WO2023032849A1 - Method for manufacturing plate glass, method for manufacturing wedge-shaped glass, and method for manufacturing laminated glass - Google Patents

Method for manufacturing plate glass, method for manufacturing wedge-shaped glass, and method for manufacturing laminated glass Download PDF

Info

Publication number
WO2023032849A1
WO2023032849A1 PCT/JP2022/032224 JP2022032224W WO2023032849A1 WO 2023032849 A1 WO2023032849 A1 WO 2023032849A1 JP 2022032224 W JP2022032224 W JP 2022032224W WO 2023032849 A1 WO2023032849 A1 WO 2023032849A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
molten metal
glass ribbon
width direction
wedge
Prior art date
Application number
PCT/JP2022/032224
Other languages
French (fr)
Japanese (ja)
Inventor
淳 野田
恵輔 浅沼
陽 中原
達郎 中島
拓哉 河村
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202280058507.5A priority Critical patent/CN117881637A/en
Priority to JP2023545528A priority patent/JPWO2023032849A1/ja
Publication of WO2023032849A1 publication Critical patent/WO2023032849A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/16Construction of the float tank; Use of material for the float tank; Coating or protection of the tank wall
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/18Controlling or regulating the temperature of the float bath; Composition or purification of the float bath

Definitions

  • the present invention relates to a method for manufacturing sheet glass, a method for manufacturing wedge-shaped glass, and a method for manufacturing laminated glass.
  • the present invention relates to a method for manufacturing sheet glass having a convex cross section in the width direction perpendicular to the traveling direction of the glass ribbon (the central portion in the width direction is thicker than both ends in the width direction).
  • the thickness of plate glass manufactured by the float method is usually constant.
  • a head-up display hereinafter also referred to as HUD
  • the thickness is not constant in order to prevent double images when viewed from the driver.
  • No glass is desired. Therefore, a method for manufacturing sheet glass having a concave, convex, or tapered cross section in the width direction (hereinafter sometimes simply referred to as the width direction) perpendicular to the traveling direction of the glass ribbon has been studied (for example, patent References 1 and 2).
  • Patent Literature 1 discloses that a wedge-shaped glass is obtained by cutting a sheet glass having a convex cross-sectional shape in which the center portion in the width direction is thicker than the both end portions in the width direction.
  • a molten metal bath usually comprises an upstream wall, a downstream wall and two side walls. Each sidewall may be provided with a shoulder that reduces the width of the molten metal bath in the direction of travel of the glass ribbon to reduce the amount of molten metal in the bath.
  • the surface of the molten metal may flow in a direction opposite to the direction in which the glass ribbon travels, in areas not covered with the glass ribbon. Due to this reverse flow, it is sometimes observed that the glass ribbon on the surface of the molten metal advances while reciprocating (swinging) in the width direction.
  • Patent Document 1 when producing plate glass having a convex cross-section, the temperature at the center in the width direction of the glass ribbon is set lower than in the case of producing plate glass with a constant thickness, so the glass The ribbon becomes more viscous (the glass ribbon becomes harder), and is easily affected by the flow in the opposite direction, and the glass ribbon tends to swing. Then, as in Patent Document 1, when trying to manufacture wedge-shaped glass by cutting a plate glass having a convex cross-section, the position where the plate glass is cut is usually a fixed position, so if the swing occurs, the wedge-shaped glass is cut. The wedge angle of the glass varies from product to product.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing plate glass that can suppress reciprocating movement (swing) in the width direction of the glass ribbon. Furthermore, it aims at providing the manufacturing method of the wedge-shaped glass and laminated glass which can suppress the variation of the wedge angle of the wedge-shaped glass obtained by cutting the said plate glass.
  • the glass having a convex shape means a glass ribbon in which the central portion in the width direction of the glass ribbon is thicker than both ends in the width direction, or plate glass obtained from the glass ribbon.
  • a manufacturing method comprising: the molten metal bath comprises an upstream wall, a downstream wall and two side walls; each of the two sidewalls includes a shoulder that reduces the width of the molten metal bath in the direction of travel of the glass ribbon; A ratio W/N between the distance W between the two side walls in the region upstream of the shoulder of the molten metal bath and the distance N between the two side walls in the region downstream of the shoulder of the molten metal bath more than 1.0 and 1.6 or less, A method for producing sheet glass, wherein the width direction both ends of the glass ribbon are heated more strongly than the width direction center portion of the glass ribbon in the upstream region of the molten metal bath, thereby producing a sheet glass that is thicker at the width direction center portion than at both end portions. .
  • the viscosity of the central portion in the width direction of the glass ribbon on the surface of the molten metal is 10 ⁇ (4.5 )
  • the viscosity of the central portion in the width direction of the glass ribbon on the surface of the molten metal is 10 ⁇ (6.0 ) (dPa ⁇ sec) or less, the method for producing sheet glass according to [1] or [2], wherein the glass ribbon is heated.
  • the viscosity of the central portion in the width direction of the glass ribbon on the surface of the molten metal is 10 ⁇ (4.7 )
  • the viscosity of the central portion in the width direction of the glass ribbon on the surface of the molten metal is 10 ⁇ (6.3 )
  • the ratio of the maximum width in the width direction of the glass ribbon in the molten metal bath to the length in the width direction of the glass ribbon at the most downstream side of the molten metal bath is 1.4 to 2.2. ] to [6], the method for producing a plate glass.
  • the length A of the glass ribbon in the width direction and the molten metal surface not covered with the glass ribbon at a position 20% from the upstream wall with respect to the length from the upstream wall to the downstream wall The method for producing sheet glass according to any one of [1] to [8], wherein the ratio A/B of the length B in the width direction of is 4 to 11.
  • a method for producing wedge-shaped glass comprising cutting the plate glass obtained by the method for producing plate glass according to any one of [1] to [9] to obtain wedge-shaped glass.
  • the wedge-shaped glass has at least one convex surface, On a line segment passing through the center of gravity G of the convex surface and connecting two opposite sides of the four sides of the convex surface at the shortest distance, among intersections of the line segment and the sides of the convex surface, the wedge-shaped glass is positioned horizontally.
  • the first point is the point where the thickness of the wedge-shaped glass is smaller in the vertical direction when the glass is placed at If a point on the convex surface located at is the second point, a straight line connecting the first point and the second point forms an angle of 0.020° to 0.050° with the horizontal plane.
  • a method for producing a wedge-shaped glass according to [10]. [12] The method for producing wedge-shaped glass according to [10] or [11], wherein the ratio T/M between the maximum value T and the minimum value M of the thickness of the wedge-shaped glass is 1.10 to 1.40.
  • Wedge-shaped glass is obtained by cutting the sheet glass obtained by the method for producing sheet glass according to any one of [1] to [9], laminating and crimping the wedge-shaped glass and another plate glass via an intermediate film; A method for producing laminated glass.
  • the other sheet glass is the wedge-shaped glass, [13] The method for manufacturing a laminated glass.
  • the other sheet glass is a sheet glass having a constant thickness. [14] The method for producing a laminated glass.
  • a method for manufacturing plate glass can be provided that can suppress the reciprocating movement of the glass ribbon in the width direction. Furthermore, it is possible to provide a method for manufacturing wedge-shaped glass and laminated glass, which can suppress variations in the wedge angle of the wedge-shaped glass obtained by cutting the sheet glass.
  • FIG. 1(A) is a view of the glass manufacturing apparatus viewed from the width direction
  • FIG. 1(B) is a view of the glass manufacturing apparatus viewed from the thickness direction
  • FIG. 2A is a cross-sectional view in the width direction of the glass manufactured by the manufacturing method of one embodiment of the present invention
  • FIG. It is a wedge-shaped glass obtained by 3(A) is a plan view of the windshield
  • FIG. 3(B) is a BB cross-sectional view of the windshield of FIG. 3(A)
  • FIG. ) is a cross-sectional view of the windshield of FIG.
  • FIG. 4 is an enlarged view of the top roll.
  • 5A and 5B are views showing a plate glass according to one embodiment of the present invention, FIG. 5A being a plan view and FIG. 5B being a cross-sectional view in the width direction.
  • the glass manufacturing apparatus 1 includes a melting section 10, a forming section 20, and a slow cooling section 30.
  • the X direction in the drawing is the traveling direction of the glass ribbon G2
  • X1 is the upstream direction of the glass ribbon G2
  • the X2 direction is the downstream direction of the glass ribbon G2.
  • the Y direction in the drawing is the direction orthogonal to the traveling direction X of the glass ribbon G2, and is the width direction of the glass ribbon G2.
  • the Z direction in the figure is the direction orthogonal to the traveling direction X and the width direction Y of the glass ribbon G2 (that is, the thickness direction of the glass ribbon G2), the Z1 direction is upward, and the Z2 direction is downward.
  • 1A is a view of the glass manufacturing apparatus 1 viewed from the width direction Y
  • FIG. 1B is a view of the glass manufacturing apparatus 1 viewed from the thickness direction Z.
  • the melting section 10 includes a melting kiln 11, a twill 12, and a lip 13.
  • the frit is melted into the molten glass G1 in the melting furnace 11, and the molten glass is supplied to the forming section 20 by moving the tweel 12 in the vertical direction Z with respect to the lip 13, which is the flow path of the molten glass G1. Adjust the amount of glass G1.
  • the forming section 20 includes a molten metal bath (float bath) 21, a molten metal 22 stored in the molten metal bath 21, a plurality of top rolls 23, and a heater 24.
  • the molten glass G1 continuously supplied from the melting section 10 is gradually cooled while being flowed in the traveling direction X, and shaped into a glass ribbon G2. That is, the molten glass G1 is poured out in the form of a glass ribbon onto the molten metal surface of the molten metal bath 21 (on the surface of the molten metal 22), and floats on the molten metal surface in the traveling direction X (downstream direction X2).
  • the glass ribbon G2 is formed by moving forward toward the glass ribbon G2.
  • a molten metal 22 such as tin is stored in the molten metal bath 21 .
  • Molten glass G1 is continuously fed onto the surface of molten metal 22 via tweel 12 and lip 13 .
  • the molten metal bath 21 has an upstream wall 25 arranged on the upstream side, a downstream wall 26 arranged on the downstream side, and two side walls 27 , 27 connecting the upstream wall 25 and the downstream wall 26 .
  • the two side walls 27, 27 each comprise a shoulder 27A which reduces the width (dimension in the width direction Y) of the molten metal bath 21 in the direction X of travel of the glass ribbon G2. That is, the side wall 27 includes a first wall 27B that connects to the upstream wall 25 and extends linearly in the downstream direction X2, and a first wall 27B that connects to the first wall 27B and extends inward in the width direction Y (the glass ribbon G2) in the downstream direction X2. and a second wall 27C connected to the shoulder 27A and linearly extending in the downstream direction X2.
  • the distance W between the two side walls 27, 27 (the distance between the two first walls 27B, 27B) in the region upstream of the shoulder 27A of the molten metal bath 21 and the distance W in the region downstream of the shoulder 27A of the molten metal bath 21
  • the ratio W/N of the distance N between the two side walls 27, 27 (the distance between the two second walls 27C, 27C) is set to more than 1.0 and 1.6 or less (1.0 ⁇ W/ N ⁇ 1.6).
  • the area of the portion where the molten metal 22 is not covered with the glass ribbon G2 in the upstream region of the shoulder 27A tends to increase, and therefore the width direction Y of the glass ribbon G2 is greater than when manufacturing a glass plate with a constant thickness. Reciprocating motion (swing) to and from is likely to occur. If the ratio W/N is 1.6 or less, the area of the portion where the molten metal 22 is not covered with the glass ribbon G2 in the upstream region from the shoulder 27A is reduced, so the reciprocating motion (swing) of the glass ribbon G2 is particularly affected.
  • the flow of the molten metal 22 in the upstream direction X1, which has an influence, is less likely to occur, and the reciprocating movement (swing) of the glass ribbon G2 in the width direction Y is less likely to occur when manufacturing the wedge glass. If the ratio W/N is greater than 1.0, the distance between the two side walls 27, 27 in the region downstream of the shoulder 27A can be narrowed, and the amount of molten metal 22 in the molten metal bath 21 can be reduced.
  • the position where the first wall 27B and the shoulder 27A are connected is 60% to 75% of the length L from the upstream wall 25 to the downstream wall 26 (see FIG. 1B) from the upstream wall 25 ( 0.60L to 0.75L from the upstream wall 25 in the downstream direction X2). If the position where the first wall 27B and the shoulder 27A are connected is 60% to 75% from the upstream wall 25, the molten metal 22 upstream of the shoulder 27A is covered with the glass ribbon G2 when manufacturing the wedge glass. A sufficient forming area for the glass ribbon can be ensured even when the glass having a constant thickness is produced without the area of the portion not being formed becoming too large.
  • the position where the first wall 27B and the shoulder 27A are connected is preferably 60% or more from the upstream wall 25, more preferably 62% or more.
  • the position where the first wall 27B and the shoulder 27A are connected is preferably 75% or less, more preferably 70% or less, even more preferably 67% or less, and particularly preferably 65% or less from the upstream wall 25 .
  • the position where the shoulder 27A and the second wall 27C are connected is 65% to 85% of the length L from the upstream wall 25 to the downstream wall 26 (see FIG. 1B) from the upstream wall 25 ( 0.65L to 0.85L from the upstream wall 25 in the downstream direction X2). If the position where the shoulder 27A and the second wall 27C are connected is 65% to 85% from the upstream wall 25, the molten metal 22 upstream of the shoulder 27A is covered with the glass ribbon G2 when manufacturing the wedge glass. The area of the part that is not covered should not be too large. In addition, a sufficient molding area can be secured even when manufacturing glass with a constant thickness.
  • the position where the shoulder 27A and the second wall 27C are connected is preferably 65% or more from the upstream wall 25, more preferably 67% or more.
  • the position where the shoulder 27A and the second wall 27C are connected is preferably 85% or less, more preferably 80% or less, even more preferably 76% or less, and particularly preferably 70% or less from the upstream wall 25.
  • a plurality of top rolls 23 are placed on the upper surfaces of both widthwise end portions G2B, G2B of the glass ribbon G2. That is, the plurality of top rolls 23 are in contact with the widthwise end portions G2B, G2B of the glass ribbon G2. In order to adjust the thickness of the glass ribbon G2, the peripheral speed of each top roll 23 is adjusted.
  • the heater 24 is arranged above the molten metal bath 21 Z1.
  • the heaters 24 include, for example, a central heater 24A that heats the widthwise central portion G2A of the glass ribbon G2, a pair of end heaters 24B, 24B that heat both widthwise ends G2B, G2B in the width direction of the glass ribbon G2, divided into
  • the center heater 24A and/or the end heaters 24B may be further divided in the traveling direction X and/or the width direction Y, in which case the temperature of the glass ribbon G2 is easily adjusted.
  • two heaters 24 are arranged in the traveling direction X, divided into an upstream area from the shoulder 27A, an area including the shoulder 27A, and a downstream area from the shoulder 27A.
  • the width of the heater 24 on the downstream side is set shorter than the width of the heater 24 on the upstream side in accordance with the relationship between the distance W and the distance N.
  • the slow cooling section 30 includes a slow cooling chamber 31 and transport rolls 32 .
  • the glass ribbon G ⁇ b>2 molded in the molding section 20 is slowly cooled while being continuously transported by the transport rolls 32 arranged in the slow cooling chamber 31 . Further, by adjusting the peripheral speed of the transport roll 32, the traveling speed of the glass ribbon G2 in the forming section 20 and the slow cooling section 30 can be adjusted.
  • the top roll 23 was placed on the upper surface of both width direction end portions G2B and G2B of the glass ribbon G2 in the molding portion 20, the portions of the width direction end portions G2B and G2B of the glass ribbon G2 on which the top roll 23 was placed Distortion occurs in the vicinity.
  • the glass ribbon G2 is pulled out from the slow cooling section 30, and both ends of the glass ribbon G2 distorted by the top roll 23 are cut and removed by a cutting machine. Glass, which is a product, is obtained by cutting.
  • the glass manufactured by the manufacturing method that is, the float plate glass manufacturing method according to one embodiment of the present invention will be described.
  • FIG. 2A is a cross-sectional view in the width direction of glass manufactured by a manufacturing method according to an embodiment of the present invention
  • FIG. It is a wedge-shaped glass obtained by FIG. 3A is a plan view of a windshield using glass manufactured by a manufacturing method according to an embodiment of the present invention
  • FIG. 3(C) is a cross-sectional view of the windshield of FIG. 3(A) taken along line CC of FIG. 3(A).
  • the plate glass manufactured by the manufacturing method according to one embodiment of the present invention is a convex glass 100 that becomes thicker from both ends in the width direction Y toward the center, as shown in FIG. 2(A).
  • a predetermined position for example, portion A in FIG. 2(A)
  • wedge-shaped glass 200 whose other end is thicker than one end in the width direction Y as shown in FIG. 2(B) can be obtained.
  • the wedge-shaped glass 200 obtained by cutting the convex glass 100 (plate glass) formed from the glass ribbon G2.
  • variation in the wedge angle ⁇ can be suppressed.
  • the convex glass 100 only needs to be thicker from both ends toward the center in the width direction Y, and both surfaces may be convex, one surface being flat and the other surface being convex. There may be.
  • the wedge-shaped glass 200 is preferably used for windshields 300, 400 of automobiles having a HUD, as shown in FIGS. 3(A) to 3(C), for example.
  • a double image is generated when viewed from the driver without using a special intermediate film (for example, an intermediate film having a wedge-shaped cross section). can be suppressed.
  • the application of the wedge-shaped glass 200 is not limited to the windshield of an automobile, but may be the window glass of a train, or the windshield for guarding the front of the driver of a motorcycle. It may be glass. Further, the application of the wedge-shaped glass 200 is not limited to information display glass for vehicles, and can be used for various other information display glasses. Furthermore, it can be used in various devices that utilize continuous changes in transmission characteristics for purposes other than information display.
  • the windshield 300 shown in FIG. 3(B) is a laminated glass manufactured by sandwiching an intermediate film 303 between a wedge-shaped glass 301 and a wedge-shaped glass 302 and laminating and press-bonding them.
  • one of the two glasses to be combined may be a glass of constant thickness.
  • the windshield 400 is a laminated glass manufactured by sandwiching an intermediate film 403 between a wedge-shaped glass 401 and a glass 402 having a constant thickness, and laminating and press-bonding them.
  • the glass is melted in the melting section 10.
  • a glass ribbon G2 formed by continuously supplying the molten glass G1 onto the molten metal 22 is heated in the upstream region of the molten metal bath 21 at both widthwise end portions G2B and G2B more strongly than the widthwise central portion G2A.
  • the viscosity of the width direction end portions G2B and G2B of the glass ribbon G2 is less likely to rise than the width direction center portion G2A. .
  • the width direction end portions G2B, G2B of the glass ribbon G2 are likely to be thin, and the width direction center portion G2A is likely to be thick.
  • the center heater 24A arranged at the center in the width direction in the upstream area of the molten metal bath 21 is not substantially used, Heating is preferably performed only by the end heaters 24B arranged at both ends in the direction.
  • the “upstream region” means the upstream 70% range near the melting furnace 11 in the molten metal bath 21 .
  • substantially not using the central heater 24A means that the output of the central heater 24A is less than 1 kw/m2.
  • the viscosity of the width direction both end portions G2B, G2B of the glass ribbon is less likely to increase than the width direction center portion G2A.
  • the widthwise end portions G2B, G2B are thin, and the widthwise central portion G2A tends to be thick.
  • the output of the center heater 24A may be 0 kw/ m2 . Moreover, you may cool the width direction center part G2A.
  • the central heater 24A may heat the glass ribbon width direction central portion G2A.
  • the cooling rate of the width direction end portions G2B, G2B is 6.1°C/m or less.
  • the “cooling rate” represents the amount of decrease in temperature when the glass ribbon G2 advances 1 m in the traveling direction X in the molten metal bath 21 . If the cooling rate of the widthwise end portions G2B, G2B of the glass ribbon G2 is 6.1° C./m or less, the viscosity of the widthwise end portions G2B, G2B is less likely to increase, and the widthwise end portions G2B, G2B are thin. , the widthwise central portion G2A tends to be thick.
  • the cooling rate of the widthwise end portions G2B, G2B is more preferably 6.0° C./m or less, further preferably 5.9° C./m or less.
  • the end when describing the cooling rate of the end of the glass ribbon G2 in the width direction, the end indicates a position 50 mm from the end of the glass ribbon G2 to the center in the width direction.
  • both ends G2B, G2B in the width direction of the glass ribbon G2 it is preferable to heat both ends G2B, G2B in the width direction of the glass ribbon G2 so that the cooling rate is 3.0°C/m or more. If the cooling rate of the widthwise end portions G2B, G2B is 3.0° C./m or more, the glass ribbon G2 is sufficiently cooled easily.
  • the cooling rate of both ends G2B, G2B in the width direction may be 4.0° C./m or more, or may be 5.0° C./m or more.
  • the cooling rate of the widthwise end portions G2B, G2B of the glass ribbon G2 is slower than the cooling rate of the widthwise central portion G2A of the glass ribbon G2. If the cooling rate of the width direction both ends G2B, G2B is slower than the cooling rate of the width direction center part G2A, the viscosity of both ends becomes difficult to increase, the width direction both ends G2B, G2B are thin, and the width direction center part G2A is thin. tends to be thick.
  • the cooling rate of the widthwise end portions G2B, G2B of the glass ribbon G2 is slower than the cooling rate of the widthwise central portion G2A of the glass ribbon G2 by 0.3°C/m or more. If the rate is slower by 0.3° C./m or more, the viscosity at both ends G2B and G2B in the width direction is less likely to increase, and both ends G2B and G2B in the width direction tend to be thinner and the central portion G2A in the width direction tends to be thicker.
  • the cooling rate of the widthwise end portions G2B, G2B may be slower than the cooling rate of the widthwise central portion G2A by 0.4° C./m or more, or may be slower by 0.5° C./m or more.
  • the distance between the position where the viscosity of the glass ribbon G2 on both width direction ends G2B, G2B on the surface of the molten metal is 10 4.9 (dPa ⁇ sec) and the position where the viscosity is 10 6.1 (dPa ⁇ sec) is , 15 m or more. If it is 15 m or more, the viscosity of the widthwise end portions G2B, G2B is less likely to increase, the widthwise end portions G2B, G2B tend to be thin, and the widthwise center portion G2A tends to be thick.
  • the distance is more preferably 16 m or longer, and even more preferably 16.5 m or longer.
  • the viscosity of the glass ribbon G2 is calculated by measuring the temperature of the glass ribbon G2 with a radiation thermometer and using the viscosity curve (Fulcher formula) of the glass from the measured temperature.
  • the end indicates a position 50 mm from the end of the glass ribbon G2 to the center in the width direction, as described above.
  • the distance between the position where the viscosity of the glass ribbon G2 in the width direction both ends G2B, G2B on the surface of the molten metal is 10 4.9 (dPa ⁇ sec) and the position where the viscosity is 10 6.1 (dPa ⁇ sec) is , 30 m or less. If it is 30 m or less, the glass ribbon will be sufficiently cooled easily.
  • the distance may be 25m or less, or may be 20m or less.
  • a top roll 23 is placed on the upper surface of the width direction end portions G2B, G2B of the glass ribbon G2 heated by the heater 24, and the glass ribbon is formed into a desired width, thickness and shape by the action of the top roll 23. to mold.
  • the circumferential speed of each top roll 23 is adjusted so that the speed of the top roll 23 becomes faster as it is located on the downstream side.
  • the peripheral speed when manufacturing the convex glass 100 is such that the peripheral speed of the upstream top roll 23A in the traveling direction X of the glass ribbon G2 is slower than the peripheral speed of the downstream top roll 23B. 23 is preferably rotated.
  • the viscosity of the width direction both end portions G2B, G2B of the glass ribbon is less likely to rise than the width direction center portion G2A.
  • the widthwise end portions G2B, G2B of the glass ribbon G2 can be made thinner, and the widthwise central portion G2A can be made thicker.
  • the upstream top roll 23A refers to the top roll 23 closer to the melting kiln 11 among a plurality of pairs of top rolls 23 arranged at both ends G2B, G2B in the width direction of the glass ribbon G2 traveling in the molten metal bath 21. , may be only one pair closest to the melting kiln 11, two pairs close to the melting kiln 11, or three pairs. Two pairs are preferred. In particular, the pair of top rolls 23 closest to the melting kiln 11 is called the most upstream top roll 23A.
  • the downstream top roll 23B refers to the top roll closest to the slow cooling chamber 31 among the top rolls 23, and may be only one pair closest to the slow cooling chamber 31, or two pairs close to the slow cooling chamber 31. , may be three pairs. In particular, the pair of top rolls 23 closest to the slow cooling chamber 31 is called the most downstream top roll 23B. 1A and 1B show two pairs of upstream top rolls 23A and two pairs of downstream top rolls 23B.
  • FIGS. 1A and 1B show an example in which nine pairs of top rolls 23 are arranged at both ends G2B and G2B in the width direction of the glass ribbon G2.
  • the width direction end portions G2B, G2B of the glass ribbon G2 on the molten metal surface is 10 5.3 (dPa ⁇ sec) or less (hereinafter referred to as a low viscosity region)
  • the width direction end portions G2B, The top rolls 23 arranged in G2B may be 8 pairs or less, 7 pairs or less, 6 pairs or less, 5 pairs or less, or 3 pairs or less. There may be.
  • the width direction end portions G2B, G2B of the glass ribbon G2 on the surface of the molten metal exceeds 10 5.3 (dPa ⁇ sec)
  • the width direction end portions G2B, The top rolls 23 arranged in G2B may be 10 pairs or less, 8 pairs or less, 6 pairs or less, 4 pairs or less, or 2 pairs or less. There may be one pair or less.
  • the upstream top roll 23A may be arranged in the low viscosity region, and the downstream top roll 23B may be arranged in the high viscosity region.
  • the difference in circumferential speed between at least one pair of adjacent top rolls 23, 23 is preferably 35 (m/hour) or more. If it is 35 (m/h) or more, the glass ribbon G2 is pulled in the downstream direction X2 in the region where the viscosity of the glass ribbon G2 is 10 5.3 (dPa ⁇ sec) or less, and the width direction both ends G2B, G2B can be made thinner. As a result, the widthwise end portions G2B and G2B are thin, and the widthwise center portion G2A is thick, so that the sheet glass having a convex cross section in the widthwise direction Y is manufactured.
  • At least one set of top rolls 23, 23 may be 40 (m/h) or more, 45 (m/h) or more, or 50 (m/h) or more.
  • the difference in peripheral speed between at least one pair of top rolls 23, 23 adjacent to each other in X is preferably 100 (m/hour) or less. If it is 100 (m/h) or less, it is easy to adjust the thickness of the glass ribbon G2. It may be 80 (m/h) or less, or 60 (m/h) or less.
  • the peripheral speed R of the most upstream top roll 23A is preferably 120 (m/h) or less. If it is 120 (m/h) or less, the width of the glass ribbon G2 that spreads to both sides of the rotating shaft of the pair of top rolls 23A on the most upstream side can be widened. As a result, the widthwise end portions G2B, G2B of the glass ribbon G2 tend to be thin, and the widthwise central portion G2A tends to be thick.
  • the peripheral speed R of the most upstream top roll 23A may be 110 (m/h) or less, 100 (m/h) or less, or 90 (m/h) or less. , 80 (m/h) or less, 70 (m/h) or less, or 60 (m/h) or less.
  • the peripheral speed R of the most upstream top roll 23A is preferably 30 (m/h) or more. If it is 30 (m/hour) or more, it is easy to adjust the thickness of the glass ribbon G2.
  • the peripheral speed R of the most upstream top roll 23A may be 40 (m/hour) or more, or may be 50 (m/hour) or more.
  • FIG. 4 is an enlarged view of the top roll 23.
  • FIG. 4 in order to adjust the thickness of the glass ribbon G2, the angle D between the traveling direction X of the glass ribbon G2 and the rotation axis direction J of the top roll 23 may be adjusted.
  • the angle D of the most upstream top roll 23A is more preferably 80° to 85°, more preferably 81° to 84°.
  • the angle D of the most downstream top roll 23B is more preferably 95° to 100°, more preferably 96 to 99°.
  • the traveling speed of the glass ribbon G2 in the molding section 20 and the slow cooling section 30 may be 200 to 1500 (m/hour). By setting the traveling speed of the glass ribbon G2 in the molding section 20 and the slow cooling section 30 to 200 to 1500 (m/h), it becomes easy to spread the glass ribbon G2 in the width direction Y upstream of the molten metal bath 21. , the width direction end portions G2B, G2B of the glass ribbon G2 can be easily reduced in thickness.
  • the traveling speed of G2 of the glass ribbon may be 500 (m/h) or more, 600 (m/h) or more, or 700 (m/h) or more. On the other hand, the traveling speed of G2 of the glass ribbon may be 1300 (m/h) or less, 1100 (m/h) or less, or 900 (m/h) or less.
  • the difference (TM) between the maximum value T and the minimum value M of the thickness of the plate glass manufactured by the manufacturing method according to one embodiment of the present invention is preferably 0.1 mm or more. If the difference (TM) is 0.1 mm or more, it is possible to reduce the occurrence of double images when used as information display glass even when the glass is installed in a vehicle with a large angle of the windshield with respect to the horizontal plane. .
  • the difference (TM) between the maximum value T and the minimum value M of the thickness of the plate glass is obtained by cutting both ends in the width direction Y of the glass ribbon G2 distorted by the top roll 23 with a cutting machine. It is the difference between the maximum and minimum values of the thickness of the convex glass 100 obtained by removing the convex glass.
  • the difference (TM) may be 0.2 mm or more, 0.3 mm or more, 0.4 mm or more, or 0.5 mm or more.
  • the difference (TM) may be 1.5 mm or less. If the thickness is 1.5 mm or less, distortion of a reflected image can be suppressed when the glass is used as information display glass even if the glass is installed in a vehicle with a small angle of the windshield with respect to the horizontal plane.
  • the difference (TM) may be 1.3 mm or less, 1.2 mm or less, 1.1 mm or less, or 1.0 mm or less.
  • the maximum value T and the minimum value of the optimum thickness of the plate glass are determined depending on the angle at which the windshield is attached and the angle and position at which the irradiator for displaying information is attached.
  • the difference (TM) from M is selected.
  • the maximum height Rz of the roughness curve at the standard length of 25 mm specified in JIS B 0601:2001 on the main surface of the sheet glass is 0.3 ⁇ m or less.
  • the Rz of the main surface of the plate glass is 0.3 ⁇ m or less, for example, when the plate glass is used as information display glass, the scenery seen through the glass can be viewed without distortion. In addition, the reflected image is less likely to be distorted when information is displayed on the plate glass.
  • the roughness curve is represented by a shape waveform.
  • Rz is more preferably 0.25 ⁇ m or less, still more preferably 0.2 ⁇ m or less, particularly preferably 0.18 ⁇ m or less, and most preferably 0.16 ⁇ m or less.
  • the Rz of the main surface of the sheet glass can be reduced by slowing down the traveling speed V of the glass ribbon G2 in the slow cooling section 30 .
  • the plate glass main surface means the surface where the glass ribbon G2 was in contact with the molten metal 22 in the molten metal bath 21 (hereinafter referred to as the molten metal contact surface), and the molten metal 22 facing the molten metal contact surface. This is the surface that was not in contact (hereinafter referred to as the molten metal non-contact surface).
  • the distance W between the two side walls 27, 27 (the distance between the two first walls 27B, 27B) in the upstream region of the shoulder 27A of the molten metal bath 21 and the distance W between the two first walls 27B, 27B
  • the ratio W/N of the distance N between the two side walls 27, 27 (the distance between the two second walls 27C, 27C) in the downstream region of the shoulder 27A of 21 is more than 1.0 and 1.6 or less. is preferred (1.0 ⁇ W/N ⁇ 1.6). If W/N is 1.6 or less, the area of the portion where the molten metal 22 is not covered with the glass ribbon G2 in the upstream region from the shoulder 27A decreases, so that the molten metal 22 flows in the upstream direction X1.
  • the ratio W/N exceeds 1.0, the distance between the two side walls 27, 27 in the downstream region from the shoulder 27A can be narrowed, and the amount of molten metal 22 in the molten metal bath 21 can be reduced.
  • the ratio W/N is more preferably 1.1 or more, even more preferably 1.3 or more. Moreover, the W/N is more preferably 1.55 or less, and even more preferably 1.50 or less.
  • the molten metal It is preferable that the glass ribbon G2 is heated by the heater 24 so that the viscosity of the central portion G2A in the width direction of the glass ribbon G2 on the surface becomes 10 ⁇ (4.5) (dPa ⁇ sec) or more. If the viscosity of the widthwise central portion G2A is 10 ⁇ (4.5) (dPa ⁇ sec) or more, the widthwise end portions G2B, G2B tend to be thin, and the widthwise central portion G2A tends to be thick. Therefore, the wedge angle ⁇ of the wedge-shaped glass 200 (see FIG. 2(B)) obtained by cutting the convex glass 100 (see FIG. 2(A)) obtained by the manufacturing method of the plate glass of the present embodiment is increased. can.
  • the viscosity of the central portion G2A in the width direction of the glass ribbon G2 on the surface of the molten metal at a position 20% from the upstream wall 25 (a position 0.2L in the downstream direction X2 from the upstream wall 25) is 10 ⁇ (5.0). (dPa ⁇ sec) or more is more preferable, and 10 ⁇ (5.3) (dPa ⁇ sec) or more is even more preferable. This is because the temperature of the widthwise central portion G2A of the glass ribbon G2 is relatively lower than the temperatures of the widthwise end portions G2B, G2B, and the wedge angle ⁇ can be increased.
  • the glass ribbon G2 is heated by the heater 24 so that the viscosity of the widthwise central portion G2A of the glass ribbon G2 on the surface becomes 10 ⁇ (6.0) (dPa ⁇ sec) or less. If the viscosity of the glass ribbon G2 is too high, it becomes difficult for the top roll 23 to enter the glass ribbon G2, making it difficult to control the position of the glass ribbon G2. put away. In this embodiment, since the viscosity of the widthwise central portion G2A is 10 ⁇ (6.0) (dPa ⁇ sec) or less, the occurrence of swing can be suppressed.
  • the viscosity of the central portion G2A in the width direction of the glass ribbon G2 on the surface of the molten metal at a position 20% from the upstream wall 25 (a position 0.2L in the downstream direction X2 from the upstream wall 25) is 10 ⁇ (5.8). (dPa ⁇ sec) or less is more preferable, and 10 ⁇ (5.6) (dPa ⁇ sec) or less is even more preferable. This is because the lower the viscosity of the glass ribbon G2, the easier it is for the top roll 23 to enter the glass ribbon G2, thereby suppressing the occurrence of swing.
  • the molten metal It is preferable that the difference (I ⁇ K) between the temperature I of the central portion G2A in the width direction of the glass ribbon G2 on the surface and the temperature K of both ends in the width direction of the molten metal 22 is 62° C. or less. If the temperature difference (I ⁇ K) is 62° C. or less, the difference in viscosity between the width direction end portions and the width direction center portion of the glass ribbon G2 is small, and the width direction end portions G2B and G2B are thin and the width direction is thin. The central portion G2A tends to be thick.
  • the temperature difference (I ⁇ K) is more preferably 50° C. or less, more preferably 40° C. or less.
  • the lower limit of the temperature difference (I ⁇ K) may be 0° C. or higher, 10° C. or higher, or 15° C. or higher in order to suppress excessive output to the heater 24 .
  • the temperature K at both ends in the width direction of the molten metal 22 means the temperature at positions 50 mm from the two side walls 27 of the molten metal bath 21 to the center in the width direction.
  • the molten metal It is preferable that the glass ribbon G2 is heated by the heater 24 so that the viscosity of the central portion G2A in the width direction of the glass ribbon G2 on the surface becomes 10 ⁇ (4.7) (dPa ⁇ sec) or more. If the viscosity of the widthwise central portion G2A is 10 ⁇ (4.7) (dPa ⁇ sec) or more, the widthwise end portions G2B and G2B tend to be thin, and the widthwise central portion G2A tends to be thick. Therefore, the wedge angle ⁇ of the wedge-shaped glass 200 (see FIG. 2(B)) obtained by cutting the convex glass 100 (see FIG. 2(A)) obtained by the manufacturing method of the plate glass of the present embodiment is increased. can.
  • the viscosity of the central portion G2A in the width direction of the glass ribbon G2 on the surface of the molten metal at a position 32% from the upstream wall 25 (a position 0.32L in the downstream direction X2 from the upstream wall 25) is 10 ⁇ (5.0). (dPa ⁇ sec) or more is more preferable, and 10 ⁇ (5.3) (dPa ⁇ sec) or more is even more preferable. This is because the temperature of the widthwise central portion G2A of the glass ribbon G2 is lower than the temperature of the widthwise end portions G2B, G2B, and the wedge angle ⁇ can be increased.
  • the glass ribbon G2 is heated by the heater 24 so that the viscosity of the central portion G2A in the width direction of the glass ribbon G2 on the surface becomes 10 ⁇ (6.3) (dPa ⁇ sec) or less. If the viscosity of the glass ribbon G2 is too high, it becomes difficult for the top roll 23 to enter the glass ribbon G2, making it difficult to control the position of the glass ribbon G2. put away. In this embodiment, since the viscosity of the widthwise central portion G2A is 10 ⁇ (6.3) (dPa ⁇ sec) or less, the occurrence of swing can be suppressed.
  • the viscosity of the central portion G2A in the width direction of the glass ribbon G2 on the surface of the molten metal at a position 32% from the upstream wall 25 (a position 0.32L in the downstream direction X2 from the upstream wall 25) is 10 ⁇ (6.0). (dPa ⁇ sec) or less is more preferable, and 10 ⁇ (5.8) (dPa ⁇ sec) or less is even more preferable. This is because the lower the viscosity of the glass ribbon G2, the easier it is for the top roll 23 to enter the glass ribbon G2, thereby suppressing the occurrence of swing.
  • the maximum width c in the width direction Y of the glass ribbon G2 (located between the upstream wall 25 and the downstream wall 26) in the molten metal bath 21 and the length in the width direction Y of the glass ribbon G2 at the most downstream side of the molten metal bath 21
  • the ratio c/b of b is preferably 1.4 to 2.2 (1.4 ⁇ c/b ⁇ 2.2). If the ratio c/b is 1.4 to 2.2, the area of the portion where the molten metal 22 is not covered with the glass ribbon G2 decreases, so that the molten metal 22 is less likely to flow in the upstream direction X1. , reciprocating movement (swing) in the width direction Y of the glass ribbon G2 is less likely to occur.
  • the ratio c/b is more preferably 1.6 or more, and even more preferably 1.7 or more.
  • the ratio c/b is more preferably 2.1 or less, even more preferably 2.0 or less.
  • the length in the width direction of the glass ribbon G2 in the molten metal bath 21 is obtained from the image obtained by photographing the glass ribbon G2 with a camera and the position of the top roll.
  • the ratio a/b is 1.0 to 1.9, the area of the portion where the molten metal 22 is not covered with the glass ribbon G2 is reduced, so that the molten metal 22 is less likely to flow in the upstream direction X1. , reciprocating movement (swing) in the width direction Y of the glass ribbon G2 is less likely to occur.
  • the ratio a/b is more preferably 1.3 or more, more preferably 1.4 or more.
  • the ratio a/b is more preferably 1.8 or less, even more preferably 1.7 or less, and particularly preferably 1.6 or less.
  • the length B is the length in the width direction Y of the molten metal on both sides in the width direction of the glass ribbon G2 at a position 20% from the upstream wall 25 (a position 0.2L in the downstream direction X2 from the upstream wall 25).
  • the ratio A/B is set to 4 to 11
  • the molten metal 22 is covered with the glass ribbon G2 in a wide range, and the flow of the molten metal 22 in the upstream direction X1 is difficult to occur, and the glass ribbon The reciprocating motion (swing) of G2 in the width direction Y can be suppressed.
  • the length B is determined from an image obtained by photographing the molten metal surface not covered with the glass ribbon G2 with a camera.
  • the ratio A/B is less than 4, the exposed range of the molten metal 22 is widened, and the swing of the glass ribbon G2 tends to occur. Further, when the ratio A/B is greater than 11, the width of the glass ribbon G2 becomes wider than that of the molten metal bath 21, making it difficult to control the width of the glass ribbon G2 with the top roll 23. It is preferable to manage the ratio A/B at 11 or less because it is likely to interfere with members installed at 21 . Also, the ratio A/B is more preferably 5 or more, and even more preferably 5.5 or more. The ratio A/B is more preferably 10 or less, and even more preferably 9 or less.
  • a wedge-shaped glass and a laminated glass are manufactured from the sheet glass manufactured by the method for manufacturing the sheet glass described above.
  • a method for manufacturing wedge-shaped glass and laminated glass according to an embodiment of the present invention will be described with reference to FIGS.
  • a method for manufacturing laminated glass used for windshields of vehicles will be described as an example.
  • a method for manufacturing wedge-shaped glass according to an embodiment of the present invention includes a step of obtaining wedge-shaped glass 200 by cutting convex-shaped glass plate 100 obtained by the method for manufacturing plate glass described above.
  • a method for manufacturing laminated glass according to an embodiment of the present invention includes a step of cutting convex-shaped sheet glass 100 obtained by the method for manufacturing sheet glass described above to obtain wedge-shaped glass 200, and separating wedge-shaped glass 200 from another sheet glass. and a step of stacking and press-bonding via an intermediate film.
  • the convex glass 100 that becomes thicker toward the central portion in the width direction is obtained by the method for manufacturing the sheet glass described above (see FIG. 2(A)).
  • a wedge-shaped glass 200 having a widthwise one end thicker than the other end is obtained (see FIG. 2(B)).
  • the cutting method is not limited, for example, the convex glass 100 is cut out by forming a scribe line in the shape of a window glass with a cutter on the convex glass 100 and breaking it to obtain the wedge-shaped glass 200 .
  • the wedge-shaped glass 200 is chamfered on the periphery.
  • a pair of glass sheets that is, the wedge-shaped glass 200 and another sheet glass are bent by a method such as gravity bending while being superimposed with a release agent interposed therebetween.
  • a pair of plate glasses are bent in a softened state by being heated in a furnace, and then slowly cooled.
  • the bending method is not limited to gravity bending, and a pair of plate glasses may be formed by press bending, or may be bent one by one without overlapping.
  • the wedge-shaped glass 200 and another plate glass are laminated via an intermediate film and pressed together to obtain a laminated glass.
  • the other sheet glass may be wedge-shaped glass 200 or sheet glass with a constant thickness.
  • a plate glass of constant thickness is obtained by a known method and cut by the cutting method described above.
  • the laminated glass 300 (see FIGS. 3A and 3B), in which the other sheet glass is the wedge-shaped glass 200, is installed in a vehicle with a large angle of the windshield with respect to the horizontal plane, and when information is displayed, the reflection Image is less distorted.
  • the laminated glass 400 (see FIG. 3(C)), in which the other sheet glass is a sheet glass with a constant thickness, allows the scenery seen through the windshield to be viewed without distortion.
  • Materials for the intermediate film include, for example, polyvinyl butyral.
  • the pair of glass sheets and the intermediate film are heated and bonded by performing a degassing process to remove the air between the pair of glass sheets and the intermediate film.
  • air can be removed by putting a laminated body of a pair of plate glasses and an intermediate film in a rubber bag and heating it under reduced pressure.
  • the nipper top roll method or the rubber channel method may be used.
  • the laminated body of the pair of plate glasses and the intermediate film is subjected to pressure treatment in an autoclave to heat and bond the pair of plate glasses and the intermediate film.
  • PVB polyvinyl butyral
  • EVA ethylene vinyl acetate
  • FIGS. 5A and 5B are diagrams showing a wedge-shaped glass 500 according to an embodiment of the present invention, FIG. 5A being a plan view and FIG. 5B being a cross-sectional view.
  • the wedge-shaped glass 500 according to one embodiment of the present invention is obtained, for example, by cutting the plate glass obtained by the method for manufacturing the plate glass described above.
  • the cutting method is not limited, for example, the wedge-shaped glass 500 according to one embodiment of the present invention can be obtained by forming a scribe line in the shape of a window glass on the plate glass with a cutter and breaking it.
  • the wedge-shaped glass 500 When the wedge-shaped glass 500 according to one embodiment of the present invention is used as a windshield of a vehicle, the wedge-shaped glass 500 is attached to the vehicle such that the side 502 having the smallest thickness is positioned downward, and the thickness of the windshield is Information is displayed at the lower part of the screen.
  • the wedge-shaped glass 500 is characterized in that at least one main surface is a convex surface 507 . Since the main surface is the convex surface 507, the reflected image is less likely to be distorted when information is displayed on the plate glass. In addition, compared to the case where the main surface is concave, the thickness of the upper part of the windshield where information is not displayed is thinner, the weight of the windshield can be reduced, and the fuel efficiency of the vehicle is improved.
  • the position where the information is displayed on the windshield is not limited to the lower part, and may be the upper part, the left side, the right side, or the center.
  • the plate glass is attached so that the thickness of the position where the information is to be displayed is thin.
  • the thickness of the portion where the information is not displayed can be reduced compared to the case where the main surface is concave, and the weight of the windshield can be reduced.
  • the wedge-shaped glass 500 is preferably rectangular. If the wedge-shaped glass 500 is rectangular, handling such as transportation is easy.
  • the rectangle is not limited to an exact rectangle, and may have curved sides. Further, the angle of the corner is not limited to 90°, and may be 80 to 100°.
  • the wedge-shaped glass 500 may have notches and may have arcuate corners.
  • the wedge-shaped glass 500 has a line segment 503 that passes through the center of gravity G of the convex surface 507 and connects two opposite sides of the four sides 501, 502, 508, and 509 of the convex surface 507 at the shortest distance.
  • the point at which the thickness of the wedge-shaped glass 500 in the vertical direction is smaller when the wedge-shaped glass 500 is placed on a horizontal surface is designated as the first point 504.
  • a second point 506 is a point on the convex surface 507 which is 2/5 of the length of the line segment 503 from the first point 504.
  • the angle ⁇ between the straight line H connecting the point 506 and the horizontal plane is preferably 0.020° to 0.050°.
  • the thickness of the plate glass is determined by, for example, a laser displacement gauge, microgauge, ultrasonic thickness gauge, etc., and the angle ⁇ is calculated from the measured thickness.
  • the angle ⁇ of the wedge-shaped glass 500 is small because the double image of the projected image projected on the windshield is reduced.
  • a large angle ⁇ of the wedge-shaped glass 500 is preferable because the double image of the projected image projected on the windshield is reduced.
  • the wedge-shaped glass 500 has an angle ⁇ of 0.020° or more, so that when the windshield is attached to a vehicle having a large angle with respect to the horizontal plane and information is displayed on the plate glass, double images can be obtained. is reduced.
  • the angle ⁇ may be 0.023° or more, 0.025° or more, 0.030° or more, or 0.033° or more.
  • the angle ⁇ since the angle ⁇ is 0.050° or less, double images are reduced when information is displayed on the plate glass even when the windshield is attached to a vehicle having a small angle with respect to the horizontal plane.
  • the angle ⁇ may be 0.04° or less.
  • the optimum angle ⁇ is selected depending on the angle at which the windshield is attached and the angle and position at which the illuminator for displaying information is attached.
  • the maximum height Rz of the roughness curve at the reference length of 25 mm defined in JIS B 0601:2001 of the main surface of the wedge-shaped glass 500 is 0.3 ⁇ m or less. . Since Rz is 0.3 ⁇ m or less, the scenery seen through the wedge-shaped glass 500 can be seen without distortion. In addition, the reflected image is less likely to be distorted when information is displayed on the plate glass.
  • the difference (TM) between the maximum value T and the minimum value M of the thickness of the wedge-shaped glass 500 is preferably 0.1 mm or more. Since the difference (TM) between the maximum value T and the minimum value M of the thickness of the plate glass is 0.1 mm or more, it is installed in a vehicle where the angle of the windshield with respect to the horizontal plane is large, and when used as information display glass. It is possible to suppress the occurrence of double images.
  • the difference (TM) may be 1.5 mm or less. If it is 1.5 mm or less, it is possible to suppress the occurrence of double images when it is installed in a vehicle in which the angle of the windshield with respect to the horizontal plane is small and used as information display glass.
  • the difference (TM) may be 1.3 mm or less, 1.2 mm or less, 1.1 mm or less, or 1.0 mm or less.
  • the wedge-shaped glass 500 preferably has a ratio T/M between the maximum thickness T and the minimum thickness M of the wedge-shaped glass 500 of 1.10 to 1.40. If the T/M is 1.10 or more, it is possible to suppress the occurrence of a double image when information is displayed on the plate glass by installing the windshield on a vehicle having a large angle with respect to the horizontal plane.
  • the ratio T/M may be 1.12 or more, 1.15 or more, 1.20 or more, or 1.25 or more. Further, if the ratio T/M is 1.40 or less, it is possible to suppress generation of a reflected image when information is displayed on the plate glass even when the windshield is mounted on a vehicle having a small angle with respect to the horizontal plane.
  • the ratio T/M may be 1.35 or less, 1.30 or less, or 1.28 or less.
  • the optimal ratio T/M is selected depending on the angle at which the windshield is installed and the angle and position of the illuminator for displaying information.
  • the wedge-shaped glass 500 preferably has short sides 508 and 509 of 600 mm or more. If it is 600 mm or more, it can be used for large vehicles. Also, it is installed in a vehicle in which the angle of the windshield with respect to the horizontal plane is small.
  • the sheet glass may be 800 mm or more, 1000 mm or more, 1200 mm or more, or 1400 mm or more.
  • Wedge glass 500 can be used to produce laminated glass.
  • a method for manufacturing laminated glass according to an embodiment of the present invention includes a step of cutting sheet glass 100 to obtain wedge-shaped glass.
  • a method for manufacturing laminated glass according to an embodiment of the present invention includes the steps of cutting the sheet glass 100 to obtain wedge-shaped glass, and laminating and press-bonding the wedge-shaped glass and another sheet glass via an intermediate film. .
  • the laminated glass is manufactured through the same steps as in the method for manufacturing laminated glass using the sheet glass manufactured by the above-described method for manufacturing sheet glass.
  • the width direction end portions G2B and G2B are heated more strongly than the width direction center portion G2A of the glass ribbon, and the upstream top roll in the traveling direction F1
  • the plurality of top rolls 23 are rotated so that the peripheral speed of 23A is slower than the peripheral speed of the downstream top roll 23B.
  • the viscosity of the width direction end portions G2B, G2B is less likely to rise than the width direction center portion G2A, and the width of the glass ribbon that spreads to both sides of the rotation axis of the upstream top roll can be widened. It becomes easy to spread the glass ribbon G2 in the width direction upstream of the bath 21, and the thickness of the width direction both end portions G2B and G2B of the glass ribbon G2 can be made thinner, and the width direction central portion G2A can be made thicker.
  • the distance W between the two side walls 27, 27 (the distance between the two first walls 27B, 27B) in the upstream region from the shoulder 27A of the molten metal bath 21 and the downstream region from the shoulder 27A of the molten metal bath 21
  • the ratio W/N between the two side walls 27, 27 (the distance between the two second walls 27C, 27C) is set to more than 1.0 and 1.6 or less, so the molten metal 22 Flow in the upstream direction X1 is less likely to occur, and reciprocating movement (swing) in the width direction Y of the glass ribbon G2 is less likely to occur. Therefore, it is possible to suppress the variation in the wedge angle of the wedge-shaped glass obtained by cutting the plate glass obtained by the manufacturing method of the plate glass of the present embodiment.
  • Example 1-15 the distance W between the two side walls 27, 27 in the upstream region of the shoulder 27A of the molten metal bath 21 (the distance between the two first walls 27B, 27B) and the shoulder 27A of the molten metal bath 21
  • Table 1 shows the distance N between the two side walls 27, 27 (the distance between the two second walls 27C, 27C) and their ratio W/N in the downstream region.
  • Examples 1 to 14 satisfy the above formula "1.0 ⁇ W/N ⁇ 1.6", but Example 15 did not satisfy the above formula.
  • Examples 1 to 15 the position where the first wall 27B and the shoulder 27A are connected is the length L from the upstream wall 25 to the downstream wall 26 (see FIG. 1B), and the distance from the upstream wall 25 to Table 1 It was the position of the ratio shown in . Examples 1-15 met the above condition "60% to 75% from upstream wall 25".
  • Examples 1 to 15 the position where the shoulder 27A and the second wall 27C are connected is the length L from the upstream wall 25 to the downstream wall 26 (see FIG. 1B), and the distance from the upstream wall 25 to the table 1 It was the position of the ratio shown in . Examples 1-15 met the above condition "65% to 85% from upstream wall 25".
  • Example 1 the position of 20% from the upstream wall 25 with respect to the length L from the upstream wall 25 to the downstream wall 26 (see FIG. 1B) (the position of 0.2L in the downstream direction X2 from the upstream wall 25) ) was as shown in Table 1 at the width direction central portion G2A of the glass ribbon G2 on the surface of the molten metal.
  • Examples 1 to 15 satisfied the above condition "viscosity is 10 ⁇ (4.5) (dPa ⁇ sec) or more".
  • Examples 1 to 15 satisfied the above-mentioned condition that the viscosity was 10 ⁇ (6.0) (dPa ⁇ sec) or less.
  • Example 1 to 15 the length L from the upstream wall 25 to the downstream wall 26 (see FIG. 1B) is 32% from the upstream wall 25 (0.32L from the upstream wall 25 in the downstream direction X2). ), the temperature I and the viscosity of the widthwise central portion G2A of the glass ribbon G2 on the molten metal surface were as shown in Table 1. Examples 1 to 15 satisfied the above-mentioned condition "viscosity is 10 ⁇ (4.7) (dPa ⁇ sec) or more". Further, Examples 1 to 15 satisfied the above-mentioned condition that the viscosity was 10 ⁇ (6.3) (dPa ⁇ sec) or less.
  • Example 1 the length L from the upstream wall 25 to the downstream wall 26 (see FIG. 1B) is 32% from the upstream wall 25 (0.32L from the upstream wall 25 in the downstream direction X2). ) was as shown in Table 1. Further, the difference (I ⁇ K) between temperature I and temperature K was as shown in Table 1. Examples 1 to 14 satisfied the above condition "(IK) is 62° C. or less".
  • Table 1 shows the maximum width c in the width direction Y of the glass ribbon G2 in the molten metal bath 21, the width b at the most downstream side, and their ratio c/b. Examples 1 to 14 satisfied the above condition "1.4 ⁇ c/b ⁇ 2.2".
  • Examples 1 to 14 the width a of the glass ribbon G2 at a position 35% from the upstream wall 25 with respect to the length L from the upstream wall 25 to the downstream wall 26 (a position 0.35L in the downstream direction X2 from the upstream wall 25) , the minimum width b in the width direction Y of the glass ribbon G2 in the molten metal bath 21, and their ratio a/b were as shown in Table 1. Examples 1 to 14 satisfied the above condition "1.0 ⁇ a/b ⁇ 1.9".
  • the length L from the upstream wall 25 to the downstream wall 26 is 20% from the upstream wall 25 (0.2L in the downstream direction X2 from the upstream wall 25).
  • the length A (not shown) in the width direction Y, the length B (not shown) in the width direction Y of the molten metal surface not covered with the glass ribbon G2, and their ratio A/B are shown in Table 1. It was as shown. Examples 1 to 14 satisfied the above condition "4 ⁇ A/B ⁇ 11".
  • the top rolls 23 were arranged at both ends of the molten metal bath 21 in the width direction Y.
  • the traveling speed V (m/h) of the glass ribbon G2 in the slow cooling section 30 was set as shown in Table 2.
  • Table 2 shows the maximum value T (mm) and minimum value M (mm) of the thickness of the sheet glass (convex glass) obtained under the above manufacturing conditions, and the width of the glass ribbon G2 in the slow cooling section 30.
  • the thickness t, the difference (TM) (mm), and the ratio T/M of the direction center part G2A are also shown.
  • Table 1 shows the angles ⁇ (see FIG. 5(B)) of the convex glasses of Examples 1 to 15 obtained under the manufacturing conditions described above. In all Examples 1-14, except Example 15, the angle ⁇ was within the preferred range of 0.020° to 0.050°.
  • Example 15 the maximum distance (swing width) moved in the width direction Y in 30 minutes at the point where the glass ribbon G2 was cut was less than 1.5 inches, which was suppressed to a small value.
  • the angle ⁇ becomes 0.017°, The angle ⁇ could not be 0.020° or more.
  • the viscosity of the glass ribbon G2 must be increased, so the swing width is increased to 2.0 inches or more.
  • the frit is melted into the molten glass G1 in the melting kiln 11.
  • the stainless steel contained in the frit is removed using a metal detector before the frit is introduced into the melting kiln 11.
  • Stainless steel contains iron, nickel, chromium, and the like. Conventionally known metal detectors can distinguish between metals and non-metals, but cannot arbitrarily distinguish only stainless steel. The iron necessary for this is also removed from the frit.
  • Metal detectors used to remove stainless steel have a single coil and the magnetic field produced by the coil distinguishes between stainless steel and iron. Iron is magnetized by an alternating magnetic field emitted from the transmitting coil.
  • the iron is detected by magnetic field lines being attracted to the iron and sensed by the receiving coils in a differential configuration. Also, eddy currents are generated in the stainless steel by the alternating magnetic field generated from the transmission coil, and a magnetic field is generated in the vicinity of the stainless steel. Stainless steel is detected by sensing this change in the magnetic field with a differential receiving coil. Since the phase of the eddy current generated in stainless steel lags the phase of the transmission coil by about 90°, it is possible to distinguish between stainless steel and iron by detecting the phase angle. The phase angle of iron is 40-80° and that of stainless steel is 140-180°. The larger the amplitude of the eddy currents generated in the stainless steel, the larger the size of the stainless steel.
  • the metal detector is installed, for example, on a conveyor that transports the blended glass raw materials to the melting furnace 11 .
  • the metal detector preferably has a mechanism for removing only stainless steel of a specific size or larger from the glass raw material. An example of such a mechanism is shown.
  • a metal or non-metal passes through the metal detector, two analog signals X and Y are input from the metal detector to a PLC (Programmable Logic Controller) to calculate the phase angle and maximum voltage.
  • the phase angle is 140 to 180°, which indicates stainless steel, and the maximum voltage is equal to or higher than a preset value
  • the damper installed on the conveyor opens and the stainless steel of a specific size or more is discharged.
  • the included glass raw materials are removed from the conveyor to prevent the stainless steel from entering the melting furnace 11. ⁇

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

In the present invention, a molten metal bath is provided with an upstream wall, a downstream wall, and two side walls. Each of the two side walls includes a shoulder that reduces the width of the molten metal bath in the direction of advance of a glass ribbon. The ratio W/N of the distance W between the two side walls in a region upstream of the shoulders of the molten metal bath and the distance N between the two side walls in a region downstream of the shoulders of the molten metal bath is greater than 1.0 and no greater than 1.6. By heating a central section of the glass ribbon in the width direction in the upstream region of the molten metal bath more strongly than sections at both ends in the width direction, plate glass is manufactured in which the central section in the width direction is thicker than the sections at both ends.

Description

板ガラスの製造方法、楔形ガラスの製造方法、及び合わせガラスの製造方法Method for manufacturing sheet glass, method for manufacturing wedge-shaped glass, and method for manufacturing laminated glass
 本発明は、板ガラスの製造方法、楔形ガラスの製造方法、及び合わせガラスの製造方法に関する。特に、ガラスリボンの進行方向に直交する幅方向の断面が凸形状の(幅方向中央部が幅方向両端部よりも厚い)板ガラスの製造方法に関する。 The present invention relates to a method for manufacturing sheet glass, a method for manufacturing wedge-shaped glass, and a method for manufacturing laminated glass. In particular, the present invention relates to a method for manufacturing sheet glass having a convex cross section in the width direction perpendicular to the traveling direction of the glass ribbon (the central portion in the width direction is thicker than both ends in the width direction).
 フロート法により製造される板ガラスの厚さは、通常、一定である。しかし、例えば、自動車のフロントガラスに情報を表示するヘッドアップディスプレイ(Headup display。以下、HUDとも称する。)では、運転者から見たときの二重像を防止するために、厚さが一定ではないガラスが求められている。そこで、ガラスリボンの進行方向に直交する幅方向(以下、単に幅方向という場合がある)の断面が凹形状、凸形状、テーパ形状である板ガラスの製造方法の検討がなされている(例えば、特許文献1、2参照)。特許文献1には、幅方向中央部が幅方向両端部よりも厚い断面凸形状の板ガラスを切断することで楔形ガラスを得ることが開示されている。 The thickness of plate glass manufactured by the float method is usually constant. However, for example, in a head-up display (hereinafter also referred to as HUD) that displays information on the windshield of an automobile, the thickness is not constant in order to prevent double images when viewed from the driver. No glass is desired. Therefore, a method for manufacturing sheet glass having a concave, convex, or tapered cross section in the width direction (hereinafter sometimes simply referred to as the width direction) perpendicular to the traveling direction of the glass ribbon has been studied (for example, patent References 1 and 2). Patent Literature 1 discloses that a wedge-shaped glass is obtained by cutting a sheet glass having a convex cross-sectional shape in which the center portion in the width direction is thicker than the both end portions in the width direction.
国際公開第2016/117650号WO2016/117650 米国特許第7122242号明細書U.S. Pat. No. 7,122,242
 通常、溶融金属浴は、上流壁と、下流壁と、2つの側壁と、を備える。それぞれの側壁には、溶融金属浴内の溶融金属の量を減らすため、ガラスリボンの進行方向で溶融金属浴の幅を減らすショルダが設けられることがある。このように、側壁にショルダが設けられた溶融金属浴では、溶融金属の表面のうちガラスリボンで覆われていない部分において、ガラスリボンの進行方向と逆方向の流れが生じることがある。この逆方向の流れが原因となり、溶融金属面上のガラスリボンが、幅方向に往復移動(スイング)しながら進行することが観測されることがある。 A molten metal bath usually comprises an upstream wall, a downstream wall and two side walls. Each sidewall may be provided with a shoulder that reduces the width of the molten metal bath in the direction of travel of the glass ribbon to reduce the amount of molten metal in the bath. Thus, in a molten metal bath having shoulders on the side walls, the surface of the molten metal may flow in a direction opposite to the direction in which the glass ribbon travels, in areas not covered with the glass ribbon. Due to this reverse flow, it is sometimes observed that the glass ribbon on the surface of the molten metal advances while reciprocating (swinging) in the width direction.
 特に、特許文献1のように、断面凸形状の板ガラスを製造する際には、厚さが一定の板ガラスを製造する場合よりもガラスリボンの幅方向中央部の温度が低く設定されるため、ガラスリボンの粘性が高くなり(ガラスリボンが固くなり)、上記逆方向の流れの影響を受けやすく、ガラスリボンのスイングが生じやすい。そして、特許文献1のように、断面凸形状の板ガラスを切断することで楔形ガラスを製造しようとした場合、板ガラスを切断する位置が通常は定位置であるため、上記スイングが生じてしまうと楔形ガラスの楔角度が製品毎にばらついてしまう。 In particular, as in Patent Document 1, when producing plate glass having a convex cross-section, the temperature at the center in the width direction of the glass ribbon is set lower than in the case of producing plate glass with a constant thickness, so the glass The ribbon becomes more viscous (the glass ribbon becomes harder), and is easily affected by the flow in the opposite direction, and the glass ribbon tends to swing. Then, as in Patent Document 1, when trying to manufacture wedge-shaped glass by cutting a plate glass having a convex cross-section, the position where the plate glass is cut is usually a fixed position, so if the swing occurs, the wedge-shaped glass is cut. The wedge angle of the glass varies from product to product.
 本発明は上記事情を鑑みてなされたものであり、その目的は、ガラスリボンの幅方向における往復移動(スイング)を抑制できる、板ガラスの製造方法を提供することにある。さらに、当該板ガラスを切断して得られる楔形ガラスの楔角度のばらつきを抑制できる、楔形ガラス及び合わせガラスの製造方法を提供することを目的とする。なお、本発明において、凸形状のガラスとは、ガラスリボンの幅方向中央部が幅方向両端部よりも厚いガラスリボン、またはガラスリボンから得られる板ガラスを意味する。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing plate glass that can suppress reciprocating movement (swing) in the width direction of the glass ribbon. Furthermore, it aims at providing the manufacturing method of the wedge-shaped glass and laminated glass which can suppress the variation of the wedge angle of the wedge-shaped glass obtained by cutting the said plate glass. In the present invention, the glass having a convex shape means a glass ribbon in which the central portion in the width direction of the glass ribbon is thicker than both ends in the width direction, or plate glass obtained from the glass ribbon.
 本発明の上記目的は、下記の構成により達成される。
 [1] 溶融金属浴において溶融金属面上にガラスリボンを浮かせて進行させて、前記ガラスリボンの幅方向両端部に複数のトップロールを当接させて前記ガラスリボンを板状に成形する板ガラスの製造方法であって、
 前記溶融金属浴は、上流壁、下流壁及び2つの側壁を備え、
 前記2つの側壁はそれぞれ、前記ガラスリボンの進行方向で前記溶融金属浴の幅を減らすショルダを含み、
 前記溶融金属浴の前記ショルダよりも上流域における前記2つの側壁間の距離Wと、前記溶融金属浴の前記ショルダよりも下流域における前記2つの側壁間の距離Nと、の比W/Nが1.0超1.6以下であり、
 前記溶融金属浴の上流域において前記ガラスリボンの幅方向中央部よりも前記幅方向両端部を強く加熱することで、前記幅方向中央部が両端部よりも厚い板ガラスを製造する、板ガラスの製造方法。
 [2] 前記上流壁から前記下流壁までの長さに対し、前記上流壁から20%の位置において、前記溶融金属面上の前記ガラスリボンの幅方向中央部の粘性が10^(4.5)(dPa・sec)以上となるように前記ガラスリボンを加熱する、[1]に記載の板ガラスの製造方法。
 [3] 前記上流壁から前記下流壁までの長さに対し、前記上流壁から20%の位置において、前記溶融金属面上の前記ガラスリボンの幅方向中央部の粘性が10^(6.0)(dPa・sec)以下となるように前記ガラスリボンを加熱する、[1]または[2]に記載の板ガラスの製造方法。
 [4] 前記上流壁から前記下流壁までの長さに対し、前記上流壁から32%の位置において、前記溶融金属面上の前記ガラスリボンの幅方向中央部の温度と溶融金属の幅方向両端部の温度との差が62℃以下である、[1]~[3]のいずれかに記載の板ガラスの製造方法。
 [5] 前記上流壁から前記下流壁までの長さに対し、前記上流壁から32%の位置において、前記溶融金属面上の前記ガラスリボンの幅方向中央部の粘性が10^(4.7)(dPa・sec)以上となるように前記ガラスリボンを加熱する、[1]~[4]のいずれかに記載の板ガラスの製造方法。
 [6] 前記上流壁から前記下流壁までの長さに対し、前記上流壁から32%の位置において、前記溶融金属面上の前記ガラスリボンの幅方向中央部の粘性が10^(6.3)(dPa・sec)以下となるように前記ガラスリボンを加熱する、[1]~[5]のいずれかに記載の板ガラスの製造方法。
 [7] 前記溶融金属浴における前記ガラスリボンの幅方向の最大幅と前記溶融金属浴の最下流における前記ガラスリボンの幅方向の長さとの比が1.4~2.2である、[1]~[6]のいずれかに記載の板ガラスの製造方法。
 [8] 前記上流壁から前記下流壁までの長さに対し、前記上流壁から35%の位置における前記ガラスリボンの幅aと、前記溶融金属浴の最下流における前記ガラスリボンの幅方向の長さbと、の比a/bが1.0~1.9である、[1]~[7]のいずれかに記載の板ガラスの製造方法。
 [9] 前記上流壁から前記下流壁までの長さに対し、前記上流壁から20%の位置において、前記ガラスリボンの幅方向の長さAと前記ガラスリボンに覆われていない前記溶融金属面の幅方向の長さBとの比A/Bが4~11である、[1]~[8]のいずれかに記載の板ガラスの製造方法。
 [10] [1]~[9]のいずれかに記載の板ガラスの製造方法により得られた板ガラスを切断して楔形ガラスを得る、楔形ガラスの製造方法。
 [11] 前記楔形ガラスは、少なくとも一つの主表面が凸面であり、
 前記凸面の重心Gを通り前記凸面の4辺のうち対向する2つの辺を最短距離で結ぶ線分上で、前記線分と前記凸面の辺との交点のうち、前記楔形ガラスを水平な場所に置いたときに、鉛直方向の前記楔形ガラスの厚さが小さい方の点を第1の点とし、前記第1の点から前記線分の長さに対して2/5の長さの位置にある前記凸面上の点を第2の点とすると、前記第1の点と前記第2の点とを結んだ直線と、水平面とのなす角度が0.020°~0.050°である、[10]に記載の楔形ガラスの製造方法。
 [12] 前記楔形ガラスの厚さの最大値Tと最小値Mとの比T/Mが1.10~1.40である、[10]または[11]に記載の楔形ガラスの製造方法。
 [13] [1]~[9]のいずれかに記載の板ガラスの製造方法により得られた板ガラスを切断して楔形ガラスを得て、
 前記楔形ガラスと他の板ガラスとを中間膜を介して積層し圧着する、
合わせガラスの製造方法。
 [14] 前記他の板ガラスが前記楔形ガラスである、
[13]に記載の合わせガラスの製造方法。
 [15] 前記他の板ガラスが厚さが一定の板ガラスである、
[14]に記載の合わせガラスの製造方法。
The above objects of the present invention are achieved by the following configurations.
[1] Making a plate glass by floating a glass ribbon on the surface of the molten metal in a molten metal bath and advancing it, and bringing a plurality of top rolls into contact with both ends of the glass ribbon in the width direction to form the glass ribbon into a plate shape. A manufacturing method comprising:
the molten metal bath comprises an upstream wall, a downstream wall and two side walls;
each of the two sidewalls includes a shoulder that reduces the width of the molten metal bath in the direction of travel of the glass ribbon;
A ratio W/N between the distance W between the two side walls in the region upstream of the shoulder of the molten metal bath and the distance N between the two side walls in the region downstream of the shoulder of the molten metal bath more than 1.0 and 1.6 or less,
A method for producing sheet glass, wherein the width direction both ends of the glass ribbon are heated more strongly than the width direction center portion of the glass ribbon in the upstream region of the molten metal bath, thereby producing a sheet glass that is thicker at the width direction center portion than at both end portions. .
[2] With respect to the length from the upstream wall to the downstream wall, at a position 20% from the upstream wall, the viscosity of the central portion in the width direction of the glass ribbon on the surface of the molten metal is 10̂(4.5 ) The method for producing sheet glass according to [1], wherein the glass ribbon is heated to a temperature of (dPa·sec) or more.
[3] At a position 20% from the upstream wall with respect to the length from the upstream wall to the downstream wall, the viscosity of the central portion in the width direction of the glass ribbon on the surface of the molten metal is 10̂(6.0 ) (dPa·sec) or less, the method for producing sheet glass according to [1] or [2], wherein the glass ribbon is heated.
[4] At a position 32% from the upstream wall with respect to the length from the upstream wall to the downstream wall, the temperature of the widthwise central portion of the glass ribbon on the surface of the molten metal and both widthwise ends of the molten metal The method for producing sheet glass according to any one of [1] to [3], wherein the difference from the temperature of the part is 62° C. or less.
[5] At a position 32% from the upstream wall with respect to the length from the upstream wall to the downstream wall, the viscosity of the central portion in the width direction of the glass ribbon on the surface of the molten metal is 10̂(4.7 ) The method for producing sheet glass according to any one of [1] to [4], wherein the glass ribbon is heated to a temperature of (dPa·sec) or more.
[6] At a position 32% from the upstream wall with respect to the length from the upstream wall to the downstream wall, the viscosity of the central portion in the width direction of the glass ribbon on the surface of the molten metal is 10̂(6.3 ) The method for producing sheet glass according to any one of [1] to [5], wherein the glass ribbon is heated to (dPa·sec) or less.
[7] The ratio of the maximum width in the width direction of the glass ribbon in the molten metal bath to the length in the width direction of the glass ribbon at the most downstream side of the molten metal bath is 1.4 to 2.2. ] to [6], the method for producing a plate glass.
[8] A width a of the glass ribbon at a position 35% from the upstream wall with respect to the length from the upstream wall to the downstream wall, and a widthwise length of the glass ribbon at the most downstream side of the molten metal bath. The method for producing a sheet glass according to any one of [1] to [7], wherein the ratio a/b of and to is 1.0 to 1.9.
[9] The length A of the glass ribbon in the width direction and the molten metal surface not covered with the glass ribbon at a position 20% from the upstream wall with respect to the length from the upstream wall to the downstream wall The method for producing sheet glass according to any one of [1] to [8], wherein the ratio A/B of the length B in the width direction of is 4 to 11.
[10] A method for producing wedge-shaped glass, comprising cutting the plate glass obtained by the method for producing plate glass according to any one of [1] to [9] to obtain wedge-shaped glass.
[11] The wedge-shaped glass has at least one convex surface,
On a line segment passing through the center of gravity G of the convex surface and connecting two opposite sides of the four sides of the convex surface at the shortest distance, among intersections of the line segment and the sides of the convex surface, the wedge-shaped glass is positioned horizontally. The first point is the point where the thickness of the wedge-shaped glass is smaller in the vertical direction when the glass is placed at If a point on the convex surface located at is the second point, a straight line connecting the first point and the second point forms an angle of 0.020° to 0.050° with the horizontal plane. , a method for producing a wedge-shaped glass according to [10].
[12] The method for producing wedge-shaped glass according to [10] or [11], wherein the ratio T/M between the maximum value T and the minimum value M of the thickness of the wedge-shaped glass is 1.10 to 1.40.
[13] Wedge-shaped glass is obtained by cutting the sheet glass obtained by the method for producing sheet glass according to any one of [1] to [9],
laminating and crimping the wedge-shaped glass and another plate glass via an intermediate film;
A method for producing laminated glass.
[14] The other sheet glass is the wedge-shaped glass,
[13] The method for manufacturing a laminated glass.
[15] The other sheet glass is a sheet glass having a constant thickness.
[14] The method for producing a laminated glass.
 ガラスリボンの幅方向における往復移動を抑制できる、板ガラスの製造方法を提供できる。さらに、当該板ガラスを切断して得られる楔形ガラスの楔角度のばらつきを抑制できる、楔形ガラス及び合わせガラスの製造方法を提供できる。 A method for manufacturing plate glass can be provided that can suppress the reciprocating movement of the glass ribbon in the width direction. Furthermore, it is possible to provide a method for manufacturing wedge-shaped glass and laminated glass, which can suppress variations in the wedge angle of the wedge-shaped glass obtained by cutting the sheet glass.
図1(A)はガラス製造装置を幅方向から見た図であり、図1(B)はガラス製造装置を厚さ方向から見た図である。FIG. 1(A) is a view of the glass manufacturing apparatus viewed from the width direction, and FIG. 1(B) is a view of the glass manufacturing apparatus viewed from the thickness direction. 図2(A)は、本発明の一実施形態の製造方法によって製造されたガラスの幅方向の断面図であり、図2(B)は、図2(A)のガラスのA部分が切断されて得られる楔形ガラスである。FIG. 2A is a cross-sectional view in the width direction of the glass manufactured by the manufacturing method of one embodiment of the present invention, and FIG. It is a wedge-shaped glass obtained by 図3(A)は、フロントガラスの平面図であり、図3(B)は、図3(A)のフロントガラスのB-B断面図であり、図3(C)は、図3(A)のフロントガラスのC-C断面図である。3(A) is a plan view of the windshield, FIG. 3(B) is a BB cross-sectional view of the windshield of FIG. 3(A), and FIG. ) is a cross-sectional view of the windshield of FIG. 図4は、トップロールの拡大図である。FIG. 4 is an enlarged view of the top roll. 図5(A)及び(B)は、本発明の一実施形態に係る板ガラスを示す図であり、図5(A)は平面図、図5(B)は幅方向の断面図である。5A and 5B are views showing a plate glass according to one embodiment of the present invention, FIG. 5A being a plan view and FIG. 5B being a cross-sectional view in the width direction.
 以下、本発明の一実施形態について説明する。まず、ガラス製造装置(すなわち、フロート板ガラス製造装置)の構成について説明する。 An embodiment of the present invention will be described below. First, the configuration of a glass manufacturing apparatus (that is, a float plate glass manufacturing apparatus) will be described.
 図1(A)及び(B)に示すように、ガラス製造装置1は、溶解部10と、成形部20と、徐冷部30と、を備える。なお、図中のX方向は、ガラスリボンG2の進行方向であり、X1はガラスリボンG2の上流方向であり、X2方向はガラスリボンG2の下流方向である。図中のY方向は、ガラスリボンG2の進行方向Xに直交する方向であり、ガラスリボンG2の幅方向である。図中のZ方向は、ガラスリボンG2の進行方向X及び幅方向Yに直交する方向(すなわちガラスリボンG2の厚さ方向)であり、Z1方向は上方であり、Z2方向は下方である。図1(A)はガラス製造装置1を幅方向Yから見た図であり、図1(B)はガラス製造装置1を厚さ方向Zから見た図である。 As shown in FIGS. 1(A) and 1(B), the glass manufacturing apparatus 1 includes a melting section 10, a forming section 20, and a slow cooling section 30. Note that the X direction in the drawing is the traveling direction of the glass ribbon G2, X1 is the upstream direction of the glass ribbon G2, and the X2 direction is the downstream direction of the glass ribbon G2. The Y direction in the drawing is the direction orthogonal to the traveling direction X of the glass ribbon G2, and is the width direction of the glass ribbon G2. The Z direction in the figure is the direction orthogonal to the traveling direction X and the width direction Y of the glass ribbon G2 (that is, the thickness direction of the glass ribbon G2), the Z1 direction is upward, and the Z2 direction is downward. 1A is a view of the glass manufacturing apparatus 1 viewed from the width direction Y, and FIG. 1B is a view of the glass manufacturing apparatus 1 viewed from the thickness direction Z. FIG.
 溶解部10は、溶解窯11と、ツイール12と、リップ13と、を備える。溶解部10では、溶解窯11でガラス原料を溶融ガラスG1に溶解し、溶融ガラスG1の流路であるリップ13に対してツイール12を上下方向Zに動かすことにより、成形部20へ供給する溶融ガラスG1の量を調節する。 The melting section 10 includes a melting kiln 11, a twill 12, and a lip 13. In the melting section 10, the frit is melted into the molten glass G1 in the melting furnace 11, and the molten glass is supplied to the forming section 20 by moving the tweel 12 in the vertical direction Z with respect to the lip 13, which is the flow path of the molten glass G1. Adjust the amount of glass G1.
 成形部20は、溶融金属浴(フロートバス)21と、溶融金属浴21に貯留された溶融金属22と、複数のトップロール23と、ヒータ24と、を備える。成形部20では、溶解部10から連続供給される溶融ガラスG1を進行方向Xに流動させながら徐々に冷却し、ガラスリボンG2に成形する。すなわち、溶融ガラスG1は、溶融金属浴21の溶融金属面上(溶融金属22の表面上)にガラスリボン状に流し出され、溶融金属面上を浮かばせながら進行方向X(下流方向X2)に向かって前進させてガラスリボンG2に成形される。 The forming section 20 includes a molten metal bath (float bath) 21, a molten metal 22 stored in the molten metal bath 21, a plurality of top rolls 23, and a heater 24. In the shaping section 20, the molten glass G1 continuously supplied from the melting section 10 is gradually cooled while being flowed in the traveling direction X, and shaped into a glass ribbon G2. That is, the molten glass G1 is poured out in the form of a glass ribbon onto the molten metal surface of the molten metal bath 21 (on the surface of the molten metal 22), and floats on the molten metal surface in the traveling direction X (downstream direction X2). The glass ribbon G2 is formed by moving forward toward the glass ribbon G2.
 溶融金属浴21には、例えばスズなどの溶融金属22が溜められている。溶融ガラスG1は、ツイール12およびリップ13を経由して溶融金属22の表面上に連続供給される。 A molten metal 22 such as tin is stored in the molten metal bath 21 . Molten glass G1 is continuously fed onto the surface of molten metal 22 via tweel 12 and lip 13 .
 溶融金属浴21は、上流側に配置された上流壁25と、下流側に配置された下流壁26と、これら上流壁25及び下流壁26を接続する2つの側壁27,27と、を有する。2つの側壁27,27はそれぞれ、ガラスリボンG2の進行方向Xで溶融金属浴21の幅(幅方向Yの寸法)を減らすショルダ27Aを備える。すなわち、側壁27は、上流壁25に接続して下流方向X2に直線状に延びる第一壁27Bと、第一壁27Bに接続し、下流方向X2に向かうにしたがって幅方向Y内側(ガラスリボンG2に近づく方向)に延びるショルダ27Aと、ショルダ27Aに接続し、下流方向X2に直線状に延びる第二壁27Cと、を有する。このようにショルダ27Aが設けられることにより、溶融金属浴21に貯留される溶融金属22の量が低減される。 The molten metal bath 21 has an upstream wall 25 arranged on the upstream side, a downstream wall 26 arranged on the downstream side, and two side walls 27 , 27 connecting the upstream wall 25 and the downstream wall 26 . The two side walls 27, 27 each comprise a shoulder 27A which reduces the width (dimension in the width direction Y) of the molten metal bath 21 in the direction X of travel of the glass ribbon G2. That is, the side wall 27 includes a first wall 27B that connects to the upstream wall 25 and extends linearly in the downstream direction X2, and a first wall 27B that connects to the first wall 27B and extends inward in the width direction Y (the glass ribbon G2) in the downstream direction X2. and a second wall 27C connected to the shoulder 27A and linearly extending in the downstream direction X2. By providing the shoulder 27A in this way, the amount of the molten metal 22 stored in the molten metal bath 21 is reduced.
 溶融金属浴21のショルダ27Aよりも上流域における2つの側壁27,27間の距離W(2つの第一壁27B,27B間の距離)と、溶融金属浴21のショルダ27Aよりも下流域における2つの側壁27,27間の距離N(2つの第二壁27C,27C間の距離)と、の比W/Nは1.0超1.6以下に設定されている(1.0<W/N≦1.6)。凸形ガラスを製造するときは、溶融金属浴21のより上流域でガラスリボンG2を断面凸形状にし、ガラスリボンG2の幅を厚さが一定のガラス板を製造するときよりも小さくする必要がある。そのため、ショルダ27Aよりも上流域における溶融金属22がガラスリボンG2で覆われていない部分の面積が増加しやすく、したがって厚さが一定のガラス板を製造するときよりもガラスリボンG2の幅方向Yへの往復運動(スイング)が生じやすい。比W/Nが1.6以下であれば、ショルダ27Aより上流域において溶融金属22がガラスリボンG2で覆われていない部分の面積が減少するため、特にガラスリボンG2の往復運動(スイング)に影響を与える溶融金属22の上流方向X1への流れが生じにくくなり、楔ガラスを製造する時にもガラスリボンG2の幅方向Yへの往復移動(スイング)が生じにくい。比W/Nが1.0超であれば、ショルダ27Aより下流域における2つの側壁27,27間の距離を狭くでき、溶融金属浴21内の溶融金属22の量を削減できる。 The distance W between the two side walls 27, 27 (the distance between the two first walls 27B, 27B) in the region upstream of the shoulder 27A of the molten metal bath 21 and the distance W in the region downstream of the shoulder 27A of the molten metal bath 21 The ratio W/N of the distance N between the two side walls 27, 27 (the distance between the two second walls 27C, 27C) is set to more than 1.0 and 1.6 or less (1.0<W/ N≤1.6). When producing convex glass, it is necessary to make the cross section of the glass ribbon G2 convex in the upstream region of the molten metal bath 21, and to make the width of the glass ribbon G2 smaller than when producing a glass plate having a constant thickness. be. Therefore, the area of the portion where the molten metal 22 is not covered with the glass ribbon G2 in the upstream region of the shoulder 27A tends to increase, and therefore the width direction Y of the glass ribbon G2 is greater than when manufacturing a glass plate with a constant thickness. Reciprocating motion (swing) to and from is likely to occur. If the ratio W/N is 1.6 or less, the area of the portion where the molten metal 22 is not covered with the glass ribbon G2 in the upstream region from the shoulder 27A is reduced, so the reciprocating motion (swing) of the glass ribbon G2 is particularly affected. The flow of the molten metal 22 in the upstream direction X1, which has an influence, is less likely to occur, and the reciprocating movement (swing) of the glass ribbon G2 in the width direction Y is less likely to occur when manufacturing the wedge glass. If the ratio W/N is greater than 1.0, the distance between the two side walls 27, 27 in the region downstream of the shoulder 27A can be narrowed, and the amount of molten metal 22 in the molten metal bath 21 can be reduced.
 第一壁27Bとショルダ27Aとが接続される位置は、上流壁25から下流壁26までの長さL(図1(B)参照)に対し、上流壁25から60%~75%の位置(上流壁25から下流方向X2に0.60L~0.75Lの位置)であることが好ましい。第一壁27Bとショルダ27Aとが接続される位置が上流壁25から60%~75%であれば、楔ガラスを製造する時にショルダ27Aよりも上流域の溶融金属22がガラスリボンG2で覆われていない部分の面積が大きくなりすぎず、厚さが一定のガラスを製造する時にもガラスリボンの十分な成形域を確保できる。第一壁27Bとショルダ27Aとが接続される位置は、上流壁25から60%以上が好ましく、62%以上がより好ましい。第一壁27Bとショルダ27Aとが接続される位置は、上流壁25から75%以下が好ましく、70%以下がより好ましく、67%以下がさらに好ましく、65%以下が特に好ましい。 The position where the first wall 27B and the shoulder 27A are connected is 60% to 75% of the length L from the upstream wall 25 to the downstream wall 26 (see FIG. 1B) from the upstream wall 25 ( 0.60L to 0.75L from the upstream wall 25 in the downstream direction X2). If the position where the first wall 27B and the shoulder 27A are connected is 60% to 75% from the upstream wall 25, the molten metal 22 upstream of the shoulder 27A is covered with the glass ribbon G2 when manufacturing the wedge glass. A sufficient forming area for the glass ribbon can be ensured even when the glass having a constant thickness is produced without the area of the portion not being formed becoming too large. The position where the first wall 27B and the shoulder 27A are connected is preferably 60% or more from the upstream wall 25, more preferably 62% or more. The position where the first wall 27B and the shoulder 27A are connected is preferably 75% or less, more preferably 70% or less, even more preferably 67% or less, and particularly preferably 65% or less from the upstream wall 25 .
 ショルダ27Aと第二壁27Cとが接続される位置は、上流壁25から下流壁26までの長さL(図1(B)参照)に対し、上流壁25から65%~85%の位置(上流壁25から下流方向X2に0.65L~0.85Lの位置)であることが好ましい。ショルダ27Aと第二壁27Cとが接続される位置が上流壁25から65%~85%であれば、楔ガラスを製造する時にショルダ27Aよりも上流域の溶融金属22がガラスリボンG2で覆われていない部分の面積が大きくなりすぎない。また、厚さが一定のガラスを製造する時にも十分な成形域を確保できる。ショルダ27Aと第二壁27Cとが接続される位置は、上流壁25から65%以上が好ましく、67%以上がより好ましい。ショルダ27Aと第二壁27Cとが接続される位置は、上流壁25から85%以下が好ましく、80%以下がより好ましく、76%以下がさらに好ましく、70%以下が特に好ましい。 The position where the shoulder 27A and the second wall 27C are connected is 65% to 85% of the length L from the upstream wall 25 to the downstream wall 26 (see FIG. 1B) from the upstream wall 25 ( 0.65L to 0.85L from the upstream wall 25 in the downstream direction X2). If the position where the shoulder 27A and the second wall 27C are connected is 65% to 85% from the upstream wall 25, the molten metal 22 upstream of the shoulder 27A is covered with the glass ribbon G2 when manufacturing the wedge glass. The area of the part that is not covered should not be too large. In addition, a sufficient molding area can be secured even when manufacturing glass with a constant thickness. The position where the shoulder 27A and the second wall 27C are connected is preferably 65% or more from the upstream wall 25, more preferably 67% or more. The position where the shoulder 27A and the second wall 27C are connected is preferably 85% or less, more preferably 80% or less, even more preferably 76% or less, and particularly preferably 70% or less from the upstream wall 25.
 複数のトップロール23は、ガラスリボンG2の幅方向両端部G2B,G2Bの上面に載っている。すなわち、複数のトップロール23は、ガラスリボンG2の幅方向両端部G2B,G2Bに当接している。ガラスリボンG2の厚さを調節するために、それぞれのトップロール23の周速度が調節される。 A plurality of top rolls 23 are placed on the upper surfaces of both widthwise end portions G2B, G2B of the glass ribbon G2. That is, the plurality of top rolls 23 are in contact with the widthwise end portions G2B, G2B of the glass ribbon G2. In order to adjust the thickness of the glass ribbon G2, the peripheral speed of each top roll 23 is adjusted.
 ヒータ24は、溶融金属浴21の上方Z1に配置されている。ヒータ24は、例えばガラスリボンG2の幅方向中央部G2Aを加熱する中央部ヒータ24Aと、ガラスリボンG2の幅方向の幅方向両端部G2B,G2Bを加熱する一対の端部ヒータ24B,24Bと、に分かれている。中央部ヒータ24A及び/又は端部ヒータ24Bは、進行方向X及び/又は幅方向Yにおいてさらに分かれていてもよく、この場合、ガラスリボンG2の温度が調節されやすい。図示の例では、ヒータ24は、進行方向Xにおいて、ショルダ27Aよりも上流域と、ショルダ27Aを含む領域及びショルダ27Aよりも下流域と、に分かれて二個配置されている。距離Wと距離Nとの関係に合わせて、下流側のヒータ24の幅は、上流側のヒータ24の幅よりも短く設定される。 The heater 24 is arranged above the molten metal bath 21 Z1. The heaters 24 include, for example, a central heater 24A that heats the widthwise central portion G2A of the glass ribbon G2, a pair of end heaters 24B, 24B that heat both widthwise ends G2B, G2B in the width direction of the glass ribbon G2, divided into The center heater 24A and/or the end heaters 24B may be further divided in the traveling direction X and/or the width direction Y, in which case the temperature of the glass ribbon G2 is easily adjusted. In the illustrated example, two heaters 24 are arranged in the traveling direction X, divided into an upstream area from the shoulder 27A, an area including the shoulder 27A, and a downstream area from the shoulder 27A. The width of the heater 24 on the downstream side is set shorter than the width of the heater 24 on the upstream side in accordance with the relationship between the distance W and the distance N.
 徐冷部30は、徐冷室31と、搬送ロール32と、を備える。徐冷部30では、成形部20で成形されたガラスリボンG2を徐冷室31に配置された搬送ロール32によって連続的に搬送しながら徐冷する。また、搬送ロール32の周速度を調節することで、成形部20と徐冷部30でのガラスリボンG2の進行速度を調節できる。ここで、成形部20でガラスリボンG2の幅方向両端部G2B,G2B上面にトップロール23が載っていたことにより、ガラスリボンG2の幅方向両端部G2B,G2Bにおけるトップロール23が載っていた部分近傍には、歪が生じている。ガラスリボンG2は、徐冷部30から引き出され、トップロール23による歪が生じているガラスリボンG2の両端が切断機により切断されて取り除かれ、さらに、切断機でガラスリボンG2が所定のサイズに切断されることによって、製品であるガラスが得られる。 The slow cooling section 30 includes a slow cooling chamber 31 and transport rolls 32 . In the slow cooling section 30 , the glass ribbon G<b>2 molded in the molding section 20 is slowly cooled while being continuously transported by the transport rolls 32 arranged in the slow cooling chamber 31 . Further, by adjusting the peripheral speed of the transport roll 32, the traveling speed of the glass ribbon G2 in the forming section 20 and the slow cooling section 30 can be adjusted. Here, since the top roll 23 was placed on the upper surface of both width direction end portions G2B and G2B of the glass ribbon G2 in the molding portion 20, the portions of the width direction end portions G2B and G2B of the glass ribbon G2 on which the top roll 23 was placed Distortion occurs in the vicinity. The glass ribbon G2 is pulled out from the slow cooling section 30, and both ends of the glass ribbon G2 distorted by the top roll 23 are cut and removed by a cutting machine. Glass, which is a product, is obtained by cutting.
 次に、本発明の一実施形態に係る製造方法(すなわち、フロート板ガラス製造方法)により製造されるガラスについて説明する。 Next, the glass manufactured by the manufacturing method (that is, the float plate glass manufacturing method) according to one embodiment of the present invention will be described.
 図2(A)は、本発明の一実施形態に係る製造方法により製造されるガラスの幅方向の断面図であり、図2(B)は、図2(A)のガラスのA部分が切断されて得られる楔形ガラスである。図3(A)は、本発明の一実施形態に係る製造方法により製造されたガラスを用いたフロントガラスの平面図であり、図3(B)は、図3(A)のフロントガラスのB-B断面図であり、図3(C)は、図3(A)のフロントガラスのC-C断面図である。 FIG. 2A is a cross-sectional view in the width direction of glass manufactured by a manufacturing method according to an embodiment of the present invention, and FIG. It is a wedge-shaped glass obtained by FIG. 3A is a plan view of a windshield using glass manufactured by a manufacturing method according to an embodiment of the present invention, and FIG. 3(C) is a cross-sectional view of the windshield of FIG. 3(A) taken along line CC of FIG. 3(A).
 本発明の一実施形態に係る製造方法により製造される板ガラスは、図2(A)に示すように、幅方向Yの両端部から中央部に向かうに従って厚くなる凸形ガラス100である。この凸形ガラス100を所定の位置(例えば図2(A)のA部分)で切断することにより、図2(B)に示すような幅方向Yの一端部より他端部が厚い楔形ガラス200を得ることができる。本発明の製造方法によれば、ガラスリボンG2の幅方向Yにおける往復移動(スイング)を抑制できるので、ガラスリボンG2から成形された凸形ガラス100(板ガラス)を切断して得られる楔形ガラス200の楔角度βのばらつきを抑制できる。ここで、凸形ガラス100は幅方向Yの両端部から中央部に向かうに従って厚くなっていればよく、両面が凸形状であってもよく、一方の面が平坦で他方の面が凸形状であってもよい。 The plate glass manufactured by the manufacturing method according to one embodiment of the present invention is a convex glass 100 that becomes thicker from both ends in the width direction Y toward the center, as shown in FIG. 2(A). By cutting this convex glass 100 at a predetermined position (for example, portion A in FIG. 2(A)), wedge-shaped glass 200 whose other end is thicker than one end in the width direction Y as shown in FIG. 2(B) can be obtained. can be obtained. According to the manufacturing method of the present invention, since the reciprocating movement (swing) of the glass ribbon G2 in the width direction Y can be suppressed, the wedge-shaped glass 200 obtained by cutting the convex glass 100 (plate glass) formed from the glass ribbon G2. variation in the wedge angle β can be suppressed. Here, the convex glass 100 only needs to be thicker from both ends toward the center in the width direction Y, and both surfaces may be convex, one surface being flat and the other surface being convex. There may be.
 楔形ガラス200は、例えば、図3(A)~(C)に示すように、HUDを有する自動車のフロントガラス300,400に用いることが好適である。このように、楔形ガラス200をフロントガラス300,400に用いることで、特別な中間膜(例えば、断面が楔形状の中間膜)を用いることなく、運転者から見たときの二重像の発生を抑制できる。 The wedge-shaped glass 200 is preferably used for windshields 300, 400 of automobiles having a HUD, as shown in FIGS. 3(A) to 3(C), for example. In this way, by using the wedge-shaped glass 200 for the windshields 300 and 400, a double image is generated when viewed from the driver without using a special intermediate film (for example, an intermediate film having a wedge-shaped cross section). can be suppressed.
 楔形ガラス200の用途は、自動車のフロントガラスに限定されず、電車の窓ガラスであってもよく、オートバイの運転者前方のガード用の風防ガラスであってもよく、情報を表示できれば、いずれのガラスであってもよい。また、楔形ガラス200の用途は、乗り物の情報表示用のガラスに限定されず、その他各種の情報表示用ガラスに使用できる。さらに、情報表示以外の用途でも連続的な透過特性変化を利用した様々な装置に使用できる。 The application of the wedge-shaped glass 200 is not limited to the windshield of an automobile, but may be the window glass of a train, or the windshield for guarding the front of the driver of a motorcycle. It may be glass. Further, the application of the wedge-shaped glass 200 is not limited to information display glass for vehicles, and can be used for various other information display glasses. Furthermore, it can be used in various devices that utilize continuous changes in transmission characteristics for purposes other than information display.
 また、図3(B)に示したフロントガラス300は、楔形ガラス301と楔形ガラス302の間に中間膜303を挟んで積層し圧着することで製造された合わせガラスである。 The windshield 300 shown in FIG. 3(B) is a laminated glass manufactured by sandwiching an intermediate film 303 between a wedge-shaped glass 301 and a wedge-shaped glass 302 and laminating and press-bonding them.
 フロントガラスの別の形態として、合わせる2枚のガラスのうちの1枚は、厚さが一定のガラスであってもよい。フロントガラス400は、図3(C)に示すように、楔形ガラス401と厚さが一定のガラス402との間に中間膜403を挟んで積層し圧着すること製造された合わせガラスである。 As another form of windshield, one of the two glasses to be combined may be a glass of constant thickness. As shown in FIG. 3(C), the windshield 400 is a laminated glass manufactured by sandwiching an intermediate film 403 between a wedge-shaped glass 401 and a glass 402 having a constant thickness, and laminating and press-bonding them.
 次に、本発明の一実施形態に係る板ガラスの製造方法について説明する。
 本発明の一実施形態に係る板ガラスの製造方法により、ガラスリボンの進行方向Xに直交する幅方向Yの断面が凸状をなす凸形ガラス100を製造するに当たっては、溶解部10で溶解される溶融ガラスG1を溶融金属22の上に連続供給して成形されるガラスリボンG2を、溶融金属浴21の上流域において幅方向中央部G2Aよりも幅方向両端部G2B,G2Bを強く加熱する。ガラスリボンG2の幅方向中央部G2Aよりも幅方向両端部G2B,G2Bを強く加熱することで、ガラスリボンG2の幅方向両端部G2B,G2Bの粘性が幅方向中央部G2Aよりも上昇し難くなる。これにより、ガラスリボンG2の幅方向両端部G2B,G2Bの厚さが薄く、幅方向中央部G2Aの厚さが厚くなりやすい。
Next, a method for manufacturing plate glass according to one embodiment of the present invention will be described.
When manufacturing the convex glass 100 having a convex cross section in the width direction Y perpendicular to the traveling direction X of the glass ribbon by the method for manufacturing a plate glass according to an embodiment of the present invention, the glass is melted in the melting section 10. A glass ribbon G2 formed by continuously supplying the molten glass G1 onto the molten metal 22 is heated in the upstream region of the molten metal bath 21 at both widthwise end portions G2B and G2B more strongly than the widthwise central portion G2A. By heating both the width direction end portions G2B and G2B more strongly than the width direction center portion G2A of the glass ribbon G2, the viscosity of the width direction end portions G2B and G2B of the glass ribbon G2 is less likely to rise than the width direction center portion G2A. . As a result, the width direction end portions G2B, G2B of the glass ribbon G2 are likely to be thin, and the width direction center portion G2A is likely to be thick.
 また、前述した通常のフロート板ガラス製造装置1において凸形ガラスを製造するに当たっては、溶融金属浴21の上流域において幅方向中央部に配置された中央部ヒータ24Aを実質的に使用せず、幅方向両端部に配置された端部ヒータ24Bのみにより加熱することが好ましい。ここで、「上流域」とは、溶融金属浴21における溶解窯11に近い上流側7割の範囲を意味する。また、「中央部ヒータ24Aを実質的に使用しない」とは、中央部ヒータ24Aの出力が1kw/m未満であることを意味する。中央部ヒータ24Aを実質的に使用せず、端部ヒータ24Bのみにより加熱することで、ガラスリボンの幅方向両端部G2B,G2Bの粘性が幅方向中央部G2Aよりも上昇しにくくなり、ガラスリボン幅方向両端部G2B,G2Bの厚さが薄く、幅方向中央部G2Aの厚さが厚くなりやすい。中央部ヒータ24Aの出力は、0kw/mであってもよい。また、幅方向中央部G2Aを冷却してもよい。 Further, in manufacturing the convex glass in the normal float plate glass manufacturing apparatus 1 described above, the center heater 24A arranged at the center in the width direction in the upstream area of the molten metal bath 21 is not substantially used, Heating is preferably performed only by the end heaters 24B arranged at both ends in the direction. Here, the “upstream region” means the upstream 70% range near the melting furnace 11 in the molten metal bath 21 . Further, "substantially not using the central heater 24A" means that the output of the central heater 24A is less than 1 kw/m2. By heating only with the end heater 24B without substantially using the center heater 24A, the viscosity of the width direction both end portions G2B, G2B of the glass ribbon is less likely to increase than the width direction center portion G2A. The widthwise end portions G2B, G2B are thin, and the widthwise central portion G2A tends to be thick. The output of the center heater 24A may be 0 kw/ m2 . Moreover, you may cool the width direction center part G2A.
 溶融金属浴21における徐冷室31に近い下流側3割の範囲である「下流域」では、中央部ヒータ24Aによりガラスリボン幅方向中央部G2Aを加熱してもよい。 In the "downstream area", which is the downstream 30% range near the slow cooling chamber 31 in the molten metal bath 21, the central heater 24A may heat the glass ribbon width direction central portion G2A.
 また、溶融金属面上のガラスリボンG2を、幅方向両端部G2B,G2Bの冷却速度が6.1℃/m以下となるように加熱することが好ましい。ここで、「冷却速度」とは、溶融金属浴21においてガラスリボンG2が進行方向Xに1m進んだ時の温度の低下量を表す。ガラスリボンG2の幅方向両端部G2B,G2Bの冷却速度が6.1℃/m以下であれば、幅方向両端部G2B,G2Bの粘性が上昇しにくくなり、幅方向両端部G2B,G2Bは薄く、幅方向中央部G2Aは厚くなりやすい。幅方向両端部G2B,G2Bの冷却速度は、6.0℃/m以下であることがより好ましく、5.9℃/m以下であることがさらに好ましい。なお、本明細書において、ガラスリボンG2の幅方向の端部の冷却速度を表記する場合、その端部とは、ガラスリボンG2の端から幅方向中央へ50mmの位置を示す。 Further, it is preferable to heat the glass ribbon G2 on the surface of the molten metal so that the cooling rate of the width direction end portions G2B, G2B is 6.1°C/m or less. Here, the “cooling rate” represents the amount of decrease in temperature when the glass ribbon G2 advances 1 m in the traveling direction X in the molten metal bath 21 . If the cooling rate of the widthwise end portions G2B, G2B of the glass ribbon G2 is 6.1° C./m or less, the viscosity of the widthwise end portions G2B, G2B is less likely to increase, and the widthwise end portions G2B, G2B are thin. , the widthwise central portion G2A tends to be thick. The cooling rate of the widthwise end portions G2B, G2B is more preferably 6.0° C./m or less, further preferably 5.9° C./m or less. In this specification, when describing the cooling rate of the end of the glass ribbon G2 in the width direction, the end indicates a position 50 mm from the end of the glass ribbon G2 to the center in the width direction.
 一方、ガラスリボンG2の幅方向両端部G2B,G2Bの冷却速度は3.0℃/m以上となるように加熱することが好ましい。幅方向両端部G2B,G2Bの冷却速度が3.0℃/m以上であれば、ガラスリボンG2が十分に冷却されやすい。幅方向両端部G2B,G2Bの冷却速度は、4.0℃/m以上であってもよく、5.0℃/m以上であってもよい。 On the other hand, it is preferable to heat both ends G2B, G2B in the width direction of the glass ribbon G2 so that the cooling rate is 3.0°C/m or more. If the cooling rate of the widthwise end portions G2B, G2B is 3.0° C./m or more, the glass ribbon G2 is sufficiently cooled easily. The cooling rate of both ends G2B, G2B in the width direction may be 4.0° C./m or more, or may be 5.0° C./m or more.
 ガラスリボンG2の幅方向両端部G2B,G2Bの冷却速度は、ガラスリボンG2の幅方向中央部G2Aの冷却速度よりも遅いことが好ましい。幅方向両端部G2B,G2Bの冷却速度が、幅方向中央部G2Aの冷却速度よりも遅ければ、両端部の粘性が上昇しにくくなり、幅方向両端部G2B,G2Bは薄く、幅方向中央部G2Aは厚くなりやすい。 It is preferable that the cooling rate of the widthwise end portions G2B, G2B of the glass ribbon G2 is slower than the cooling rate of the widthwise central portion G2A of the glass ribbon G2. If the cooling rate of the width direction both ends G2B, G2B is slower than the cooling rate of the width direction center part G2A, the viscosity of both ends becomes difficult to increase, the width direction both ends G2B, G2B are thin, and the width direction center part G2A is thin. tends to be thick.
 ガラスリボンG2の幅方向両端部G2B,G2Bの冷却速度は、ガラスリボンG2の幅方向中央部G2Aの冷却速度よりも0.3℃/m以上遅いことが好ましい。0.3℃/m以上遅ければ、幅方向両端部G2B,G2Bの粘性が上昇しにくくなり、幅方向両端部G2B,G2Bは薄く、幅方向中央部G2Aは厚くなりやすい。幅方向両端部G2B,G2Bの冷却速度は、幅方向中央部G2Aの冷却速度よりも0.4℃/m以上遅くてもよく、0.5℃/m以上遅くてもよい。 It is preferable that the cooling rate of the widthwise end portions G2B, G2B of the glass ribbon G2 is slower than the cooling rate of the widthwise central portion G2A of the glass ribbon G2 by 0.3°C/m or more. If the rate is slower by 0.3° C./m or more, the viscosity at both ends G2B and G2B in the width direction is less likely to increase, and both ends G2B and G2B in the width direction tend to be thinner and the central portion G2A in the width direction tends to be thicker. The cooling rate of the widthwise end portions G2B, G2B may be slower than the cooling rate of the widthwise central portion G2A by 0.4° C./m or more, or may be slower by 0.5° C./m or more.
 また、溶融金属面上のガラスリボンG2の幅方向両端部G2B,G2Bの粘性が104.9(dPa・sec)である位置と106.1(dPa・sec)である位置との距離が、15m以上となるように、幅方向両端部G2B,G2Bの加熱温度を制御することが好ましい。15m以上であれば、幅方向両端部G2B,G2Bの粘性が上昇しにくくなり、幅方向両端部G2B,G2Bは薄く、幅方向中央部G2Aは厚くなりやすい。前記距離は、16m以上がより好ましく、16.5m以上がさらに好ましい。ここで、ガラスリボンG2の粘性は、ガラスリボンG2の温度を放射温度計により測定し、測定した温度からガラスの粘性曲線(Fulcher式)を利用して算出される。なお、本明細書において、ガラスリボンG2の幅方向の端部の粘性を表記する場合、上述したように、その端部とは、ガラスリボンG2の端から幅方向中央へ50mmの位置を示す。 Further, the distance between the position where the viscosity of the glass ribbon G2 on both width direction ends G2B, G2B on the surface of the molten metal is 10 4.9 (dPa·sec) and the position where the viscosity is 10 6.1 (dPa·sec) is , 15 m or more. If it is 15 m or more, the viscosity of the widthwise end portions G2B, G2B is less likely to increase, the widthwise end portions G2B, G2B tend to be thin, and the widthwise center portion G2A tends to be thick. The distance is more preferably 16 m or longer, and even more preferably 16.5 m or longer. Here, the viscosity of the glass ribbon G2 is calculated by measuring the temperature of the glass ribbon G2 with a radiation thermometer and using the viscosity curve (Fulcher formula) of the glass from the measured temperature. In addition, in this specification, when the viscosity at the end of the glass ribbon G2 in the width direction is described, the end indicates a position 50 mm from the end of the glass ribbon G2 to the center in the width direction, as described above.
 一方、溶融金属面上のガラスリボンG2の幅方向両端部G2B,G2Bの粘性が104.9(dPa・sec)である位置と106.1(dPa・sec)である位置との距離が、30m以下となるように、幅方向両端部G2B,G2Bの加熱温度を制御することが好ましい。30m以下であれば、ガラスリボンが十分に冷却されやすい。前記距離は、25m以下であってもよく、20m以下であってもよい。 On the other hand, the distance between the position where the viscosity of the glass ribbon G2 in the width direction both ends G2B, G2B on the surface of the molten metal is 10 4.9 (dPa·sec) and the position where the viscosity is 10 6.1 (dPa·sec) is , 30 m or less. If it is 30 m or less, the glass ribbon will be sufficiently cooled easily. The distance may be 25m or less, or may be 20m or less.
 また、ヒータ24により加熱されたガラスリボンG2の幅方向両端部G2B,G2Bの上面にトップロール23を載せ、このトップロール23の働きによって所望の幅、厚さ、形状となるようにガラスリボンを成形する。このとき、各トップロール23の周速度は、下流側に位置するものほど速くなるように調整されることが好ましい。また、凸形ガラス100を製造するときの周速度は、ガラスリボンG2の進行方向X上流のトップロール23Aの周速度を下流のトップロール23Bの周速度よりも遅くなるように、複数のトップロール23を回転させることが好ましい。また、中央部ヒータ24Aを実質的に使用せず、端部ヒータ24Bのみにより加熱することで、ガラスリボンの幅方向両端部G2B,G2Bの粘性が幅方向中央部G2Aよりも上昇しにくくなる。これにより、上流のトップロール23Aの回転軸の両側へ広がるガラスリボンG2の幅を広げる際にガラスリボンG2の幅方向両端部G2B,G2Bは薄く、幅方向中央部G2Aは厚くすることができる。 Further, a top roll 23 is placed on the upper surface of the width direction end portions G2B, G2B of the glass ribbon G2 heated by the heater 24, and the glass ribbon is formed into a desired width, thickness and shape by the action of the top roll 23. to mold. At this time, it is preferable that the circumferential speed of each top roll 23 is adjusted so that the speed of the top roll 23 becomes faster as it is located on the downstream side. In addition, the peripheral speed when manufacturing the convex glass 100 is such that the peripheral speed of the upstream top roll 23A in the traveling direction X of the glass ribbon G2 is slower than the peripheral speed of the downstream top roll 23B. 23 is preferably rotated. Further, by heating only with the end heaters 24B without substantially using the center heater 24A, the viscosity of the width direction both end portions G2B, G2B of the glass ribbon is less likely to rise than the width direction center portion G2A. As a result, when widening the width of the glass ribbon G2 that spreads to both sides of the rotation shaft of the upstream top roll 23A, the widthwise end portions G2B, G2B of the glass ribbon G2 can be made thinner, and the widthwise central portion G2A can be made thicker.
 上流のトップロール23Aとは、溶融金属浴21内において進行するガラスリボンG2の幅方向両端部G2B,G2Bに配される複数対のトップロール23のうち、溶解窯11に近いトップロール23を指し、溶解窯11に最も近い1対のみでもよく、溶解窯11に近い2対でもよく、3対でもよい。好ましくは、2対である。特に、溶解窯11に最も近い1対のトップロール23を最上流のトップロール23Aという。下流のトップロール23Bとは、トップロール23のうち、徐冷室31に近いトップロールのことを指し、徐冷室31に最も近い1対のみでもよく、徐冷室31に近い2対でもよく、3対でもよい。特に、徐冷室31に最も近い1対のトップロール23を最下流のトップロール23Bという。なお、図1(A)及び(B)には、上流のトップロール23Aが2対であり、下流のトップロール23Bが2対である例が図示されている。 The upstream top roll 23A refers to the top roll 23 closer to the melting kiln 11 among a plurality of pairs of top rolls 23 arranged at both ends G2B, G2B in the width direction of the glass ribbon G2 traveling in the molten metal bath 21. , may be only one pair closest to the melting kiln 11, two pairs close to the melting kiln 11, or three pairs. Two pairs are preferred. In particular, the pair of top rolls 23 closest to the melting kiln 11 is called the most upstream top roll 23A. The downstream top roll 23B refers to the top roll closest to the slow cooling chamber 31 among the top rolls 23, and may be only one pair closest to the slow cooling chamber 31, or two pairs close to the slow cooling chamber 31. , may be three pairs. In particular, the pair of top rolls 23 closest to the slow cooling chamber 31 is called the most downstream top roll 23B. 1A and 1B show two pairs of upstream top rolls 23A and two pairs of downstream top rolls 23B.
 ガラスリボンG2の幅方向両端部G2B,G2Bにトップロール23は、7~15対配置されることが好ましい。7~15対であれば、ガラスリボンG2を所定の厚さに調節することが容易になる。トップロール23は、8~13対配置されることがより好ましい。なお、図1(A)及び(B)には、トップロール23がガラスリボンG2の幅方向両端部G2B,G2Bに9対配置される例が図示されている。 It is preferable that 7 to 15 pairs of top rolls 23 are arranged at both ends G2B, G2B in the width direction of the glass ribbon G2. With 7 to 15 pairs, it becomes easy to adjust the thickness of the glass ribbon G2 to a predetermined thickness. More preferably, 8 to 13 pairs of top rolls 23 are arranged. FIGS. 1A and 1B show an example in which nine pairs of top rolls 23 are arranged at both ends G2B and G2B in the width direction of the glass ribbon G2.
 また、溶融金属面上のガラスリボンG2の幅方向両端部G2B,G2Bの粘性が105.3(dPa・sec)以下である領域(以下、低粘度領域という)において、幅方向両端部G2B,G2Bに配置されるトップロール23は、8対以下であってもよく、7対以下であってもよく、6対以下であってもよく、5本以下であってもよく、3対以下であってもよい。 Further, in a region where the viscosity of the width direction end portions G2B, G2B of the glass ribbon G2 on the molten metal surface is 10 5.3 (dPa·sec) or less (hereinafter referred to as a low viscosity region), the width direction end portions G2B, The top rolls 23 arranged in G2B may be 8 pairs or less, 7 pairs or less, 6 pairs or less, 5 pairs or less, or 3 pairs or less. There may be.
 一方、溶融金属面上のガラスリボンG2の幅方向両端部G2B,G2Bの粘性が105.3(dPa・sec)超である領域(以下、高粘度領域という)において、幅方向両端部G2B,G2Bに配置されるトップロール23は、10対以下であってもよく、8対以下であってもよく、6対以下であってもよく、4本以下であってもよく、2対以下であってもよく、1対以下であってもよい。 On the other hand, in a region (hereinafter referred to as a high-viscosity region) in which the viscosity of the width direction end portions G2B, G2B of the glass ribbon G2 on the surface of the molten metal exceeds 10 5.3 (dPa·sec), the width direction end portions G2B, The top rolls 23 arranged in G2B may be 10 pairs or less, 8 pairs or less, 6 pairs or less, 4 pairs or less, or 2 pairs or less. There may be one pair or less.
 上流のトップロール23Aは低粘度領域に配置されてもよく、下流のトップロール23Bは高粘度領域に配置されてもよい。 The upstream top roll 23A may be arranged in the low viscosity region, and the downstream top roll 23B may be arranged in the high viscosity region.
 溶融金属面上のガラスリボンG2の幅方向両端部G2B,G2Bの粘性が105.3(dPa・sec)以下である領域(低粘度領域)に配置されるトップロール23において、進行方向Xで隣り合う少なくとも1組のトップロール23,23の周速度の差は、35(m/時)以上であることが好ましい。35(m/時)以上であれば、ガラスリボンG2の粘性が105.3(dPa・sec)以下である領域において、ガラスリボンG2は下流方向X2へ引っ張られ、幅方向両端部G2B,G2Bを薄くできる。その結果、幅方向両端部G2B,G2Bは薄く、幅方向中央部G2Aは厚くなることにより、幅方向Yの断面が凸形状の板ガラスが製造される。 In the top roll 23 arranged in the region (low viscosity region) where the viscosity of the width direction end portions G2B, G2B of the glass ribbon G2 on the surface of the molten metal is 10 5.3 (dPa·sec) or less (low viscosity region), in the traveling direction X The difference in circumferential speed between at least one pair of adjacent top rolls 23, 23 is preferably 35 (m/hour) or more. If it is 35 (m/h) or more, the glass ribbon G2 is pulled in the downstream direction X2 in the region where the viscosity of the glass ribbon G2 is 10 5.3 (dPa·sec) or less, and the width direction both ends G2B, G2B can be made thinner. As a result, the widthwise end portions G2B and G2B are thin, and the widthwise center portion G2A is thick, so that the sheet glass having a convex cross section in the widthwise direction Y is manufactured.
 溶融金属浴21でのガラスリボンG2の幅方向両端部G2B,G2Bの粘性が、105.3(dPa・sec)以下である領域において、進行方向Xにおいて隣り合う少なくとも1組のトップロール23,23の周速度の差は、40(m/時)以上であってもよく、45(m/時)以上であってもよく、50(m/時)以上であってもよい。 At least one set of top rolls 23, 23 may be 40 (m/h) or more, 45 (m/h) or more, or 50 (m/h) or more.
 一方、溶融金属面上のガラスリボンG2の幅方向両端部G2B,G2Bの粘性が105.3(dPa・sec)以下である領域(低粘度領域)に配置されるトップロール23において、進行方向Xにおいて隣り合う少なくとも1組のトップロール23,23の周速度の差は、100(m/時)以下であることが好ましい。100(m/時)以下であれば、ガラスリボンG2の厚さを調整しやすい。80(m/時)以下であってもよく、60(m/時)以下であってもよい。 On the other hand, in the top roll 23 arranged in the region (low viscosity region) where the viscosity of the width direction end portions G2B, G2B of the glass ribbon G2 on the surface of the molten metal is 10 5.3 (dPa·sec) or less, The difference in peripheral speed between at least one pair of top rolls 23, 23 adjacent to each other in X is preferably 100 (m/hour) or less. If it is 100 (m/h) or less, it is easy to adjust the thickness of the glass ribbon G2. It may be 80 (m/h) or less, or 60 (m/h) or less.
 最上流のトップロール23Aの周速度Rは、120(m/時)以下であることが好ましい。120(m/時)以下であれば、最上流の一対のトップロール23Aの回転軸の両側へ広がるガラスリボンG2の幅を広げることができる。その結果、ガラスリボンG2の幅方向両端部G2B,G2Bは、薄く、幅方向中央部G2Aは、厚くなりやすい。最上流のトップロール23Aの周速度Rは、110(m/時)以下であってもよく、100(m/時)以下であってもよく、90(m/時)以下であってもよく、80(m/時)以下であってもよく、70(m/時)以下であってもよく、60(m/時)以下であってもよい。 The peripheral speed R of the most upstream top roll 23A is preferably 120 (m/h) or less. If it is 120 (m/h) or less, the width of the glass ribbon G2 that spreads to both sides of the rotating shaft of the pair of top rolls 23A on the most upstream side can be widened. As a result, the widthwise end portions G2B, G2B of the glass ribbon G2 tend to be thin, and the widthwise central portion G2A tends to be thick. The peripheral speed R of the most upstream top roll 23A may be 110 (m/h) or less, 100 (m/h) or less, or 90 (m/h) or less. , 80 (m/h) or less, 70 (m/h) or less, or 60 (m/h) or less.
 一方、最上流のトップロール23Aの周速度Rは、30(m/時)以上であることが好ましい。30(m/時)以上であれば、ガラスリボンG2の厚さを調整しやすい。最上流のトップロール23Aの周速度Rは、40(m/時)以上であってもよく、50(m/時)以上であってもよい。 On the other hand, the peripheral speed R of the most upstream top roll 23A is preferably 30 (m/h) or more. If it is 30 (m/hour) or more, it is easy to adjust the thickness of the glass ribbon G2. The peripheral speed R of the most upstream top roll 23A may be 40 (m/hour) or more, or may be 50 (m/hour) or more.
 図4は、トップロール23の拡大図である。図4に示すように、ガラスリボンG2の厚さを調節するために、ガラスリボンG2の進行方向Xとトップロール23の回転軸方向Jとのなす角度Dを調節してもよい。最上流のトップロール23Aの角度Dを、75°~90°となるように調節し、最下流のトップロール23Bの角度Dを90°~105°となるように調節することで、ガラスリボンG2の幅方向両端部G2B,G2Bの厚さを薄くしやすい。最上流のトップロール23Aの角度Dは、80°~85°とすることがより好ましく、81°~84°とすることがさらに好ましい。最下流のトップロール23Bの角度Dは、95°~100°とすることがより好ましく、96~99°とすることがさらに好ましい。 FIG. 4 is an enlarged view of the top roll 23. FIG. As shown in FIG. 4, in order to adjust the thickness of the glass ribbon G2, the angle D between the traveling direction X of the glass ribbon G2 and the rotation axis direction J of the top roll 23 may be adjusted. By adjusting the angle D of the most upstream top roll 23A to 75° to 90° and adjusting the angle D of the most downstream top roll 23B to 90° to 105°, the glass ribbon G2 It is easy to reduce the thickness of the width direction both ends G2B and G2B. The angle D of the most upstream top roll 23A is more preferably 80° to 85°, more preferably 81° to 84°. The angle D of the most downstream top roll 23B is more preferably 95° to 100°, more preferably 96 to 99°.
 また、成形部20や徐冷部30でのガラスリボンG2の進行速度を調節することで溶融金属浴21上流でのガラスリボンG2を幅方向Yに広げることが容易になり、ガラスリボンG2の幅方向両端部G2B,G2Bの厚さを薄くできる。 In addition, by adjusting the traveling speed of the glass ribbon G2 in the molding section 20 and the slow cooling section 30, it becomes easy to spread the glass ribbon G2 in the width direction Y upstream of the molten metal bath 21, and the width of the glass ribbon G2 is reduced. The thickness of both direction end portions G2B, G2B can be reduced.
 成形部20や徐冷部30でのガラスリボンG2の進行速度は、200~1500(m/時)であってもよい。成形部20や徐冷部30でのガラスリボンG2の進行速度を200~1500(m/時)とすることで溶融金属浴21上流でのガラスリボンG2を幅方向Yに広げることが容易になり、ガラスリボンG2の幅方向両端部G2B,G2Bの厚さを薄くしやすい。ガラスリボンのG2の進行速度は、500(m/時)以上であってもよく、600(m/時)以上であってもよく、700(m/時)以上であってもよい。一方、ガラスリボンのG2の進行速度は、1300(m/時)以下であってもよく、1100(m/時)以下であってもよく、900(m/時)以下であってもよい。 The traveling speed of the glass ribbon G2 in the molding section 20 and the slow cooling section 30 may be 200 to 1500 (m/hour). By setting the traveling speed of the glass ribbon G2 in the molding section 20 and the slow cooling section 30 to 200 to 1500 (m/h), it becomes easy to spread the glass ribbon G2 in the width direction Y upstream of the molten metal bath 21. , the width direction end portions G2B, G2B of the glass ribbon G2 can be easily reduced in thickness. The traveling speed of G2 of the glass ribbon may be 500 (m/h) or more, 600 (m/h) or more, or 700 (m/h) or more. On the other hand, the traveling speed of G2 of the glass ribbon may be 1300 (m/h) or less, 1100 (m/h) or less, or 900 (m/h) or less.
 本発明の一実施形態に係る製造方法により製造される板ガラスの厚さの最大値Tと最小値Mとの差(T-M)は、0.1mm以上であることが好ましい。差(T-M)が0.1mm以上であれば、フロントガラスの水平面に対する角度が大きい車両に取り付けられても、情報表示用ガラスとして用いたときに二重像の発生を軽減することができる。ここで、板ガラスの厚さの最大値Tと最小値Mとの差(T-M)とは、トップロール23による歪が生じているガラスリボンG2の幅方向Yの両端を切断機により切断して取り除いたことにより得られた凸形ガラス100の厚さの最大値と最小値との差である。差(T-M)は0.2mm以上であってもよく、0.3mm以上であってもよく、0.4mm以上であってもよく、0.5mm以上であってもよい。一方、差(T-M)は、1.5mm以下であってもよい。1.5mm以下であれば、フロントガラスの水平面に対する角度が小さい車両に取り付けられても、情報表示用ガラスとして用いたときに反射像の歪みを抑制できる。差(T-M)は、1.3mm以下であってもよく、1.2mm以下であってもよく、1.1mm以下であってもよく、1.0mm以下であってもよい。この板ガラスを、例えば、自動車のフロントガラスとして用いた場合、フロントガラスを取り付ける角度、および情報を表示させるための照射機の取り付け角度と位置によって、最適な板ガラスの厚さの最大値Tと最小値Mとの差(T-M)が選択される。 The difference (TM) between the maximum value T and the minimum value M of the thickness of the plate glass manufactured by the manufacturing method according to one embodiment of the present invention is preferably 0.1 mm or more. If the difference (TM) is 0.1 mm or more, it is possible to reduce the occurrence of double images when used as information display glass even when the glass is installed in a vehicle with a large angle of the windshield with respect to the horizontal plane. . Here, the difference (TM) between the maximum value T and the minimum value M of the thickness of the plate glass is obtained by cutting both ends in the width direction Y of the glass ribbon G2 distorted by the top roll 23 with a cutting machine. It is the difference between the maximum and minimum values of the thickness of the convex glass 100 obtained by removing the convex glass. The difference (TM) may be 0.2 mm or more, 0.3 mm or more, 0.4 mm or more, or 0.5 mm or more. On the other hand, the difference (TM) may be 1.5 mm or less. If the thickness is 1.5 mm or less, distortion of a reflected image can be suppressed when the glass is used as information display glass even if the glass is installed in a vehicle with a small angle of the windshield with respect to the horizontal plane. The difference (TM) may be 1.3 mm or less, 1.2 mm or less, 1.1 mm or less, or 1.0 mm or less. When this plate glass is used, for example, as a windshield of an automobile, the maximum value T and the minimum value of the optimum thickness of the plate glass are determined depending on the angle at which the windshield is attached and the angle and position at which the irradiator for displaying information is attached. The difference (TM) from M is selected.
 本発明の一実施形態に係る製造方法により製造される板ガラスは、板ガラス主表面のJIS B 0601:2001規定の基準長さ25mmにおける粗さ曲線の最大高さRzが0.3μm以下であることが好ましい。板ガラス主表面のRzが0.3μm以下であれば、例えば、板ガラスを情報表示用ガラスとして用いた場合に、ガラスを通して見た景色が、歪まずに見える。また、板ガラスに情報を表示させたときの反射像が歪みにくい。ここで、粗さ曲線は形状波形により表される。Rzは、0.25μm以下がより好ましく、0.2μm以下がさらに好ましく、0.18μm以下が特に好ましく、0.16μm以下が最も好ましい。板ガラス主表面のRzは、徐冷部30でのガラスリボンG2の進行速度Vを遅くすることにより、小さくできる。ここで、板ガラス主表面とは、溶融金属浴21においてガラスリボンG2が溶融金属22に接触していた面(以下、溶融金属接触面という。)、および溶融金属接触面に対向する溶融金属22に接触していなかった面(以下、溶融金属非接触面という)である。 In the sheet glass manufactured by the manufacturing method according to one embodiment of the present invention, the maximum height Rz of the roughness curve at the standard length of 25 mm specified in JIS B 0601:2001 on the main surface of the sheet glass is 0.3 μm or less. preferable. If the Rz of the main surface of the plate glass is 0.3 μm or less, for example, when the plate glass is used as information display glass, the scenery seen through the glass can be viewed without distortion. In addition, the reflected image is less likely to be distorted when information is displayed on the plate glass. Here, the roughness curve is represented by a shape waveform. Rz is more preferably 0.25 μm or less, still more preferably 0.2 μm or less, particularly preferably 0.18 μm or less, and most preferably 0.16 μm or less. The Rz of the main surface of the sheet glass can be reduced by slowing down the traveling speed V of the glass ribbon G2 in the slow cooling section 30 . Here, the plate glass main surface means the surface where the glass ribbon G2 was in contact with the molten metal 22 in the molten metal bath 21 (hereinafter referred to as the molten metal contact surface), and the molten metal 22 facing the molten metal contact surface. This is the surface that was not in contact (hereinafter referred to as the molten metal non-contact surface).
 図1(B)に示すように、溶融金属浴21のショルダ27Aよりも上流域における2つの側壁27,27間の距離W(2つの第一壁27B,27B間の距離)と、溶融金属浴21のショルダ27Aよりも下流域における2つの側壁27,27間の距離N(2つの第二壁27C,27C間の距離)と、の比W/Nは1.0超1.6以下とすることが好ましい(1.0<W/N≦1.6)。W/Nが1.6以下であれば、ショルダ27Aより上流域において溶融金属22がガラスリボンG2で覆われていない部分の面積が減少するため、溶融金属22の上流方向X1への流れが生じにくくなり、ガラスリボンG2の幅方向Yへの往復移動(スイング)が生じにくい。したがって、本実施形態の板ガラスの製造方法によって得られた凸形ガラス100(図2(A)参照)を切断して得られた楔形ガラス200(図2(B)参照)の楔角度βのばらつきを抑制できる。 As shown in FIG. 1B, the distance W between the two side walls 27, 27 (the distance between the two first walls 27B, 27B) in the upstream region of the shoulder 27A of the molten metal bath 21 and the distance W between the two first walls 27B, 27B The ratio W/N of the distance N between the two side walls 27, 27 (the distance between the two second walls 27C, 27C) in the downstream region of the shoulder 27A of 21 is more than 1.0 and 1.6 or less. is preferred (1.0<W/N≤1.6). If W/N is 1.6 or less, the area of the portion where the molten metal 22 is not covered with the glass ribbon G2 in the upstream region from the shoulder 27A decreases, so that the molten metal 22 flows in the upstream direction X1. reciprocating movement (swing) in the width direction Y of the glass ribbon G2 is less likely to occur. Therefore, the variation in the wedge angle β of the wedge-shaped glass 200 (see FIG. 2(B)) obtained by cutting the convex glass 100 (see FIG. 2(A)) obtained by the manufacturing method of the sheet glass of the present embodiment can be suppressed.
 比W/Nが1.0超であれば、ショルダ27Aより下流域における2つの側壁27,27間の距離を狭くでき、溶融金属浴21内の溶融金属22の量を削減できる。 If the ratio W/N exceeds 1.0, the distance between the two side walls 27, 27 in the downstream region from the shoulder 27A can be narrowed, and the amount of molten metal 22 in the molten metal bath 21 can be reduced.
 比W/Nは、1.1以上であることがより好ましく、1.3以上であることがさらに好ましい。また、上記W/Nは、1.55以下であることがより好ましく、1.50以下であることがさらに好ましい。 The ratio W/N is more preferably 1.1 or more, even more preferably 1.3 or more. Moreover, the W/N is more preferably 1.55 or less, and even more preferably 1.50 or less.
 上流壁25から下流壁26までの長さL(図1(B)参照)に対し、上流壁25から20%の位置(上流壁25から下流方向X2に0.2Lの位置)において、溶融金属面上のガラスリボンG2の幅方向中央部G2Aの粘性が10^(4.5)(dPa・sec)以上となるように、ガラスリボンG2はヒータ24によって加熱されることが好ましい。幅方向中央部G2Aの粘性が10^(4.5)(dPa・sec)以上であれば、幅方向両端部G2B,G2Bは薄く、幅方向中央部G2Aは厚くなりやすい。したがって、本実施形態の板ガラスの製造方法によって得られた凸形ガラス100(図2(A)参照)を切断して得られた楔形ガラス200(図2(B)参照)の楔角度βを大きくできる。 The molten metal It is preferable that the glass ribbon G2 is heated by the heater 24 so that the viscosity of the central portion G2A in the width direction of the glass ribbon G2 on the surface becomes 10̂(4.5) (dPa·sec) or more. If the viscosity of the widthwise central portion G2A is 10̂(4.5) (dPa·sec) or more, the widthwise end portions G2B, G2B tend to be thin, and the widthwise central portion G2A tends to be thick. Therefore, the wedge angle β of the wedge-shaped glass 200 (see FIG. 2(B)) obtained by cutting the convex glass 100 (see FIG. 2(A)) obtained by the manufacturing method of the plate glass of the present embodiment is increased. can.
 上流壁25から20%の位置(上流壁25から下流方向X2に0.2Lの位置)における、溶融金属面上のガラスリボンG2の幅方向中央部G2Aの粘性は、10^(5.0)(dPa・sec)以上であることがより好ましく、10^(5.3)(dPa・sec)以上であることがさらに好ましい。これは、ガラスリボンG2の幅方向中央部G2Aの温度が幅方向両端部G2B,G2Bの温度よりも相対的に下がり、楔角度βを大きくできるからである。 The viscosity of the central portion G2A in the width direction of the glass ribbon G2 on the surface of the molten metal at a position 20% from the upstream wall 25 (a position 0.2L in the downstream direction X2 from the upstream wall 25) is 10̂(5.0). (dPa·sec) or more is more preferable, and 10^(5.3) (dPa·sec) or more is even more preferable. This is because the temperature of the widthwise central portion G2A of the glass ribbon G2 is relatively lower than the temperatures of the widthwise end portions G2B, G2B, and the wedge angle β can be increased.
 上流壁25から下流壁26までの長さL(図1(B)参照)に対し、上流壁25から20%の位置(上流壁25から下流方向X2に0.2Lの位置)において、溶融金属面上のガラスリボンG2の幅方向中央部G2Aの粘性が10^(6.0)(dPa・sec)以下となるように、ガラスリボンG2はヒータ24によって加熱されることが好ましい。ガラスリボンG2の粘性が高すぎると、トップロール23がガラスリボンG2へ入り込みにくくなり、ガラスリボンG2の位置を制御することが難しくなるため、幅方向への往復運動(スイング)が生じやすくなってしまう。本実施形態では、幅方向中央部G2Aの粘性が10^(6.0)(dPa・sec)以下であるので、スイングの発生を抑制できる。 The molten metal It is preferable that the glass ribbon G2 is heated by the heater 24 so that the viscosity of the widthwise central portion G2A of the glass ribbon G2 on the surface becomes 10̂(6.0) (dPa·sec) or less. If the viscosity of the glass ribbon G2 is too high, it becomes difficult for the top roll 23 to enter the glass ribbon G2, making it difficult to control the position of the glass ribbon G2. put away. In this embodiment, since the viscosity of the widthwise central portion G2A is 10̂(6.0) (dPa·sec) or less, the occurrence of swing can be suppressed.
 上流壁25から20%の位置(上流壁25から下流方向X2に0.2Lの位置)における、溶融金属面上のガラスリボンG2の幅方向中央部G2Aの粘性は、10^(5.8)(dPa・sec)以下であることがより好ましく、10^(5.6)(dPa・sec)以下であることがさらに好ましい。これは、ガラスリボンG2の粘性が低いほどトップロール23がガラスリボンG2へ入り込みやすくなり、スイングの発生を抑制できるためである。 The viscosity of the central portion G2A in the width direction of the glass ribbon G2 on the surface of the molten metal at a position 20% from the upstream wall 25 (a position 0.2L in the downstream direction X2 from the upstream wall 25) is 10̂(5.8). (dPa·sec) or less is more preferable, and 10̂(5.6) (dPa·sec) or less is even more preferable. This is because the lower the viscosity of the glass ribbon G2, the easier it is for the top roll 23 to enter the glass ribbon G2, thereby suppressing the occurrence of swing.
 上流壁25から下流壁26までの長さL(図1(B)参照)に対し、上流壁25から32%の位置(上流壁25から下流方向X2に0.32Lの位置)において、溶融金属面上のガラスリボンG2の幅方向中央部G2Aの温度Iと溶融金属22の幅方向両端部の温度Kとの差(I-K)が62℃以下であることが好ましい。温度の差(I-K)が62℃以下であれば、ガラスリボンG2の幅方向両端部と幅方向中央部との粘性の差が小さくなり、幅方向両端部G2B,G2Bは薄く、幅方向中央部G2Aは厚くなりやすい。温度の差(I-K)は、50℃以下がより好ましく、40℃以下がさらに好ましい。温度の差(I-K)の下限は、過度なヒータ24への出力を抑えるため、0℃以上であってもよく、10℃以上であってもよく、15℃以上であってもよい。なお、溶融金属22の幅方向両端部の温度Kは、溶融金属浴21の2つの側壁27,27からそれぞれ幅方向中央へ50mmの位置における温度を意味する。 The molten metal It is preferable that the difference (I−K) between the temperature I of the central portion G2A in the width direction of the glass ribbon G2 on the surface and the temperature K of both ends in the width direction of the molten metal 22 is 62° C. or less. If the temperature difference (I−K) is 62° C. or less, the difference in viscosity between the width direction end portions and the width direction center portion of the glass ribbon G2 is small, and the width direction end portions G2B and G2B are thin and the width direction is thin. The central portion G2A tends to be thick. The temperature difference (I−K) is more preferably 50° C. or less, more preferably 40° C. or less. The lower limit of the temperature difference (I−K) may be 0° C. or higher, 10° C. or higher, or 15° C. or higher in order to suppress excessive output to the heater 24 . The temperature K at both ends in the width direction of the molten metal 22 means the temperature at positions 50 mm from the two side walls 27 of the molten metal bath 21 to the center in the width direction.
 上流壁25から下流壁26までの長さL(図1(B)参照)に対し、上流壁25から32%の位置(上流壁25から下流方向X2に0.32Lの位置)において、溶融金属面上のガラスリボンG2の幅方向中央部G2Aの粘性が10^(4.7)(dPa・sec)以上となるように、ガラスリボンG2はヒータ24によって加熱されることが好ましい。幅方向中央部G2Aの粘性が10^(4.7)(dPa・sec)以上であれば、幅方向両端部G2B,G2Bは薄く、幅方向中央部G2Aは厚くなりやすい。したがって、本実施形態の板ガラスの製造方法によって得られた凸形ガラス100(図2(A)参照)を切断して得られた楔形ガラス200(図2(B)参照)の楔角度βを大きくできる。 The molten metal It is preferable that the glass ribbon G2 is heated by the heater 24 so that the viscosity of the central portion G2A in the width direction of the glass ribbon G2 on the surface becomes 10̂(4.7) (dPa·sec) or more. If the viscosity of the widthwise central portion G2A is 10̂(4.7) (dPa·sec) or more, the widthwise end portions G2B and G2B tend to be thin, and the widthwise central portion G2A tends to be thick. Therefore, the wedge angle β of the wedge-shaped glass 200 (see FIG. 2(B)) obtained by cutting the convex glass 100 (see FIG. 2(A)) obtained by the manufacturing method of the plate glass of the present embodiment is increased. can.
 上流壁25から32%の位置(上流壁25から下流方向X2に0.32Lの位置)における、溶融金属面上のガラスリボンG2の幅方向中央部G2Aの粘性は、10^(5.0)(dPa・sec)以上であることがより好ましく、10^(5.3)(dPa・sec)以上であることがさらに好ましい。これは、ガラスリボンG2の幅方向中央部G2Aの温度が幅方向両端部G2B,G2Bの温度よりも下がり、楔角度βを大きくできるからである。 The viscosity of the central portion G2A in the width direction of the glass ribbon G2 on the surface of the molten metal at a position 32% from the upstream wall 25 (a position 0.32L in the downstream direction X2 from the upstream wall 25) is 10̂(5.0). (dPa·sec) or more is more preferable, and 10^(5.3) (dPa·sec) or more is even more preferable. This is because the temperature of the widthwise central portion G2A of the glass ribbon G2 is lower than the temperature of the widthwise end portions G2B, G2B, and the wedge angle β can be increased.
 上流壁25から下流壁26までの長さL(図1(B)参照)に対し、上流壁25から32%の位置(上流壁25から下流方向X2に0.32Lの位置)において、溶融金属面上のガラスリボンG2の幅方向中央部G2Aの粘性が10^(6.3)(dPa・sec)以下となるように、ガラスリボンG2はヒータ24によって加熱されることが好ましい。ガラスリボンG2の粘性が高すぎると、トップロール23がガラスリボンG2へ入り込みにくくなり、ガラスリボンG2の位置を制御することが難しくなるため、幅方向への往復運動(スイング)が生じやすくなってしまう。本実施形態では、幅方向中央部G2Aの粘性が10^(6.3)(dPa・sec)以下であるので、スイングの発生を抑制できる。 The molten metal It is preferable that the glass ribbon G2 is heated by the heater 24 so that the viscosity of the central portion G2A in the width direction of the glass ribbon G2 on the surface becomes 10̂(6.3) (dPa·sec) or less. If the viscosity of the glass ribbon G2 is too high, it becomes difficult for the top roll 23 to enter the glass ribbon G2, making it difficult to control the position of the glass ribbon G2. put away. In this embodiment, since the viscosity of the widthwise central portion G2A is 10̂(6.3) (dPa·sec) or less, the occurrence of swing can be suppressed.
 上流壁25から32%の位置(上流壁25から下流方向X2に0.32Lの位置)における、溶融金属面上のガラスリボンG2の幅方向中央部G2Aの粘性は、10^(6.0)(dPa・sec)以下であることがより好ましく、10^(5.8)(dPa・sec)以下であることがさらに好ましい。これは、ガラスリボンG2の粘性が低いほどトップロール23がガラスリボンG2へ入り込みやすくなり、スイングの発生を抑制できるためである。 The viscosity of the central portion G2A in the width direction of the glass ribbon G2 on the surface of the molten metal at a position 32% from the upstream wall 25 (a position 0.32L in the downstream direction X2 from the upstream wall 25) is 10̂(6.0). (dPa·sec) or less is more preferable, and 10̂(5.8) (dPa·sec) or less is even more preferable. This is because the lower the viscosity of the glass ribbon G2, the easier it is for the top roll 23 to enter the glass ribbon G2, thereby suppressing the occurrence of swing.
 溶融金属浴21における(上流壁25から下流壁26までの間に位置する)ガラスリボンG2の幅方向Yの最大幅cと溶融金属浴21の最下流におけるガラスリボンG2の幅方向Yの長さbの比c/bが1.4~2.2であることが好ましい(1.4≦c/b≦2.2)。比c/bが1.4~2.2であれば、溶融金属22がガラスリボンG2で覆われていない部分の面積が減少するため、溶融金属22の上流方向X1への流れが生じにくくなり、ガラスリボンG2の幅方向Yへの往復移動(スイング)が生じにくい。 The maximum width c in the width direction Y of the glass ribbon G2 (located between the upstream wall 25 and the downstream wall 26) in the molten metal bath 21 and the length in the width direction Y of the glass ribbon G2 at the most downstream side of the molten metal bath 21 The ratio c/b of b is preferably 1.4 to 2.2 (1.4≤c/b≤2.2). If the ratio c/b is 1.4 to 2.2, the area of the portion where the molten metal 22 is not covered with the glass ribbon G2 decreases, so that the molten metal 22 is less likely to flow in the upstream direction X1. , reciprocating movement (swing) in the width direction Y of the glass ribbon G2 is less likely to occur.
 なお、比c/bは、1.6以上であることがより好ましく、1.7以上であることがさらに好ましい。比c/bは、2.1以下であることがより好ましく、2.0以下であることがさらに好ましい。溶融金属浴21におけるガラスリボンG2の幅方向の長さは、ガラスリボンG2をカメラにより撮影して得られた画像およびトップロールの位置から求められる。 The ratio c/b is more preferably 1.6 or more, and even more preferably 1.7 or more. The ratio c/b is more preferably 2.1 or less, even more preferably 2.0 or less. The length in the width direction of the glass ribbon G2 in the molten metal bath 21 is obtained from the image obtained by photographing the glass ribbon G2 with a camera and the position of the top roll.
 上流壁25から下流壁26までの長さLに対し、上流壁25から35%の位置(上流壁25から下流方向X2に0.35Lの位置)におけるガラスリボンG2の幅a(不図示)と、溶融金属浴21の最下流におけるガラスリボンG2の幅方向Yの長さb(不図示)と、の比a/bは1.0~1.9であることが好ましい(1.0≦a/b≦1.9)。比a/bは1.0~1.9であれば、溶融金属22がガラスリボンG2で覆われていない部分の面積が減少するため、溶融金属22の上流方向X1への流れが生じにくくなり、ガラスリボンG2の幅方向Yへの往復移動(スイング)が生じにくい。 A width a (not shown) of the glass ribbon G2 at a position 35% from the upstream wall 25 (0.35 L in the downstream direction X2 from the upstream wall 25) with respect to the length L from the upstream wall 25 to the downstream wall 26; , the length b (not shown) in the width direction Y of the glass ribbon G2 at the most downstream of the molten metal bath 21, and the ratio a/b is preferably 1.0 to 1.9 (1.0 ≤ a /b≤1.9). When the ratio a/b is 1.0 to 1.9, the area of the portion where the molten metal 22 is not covered with the glass ribbon G2 is reduced, so that the molten metal 22 is less likely to flow in the upstream direction X1. , reciprocating movement (swing) in the width direction Y of the glass ribbon G2 is less likely to occur.
 なお、比a/bは、1.3以上であることがより好ましく、1.4以上であることがさらに好ましい。比a/bは、1.8以下であることがより好ましく、1.7以下であることがさらに好ましく、1.6以下であることが特に好ましい。 The ratio a/b is more preferably 1.3 or more, more preferably 1.4 or more. The ratio a/b is more preferably 1.8 or less, even more preferably 1.7 or less, and particularly preferably 1.6 or less.
 上流壁25から下流壁26までの長さLに対し、上流壁25から20%の位置(上流壁25から下流方向X2に0.2Lの位置)において、ガラスリボンG2の幅方向Yの長さA(不図示)とガラスリボンG2に覆われていない溶融金属面の幅方向Yの長さB(不図示)との比A/Bが4~11であることが好ましい(4≦A/B≦11)。長さBは、上流壁25から20%の位置(上流壁25から下流方向X2に0.2Lの位置)における、ガラスリボンG2の幅方向両側の溶融金属の幅方向Yの長さである。したがって、長さBは、溶融金属浴21のショルダ27Aよりも上流域における2つの側壁27,27間の距離W(図1(B)参照)から長さAを引いたものである(B=W-A)。このように、比A/Bが4~11に設定されるので、溶融金属22は広い範囲でガラスリボンG2に覆われ、溶融金属22の上流方向X1への流動が発生しにくくなり、ガラスリボンG2の幅方向Yの往復動(スイング)が抑制できる。長さBは、ガラスリボンG2に覆われていない溶融金属面をカメラにより撮影して得られた画像から求められる。 The length of the width direction Y of the glass ribbon G2 at a position 20% from the upstream wall 25 with respect to the length L from the upstream wall 25 to the downstream wall 26 (position of 0.2 L in the downstream direction X2 from the upstream wall 25) It is preferable that the ratio A/B between A (not shown) and the length B (not shown) in the width direction Y of the molten metal surface not covered with the glass ribbon G2 is 4 to 11 (4 ≤ A/B < 11). The length B is the length in the width direction Y of the molten metal on both sides in the width direction of the glass ribbon G2 at a position 20% from the upstream wall 25 (a position 0.2L in the downstream direction X2 from the upstream wall 25). Thus, the length B is the distance W between the two side walls 27, 27 in the region upstream of the shoulder 27A of the molten metal bath 21 (see FIG. 1B) minus the length A (B= WA). Thus, since the ratio A/B is set to 4 to 11, the molten metal 22 is covered with the glass ribbon G2 in a wide range, and the flow of the molten metal 22 in the upstream direction X1 is difficult to occur, and the glass ribbon The reciprocating motion (swing) of G2 in the width direction Y can be suppressed. The length B is determined from an image obtained by photographing the molten metal surface not covered with the glass ribbon G2 with a camera.
 なお、比A/Bが4より小さいと、溶融金属22の露出範囲が広くなり、ガラスリボンG2のスイングが発生しやすくなってしまう。また、比A/Bが11より大きいと、ガラスリボンG2の幅が溶融金属浴21に対して広くなり、トップロール23によりガラスリボンG2の幅を制御することが困難になったり、溶融金属浴21に設置される部材と干渉しやすくなったりするため、比A/Bを11以下で管理することが好ましい。また、比A/Bは、5以上であることがより好ましく、5.5以上であることがさらに好ましい。比A/Bは、10以下であることがより好ましく、9以下であることがさらに好ましい。 It should be noted that if the ratio A/B is less than 4, the exposed range of the molten metal 22 is widened, and the swing of the glass ribbon G2 tends to occur. Further, when the ratio A/B is greater than 11, the width of the glass ribbon G2 becomes wider than that of the molten metal bath 21, making it difficult to control the width of the glass ribbon G2 with the top roll 23. It is preferable to manage the ratio A/B at 11 or less because it is likely to interfere with members installed at 21 . Also, the ratio A/B is more preferably 5 or more, and even more preferably 5.5 or more. The ratio A/B is more preferably 10 or less, and even more preferably 9 or less.
 以上の板ガラスの製造方法により製造された板ガラスにより、楔形ガラス及び合わせガラスが製造される。
 本発明の一実施形態に係る楔形ガラス及び合わせガラスの製造方法について図2(A)~(B)および図3(A)~(C)を参照して説明する。ここでは、車両のフロントガラスに使用される合わせガラスの製造方法を例に挙げて説明する。
A wedge-shaped glass and a laminated glass are manufactured from the sheet glass manufactured by the method for manufacturing the sheet glass described above.
A method for manufacturing wedge-shaped glass and laminated glass according to an embodiment of the present invention will be described with reference to FIGS. Here, a method for manufacturing laminated glass used for windshields of vehicles will be described as an example.
 本発明の一実施形態に係る楔形ガラスの製造方法は、上記板ガラスの製造方法により得られた凸形状の板ガラス100を切断して楔形ガラス200を得る工程を有する。本発明の一実施形態に係る合わせガラスの製造方法は、上記板ガラスの製造方法により得られた凸形状の板ガラス100を切断して楔形ガラス200を得る工程と、楔形ガラス200と他の板ガラスとを中間膜を介して積層し圧着する工程と、を有する。 A method for manufacturing wedge-shaped glass according to an embodiment of the present invention includes a step of obtaining wedge-shaped glass 200 by cutting convex-shaped glass plate 100 obtained by the method for manufacturing plate glass described above. A method for manufacturing laminated glass according to an embodiment of the present invention includes a step of cutting convex-shaped sheet glass 100 obtained by the method for manufacturing sheet glass described above to obtain wedge-shaped glass 200, and separating wedge-shaped glass 200 from another sheet glass. and a step of stacking and press-bonding via an intermediate film.
 まず、上記板ガラスの製造方法により、幅方向の中央部に向かうに従って厚くなる凸形ガラス100が得られる(図2(A)参照)。この凸形ガラス100を所定の位置(図中のA部分)で切断することにより、幅方向一端より他端が厚い楔形ガラス200が得られる(図2(B)参照)。切断方法は限定されないが、例えば、凸形ガラス100にカッターで窓ガラスの形状にスクライブ線を形成し、ブレイクすることで凸形ガラス100が切り出され、楔形ガラス200が得られる。楔形ガラス200は、周縁を面取り加工される。 First, the convex glass 100 that becomes thicker toward the central portion in the width direction is obtained by the method for manufacturing the sheet glass described above (see FIG. 2(A)). By cutting the convex glass 100 at a predetermined position (A portion in the drawing), a wedge-shaped glass 200 having a widthwise one end thicker than the other end is obtained (see FIG. 2(B)). Although the cutting method is not limited, for example, the convex glass 100 is cut out by forming a scribe line in the shape of a window glass with a cutter on the convex glass 100 and breaking it to obtain the wedge-shaped glass 200 . The wedge-shaped glass 200 is chamfered on the periphery.
 次に、楔形ガラス200と他の板ガラスとの一対の板ガラスは、間に離型剤を介して重ね合わせた状態で重力曲げ等の方法により曲げられる。一対の板ガラスが、炉で加熱され軟化した状態で曲げ加工され、徐冷される。なお、曲げる方法は、重力曲げに限定されず、一対の板ガラスをプレス曲げで成形してもよいし、重ね合わせずに1枚ずつを曲げ加工してもよい。 Next, a pair of glass sheets, that is, the wedge-shaped glass 200 and another sheet glass are bent by a method such as gravity bending while being superimposed with a release agent interposed therebetween. A pair of plate glasses are bent in a softened state by being heated in a furnace, and then slowly cooled. The bending method is not limited to gravity bending, and a pair of plate glasses may be formed by press bending, or may be bent one by one without overlapping.
 次に、楔形ガラス200と他の板ガラスを中間膜を介して積層し、圧着することにより、合わせガラスが得られる。他の板ガラスは、楔形ガラス200であってもよいし、厚さが一定の板ガラスであってもよい。厚さが一定の板ガラスは、公知の方法により得られ、上述した切断方法により切り出される。他の板ガラスが楔形ガラス200である合わせガラス300(図3(A)及び(B)参照)は、フロントガラスの水平面に対する角度が大きい車両に取り付けられた場合に、情報を表示させたときの反射像が歪みにくい。他の板ガラスが、厚さが一定の板ガラスである合わせガラス400(図3(C)参照)は、フロントガラスを通して見た景色が、歪まずに見える。中間膜の材料としては、例えばポリビニルブチラールが挙げられる。 Next, the wedge-shaped glass 200 and another plate glass are laminated via an intermediate film and pressed together to obtain a laminated glass. The other sheet glass may be wedge-shaped glass 200 or sheet glass with a constant thickness. A plate glass of constant thickness is obtained by a known method and cut by the cutting method described above. The laminated glass 300 (see FIGS. 3A and 3B), in which the other sheet glass is the wedge-shaped glass 200, is installed in a vehicle with a large angle of the windshield with respect to the horizontal plane, and when information is displayed, the reflection Image is less distorted. The laminated glass 400 (see FIG. 3(C)), in which the other sheet glass is a sheet glass with a constant thickness, allows the scenery seen through the windshield to be viewed without distortion. Materials for the intermediate film include, for example, polyvinyl butyral.
 圧着するときは、まず、一対の板ガラスと中間膜との間の空気を抜く脱気処理を行うことによって、一対の板ガラスと中間膜とを加熱して接着する。例えば、一対の板ガラスと中間膜との重ね合わせ体をゴム袋の中に入れて減圧加熱することで、空気を抜くことができる。また、ニッパートップロール法又はラバーチャンネル法を用いて行われてもよい。次に、一対の板ガラスと中間膜との重ね合わせ体をオートクレーブで加圧処理することで、一対の板ガラスと中間膜とを加熱して接着する。中間膜として、例えばポリビニルブチラール(PVB)、エチレン酢酸ビニル(EVA)が用いられる。 When crimping, first, the pair of glass sheets and the intermediate film are heated and bonded by performing a degassing process to remove the air between the pair of glass sheets and the intermediate film. For example, air can be removed by putting a laminated body of a pair of plate glasses and an intermediate film in a rubber bag and heating it under reduced pressure. Alternatively, the nipper top roll method or the rubber channel method may be used. Next, the laminated body of the pair of plate glasses and the intermediate film is subjected to pressure treatment in an autoclave to heat and bond the pair of plate glasses and the intermediate film. For example, polyvinyl butyral (PVB) and ethylene vinyl acetate (EVA) are used as the intermediate film.
 次に、本発明の一実施形態に係る楔形ガラスについて説明する。
 図5(A)及び(B)は、本発明の一実施形態に係る楔形ガラス500を示す図であり、図5(A)は平面図、図5(B)は断面図である。
Next, a wedge-shaped glass according to one embodiment of the present invention will be described.
5A and 5B are diagrams showing a wedge-shaped glass 500 according to an embodiment of the present invention, FIG. 5A being a plan view and FIG. 5B being a cross-sectional view.
 本発明の一実施形態に係る楔形ガラス500は、例えば、上記した板ガラスの製造方法により得られた板ガラスを切断することによって得られる。切断方法は限定されないが、例えば、上記板ガラスにカッターで窓ガラスの形状にスクライブ線を形成し、ブレイクすることで本発明の一実施形態に係る楔形ガラス500が得られる。 The wedge-shaped glass 500 according to one embodiment of the present invention is obtained, for example, by cutting the plate glass obtained by the method for manufacturing the plate glass described above. Although the cutting method is not limited, for example, the wedge-shaped glass 500 according to one embodiment of the present invention can be obtained by forming a scribe line in the shape of a window glass on the plate glass with a cutter and breaking it.
 本発明の一実施形態に係る楔形ガラス500を車両のフロントガラスとして用いる場合、楔形ガラス500は、例えば厚さが最小となる辺502が下に位置するように車両に取り付けられ、フロントガラスの厚さが小さい下方に情報が表示される。 When the wedge-shaped glass 500 according to one embodiment of the present invention is used as a windshield of a vehicle, the wedge-shaped glass 500 is attached to the vehicle such that the side 502 having the smallest thickness is positioned downward, and the thickness of the windshield is Information is displayed at the lower part of the screen.
 本発明の一実施形態に係る楔形ガラス500は、少なくとも一つの主表面が凸面507であることを特徴とする。主表面が凸面507であることによって、板ガラスに情報を表示させたときの反射像が歪みにくい。また、主表面が凹面である場合と比べて、情報を表示させないフロントガラス上方の厚さが薄くなり、フロントガラスの重量を小さくでき、車両の燃費がよい。フロントガラスに情報を表示させる位置は下方に限定されず、上方であってもよく、左方または右方であってもよく、中央であってもよい。情報を表示させる位置の厚さが薄くなるように板ガラスは取り付けられる。情報を表示させる位置がいずれの場合であっても、主表面が凸面507であれば、情報を表示させない部分の厚さを、主表面が凹面である場合と比べ、フロントガラスの重量を小さくできる。 The wedge-shaped glass 500 according to one embodiment of the present invention is characterized in that at least one main surface is a convex surface 507 . Since the main surface is the convex surface 507, the reflected image is less likely to be distorted when information is displayed on the plate glass. In addition, compared to the case where the main surface is concave, the thickness of the upper part of the windshield where information is not displayed is thinner, the weight of the windshield can be reduced, and the fuel efficiency of the vehicle is improved. The position where the information is displayed on the windshield is not limited to the lower part, and may be the upper part, the left side, the right side, or the center. The plate glass is attached so that the thickness of the position where the information is to be displayed is thin. Regardless of the position where the information is displayed, if the main surface is the convex surface 507, the thickness of the portion where the information is not displayed can be reduced compared to the case where the main surface is concave, and the weight of the windshield can be reduced. .
 本発明の一実施形態に係る楔形ガラス500は、矩形であることが好ましい。楔形ガラス500が矩形であれば、搬送等の取り扱いが容易である。ここで、矩形とは、正確な矩形に限らず、辺が湾曲していてもよい。また、角の角度は90°に限らず、80~100°であればよい。 The wedge-shaped glass 500 according to one embodiment of the present invention is preferably rectangular. If the wedge-shaped glass 500 is rectangular, handling such as transportation is easy. Here, the rectangle is not limited to an exact rectangle, and may have curved sides. Further, the angle of the corner is not limited to 90°, and may be 80 to 100°.
 本発明の一実施形態に係る楔形ガラス500は、切欠きがあってもよく、角が円弧になっていてもよい。 The wedge-shaped glass 500 according to one embodiment of the present invention may have notches and may have arcuate corners.
 本発明の一実施形態に係る楔形ガラス500は、凸面507の重心Gを通り凸面507の4辺501、502、508、509のうち対向する2つの辺を最短距離で結ぶ線分503上で、線分503と凸面507の辺との交点504、505のうち、楔形ガラス500を水平な場所に置いたときに、鉛直方向の楔形ガラス500の厚さが小さい方の点を第1の点504とし、第1の点504から線分503の長さに対して2/5の長さの位置にある凸面507上の点を第2の点506とすると、第1の点504と第2の点506とを結んだ直線Hと、水平面とのなす角度αが0.020°~0.050°であることが好ましい。板ガラスの厚さは、例えば、レーザ変位計、マイクロゲージ、超音波厚さ計等によって求められ、角度αは測定された厚さから算出される。 The wedge-shaped glass 500 according to one embodiment of the present invention has a line segment 503 that passes through the center of gravity G of the convex surface 507 and connects two opposite sides of the four sides 501, 502, 508, and 509 of the convex surface 507 at the shortest distance. Among the intersection points 504 and 505 between the line segment 503 and the side of the convex surface 507, the point at which the thickness of the wedge-shaped glass 500 in the vertical direction is smaller when the wedge-shaped glass 500 is placed on a horizontal surface is designated as the first point 504. and a second point 506 is a point on the convex surface 507 which is 2/5 of the length of the line segment 503 from the first point 504. Then, the first point 504 and the second point The angle α between the straight line H connecting the point 506 and the horizontal plane is preferably 0.020° to 0.050°. The thickness of the plate glass is determined by, for example, a laser displacement gauge, microgauge, ultrasonic thickness gauge, etc., and the angle α is calculated from the measured thickness.
 フロントガラスが、フロントガラスの水平面に対する角度が小さい車両に取り付けられるとき、楔形ガラス500の角度αは小さい方が、フロントガラスに投影される投射像の二重像が軽減されるため好ましい。一方、フロントガラスが、フロントガラスの水平面に対する角度が大きい車両に取り付けられるとき、楔形ガラス500の角度αは大きい方が、フロントガラスに投影される投射像の二重像が軽減されるため好ましい。 When the windshield is installed in a vehicle with a small angle with respect to the horizontal plane of the windshield, it is preferable that the angle α of the wedge-shaped glass 500 is small because the double image of the projected image projected on the windshield is reduced. On the other hand, when the windshield is installed in a vehicle with a large angle with respect to the horizontal plane of the windshield, a large angle α of the wedge-shaped glass 500 is preferable because the double image of the projected image projected on the windshield is reduced.
 本発明の一実施形態に係る楔形ガラス500は、角度αが0.020°以上であることによって、フロントガラスの水平面に対する角度が大きい車両に取り付け、板ガラスに情報を表示させたときの二重像が軽減される。角度αは、0.023°以上であってもよく、0.025°以上であってもよく、0.030°以上であってもよく、0.033°以上であってもよい。また、角度αが0.050°以下であることによって、フロントガラスの水平面に対する角度が小さい車両に取り付けられても、板ガラスに情報を表示させたときの二重像が軽減される。角度αは、0.04°以下であってもよい。フロントガラスを取り付ける角度、および情報を表示させるための照射機の取り付け角度と位置によって、最適な角度αが選択される。 The wedge-shaped glass 500 according to one embodiment of the present invention has an angle α of 0.020° or more, so that when the windshield is attached to a vehicle having a large angle with respect to the horizontal plane and information is displayed on the plate glass, double images can be obtained. is reduced. The angle α may be 0.023° or more, 0.025° or more, 0.030° or more, or 0.033° or more. In addition, since the angle α is 0.050° or less, double images are reduced when information is displayed on the plate glass even when the windshield is attached to a vehicle having a small angle with respect to the horizontal plane. The angle α may be 0.04° or less. The optimum angle α is selected depending on the angle at which the windshield is attached and the angle and position at which the illuminator for displaying information is attached.
 本発明の一実施形態に係る楔形ガラス500は、楔形ガラス500の主表面のJIS B 0601:2001規定の基準長さ25mmにおける粗さ曲線の最大高さRzが0.3μm以下であることが好ましい。Rzが0.3μm以下であるため、楔形ガラス500を通して見た景色が、歪まずに見える。また、板ガラスに情報を表示させたときの反射像が歪みにくい。 In the wedge-shaped glass 500 according to one embodiment of the present invention, it is preferable that the maximum height Rz of the roughness curve at the reference length of 25 mm defined in JIS B 0601:2001 of the main surface of the wedge-shaped glass 500 is 0.3 μm or less. . Since Rz is 0.3 μm or less, the scenery seen through the wedge-shaped glass 500 can be seen without distortion. In addition, the reflected image is less likely to be distorted when information is displayed on the plate glass.
 本発明の一実施形態に係る楔形ガラス500は、楔形ガラス500の厚さの最大値Tと最小値Mとの差(T-M)が0.1mm以上であることが好ましい。板ガラスの厚さの最大値Tと最小値Mとの差(T-M)が0.1mm以上であるため、フロントガラスの水平面に対する角度が大きい車両に取り付け、情報表示用ガラスとして用いたときに二重像の発生を抑制できる。一方、差(T-M)は、1.5mm以下であってもよい。1.5mm以下であれば、フロントガラスの水平面に対する角度が小さい車両に取り付け、情報表示用ガラスとして用いたときに二重像の発生を抑制できる。差(T-M)は1.3mm以下であってもよく、1.2mm以下であってもよく、1.1mm以下であってもよく、1.0mm以下であってもよい。 In the wedge-shaped glass 500 according to one embodiment of the present invention, the difference (TM) between the maximum value T and the minimum value M of the thickness of the wedge-shaped glass 500 is preferably 0.1 mm or more. Since the difference (TM) between the maximum value T and the minimum value M of the thickness of the plate glass is 0.1 mm or more, it is installed in a vehicle where the angle of the windshield with respect to the horizontal plane is large, and when used as information display glass. It is possible to suppress the occurrence of double images. On the other hand, the difference (TM) may be 1.5 mm or less. If it is 1.5 mm or less, it is possible to suppress the occurrence of double images when it is installed in a vehicle in which the angle of the windshield with respect to the horizontal plane is small and used as information display glass. The difference (TM) may be 1.3 mm or less, 1.2 mm or less, 1.1 mm or less, or 1.0 mm or less.
 本発明の一実施形態に係る楔形ガラス500は、楔形ガラス500の厚さの最大値Tと最小値Mとの比T/Mが1.10~1.40であることが好ましい。T/Mが1.10以上であれば、フロントガラスの水平面に対する角度が大きい車両に取り付け、板ガラスに情報を表示させたときの二重像の発生を抑制できる。比T/Mは、1.12以上であってもよく、1.15以上であってもよく、1.20以上であってもよく、1.25以上であってもよい。また、比T/Mが1.40以下であれば、フロントガラスの水平面に対する角度が小さい車両に取り付けられても、板ガラスに情報を表示させたときの反射像の発生を抑制できる。比T/Mは、1.35以下であってもよく、1.30以下であってもよく、1.28以下であってもよい。フロントガラスを取り付ける角度、および情報を表示させるための照射機の取り付け角度と位置によって、最適な比T/Mが選択される。 The wedge-shaped glass 500 according to one embodiment of the present invention preferably has a ratio T/M between the maximum thickness T and the minimum thickness M of the wedge-shaped glass 500 of 1.10 to 1.40. If the T/M is 1.10 or more, it is possible to suppress the occurrence of a double image when information is displayed on the plate glass by installing the windshield on a vehicle having a large angle with respect to the horizontal plane. The ratio T/M may be 1.12 or more, 1.15 or more, 1.20 or more, or 1.25 or more. Further, if the ratio T/M is 1.40 or less, it is possible to suppress generation of a reflected image when information is displayed on the plate glass even when the windshield is mounted on a vehicle having a small angle with respect to the horizontal plane. The ratio T/M may be 1.35 or less, 1.30 or less, or 1.28 or less. The optimal ratio T/M is selected depending on the angle at which the windshield is installed and the angle and position of the illuminator for displaying information.
 本発明の一実施形態に係る楔形ガラス500は、楔形ガラス500の短辺508、509が600mm以上であることが好ましい。600mm以上であれば、大型の車両に使用できる。また、フロントガラスの水平面に対する角度が小さい車両に取り付けられる。板ガラスは、800mm以上であってもよく、1000mm以上であってもよく、1200mm以上であってもよく、1400mm以上であってもよい。 The wedge-shaped glass 500 according to one embodiment of the present invention preferably has short sides 508 and 509 of 600 mm or more. If it is 600 mm or more, it can be used for large vehicles. Also, it is installed in a vehicle in which the angle of the windshield with respect to the horizontal plane is small. The sheet glass may be 800 mm or more, 1000 mm or more, 1200 mm or more, or 1400 mm or more.
 楔形ガラス500を用いて、合わせガラスを製造できる。
 本発明の一実施形態に係る合わせガラスの製造方法は、板ガラス100を切断して楔形ガラスを得る工程と、を有する。本発明の一実施形態に係る合わせガラスの製造方法は、板ガラス100を切断して楔形ガラスを得る工程と、楔形ガラスと他の板ガラスとを中間膜を介して積層し圧着する工程と、を有する。
Wedge glass 500 can be used to produce laminated glass.
A method for manufacturing laminated glass according to an embodiment of the present invention includes a step of cutting sheet glass 100 to obtain wedge-shaped glass. A method for manufacturing laminated glass according to an embodiment of the present invention includes the steps of cutting the sheet glass 100 to obtain wedge-shaped glass, and laminating and press-bonding the wedge-shaped glass and another sheet glass via an intermediate film. .
 まず、板ガラス100を、所定の位置で切断することにより、幅方向一端より他端が厚い楔形ガラスが得られる。その後、上述した板ガラスの製造方法により製造された板ガラスを用いた合わせガラスの製造方法と同様の工程を経ることにより、合わせガラスが製造される。 First, by cutting the plate glass 100 at a predetermined position, a wedge-shaped glass is obtained in which the other end is thicker than the one end in the width direction. After that, the laminated glass is manufactured through the same steps as in the method for manufacturing laminated glass using the sheet glass manufactured by the above-described method for manufacturing sheet glass.
 上述したように、上記実施形態では、溶融金属浴21の上流域においてガラスリボンの幅方向中央部G2Aよりも幅方向両端部G2B,G2Bを強く加熱し、かつ、進行方向F1における上流のトップロール23Aの周速度を下流のトップロール23Bの周速度よりも遅くなるように、複数のトップロール23を回転させる。これにより、幅方向両端部G2B,G2Bの粘性が幅方向中央部G2Aよりも上昇しにくくなり、かつ、上流のトップロールの回転軸の両側へ広がるガラスリボンの幅を広げることができ、溶融金属浴21の上流でガラスリボンG2を幅方向に広げることが容易になり、ガラスリボンG2の幅方向両端部G2B,G2Bの厚さを薄く、幅方向中央部G2Aを厚くできる。 As described above, in the above embodiment, in the upstream region of the molten metal bath 21, the width direction end portions G2B and G2B are heated more strongly than the width direction center portion G2A of the glass ribbon, and the upstream top roll in the traveling direction F1 The plurality of top rolls 23 are rotated so that the peripheral speed of 23A is slower than the peripheral speed of the downstream top roll 23B. As a result, the viscosity of the width direction end portions G2B, G2B is less likely to rise than the width direction center portion G2A, and the width of the glass ribbon that spreads to both sides of the rotation axis of the upstream top roll can be widened. It becomes easy to spread the glass ribbon G2 in the width direction upstream of the bath 21, and the thickness of the width direction both end portions G2B and G2B of the glass ribbon G2 can be made thinner, and the width direction central portion G2A can be made thicker.
 また、溶融金属浴21のショルダ27Aよりも上流域における2つの側壁27,27間の距離W(2つの第一壁27B,27B間の距離)と、溶融金属浴21のショルダ27Aよりも下流域における2つの側壁27,27間の距離N(2つの第二壁27C,27C間の距離)と、の比W/Nは1.0超1.6以下に設定されるので、溶融金属22の上流方向X1への流れが生じにくくなり、ガラスリボンG2の幅方向Yへの往復移動(スイング)が生じにくい。したがって、本実施形態の板ガラスの製造方法によって得られた板ガラスを切断して得られた楔形ガラスの楔角度のばらつきを抑制できる。 In addition, the distance W between the two side walls 27, 27 (the distance between the two first walls 27B, 27B) in the upstream region from the shoulder 27A of the molten metal bath 21 and the downstream region from the shoulder 27A of the molten metal bath 21 The ratio W/N between the two side walls 27, 27 (the distance between the two second walls 27C, 27C) is set to more than 1.0 and 1.6 or less, so the molten metal 22 Flow in the upstream direction X1 is less likely to occur, and reciprocating movement (swing) in the width direction Y of the glass ribbon G2 is less likely to occur. Therefore, it is possible to suppress the variation in the wedge angle of the wedge-shaped glass obtained by cutting the plate glass obtained by the manufacturing method of the plate glass of the present embodiment.
 次に、本発明の実施例について説明する。図1(A)及び(B)に示したガラス製造装置1を用いて、例1~15に係る凸形ガラス100を製造した。例1~14は実施例であり、例15は比較例である。 Next, an embodiment of the present invention will be described. Using the glass manufacturing apparatus 1 shown in FIGS. 1A and 1B, convex glasses 100 according to Examples 1 to 15 were manufactured. Examples 1-14 are working examples, and example 15 is a comparative example.
 例1~15において、溶融金属浴21のショルダ27Aよりも上流域における2つの側壁27,27間の距離W(2つの第一壁27B,27B間の距離)と、溶融金属浴21のショルダ27Aよりも下流域における2つの側壁27,27間の距離N(2つの第二壁27C,27C間の距離)と、これらの比W/Nとは、表1に示す通りであった。例1~14は、上述した式「1.0<W/N≦1.6」を満たすが、例15は上記式を満たさなかった。 In Examples 1-15, the distance W between the two side walls 27, 27 in the upstream region of the shoulder 27A of the molten metal bath 21 (the distance between the two first walls 27B, 27B) and the shoulder 27A of the molten metal bath 21 Table 1 shows the distance N between the two side walls 27, 27 (the distance between the two second walls 27C, 27C) and their ratio W/N in the downstream region. Examples 1 to 14 satisfy the above formula "1.0<W/N≦1.6", but Example 15 did not satisfy the above formula.
 例1~15において、第一壁27Bとショルダ27Aとが接続される位置は、上流壁25から下流壁26までの長さL(図1(B)参照)に対し、上流壁25から表1に示す割合の位置であった。例1~15は、上述した条件「上流壁25から60%~75%の位置」を満たしていた。 In Examples 1 to 15, the position where the first wall 27B and the shoulder 27A are connected is the length L from the upstream wall 25 to the downstream wall 26 (see FIG. 1B), and the distance from the upstream wall 25 to Table 1 It was the position of the ratio shown in . Examples 1-15 met the above condition "60% to 75% from upstream wall 25".
 例1~15において、ショルダ27Aと第二壁27Cとが接続される位置は、上流壁25から下流壁26までの長さL(図1(B)参照)に対し、上流壁25から表1に示す割合の位置であった。例1~15は、上述した条件「上流壁25から65%~85%の位置」を満たしていた。 In Examples 1 to 15, the position where the shoulder 27A and the second wall 27C are connected is the length L from the upstream wall 25 to the downstream wall 26 (see FIG. 1B), and the distance from the upstream wall 25 to the table 1 It was the position of the ratio shown in . Examples 1-15 met the above condition "65% to 85% from upstream wall 25".
 例1~15において、上流壁25から下流壁26までの長さL(図1(B)参照)に対し上流壁25から20%の位置(上流壁25から下流方向X2に0.2Lの位置)における溶融金属面上のガラスリボンG2の幅方向中央部G2Aの温度及び粘性は、表1に示す通りであった。例1~15は、上述した条件「粘性が10^(4.5)(dPa・sec)以上」を満たしていた。また、例1~15は、上述した条件「粘性が10^(6.0)(dPa・sec)以下」を満たしていた。 In Examples 1 to 15, the position of 20% from the upstream wall 25 with respect to the length L from the upstream wall 25 to the downstream wall 26 (see FIG. 1B) (the position of 0.2L in the downstream direction X2 from the upstream wall 25) ) was as shown in Table 1 at the width direction central portion G2A of the glass ribbon G2 on the surface of the molten metal. Examples 1 to 15 satisfied the above condition "viscosity is 10̂(4.5) (dPa·sec) or more". In addition, Examples 1 to 15 satisfied the above-mentioned condition that the viscosity was 10̂(6.0) (dPa·sec) or less.
 例1~15において、上流壁25から下流壁26までの長さL(図1(B)参照)に対し上流壁25から32%の位置(上流壁25から下流方向X2に0.32Lの位置)における溶融金属面上のガラスリボンG2の幅方向中央部G2Aの温度I及び粘性は、表1に示す通りであった。例1~15は、上述した条件「粘性が10^(4.7)(dPa・sec)以上」を満たしていた。また、例1~15は、上述した条件「粘性が10^(6.3)(dPa・sec)以下」を満たしていた。 In Examples 1 to 15, the length L from the upstream wall 25 to the downstream wall 26 (see FIG. 1B) is 32% from the upstream wall 25 (0.32L from the upstream wall 25 in the downstream direction X2). ), the temperature I and the viscosity of the widthwise central portion G2A of the glass ribbon G2 on the molten metal surface were as shown in Table 1. Examples 1 to 15 satisfied the above-mentioned condition "viscosity is 10̂(4.7) (dPa·sec) or more". Further, Examples 1 to 15 satisfied the above-mentioned condition that the viscosity was 10̂(6.3) (dPa·sec) or less.
 例1~15において、上流壁25から下流壁26までの長さL(図1(B)参照)に対し上流壁25から32%の位置(上流壁25から下流方向X2に0.32Lの位置)における溶融金属22の幅方向両端部の温度Kは、表1に示す通りであった。また、上述した温度Iと温度Kとの差(I-K)は、表1に示す通りであった。例1~14は、上述した条件「(I-K)が62℃以下」を満たしていた。 In Examples 1 to 15, the length L from the upstream wall 25 to the downstream wall 26 (see FIG. 1B) is 32% from the upstream wall 25 (0.32L from the upstream wall 25 in the downstream direction X2). ) was as shown in Table 1. Further, the difference (I−K) between temperature I and temperature K was as shown in Table 1. Examples 1 to 14 satisfied the above condition "(IK) is 62° C. or less".
 例1~14において、溶融金属浴21におけるガラスリボンG2の幅方向Yの最大幅cと、最下流における幅bと、これらの比c/bと、は表1に示す通りであった。例1~14は、上述した条件「1.4≦c/b≦2.2」を満たしていた。 In Examples 1 to 14, Table 1 shows the maximum width c in the width direction Y of the glass ribbon G2 in the molten metal bath 21, the width b at the most downstream side, and their ratio c/b. Examples 1 to 14 satisfied the above condition "1.4≤c/b≤2.2".
 例1~14において、上流壁25から下流壁26までの長さLに対し上流壁25から35%の位置(上流壁25から下流方向X2に0.35Lの位置)におけるガラスリボンG2の幅aと、溶融金属浴21におけるガラスリボンG2の幅方向Yの最小幅bと、これらの比a/bと、は表1に示す通りであった。例1~14は、上述した条件「1.0≦a/b≦1.9」を満たしていた。 In Examples 1 to 14, the width a of the glass ribbon G2 at a position 35% from the upstream wall 25 with respect to the length L from the upstream wall 25 to the downstream wall 26 (a position 0.35L in the downstream direction X2 from the upstream wall 25) , the minimum width b in the width direction Y of the glass ribbon G2 in the molten metal bath 21, and their ratio a/b were as shown in Table 1. Examples 1 to 14 satisfied the above condition "1.0≤a/b≤1.9".
 例1~14において、上流壁25から下流壁26までの長さLに対し、上流壁25から20%の位置(上流壁25から下流方向X2に0.2Lの位置)において、ガラスリボンG2の幅方向Yの長さA(不図示)と、ガラスリボンG2に覆われていない溶融金属面の幅方向Yの長さB(不図示)と、これらの比A/Bと、は表1に示す通りであった。例1~14は、上述した条件「4≦A/B≦11」を満たしていた。 In Examples 1 to 14, the length L from the upstream wall 25 to the downstream wall 26 is 20% from the upstream wall 25 (0.2L in the downstream direction X2 from the upstream wall 25). The length A (not shown) in the width direction Y, the length B (not shown) in the width direction Y of the molten metal surface not covered with the glass ribbon G2, and their ratio A/B are shown in Table 1. It was as shown. Examples 1 to 14 satisfied the above condition "4≤A/B≤11".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 例1~15においては、溶融金属浴21の幅方向Yの両端部にトップロール23を配置した。徐冷部30でのガラスリボンG2の進行速度V(m/h)は、表2に示すように設定した。 In Examples 1 to 15, the top rolls 23 were arranged at both ends of the molten metal bath 21 in the width direction Y. The traveling speed V (m/h) of the glass ribbon G2 in the slow cooling section 30 was set as shown in Table 2.
 なお、表2には、上記の製造条件によって得られた板ガラス(凸形ガラス)の厚さの最大値T(mm)及び最小値M(mm)、徐冷部30でのガラスリボンG2の幅方向中央部G2Aの厚さt、差(T-M)(mm)、比T/Mも示されている。 Table 2 shows the maximum value T (mm) and minimum value M (mm) of the thickness of the sheet glass (convex glass) obtained under the above manufacturing conditions, and the width of the glass ribbon G2 in the slow cooling section 30. The thickness t, the difference (TM) (mm), and the ratio T/M of the direction center part G2A are also shown.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上のような製造条件で得られた例1~15の凸形ガラスの角度α(図5(B)参照)は、表1に示す通りであった。例15を除く全ての例1~14において、角度αの好適な範囲である0.020°~0.050°の範囲内であった。 Table 1 shows the angles α (see FIG. 5(B)) of the convex glasses of Examples 1 to 15 obtained under the manufacturing conditions described above. In all Examples 1-14, except Example 15, the angle α was within the preferred range of 0.020° to 0.050°.
 なお、全ての例1~15において、ガラスリボンG2を切断する箇所で30分間に幅方向Yに移動した最大距離(スイング幅)は、1.5inch未満であり、小さな値に抑えられていた。しかしながら、例15において、ガラスリボンG2を切断する箇所で30分間に幅方向Yに移動した最大距離(スイング幅)1.5inch未満に抑えた時、角度αが0.017°となってしまい、角度αを0.020°以上とすることはできなかった。例15において角度αを0.020°以上の凸形ガラスを製造しようとした場合、ガラスリボンG2の粘性を大きくする必要があるため、スイング幅が大きくなり2.0inch以上になってしまう。 In addition, in all Examples 1 to 15, the maximum distance (swing width) moved in the width direction Y in 30 minutes at the point where the glass ribbon G2 was cut was less than 1.5 inches, which was suppressed to a small value. However, in Example 15, when the maximum distance (swing width) moved in the width direction Y in 30 minutes at the point where the glass ribbon G2 is cut is suppressed to less than 1.5 inches, the angle α becomes 0.017°, The angle α could not be 0.020° or more. In Example 15, if an attempt is made to produce a convex glass with an angle α of 0.020° or more, the viscosity of the glass ribbon G2 must be increased, so the swing width is increased to 2.0 inches or more.
 以上、本発明の凸形板ガラスの製造方法について好適な実施例を挙げて説明したが、本発明は、この実施例に限定されるものでなく、本発明の主旨を逸脱しない範囲において種々の改良が可能なことは勿論である。 Although the preferred embodiments of the method for manufacturing convex plate glass according to the present invention have been described above, the present invention is not limited to these embodiments, and various improvements can be made without departing from the scope of the present invention. is of course possible.
 溶解部10では、溶解窯11でガラス原料を溶融ガラスG1に溶解するが、金属探知機を用いてガラス原料に含まれるステンレス鋼を除去してから溶解窯11へガラス原料を投入することが好ましい。ステンレス鋼は、鉄、ニッケル、クロム等を含有する。従来知られている金属探知機は、金属と非金属とを区別することができるが、恣意的にステンレス鋼のみを区別することはできないため、ガラス原料からステンレス鋼を除去するとガラス原料を溶解するために必要な鉄もガラス原料から除去されてしまう。ステンレス鋼を除去するために用いる金属探知機は、1つのコイルを有し、コイルにより生じさせる磁界によりステンレス鋼と鉄とを区別する。鉄は、送信コイルから発せられた交流磁界により磁化される。磁力線が鉄に引き寄せられ、これを差動構成の受信コイルで検知することにより、鉄が検出される。また、送信コイルから発せられた交流磁界によりステンレス鋼に渦電流が発生し、さらに、ステンレス鋼近傍に磁界が発生する。この磁界の変化を差動構成の受信コイルで検知することにより、ステンレス鋼が検出される。ステンレス鋼に発生する渦電流の位相は、送信コイルの位相に比べ約90°遅れるため、位相角を検出することによりステンレス鋼と鉄とを区別することができる。鉄の位相角は40~80°であり、ステンレス鋼の位相角は140~180°である。ステンレス鋼に発生する渦電流の振幅が大きいほど、該ステンレス鋼のサイズは大きい。金属探知機は、例えば調合されたガラス原料を溶解窯11へ運搬するコンベア上に設置される。金属探知機は、特定の大きさ以上のステンレス鋼のみをガラス原料から取り除く機構を有することが好ましい。そのような機構の一例を示す。金属探知機を金属または非金属が通過すると、金属探知機からX、Yの2つのアナログ信号がPLC(Programmable Logic Controller、プログラマブルロジックコントローラ)に入力され位相角及び最大電圧が算出される。位相角がステンレス鋼であることを示す140~180°であり、かつ、最大電圧があらかじめ設定した値以上のときに、コンベア上に設置されたダンパが開き、特定の大きさ以上のステンレス鋼が含まれるガラス原料がコンベア上から取り除かれ、ステンレス鋼が溶解窯11へ投入されることを防ぐ。 In the melting section 10, the frit is melted into the molten glass G1 in the melting kiln 11. Preferably, the stainless steel contained in the frit is removed using a metal detector before the frit is introduced into the melting kiln 11. . Stainless steel contains iron, nickel, chromium, and the like. Conventionally known metal detectors can distinguish between metals and non-metals, but cannot arbitrarily distinguish only stainless steel. The iron necessary for this is also removed from the frit. Metal detectors used to remove stainless steel have a single coil and the magnetic field produced by the coil distinguishes between stainless steel and iron. Iron is magnetized by an alternating magnetic field emitted from the transmitting coil. The iron is detected by magnetic field lines being attracted to the iron and sensed by the receiving coils in a differential configuration. Also, eddy currents are generated in the stainless steel by the alternating magnetic field generated from the transmission coil, and a magnetic field is generated in the vicinity of the stainless steel. Stainless steel is detected by sensing this change in the magnetic field with a differential receiving coil. Since the phase of the eddy current generated in stainless steel lags the phase of the transmission coil by about 90°, it is possible to distinguish between stainless steel and iron by detecting the phase angle. The phase angle of iron is 40-80° and that of stainless steel is 140-180°. The larger the amplitude of the eddy currents generated in the stainless steel, the larger the size of the stainless steel. The metal detector is installed, for example, on a conveyor that transports the blended glass raw materials to the melting furnace 11 . The metal detector preferably has a mechanism for removing only stainless steel of a specific size or larger from the glass raw material. An example of such a mechanism is shown. When a metal or non-metal passes through the metal detector, two analog signals X and Y are input from the metal detector to a PLC (Programmable Logic Controller) to calculate the phase angle and maximum voltage. When the phase angle is 140 to 180°, which indicates stainless steel, and the maximum voltage is equal to or higher than a preset value, the damper installed on the conveyor opens and the stainless steel of a specific size or more is discharged. The included glass raw materials are removed from the conveyor to prevent the stainless steel from entering the melting furnace 11.例文帳に追加
 なお、本出願は、2021年8月31日出願の日本特許出願(特願2021-141551)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-141551) filed on August 31, 2021, the contents of which are incorporated herein by reference.
1 ガラス製造装置
10 溶解部
11 溶解窯
12 ツイール
13 リップ
20 成形部
21 溶融金属浴
21U 上流端
22 溶融金属
23,23A,23B トップロール
24 ヒータ
24A 中央部ヒータ
24B 端部ヒータ
25 上流壁
26 下流壁
27 側壁
27A ショルダ
27B 第一壁
27C 第二壁
30 徐冷部
31 徐冷室
32 搬送ロール
100 凸形ガラス(板ガラス)
200 楔形ガラス
300 フロントガラス
301,302 楔形ガラス
303 中間膜
400 フロントガラス
401 楔形ガラス
402 ガラス
403 中間膜
500 楔形ガラス
507 凸面
503 線分
504 交点(第1の点)
505 交点
506 第2の点
1 glass manufacturing apparatus 10 melting section 11 melting kiln 12 tweel 13 lip 20 forming section 21 molten metal bath 21U upstream end 22 molten metal 23, 23A, 23B top roll 24 heater 24A center heater 24B end heater 25 upstream wall 26 downstream wall 27 side wall 27A shoulder 27B first wall 27C second wall 30 slow cooling section 31 slow cooling chamber 32 transport roll 100 convex glass (plate glass)
200 wedge-shaped glass 300 windshields 301, 302 wedge-shaped glass 303 intermediate film 400 windshield 401 wedge-shaped glass 402 glass 403 intermediate film 500 wedge-shaped glass 507 convex surface 503 line segment 504 intersection (first point)
505 intersection point 506 second point

Claims (15)

  1.  溶融金属浴において溶融金属面上にガラスリボンを浮かせて進行させて、前記ガラスリボンの幅方向両端部に複数のトップロールを当接させて前記ガラスリボンを板状に成形する板ガラスの製造方法であって、
     前記溶融金属浴は、上流壁、下流壁及び2つの側壁を備え、
     前記2つの側壁はそれぞれ、前記ガラスリボンの進行方向で前記溶融金属浴の幅を減らすショルダを含み、
     前記溶融金属浴の前記ショルダよりも上流域における前記2つの側壁間の距離Wと、前記溶融金属浴の前記ショルダよりも下流域における前記2つの側壁間の距離Nと、の比W/Nが1.0超1.6以下であり、
     前記溶融金属浴の上流域において前記ガラスリボンの幅方向中央部よりも前記幅方向両端部を強く加熱することで、前記幅方向中央部が両端部よりも厚い板ガラスを製造する、板ガラスの製造方法。
    A method for producing sheet glass, in which a glass ribbon is allowed to float on the surface of the molten metal in a molten metal bath, and a plurality of top rolls are brought into contact with both ends of the glass ribbon in the width direction to form the glass ribbon into a plate shape. There is
    the molten metal bath comprises an upstream wall, a downstream wall and two side walls;
    each of the two sidewalls includes a shoulder that reduces the width of the molten metal bath in the direction of travel of the glass ribbon;
    A ratio W/N between the distance W between the two side walls in the region upstream of the shoulder of the molten metal bath and the distance N between the two side walls in the region downstream of the shoulder of the molten metal bath more than 1.0 and 1.6 or less,
    A method for producing sheet glass, wherein the width direction both ends of the glass ribbon are heated more strongly than the width direction center portion of the glass ribbon in the upstream region of the molten metal bath, thereby producing a sheet glass that is thicker at the width direction center portion than at both end portions. .
  2.  前記上流壁から前記下流壁までの長さに対し、前記上流壁から20%の位置において、前記溶融金属面上の前記ガラスリボンの幅方向中央部の粘性が10^(4.5)(dPa・sec)以上となるように前記ガラスリボンを加熱する、請求項1に記載の板ガラスの製造方法。 At a position 20% from the upstream wall with respect to the length from the upstream wall to the downstream wall, the viscosity of the central portion in the width direction of the glass ribbon on the surface of the molten metal is 10 ^ (4.5) (dPa · sec) The method for producing sheet glass according to claim 1, wherein the glass ribbon is heated so as to be equal to or greater than.
  3.  前記上流壁から前記下流壁までの長さに対し、前記上流壁から20%の位置において、前記溶融金属面上の前記ガラスリボンの幅方向中央部の粘性が10^(6.0)(dPa・sec)以下となるように前記ガラスリボンを加熱する、請求項1または2に記載の板ガラスの製造方法。 At a position 20% from the upstream wall with respect to the length from the upstream wall to the downstream wall, the viscosity of the central portion in the width direction of the glass ribbon on the surface of the molten metal is 10^(6.0) (dPa • sec) The method for producing sheet glass according to claim 1 or 2, wherein the glass ribbon is heated so as to:
  4.  前記上流壁から前記下流壁までの長さに対し、前記上流壁から32%の位置において、前記溶融金属面上の前記ガラスリボンの幅方向中央部の温度と溶融金属の幅方向両端部の温度との差が62℃以下である、請求項1~3のいずれか1項に記載の板ガラスの製造方法。 The temperature of the widthwise central portion of the glass ribbon on the surface of the molten metal and the temperature of both widthwise ends of the molten metal at a position 32% from the upstream wall with respect to the length from the upstream wall to the downstream wall. The method for producing sheet glass according to any one of claims 1 to 3, wherein the difference between the temperature and the temperature is 62°C or less.
  5.  前記上流壁から前記下流壁までの長さに対し、前記上流壁から32%の位置において、前記溶融金属面上の前記ガラスリボンの幅方向中央部の粘性が10^(4.7)(dPa・sec)以上となるように前記ガラスリボンを加熱する、請求項1~4のいずれか1項に記載の板ガラスの製造方法。 At a position 32% from the upstream wall with respect to the length from the upstream wall to the downstream wall, the viscosity of the central portion in the width direction of the glass ribbon on the surface of the molten metal is 10 ^ (4.7) (dPa · sec) The method for producing sheet glass according to any one of claims 1 to 4, wherein the glass ribbon is heated to a temperature of at least sec).
  6.  前記上流壁から前記下流壁までの長さに対し、前記上流壁から32%の位置において、前記溶融金属面上の前記ガラスリボンの幅方向中央部の粘性が10^(6.3)(dPa・sec)以下となるように前記ガラスリボンを加熱する、請求項1~5のいずれか1項に記載の板ガラスの製造方法。 At a position 32% from the upstream wall with respect to the length from the upstream wall to the downstream wall, the viscosity of the central portion in the width direction of the glass ribbon on the surface of the molten metal is 10 ^ (6.3) (dPa · sec) The method for producing sheet glass according to any one of claims 1 to 5, wherein the glass ribbon is heated so as to be below.
  7.  前記溶融金属浴における前記ガラスリボンの幅方向の最大幅と前記溶融金属浴の最下流における前記ガラスリボンの幅方向の長さとの比が1.4~2.2である、請求項1~6のいずれか1項に記載の板ガラスの製造方法。 Claims 1 to 6, wherein the ratio of the maximum width in the width direction of the glass ribbon in the molten metal bath to the length in the width direction of the glass ribbon at the most downstream side of the molten metal bath is 1.4 to 2.2. The method for producing sheet glass according to any one of the above.
  8.  前記上流壁から前記下流壁までの長さに対し、前記上流壁から35%の位置における前記ガラスリボンの幅aと、前記溶融金属浴の最下流における前記ガラスリボンの幅方向の長さbと、の比a/bが1.0~1.9である、請求項1~7のいずれか1項に記載の板ガラスの製造方法。 Width a of the glass ribbon at a position 35% from the upstream wall with respect to the length from the upstream wall to the downstream wall, and length b in the width direction of the glass ribbon at the most downstream side of the molten metal bath. , wherein the ratio a/b is 1.0 to 1.9.
  9.  前記上流壁から前記下流壁までの長さに対し、前記上流壁から20%の位置において、前記ガラスリボンの幅方向の長さAと前記ガラスリボンに覆われていない前記溶融金属面の幅方向の長さBとの比A/Bが4~11である、請求項1~8のいずれか1項に記載の板ガラスの製造方法。 At a position 20% from the upstream wall with respect to the length from the upstream wall to the downstream wall, the width direction length A of the glass ribbon and the width direction of the molten metal surface not covered with the glass ribbon The method for producing sheet glass according to any one of claims 1 to 8, wherein the ratio A/B to the length B is 4 to 11.
  10.  請求項1~9のいずれか1項に記載の板ガラスの製造方法により得られた板ガラスを切断して楔形ガラスを得る、楔形ガラスの製造方法。 A method for producing wedge-shaped glass, comprising cutting the plate glass obtained by the method for producing plate glass according to any one of claims 1 to 9 to obtain wedge-shaped glass.
  11.  前記楔形ガラスは、少なくとも一つの主表面が凸面であり、
     前記凸面の重心Gを通り前記凸面の4辺のうち対向する2つの辺を最短距離で結ぶ線分上で、前記線分と前記凸面の辺との交点のうち、前記楔形ガラスを水平な場所に置いたときに、鉛直方向の前記楔形ガラスの厚さが小さい方の点を第1の点とし、前記第1の点から前記線分の長さに対して2/5の長さの位置にある前記凸面上の点を第2の点とすると、前記第1の点と前記第2の点とを結んだ直線と、水平面とのなす角度が0.020°~0.050°である、請求項10に記載の楔形ガラスの製造方法。
    The wedge-shaped glass has at least one convex surface,
    On a line segment passing through the center of gravity G of the convex surface and connecting two opposite sides of the four sides of the convex surface at the shortest distance, among intersections of the line segment and the sides of the convex surface, the wedge-shaped glass is positioned horizontally. The first point is the point where the thickness of the wedge-shaped glass is smaller in the vertical direction when the glass is placed at If a point on the convex surface located at is the second point, a straight line connecting the first point and the second point forms an angle of 0.020° to 0.050° with the horizontal plane. 11. A method for producing a wedge-shaped glass according to claim 10.
  12.  前記楔形ガラスの厚さの最大値Tと最小値Mとの比T/Mが1.10~1.40である、請求項10または11に記載の楔形ガラスの製造方法。 The method for manufacturing the wedge-shaped glass according to claim 10 or 11, wherein the ratio T/M between the maximum value T and the minimum value M of the thickness of the wedge-shaped glass is 1.10 to 1.40.
  13.  請求項1~9のいずれか1項に記載の板ガラスの製造方法により得られた板ガラスを切断して楔形ガラスを得て、
     前記楔形ガラスと他の板ガラスとを中間膜を介して積層し圧着する、
    合わせガラスの製造方法。
    Wedge-shaped glass is obtained by cutting the plate glass obtained by the method for manufacturing a plate glass according to any one of claims 1 to 9,
    laminating and crimping the wedge-shaped glass and another plate glass via an intermediate film;
    A method for producing laminated glass.
  14.  前記他の板ガラスが前記楔形ガラスである、
    請求項13に記載の合わせガラスの製造方法。
    The other sheet glass is the wedge-shaped glass,
    The method for producing a laminated glass according to claim 13.
  15.  前記他の板ガラスが厚さが一定の板ガラスである、
    請求項14に記載の合わせガラスの製造方法。
    The other sheet glass is a sheet glass having a constant thickness,
    The method for producing a laminated glass according to claim 14.
PCT/JP2022/032224 2021-08-31 2022-08-26 Method for manufacturing plate glass, method for manufacturing wedge-shaped glass, and method for manufacturing laminated glass WO2023032849A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280058507.5A CN117881637A (en) 2021-08-31 2022-08-26 Method for producing sheet glass, method for producing wedge-shaped glass, and method for producing laminated glass
JP2023545528A JPWO2023032849A1 (en) 2021-08-31 2022-08-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021141551 2021-08-31
JP2021-141551 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023032849A1 true WO2023032849A1 (en) 2023-03-09

Family

ID=85412694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032224 WO2023032849A1 (en) 2021-08-31 2022-08-26 Method for manufacturing plate glass, method for manufacturing wedge-shaped glass, and method for manufacturing laminated glass

Country Status (3)

Country Link
JP (1) JPWO2023032849A1 (en)
CN (1) CN117881637A (en)
WO (1) WO2023032849A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122242B2 (en) * 2002-04-05 2006-10-17 Ppg Industries Ohio, Inc. Wedge shaped glass and methods of forming wedged glass
JP2014528887A (en) * 2011-08-02 2014-10-30 サン−ゴバン グラス フランス Glass float chamber
WO2016117650A1 (en) * 2015-01-21 2016-07-28 旭硝子株式会社 Plate glass production method, plate glass, and laminated glass production method
WO2019131800A1 (en) * 2017-12-28 2019-07-04 日本板硝子株式会社 Windshield
WO2019150043A1 (en) * 2018-01-30 2019-08-08 Saint-Gobain Glass France Production of glass having a wedge-shaped cross-section in a float glass production facility
JP2020514219A (en) * 2016-12-22 2020-05-21 ショット アクチエンゲゼルシャフトSchott AG Thin glass substrate, manufacturing method and manufacturing apparatus thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122242B2 (en) * 2002-04-05 2006-10-17 Ppg Industries Ohio, Inc. Wedge shaped glass and methods of forming wedged glass
JP2014528887A (en) * 2011-08-02 2014-10-30 サン−ゴバン グラス フランス Glass float chamber
WO2016117650A1 (en) * 2015-01-21 2016-07-28 旭硝子株式会社 Plate glass production method, plate glass, and laminated glass production method
JP2020514219A (en) * 2016-12-22 2020-05-21 ショット アクチエンゲゼルシャフトSchott AG Thin glass substrate, manufacturing method and manufacturing apparatus thereof
WO2019131800A1 (en) * 2017-12-28 2019-07-04 日本板硝子株式会社 Windshield
WO2019150043A1 (en) * 2018-01-30 2019-08-08 Saint-Gobain Glass France Production of glass having a wedge-shaped cross-section in a float glass production facility

Also Published As

Publication number Publication date
JPWO2023032849A1 (en) 2023-03-09
CN117881637A (en) 2024-04-12

Similar Documents

Publication Publication Date Title
JP6977795B2 (en) Laminated glass for vehicles
CN111511695B (en) Thin glass substrate and method and apparatus for manufacturing the same
US9315408B2 (en) Methods and apparatuses for fabricating continuous glass ribbons
TWI401221B (en) Float glass process for making thin flat glass and thin flat glass substrate made with same
WO2003086996A1 (en) Wedge shaped glass and method of producing wedged glass
KR102475283B1 (en) Continuous Processing of Flexible Glass Ribbons with Ribbon Isolation and Stabilization
JP2012509844A5 (en)
US10640410B2 (en) Method and apparatus for reducing sheet width attenuation of sheet glass
US20190352209A1 (en) Method for forming molten glass, forming apparatus, and method for producing glass product
WO2023032849A1 (en) Method for manufacturing plate glass, method for manufacturing wedge-shaped glass, and method for manufacturing laminated glass
HU224749B1 (en) Method for producing glass sheets using flotation
CN107108316A (en) The manufacture method of glass plate and the manufacture device of glass plate
CN109956653B (en) Glass substrate manufacturing method and glass substrate manufacturing device
JP6313049B2 (en) Window glass and manufacturing method thereof
JPH0116751Y2 (en)
KR20240044359A (en) Glass pane with low optical defects, in particular low near-surface refractions, process for production thereof and use thereof
JPWO2023032849A5 (en)
JP2019064903A (en) Method for manufacturing glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864433

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545528

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280058507.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE