WO2023079969A1 - Iabドナー、制御方法、プログラム、及び、制御装置 - Google Patents

Iabドナー、制御方法、プログラム、及び、制御装置 Download PDF

Info

Publication number
WO2023079969A1
WO2023079969A1 PCT/JP2022/039073 JP2022039073W WO2023079969A1 WO 2023079969 A1 WO2023079969 A1 WO 2023079969A1 JP 2022039073 W JP2022039073 W JP 2022039073W WO 2023079969 A1 WO2023079969 A1 WO 2023079969A1
Authority
WO
WIPO (PCT)
Prior art keywords
iab
iab node
node
donor
communication path
Prior art date
Application number
PCT/JP2022/039073
Other languages
English (en)
French (fr)
Inventor
暁央 木下
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to KR1020247017830A priority Critical patent/KR20240091133A/ko
Priority to CN202280074324.2A priority patent/CN118216183A/zh
Priority to EP22889789.8A priority patent/EP4432731A1/en
Publication of WO2023079969A1 publication Critical patent/WO2023079969A1/ja
Priority to US18/633,651 priority patent/US20240259912A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/32Connectivity information management, e.g. connectivity discovery or connectivity update for defining a routing cluster membership
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to technology for setting relay communication paths.
  • IAB Integrated Access and Backhaul
  • radio resources used for access lines between base stations and user terminals are also used for backhaul lines.
  • UE User Equipment
  • millimeter wave band radio resources such as the 28 GHz band may be used.
  • the relay device IAB node
  • IAB node can relay the communication between the base station device (IAB donor) and the terminal device through a wireless line, compared to the case of using a wired line such as an optical fiber. area coverage can be expanded at low cost.
  • the communication path is set appropriately to relay UE communications.
  • An IAB donor is a wireless communication system using Integrated Access and Backhaul (IAB) technology defined by the 3rd Generation Partnership Project (3GPP), which relays communication between a core network and a terminal.
  • the IAB donor of the wireless communication system including at least one or more IAB nodes that relay communication between the IAB node and the core network, wherein the IAB donor and the IAB donor are subordinate to the IAB donor Change the communication path based on at least the number of terminals connected on the first communication path including the first IAB node of and the second IAB node under the first IAB node determining means for determining whether or not a communication path is configured as a connection destination of the second IAB node different from the first communication path when the determining means determines to change the communication path To change to a third IAB node and relay communication between the second IAB node and terminals under the second IAB node and the IAB donor via the third IAB node and setting means for setting the second communication path.
  • IAB Integrated Access and Backhaul
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system.
  • FIG. 2 is a diagram showing an example hardware configuration of an IAB donor.
  • FIG. 3 is a diagram showing a functional configuration example of an IAB donor.
  • FIG. 4 is a diagram showing an example of information used for switching connection destinations of IAB nodes.
  • FIG. 5 is a diagram illustrating an example of the flow of processing performed in a wireless communication system.
  • FIG. 6A is a diagram illustrating an example of a process flow performed by an IAB donor.
  • FIG. 6B is a diagram illustrating an example of a process flow performed by an IAB donor.
  • FIG. 7 is a diagram illustrating an example of the relationship between the number of hops from an IAB donor and the number of UEs that can be accommodated.
  • FIG. 8A is a diagram illustrating an example of a process flow performed by an IAB donor.
  • FIG. 8B is a diagram illustrating an example of a process flow performed by an IAB donor.
  • FIG. 1 shows a configuration example of a wireless communication system according to this embodiment.
  • This radio communication system is a relay communication system according to IAB (Integrated Access and Backhaul) defined in the cellular communication standards of the 3rd Generation Partnership Project (3GPP).
  • IAB includes IAB donor 102 and IAB donor 108 connected to core network 101 .
  • the IAB donor 102 and the IAB donor 108 have functions as base station devices and establish wireless connections with terminal functions (Mobile Termination) of IAB nodes.
  • the IAB donor 102 and the IAB donor 108 perform settings according to BAP (Backhaul Adaptation Protocol) to enable the IAB node to function as a relay device.
  • BAP Backhaul Adaptation Protocol
  • an IAB node 103 and an IAB node 105 are connected to the IAB donor 102, and a communication path via the IAB donor 102 and the IAB node 103 and a communication path via the IAB donor 102 and the IAB node 105 are set.
  • An IAB node 109 is connected to the IAB donor 108, and a communication path via the IAB donor 108 and the IAB node 109 is set.
  • IAB nodes can be connected to other IAB nodes that are directly or indirectly connected to IAB donors. In this case, communication between the IAB node and the IAB donor would be through another IAB node.
  • IAB node 104 can establish a connection and set up a communication path with IAB donor 102 through IAB node 103 .
  • IAB node 106 can establish a connection with IAB donor 102 through IAB node 105
  • IAB node 110 can connect with IAB donor 108 through IAB node 109 .
  • IAB node 107 may connect to IAB node 104 to establish a communication path to IAB donor 102, for example.
  • the IAB node 107 may be configured to be connectable simultaneously with the IAB node 106 and the IAB node 105 in addition to the IAB node 104 using Dual Connectivity, for example.
  • a node that is directly connected to the core network 101 from the IAB node on the established communication path is called a parent node.
  • a node that is directly connected to the IAB node on the communication path away from the core network 101 is called a child node.
  • the parent node of IAB node 104 is IAB node 103 and the child node of IAB node 104 is IAB node 107 .
  • IAB donor 108 is the parent node and IAB node 110 is the child node.
  • a tree-structured relay network is formed starting from the IAB donor.
  • IAB nodes perform not only backhaul line communication but also access line communication.
  • the IAB node uses an antenna for the backhaul line and the common or separately prepared access line antenna, configures a cell and establishes an access line with the terminal (UE) to provide communication services.
  • UE terminal
  • IAB node 104 forms cell 111
  • IAB node 106 forms cell 112
  • IAB node 107 forms cell 113 .
  • other IAB nodes can similarly form cells to establish connections with UEs and provide communication services.
  • each IAB node (and possibly an IAB donor) may form multiple pre-determined beams or form an appropriate beam for each UE to communicate.
  • Each IAB node receives data (control data and user data) addressed to the connected UE from the parent node and transmits the data to the UE. Similarly, the IAB node forwards data received from connected UEs to the parent node. Thereby, communication is performed between the IAB donor functioning as a base station apparatus and the UE.
  • IAB donors and IAB nodes may provide access circuits in the same frequency band as the frequency band used for the backhaul circuit, or may provide access circuits in a frequency band different from the frequency band used for the backhaul circuit. may provide.
  • the IAB node can switch the connected IAB donor or other IAB node.
  • an IAB node can switch a connection destination node when a radio link failure (Backhaul Radio Link Failure, BH RLF) occurs in a radio link with another connection destination node.
  • BH RLF Backhaul Radio Link Failure
  • the IAB node can search for and connect to other connectable IAB nodes or IAB donors and establish a new IAB communication path.
  • BH RLF is just an example, and communication paths can be switched for other reasons.
  • the IAB node for example, like a normal handover, when the radio quality between other IAB nodes that are not connected is better than the radio quality between the connected parent node by a predetermined level or more
  • the communication path may be changed according to a predetermined event such as.
  • each IAB node is limited in the number of UEs it can handle, for example, based on the radio quality in the communication path to the IAB donor connected via the parent node and the processing capability of the IAB node itself. is assumed. For example, if the radio quality is poor in some part of the communication path, the number of UEs that can be handled will be less than if the radio quality is good. Also, the number of UEs that can be handled varies depending on the amount of physical resources such as baseband processing and RF processing. Note that the “number of UEs that can be handled” here is a number including the total number of UEs connected to child nodes and downstream.
  • the upstream IAB node connected at a position close to the IAB donor in the communication path is connected to not only the communication of the UE connected to the own device, but also the downstream IAB node such as a child node Communication for the UE must also be relayed. Therefore, the IAB node, even if the number of UEs directly connected to the own device does not exceed the number of connections allowed in the own device, depending on the number of UEs connected to the IAB node on the downstream side , it may be unable to provide communication services to the UE.
  • a control device such as an IAB donor or a control node in the core network 101 determines a communication path to be set in consideration of the allowable number of UEs accommodated in each IAB node.
  • the “allowable number of accommodated nodes” of an IAB node refers to the maximum number of UEs connected to the IAB node and the total number of UEs connected to child nodes or downstream nodes.
  • the allowable accommodation number here, in one example, may be the number of UEs that may not be able to communicate with sufficient quality due to the number of UEs exceeding the number being connected, and communication will not be possible immediately.
  • the communication route may be determined based on other criteria such as allowable total throughput and allowable bandwidth. That is, the communication path may be determined so that the total throughput and bandwidth required for communication of UEs connected to each IAB node and downstream IAB nodes does not exceed the allowable amount.
  • FIG. 2 shows a hardware configuration example of an IAB donor (control device).
  • the IAB donor has, for example, a control unit 201 , a storage unit 202 , a wireless communication unit 203 , an antenna control unit 204 and an antenna 205 .
  • the IAB donor (control device) may further include other hardware configurations, or may not include at least part of the configuration shown in FIG.
  • the IAB donor (control device) may further include components not included in FIG.
  • the IAB donor has a wireless communication unit 203, an antenna control unit 204, and an antenna 205, but if a control device located in the core network 101 is used, instead of these hardware, a wired communication unit or An interface for that may be included.
  • the control unit 201 includes one or more processors such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit). Note that the control unit 201 may include an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), or the like.
  • the control unit 201 can be configured to control the entire apparatus of the IAB donor and execute the processes described below, for example, by executing a computer program stored in the storage unit 202 .
  • the storage unit 202 includes one or more of memory such as ROM (read only memory) and RAM (random access memory), HDD (hard disk drive), SSD (solid state drive) and other mass storage devices. .
  • the storage unit 202 can have any device configuration capable of storing information.
  • the storage unit 202 is configured to store, for example, a computer program corresponding to control processing executed by the control unit 201 and various types of information (cell information, connection terminal information, IAB routing information, etc.) used for the control processing. be.
  • the wireless communication unit 203 executes various processes related to cellular communication such as LTE (Long Term Evolution) conforming to the 3GPP standard and the 5th generation (5G) cellular communication standard.
  • the wireless communication unit 203 includes, for example, a circuit for control processing for executing communication processing such as a baseband chip or an RF (radio frequency) chip.
  • the antenna control unit 204 transmits the electrical signal generated by the wireless communication unit 203 as a wireless signal, detects a wireless signal coming from outside the IAB donor, and controls the antenna 205 to obtain an electrical signal.
  • Antenna control section 204 determines antenna weights so as to form a beam toward a destination device such as an IAB node, for example.
  • Antenna 205 includes one or more antenna elements designed to transmit radio waves in a frequency band corresponding to the radio communication system to which radio communication unit 203 conforms and to receive radio waves in that frequency band from the outside. It is an antenna composed of Note that the antenna 205 can be configured to form a beam having a high gain in a predetermined direction and a low gain in other directions using a plurality of antenna elements. Note that the control for forming the beam can be performed by the antenna control unit 204 .
  • the IAB donor (control device) includes, for example, a signal transmission unit 301, a signal reception unit 302, a data storage unit 303, a connection control unit 304, an RRC processing unit 305, a notification signal control unit 306, a UE connection count confirmation unit 307, a connection destination It has a determination unit 308 and a connection destination notification unit 309 .
  • these functional units are examples, and some of the functions may be omitted, or functions different from those shown in FIG. 3 may be added.
  • one functional unit may be prepared by integrating two or more functions shown in FIG. 3, or the function shown as one functional unit in FIG.
  • the functional units shown in FIG. 3 can be implemented by the control unit 201 executing a program stored in the storage unit 202, for example. Also, at least part of the functions may be implemented using dedicated hardware such as functions pre-installed in the wireless communication unit 203, for example. Also, some functions may be realized through cooperation between IAB donors and IAB nodes.
  • the signal receiving unit 301 and the signal transmitting unit 302 perform processing for transmitting and receiving radio signals to and from the UE in compliance with cellular communication standards such as 3GPP's LTE and 5G.
  • the data storage unit 303 executes processing for storing and holding software (computer program) executed by the IAB donor, routing information of the IAB, information regarding the UE being connected, and the like.
  • the data storage unit 303 can also store general information related to communication control, such as PLMN (Public Land Mobile Network Identity), which is an identifier that identifies a communication carrier.
  • the connection control unit 304 performs processing related to connection and disconnection of the UE to the cellular network, such as radio resource control (RRC) message communication between the UE and the core network.
  • RRC radio resource control
  • the RRC processing unit 305 executes RRC processing such as requesting establishment and release of an RRC connection.
  • RRC processing unit 305 when the first IAB node under the control is handed over to another IAB donor or a second IAB node under the control of another IAB donor, the UE connected to the first IAB node can send a message for handover to.
  • the RRC processing unit 305 is connected to the first IAB node even when the first IAB node is handed over from another IAB donor or a second IAB node under its control and connected to the own device UE for handover. That is, when the connected IAB node connects to another IAB donor, the RRC processing unit 305 changes the IAB donor to which the UE connected to the IAB node is connected.
  • the RRC processing unit 305 when the unconnected first IAB node has handed over to the device itself or the second IAB node under its control, establishes the RRC connection of the UE connected to the first IAB node Execute the process for
  • the notification signal control unit 306 periodically sends notification signals such as synchronization signals (SS) and physical broadcast channels (PBCH) to the surroundings using predetermined frequency resources for each cell provided by its own device.
  • notification signals such as synchronization signals (SS) and physical broadcast channels (PBCH)
  • PBCH physical broadcast channels
  • the annunciation signal control unit 306 determines the radio resources to be used for SS/PBCH transmission in each of the IAB nodes connected under its control, and transmits the annunciation signal using those radio resources. controllable.
  • a UE or an MT of an IAB node existing within the reach of the annunciation signal can recognize an IAB donor existing around the own device or an IAB node connected to the IAB donor based on the annunciation signal. .
  • the UE and the MT of the IAB node can perform connection processing to the surrounding IAB donors and other IAB nodes.
  • the UE connection count confirmation unit 307 confirms the number of UEs connected to each of the IAB node currently connected to its own device and other IAB nodes connected downstream thereof.
  • UE connection number confirmation unit 307 in the procedure when the UE is connected to each IAB node, for example, based on the identifier of the communication path included in the signal transmitted from the IAB node, to which IAB node the UE is connected. can recognize. Then, the UE connection number confirmation unit 307 stores the number of UEs connected to each IAB node in the data storage unit 303, and confirms the number of UEs connected to each IAB node based on the stored information. can do.
  • the number-of-connected-UEs confirmation unit 307 can acquire the allowable number of accommodated UEs in each IAB node when establishing a connection and a communication path with each IAB node, and store it in the data storage unit 303 . Then, the UE connection number confirmation unit 307 can identify the IAB nodes included in each communication path in setting the establishment of the communication path. For this reason, the UE connection count confirmation unit 307 calculates the total number of UEs connected to each IAB node included in a certain communication path and the IAB node downstream thereof, and the total number is allowed. It is possible to determine whether or not the number of accommodation units has been exceeded.
  • Connection destination determination unit 308 for the IAB node included in the communication path to which the new UE is connected, when the number of UEs connected to the IAB node and other downstream IAB nodes exceeds the allowable accommodation number , determines the connection destination of the IAB node on the communication path. For example, the connection destination determination unit 308 can determine to switch the connection destination of the IAB node to which the UE is connected or the connection destination of the upstream IAB node. For example, the connection destination determination unit 308 establishes a new communication path by connecting the IAB node to which the UE is connected to another IAB node, so that the number of IAB nodes exceeding the allowable accommodation number exists in the new communication path.
  • connection destination determination unit 308 determines the connection destination of one of the IAB nodes so as to set the new communication path. You can decide to change.
  • the connection destination notification unit 309 notifies the IAB node whose connection destination is to be changed, which has been determined by the connection destination determination unit 308, that the connection destination should be changed, information indicating the IAB node of the connection destination after the change, and the like. I do.
  • the IAB node 107 is connected to the IAB node 104, and a communication path including the IAB donor 102, the IAB node 103, the IAB node 104, and the IAB node 107 is formed. It is also assumed that another communication path including IAB donor 102, IAB node 105 and IAB node 106 is formed.
  • ⁇ Processing example 1> In this processing example, a case will be described in which the number of UEs that can be accommodated in each IAB node (that is, the maximum total number of UEs connected to each IAB node and other downstream IAB nodes) is set.
  • the IAB node 104 can be connected to the IAB node 105 in addition to the IAB node 103, and the IAB node 107 can be connected to the IAB node 105 or 106 in addition to the IAB node 104.
  • the IAB node 106 is connectable to the IAB node 103 in addition to the IAB node 105 .
  • devices that can be connected to each IAB node are specified in advance based on the results of measurement of the surrounding wireless environment, for example, by the MT of each IAB node. This can be done in a similar manner to the conventional process of determining which cell to measure for the UE.
  • the number of allowable accommodation in each IAB node shall be 12 IAB nodes 103, 8 IAB nodes 104, 20 IAB nodes 105, 12 IAB nodes 106, and 5 IAB nodes 103. . Further assume that there are 4 connected UEs in cell 111 formed by IAB node 104 and 6 connected UEs in cell 112 formed by IAB node 106 . It is also assumed that four UEs are currently connected in cell 113 formed by IAB node 107 and UE 121 is about to connect.
  • the IAB node 104 has four UEs connected in its own device, and there are also four UEs connected to the IAB node 107 connected downstream, so the UEs accommodated by the IAB node 104 The total number of units is 8.
  • the IAB node 107 does not have any other IAB nodes connected downstream, only four UEs that are being accommodated are connected to the IAB node 107 itself. A table summarizing this information is shown in FIG.
  • the IAB donor 102 can determine whether to switch the destination of the IAB node 107 .
  • the connection destination of the IAB node (here, the IAB node 107) connected to the child node of the IAB node 104 or its downstream side is changed. is determined.
  • the IAB node 107 determines whether or not the connection to the IAB node 106 or the IAB node 105, which are connection destination candidates other than the currently connected IAB node 104, should be changed. According to FIG. 4, the IAB node 106 has an allowable accommodation number of 12 and currently accommodates 6 UEs.
  • the IAB node 107 to which the UE 121 is connected when the IAB node 107 to which the UE 121 is connected is connected, the number of UEs being connected to the IAB node 107 at that time is 5, so the number of UEs being accommodated by the IAB node 106 is 11. It fits within the allowable accommodation number.
  • the IAB node 105 can accommodate 20 units, and the number of UEs currently being accommodated is 6 units. is within the allowable accommodation number.
  • the IAB node 107 connects to the IAB node 105 the number of UEs being accommodated falls within the allowable number of accommodated UEs.
  • IAB donor 102 may decide to switch IAB node 107 to either IAB node 106 or IAB node 105 .
  • the IAB donor 102 may decide to increase the number of connection destinations of the IAB node 107 instead of switching the connection destination when the IAB node 107 supports Dual Connectivity. That is, IAB donor 102 may decide that IAB node 107 connects to IAB node 106 and IAB node 105 while maintaining connection with IAB node 104 . In this case, the IAB donor 102 uses, for example, either route 1 via the IAB node 104 or route 2 via the IAB node 106 or the IAB node 105 for each UE connected to the IAB node 107. can decide whether to communicate. Note that this is just an example, and the UE and the route may not be fixedly associated.
  • a predetermined percentage of UE communications connected to IAB node 107 may be conducted using path 2 .
  • the IAB donor 102 may decide to communicate with 3 UEs on path 1 and communicate with 2 UEs on path 2 and share the configuration information with the IAB node 107 .
  • the number of UEs accommodated by the IAB node 104 may be counted as three, and the number of UEs accommodated by the IAB node 106 or IAB 105 may be counted as two.
  • the IAB node 107 can be connected to either the IAB node 104 or the IAB node 106, and the connection to the IAB node 105 is not considered.
  • a first communication path including the IAB donor 102, the IAB node 103 and the IAB node 104, and a second communication path including the IAB donor 102, the IAB node 105 and the IAB node 106 is formed (S501).
  • IAB node 107 connects to IAB node 104 in order to connect to the first communication path.
  • the IAB node 107 receives, for example, broadcast signals (synchronization signals and physical broadcast channels, SS/PBCH) coming from the IAB node 104 and the IAB node 106 (S502, S503).
  • the IAB node 107 establishes downlink synchronization based on the synchronization signal and acquires basic system information via the PBCH.
  • the IAB node 107 has decided to connect to the IAB node 104 based on, for example, the reception strength of the notification signal.
  • the IAB node 107 executes a random access procedure (RACH process) with the IAB node 104 (S504). That is, the IAB node 107 establishes uplink synchronization by transmitting a random access preamble to the IAB node and receiving a random access response containing information specifying transmission timing.
  • RACH process random access procedure
  • the IAB node 107 establishes connection in the RRC layer (S505), and becomes ready for communication with the IAB node 104.
  • a communication path is established (S506).
  • the detailed procedures for establishing a connection and setting a communication path are the same as those for establishing a connection and setting a communication path for a normal IAB node, so descriptions thereof will be omitted here.
  • the IAB donor 102 can manage the communication path including the IAB node 107 . Also, with this setting, the IAB node 107 can function as a relay device that relays the communication of the IAB donor 102, and can establish a connection with the UE.
  • the UE 121 After that, for example, after four UEs are connected to the IAB node 107, the UE 121 enters the cell 113 formed by the IAB node 107 and establishes a connection with the IAB node 107 (S507). Note that the UE 121 executes connection processing with the IAB donor 102 via the IAB node 107 when actually establishing connection. At this time, the IAB node 107 transfers data including identification information for identifying the communication path between the IAB node 107 and the IAB donor 102 . Thus, IAB donor 102 can recognize that UE 121 connects to IAB node 107 .
  • the IAB donor 102 determines whether the communication path currently associated with the IAB node 107 through the connection of the UE 121 includes an IAB node in which the number of accommodated UEs exceeds the allowable number of accommodated UEs. Then, when the IAB donor 102 switches the connection destination of the second IAB node on the downstream side from the IAB node when there is a first IAB node in which the number of UEs being accommodated exceeds the allowable accommodation number. judge. Then, the IAB donor 102, for example, as described above, determines that the connection destination of the IAB node 107 is the IAB node 106, and transmits a connection destination switching instruction including the connection destination information to the IAB node 107. (S509).
  • the connection destination information can be, for example, a cell identifier configured by the IAB node 106 .
  • the IAB node 107 When the IAB node 107 receives the connection destination switching instruction from the IAB donor 102, based on the instruction, the IAB node 107 performs RACH processing to establish synchronization with the IAB node 106 (S510), and establishes an RRC connection. (S511). Note that IAB node 107 can disconnect from IAB node 104 at this time. That is, the MT of the IAB node 107 can perform handover to switch the IAB node to which it is connected. After that, the IAB node 107 executes a communication path setting process by BAP with the IAB donor 102, thereby connecting the IAB donor 102, the IAB node 105, the IAB node 106, and the IAB node 107 in this order. A route is established (S512). By performing such processing, since there is no IAB node that accommodates the number of UEs exceeding the allowable accommodation number, some IAB nodes will be overloaded, so that the communication quality will be insufficient can
  • connection destination may be added. That is, for an IAB node that can be connected to two or more connection destinations in parallel, the connection destination may be changed or the connection destination may be added.
  • FIGS. 6A and 6B The processing of FIGS. 6A and 6B can be realized by executing a program stored in the storage unit 202 by the control unit 201 of the IAB donor 102, for example. Note that this is just an example, and predetermined hardware on which the processes of FIGS. 6A and 6B are implemented may be used.
  • the IAB donor 102 When the IAB donor 102 connects with the UE 121 via the IAB node 107, it receives UE connection information indicating that the UE 121 will be connected to the IAB node 107 (S601). Then, when the UE 121 is connected to the IAB node 107, the IAB donor 102, among the IAB nodes included in the communication path to which the IAB node 107 belongs, is an IAB node that accommodates the number of UEs exceeding the allowable accommodation number. exists (S602).
  • the IAB donor 102 terminates the process as it is, accepts the connection of the UE 121 with the current communication path, and connects with the UE 121 via the IAB node 107. communicate.
  • the IAB node to which the connection destination is changed can be the IAB node 107 to which the UE 121 is connected. can be either In this case, if there are multiple IAB nodes whose connection destinations are to be changed, it is determined to switch the connection destination of one of the IAB nodes by executing the processing from S603 onward for each of the multiple IAB nodes. can be As an example, it may be decided to preferentially switch the connection destination of the IAB node on the downstream side.
  • the IAB donor 102 determines that the allowable number of accommodated IAB nodes that are candidates for the switching destination of the n-th connection exceeds the allowable accommodated number in response to the switching of the connection destination of the IAB node 107. Determine whether or not That is, the IAB donor 102 determines whether or not the allowable accommodation number of the switching destination candidate is equal to or greater than the sum of the number of UEs currently accommodated by the switching destination candidate and the number of UEs currently accommodated by the IAB node 107. (S604).
  • the IAB donor 102 decides not to connect the IAB node 107 to the switching destination candidate. Then, the IAB donor 102 increments the parameter n and shifts to processing regarding the next switching destination candidate (S608). At this time, if the parameter n exceeds N, which is the number of switching destination candidates, and there is no next switching destination candidate (YES in S609), the IAB donor 102 ends the process. On the other hand, if there is a candidate for the next switching destination (NO in S609), the IAB donor 102 returns the process to S604 and performs the determination process described above.
  • the switching destination of the connection of the IAB node 107 is not changed, and the number of UEs being accommodated by the IAB node 104 exceeds the allowable accommodation number. state is maintained. For this reason, the IAB donor 102 makes sure that the number of UEs being accommodated by the IAB node 104 does not exceed the allowable accommodation number by, for example, handing over the UEs connected to the IAB node 104 or the IAB node 107 to another IAB node. can be In such a case, the UEs connected to the IAB node 104 or the IAB node 107 may be notified that the current communication path accommodates more UEs than the allowable number of accommodated UEs.
  • the IAB donor 102 In response to the switching of the connection destination of the IAB node 107, the IAB donor 102, if the number of UEs accommodated in the switching destination candidate does not exceed the allowable accommodation number (YES in S604), the candidate's parent node The same process is performed for . First, the IAB donor 102 determines whether or not there is a parent node among the candidates for switching the connection of the IAB node 107 (S605). Here, if there is no parent node in the connection switching destination candidate, even if the connection destination of the IAB node 107 is changed to the switching destination candidate, the number of UEs being accommodated in the changed communication path is the allowable accommodation number There will be no IAB nodes exceeding .
  • the IAB donor 102 notifies the IAB node 107 to connect to the candidate IAB node to switch to (S610), and ends the process. Also, the IAB node 107 changes the connection destination according to the notification. On the other hand, if there is a parent node in the switching destination candidate (YES in S605), the IAB donor 102, when the IAB node 107 connects to the candidate, the number of UEs being accommodated in the parent node is is exceeded (S606).
  • the IAB donor 102 makes a similar determination in a further parent node of the parent node (S607). By repeating this procedure, it is confirmed that the number of UEs being accommodated does not exceed the allowable number of accommodation in all of the plurality of IAB nodes included in the communication path to which the candidate of the switching destination of the connection of the IAB node 107 belongs. be able to.
  • the IAB donor 102 connects the IAB node 107 to the switching destination candidate, and if the number of UEs being accommodated by any IAB node in the communication path exceeds the allowable accommodation number (NO in S606), It determines that IAB node 107 should not be connected to that candidate. In this case, the IAB donor 102 changes the connection switching destination candidate (S608), and repeats the same processing as described above.
  • the IAB node 106 is a candidate for switching the connection of the IAB node 107 .
  • IAB node 106 accommodates 6 UEs before IAB node 107 is connected.
  • the IAB node 106 also accommodates the five UEs connected to the IAB node 107, so the number of UEs being accommodated is 11. Become. Since the number of UEs being accommodated does not exceed 12, which is the allowable accommodation number of the IAB node 106 (YES in S604), the IAB node 105, which is the parent node of the IAB node 106, is subsequently processed. (S606).
  • the number of UEs currently being accommodated in the IAB node 105 is six, and when the IAB node 107 connects to the IAB node 106, the number of UEs being accommodated will be eleven. Then, the number of UEs being accommodated does not exceed 20 units, which is the allowable accommodation number of the IAB node 105 (YES in S606).
  • the IAB node 105 is connected to the IAB donor 102 and there is no parent IAB node (NO in S605). Therefore, even if the IAB node 107 connects to the IAB node 106, it can be confirmed that the number of UEs being accommodated does not exceed the allowable accommodation number in all the IAB nodes included in the communication path of the connective. Thereby, the IAB donor 102 can decide to switch the connection destination of the IAB node 107 from the IAB node 104 to the IAB node 106 .
  • the IAB donor 102 may decide to have the IAB node 107 connect with the IAB node 106 while maintaining the connection with the IAB node 104 . IAB donor 102 can then designate some UEs to have their communications go through IAB node 106 . IAB donor 102 may also allow some of IAB node 107's communications to occur through IAB node 106 without specifying the UE. In this case, the IAB donor 102 may send an instruction to the IAB node 107 to transfer some UE communications to the IAB node 106 in uplink communications.
  • the IAB donor 102 considers the allowable accommodation number of UEs set in each IAB node, based on the relationship between the allowable accommodation number and the number of currently accommodated UEs, the communication path can be set appropriately. According to this, it is possible to suppress an excessive increase in the communication processing load due to an increase in the number of UEs connected to the IAB node, and it is possible to provide communication services to the UE using a communication path with a good communication environment. become able to.
  • ⁇ Processing example 2> In the processing example 1, the case where the allowable number of UEs to be accommodated is individually set in advance for each IAB node has been described. In this processing example, the flow of processing when the allowable accommodation number of each IAB node is set according to the number of hops from the IAB donor will be described. That is, in this processing example, the allowable number of accommodated IAB nodes is not determined in advance, and the allowable accommodated number is determined according to the number of hops from the IAB donor when the communication path is established. Note that the number of hops is counted such that an IAB node directly connected to an IAB donor is one hop, and an IAB node connected to another IAB node connected by that one hop is two hops.
  • setting is made so that the larger the number of hops, the smaller the number of allowable accommodation units. That is, the allowable number of IAB nodes that are connected to the IAB donor on the communication path increases. This is because the IAB node farthest from the IAB donor only needs to process the communication of the UE directly connected to the IAB node, but the closer the IAB node to the IAB donor, the UE connected to the downstream IAB node. This is because it is necessary to process the communication between the If the allowable capacity is determined in this way, the IAB node can increase the allowable capacity by connecting to a more upstream IAB node or IAB donor.
  • the number of UEs being accommodated by the IAB node exceeds the allowable accommodation number, by switching the connection destination to the upstream IAB node or IAB donor, the accommodation being accommodated
  • the number of UEs can be less than or equal to the allowable capacity.
  • Fig. 7 shows the relationship between the number of hops and the number of allowable accommodation units in this processing example.
  • the allowable accommodation number of the first IAB node that is wirelessly connected to the IAB donor is set to 12
  • the allowable accommodation number of the second IAB node that is wirelessly connected to the first IAB node is 8.
  • the allowable accommodation number of the third IAB node wirelessly connected to the second IAB node is set to four.
  • the allowable accommodation number of the IAB nodes 103 and 105 directly connected to the IAB donor 102 is set to 12
  • the number of the IAB nodes 104 and 106 connected to those IAB nodes is The allowable accommodation number is set to eight.
  • the allowable accommodation number is set to four.
  • the IAB node 107 switches the connection destination to the IAB node 105, for example.
  • the IAB node 107 By directly connecting the IAB node 107 to the IAB node 105, the number of hops to the IAB donor 102 becomes two hops. By doing so, even if the number of connected UEs increases due to the connection of UE 121, the IAB node 107 can keep the number of currently accommodated UEs below the allowable number of accommodated UEs.
  • FIGS. 8A and 8B An example of the flow of processing in this case will be described using FIGS. 8A and 8B.
  • the processing of FIGS. 8A and 8B can also be implemented by, for example, the control unit 201 of the IAB donor 102 executing a program stored in the storage unit 202, like the processing of FIGS. 6A and 6B. Note that this is just an example, and predetermined hardware on which the processes of FIGS. 8A and 8B are implemented may be used.
  • S801-S803 are the same as S601-S603 in FIG. 6A.
  • the IAB donor 102 specifies the allowable number of UEs to be accommodated when the IAB node whose connection destination is to be switched connects to the n-th connection switching destination candidate, and the number of UEs currently being accommodated is that number. It is determined whether the number of units to be accommodated is equal to or less than the allowable accommodation number. For example, the IAB donor 102 manages information indicating how each IAB node is connected and what communication paths are established. For this reason, the IAB donor 102 sets the allowable accommodation number corresponding to the number of hops obtained by adding 1 to the number of hops from the IAB donor 102 that is a candidate for switching the connection of the IAB node 107 to the IAB node 107 after switching the connection destination.
  • the IAB node 105 and the IAB node 106 exist as candidates for switching the connection of the IAB node 107 currently connected to the IAB node 104 .
  • the IAB donor 102 may determine that the IAB node 106 is inappropriate as the switching destination of the connection of the IAB node 107 .
  • the IAB donor 102 can specify that when the IAB node 107 connects to the IAB node 105, the number of hops is reduced by 1 from before switching the connection, so the allowable number of accommodated devices increases.
  • the IAB donor 102 identifies, at S804, a suitable other IAB node to which the IAB node 107's connection should be switched.
  • the IAB donor 102 determines that the IAB node 105 is suitable as a connection switching destination candidate (YES in S804). In this case, the IAB donor 102 subsequently determines whether or not the number of UEs accommodated when the IAB node 107 is connected to the candidate IAB node 105 exceeds the allowable accommodation number (S806). Then, this determination is repeated for IAB nodes on the upstream side of the IAB node determined to be suitable as a candidate in S804.
  • the IAB donor 102 selects the IAB node 107 as a candidate IAB node.
  • S805-S810 is the same as that of S605-S610 in FIG. 6B.
  • the IAB donor 102 can set a communication route so that the number of UEs that do not exceed the number of UEs that can be accommodated corresponding to the number of hops of the IAB node is accommodated. According to this, it is possible to suppress an excessive increase in the communication processing load due to an increase in the number of UEs connected to the IAB node, and it is possible to provide communication services to the UE using a communication path with a good communication environment. become able to.
  • the connection switching destination of the IAB node 107 is the IAB node 105. However, for example, if the IAB node 107 is connectable to the IAB node 103, the connection switching destination is the IAB node 103.
  • the number of hops of the IAB node 107 is reduced from 3 to 2, so the number of UEs accommodated by the IAB node 107 can be reduced to the allowable number of accommodated UEs or less.
  • the connection destination of the IAB node 104 is changed to the IAB donor 102 in response to accommodating the number of UEs exceeding the allowable accommodation number in the IAB node 107. You can switch.
  • the allowable accommodation number in this processing example may be fixedly set as shown in FIG. 7, or may be set dynamically.
  • the allowable accommodation number of the first IAB node directly connected to the IAB donor is set to M1 units, and the number of UEs assumed to be connected to each IAB node is set to L units. do.
  • the allowable accommodation number M2 of the second IAB nodes can be calculated as (M1-L)/K1 (units).
  • the allowable accommodation number M3 of the third IAB nodes is calculated as (M2-L)/K2 (units).
  • the allowable number of UEs to be accommodated by the first IAB node is 30, and the number of UEs expected to be directly connected to each IAB node is 6.
  • the allowable accommodation number of the second IAB nodes is (K2+1) ⁇ P1 (units). This is K2 ⁇ P1, the number of UEs to be accommodated via the third IAB node, plus P1 directly connected at the second IAB node.
  • the allowed capacity may be statically preset or dynamically set according to various criteria.
  • connection destination of the IAB node 107 may change the allowable accommodation number of each IAB node at the connection destination after the change. For this reason, the connection destination of the IAB node 107 can be determined so that there is no IAB node that exceeds the allowable accommodation number due to the change.
  • the IAB it has been explained that node 107 is not connected to that communication path.
  • the accommodation of each IAB node in the communication path The number of UEs may not exceed the allowable accommodation number.
  • the allowable accommodation number is set for each IAB node individually or for the number of hops in the communication path of each IAB node has been described, but this is not the only case.
  • the number of allowable accommodation units may be set for each communication path.
  • the allowable accommodation number for the communication path including the IAB node 103, the IAB node 104 and the IAB node 107, and the allowable accommodation number for the communication path including the IAB node 105 and the IAB node 106 are can be set.
  • the IAB donor 102 identifies the second IAB node to switch the connection of the first IAB node to which the UE is newly connected, A first IAB node may be directed to connect to a second IAB node. Note that the IAB donor 102 updates the information on the communication path managed by itself when instructing switching of the connection destination for any IAB node.
  • the IAB node 107 switches the connection before the IAB node 107 switches the connection destination, and the number of UEs accommodated in each IAB node is allowed.
  • An example of confirming that the number of units accommodated is not exceeded has been described. However, it is not limited to this. For example, after the IAB node 107 switches connection destinations, it may be confirmed that the number of UEs accommodated in each IAB node does not exceed the allowable number of accommodated UEs. After the switching, the child node information of the connected IAB node is changed.
  • connection information update notification at that time is received by the IAB donor, and the IAB donor can execute a process of determining whether or not the number of UEs being accommodated exceeds the allowable accommodation number in each IAB node. Then, when the number of UEs being accommodated exceeds the allowable number of UEs to be accommodated, connection destination switching processing of at least some of the IAB nodes can be executed.
  • an IAB donor's DU may be treated as an IAB node directly connected to the IAB donor in the above description. That is, an IAB donor's CU (Central Unit) may be treated as a base station, and an IAB donor's DU may be treated as an IAB node directly connected to the IAB donor.
  • IAB node 103 and IAB node 105 of FIG. 1 may be configured by DUs of IAB donors.
  • the load of each relay device does not excessively increase beyond the maximum allowable load in the relay device.
  • a communication path can be set as follows. This makes it possible to relay communication between the base station (IAB donor) or core network and the terminal (UE) in a sufficiently favorable environment.
  • the IAB-based relay communication system has been described, but the above discussion can be applied to a wireless relay communication system that wirelessly relays communication between a base station and a terminal using a relay device.
  • the above discussions are applicable to relaying communications between access points and stations in wireless LANs (Local Area Networks).
  • each of the above discussions applies to, for example, fifth generation (5G) cellular communication systems, but may also be applied to long term evolution (LTE) and later generation cellular communication systems after 5G.
  • 5G fifth generation
  • LTE long term evolution
  • the present invention supplies a program that implements one or more functions of the above-described embodiments to a system or device via a network or a storage medium, and one or more processors in the computer of the system or device reads and executes the program. It can also be realized by processing to It can also be implemented by a circuit (for example, ASIC) that implements one or more functions.
  • a circuit for example, ASIC

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

IABドナーは、第3世代パートナーシッププロジェクト(3GPP)によって定義されるIAB(Integrated Access and Backhaul)技術を用いる無線通信システムであって、コアネットワークと端末との間の通信を中継する1以上のIABノードと、IABノードとコアネットワークとの間の通信を中継するIABドナーを少なくとも含んだ無線通信システムのIABドナーであって、IABドナーと、IABドナーの配下の第1のIABノードと、第1のIABノードの配下の第2のIABノードと、を含んだ第1の通信経路上に接続される端末の数に少なくとも基づいて、通信経路を変更するかどうかを判定し、通信経路を変更すると判定された場合に、第2のIABノードの接続先を第1の通信経路とは異なる通信経路を構成している第3のIABノードへと変更し、第3のIABノードを経由して第2のIABノード及びその第2のIABノードの配下の端末とIABドナーとの間の通信を中継するための第2の通信経路の設定を行う。

Description

IABドナー、制御方法、プログラム、及び、制御装置
 本発明は、中継通信路の設定技術に関する。
 第3世代パートナーシッププロジェクト(3GPP)において、アクセス回線とバックホール回線とを統合したIAB(Integrated Access and Backhaul)の規格化が進行している(特許文献1参照)。IABでは、基地局とユーザ端末(UE、User Equipment)との間のアクセス回線に用いられる無線リソースが、バックホール回線においても使用される。例えば、IABにおいて、28GHz帯等のミリ波帯の無線リソースが使用されうる。IABを用いることにより、中継装置(IABノード)が基地局装置(IABドナー)と端末装置との間の通信を無線回線によって中継することができ、光ファイバ等の有線回線を用いる場合と比して、安価にエリアカバレッジを拡大することができる。
特表2018-525874号公報
 IABでは、UEの通信を中継するために通信経路が適切に設定されることが重要である。
 本発明の一態様によるIABドナーは、第3世代パートナーシッププロジェクト(3GPP)によって定義されるIAB(Integrated Access and Backhaul)技術を用いる無線通信システムであって、コアネットワークと端末との間の通信を中継する1以上のIABノードと、IABノードと前記コアネットワークとの間の通信を中継するIABドナーを少なくとも含んだ前記無線通信システムの前記IABドナーであって、前記IABドナーと、前記IABドナーの配下の第1のIABノードと、前記第1のIABノードの配下の第2のIABノードと、を含んだ第1の通信経路上に接続される端末の数に少なくとも基づいて、通信経路を変更するかどうかを判定する判定手段と、前記判定手段によって通信経路を変更すると判定された場合に、前記第2のIABノードの接続先を前記第1の通信経路とは異なる通信経路を構成している第3のIABノードへと変更し、前記第3のIABノードを経由して前記第2のIABノード及び当該第2のIABノードの配下の端末と前記IABドナーとの間の通信を中継するための第2の通信経路の設定を行う設定手段と、を有する。
 本発明によれば、UEの通信を中継するための通信経路を適切に設定することができる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
図1は、無線通信システムの構成例を示す図である。 図2は、IABドナーのハードウェア構成例を示す図である。 図3は、IABドナーの機能構成例を示す図である。 図4は、IABノードの接続先の切り替えに用いられる情報の例を示す図である。 図5は、無線通信システムにおいて実行される処理の流れの例を示す図である。 図6Aは、IABドナーによって実行される処理の流れの例を示す図である。 図6Bは、IABドナーによって実行される処理の流れの例を示す図である。 図7は、IABドナーからのホップ数とUEの許容収容台数との関係の例を説明する図である。 図8Aは、IABドナーによって実行される処理の流れの例を示す図である。 図8Bは、IABドナーによって実行される処理の流れの例を示す図である。
 以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
 (システム構成)
 図1に、本実施形態に係る無線通信システムの構成例を示す。本無線通信システムは、第3世代パートナーシッププロジェクト(3GPP)のセルラ通信規格において規定されているIAB(Integrated Access and Backhaul)による中継通信システムである。IABでは、コアネットワーク101に接続されるIABドナー102及びIABドナー108を含む。IABドナー102及びIABドナー108は、基地局装置としての機能を有し、IABノードの端末機能(Mobile Termination)との間で無線接続を確立する。そして、IABドナー102及びIABドナー108は、BAP(Backhaul Adaptation Protocol)による設定を行い、そのIABノードが中継装置として機能することを可能とする。例えば、IABドナー102には、IABノード103及びIABノード105が接続され、IABドナー102及びIABノード103を介する通信経路と、IABドナー102及びIABノード105を介する通信経路が設定される。また、IABドナー108には、IABノード109が接続され、IABドナー108及びIABノード109を介する通信経路が設定される。
 なお、IABノードは、IABドナーと直接または間接的に接続された他のIABノードと接続することができる。この場合、IABノードとIABドナーとの間の通信は、他のIABノードを介して行われることとなる。例えば、IABノード104は、IABノード103の中継により、IABドナー102と接続を確立し、通信経路を設定することができる。同様に、IABノード106は、IABノード105の中継により、IABドナー102との間で接続を確立し、また、IABノード110は、IABノード109を介してIABドナー108と接続することができる。さらに、IABノード107は、例えば、IABノード104に接続して、IABドナー102までの通信経路を確立することができる。なお、IABノード107は、例えば、Dual Connectivityを用いて、IABノード104に加えて、IABノード106やIABノード105と同時に接続可能に構成されてもよい。
 本実施形態では、1つのIABノードから見て、確立された通信経路においてそのIABノードよりコアネットワーク101に近い側で直接接続しているノードを親ノードと呼ぶ。また、そのIABノードから見て、その通信経路においてコアネットワーク101から離れる側で直接接続しているノードを子ノードと呼ぶ。例えば、IABノード104の親ノードはIABノード103であり、IABノード104の子ノードはIABノード107である。同様に、IABノード109から見て、IABドナー108が親ノードであり、IABノード110が子ノードである。上述のようにして、本実施形態に係る無線通信システムでは、IABドナーを起点としたツリー構造の中継ネットワークが形成される。
 なお、IABノード(及び場合によってはIABドナー)は、バックホール回線の通信のみならず、アクセス回線の通信をも行う。例えば、IABノードは、バックホール回線用のアンテナと共通の又は別途用意されたアクセス回線用のアンテナを用いて、セルを構成して端末(UE)とのアクセス回線を確立して、通信サービスを提供する。例えば、IABノード104はセル111を形成し、IABノード106はセル112を形成し、IABノード107はセル113を形成する。なお、同様に他のIABノード(及び場合によってはIABドナー)もセルを形成して、UEとの接続を確立して通信サービスを提供することができる。また、各IABノード(及び場合によってはIABドナー)は、事前に定められた複数のビームを形成して、又は、UEごとに適切なビームを形成して、通信を行うことができる。なお、各IABノードは、接続中のUEへ宛てたデータ(制御データ及びユーザデータ)を親ノードから受信し、そのUEへ送信する。同様に、IABノードは、接続中のUEから受信したデータを親ノードへ転送する。これにより、基地局装置として機能するIABドナーとUEとの間の通信が行われる。なお、IABドナー及びIABノードは、バックホール回線で使用される周波数帯と同じ周波数帯でアクセス回線を提供してもよいし、バックホール回線で使用される周波数帯と異なる周波数帯でアクセス回線を提供してもよい。
 IABノードは、接続先のIABドナー又は他のIABノードを切り替えることができる。一例において、IABノードは、接続先の他のノードとの間での無線リンクにおいて無線リンク障害(Backhaul Radio Link Failure、BH RLF)が発生した場合に、接続先のノードの切り替えを行いうる。例えば、IABノードは、BH RLFが発生した場合に、他の接続可能なIABノード又はIABドナーを探索して接続し、IABによる通信経路を新たに確立することができる。これにより、IABによるバックホール回線の無線品質が何らかの理由により不十分となった場合にも、接続中のUEに対する通信サービスの提供を継続することができる。なお、BH RLFは一例であり、これ以外の理由により、通信経路の切り替えが行われうる。IABノードは、例えば、通常のハンドオーバのように、接続していない他のIABノード等との間の無線品質が、接続中の親ノードとの間の無線品質より所定レベル以上良好となった場合などの所定のイベントに応じて、通信経路の変更が行われてもよい。
 ここで、各IABノードは、例えば親ノードを介して接続されているIABドナーまでの通信経路における無線品質や、IABノード自身の処理能力に基づいて、対処可能なUEの数に限りがあることが想定される。例えば、通信経路の一部において無線品質が不十分である場合、対処可能なUEの数は、無線品質が良好な場合と比して少なくなる。また、ベースバンド処理やRF処理などの物理的なリソースの量によっても対処可能なUEの数は変動する。なお、ここでの「対処可能なUEの数」は、子ノードやそれよりも下流に接続されているUEの総数を含めた数である。すなわち、通信経路においてIABドナーに近い位置で接続されている上流側のIABノードは、自装置に接続されているUEの通信のみならず、子ノードなどの下流側のIABノードに接続されているUEの分の通信をも中継する必要がある。このため、IABノードは、自装置に直接接続されているUEの台数が自装置において許容される接続数を超えない場合であっても、下流側のIABノードに接続されたUEの数によっては、UEに対して通信サービスを提供することができないことがありうる。このため、本実施形態では、IABドナーやコアネットワーク101内の制御ノードなどの制御装置が、各IABノードにおけるUEの許容収容台数を考慮して設定すべき通信経路を決定するようにする。以下では、この制御装置がIABドナーである場合について説明する。なお、IABノードの「許容収容台数」は、そのIABノードに接続されているUEの数および子ノード又はそれより下流側のノードに接続されているUEの総数の最大値を指す。また、ここでの許容収容台数は、一例において、その台数を超えるUEが接続されることにより、十分な品質での通信ができなくなる可能性がある台数であってもよく、ただちに通信できなくなるわけではない台数に設定されうる。なお、許容収容台数に加えて又はこれに代えて、許容総スループットや許容帯域幅などの他の基準に基づいて通信経路が決定されてもよい。すなわち、各IABノード及びその下流側のIABノードに接続されているUEの通信について要求されるスループットや帯域幅の総計が許容量を超えないように、通信経路が決定されてもよい。
 (装置構成)
 図2に、IABドナー(制御装置)のハードウェア構成例を示す。IABドナーは、例えば、制御部201、記憶部202、無線通信部203、アンテナ制御部204、及びアンテナ205を有する。なお、これらの構成は一例であり、IABドナー(制御装置)は、他のハードウェア構成をさらに含んでもよいし、図2に示した構成の少なくとも一部を含まなくてもよい。また、IABドナー(制御装置)は、図2に含まれない構成をさらに含んでもよい。例えば、IABドナーは、無線通信部203、アンテナ制御部204、及びアンテナ205を有するが、コアネットワーク101に配置された制御装置が用いられる場合は、これらのハードウェアに代えて、有線通信部やそのためのインタフェースが含まれうる。
 制御部201は、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等の1つ以上のプロセッサを含んで構成される。なお、制御部201は、FPGA(フィールドプログラマブルゲートアレイ)、DSP(デジタルシグナルプロセッサ)、ASIC(特定用途向け集積回路)などを含んでもよい。制御部201は、例えば、記憶部202に記憶されたコンピュータプログラムを実行することによって、IABドナーの装置全体の制御や、後述の処理を実行するように構成されうる。記憶部202は、ROM(読み出し専用メモリ)やRAM(ランダムアクセスメモリ)等のメモリ、HDD(ハードディスクドライブ)、SSD(ソリッドステートドライブ)等の大容量記憶装置の1つ以上を含んで構成される。なお、これらは一例であり、記憶部202は、情報を記憶することができる任意の装置構成を有しうる。記憶部202は、例えば、制御部201によって実行される制御処理に対応するコンピュータプログラムや、制御処理に用いる各種情報(セル情報、接続端末情報、IABのルーティング情報等)を記憶するように構成される。
 無線通信部203は、3GPP規格に準拠するLTE(ロングタームエボリューション)や第5世代(5G)セルラ通信規格などのセルラ通信に係る各種処理を実行する。無線通信部203は、例えば、ベースバンドチップやRF(無線周波数)チップなどの通信処理を実行するための制御処理用の回路を含んで構成される。アンテナ制御部204は、無線通信部203によって生成された電気信号を無線信号として送出し、IABドナーの外部から到来する無線信号を検出して電気信号を得るためにアンテナ205を制御する。アンテナ制御部204は、例えば、IABノード等の接続先の相手装置に向けてビームを形成するようにアンテナウェイトを決定し、そのアンテナウェイトを、アンテナ205から送出される信号やアンテナ205において受信された信号に対して適用しうる。アンテナ205は、無線通信部203が準拠する無線通信方式に対応する周波数帯の電波を送出し、外部からのその周波数帯の電波を受信するように設計された、1つ以上のアンテナ素子を含んで構成されるアンテナである。なお、アンテナ205は、複数のアンテナ素子を用いて、所定の方向に対して利得が高く、他の方向に対して利得が低くなるビームを形成可能に構成されうる。なお、そのビーム形成のための制御はアンテナ制御部204によって行われうる。
 続いて、図3を用いて、IABドナー(制御装置)の機能構成例を説明する。IABドナー(制御装置)は、例えば、信号送信部301、信号受信部302、データ記憶部303、接続制御部304、RRC処理部305、報知信号制御部306、UE接続数確認部307、接続先判定部308、及び接続先通知部309を有する。なお、これらの機能部は一例であり、その一部の機能が省略されてもよいし、図3に示される機能と異なる機能が追加されてもよい。さらに、図3に示される2つ以上の機能が集約された1つの機能部が用意されてもよいし、図3において1つの機能部として示されている機能が、複数の機能部に分割されてもよい。図3に示される機能部は、例えば、制御部201が記憶部202に記憶されているプログラムを実行することによって実装されうる。また、少なくとも一部の機能が、例えば、無線通信部203に事前に組み込まれた機能などのように専用のハードウェアを用いて実装されてもよい。また、一部の機能は、IABドナーとIABノードとが協働することによって実現されてもよい。
 信号受信部301及び信号送信部302は、UEとの間で3GPPのLTEや5G等のセルラ通信規格に準拠して無線信号を送信および受信するための処理を実行する。データ記憶部303は、IABドナーで実行されるソフトウェア(コンピュータプログラム)、IABのルーティング情報、接続中のUEに関する情報などを記憶・保持するための処理を実行する。また、データ記憶部303は、通信事業者を識別する識別子であるPLMN(Public Land Mobile Network Identity)などの通信制御に関する一般的な情報を記憶しうる。接続制御部304は、UEやコアネットワークとの間で行われる無線リソース制御(RRC)メッセージの通信等の、セルラ網へのUEの接続および切断に関する処理を実行する。RRC処理部305は、RRC接続の確立や解放を要求するなど、RRCの処理を実行する。RRC処理部305は、配下の第1のIABノードが、別のIABドナー又はその別のIABドナーの配下の第2のIABノードへとハンドオーバする場合に、第1のIABノードに接続中のUEに対してハンドオーバのためのメッセージを送信しうる。また、RRC処理部305は、第1のIABノードが、別のIABドナー又はその配下の第2のIABノードからハンドオーバして自装置に接続される場合にも、第1のIABノードに接続中のUEに対してハンドオーバのためのメッセージを送信しうる。すなわち、RRC処理部305は、接続中のIABノードが他のIABドナーに接続する場合、そのIABノードに接続中のUEも接続先のIABドナーが変更されるため、そのUEとの間のRRC接続を解放するための処理を行う。また、RRC処理部305は、未接続の第1のIABノードが自装置又は配下の第2のIABノードにハンドオーバしてきた場合に、その第1のIABノードに接続中のUEのRRC接続を確立するための処理を実行する。
 報知信号制御部306は、自装置が提供するセルごとに、同期信号(SS)や物理ブロードキャストチャネル(PBCH)等の報知信号を周期的かつ所定の周波数リソースで周囲へ送出する。なお、報知信号制御部306は、例えば、配下に接続されているIABノードのそれぞれにおけるSS/PBCHの送信に使用すべき無線リソースなどを決定して、その無線リソースで報知信号を送信するように制御しうる。報知信号が到達する範囲に存在するUEやIABノードのMTは、その報知信号に基づいて、自装置の周囲に存在するIABドナー又はそのIABドナーに接続されているIABノードを認識することができる。そして、UEやIABノードのMTは、受信した報知信号に基づいて、周囲のIABドナーや他のIABノードへの接続処理を実行することができる。
 UE接続数確認部307は、自装置に接続中のIABノードやその下流側に接続されている他のIABノードのそれぞれに接続されているUEの数を確認する。UE接続数確認部307は、各IABノードにUEが接続した場合の手続きにおいて、例えばIABノードから送信された信号に含まれる通信経路の識別子に基づいて、UEがどのIABノードに接続されたかを認識することができる。そして、UE接続数確認部307は、各IABノードに接続されたUEの数をデータ記憶部303に記憶させ、その記憶された情報に基づいて、各IABノードに接続中のUEの数を確認することができる。なお、UE接続数確認部307は、各IABノードと接続および通信経路を確立する際に各IABノードにおける許容収容台数を取得して、データ記憶部303に記憶させうる。そして、UE接続数確認部307は、通信経路の確立の設定において、各通信経路に含まれるIABノードを特定することができる。このため、UE接続数確認部307は、ある通信経路に含まれる各IABノードについて、そのIABノード及びそれより下流のIABノードに接続されているUEの数の総数を算出し、その総数が許容収容台数を超えたか否かを判定することができる。
 接続先判定部308は、新たなUEが接続された通信経路に含まれるIABノードについて、そのIABノード及び下流側の他のIABノードに接続されているUEの数が許容収容台数を超える場合に、その通信経路におけるIABノードの接続先を判定する。例えば、接続先判定部308は、UEが接続されたIABノードの接続先、又は、その上流側のIABノードの接続先を切り替えると判定しうる。接続先判定部308は、例えば、UEが接続したIABノードを他のIABノードに接続させて新たな通信経路を確立することにより、その新たな通信経路において、許容収容台数を超えるIABノードが存在するかを判定する。そして、接続先判定部308は、許容収容台数を超えるIABノードが存在しない新たな通信経路を設定可能な場合に、その新たな通信経路を設定するように、いずれかのIABノードの接続先を変更すると決定しうる。接続先通知部309は、接続先判定部308によって決定された接続先を変更するIABノードに対して、接続先を変更すべきことや、変更後の接続先のIABノードを示す情報などの通知を行う。
 (通信処理の流れ)
 続いて、上述の無線通信システムにおいて実行される処理の流れの例について説明する。なお、以下では、図1のシステムのうち、IABドナー102及びIABノード103~107のみについて着目して説明する。なお、IABノード107は、IABノード104に接続しており、IABドナー102、IABノード103、IABノード104、及びIABノード107を含んだ通信経路が形成されている。また、IABドナー102、IABノード105及びIABノード106を含んだ別の通信経路が形成されているものとする。
 <処理例1>
 本処理例では、各IABノードにおいて収容可能なUEの数(すなわち、各IABノードおよび下流側の他のIABノードに接続されたUEの総数の最大数)が設定されている場合について説明する。なお、本処理例では、IABノード104は、IABノード103の他にIABノード105に接続可能であり、IABノード107は、IABノード104の他にIABノード105又はIABノード106に接続可能であるものとする。また、IABノード106は、IABノード105の他にIABノード103に接続可能であるものとする。なお、各IABノードが接続可能な装置については、例えば、各IABノードのMTによって周囲の無線環境が測定され、その測定の結果によって事前に特定される。これは、UEに対して測定対象のセルを決定する従来の処理と同様にして行われうる。
 各IABノードにおける許容収容台数は、それぞれ、IABノード103が12台、IABノード104が8台、IABノード105が20台、IABノード106が12台、IABノード103が5台であるものとする。さらに、IABノード104によって形成されたセル111において接続中のUEが4台であり、IABノード106によって形成されたセル112において接続中のUEが6台であるものとする。そして、IABノード107によって形成されたセル113において接続中のUEが4台であり、さらにUE121が接続しようとしているものとする。なお、IABノード104は、自装置において接続中のUEが4台であり、下流側に接続しているIABノード107に接続中のUEも4台であるため、IABノード104が収容中のUEの総数は8台となる。一方、IABノード107は、下流側に接続している他のIABノードが存在しないため、収容中のUEは、IABノード107自身に接続中の4台のみである。これらの情報をまとめた表を図4に示す。
 ここで、IABノード107に、さらなるUE121が接続すると、IABノード103及びIABノード104の収容中のUEの数が9台となり、また、IABノード107の収容中のUEの数が5台となる。この場合、IABノード107では収容中のUEの数が許容収容台数を超えないが、IABノード104では収容中のUEの数が許容収容台数を超えてしまう。このため、IABドナー102は、IABノード107の接続先を切り替えるか否かを判定しうる。すなわち、IABノード104が収容中のUEの台数が許容収容台数を超えたため、IABノード104の子ノード又はさらにその下流側に接続されているIABノード(ここではIABノード107)の接続先の変更が判定される。本処理例では、IABノード107が、現在接続中のIABノード104以外の接続先候補であるIABノード106やIABノード105への接続の変更が行われるべきか否かが判定される。図4によれば、IABノード106は、許容収容台数が12台であり、現在収容中のUEの数が6台である。ここに、UE121が接続されたIABノード107が接続すると、その時点でIABノード107に接続中のUEの数は5台であるため、IABノード106の収容中のUEの数は11台となり、許容収容台数の範囲内で収まる。また、IABノード105は、許容収容台数が20台であり、現在収容中のUEの数が6台であるため、同様に、IABノード107がIABノード106に接続しても、収容中のUEの数が許容収容台数の範囲内で収まる。同様に、IABノード107がIABノード105に接続しても、収容中のUEの数が許容収容台数の範囲内で収まる。このため、IABドナー102は、IABノード107の接続先をIABノード106又はIABノード105に切り替えることを決定しうる。
 なお、IABドナー102は、IABノード107がDual Connectivityに対応している場合などにおいては、IABノード107の接続先を切り替えるのではなく、その接続先を増やすことを決定してもよい。すなわち、IABドナー102は、IABノード107が、IABノード104との接続を維持しながら、IABノード106やIABノード105へ接続することを決定してもよい。この場合、IABドナー102は、例えば、IABノード107に接続中のUEのそれぞれについて、IABノード104を経由する経路1と、IABノード106やIABノード105を経由する経路2とのいずれを用いて通信すべきかを決定しうる。なお、これは一例であり、UEと経路とを固定的に関連付けなくてもよい。例えば、IABノード107に接続中のUEの通信のうちの所定の割合が、経路2を用いて行われるようにしてもよい。例えば、IABドナー102は、経路1でUE3台分の通信を行い、経路2でUE2台分の通信を行うことを決定し、その設定情報をIABノード107と共有してもよい。この場合、例えばIABノード104の収容中のUEの台数には3台分を計上し、IABノード106又はIAB105の収容中のUEの台数には2台分を計上するようにしてもよい。
 図5を用いて、無線通信システムにおける処理の流れの例について説明する。なお、ここでは、説明を簡単にするために、IABノード107がIABノード104とIABノード106とのいずれかに接続可能であるものとして、IABノード105への接続については考慮しないものとする。まず、IABドナー102を起点として、IABドナー102、IABノード103及びIABノード104を含んだ第1の通信経路と、IABドナー102、IABノード105及びIABノード106を含んだ第2の通信経路とが形成される(S501)。第1の通信経路のために、IABドナー102とIABノード103との間の接続の確立並びに通信経路の設定、および、IABノード103とIABノード104との間の接続の確立並びに通信経路の設定が行われる。また、第2の通信経路のために、IABドナー102とIABノード105との間の接続の確立並びに通信経路の設定、および、IABノード105とIABノード106との間の接続の確立並びに通信経路の設定が行われる。このようにして、第1の通信経路と第2の通信経路とが形成された状態で、さらに、IABノード107が、第1の通信経路に接続するために、IABノード104に接続する。IABノード107は、例えば、IABノード104及びIABノード106から到来する報知信号(同期信号および物理ブロードキャストチャネル、SS/PBCH)を受信する(S502、S503)。
 IABノード107は、同期信号に基づいて下りリンクの同期を確立して、PBCHによってシステムの基本的な情報を取得する。ここで、IABノード107は、例えば報知信号の受信強度などに基づいて、IABノード104に接続すると決定したものとする。この場合、IABノード107は、IABノード104との間でランダムアクセス手順(RACH処理)を実行する(S504)。すなわち、IABノード107は、IABノードに対して、ランダムアクセスプリアンブルを送信し、送信タイミングを指定する情報を含んだランダムアクセスレスポンスを受信することにより、上りリンクの同期を確立する。そして、IABノード107は、RRCレイヤにおける接続を確立し(S505)、IABノード104との通信が可能な状態となる。そして、IABドナー107は、IABドナー102との間で、BAPによる通信経路の設定処理を実行し、これにより、IABドナー102、IABノード103、IABノード104、IABノード107の順で接続された通信経路が確立される(S506)。なお、接続の確立および通信経路の設定の詳細な手順は、通常のIABノードの接続の確立および通信経路の設定と同じであるため、ここでの説明は省略する。この設定を完了することにより、IABドナー102は、IABノード107を含んだ通信経路の管理を行うことができるようになる。また、IABノード107は、この設定により、IABドナー102の通信を中継する中継装置として機能することが可能となり、UEとの接続を確立することができるようになる。
 その後、例えば、4台のUEがIABノード107に接続された後に、UE121がIABノード107によって形成されるセル113に進入し、IABノード107と接続を確立したものとする(S507)。なお、UE121は、実際に接続を確立する際に、IABノード107を介して、IABドナー102との間で接続処理を実行することとなる。このとき、IABノード107は、IABノード107とIABドナー102との間の通信経路を識別するための識別情報を含めてデータを転送する。このため、IABドナー102は、UE121がIABノード107に接続することを認識することができる。IABドナー102は、UE121の接続により、IABノード107が現在関連付けられている通信経路に、収容中のUEの数が、許容収容台数を超えたIABノードが含まれているか否かを判定する。そして、IABドナー102は、収容中のUEの数が許容収容台数を超えた第1のIABノードが存在する場合には、そのIABノードより下流側の第2のIABノードの接続先を切り替えると判定する。そして、IABドナー102は、例えば上述のようにして、IABノード107の接続先をIABノード106とすることを決定し、その接続先の情報を含んだ接続先の切り替え指示をIABノード107へ送信する(S509)。なお、接続先の情報は、例えば、IABノード106によって構成されるセル識別子でありうる。
 IABノード107は、IABドナー102からの接続先の切り替え指示を受信すると、その指示に基づいて、IABノード106との間でRACH処理を実行して同期を確立し(S510)、RRC接続を確立する(S511)。なお、IABノード107は、このときに、IABノード104との接続を切断しうる。すなわち、IABノード107のMTは、接続先のIABノードを切り替えるハンドオーバを実行しうる。その後、IABノード107は、IABドナー102との間でBAPによる通信経路の設定処理を実行し、これにより、IABドナー102、IABノード105、IABノード106、IABノード107の順で接続された通信経路が確立される(S512)。このような処理が行われることにより、許容収容台数を超えた台数のUEを収容するIABノードがなくなるため、一部のIABノードが過負荷状態になることによって通信品質が不十分となることを防ぐことが可能となる。
 なお、上述の例では、IABノード107の接続先を変更するか否かについて説明したが、IABノード107がDual Connectivityに対応している場合などにおいては、その接続先が追加されてもよい。すなわち、並行して2つ以上の接続先と接続することができるIABノードについては、接続先の変更が行われてもよいし接続先の追加が行われてもよい。
 続いて、S509においてIABドナー102が実行する処理の流れについて、図6Aおよび図6Bを用いて説明する。図6Aおよび図6Bの処理は、例えば、IABドナー102の制御部201が記憶部202に記憶されているプログラムを実行することによって実現されうる。なお、これは一例であり、図6Aおよび図6Bの処理が実装された所定のハードウェアが用いられてもよい。
 IABドナー102は、IABノード107を介してUE121と接続する際に、IABノード107にそのUE121が接続されることを示すUE接続情報を受信する(S601)。そして、IABドナー102は、UE121がIABノード107に接続された場合に、IABノード107が属している通信経路に含まれるIABノードのうちで、許容収容台数を超える台数のUEを収容するIABノードが存在するかを判定する(S602)。なお、IABドナー102は、そのようなIABノードが存在しない場合(S602でNO)は、そのまま処理を終了し、現在の通信経路のままUE121の接続を受け付けて、IABノード107を介してUE121と通信を行う。一方、IABドナー102は、そのようなIABノードが存在する場合(S602でYES)、接続先の切り替え先の選択の処理のための初期設定を実行する(S603)。初期設定では、接続先が変更されるIABノードについて、接続の切り替え先の候補の数を「N」とし、接続の切り替え先の候補を電波強度(無線品質)の順でソートし、n=1番目の候補から、以下の処理を実行する。ここでは、IABノード107の接続の切り替え先の候補は、IABノード106のみである。すなわち、図4の情報によれば、IABノード107は、IABノード104及びIABノード106に接続可能であり、そのうちのIABノード104に接続中である。このため、変更後の接続先の候補は、IABノード106のみとなるからである。このため、N=1に設定され、IABノード107の接続先がIABノード106に変更された場合について、IABノード107とIABドナー102との間の通信経路において、全てのUEを収容可能であるかが判定される。
 なお、接続先が変更されるIABノードは、UE121が接続したIABノード107でありうるが、許容収容台数を超えるUEを収容しているIABノードの子IABノードやそれより下流側のIABノードのいずれかでありうる。この場合、接続先が変更される候補のIABノードが複数存在する場合、S603以降の処理を、その複数のIABノードのそれぞれについて実行して、いずれかのIABノードの接続先を切り替えることが決定されうる。一例として、下流側のIABノードの接続先を優先的に切り替えるように決定されうる。
 S604において、IABドナー102は、IABノード107に関して、n番目の接続の切り替え先の候補のIABノードの許容収容台数が、IABノード107の接続先が切り替えられたことに応じて許容収容台数を超えるか否かを判定する。すなわち、IABドナー102は、切り替え先の候補の許容収容台数が、切り替え先の候補の現在収容中のUEの数にIABノード107の現在収容中のUEの数を加算した値以上であるか否かを判定する(S604)。そして、IABドナー102は、許容収容台数を超える数のUEが収容されることとなる場合(S604でNO)、その切り替え先の候補へIABノード107を接続させないと決定する。そして、IABドナー102は、パラメータnをインクリメントして次の切り替え先の候補に関する処理に移行させる(S608)。このとき、IABドナー102は、パラメータnが切り替え先の候補の数であるNを超えており、次の切り替え先の候補が存在しない場合(S609でYES)、処理を終了する。一方、IABドナー102は、次の切り替え先の候補が存在する場合(S609でNO)、処理をS604に戻して、上述の判定処理を行う。なお、S609において次の切り替え先の候補が存在しないと判定された場合、IABノード107の接続の切り替え先の変更が行われず、IABノード104の収容中のUEの数が、許容収容台数を超えた状態が維持されてしまう。このため、IABドナー102は、IABノード104又はIABノード107に接続されているUEを他のIABノードにハンドオーバさせるなどにより、IABノード104の収容中のUEの数が許容収容台数を超えないようにしてもよい。なお、このような場合に、IABノード104又はIABノード107に接続されているUEに、現在の通信経路において許容収容台数を超えるUEが収容されていることが通知されてもよい。
 IABドナー102は、IABノード107の接続先が切り替えられたことに応じて、切り替え先の候補において収容されるUEの台数が許容収容台数を超えない場合(S604でYES)、その候補の親ノードについても同様の処理を行う。まず、IABドナー102は、IABノード107の接続の切り替え先の候補に親ノードが存在するか否かを判定する(S605)。ここで、接続の切り替え先の候補に親ノードがない場合、IABノード107の接続先を切り替え先の候補に変更しても、変更後の通信経路において、収容中のUEの数が許容収容台数を超えるIABノードが存在しないこととなる。このため、IABドナー102は、その切り替え先の候補のIABノードに接続するように、IABノード107に通知して(S610)、処理を終了する。また、IABノード107は、その通知に従って接続先を変更する。一方、IABドナー102は、切り替え先の候補に親ノードが存在する場合(S605でYES)、IABノード107がその候補に接続した場合に、その親ノードにおいて収容中のUEの数が許容収容台数を超えるか否かを判定する(S606)。そして、IABドナー102は、親ノードにおいて収容中のUEの数が許容収容台数を超えない場合(S606でYES)、その親ノードのさらなる親ノードにおいて同様の判定を行う(S607)。この手順が繰り返されることにより、IABノード107の接続の切り替え先の候補が属する通信経路に含まれる複数のIABノードの全てにおいて、収容中のUEの数が許容収容台数を超えないことを確認することができる。そして、IABドナー102は、IABノード107が切り替え先の候補に接続することで、通信経路内のいずれかのIABノードの収容中のUEの数が許容収容台数を超える場合(S606でNO)、IABノード107をその候補に接続させないと判定する。この場合、IABドナー102は、接続の切り替え先の候補を変更して(S608)、上述の処理と同様の処理を繰り返す。
 例えば、IABノード107の接続の切り替え先の候補は、IABノード106である。そして、図4によれば、IABノード106は、IABノード107が接続される前に、収容中のUEの数が6台である。そして、IABノード107がIABノード106に接続した場合、IABノード106は、IABノード107に接続されている5台のUEをも収容することとなるため、収容中のUEの数は11台となる。そして、その収容中のUEの数はIABノード106の許容収容台数である12台を超えないため(S604でYES)、続いて、IABノード106の親ノードであるIABノード105についての処理を実行する(S606)。IABノード105において現在収容中のUEの数は6台であり、IABノード107がIABノード106に接続した場合に、その収容中のUEの数は11台となる。そして、その収容中のUEの数はIABノード105の許容収容台数である20台を超えない(S606でYES)。ここで、IABノード105はIABドナー102に接続されており、親IABノードは存在しない(S605でNO)。このため、IABノード107がIABノード106に接続しても、その接続語の通信経路に含まれるIABノードの全てにおいて、収容中のUEの数が許容収容台数を超えないことが確認されうる。これにより、IABドナー102は、IABノード107の接続先を、IABノード104からIABノード106に切り替えることを決定することができる。
 なお、IABドナー102は、IABノード107に、IABノード104との接続を維持しながらIABノード106と接続させると決定してもよい。そして、IABドナー102は、一部のUEを指定して、そのUEの通信がIABノード106を介して行われるようにしうる。また、IABドナー102は、UEを指定せずに、IABノード107の通信のうちの一部がIABノード106を介して行われるようにしてもよい。この場合、IABドナー102は、IABノード107に対して、上りリンクの通信において、一部のUEの通信をIABノード106へ転送するように指示を送信してもよい。
 以上のようにして、IABドナー102は、各IABノードに設定されたUEの許容収容台数を考慮して、その許容収容台数と現在収容中のUEの数との関係に基づいて、通信経路を適切に設定することができる。これによれば、IABノードに接続するUEが増えたことによる通信処理負荷の過剰な増加を抑制することができ、良好な通信環境の通信経路を用いて、UEに通信サービスを提供することができるようになる。
 <処理例2>
 処理例1では、各IABノードに対して予め個別にUEの許容収容台数が設定されている場合について説明した。本処理例では、IABドナーからのホップ数に応じて各IABノードの許容収容台数が設定される場合の処理の流れについて説明する。すなわち、本処理例では、各IABノードの許容収容台数は事前に定められておらず、通信経路が確立された際のIABドナーからのホップ数に応じて、許容収容台数が決定される。なお、ホップ数は、IABドナーに直接接続されているIABノードが1ホップ、その1ホップで接続されている他のIABノードに接続されているIABノードが2ホップ、のようにカウントされる。本処理例では、ホップ数が多いほど、許容収容台数が少なくなるように設定される。すなわち、通信経路においてIABドナーに近い位置で接続されているIABノードほど、許容収容台数が多くなる。これは、IABドナーから最も離れたIABノードでは、そのIABノードに直接接続されたUEの通信の処理さえ行えばよいが、IABドナーに近いIABノードほど、下流側のIABノードに接続されたUEの通信の処理をも行う必要があるからである。このようにして許容収容台数が決定される場合、IABノードは、より上流のIABノード又はIABドナーに接続することにより、許容収容台数を増やすことができる。このため、例えば、あるIABノードにおいて、そのIABノードが収容中のUEの数が許容収容台数を超えた場合に、より上流側のIABノード又はIABドナーに接続先を切り替えることにより、収容中のUEの数を許容収容台数以下とすることができる。
 本処理例における、ホップ数と許容収容台数との関係を図7に示す。ここでは、IABドナーと無線接続している第1のIABノードの許容収容台数が12台に設定され、第1のIABノードと無線接続している第2のIABノードの許容収容台数が8台に設定される。また、第2のIABノードと無線接続している第3のIABノードの許容収容台数が4台に設定される。図1の例では、IABドナー102に直接接続されているIABノード103及びIABノード105の許容収容台数は12台に設定され、それらのIABノードに接続されているIABノード104及びIABノード106の許容収容台数は8台に設定される。また、IABノード107は、IABノード104に接続しているため、許容収容台数は4台に設定される。
 ここで、図1のように、IABノード104に4台、IABノード106に6台、IABノード107に4台のUEが接続されており、UE121がIABノード107に新たに接続したものとする。ここで、IABノード107は、IABノード104に接続中の場合、許容収容台数が4台であるため、UE121の接続によって収容中のUEの数が許容収容台数を超えることとなる。本処理例では、このような場合に、IABノード107が、接続先を、例えばIABノード105に切り替える。IABノード107は、IABノード105に直接接続することにより、IABドナー102までのホップ数が2ホップとなるため、許容収容台数を8台に増やすことができる。このようにすることにより、IABノード107は、UE121が接続することによって接続中のUEの数が増えたとしても、収容中のUEの数を許容収容台数以下に抑えることができる。
 この場合の処理の流れの例について、図8Aおよび図8Bを用いて説明する。図8Aおよび図8Bの処理も、図6Aおよび図6Bの処理と同様に、例えば、IABドナー102の制御部201が記憶部202に記憶されているプログラムを実行することによって実現されうる。なお、これは一例であり、図8Aおよび図8Bの処理が実装された所定のハードウェアが用いられてもよい。S801~S803は、図6AのS601~S603と同様である。
 S804では、IABドナー102は、接続先を切り替えるIABノードが、n番目の接続の切り替え先の候補に接続した場合の、UEの許容収容台数を特定して、現在収容中のUEの数がその許容収容台数以下であるかを判定する。例えば、IABドナー102は、各IABノードがどのように接続され、どのような通信経路が確立されているかを示す情報を管理している。このため、IABドナー102は、IABノード107の接続の切り替え先の候補のIABドナー102からのホップ数に1を加算したホップ数に対応する許容収容台数を、接続先の切り替え後のIABノード107の許容収容台数として特定することができる。ここでは、IABノード104に接続中のIABノード107の接続の切り替え先の候補として、IABノード105及びIABノード106が存在する。ここで、IABノード107をIABノード106に接続させた場合は、接続先の切り替えの前後でホップ数に変化がない。このため、IABドナー102は、IABノード107の接続の切り替え先として、IABノード106が不適切と判定しうる。一方、IABドナー102は、IABノード107がIABノード105に接続する場合、接続の切り替え前からホップ数が1だけ減るため、許容収容台数が増えることを特定することができる。そして、IABドナー102は、IABノード107が収容中のUEの数(5台)が、接続先をIABノード105に切り替えた場合の許容収容台数(8台)を超えないため、IABノード105が接続の切り替え先として適切であると判定しうる。IABドナー102は、このようにして、S804において、IABノード107の接続の切り替え先として適切な他のIABノードを特定する。
 IABドナー102は、上述のようにして、IABノード105が接続の切り替え先の候補として適切であると判定する(S804でYES)。この場合、IABドナー102は、続いて、その候補のIABノード105において、IABノード107が接続された場合に収容されるUEの数が許容収容台数を超えるか否かを判定する(S806)。そして、S804において候補として適切と判定されたIABノードより上流側のIABノードに関して、この判定を繰り返す。そして、IABドナー102は、IABノード107が接続を切り替えた場合の通信経路において許容収容台数を超える台数のUEを収容することとなるIABノードがない場合に、IABノード107をその候補のIABノードに接続させると決定しうる。なお、S805~S810の処理は、図6BのS605~S610と同様である。
 以上のようにして、IABドナー102は、IABノードのホップ数に対応する許容収容台数を超えない数のUEが収容されるように、通信経路を設定することができる。これによれば、IABノードに接続するUEが増えたことによる通信処理負荷の過剰な増加を抑制することができ、良好な通信環境の通信経路を用いて、UEに通信サービスを提供することができるようになる。なお、上述の例では、IABノード107の接続の切り替え先をIABノード105とする例について説明したが、例えば、IABノード107がIABノード103に接続可能である場合、接続の切り替え先をIABノード103としてもよい。この場合も、IABノード107のホップ数が3から2となるため、IABノード107が収容中のUEの数を許容収容台数以下とすることができる。また、一例において、IABノード104がIABドナー102に接続可能である場合、IABノード107において許容収容台数を超える数のUEを収容したことに応じて、IABノード104の接続先をIABドナー102に切り替えてもよい。
 なお、本処理例における許容収容台数は、図7のように固定的に設定されてもよいし、動的に設定されてもよい。例えば、IABドナーに直接接続される第1のIABノードの許容収容台数がM1台に設定され、各IABノードに接続されることが想定されるUEの数がL台に設定されているものとする。そして、第1のIABノードに直接接続される第2のIABノードがK1台である場合、第2のIABノードの許容収容台数M2が(M1-L)/K1(台)と算出されうる。また、第2のIABノードに直接接続される第3のIABノードの台数がK2台である場合、第3のIABノードの許容収容台数M3が(M2-L)/K2(台)と算出されうる。例えば、第1のIABノードの許容収容台数が30台であり、各IABノードに直接接続されることが想定されるUEの台数が6台であるものとする。ここで、第1のIABノードに直接接続される第2のIABノードが1台である場合、その第2のIABノードの許容収容台数は、(30-6)/1=24台である。一方、第2のIABノードが2台である場合、その第2のIABノードの許容収容台数は、(30-6)/2=12台となり、第2のIABノードが3台である場合、第2のIABノードの許容収容台数は、(30-6)/3=8台となる。なお、IABドナーは、直接接続しているIABノードの配下に接続されるIABノードの総数に応じて、各IABノードの許容収容台数を設定してもよい。例えば、IABドナーに直接接続される第1のIABノードの下流側に、第1のIABノードに直接接続される第2のIABノードがK1台、第2のIABノードに直接接続される第3のIABノードがK2台存在するものとする。この場合、第1のIABノードの許容収容台数を、(K1+K2)で除算した結果の値P1=M1/(K1+K2)が、各IABノードに直接接続されるべきUEの台数として計算されうる。そして、その値P1が第3のIABノードにおける許容収容台数となる。また、第2のIABノードに第3のIABノードがK2台接続される場合、その第2のIABノードの許容収容台数は、(K2+1)×P1(台)となる。これは、第3のIABノードを介して収容されるべきUEの数であるK2×P1台に、第2のIABノードにおいて直接接続されるP1台を加算した値である。このように、許容収容台数は、静的に事前設定されてもよいし、様々な基準で動的に設定されてもよい。
 なお、許容収容台数が動的に決定される場合、IABノード107の接続先の変更により、その変更後の接続先における各IABノードの許容収容台数が変更されうる。このため、その変更によって許容収容台数を超えることとなるIABノードが存在しないように、IABノード107の接続先が決定されうる。
 また、上述の各処理例では、IABノード107の接続先が変更された場合の通信経路に含まれるIABノードのいずれかにおいて収容することとなるUEの数が許容収容台数を超える場合に、IABノード107をその通信経路に接続させないと説明した。しかしながら、例えば、IABノード107の接続先を変更した後に、変更後の接続先における通信経路に含まれる他のIABノードの接続先を変更させることにより、通信経路内の各IABノードの収容中のUEの数が許容収容台数を超えないようにしてもよい。また、例えば、IABノード107が接続中のIABノード104の子ノードとして、別のIABノードが接続されている場合に、その別のIABノードの接続先を変更するか否かを上述のようにして判定してもよい。
 また、上述の処理例では、各IABノードに対して個別に、又は、各IABノードの通信経路におけるホップ数に対して、許容収容台数が設定される場合の例について説明したが、これに限られない。例えば、通信経路ごとに許容収容台数が設定されてもよい。例えば、図1の構成において、IABノード103とIABノード104とIABノード107とを含んだ通信経路に対する許容収容台数、及び、IABノード105とIABノード106とを含んだ通信経路に対する許容収容台数が設定されうる。そして、いずれかのIABノードに新たにUEが接続された際に、そのIABノードを含んだ通信経路において収容されているUEの総数が、その通信経路に設定された許容収容台数を超えるか否かが判定される。そして、収容中のUEの数が許容収容台数を超えた場合、IABドナー102は、UEが新たに接続された第1のIABノードの接続の切り替え先となる第2のIABノードを特定し、第1のIABノードに対して、第2のIABノードへ接続を指示しうる。なお、IABドナー102は、いずれかのIABノードについて接続先の切り替えを指示した場合に、自装置において管理している通信経路に関する情報を更新する。
 なお、上述の処理例では、例えばIABノード107が接続先を切り替える前に、そのIABノード107が接続の切り替えが行われた場合を仮定して、各IABノードにおいて収容されるUEの数が許容収容台数を超えないことを確認する例について説明した。しかし、これに限られない。例えば、IABノード107が接続先を切り替えた後に、各IABノードにおいて収容されるUEの数が許容収容台数を超えないことが確認されてもよい。その切り替え後、接続先のIABノードの子ノードの情報が変更される。そして、その際の接続情報の更新通知がIABドナーによって受信され、IABドナーは、各IABノードにおいて、収容中のUEの数が許容収容台数を超えたか否かの判定処理が実行されうる。そして、収容中のUEの数が許容収容台数を超える場合には、少なくとも一部のIABノードの接続先の切り替え処理が実行されうる。
 なお、上述の説明では、IABドナーについては、許容収容台数や収容中のUEの数を考慮せず、IABドナーに直接接続されているIABノードを起点とした通信経路における許容収容台数や収容中のUEの数を考慮する場合について説明した。これに対して、例えば、IABドナーのDU(Distributed Unit)を、上述の説明におけるIABドナーに直接接続されているIABノードとして扱ってもよい。すなわち、IABドナーのCU(Central Unit)を基地局とし、IABドナーのDUを、IABドナーに直接接続されているIABノードとして扱ってもよい。一例において、図1のIABノード103やIABノード105は、IABドナーのDUによって構成されてもよい。
 以上のようにして、本実施形態では、IABによる中継通信システムにおいて、各中継装置(IABノード)の負荷が、その中継装置において許容される負荷の最大値を超えて過剰に増大することのないように通信経路を設定することができる。これにより、基地局(IABドナー)やコアネットワークと、端末(UE)との間の通信を十分に良好な環境で中継することが可能となる。なお、上述の実施形態では、IABによる中継通信システムに関して説明したが、基地局と端末との間の通信を中継装置によって無線で中継する無線中継通信システムに上述の各議論が適用可能である。例えば無線LAN(ローカルエリアネットワーク)におけるアクセスポイントとステーションとの間の通信の中継に、上述の各議論が適用可能である。また、上述の各議論は、例えば第5世代(5G)のセルラ通信システムに適用されるが、ロングタームエボリューション(LTE)や、5Gより後の世代のセルラ通信システムに適用されてもよい。
 (その他の実施例)
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
 発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
 本願は、2021年11月8日提出の日本国特許出願特願2021-182058を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。

Claims (14)

  1.  第3世代パートナーシッププロジェクト(3GPP)によって定義されるIAB(Integrated Access and Backhaul)技術を用いる無線通信システムであって、コアネットワークと端末との間の通信を中継する1以上のIABノードと、IABノードと前記コアネットワークとの間の通信を中継するIABドナーを少なくとも含んだ前記無線通信システムの前記IABドナーであって、
     前記IABドナーと、前記IABドナーの配下の第1のIABノードと、前記第1のIABノードの配下の第2のIABノードと、を含んだ第1の通信経路上に接続される端末の数に少なくとも基づいて、通信経路を変更するかどうかを判定する判定手段と、
     前記判定手段によって通信経路を変更すると判定された場合に、前記第2のIABノードの接続先を前記第1の通信経路とは異なる通信経路を構成している第3のIABノードへと変更し、前記第3のIABノードを経由して前記第2のIABノード及び当該第2のIABノードの配下の端末と前記IABドナーとの間の通信を中継するための第2の通信経路の設定を行う設定手段と、
     を有するIABドナー。
  2.  前記IABドナーの配下のIABノードのそれぞれに対して端末の許容収容台数が設定され、前記第1のIABノードに接続されている端末の数と、前記第1の通信経路において前記第1のIABノードより下流側に接続された1以上のIABノードに接続されている端末の数の総数が、前記第1のIABノードに対して設定された前記許容収容台数を超える場合に、前記判定手段は、通信経路を変更すると判定する、請求項1に記載のIABドナー。
  3.  前記判定手段は、変更後の接続先をさらに判定し、
     前記判定手段は、前記第2のIABノードが前記第3のIABノードに接続する前に、前記第2のIABノードが当該第3のIABノードに接続された場合に形成されることとなる前記第2の通信経路に含まれる、前記第3のIABノードを含む1以上のIABノードのそれぞれにおいて、当該IABノードに接続されている端末の数と、当該IABノードより下流側に接続された他のIABノードに接続されている端末の数の総数が、当該IABノードに対して設定された前記許容収容台数を超えない場合に、前記第2のIABノードを前記第3のIABノードに接続させると判定する、請求項2に記載のIABドナー。
  4.  前記判定手段は、前記設定手段によって前記第2の通信経路が設定された後に、当該第2の通信経路に含まれるIABノードのそれぞれにおいて前記許容収容台数を超えたか否かを判定し、前記第2の通信経路が設定される前には当該判定を行わない、請求項2に記載のIABドナー。
  5.  前記許容収容台数は、通信経路における前記IABドナーを起点としたIABノードまでのホップ数に基づいて設定される、請求項2から4のいずれか1項に記載のIABドナー。
  6.  前記判定手段は、変更後の接続先をさらに判定し、
     前記判定手段は、前記第2のIABノードに接続されている端末の数と、前記第1の通信経路において前記第2のIABノードより下流側に接続されたIABノードに接続されている端末の数の総数が、前記第2のIABノードに対して設定された前記許容収容台数を超える場合に、前記第1の通信経路とは異なる通信経路を構成しているIABノードのうち、前記第2のIABノードの前記ホップ数が減るようなIABノードを前記第3のIABノードとして選択し、に、当該第2のIABノードを前記選択した第3のIABノードの直下に接続させると判定する、請求項5に記載のIABドナー。
  7.  前記許容収容台数は、前記IABドナーを起点として下流側に接続されたIABノードの数に基づいて設定される、請求項2から4のいずれか1項に記載のIABドナー。
  8.  前記判定手段は、変更後の接続先をさらに判定し、
     前記判定手段によって、前記第2の通信経路に含まれるIABノードのいずれかにおいて当該IABノードに関する前記総数が当該IABノードに対して設定された前記許容収容台数を超えないような、変更後の接続先とすべき前記IABドナー又はIABノードが存在しないと判定された場合に、前記第1のIABノードまたは前記第2のIABノードに接続されている前記端末に、前記許容収容台数を超える前記端末が接続されていることを示す情報を通知する通知手段をさらに有する、請求項2から7のいずれか1項に記載のIABドナー。
  9.  前記判定手段は、変更後の接続先をさらに判定し、
     通信経路に対してそれぞれ許容収容台数が設定され、前記第1の通信経路に含まれる中継装置に接続している端末の総数が当該許容収容台数を超える場合に、前記判定手段は、前記第2のIABノードの接続先を前記第1の通信経路とは異なる第2の通信経路上の第3のIABノードに変更することにより前記第1の通信経路を変更すると判定する、請求項1に記載のIABドナー。
  10.  第3世代パートナーシッププロジェクト(3GPP)によって定義されるIAB(Integrated Access and Backhaul)技術を用いる無線通信システムであって、コアネットワークと端末との間の通信を中継する1以上のIABノードと、IABノードと前記コアネットワークとの間の通信を中継するIABドナーを少なくとも含んだ前記無線通信システムの前記IABドナーを制御する制御方法であって、
     前記IABドナーと前記IABドナーの配下の第1のIABノードと前記第1のIABノードの配下の第2のIABノードとを含んだ第1の通信経路上に接続されるUE(User Equipment)の数に少なくとも基づいて、通信経路を変更するかどうかを判定することと
     前記通信経路を変更すると判定された場合に、前記第2のIABノードの接続先を前記第1の通信経路とは異なる通信経路を構成している第3のIABノードへと変更し、前記第3のIABノードを経由して前記第2のIABノード及び当該第2のIABノードの配下の端末と前記IABドナーとの間の通信を中継するための第2の通信経路の設定を行うことと、
     を含む制御方法。
  11.  コンピュータを、請求項1から9のいずれか1項に記載のIABドナーとして機能させるためのプログラム。
  12.  基地局と端末との間の通信を中継する中継装置を含んだ無線通信システムの制御装置であって、
     前記基地局と前記基地局の配下の第1の中継装置と前記第1の中継装置の配下の第2の中継装置とを含んだ第1の通信経路上に接続される端末の数に少なくとも基づいて、通信経路を変更するかどうかを判定する判定手段と、
     前記判定手段によって通信経路を変更すると判定された場合に、前記第2の中継装置の接続先を、前記第1の通信経路とは異なる通信経路を構成している第3のIABノードへと変更する変更手段と、
     を有する制御装置。
  13.  前記制御装置は、前記基地局がバックホール回線で接続しているコアネットワーク内に配置される制御装置である、請求項12に記載の制御装置。
  14.  前記基地局は第3世代パートナーシッププロジェクト(3GPP)によって定義されるIAB(Integrated Access and Backhaul)技術を用いるIABドナーである、請求項12に記載の制御装置。
PCT/JP2022/039073 2021-11-08 2022-10-20 Iabドナー、制御方法、プログラム、及び、制御装置 WO2023079969A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247017830A KR20240091133A (ko) 2021-11-08 2022-10-20 Iab 도너, 제어 방법, 프로그램 및 제어 장치
CN202280074324.2A CN118216183A (zh) 2021-11-08 2022-10-20 Iab施主、控制方法、程序和控制设备
EP22889789.8A EP4432731A1 (en) 2021-11-08 2022-10-20 Iab donor, control method, program, and control device
US18/633,651 US20240259912A1 (en) 2021-11-08 2024-04-12 Iab donor, control method, computer-readable storage medium, and control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-182058 2021-11-08
JP2021182058A JP2023069877A (ja) 2021-11-08 2021-11-08 制御装置、制御方法、およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/633,651 Continuation US20240259912A1 (en) 2021-11-08 2024-04-12 Iab donor, control method, computer-readable storage medium, and control apparatus

Publications (1)

Publication Number Publication Date
WO2023079969A1 true WO2023079969A1 (ja) 2023-05-11

Family

ID=86240958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039073 WO2023079969A1 (ja) 2021-11-08 2022-10-20 Iabドナー、制御方法、プログラム、及び、制御装置

Country Status (6)

Country Link
US (1) US20240259912A1 (ja)
EP (1) EP4432731A1 (ja)
JP (1) JP2023069877A (ja)
KR (1) KR20240091133A (ja)
CN (1) CN118216183A (ja)
WO (1) WO2023079969A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119112A1 (ja) * 2013-01-30 2014-08-07 ソニー株式会社 通信制御装置、通信制御方法、プログラム及び端末装置
JP2018525874A (ja) 2015-06-30 2018-09-06 クアルコム,インコーポレイテッド バックホールネットワークにおけるトラフィックフローの移行
WO2020080044A1 (ja) * 2018-10-16 2020-04-23 ソニー株式会社 通信制御装置、通信装置、通信制御方法、通信方法、通信制御プログラム、通信プログラム、及び通信システム
JP2021182058A (ja) 2020-05-18 2021-11-25 セイコーエプソン株式会社 表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119112A1 (ja) * 2013-01-30 2014-08-07 ソニー株式会社 通信制御装置、通信制御方法、プログラム及び端末装置
JP2018525874A (ja) 2015-06-30 2018-09-06 クアルコム,インコーポレイテッド バックホールネットワークにおけるトラフィックフローの移行
WO2020080044A1 (ja) * 2018-10-16 2020-04-23 ソニー株式会社 通信制御装置、通信装置、通信制御方法、通信方法、通信制御プログラム、通信プログラム、及び通信システム
JP2021182058A (ja) 2020-05-18 2021-11-25 セイコーエプソン株式会社 表示装置

Also Published As

Publication number Publication date
KR20240091133A (ko) 2024-06-21
CN118216183A (zh) 2024-06-18
US20240259912A1 (en) 2024-08-01
JP2023069877A (ja) 2023-05-18
EP4432731A1 (en) 2024-09-18

Similar Documents

Publication Publication Date Title
US20220369190A1 (en) Inter-donor topology adaptation in integrated access and backhaul networks
EP2919520A1 (en) Radio communication system and communication control method
RU2748302C1 (ru) Версия rrc для работы с разделенной базовой станцией
US10623268B2 (en) Controller-enabled topology management in self backhauling wireless mesh and relay networks
JP5770139B2 (ja) 無線通信システム、サービングゲートウェイ、ネットワークおよび論理経路確立方法
JPWO2009031659A1 (ja) 移動通信方法、移動交換局、無線基地局及び移動局
EP3179814B1 (en) Apparatus and method for establishing data transmission link, and communications system
JP2022514131A (ja) 無線バックホールを確保する方法、子基地局、親基地局、並びに子基地局及び親基地局における方法
CN116210250A (zh) 一种数据传输方法及装置
US9775052B2 (en) Superordinate base station, subordinate base station, and radio communication system
WO2019163645A1 (ja) 中継通信が行われるセルラ通信ネットワークのための制御装置、基地局装置、端末装置、それらの制御方法、及びプログラム
JP5785517B2 (ja) 無線通信システムおよびネットワーク
WO2023079969A1 (ja) Iabドナー、制御方法、プログラム、及び、制御装置
CN112449384B (zh) 数据处理方法、装置和系统
JP2024502450A (ja) グループ移行方法、装置及びシステム
CN114642076A (zh) 一种接入回传控制方法及装置
WO2023026681A1 (ja) 中継装置、制御方法、プログラム、及び通信システム
WO2021029291A1 (ja) 経路指定された信号を転送する中継装置、制御方法、及びプログラム
WO2022230524A1 (ja) 通信装置、通信装置の制御方法、およびプログラム
JP2023179218A (ja) 通信装置、制御方法、およびプログラム
CN116133111A (zh) 一种切片处理方法及装置、通信设备
CN117242826A (zh) 通信装置、通信装置的控制方法、以及程序
JP2021029023A (ja) 経路指定された信号を転送する中継装置、制御方法、及びプログラム
CN118661449A (zh) 方法、通信设备和基础设施设备
CN117716735A (zh) 中继发现方法及通信设备、通信系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889789

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280074324.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247017830

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022889789

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022889789

Country of ref document: EP

Effective date: 20240610