WO2023079969A1 - Iabドナー、制御方法、プログラム、及び、制御装置 - Google Patents
Iabドナー、制御方法、プログラム、及び、制御装置 Download PDFInfo
- Publication number
- WO2023079969A1 WO2023079969A1 PCT/JP2022/039073 JP2022039073W WO2023079969A1 WO 2023079969 A1 WO2023079969 A1 WO 2023079969A1 JP 2022039073 W JP2022039073 W JP 2022039073W WO 2023079969 A1 WO2023079969 A1 WO 2023079969A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iab
- iab node
- node
- donor
- communication path
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 29
- 238000004891 communication Methods 0.000 claims abstract description 205
- 238000005516 engineering process Methods 0.000 claims abstract description 6
- 230000004308 accommodation Effects 0.000 claims description 78
- 230000008859 change Effects 0.000 claims description 25
- 235000008694 Humulus lupulus Nutrition 0.000 claims description 18
- 238000012545 processing Methods 0.000 description 58
- 230000008569 process Effects 0.000 description 22
- 230000006870 function Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 238000012790 confirmation Methods 0.000 description 7
- 230000010267 cellular communication Effects 0.000 description 6
- 238000013500 data storage Methods 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 4
- 238000004590 computer program Methods 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/26—Cell enhancers or enhancement, e.g. for tunnels, building shadow
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/22—Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/24—Connectivity information management, e.g. connectivity discovery or connectivity update
- H04W40/32—Connectivity information management, e.g. connectivity discovery or connectivity update for defining a routing cluster membership
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/34—Modification of an existing route
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
- H04W84/047—Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organising networks, e.g. ad-hoc networks or sensor networks
Definitions
- the present invention relates to technology for setting relay communication paths.
- IAB Integrated Access and Backhaul
- radio resources used for access lines between base stations and user terminals are also used for backhaul lines.
- UE User Equipment
- millimeter wave band radio resources such as the 28 GHz band may be used.
- the relay device IAB node
- IAB node can relay the communication between the base station device (IAB donor) and the terminal device through a wireless line, compared to the case of using a wired line such as an optical fiber. area coverage can be expanded at low cost.
- the communication path is set appropriately to relay UE communications.
- An IAB donor is a wireless communication system using Integrated Access and Backhaul (IAB) technology defined by the 3rd Generation Partnership Project (3GPP), which relays communication between a core network and a terminal.
- the IAB donor of the wireless communication system including at least one or more IAB nodes that relay communication between the IAB node and the core network, wherein the IAB donor and the IAB donor are subordinate to the IAB donor Change the communication path based on at least the number of terminals connected on the first communication path including the first IAB node of and the second IAB node under the first IAB node determining means for determining whether or not a communication path is configured as a connection destination of the second IAB node different from the first communication path when the determining means determines to change the communication path To change to a third IAB node and relay communication between the second IAB node and terminals under the second IAB node and the IAB donor via the third IAB node and setting means for setting the second communication path.
- IAB Integrated Access and Backhaul
- FIG. 1 is a diagram illustrating a configuration example of a wireless communication system.
- FIG. 2 is a diagram showing an example hardware configuration of an IAB donor.
- FIG. 3 is a diagram showing a functional configuration example of an IAB donor.
- FIG. 4 is a diagram showing an example of information used for switching connection destinations of IAB nodes.
- FIG. 5 is a diagram illustrating an example of the flow of processing performed in a wireless communication system.
- FIG. 6A is a diagram illustrating an example of a process flow performed by an IAB donor.
- FIG. 6B is a diagram illustrating an example of a process flow performed by an IAB donor.
- FIG. 7 is a diagram illustrating an example of the relationship between the number of hops from an IAB donor and the number of UEs that can be accommodated.
- FIG. 8A is a diagram illustrating an example of a process flow performed by an IAB donor.
- FIG. 8B is a diagram illustrating an example of a process flow performed by an IAB donor.
- FIG. 1 shows a configuration example of a wireless communication system according to this embodiment.
- This radio communication system is a relay communication system according to IAB (Integrated Access and Backhaul) defined in the cellular communication standards of the 3rd Generation Partnership Project (3GPP).
- IAB includes IAB donor 102 and IAB donor 108 connected to core network 101 .
- the IAB donor 102 and the IAB donor 108 have functions as base station devices and establish wireless connections with terminal functions (Mobile Termination) of IAB nodes.
- the IAB donor 102 and the IAB donor 108 perform settings according to BAP (Backhaul Adaptation Protocol) to enable the IAB node to function as a relay device.
- BAP Backhaul Adaptation Protocol
- an IAB node 103 and an IAB node 105 are connected to the IAB donor 102, and a communication path via the IAB donor 102 and the IAB node 103 and a communication path via the IAB donor 102 and the IAB node 105 are set.
- An IAB node 109 is connected to the IAB donor 108, and a communication path via the IAB donor 108 and the IAB node 109 is set.
- IAB nodes can be connected to other IAB nodes that are directly or indirectly connected to IAB donors. In this case, communication between the IAB node and the IAB donor would be through another IAB node.
- IAB node 104 can establish a connection and set up a communication path with IAB donor 102 through IAB node 103 .
- IAB node 106 can establish a connection with IAB donor 102 through IAB node 105
- IAB node 110 can connect with IAB donor 108 through IAB node 109 .
- IAB node 107 may connect to IAB node 104 to establish a communication path to IAB donor 102, for example.
- the IAB node 107 may be configured to be connectable simultaneously with the IAB node 106 and the IAB node 105 in addition to the IAB node 104 using Dual Connectivity, for example.
- a node that is directly connected to the core network 101 from the IAB node on the established communication path is called a parent node.
- a node that is directly connected to the IAB node on the communication path away from the core network 101 is called a child node.
- the parent node of IAB node 104 is IAB node 103 and the child node of IAB node 104 is IAB node 107 .
- IAB donor 108 is the parent node and IAB node 110 is the child node.
- a tree-structured relay network is formed starting from the IAB donor.
- IAB nodes perform not only backhaul line communication but also access line communication.
- the IAB node uses an antenna for the backhaul line and the common or separately prepared access line antenna, configures a cell and establishes an access line with the terminal (UE) to provide communication services.
- UE terminal
- IAB node 104 forms cell 111
- IAB node 106 forms cell 112
- IAB node 107 forms cell 113 .
- other IAB nodes can similarly form cells to establish connections with UEs and provide communication services.
- each IAB node (and possibly an IAB donor) may form multiple pre-determined beams or form an appropriate beam for each UE to communicate.
- Each IAB node receives data (control data and user data) addressed to the connected UE from the parent node and transmits the data to the UE. Similarly, the IAB node forwards data received from connected UEs to the parent node. Thereby, communication is performed between the IAB donor functioning as a base station apparatus and the UE.
- IAB donors and IAB nodes may provide access circuits in the same frequency band as the frequency band used for the backhaul circuit, or may provide access circuits in a frequency band different from the frequency band used for the backhaul circuit. may provide.
- the IAB node can switch the connected IAB donor or other IAB node.
- an IAB node can switch a connection destination node when a radio link failure (Backhaul Radio Link Failure, BH RLF) occurs in a radio link with another connection destination node.
- BH RLF Backhaul Radio Link Failure
- the IAB node can search for and connect to other connectable IAB nodes or IAB donors and establish a new IAB communication path.
- BH RLF is just an example, and communication paths can be switched for other reasons.
- the IAB node for example, like a normal handover, when the radio quality between other IAB nodes that are not connected is better than the radio quality between the connected parent node by a predetermined level or more
- the communication path may be changed according to a predetermined event such as.
- each IAB node is limited in the number of UEs it can handle, for example, based on the radio quality in the communication path to the IAB donor connected via the parent node and the processing capability of the IAB node itself. is assumed. For example, if the radio quality is poor in some part of the communication path, the number of UEs that can be handled will be less than if the radio quality is good. Also, the number of UEs that can be handled varies depending on the amount of physical resources such as baseband processing and RF processing. Note that the “number of UEs that can be handled” here is a number including the total number of UEs connected to child nodes and downstream.
- the upstream IAB node connected at a position close to the IAB donor in the communication path is connected to not only the communication of the UE connected to the own device, but also the downstream IAB node such as a child node Communication for the UE must also be relayed. Therefore, the IAB node, even if the number of UEs directly connected to the own device does not exceed the number of connections allowed in the own device, depending on the number of UEs connected to the IAB node on the downstream side , it may be unable to provide communication services to the UE.
- a control device such as an IAB donor or a control node in the core network 101 determines a communication path to be set in consideration of the allowable number of UEs accommodated in each IAB node.
- the “allowable number of accommodated nodes” of an IAB node refers to the maximum number of UEs connected to the IAB node and the total number of UEs connected to child nodes or downstream nodes.
- the allowable accommodation number here, in one example, may be the number of UEs that may not be able to communicate with sufficient quality due to the number of UEs exceeding the number being connected, and communication will not be possible immediately.
- the communication route may be determined based on other criteria such as allowable total throughput and allowable bandwidth. That is, the communication path may be determined so that the total throughput and bandwidth required for communication of UEs connected to each IAB node and downstream IAB nodes does not exceed the allowable amount.
- FIG. 2 shows a hardware configuration example of an IAB donor (control device).
- the IAB donor has, for example, a control unit 201 , a storage unit 202 , a wireless communication unit 203 , an antenna control unit 204 and an antenna 205 .
- the IAB donor (control device) may further include other hardware configurations, or may not include at least part of the configuration shown in FIG.
- the IAB donor (control device) may further include components not included in FIG.
- the IAB donor has a wireless communication unit 203, an antenna control unit 204, and an antenna 205, but if a control device located in the core network 101 is used, instead of these hardware, a wired communication unit or An interface for that may be included.
- the control unit 201 includes one or more processors such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit). Note that the control unit 201 may include an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), or the like.
- the control unit 201 can be configured to control the entire apparatus of the IAB donor and execute the processes described below, for example, by executing a computer program stored in the storage unit 202 .
- the storage unit 202 includes one or more of memory such as ROM (read only memory) and RAM (random access memory), HDD (hard disk drive), SSD (solid state drive) and other mass storage devices. .
- the storage unit 202 can have any device configuration capable of storing information.
- the storage unit 202 is configured to store, for example, a computer program corresponding to control processing executed by the control unit 201 and various types of information (cell information, connection terminal information, IAB routing information, etc.) used for the control processing. be.
- the wireless communication unit 203 executes various processes related to cellular communication such as LTE (Long Term Evolution) conforming to the 3GPP standard and the 5th generation (5G) cellular communication standard.
- the wireless communication unit 203 includes, for example, a circuit for control processing for executing communication processing such as a baseband chip or an RF (radio frequency) chip.
- the antenna control unit 204 transmits the electrical signal generated by the wireless communication unit 203 as a wireless signal, detects a wireless signal coming from outside the IAB donor, and controls the antenna 205 to obtain an electrical signal.
- Antenna control section 204 determines antenna weights so as to form a beam toward a destination device such as an IAB node, for example.
- Antenna 205 includes one or more antenna elements designed to transmit radio waves in a frequency band corresponding to the radio communication system to which radio communication unit 203 conforms and to receive radio waves in that frequency band from the outside. It is an antenna composed of Note that the antenna 205 can be configured to form a beam having a high gain in a predetermined direction and a low gain in other directions using a plurality of antenna elements. Note that the control for forming the beam can be performed by the antenna control unit 204 .
- the IAB donor (control device) includes, for example, a signal transmission unit 301, a signal reception unit 302, a data storage unit 303, a connection control unit 304, an RRC processing unit 305, a notification signal control unit 306, a UE connection count confirmation unit 307, a connection destination It has a determination unit 308 and a connection destination notification unit 309 .
- these functional units are examples, and some of the functions may be omitted, or functions different from those shown in FIG. 3 may be added.
- one functional unit may be prepared by integrating two or more functions shown in FIG. 3, or the function shown as one functional unit in FIG.
- the functional units shown in FIG. 3 can be implemented by the control unit 201 executing a program stored in the storage unit 202, for example. Also, at least part of the functions may be implemented using dedicated hardware such as functions pre-installed in the wireless communication unit 203, for example. Also, some functions may be realized through cooperation between IAB donors and IAB nodes.
- the signal receiving unit 301 and the signal transmitting unit 302 perform processing for transmitting and receiving radio signals to and from the UE in compliance with cellular communication standards such as 3GPP's LTE and 5G.
- the data storage unit 303 executes processing for storing and holding software (computer program) executed by the IAB donor, routing information of the IAB, information regarding the UE being connected, and the like.
- the data storage unit 303 can also store general information related to communication control, such as PLMN (Public Land Mobile Network Identity), which is an identifier that identifies a communication carrier.
- the connection control unit 304 performs processing related to connection and disconnection of the UE to the cellular network, such as radio resource control (RRC) message communication between the UE and the core network.
- RRC radio resource control
- the RRC processing unit 305 executes RRC processing such as requesting establishment and release of an RRC connection.
- RRC processing unit 305 when the first IAB node under the control is handed over to another IAB donor or a second IAB node under the control of another IAB donor, the UE connected to the first IAB node can send a message for handover to.
- the RRC processing unit 305 is connected to the first IAB node even when the first IAB node is handed over from another IAB donor or a second IAB node under its control and connected to the own device UE for handover. That is, when the connected IAB node connects to another IAB donor, the RRC processing unit 305 changes the IAB donor to which the UE connected to the IAB node is connected.
- the RRC processing unit 305 when the unconnected first IAB node has handed over to the device itself or the second IAB node under its control, establishes the RRC connection of the UE connected to the first IAB node Execute the process for
- the notification signal control unit 306 periodically sends notification signals such as synchronization signals (SS) and physical broadcast channels (PBCH) to the surroundings using predetermined frequency resources for each cell provided by its own device.
- notification signals such as synchronization signals (SS) and physical broadcast channels (PBCH)
- PBCH physical broadcast channels
- the annunciation signal control unit 306 determines the radio resources to be used for SS/PBCH transmission in each of the IAB nodes connected under its control, and transmits the annunciation signal using those radio resources. controllable.
- a UE or an MT of an IAB node existing within the reach of the annunciation signal can recognize an IAB donor existing around the own device or an IAB node connected to the IAB donor based on the annunciation signal. .
- the UE and the MT of the IAB node can perform connection processing to the surrounding IAB donors and other IAB nodes.
- the UE connection count confirmation unit 307 confirms the number of UEs connected to each of the IAB node currently connected to its own device and other IAB nodes connected downstream thereof.
- UE connection number confirmation unit 307 in the procedure when the UE is connected to each IAB node, for example, based on the identifier of the communication path included in the signal transmitted from the IAB node, to which IAB node the UE is connected. can recognize. Then, the UE connection number confirmation unit 307 stores the number of UEs connected to each IAB node in the data storage unit 303, and confirms the number of UEs connected to each IAB node based on the stored information. can do.
- the number-of-connected-UEs confirmation unit 307 can acquire the allowable number of accommodated UEs in each IAB node when establishing a connection and a communication path with each IAB node, and store it in the data storage unit 303 . Then, the UE connection number confirmation unit 307 can identify the IAB nodes included in each communication path in setting the establishment of the communication path. For this reason, the UE connection count confirmation unit 307 calculates the total number of UEs connected to each IAB node included in a certain communication path and the IAB node downstream thereof, and the total number is allowed. It is possible to determine whether or not the number of accommodation units has been exceeded.
- Connection destination determination unit 308 for the IAB node included in the communication path to which the new UE is connected, when the number of UEs connected to the IAB node and other downstream IAB nodes exceeds the allowable accommodation number , determines the connection destination of the IAB node on the communication path. For example, the connection destination determination unit 308 can determine to switch the connection destination of the IAB node to which the UE is connected or the connection destination of the upstream IAB node. For example, the connection destination determination unit 308 establishes a new communication path by connecting the IAB node to which the UE is connected to another IAB node, so that the number of IAB nodes exceeding the allowable accommodation number exists in the new communication path.
- connection destination determination unit 308 determines the connection destination of one of the IAB nodes so as to set the new communication path. You can decide to change.
- the connection destination notification unit 309 notifies the IAB node whose connection destination is to be changed, which has been determined by the connection destination determination unit 308, that the connection destination should be changed, information indicating the IAB node of the connection destination after the change, and the like. I do.
- the IAB node 107 is connected to the IAB node 104, and a communication path including the IAB donor 102, the IAB node 103, the IAB node 104, and the IAB node 107 is formed. It is also assumed that another communication path including IAB donor 102, IAB node 105 and IAB node 106 is formed.
- ⁇ Processing example 1> In this processing example, a case will be described in which the number of UEs that can be accommodated in each IAB node (that is, the maximum total number of UEs connected to each IAB node and other downstream IAB nodes) is set.
- the IAB node 104 can be connected to the IAB node 105 in addition to the IAB node 103, and the IAB node 107 can be connected to the IAB node 105 or 106 in addition to the IAB node 104.
- the IAB node 106 is connectable to the IAB node 103 in addition to the IAB node 105 .
- devices that can be connected to each IAB node are specified in advance based on the results of measurement of the surrounding wireless environment, for example, by the MT of each IAB node. This can be done in a similar manner to the conventional process of determining which cell to measure for the UE.
- the number of allowable accommodation in each IAB node shall be 12 IAB nodes 103, 8 IAB nodes 104, 20 IAB nodes 105, 12 IAB nodes 106, and 5 IAB nodes 103. . Further assume that there are 4 connected UEs in cell 111 formed by IAB node 104 and 6 connected UEs in cell 112 formed by IAB node 106 . It is also assumed that four UEs are currently connected in cell 113 formed by IAB node 107 and UE 121 is about to connect.
- the IAB node 104 has four UEs connected in its own device, and there are also four UEs connected to the IAB node 107 connected downstream, so the UEs accommodated by the IAB node 104 The total number of units is 8.
- the IAB node 107 does not have any other IAB nodes connected downstream, only four UEs that are being accommodated are connected to the IAB node 107 itself. A table summarizing this information is shown in FIG.
- the IAB donor 102 can determine whether to switch the destination of the IAB node 107 .
- the connection destination of the IAB node (here, the IAB node 107) connected to the child node of the IAB node 104 or its downstream side is changed. is determined.
- the IAB node 107 determines whether or not the connection to the IAB node 106 or the IAB node 105, which are connection destination candidates other than the currently connected IAB node 104, should be changed. According to FIG. 4, the IAB node 106 has an allowable accommodation number of 12 and currently accommodates 6 UEs.
- the IAB node 107 to which the UE 121 is connected when the IAB node 107 to which the UE 121 is connected is connected, the number of UEs being connected to the IAB node 107 at that time is 5, so the number of UEs being accommodated by the IAB node 106 is 11. It fits within the allowable accommodation number.
- the IAB node 105 can accommodate 20 units, and the number of UEs currently being accommodated is 6 units. is within the allowable accommodation number.
- the IAB node 107 connects to the IAB node 105 the number of UEs being accommodated falls within the allowable number of accommodated UEs.
- IAB donor 102 may decide to switch IAB node 107 to either IAB node 106 or IAB node 105 .
- the IAB donor 102 may decide to increase the number of connection destinations of the IAB node 107 instead of switching the connection destination when the IAB node 107 supports Dual Connectivity. That is, IAB donor 102 may decide that IAB node 107 connects to IAB node 106 and IAB node 105 while maintaining connection with IAB node 104 . In this case, the IAB donor 102 uses, for example, either route 1 via the IAB node 104 or route 2 via the IAB node 106 or the IAB node 105 for each UE connected to the IAB node 107. can decide whether to communicate. Note that this is just an example, and the UE and the route may not be fixedly associated.
- a predetermined percentage of UE communications connected to IAB node 107 may be conducted using path 2 .
- the IAB donor 102 may decide to communicate with 3 UEs on path 1 and communicate with 2 UEs on path 2 and share the configuration information with the IAB node 107 .
- the number of UEs accommodated by the IAB node 104 may be counted as three, and the number of UEs accommodated by the IAB node 106 or IAB 105 may be counted as two.
- the IAB node 107 can be connected to either the IAB node 104 or the IAB node 106, and the connection to the IAB node 105 is not considered.
- a first communication path including the IAB donor 102, the IAB node 103 and the IAB node 104, and a second communication path including the IAB donor 102, the IAB node 105 and the IAB node 106 is formed (S501).
- IAB node 107 connects to IAB node 104 in order to connect to the first communication path.
- the IAB node 107 receives, for example, broadcast signals (synchronization signals and physical broadcast channels, SS/PBCH) coming from the IAB node 104 and the IAB node 106 (S502, S503).
- the IAB node 107 establishes downlink synchronization based on the synchronization signal and acquires basic system information via the PBCH.
- the IAB node 107 has decided to connect to the IAB node 104 based on, for example, the reception strength of the notification signal.
- the IAB node 107 executes a random access procedure (RACH process) with the IAB node 104 (S504). That is, the IAB node 107 establishes uplink synchronization by transmitting a random access preamble to the IAB node and receiving a random access response containing information specifying transmission timing.
- RACH process random access procedure
- the IAB node 107 establishes connection in the RRC layer (S505), and becomes ready for communication with the IAB node 104.
- a communication path is established (S506).
- the detailed procedures for establishing a connection and setting a communication path are the same as those for establishing a connection and setting a communication path for a normal IAB node, so descriptions thereof will be omitted here.
- the IAB donor 102 can manage the communication path including the IAB node 107 . Also, with this setting, the IAB node 107 can function as a relay device that relays the communication of the IAB donor 102, and can establish a connection with the UE.
- the UE 121 After that, for example, after four UEs are connected to the IAB node 107, the UE 121 enters the cell 113 formed by the IAB node 107 and establishes a connection with the IAB node 107 (S507). Note that the UE 121 executes connection processing with the IAB donor 102 via the IAB node 107 when actually establishing connection. At this time, the IAB node 107 transfers data including identification information for identifying the communication path between the IAB node 107 and the IAB donor 102 . Thus, IAB donor 102 can recognize that UE 121 connects to IAB node 107 .
- the IAB donor 102 determines whether the communication path currently associated with the IAB node 107 through the connection of the UE 121 includes an IAB node in which the number of accommodated UEs exceeds the allowable number of accommodated UEs. Then, when the IAB donor 102 switches the connection destination of the second IAB node on the downstream side from the IAB node when there is a first IAB node in which the number of UEs being accommodated exceeds the allowable accommodation number. judge. Then, the IAB donor 102, for example, as described above, determines that the connection destination of the IAB node 107 is the IAB node 106, and transmits a connection destination switching instruction including the connection destination information to the IAB node 107. (S509).
- the connection destination information can be, for example, a cell identifier configured by the IAB node 106 .
- the IAB node 107 When the IAB node 107 receives the connection destination switching instruction from the IAB donor 102, based on the instruction, the IAB node 107 performs RACH processing to establish synchronization with the IAB node 106 (S510), and establishes an RRC connection. (S511). Note that IAB node 107 can disconnect from IAB node 104 at this time. That is, the MT of the IAB node 107 can perform handover to switch the IAB node to which it is connected. After that, the IAB node 107 executes a communication path setting process by BAP with the IAB donor 102, thereby connecting the IAB donor 102, the IAB node 105, the IAB node 106, and the IAB node 107 in this order. A route is established (S512). By performing such processing, since there is no IAB node that accommodates the number of UEs exceeding the allowable accommodation number, some IAB nodes will be overloaded, so that the communication quality will be insufficient can
- connection destination may be added. That is, for an IAB node that can be connected to two or more connection destinations in parallel, the connection destination may be changed or the connection destination may be added.
- FIGS. 6A and 6B The processing of FIGS. 6A and 6B can be realized by executing a program stored in the storage unit 202 by the control unit 201 of the IAB donor 102, for example. Note that this is just an example, and predetermined hardware on which the processes of FIGS. 6A and 6B are implemented may be used.
- the IAB donor 102 When the IAB donor 102 connects with the UE 121 via the IAB node 107, it receives UE connection information indicating that the UE 121 will be connected to the IAB node 107 (S601). Then, when the UE 121 is connected to the IAB node 107, the IAB donor 102, among the IAB nodes included in the communication path to which the IAB node 107 belongs, is an IAB node that accommodates the number of UEs exceeding the allowable accommodation number. exists (S602).
- the IAB donor 102 terminates the process as it is, accepts the connection of the UE 121 with the current communication path, and connects with the UE 121 via the IAB node 107. communicate.
- the IAB node to which the connection destination is changed can be the IAB node 107 to which the UE 121 is connected. can be either In this case, if there are multiple IAB nodes whose connection destinations are to be changed, it is determined to switch the connection destination of one of the IAB nodes by executing the processing from S603 onward for each of the multiple IAB nodes. can be As an example, it may be decided to preferentially switch the connection destination of the IAB node on the downstream side.
- the IAB donor 102 determines that the allowable number of accommodated IAB nodes that are candidates for the switching destination of the n-th connection exceeds the allowable accommodated number in response to the switching of the connection destination of the IAB node 107. Determine whether or not That is, the IAB donor 102 determines whether or not the allowable accommodation number of the switching destination candidate is equal to or greater than the sum of the number of UEs currently accommodated by the switching destination candidate and the number of UEs currently accommodated by the IAB node 107. (S604).
- the IAB donor 102 decides not to connect the IAB node 107 to the switching destination candidate. Then, the IAB donor 102 increments the parameter n and shifts to processing regarding the next switching destination candidate (S608). At this time, if the parameter n exceeds N, which is the number of switching destination candidates, and there is no next switching destination candidate (YES in S609), the IAB donor 102 ends the process. On the other hand, if there is a candidate for the next switching destination (NO in S609), the IAB donor 102 returns the process to S604 and performs the determination process described above.
- the switching destination of the connection of the IAB node 107 is not changed, and the number of UEs being accommodated by the IAB node 104 exceeds the allowable accommodation number. state is maintained. For this reason, the IAB donor 102 makes sure that the number of UEs being accommodated by the IAB node 104 does not exceed the allowable accommodation number by, for example, handing over the UEs connected to the IAB node 104 or the IAB node 107 to another IAB node. can be In such a case, the UEs connected to the IAB node 104 or the IAB node 107 may be notified that the current communication path accommodates more UEs than the allowable number of accommodated UEs.
- the IAB donor 102 In response to the switching of the connection destination of the IAB node 107, the IAB donor 102, if the number of UEs accommodated in the switching destination candidate does not exceed the allowable accommodation number (YES in S604), the candidate's parent node The same process is performed for . First, the IAB donor 102 determines whether or not there is a parent node among the candidates for switching the connection of the IAB node 107 (S605). Here, if there is no parent node in the connection switching destination candidate, even if the connection destination of the IAB node 107 is changed to the switching destination candidate, the number of UEs being accommodated in the changed communication path is the allowable accommodation number There will be no IAB nodes exceeding .
- the IAB donor 102 notifies the IAB node 107 to connect to the candidate IAB node to switch to (S610), and ends the process. Also, the IAB node 107 changes the connection destination according to the notification. On the other hand, if there is a parent node in the switching destination candidate (YES in S605), the IAB donor 102, when the IAB node 107 connects to the candidate, the number of UEs being accommodated in the parent node is is exceeded (S606).
- the IAB donor 102 makes a similar determination in a further parent node of the parent node (S607). By repeating this procedure, it is confirmed that the number of UEs being accommodated does not exceed the allowable number of accommodation in all of the plurality of IAB nodes included in the communication path to which the candidate of the switching destination of the connection of the IAB node 107 belongs. be able to.
- the IAB donor 102 connects the IAB node 107 to the switching destination candidate, and if the number of UEs being accommodated by any IAB node in the communication path exceeds the allowable accommodation number (NO in S606), It determines that IAB node 107 should not be connected to that candidate. In this case, the IAB donor 102 changes the connection switching destination candidate (S608), and repeats the same processing as described above.
- the IAB node 106 is a candidate for switching the connection of the IAB node 107 .
- IAB node 106 accommodates 6 UEs before IAB node 107 is connected.
- the IAB node 106 also accommodates the five UEs connected to the IAB node 107, so the number of UEs being accommodated is 11. Become. Since the number of UEs being accommodated does not exceed 12, which is the allowable accommodation number of the IAB node 106 (YES in S604), the IAB node 105, which is the parent node of the IAB node 106, is subsequently processed. (S606).
- the number of UEs currently being accommodated in the IAB node 105 is six, and when the IAB node 107 connects to the IAB node 106, the number of UEs being accommodated will be eleven. Then, the number of UEs being accommodated does not exceed 20 units, which is the allowable accommodation number of the IAB node 105 (YES in S606).
- the IAB node 105 is connected to the IAB donor 102 and there is no parent IAB node (NO in S605). Therefore, even if the IAB node 107 connects to the IAB node 106, it can be confirmed that the number of UEs being accommodated does not exceed the allowable accommodation number in all the IAB nodes included in the communication path of the connective. Thereby, the IAB donor 102 can decide to switch the connection destination of the IAB node 107 from the IAB node 104 to the IAB node 106 .
- the IAB donor 102 may decide to have the IAB node 107 connect with the IAB node 106 while maintaining the connection with the IAB node 104 . IAB donor 102 can then designate some UEs to have their communications go through IAB node 106 . IAB donor 102 may also allow some of IAB node 107's communications to occur through IAB node 106 without specifying the UE. In this case, the IAB donor 102 may send an instruction to the IAB node 107 to transfer some UE communications to the IAB node 106 in uplink communications.
- the IAB donor 102 considers the allowable accommodation number of UEs set in each IAB node, based on the relationship between the allowable accommodation number and the number of currently accommodated UEs, the communication path can be set appropriately. According to this, it is possible to suppress an excessive increase in the communication processing load due to an increase in the number of UEs connected to the IAB node, and it is possible to provide communication services to the UE using a communication path with a good communication environment. become able to.
- ⁇ Processing example 2> In the processing example 1, the case where the allowable number of UEs to be accommodated is individually set in advance for each IAB node has been described. In this processing example, the flow of processing when the allowable accommodation number of each IAB node is set according to the number of hops from the IAB donor will be described. That is, in this processing example, the allowable number of accommodated IAB nodes is not determined in advance, and the allowable accommodated number is determined according to the number of hops from the IAB donor when the communication path is established. Note that the number of hops is counted such that an IAB node directly connected to an IAB donor is one hop, and an IAB node connected to another IAB node connected by that one hop is two hops.
- setting is made so that the larger the number of hops, the smaller the number of allowable accommodation units. That is, the allowable number of IAB nodes that are connected to the IAB donor on the communication path increases. This is because the IAB node farthest from the IAB donor only needs to process the communication of the UE directly connected to the IAB node, but the closer the IAB node to the IAB donor, the UE connected to the downstream IAB node. This is because it is necessary to process the communication between the If the allowable capacity is determined in this way, the IAB node can increase the allowable capacity by connecting to a more upstream IAB node or IAB donor.
- the number of UEs being accommodated by the IAB node exceeds the allowable accommodation number, by switching the connection destination to the upstream IAB node or IAB donor, the accommodation being accommodated
- the number of UEs can be less than or equal to the allowable capacity.
- Fig. 7 shows the relationship between the number of hops and the number of allowable accommodation units in this processing example.
- the allowable accommodation number of the first IAB node that is wirelessly connected to the IAB donor is set to 12
- the allowable accommodation number of the second IAB node that is wirelessly connected to the first IAB node is 8.
- the allowable accommodation number of the third IAB node wirelessly connected to the second IAB node is set to four.
- the allowable accommodation number of the IAB nodes 103 and 105 directly connected to the IAB donor 102 is set to 12
- the number of the IAB nodes 104 and 106 connected to those IAB nodes is The allowable accommodation number is set to eight.
- the allowable accommodation number is set to four.
- the IAB node 107 switches the connection destination to the IAB node 105, for example.
- the IAB node 107 By directly connecting the IAB node 107 to the IAB node 105, the number of hops to the IAB donor 102 becomes two hops. By doing so, even if the number of connected UEs increases due to the connection of UE 121, the IAB node 107 can keep the number of currently accommodated UEs below the allowable number of accommodated UEs.
- FIGS. 8A and 8B An example of the flow of processing in this case will be described using FIGS. 8A and 8B.
- the processing of FIGS. 8A and 8B can also be implemented by, for example, the control unit 201 of the IAB donor 102 executing a program stored in the storage unit 202, like the processing of FIGS. 6A and 6B. Note that this is just an example, and predetermined hardware on which the processes of FIGS. 8A and 8B are implemented may be used.
- S801-S803 are the same as S601-S603 in FIG. 6A.
- the IAB donor 102 specifies the allowable number of UEs to be accommodated when the IAB node whose connection destination is to be switched connects to the n-th connection switching destination candidate, and the number of UEs currently being accommodated is that number. It is determined whether the number of units to be accommodated is equal to or less than the allowable accommodation number. For example, the IAB donor 102 manages information indicating how each IAB node is connected and what communication paths are established. For this reason, the IAB donor 102 sets the allowable accommodation number corresponding to the number of hops obtained by adding 1 to the number of hops from the IAB donor 102 that is a candidate for switching the connection of the IAB node 107 to the IAB node 107 after switching the connection destination.
- the IAB node 105 and the IAB node 106 exist as candidates for switching the connection of the IAB node 107 currently connected to the IAB node 104 .
- the IAB donor 102 may determine that the IAB node 106 is inappropriate as the switching destination of the connection of the IAB node 107 .
- the IAB donor 102 can specify that when the IAB node 107 connects to the IAB node 105, the number of hops is reduced by 1 from before switching the connection, so the allowable number of accommodated devices increases.
- the IAB donor 102 identifies, at S804, a suitable other IAB node to which the IAB node 107's connection should be switched.
- the IAB donor 102 determines that the IAB node 105 is suitable as a connection switching destination candidate (YES in S804). In this case, the IAB donor 102 subsequently determines whether or not the number of UEs accommodated when the IAB node 107 is connected to the candidate IAB node 105 exceeds the allowable accommodation number (S806). Then, this determination is repeated for IAB nodes on the upstream side of the IAB node determined to be suitable as a candidate in S804.
- the IAB donor 102 selects the IAB node 107 as a candidate IAB node.
- S805-S810 is the same as that of S605-S610 in FIG. 6B.
- the IAB donor 102 can set a communication route so that the number of UEs that do not exceed the number of UEs that can be accommodated corresponding to the number of hops of the IAB node is accommodated. According to this, it is possible to suppress an excessive increase in the communication processing load due to an increase in the number of UEs connected to the IAB node, and it is possible to provide communication services to the UE using a communication path with a good communication environment. become able to.
- the connection switching destination of the IAB node 107 is the IAB node 105. However, for example, if the IAB node 107 is connectable to the IAB node 103, the connection switching destination is the IAB node 103.
- the number of hops of the IAB node 107 is reduced from 3 to 2, so the number of UEs accommodated by the IAB node 107 can be reduced to the allowable number of accommodated UEs or less.
- the connection destination of the IAB node 104 is changed to the IAB donor 102 in response to accommodating the number of UEs exceeding the allowable accommodation number in the IAB node 107. You can switch.
- the allowable accommodation number in this processing example may be fixedly set as shown in FIG. 7, or may be set dynamically.
- the allowable accommodation number of the first IAB node directly connected to the IAB donor is set to M1 units, and the number of UEs assumed to be connected to each IAB node is set to L units. do.
- the allowable accommodation number M2 of the second IAB nodes can be calculated as (M1-L)/K1 (units).
- the allowable accommodation number M3 of the third IAB nodes is calculated as (M2-L)/K2 (units).
- the allowable number of UEs to be accommodated by the first IAB node is 30, and the number of UEs expected to be directly connected to each IAB node is 6.
- the allowable accommodation number of the second IAB nodes is (K2+1) ⁇ P1 (units). This is K2 ⁇ P1, the number of UEs to be accommodated via the third IAB node, plus P1 directly connected at the second IAB node.
- the allowed capacity may be statically preset or dynamically set according to various criteria.
- connection destination of the IAB node 107 may change the allowable accommodation number of each IAB node at the connection destination after the change. For this reason, the connection destination of the IAB node 107 can be determined so that there is no IAB node that exceeds the allowable accommodation number due to the change.
- the IAB it has been explained that node 107 is not connected to that communication path.
- the accommodation of each IAB node in the communication path The number of UEs may not exceed the allowable accommodation number.
- the allowable accommodation number is set for each IAB node individually or for the number of hops in the communication path of each IAB node has been described, but this is not the only case.
- the number of allowable accommodation units may be set for each communication path.
- the allowable accommodation number for the communication path including the IAB node 103, the IAB node 104 and the IAB node 107, and the allowable accommodation number for the communication path including the IAB node 105 and the IAB node 106 are can be set.
- the IAB donor 102 identifies the second IAB node to switch the connection of the first IAB node to which the UE is newly connected, A first IAB node may be directed to connect to a second IAB node. Note that the IAB donor 102 updates the information on the communication path managed by itself when instructing switching of the connection destination for any IAB node.
- the IAB node 107 switches the connection before the IAB node 107 switches the connection destination, and the number of UEs accommodated in each IAB node is allowed.
- An example of confirming that the number of units accommodated is not exceeded has been described. However, it is not limited to this. For example, after the IAB node 107 switches connection destinations, it may be confirmed that the number of UEs accommodated in each IAB node does not exceed the allowable number of accommodated UEs. After the switching, the child node information of the connected IAB node is changed.
- connection information update notification at that time is received by the IAB donor, and the IAB donor can execute a process of determining whether or not the number of UEs being accommodated exceeds the allowable accommodation number in each IAB node. Then, when the number of UEs being accommodated exceeds the allowable number of UEs to be accommodated, connection destination switching processing of at least some of the IAB nodes can be executed.
- an IAB donor's DU may be treated as an IAB node directly connected to the IAB donor in the above description. That is, an IAB donor's CU (Central Unit) may be treated as a base station, and an IAB donor's DU may be treated as an IAB node directly connected to the IAB donor.
- IAB node 103 and IAB node 105 of FIG. 1 may be configured by DUs of IAB donors.
- the load of each relay device does not excessively increase beyond the maximum allowable load in the relay device.
- a communication path can be set as follows. This makes it possible to relay communication between the base station (IAB donor) or core network and the terminal (UE) in a sufficiently favorable environment.
- the IAB-based relay communication system has been described, but the above discussion can be applied to a wireless relay communication system that wirelessly relays communication between a base station and a terminal using a relay device.
- the above discussions are applicable to relaying communications between access points and stations in wireless LANs (Local Area Networks).
- each of the above discussions applies to, for example, fifth generation (5G) cellular communication systems, but may also be applied to long term evolution (LTE) and later generation cellular communication systems after 5G.
- 5G fifth generation
- LTE long term evolution
- the present invention supplies a program that implements one or more functions of the above-described embodiments to a system or device via a network or a storage medium, and one or more processors in the computer of the system or device reads and executes the program. It can also be realized by processing to It can also be implemented by a circuit (for example, ASIC) that implements one or more functions.
- a circuit for example, ASIC
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
図1に、本実施形態に係る無線通信システムの構成例を示す。本無線通信システムは、第3世代パートナーシッププロジェクト(3GPP)のセルラ通信規格において規定されているIAB(Integrated Access and Backhaul)による中継通信システムである。IABでは、コアネットワーク101に接続されるIABドナー102及びIABドナー108を含む。IABドナー102及びIABドナー108は、基地局装置としての機能を有し、IABノードの端末機能(Mobile Termination)との間で無線接続を確立する。そして、IABドナー102及びIABドナー108は、BAP(Backhaul Adaptation Protocol)による設定を行い、そのIABノードが中継装置として機能することを可能とする。例えば、IABドナー102には、IABノード103及びIABノード105が接続され、IABドナー102及びIABノード103を介する通信経路と、IABドナー102及びIABノード105を介する通信経路が設定される。また、IABドナー108には、IABノード109が接続され、IABドナー108及びIABノード109を介する通信経路が設定される。
図2に、IABドナー(制御装置)のハードウェア構成例を示す。IABドナーは、例えば、制御部201、記憶部202、無線通信部203、アンテナ制御部204、及びアンテナ205を有する。なお、これらの構成は一例であり、IABドナー(制御装置)は、他のハードウェア構成をさらに含んでもよいし、図2に示した構成の少なくとも一部を含まなくてもよい。また、IABドナー(制御装置)は、図2に含まれない構成をさらに含んでもよい。例えば、IABドナーは、無線通信部203、アンテナ制御部204、及びアンテナ205を有するが、コアネットワーク101に配置された制御装置が用いられる場合は、これらのハードウェアに代えて、有線通信部やそのためのインタフェースが含まれうる。
続いて、上述の無線通信システムにおいて実行される処理の流れの例について説明する。なお、以下では、図1のシステムのうち、IABドナー102及びIABノード103~107のみについて着目して説明する。なお、IABノード107は、IABノード104に接続しており、IABドナー102、IABノード103、IABノード104、及びIABノード107を含んだ通信経路が形成されている。また、IABドナー102、IABノード105及びIABノード106を含んだ別の通信経路が形成されているものとする。
本処理例では、各IABノードにおいて収容可能なUEの数(すなわち、各IABノードおよび下流側の他のIABノードに接続されたUEの総数の最大数)が設定されている場合について説明する。なお、本処理例では、IABノード104は、IABノード103の他にIABノード105に接続可能であり、IABノード107は、IABノード104の他にIABノード105又はIABノード106に接続可能であるものとする。また、IABノード106は、IABノード105の他にIABノード103に接続可能であるものとする。なお、各IABノードが接続可能な装置については、例えば、各IABノードのMTによって周囲の無線環境が測定され、その測定の結果によって事前に特定される。これは、UEに対して測定対象のセルを決定する従来の処理と同様にして行われうる。
処理例1では、各IABノードに対して予め個別にUEの許容収容台数が設定されている場合について説明した。本処理例では、IABドナーからのホップ数に応じて各IABノードの許容収容台数が設定される場合の処理の流れについて説明する。すなわち、本処理例では、各IABノードの許容収容台数は事前に定められておらず、通信経路が確立された際のIABドナーからのホップ数に応じて、許容収容台数が決定される。なお、ホップ数は、IABドナーに直接接続されているIABノードが1ホップ、その1ホップで接続されている他のIABノードに接続されているIABノードが2ホップ、のようにカウントされる。本処理例では、ホップ数が多いほど、許容収容台数が少なくなるように設定される。すなわち、通信経路においてIABドナーに近い位置で接続されているIABノードほど、許容収容台数が多くなる。これは、IABドナーから最も離れたIABノードでは、そのIABノードに直接接続されたUEの通信の処理さえ行えばよいが、IABドナーに近いIABノードほど、下流側のIABノードに接続されたUEの通信の処理をも行う必要があるからである。このようにして許容収容台数が決定される場合、IABノードは、より上流のIABノード又はIABドナーに接続することにより、許容収容台数を増やすことができる。このため、例えば、あるIABノードにおいて、そのIABノードが収容中のUEの数が許容収容台数を超えた場合に、より上流側のIABノード又はIABドナーに接続先を切り替えることにより、収容中のUEの数を許容収容台数以下とすることができる。
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
Claims (14)
- 第3世代パートナーシッププロジェクト(3GPP)によって定義されるIAB(Integrated Access and Backhaul)技術を用いる無線通信システムであって、コアネットワークと端末との間の通信を中継する1以上のIABノードと、IABノードと前記コアネットワークとの間の通信を中継するIABドナーを少なくとも含んだ前記無線通信システムの前記IABドナーであって、
前記IABドナーと、前記IABドナーの配下の第1のIABノードと、前記第1のIABノードの配下の第2のIABノードと、を含んだ第1の通信経路上に接続される端末の数に少なくとも基づいて、通信経路を変更するかどうかを判定する判定手段と、
前記判定手段によって通信経路を変更すると判定された場合に、前記第2のIABノードの接続先を前記第1の通信経路とは異なる通信経路を構成している第3のIABノードへと変更し、前記第3のIABノードを経由して前記第2のIABノード及び当該第2のIABノードの配下の端末と前記IABドナーとの間の通信を中継するための第2の通信経路の設定を行う設定手段と、
を有するIABドナー。 - 前記IABドナーの配下のIABノードのそれぞれに対して端末の許容収容台数が設定され、前記第1のIABノードに接続されている端末の数と、前記第1の通信経路において前記第1のIABノードより下流側に接続された1以上のIABノードに接続されている端末の数の総数が、前記第1のIABノードに対して設定された前記許容収容台数を超える場合に、前記判定手段は、通信経路を変更すると判定する、請求項1に記載のIABドナー。
- 前記判定手段は、変更後の接続先をさらに判定し、
前記判定手段は、前記第2のIABノードが前記第3のIABノードに接続する前に、前記第2のIABノードが当該第3のIABノードに接続された場合に形成されることとなる前記第2の通信経路に含まれる、前記第3のIABノードを含む1以上のIABノードのそれぞれにおいて、当該IABノードに接続されている端末の数と、当該IABノードより下流側に接続された他のIABノードに接続されている端末の数の総数が、当該IABノードに対して設定された前記許容収容台数を超えない場合に、前記第2のIABノードを前記第3のIABノードに接続させると判定する、請求項2に記載のIABドナー。 - 前記判定手段は、前記設定手段によって前記第2の通信経路が設定された後に、当該第2の通信経路に含まれるIABノードのそれぞれにおいて前記許容収容台数を超えたか否かを判定し、前記第2の通信経路が設定される前には当該判定を行わない、請求項2に記載のIABドナー。
- 前記許容収容台数は、通信経路における前記IABドナーを起点としたIABノードまでのホップ数に基づいて設定される、請求項2から4のいずれか1項に記載のIABドナー。
- 前記判定手段は、変更後の接続先をさらに判定し、
前記判定手段は、前記第2のIABノードに接続されている端末の数と、前記第1の通信経路において前記第2のIABノードより下流側に接続されたIABノードに接続されている端末の数の総数が、前記第2のIABノードに対して設定された前記許容収容台数を超える場合に、前記第1の通信経路とは異なる通信経路を構成しているIABノードのうち、前記第2のIABノードの前記ホップ数が減るようなIABノードを前記第3のIABノードとして選択し、に、当該第2のIABノードを前記選択した第3のIABノードの直下に接続させると判定する、請求項5に記載のIABドナー。 - 前記許容収容台数は、前記IABドナーを起点として下流側に接続されたIABノードの数に基づいて設定される、請求項2から4のいずれか1項に記載のIABドナー。
- 前記判定手段は、変更後の接続先をさらに判定し、
前記判定手段によって、前記第2の通信経路に含まれるIABノードのいずれかにおいて当該IABノードに関する前記総数が当該IABノードに対して設定された前記許容収容台数を超えないような、変更後の接続先とすべき前記IABドナー又はIABノードが存在しないと判定された場合に、前記第1のIABノードまたは前記第2のIABノードに接続されている前記端末に、前記許容収容台数を超える前記端末が接続されていることを示す情報を通知する通知手段をさらに有する、請求項2から7のいずれか1項に記載のIABドナー。 - 前記判定手段は、変更後の接続先をさらに判定し、
通信経路に対してそれぞれ許容収容台数が設定され、前記第1の通信経路に含まれる中継装置に接続している端末の総数が当該許容収容台数を超える場合に、前記判定手段は、前記第2のIABノードの接続先を前記第1の通信経路とは異なる第2の通信経路上の第3のIABノードに変更することにより前記第1の通信経路を変更すると判定する、請求項1に記載のIABドナー。 - 第3世代パートナーシッププロジェクト(3GPP)によって定義されるIAB(Integrated Access and Backhaul)技術を用いる無線通信システムであって、コアネットワークと端末との間の通信を中継する1以上のIABノードと、IABノードと前記コアネットワークとの間の通信を中継するIABドナーを少なくとも含んだ前記無線通信システムの前記IABドナーを制御する制御方法であって、
前記IABドナーと前記IABドナーの配下の第1のIABノードと前記第1のIABノードの配下の第2のIABノードとを含んだ第1の通信経路上に接続されるUE(User Equipment)の数に少なくとも基づいて、通信経路を変更するかどうかを判定することと
前記通信経路を変更すると判定された場合に、前記第2のIABノードの接続先を前記第1の通信経路とは異なる通信経路を構成している第3のIABノードへと変更し、前記第3のIABノードを経由して前記第2のIABノード及び当該第2のIABノードの配下の端末と前記IABドナーとの間の通信を中継するための第2の通信経路の設定を行うことと、
を含む制御方法。 - コンピュータを、請求項1から9のいずれか1項に記載のIABドナーとして機能させるためのプログラム。
- 基地局と端末との間の通信を中継する中継装置を含んだ無線通信システムの制御装置であって、
前記基地局と前記基地局の配下の第1の中継装置と前記第1の中継装置の配下の第2の中継装置とを含んだ第1の通信経路上に接続される端末の数に少なくとも基づいて、通信経路を変更するかどうかを判定する判定手段と、
前記判定手段によって通信経路を変更すると判定された場合に、前記第2の中継装置の接続先を、前記第1の通信経路とは異なる通信経路を構成している第3のIABノードへと変更する変更手段と、
を有する制御装置。 - 前記制御装置は、前記基地局がバックホール回線で接続しているコアネットワーク内に配置される制御装置である、請求項12に記載の制御装置。
- 前記基地局は第3世代パートナーシッププロジェクト(3GPP)によって定義されるIAB(Integrated Access and Backhaul)技術を用いるIABドナーである、請求項12に記載の制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247017830A KR20240091133A (ko) | 2021-11-08 | 2022-10-20 | Iab 도너, 제어 방법, 프로그램 및 제어 장치 |
CN202280074324.2A CN118216183A (zh) | 2021-11-08 | 2022-10-20 | Iab施主、控制方法、程序和控制设备 |
EP22889789.8A EP4432731A1 (en) | 2021-11-08 | 2022-10-20 | Iab donor, control method, program, and control device |
US18/633,651 US20240259912A1 (en) | 2021-11-08 | 2024-04-12 | Iab donor, control method, computer-readable storage medium, and control apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-182058 | 2021-11-08 | ||
JP2021182058A JP2023069877A (ja) | 2021-11-08 | 2021-11-08 | 制御装置、制御方法、およびプログラム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/633,651 Continuation US20240259912A1 (en) | 2021-11-08 | 2024-04-12 | Iab donor, control method, computer-readable storage medium, and control apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023079969A1 true WO2023079969A1 (ja) | 2023-05-11 |
Family
ID=86240958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/039073 WO2023079969A1 (ja) | 2021-11-08 | 2022-10-20 | Iabドナー、制御方法、プログラム、及び、制御装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240259912A1 (ja) |
EP (1) | EP4432731A1 (ja) |
JP (1) | JP2023069877A (ja) |
KR (1) | KR20240091133A (ja) |
CN (1) | CN118216183A (ja) |
WO (1) | WO2023079969A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014119112A1 (ja) * | 2013-01-30 | 2014-08-07 | ソニー株式会社 | 通信制御装置、通信制御方法、プログラム及び端末装置 |
JP2018525874A (ja) | 2015-06-30 | 2018-09-06 | クアルコム,インコーポレイテッド | バックホールネットワークにおけるトラフィックフローの移行 |
WO2020080044A1 (ja) * | 2018-10-16 | 2020-04-23 | ソニー株式会社 | 通信制御装置、通信装置、通信制御方法、通信方法、通信制御プログラム、通信プログラム、及び通信システム |
JP2021182058A (ja) | 2020-05-18 | 2021-11-25 | セイコーエプソン株式会社 | 表示装置 |
-
2021
- 2021-11-08 JP JP2021182058A patent/JP2023069877A/ja active Pending
-
2022
- 2022-10-20 EP EP22889789.8A patent/EP4432731A1/en active Pending
- 2022-10-20 KR KR1020247017830A patent/KR20240091133A/ko active Search and Examination
- 2022-10-20 WO PCT/JP2022/039073 patent/WO2023079969A1/ja active Application Filing
- 2022-10-20 CN CN202280074324.2A patent/CN118216183A/zh active Pending
-
2024
- 2024-04-12 US US18/633,651 patent/US20240259912A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014119112A1 (ja) * | 2013-01-30 | 2014-08-07 | ソニー株式会社 | 通信制御装置、通信制御方法、プログラム及び端末装置 |
JP2018525874A (ja) | 2015-06-30 | 2018-09-06 | クアルコム,インコーポレイテッド | バックホールネットワークにおけるトラフィックフローの移行 |
WO2020080044A1 (ja) * | 2018-10-16 | 2020-04-23 | ソニー株式会社 | 通信制御装置、通信装置、通信制御方法、通信方法、通信制御プログラム、通信プログラム、及び通信システム |
JP2021182058A (ja) | 2020-05-18 | 2021-11-25 | セイコーエプソン株式会社 | 表示装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20240091133A (ko) | 2024-06-21 |
CN118216183A (zh) | 2024-06-18 |
US20240259912A1 (en) | 2024-08-01 |
JP2023069877A (ja) | 2023-05-18 |
EP4432731A1 (en) | 2024-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220369190A1 (en) | Inter-donor topology adaptation in integrated access and backhaul networks | |
EP2919520A1 (en) | Radio communication system and communication control method | |
RU2748302C1 (ru) | Версия rrc для работы с разделенной базовой станцией | |
US10623268B2 (en) | Controller-enabled topology management in self backhauling wireless mesh and relay networks | |
JP5770139B2 (ja) | 無線通信システム、サービングゲートウェイ、ネットワークおよび論理経路確立方法 | |
JPWO2009031659A1 (ja) | 移動通信方法、移動交換局、無線基地局及び移動局 | |
EP3179814B1 (en) | Apparatus and method for establishing data transmission link, and communications system | |
JP2022514131A (ja) | 無線バックホールを確保する方法、子基地局、親基地局、並びに子基地局及び親基地局における方法 | |
CN116210250A (zh) | 一种数据传输方法及装置 | |
US9775052B2 (en) | Superordinate base station, subordinate base station, and radio communication system | |
WO2019163645A1 (ja) | 中継通信が行われるセルラ通信ネットワークのための制御装置、基地局装置、端末装置、それらの制御方法、及びプログラム | |
JP5785517B2 (ja) | 無線通信システムおよびネットワーク | |
WO2023079969A1 (ja) | Iabドナー、制御方法、プログラム、及び、制御装置 | |
CN112449384B (zh) | 数据处理方法、装置和系统 | |
JP2024502450A (ja) | グループ移行方法、装置及びシステム | |
CN114642076A (zh) | 一种接入回传控制方法及装置 | |
WO2023026681A1 (ja) | 中継装置、制御方法、プログラム、及び通信システム | |
WO2021029291A1 (ja) | 経路指定された信号を転送する中継装置、制御方法、及びプログラム | |
WO2022230524A1 (ja) | 通信装置、通信装置の制御方法、およびプログラム | |
JP2023179218A (ja) | 通信装置、制御方法、およびプログラム | |
CN116133111A (zh) | 一种切片处理方法及装置、通信设备 | |
CN117242826A (zh) | 通信装置、通信装置的控制方法、以及程序 | |
JP2021029023A (ja) | 経路指定された信号を転送する中継装置、制御方法、及びプログラム | |
CN118661449A (zh) | 方法、通信设备和基础设施设备 | |
CN117716735A (zh) | 中继发现方法及通信设备、通信系统及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22889789 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280074324.2 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20247017830 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022889789 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022889789 Country of ref document: EP Effective date: 20240610 |