detected by the inspection device, the width direction position of each cutter provided in the vertical cutter, the first vertical folding The control device controlled the widthwise positions of the pressing projections and support rolls provided in the folding machine, and the timing at which the pressing rolls provided in the second vertical folding machine applied the bending stress.
 ガラス製造装置の搬送ロールのピッチ間距離は150mm、搬送速度は1800m/hであった。管理位置Y、管理位置X、及び管理位置Zは、図4Cに示すように、ガラス製品部の板厚が小さい側から大きい側へ幅方向に順に並んでおり、管理位置Xは管理位置Yと管理位置Zの中点に位置した。また、管理位置Xは、ガラス製品部の板厚が小さい側の端(L1又はL2)から幅方向に17インチ(431.8mm)離れた位置にあり、予め定められた管理位置Xにおける理想楔角δiは0.36mradであった。 The distance between the pitches of the conveying rolls of the glass manufacturing apparatus was 150 mm, and the conveying speed was 1800 m/h. As shown in FIG. 4C, the management position Y, the management position X, and the management position Z are arranged in order in the width direction from the side where the plate thickness of the glass product part is small to the side where the plate thickness is large. It was located at the midpoint of the control position Z. In addition, the management position X is located 17 inches (431.8 mm) in the width direction from the end (L1 or L2) of the glass product portion where the plate thickness is small. The angle δ i was 0.36 mrad.
 例1~7では、管理位置Yと管理位置Zの幅方向の距離dを変化させ、搬送中のガラス製品部の管理位置Xにおける楔角δを検出した。そして、停止状態で検出されるガラス製品部の管理位置Xにおける実楔角δrと比較した。例1~7の各条件において、20枚のガラス製品部について検証を行い、1枚以上のガラス製品部で楔角δと実楔角δrの差δ-δrの絶対値が0.1mrad超あれば×を、20枚全てのガラス製品部で楔角δと実楔角δrの差δ-δrの絶対値が0.1mrad以下であれば○を、表1に入力した。○は搬送中のガラス製品部の管理位置Xにおける楔角を高精度で測定できることを意味し、×はその反対を意味する。 In Examples 1 to 7, the wedge angle δ at the management position X of the glass product part being transported was detected by changing the width direction distance d between the management position Y and the management position Z. Then, it was compared with the actual wedge angle δr at the control position X of the glass product portion detected in the stopped state. Under the conditions of Examples 1 to 7, 20 glass product parts were verified, and the absolute value of the difference δ-δ r between the wedge angle δ and the actual wedge angle δ r was 0.1 mrad in one or more glass product parts. If the absolute value of the difference δ- δr between the wedge angle δ and the actual wedge angle δr is 0.1 mrad or less in all the 20 glass parts, the value is entered in Table 1 as x. ○ means that the wedge angle at the control position X of the glass product part being transported can be measured with high accuracy, and × means the opposite.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 例1及び例7は距離dが50mm未満又は250mm超であり、1枚以上のガラス製品部について、δ-δrの絶対値が0.1mrad超であった。一方で例2~6は距離dが100mm以上250mm以下を満たし、20枚全てのガラス製品部について、δ-δrの絶対値が0.1mrad以下であった。 Examples 1 and 7 had a distance d of less than 50 mm or greater than 250 mm and an absolute value of δ- δr of greater than 0.1 mrad for one or more glassware parts. On the other hand, in Examples 2 to 6, the distance d was 100 mm or more and 250 mm or less, and the absolute value of δ− δr was 0.1 mrad or less for all the 20 glass products.
 管理位置Yと管理位置Zの幅方向の距離dが50mm以上200mm以下であれば、搬送中に検出されるガラス製品部の管理位置Xにおける楔角δは、停止状態で検出されるガラス製品部の管理位置Xにおける実楔角δrとの差が小さく、高精度で検出できることが分かった。これにより、検査装置から伝達された高精度な楔角のトレンドに基づいて、制御装置が、縦切機によって形成される縦切線の位置や、縦折機によって印加される曲げ応力の位置といった、ガラス製造装置の制御を高精度で行える。 If the distance d in the width direction between the management position Y and the management position Z is 50 mm or more and 200 mm or less, the wedge angle δ at the management position X of the glass product part detected during transportation is equal to that of the glass product part detected in the stopped state. It was found that the difference from the actual wedge angle δ r at the control position X of is small and can be detected with high accuracy. Thereby, based on the highly accurate wedge angle trend transmitted from the inspection device, the control device can determine the position of the vertical cutting line formed by the vertical cutting machine and the position of the bending stress applied by the vertical folding machine. It is possible to control the glass manufacturing equipment with high precision.
 次に、検査装置が表1の例4の条件で楔角δを測定し、制御装置が楔角δのトレンドに基づいて、縦切機、第1の縦折機、及び第2の縦折機を制御する状態で、連続して100枚のガラス製品部を製造したものを例8とした。 Next, the inspection device measures the wedge angle δ under the conditions of Example 4 in Table 1, and the control device detects the wedge angle δ based on the trend of the wedge angle δ, the vertical cutter, the first vertical folding machine, and the second vertical folding machine. Example 8 was obtained by continuously producing 100 glass products under machine control.
 一方で、制御装置が縦切機、第1の縦折機、及び第2の縦折機例を制御しない状態で、連続して100枚のガラス製品部を製造し、検査装置が表1の例4の条件で楔角δを測定したものを例9とした。 On the other hand, in a state in which the control device does not control the vertical cutting machine, the first vertical folding machine, and the second vertical folding machine example, 100 glass product parts are continuously manufactured, and the inspection device is Example 9 is obtained by measuring the wedge angle δ under the conditions of Example 4.
 例8では、製造されたガラス製品部の管理位置Xにおける楔角δと、予め定められた管理位置Xにおける理想楔角δi(0.36mrad)の差δ-δiの絶対値が、100枚全てのガラス製品部で0.1mrad以下であり、楔角δを所定範囲内に保持できた。 In Example 8, the absolute value of the difference δ- δi between the wedge angle δ at the control position X of the manufactured glass product and the ideal wedge angle δi (0.36 mrad) at the predetermined control position X is 100. It was 0.1 mrad or less in all of the glass products, and the wedge angle δ could be kept within a predetermined range.
 一方で、例9では、100枚中3枚のガラス製品部において、製造されたガラス製品部の管理位置Xにおける楔角δと、予め定められた管理位置Xにおける理想楔角δi(0.36mrad)の差δ-δiの絶対値が0.1mrad超となり、楔角δを所定範囲内に保持できなかった。 On the other hand, in Example 9, in three glass product parts out of 100, the wedge angle δ at the control position X of the manufactured glass product part and the ideal wedge angle δ i (0. 36 mrad), the absolute value of the difference δ−δ i exceeded 0.1 mrad, and the wedge angle δ could not be kept within the predetermined range.
 以上より、制御装置が検査装置で検出された楔角δのトレンドに基づいて、縦切機、第1の縦折機、及び第2の縦折機を制御することで、製造されたガラス製品部の管理位置Xにおける楔角δは、予め定められた管理位置Xにおける理想楔角δiとの差が所定範囲内となるように保持できることが確認された。 As described above, the control device controls the vertical cutter, the first vertical folding machine, and the second vertical folding machine based on the trend of the wedge angle δ detected by the inspection device, thereby manufacturing glass products It was confirmed that the wedge angle .delta.
 なお、本出願は、2021年11月8日出願の日本特許出願(特願2021-182124)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-182124) filed on November 8, 2021, the content of which is incorporated herein by reference.
 本発明によれば、ガラス素板から切り出す楔形ガラスの楔角を、予め定められた目標値に近づけることができ、各種用途に使用できる楔形ガラスを得ることができる。 According to the present invention, the wedge angle of the wedge-shaped glass cut out from the glass base plate can be brought closer to a predetermined target value, and a wedge-shaped glass that can be used for various purposes can be obtained.
 10…凸型のガラス素板、11A…ガラス素板10のガラス製品部、11B…ガラス素板10のガラス製品部、12A…ガラス素板10の耳部、12B…ガラス素板10の耳部、13…ガラス素板10の中央部、20…凹型のガラス素板、21A…ガラス素板20のガラス製品部、21B…ガラス素板20のガラス製品部、22A…ガラス素板20の耳部、22B…ガラス素板20の耳部、23…ガラス素板20の中央部、30…テーパー型のガラス素板、31…ガラス素板30のガラス製品部、32A…ガラス素板30の耳部、32B…ガラス素板30の耳部、100…楔形ガラス製造装置、110…搬送ロール、111…搬送ロール110よりも幅方向に短い搬送ロール、120…縦切機、121…縦切機120のカッター、130…横切機、131…横切機130のカッター、140…横折機、150…第1の縦折機、160…第2の縦折機、170…セパレート装置、180…検査装置、181…板厚測定装置、182…センサー、190…制御装置、200…楔形ガラス製造装置、201…主搬送路、202…副搬送路、210…搬送ロール、211…搬送ロール210よりも幅方向に短い搬送ロール、220…縦切機、221…縦切機220のカッター、230…横切機、231…横切機230のカッター、240…横折機、250…第1の縦折機、260…第2の縦折機、280…検査装置、281…板厚測定装置、290…制御装置、L1…ガラス製品部11Aと耳部12Aとの境界に形成される縦切線、L2…ガラス製品部11Bと耳部12Bとの境界に形成される縦切線、L3…ガラス製品部11Aと中央部13との境界に形成される縦切線、L4…ガラス製品部11Bと中央部13との境界に形成される縦切線、L5…横切線、L6…検査装置が板厚を測定する幅方向の線、E1…ガラス製品部11Aの一端、E2…ガラス製品部11Bの一端 DESCRIPTION OF SYMBOLS 10... Convex glass plate, 11A... Glass part of glass plate 10, 11B... Glass part of glass plate 10, 12A... Edge of glass plate 10, 12B... Ear of glass plate 10 , 13... Central portion of glass plate 10 20... Concave glass plate 21A... Glass product portion of glass plate 20 21B... Glass product portion of glass plate 20 22A... Edge of glass plate 20 , 22B... Ear portion of the glass plate 20, 23... Central portion of the glass plate 20, 30... Tapered glass plate, 31... Glass product portion of the glass plate 30, 32A... Ear portion of the glass plate 30 , 32B... ear portion of glass plate 30, 100... wedge-shaped glass manufacturing apparatus, 110... transport roll, 111... transport roll shorter in width direction than transport roll 110, 120... vertical cutter, 121... longitudinal cutter 120 Cutter 130 Crossing machine 131 Cutter of crossing machine 130 140 Horizontal folding machine 150 First vertical folding machine 160 Second vertical folding machine 170 Separating device 180 Inspection device , 181... Board thickness measuring device 182... Sensor 190... Control device 200... Wedge-shaped glass manufacturing apparatus 201... Main conveying path 202... Sub conveying path 210... Conveying roll 211... Width direction from conveying roll 210 220... vertical cutter, 221... cutter of vertical cutter 220, 230... transverse machine, 231... cutter of transverse machine 230, 240... horizontal folder, 250... first vertical folder, 260 Second vertical folding machine 280 Inspection device 281 Plate thickness measuring device 290 Control device L1 Vertical cut line formed at boundary between glass product portion 11A and ear portion 12A L2 Glass product Vertical cutting line formed on the boundary between the portion 11B and the ear portion 12B L3: Vertical cutting line formed on the boundary between the glass product portion 11A and the central portion 13 L4: on the boundary between the glass product portion 11B and the central portion 13 Longitudinal cutting line to be formed, L5... Horizontal line, L6... Width direction line along which plate thickness is measured by inspection device, E1... One end of glass product part 11A, E2... One end of glass product part 11B

Claims (7)

  1.  幅方向に沿って板厚変化部を備えるガラス素板を、複数の搬送ロールによって搬送しつつ、
     縦切機によって前記ガラス素板の長手方向に縦切線を形成し、
     横切機によって前記ガラス素板の幅方向に横切線を形成し、
     横折機によって前記ガラス素板に曲げ応力を印可することで、前記横切線に沿って前記ガラス素板を切断し、ガラス部材を形成し、
     縦折機によって前記ガラス部材に曲げ応力を印可することで、前記縦切線に沿って前記ガラス部材を切断し、不要部を分断し、楔形のガラス製品部を形成し、
     検査装置によって前記ガラス製品部の管理位置Xにおける楔角を検出し、
     前記管理位置Xにおける前記楔角に基づいて、前記縦切機によって形成される前記縦切線の幅方向の位置を制御することで、
     前記管理位置Xにおける前記楔角を、予め定められた前記管理位置Xにおける理想楔角との差が所定範囲内となるように制御することを特徴とする、楔形ガラスの製造方法。
    While conveying a glass base plate provided with a plate thickness change portion along the width direction by a plurality of conveying rolls,
    Forming a vertical cutting line in the longitudinal direction of the glass base plate with a vertical cutting machine,
    forming a transverse line in the width direction of the glass base plate with a transverse machine;
    applying a bending stress to the glass base plate by a horizontal folding machine to cut the glass base plate along the transverse line to form a glass member;
    By applying a bending stress to the glass member with a vertical folding machine, the glass member is cut along the vertical cutting line, unnecessary portions are divided, and a wedge-shaped glass product portion is formed,
    Detecting the wedge angle at the management position X of the glass product part by an inspection device,
    By controlling the position in the width direction of the vertical cutting line formed by the vertical cutting machine based on the wedge angle at the management position X,
    A method for manufacturing wedge-shaped glass, wherein the wedge angle at the management position X is controlled such that a difference from a predetermined ideal wedge angle at the management position X is within a predetermined range.
  2.  前記管理位置Xにおける前記楔角に基づいて、前記縦折機によって印加される前記曲げ応力の幅方向の位置を制御する、請求項1に記載の楔形ガラスの製造方法。 The method for manufacturing wedge-shaped glass according to claim 1, wherein the position in the width direction of the bending stress applied by the vertical folding machine is controlled based on the wedge angle at the management position X.
  3.  前記搬送ロールの間に前記ガラス製品部と前記不要部を幅方向に分離するためのセパレート装置が配置されており、
     前記管理位置Xにおける前記楔角に基づいて、前記セパレート装置の位置を変化させる、請求項1又は2に記載の楔形ガラスの製造方法。
    A separating device for separating the glass product portion and the unnecessary portion in the width direction is arranged between the transport rolls,
    The method for manufacturing wedge-shaped glass according to claim 1 or 2, wherein the position of the separating device is changed based on the wedge angle at the management position X.
  4.  前記ガラス製品部を搬送しつつ検出した前記管理位置Xにおける前記楔角は、前記ガラス製品部の移動を停止した状態で検出した前記管理位置Xにおける実楔角に対して、プラスマイナス0.1mrad以内である、請求項1から3の何れか一項に記載の楔形ガラスの製造方法。 The wedge angle at the management position X detected while conveying the glass product part is plus or minus 0.1 mrad with respect to the actual wedge angle at the management position X detected while the movement of the glass product part is stopped. 4. The method for producing a wedge-shaped glass according to any one of claims 1 to 3, wherein the thickness is less than or equal to.
  5.  前記ガラス製品部を搬送しつつ検出した前記管理位置Xにおける前記楔角は、前記管理位置Xから幅方向に移動した管理位置Yにおける厚さと、前記管理位置Xから前記管理位置Yと反対の幅方向に移動した管理位置Zにおける厚さと、前記管理位置Yと前記管理位置Zの幅方向の距離から算出され、
     前記管理位置Yと前記管理位置Zの幅方向の距離は、50mm以上250mm以下である請求項1から4の何れか一項に記載の楔形ガラスの製造方法。
    The wedge angle at the management position X detected while conveying the glass product part is the thickness at the management position Y moved in the width direction from the management position X and the width opposite to the management position Y from the management position X. calculated from the thickness at the management position Z moved in the direction and the distance in the width direction between the management position Y and the management position Z,
    The method for manufacturing wedge-shaped glass according to any one of claims 1 to 4, wherein a widthwise distance between the control position Y and the control position Z is 50 mm or more and 250 mm or less.
  6.  前記管理位置Xは、ヘッドアップディスプレイ表示領域内に位置する請求項1から5の何れか一項に記載の楔形ガラスの製造方法。 The method for manufacturing the wedge-shaped glass according to any one of claims 1 to 5, wherein the management position X is positioned within the display area of the head-up display.
  7.  前記ヘッドアップディスプレイ表示領域内における前記楔角は、0.20mrad以上1.50mrad以下に保たれる、請求項6に記載の楔形ガラスの製造方法。 The method for manufacturing wedge-shaped glass according to claim 6, wherein the wedge angle in the display area of the head-up display is maintained at 0.20 mrad or more and 1.50 mrad or less.
PCT/JP2022/039405 2021-11-08 2022-10-21 Production method for wedge-shaped glass WO2023079991A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023557951A JPWO2023079991A1 (en) 2021-11-08 2022-10-21
CN202280073956.7A CN118251369A (en) 2021-11-08 2022-10-21 Wedge-shaped glass manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021182124 2021-11-08
JP2021-182124 2021-11-08

Publications (1)

Publication Number Publication Date
WO2023079991A1 true WO2023079991A1 (en) 2023-05-11

Family

ID=86240942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039405 WO2023079991A1 (en) 2021-11-08 2022-10-21 Production method for wedge-shaped glass

Country Status (3)

Country Link
JP (1) JPWO2023079991A1 (en)
CN (1) CN118251369A (en)
WO (1) WO2023079991A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117650A1 (en) * 2015-01-21 2016-07-28 旭硝子株式会社 Plate glass production method, plate glass, and laminated glass production method
JP3225806U (en) * 2020-01-24 2020-04-02 Agc株式会社 Glass plate manufacturing equipment
JP2020173291A (en) * 2019-04-08 2020-10-22 セントラル硝子株式会社 Glass blank for head-up display glass, manufacturing method therefor, and manufacturing method for head-up display glass
WO2021193647A1 (en) * 2020-03-23 2021-09-30 日本板硝子株式会社 Windshield

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117650A1 (en) * 2015-01-21 2016-07-28 旭硝子株式会社 Plate glass production method, plate glass, and laminated glass production method
JP2020173291A (en) * 2019-04-08 2020-10-22 セントラル硝子株式会社 Glass blank for head-up display glass, manufacturing method therefor, and manufacturing method for head-up display glass
JP3225806U (en) * 2020-01-24 2020-04-02 Agc株式会社 Glass plate manufacturing equipment
WO2021193647A1 (en) * 2020-03-23 2021-09-30 日本板硝子株式会社 Windshield

Also Published As

Publication number Publication date
CN118251369A (en) 2024-06-25
JPWO2023079991A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
US11180405B2 (en) Plate glass production method, plate glass, and laminated glass production method
KR101325662B1 (en) Curved vehicle windshield made from laminated glass
KR101678230B1 (en) Methods for separating glass sheets from continuous glass ribbons
CN102557418B (en) For the method and apparatus of glass-cutting band
EP2331324B1 (en) Pre-shaping of ply of interlayer material and laminated glazing
JP2008019102A (en) Method and apparatus for manufacturing plate glass
JP6884711B2 (en) Continuous processing of flexible glass ribbons to separate and stabilize the ribbons
CN1537247A (en) Shaped interlayer for heads-up display windshields and processes for preparing same
US20080276646A1 (en) Conformable nosing device for reducing motion and stress within a glass sheet while manufacturing the glass sheet
KR20120021292A (en) Apparatus and method for making glass sheet with improved sheet stability
KR20090028791A (en) Methods and apparatus for reducing stress variations in glass sheets produced from a glass ribbon
JP2004517023A (en) Method for cutting edge of continuous glass ribbon, apparatus for performing the method, and glass plate cut using the method
KR20150087277A (en) Separation apparatuses and methods for separating glass sheets from glass ribbons
TWI624437B (en) Glass sheet scoring machine and method for removing beads from a glass sheet
KR101667448B1 (en) Glass sheet scoring apparatus and method
US20170291842A1 (en) Laminated glazing
CN105793204A (en) Method and device for producing glass plate
WO2023079991A1 (en) Production method for wedge-shaped glass
CN214528714U (en) Glass plate manufacturing device
KR100754286B1 (en) Method for cutting a continuous glass sheet during the production of flat glass
JP2020173291A (en) Glass blank for head-up display glass, manufacturing method therefor, and manufacturing method for head-up display glass
WO2013108472A1 (en) Device for machining cutting plane line of glass plate, and method for machining on cutting plane line
WO2023032849A1 (en) Method for manufacturing plate glass, method for manufacturing wedge-shaped glass, and method for manufacturing laminated glass
CN214654469U (en) Glass plate manufacturing device
JP2801514B2 (en) Plate-like body positioning method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023557951

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280073956.7

Country of ref document: CN