WO2023079811A1 - 位置決め装置、放射線治療装置及び位置決め方法 - Google Patents
位置決め装置、放射線治療装置及び位置決め方法 Download PDFInfo
- Publication number
- WO2023079811A1 WO2023079811A1 PCT/JP2022/030807 JP2022030807W WO2023079811A1 WO 2023079811 A1 WO2023079811 A1 WO 2023079811A1 JP 2022030807 W JP2022030807 W JP 2022030807W WO 2023079811 A1 WO2023079811 A1 WO 2023079811A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- axes
- fluoroscopic
- optimization
- bed
- axis
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000001959 radiotherapy Methods 0.000 title abstract description 14
- 238000005457 optimization Methods 0.000 claims abstract description 119
- 238000004364 calculation method Methods 0.000 claims abstract description 79
- 238000003384 imaging method Methods 0.000 claims abstract description 56
- 230000005855 radiation Effects 0.000 claims description 5
- 238000002594 fluoroscopy Methods 0.000 abstract 8
- 239000002245 particle Substances 0.000 description 34
- 230000008569 process Effects 0.000 description 24
- 238000002560 therapeutic procedure Methods 0.000 description 12
- 238000003860 storage Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 238000002438 flame photometric detection Methods 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 5
- 238000002591 computed tomography Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000010365 information processing Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 101001000545 Homo sapiens Probable hydrolase PNKD Proteins 0.000 description 2
- 102100035920 Probable hydrolase PNKD Human genes 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
- A61N2005/1061—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
Definitions
- the present disclosure relates to a positioning device, radiation therapy device and positioning method.
- Radiation therapy which irradiates patients with radiation, is known as one of the cancer treatment methods. Radiation used in radiotherapy is broadly classified into non-charged particle beams such as X-rays and gamma rays and charged particle beams such as proton beams and carbon beams. Radiation therapy using the latter charged particle beam is generally called particle beam therapy.
- a charged particle beam can form a dose distribution (black curve) having an energy loss peak at a specific depth. Therefore, by aligning the peak of the energy loss of the charged particle beam with the position of the tumor, it is possible to significantly reduce the dose of the charged particle beam irradiated to the normal tissue located deeper than the tumor.
- patient positioning In order to achieve accurate delivery of radiation to the tumor, it is necessary to align the patient with the same planned position determined by the previously created treatment plan. This positioning of the patient is referred to as patient positioning.
- a patient lying on a bed is captured from two different directions using two sets of X-ray tubes and a flat panel detector (FPD).
- FPD flat panel detector
- DR Digital Radiography
- a fluoroscopic X-ray image taken of the patient during radiotherapy is compared with a pseudo-fluoroscopic X-ray image created from the CT (Computed Tomography) image used to create the treatment plan, and a bone-like image is obtained.
- the patient is positioned so that the position of the structure to be positioned matches between the fluoroscopic X-ray image and the pseudo-fluoroscopic X-ray image.
- structures other than the structure to be positioned are reflected in the fluoroscopic X-ray image, or the arrangement of the bone, which is the structure to be positioned, is changed from the time of treatment planning.
- the structures imaged in the fluoroscopic and pseudo-fluoroscopic X-ray images do not match throughout the images.
- positioning of the patient is performed using a region of interest (ROI) set as a region in which the structure to be positioned exists on the fluoroscopic X-ray image.
- ROI region of interest
- the setting of the region of interest is usually performed by drawing the region of interest on the image by a user who is a medical professional.
- the three axes that define the amount of translation coincide with the movement axes of the bed for placing the patient in the planned position
- the x-axis is the direction from right to left when viewed from the patient lying supine on the bed (Right- Left direction: RL direction)
- the y-axis is in the direction from the feet to the head (Superior-Inferior direction: SI direction)
- the z-axis is in the direction from the back to the abdomen (Anterior-Posterior: AP direction).
- the optimization calculation may not be able to reach the optimum value of the parameter, or the calculation amount in the optimization calculation may increase.
- Patent Documents 1 and 2 in the optimization calculation, after the optimization process for each component is completed, a one-dimensional optimization process is performed with respect to the direction along the imaging axis for taking a fluoroscopic X-ray image. A technique for reducing the number of calculations for repeating the optimization process in the optimization calculation is disclosed.
- Patent Document 3 the optimization of the amount of translation in the direction along the imaging axis is evaluated only in one direction perpendicular to the fluoroscopic imaging axis, thereby reducing the number of fluoroscopic X-ray images, A technique for shortening the time required for positioning is disclosed.
- Patent Literatures 1 and 2 an optimization process for directions along the imaging axis is added after the normal optimization process for multidimensional components is completed. Since the number of processes increases, there is a problem that the reduction rate of calculation time is low.
- Patent Document 3 has a problem that it becomes difficult to calculate the optimum values of the parameters depending on the position of the region of interest on the image. For example, if a small region of interest is set at the edge of an image, changing the amount of translation along a certain imaging axis will result in a smaller area within the region of interest on an image acquired with another imaging axis perpendicular to that imaging axis. The target structure may move to the edge or center of the image and fall outside the region of interest. In this case, it is difficult to calculate the optimum value.
- An object of the present disclosure is to provide a positioning device, a radiotherapy device, and a positioning method that enable highly accurate patient positioning while reducing calculation time.
- a positioning device is a positioning device that controls the position of a bed on which a subject is mounted, wherein each of a plurality of imaging axes in directions different from a plurality of movement axes along which the bed translates and an image acquisition unit that acquires a plurality of fluoroscopic images by photographing the subject along a plurality of planes corresponding to each imaging axis.
- a creation unit that creates a pseudo-fluoroscopic image
- a calculation unit that calculates a degree of similarity between each fluoroscopic image and each pseudo-fluoroscopic image, and each of a plurality of optimization axes including the plurality of imaging axes based on the similarity for each of a plurality of translational directions along and a plurality of rotational directions about a plurality of rotation axes, calculating the amount of movement of the bed such that each fluoroscopic image and each pseudo-fluoroscopic image best match an optimization unit;
- FIG. 1 is a diagram showing the overall configuration of a particle beam therapy system according to an embodiment of the present disclosure
- FIG. 4 is a flowchart for explaining an example of patient positioning processing
- 4 is a flowchart for explaining optimization calculation processing in more detail
- FIG. 4 is a diagram showing an example of a translation parameter optimization axis
- FIG. 5 is a diagram showing an example of the relationship between the optimization axis and the imaging system
- It is a figure which shows an example of a score map image.
- FIG. 1 is a diagram showing the overall configuration of a particle beam therapy system according to one embodiment of the present disclosure.
- a particle beam therapy system A shown in FIG. 1 is a radiotherapy apparatus having a device group for irradiating a particle beam to a patient B who is an examinee.
- the particle beam therapy system A includes an accelerator 1, a beam transport device 2, a gantry 3, an irradiation nozzle 4, FPDs 5A and 5B, X-ray tubes 6A and 6B, a bed 7, a robot arm 8, and a communication device. 9 , a data server 10 , a treatment planning device 11 , a fluoroscopic X-ray imaging device 12 , a bed control device 13 and a patient positioning device 20 .
- the accelerator 1 is a particle beam generator that generates a particle beam to irradiate patient B, and accelerates the particle beam until it reaches an energy suitable for treating patient B and outputs it.
- a beam transport device 2 transports the particle beam output from the accelerator 1 to the gantry 3 .
- the type of particle beam is not particularly limited, and examples thereof include proton beams and carbon beams.
- the gantry 3 and the irradiation nozzle 4 are irradiation devices that irradiate the patient B with the particle beam transported from the accelerator 1.
- Gantry 3 adjusts the irradiation angle at which patient B is irradiated with the particle beam transported from accelerator 1 .
- the gantry 3 has a rotating mechanism capable of rotating 360 degrees around the patient B, and adjusts the irradiation angle by rotating.
- the irradiation nozzle 4 is provided on the gantry 3 and irradiates the patient B with the particle beam transported to the gantry 3 .
- the irradiation nozzle 4 may incorporate a mechanism for adjusting the shape of the particle beam to match the shape of the affected area of the patient.
- the FPDs 5A and 5B and the X-ray tubes 6A and 6B constitute an imaging system for fluoroscopic imaging of the patient B.
- FPDs 5A and 5B are planar detectors that detect X-rays and image the patient B.
- FIG. X-ray tubes 6A and 6B output X-rays.
- the FPD 5A and the X-ray tube 6A are arranged facing each other so that the X-rays output from the X-ray tube 6A are detected by the FPD 5A, and the FPD 5B and the X-ray tube 6B are arranged to detect the X-rays output from the X-ray tube 6B.
- the lines are arranged opposite to be detected by FPD 5B.
- An axis connecting the center of the FPD 5A and the X-ray tube 6A and an axis connecting the center of the FPD 5B and the X-ray tube 6B are two imaging axes for imaging the patient.
- the two imaging axes are preferably orthogonal to each other, but need not be orthogonal to each other.
- the particle beam therapy system A may include three or more FPDs and three or more X-ray tubes. In this case, there are three or more imaging axes.
- the bed 7 is a table on which the patient B is placed when the patient B is irradiated with the particle beam.
- a robot arm 8 is a device for moving the bed 7 . Specifically, the robot arm 8 translates the bed 7 in a plurality of translational directions along each of a plurality of movement axes and rotates in a plurality of rotational directions about a plurality of rotational axes. Move and do.
- the movement axis and the rotation axis are the same, and there are three movement axes (rotation axes).
- each movement axis is in the direction from right to left (RL direction) when viewed from the patient B lying face up on the bed 7, the direction from the feet to the head of the patient B (SI direction), and the direction from the back to the abdomen. (AP direction).
- the communication device 9 communicably connects the data server 10, the treatment planning device 11 and the patient positioning device 20 to each other.
- the data server 10 is a storage device that stores various information related to particle beam therapy for patient B.
- the data server 10 stores patient B's three-dimensional fluoroscopic image information and treatment plan information indicating a treatment plan for patient B, for example.
- the 3D fluoroscopic image contains information that describes the shape and electron density of the patient in voxels.
- the three-dimensional fluoroscopic image is, for example, a computed tomography (CT) image, and is generated in advance (before creating treatment plan information for patient B).
- Treatment plan information is generated based on the three-dimensional fluoroscopic image.
- the treatment plan information also includes planned arrangement information indicating planned arrangement, which is the arrangement of the patient B during treatment.
- the placement of the patient B indicates the position and angle (orientation) of the patient B, and is determined by the position and angle of the bed 7 .
- the treatment planning device 11 creates a treatment plan for the patient B based on the three-dimensional fluoroscopic image information stored in the data server 10, and stores treatment plan information indicating the treatment plan in the data server 10.
- the fluoroscopic X-ray imaging apparatus 12 controls the FPD 5A and the X-ray tube 6A, and the FPD 5B and the X-ray tube 6B, respectively, to obtain a plurality of fluoroscopic X-ray images of the patient B photographed from different angles.
- the acquired fluoroscopic X-ray image is transmitted to the positioning device 20 .
- the bed control device 13 adjusts the placement of the patient B by controlling the robot arm 8 to adjust the placement of the bed 7 .
- the patient positioning device 20 positions the patient B based on the three-dimensional fluoroscopic image information and treatment plan information stored in the data server 10 and the fluoroscopic X-ray image acquired by the fluoroscopic X-ray imaging device 12. to run.
- the patient B positioning process is a process of placing the patient B placed on the bed 7 in the same position as the planned position shown in the treatment plan information before starting particle beam therapy for the patient B.
- the patient positioning device 20 controls the robot arm 8 via the bed control device 13 to adjust the position and angle of the bed 7, thereby placing the patient B in the same placement as the planned placement.
- particle beam therapy will actually be performed on patient B.
- a particle beam accelerated by an accelerator 1 to an energy suitable for treatment is transported to a gantry 3 via a beam transporter 2 .
- the particle beam is deflected in an appropriate direction by the gantry 3, passes through the irradiation nozzle 4, and is irradiated to the patient B's affected area.
- the positioning device 20 will be described in more detail below.
- the positioning device 20 includes an image acquisition unit 21, a pseudo-fluoroscopic X-ray image generation unit 22, an ROI drawing unit 23, a similarity calculation unit 24, an optimization calculation processing unit 25, an image It has a display unit 26 and a control unit 27 .
- the image acquisition unit 21 acquires three-dimensional fluoroscopic image information from the data server 10 via the communication device 9 and acquires a fluoroscopic X-ray image from the fluoroscopic X-ray imaging device 12 .
- the pseudo-fluoroscopic X-ray image creating unit 22 projects the three-dimensional fluoroscopic images acquired by the image acquiring unit 21 onto a plurality of planes corresponding to the respective imaging axes for capturing the fluoroscopic X-ray images, forming a plurality of pseudo-fluoroscopic images.
- a creation unit that creates a plurality of pseudo-fluoroscopic X-ray images, which are images.
- the pseudo-fluoroscopic X-ray image creating unit 22 creates a pseudo-fluoroscopic X-ray image by arranging the three-dimensional image of the patient B in the same virtual space as the imaging system that generated the fluoroscopic X-ray image and performing projection processing. .
- the plane corresponding to the imaging axis is, for example, a plane orthogonal to the imaging axis.
- the ROI drawing unit 23 identifies the ROI, which is the region of interest used for patient positioning in the pseudo-fluoroscopic X-ray image. Specifically, the ROI drawing unit 23 specifies the ROI by displaying the pseudo-fluoroscopic X-ray image and allowing the user to draw the ROI on the pseudo-fluoroscopic X-ray image.
- the ROI is drawn to include the structure to be positioned, eg bone.
- the similarity calculation unit 24 calculates the similarity between the fluoroscopic X-ray image and the pseudo-fluoroscopic X-ray image in the ROI specified by the ROI drawing unit 23 .
- the similarity calculator 24 calculates the sum of the similarities between the fluoroscopic X-ray image and the pseudo-fluoroscopic X-ray image corresponding to each of the two imaging axes. 4
- the degree of similarity is not particularly limited as long as it is an index capable of evaluating the degree of similarity between images, but is, for example, a mutual information amount or a zero-mean normalized cross correlation (ZNCC) coefficient.
- the normalized cross-correlation coefficient S ZNCC is calculated with equation (1).
- g(i, j) is the pixel value of pixel (i, j) in the fluoroscopic X-ray image
- f(i, j) is the pixel value of pixel (i, j) in the pseudo-fluoroscopic X-ray image
- ⁇ g is the average brightness value of the fluoroscopic X-ray image
- ⁇ f is the average brightness value of the pseudo-fluoroscopic X-ray image.
- the optimization calculation processing unit 25 determines the best match between the fluoroscopic X-ray image and the pseudo-fluoroscopic X-ray image in the ROI specified by the ROI drawing unit 23. It is an optimization unit that calculates the amount of movement of the bed 7 as described above. Specifically, the optimization calculation processing unit 25 uses a predetermined optimization calculation method to optimize the value of the arrangement parameter corresponding to the amount of translational movement and rotational movement of the bed 7 . Calculate the amount of movement of The placement parameter has three degrees of freedom for translational movement and three degrees of freedom for rotational movement.
- the optimization calculation method is not particularly limited, but for example, the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method belonging to the quasi-Newton method, the Nelder-Mead method, or the Powell method. .
- the image display unit 26 is a display unit that displays various information and images.
- the image display unit 26 displays a fluoroscopic X-ray image, a pseudo-fluoroscopic X-ray image, an ROI image indicating an ROI region, and the like.
- the control unit 27 adjusts the placement of the patient B by controlling the bed control device 13 and adjusting the placement of the bed 7 .
- the positioning device 20 having the above functions can be realized by an information processing device capable of various information processing such as a computer device.
- An information processing device has, for example, an arithmetic element, a storage medium, and a communication interface, and, if necessary, an input unit such as a mouse and a keyboard, and a display unit such as a display.
- Arithmetic elements are, for example, processors such as CPUs (Central Processing Units) and FPGAs (Field-Programmable Gate Arrays).
- Storage media include, for example, magnetic storage media such as HDDs (Hard Disk Drives), semiconductor storage media such as RAMs (Random Access Memory), ROMs (Read Only Memory) and SSDs (Solid State Drives).
- magnetic storage media such as HDDs (Hard Disk Drives), semiconductor storage media such as RAMs (Random Access Memory), ROMs (Read Only Memory) and SSDs (Solid State Drives).
- RAMs Random Access Memory
- ROMs Read Only Memory
- SSDs Solid State Drives
- a combination of an optical disc such as a DVD (Digital Versatile Disk) and an optical disc drive may be used.
- other high cost storage media such as magnetic tape media may be used as storage media.
- Programs such as firmware are stored in the storage medium.
- the arithmetic element reads out the program from the storage medium and executes it, thereby realizing each part 21 to 27 of the positioning device 20 and executing a series of overall control. be.
- the storage medium stores data required for each process of the positioning device 20 and the like.
- the positioning device 20 of the present embodiment may be configured by so-called cloud computing, in which a plurality of information processing devices are configured to be able to communicate via a communication network.
- FIG. 1 The patient positioning process by the patient positioning device 20 will be described in more detail below with reference to FIGS. 2 to 6.
- FIG. 1 is a diagrammatic representation of the patient positioning device 20.
- FIG. 2 is a flowchart for explaining an example of patient positioning processing.
- a set-up position is a position for placing the patient B in the same arrangement as the planned arrangement.
- the position of the body surface of the patient B on the bed 7 is measured using an infrared laser installed in the treatment room, and the patient B is placed in the set-up position on the bed 7 based on the position.
- the control unit 27 first acquires treatment plan information from the data server 10, and controls the robot arm 8 via the bed control device 13 based on the planned arrangement information included in the treatment plan information. Then, the bed 7 on which the patient B is placed is moved so that the placement of the patient B becomes the planned placement indicated by the planned placement information (step S100). At this time, the positioning target structure of the patient B placed on the bed 7 is included in the X-ray irradiation area formed by the FPDs 5A and 5B and the X-ray tubes 6A and 6B.
- the image acquisition unit 21 acquires a plurality of fluoroscopic X-ray image information obtained by imaging the patient B from a plurality of mutually different directions via the fluoroscopic X-ray imaging device 12 (step S101).
- the image acquisition unit 21 acquires two fluoroscopic X-ray image information captured from two directions along two imaging axes.
- the pseudo-fluoroscopic X-ray image creating unit 22 acquires the 3D fluoroscopic image information from the data server 10, and sets the initial value of the displacement amount of the arrangement parameter based on the 3D fluoroscopic image information (step S102). For example, the pseudo-fluoroscopic X-ray image creating unit 22 displays the three-dimensional fluoroscopic image information on the image display unit 26 and prompts the user to input initial values. Note that the pseudo-fluoroscopic X-ray image creating unit 22 may set a predetermined value as an initial value without intervention of the user.
- the pseudo-fluoroscopic X-ray image creating unit 22 creates two pseudo-fluoroscopic X-ray images by projecting the three-dimensional fluoroscopic image information onto a plane assuming the same imaging system as that of the fluoroscopic X-ray image information (step S103).
- the ROI drawing unit 23 displays the pseudo-fluoroscopic X-ray image information and specifies the ROI drawn by the user.
- the similarity calculator 24 calculates the similarity between the fluoroscopic X-ray image information and the pseudo-fluoroscopic X-ray image information in the ROI (step S104).
- the optimization calculation processing unit 25 determines whether or not the degree of similarity satisfies a preset convergence condition (step S105).
- step S105 If the similarity does not satisfy the convergence condition (step S105: No), the optimization calculation processing unit 25 optimizes the placement parameters by performing optimization processing for adjusting the placement parameters (step S106).
- step S105 if the similarity satisfies the convergence condition (step S105: Yes), the control unit 27 moves the bed 7 via the bed control device 13 based on the adjusted placement parameter (step S107), and performs patient positioning processing. exit. This allows the patient to be moved from the current configuration to the treatment planning configuration and precisely positioned. After that, the actual particle beam irradiation is performed.
- FIG. 3 is a flowchart for explaining in more detail the optimization calculation process, which is the process of steps S102 to S106 in FIG.
- the optimization calculation processing unit 25 sets the optimization order for optimizing the six components of the arrangement parameters (step S200).
- the optimization calculation processing unit 25 sets the order of optimization in the order of the three components related to the amount of translation and the three components related to the amount of rotation.
- the component related to the amount of translation may be called a translation parameter
- the component related to the amount of rotation may be called a rotation parameter.
- the process of step S200 is omitted.
- the processes (for example, the processes of steps S103 and S104) performed by other than the optimization calculation processing unit 25 are omitted.
- the optimization calculation processing unit 25 performs one-dimensional optimization calculation for sequentially optimizing the values of the translation parameters for each of the three components of the translation parameters according to the optimization order (step S201).
- the one-dimensional optimization calculation uses the well-known Brent method or the like to calculate the difference between the fluoroscopic X-ray image information and the pseudo-fluoroscopic X-ray image information in the ROI in the one-dimensional direction along the optimum axis to be optimized. This is the process of calculating the value of the parameter that maximizes the degree of similarity.
- FIG. 4 is a diagram showing an example of a translation parameter optimization axis.
- the movement axes along which the bed 7 translates are the x (RL) axis, the y (SI) axis, and the z (AP) axis.
- the translation parameter optimization axes are the FPD 1 axis, which is the imaging axis connecting the center of the FPD 5A and the X-ray tube 6A, the FPD 2 axis, which is the imaging axis connecting the center of the FPD 5B and the X-ray tube 6B, and the y-axis. .
- the x-axis and the z-axis are the optimization axes.
- the optimization axes of the translation parameters are the FPD 1 axis, the FPD 2 axis, and the y
- Figs. 5 and 6 are diagrams for explaining the difficulty-of-optimization phenomenon in more detail.
- FIG. 5 is a diagram showing the relationship between the optimization axis and the imaging system (FPDs 5A and 5B and X-ray tubes 6A and 6B).
- the FPD 1- axis and FPD 2- axis are oriented along a plane orthogonal to the y-axis (the plane formed by the x-axis and z-axis) and are offset by 45 degrees from the x-axis and z-axis, respectively. ing.
- FIG. 6 is a diagram showing a score map image representing the distribution of matching scores, which is the degree of similarity between a fluoroscopic X-ray image and a pseudo-fluoroscopic X-ray image.
- the score map image is an image showing a matching score for each relative position with respect to the position on the planned layout of the positioning target structure.
- the gradation of the score map image represents the magnitude of the matching score, and the brighter the image, the higher the matching score.
- the score map image 100 shown in FIG. 6(a) represents the distribution of matching scores in the x-axis and z-axis directions when the optimization axis is the movement axis (x-axis, y-axis, and z-axis) of the bed 7.
- the score map image 101 shown in FIG. 6B represents the distribution in the FPD 1-axis and FPD 2 -axis directions when the optimization axes are the FPD 1- axis, the FPD 2- axis, and the y - axis as in this embodiment. .
- a high score zone 200 with a high matching score exists in the diagonal direction. This is because the high score band 200 appears along the imaging axes (FPD1 axis and FPD2 axis).
- the matching score is a value corresponding to position B on the score map image 100 .
- parameter values are determined such that the matching score is highest in a one-dimensional direction along the optimization axis of interest. For example, if optimization calculations in the y-axis direction and z-axis direction are performed after optimization calculations in the x-axis direction, the position of the structure to be positioned in the score map image 100 does not immediately become position A, and position B It is optimized for the position of the high score band 200 existing on the x-direction side.
- the position of the positioning target structure in the score map image 100 zigzags within the high score zone 200 and updates the values in the x and z directions.
- the number of iterations of the optimization calculation increases, and in some cases, the parameter values are locally optimized, and appropriate values cannot be reached.
- the high score band 201 exists along the optimization axis. . Therefore, it is possible to suppress zigzag updating of the position of the positioning target structure in the score map image 100 as described above, and the parameter values can be efficiently optimized to appropriate values.
- the optimization calculation processing unit 25 performs one-dimensional optimization calculation for each component of the rotation component (step S202).
- the optimization axis may be the same as the movement axis (x, y, z) of the bed 7, or the translation component optimization axis (FPD1 axis, FPD2 axis, y axis).
- the optimization calculation processing unit 25 determines whether or not the optimization result, which is the result of the arrangement parameter optimization calculation, satisfies the convergence condition (step S203).
- the optimization calculation processing unit 25 sets the matching score (similarity) in the current optimization result to f ret and the matching score in the previous optimization result to f p , it is determined that the optimization result satisfies the convergence condition if expression (2) is satisfied.
- r is a constant value called a relative allowable error value, and may be predetermined or settable by the user, for example.
- represents the amount of change in the matching score in the current optimization result from the matching score in the previous optimization result
- )/2 is It represents the average value of the matching score in the current optimization result and the matching score in the previous optimization result.
- step S203 determines whether an additional optimization calculation process is necessary (step S204).
- the optimization calculation processing unit 25 uses three functions f 0 , f N and f E represented by Equation (3) to perform additional optimization It is determined whether or not conversion calculation is necessary.
- the function f0 indicates the matching score at the starting point P0 before the current optimization calculation
- the function fN indicates the matching point at the optimization point PN after the current optimization calculation.
- the function fE is the same distance from the optimization point PN as the distance from the starting point P0 to the optimization point PN in the average moving direction, which is the direction from the starting point P0 to the optimization point PN . Show matching points at advanced points.
- the starting point P0 and the optimization point PN represent points (positions) in the score map image 100 of the positioning target structure.
- the optimization calculation processing unit 25 determines that there is no need to perform additional optimization calculations when at least one of the following formulas (4) and (5) regarding functions f 0 , f N and f E is satisfied.
- ⁇ f is the absolute value of the value with the largest change in matching score decrease along each direction of the optimization axis in the current optimization calculation.
- Equation (4) holds, we show that the amount of decrease in matching score along the mean movement direction depends only on the unidirectional component. Also, when the equation (5) is satisfied, it indicates that the value of the matching score is already the local optimum solution.
- step S204 If additional optimization calculations are necessary (step S204: Yes), the optimization calculation processing unit 25 performs additional optimization calculations (step S205), and returns to the process of step S201.
- An additional optimization computation is a one-dimensional optimization computation for the average moving direction from the starting point P0 to the optimized point PN .
- step S204 determines that the number of repetitions of the optimization calculation (the number of times the optimization processing including the processing of steps S201 and S202 has been performed) is It is determined whether or not a predetermined upper limit number has been reached (step S206).
- step S206 No
- the process of step S201 is executed again.
- step S203 when the convergence condition is satisfied (step S203: Yes), and when the number of iterations reaches the upper limit (step S206: Yes), the optimization calculation processing unit 25 calculates the value of the placement parameter after optimization. value is determined (step S207), and the process proceeds to step S107 in FIG.
- a particle beam therapy system is exemplified as a radiation therapy device, but the radiation therapy device is not limited to a particle beam therapy system, and may be a radiation therapy system using non-particle beams such as X-rays.
- the accelerator 1 is, for example, an electron beam accelerator that outputs X-rays.
- the image acquisition unit 21 images the patient B along each of a plurality of imaging axes oriented in directions different from the plurality of movement axes along which the bed 7 on which the patient B is mounted is translated.
- a plurality of fluoroscopic X-ray images are acquired.
- the pseudo-fluoroscopic X-ray image creating unit 22 creates a plurality of pseudo-fluoroscopic X-ray images by projecting the three-dimensional fluoroscopic image of the patient B onto a plurality of planes corresponding to the imaging axes.
- the similarity calculator 24 calculates the similarity between each fluoroscopic X-ray image and each pseudo-fluoroscopic X-ray image.
- the optimization calculation processing unit 25 calculates a plurality of translation directions along each of a plurality of optimization axes including a plurality of imaging axes and a plurality of rotation directions about a plurality of rotation axes. For each, the amount of movement of the bed 7 is calculated so that each fluoroscopic X-ray image and each pseudo-fluoroscopic X-ray image best match each other.
- the imaging axes are substantially orthogonal to each other. Therefore, it is possible to optimize the parameters more appropriately.
- the imaging axis is oriented along a plane formed by any two of the movement axes. Therefore, optimization calculation can be performed more appropriately.
- the rotation axis is the same as the optimization axis, so optimization calculations can be performed more appropriately.
- the amount of movement of the bed 7 is calculated so that the regions within the ROI are most matched, so optimization calculations can be performed more appropriately.
- A... Particle beam therapy system B... Patient, 1... Accelerator, 2... Beam transporter, 3... Gantry, 4... Irradiation nozzle, 5A... FPD, 5B... FPD, 6A... X-ray tube, 6B... X-ray tube, 7... Bed 8... Robot arm 9... Communication device patient 10... Data server 11... Treatment planning device 12... Fluoroscopic X-ray imaging device 13... Bed control device 20... Patient positioning device 21... Pseudo Fluorescent X-ray image creation unit 22 ROI drawing unit 23 similarity calculation unit 24 optimization calculation processing unit 25 image display unit 26 control unit
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
計算時間をより低減しながら精度の高い患者位置決めを可能とする位置決め装置、放射線治療装置及び位置決め方法を提供する。画像取得部21は、患者Bが搭載される寝台7が並進移動する複数の移動軸とは異なる向きの複数の撮影軸のそれぞれに沿って患者Bを撮影した複数の透視X線画像を取得する。疑似透視X線画像作成部22は、患者Bの3次元透視画像を各撮影軸に応じた複数の面のそれぞれに投影した複数の疑似透視X線画像を作成する。類似度計算部24は、各透視X線画像と各疑似透視X線画像との類似度を計算する。最適化計算処理部25は、類似度に基づいて、複数の撮影軸を含む複数の最適化軸のそれぞれに沿った複数の並進方向と、複数の回転軸を中心とした複数の回転方向とのそれぞれについて、各透視X線画像と各疑似透視X線画像とが最も一致するような、寝台7の移動量を算出する。
Description
本開示は、位置決め装置、放射線治療装置及び位置決め方法に関する。
がんの治療法の1つとして、放射線を患者に照射する放射線治療が知られている。放射線治療で用いられる放射線は、X線又はガンマ線のような非荷電粒子線と、陽子線又は炭素線のような荷電粒子線とに大別される。後者の荷電粒子線を使用した放射線治療は、一般に粒子線治療と呼ばれている。
非荷電粒子線の場合、線量は体内で浅い位置から深い位置にかけて一定の割合で減少する。一方、荷電粒子線の場合、特定の深さにエネルギー損失のピークを有する線量分布(ブラックカーブ)を形成することができる。このため、荷電粒子線のエネルギー損失のピークを腫瘍の位置に合わせることにより、腫瘍よりも深い位置にある正常な組織へ照射される荷電粒子線の線量を大幅に低下させることが可能となる。
このため、放射線治療では、所望の線量の放射線を正確に標的となる腫瘍に照射することが治療効果の向上にとって重要である。放射線の腫瘍への正確な照射を実現するためには、予め作成した治療計画によって決められた計画位置と同じ位置に患者の位置を合わせる必要がある。この患者の位置を合わせることを患者の位置決めと呼ぶ。
放射線治療における患者の位置決めの方法として、寝台の上に寝ている患者を、2組のX線管と平面検出器(Flat Panel Detector:FPD)により互いに異なる2方向から撮影した透視X線画像(Digital Radiography:DR)を用いる方法がある。この方法では、放射線治療時に患者を撮影した透視X線画像と、治療計画を作成する際に用いたCT(Computed Tomography)画像から作成した疑似透視X線画像とを比較して、骨のような位置決め対象構造物の位置が透視X線画像と疑似透視X線画像とで一致するように患者の位置決めが行われる。
また、一般的に、透視X線画像には患者の固定具及び軟組織のような位置決め対象構造物以外の構造物が写り込んだり、位置決め対象構造物である骨の配置が治療計画時から変化したりすることがある。このような状況では、透視X線画像と疑似透視X線画像とに写された構造が画像全体にわたって一致しない。この場合、透視X線画像上で位置決め対象構造物が存在する領域として設定された関心領域(Region of Interest:ROI)を用いた患者の位置決めが行われる。なお、関心領域の設定は、通常、医療従事者であるユーザが画像上に関心領域を描画することで行われる。
患者の位置決めを行う自動位置合わせは、患者が寝ている寝台の並進量及び回転量をパラメータとし、そのパラメータの最適値を最適化計算により算出することで行われる。通常、並進量は、互いに直交する3軸(x、y、z)に沿った3成分を有し、回転量は、その3軸を回転軸とした3成分(Pitch、Roll、Yaw)を有するため、最適化計算では、6成分のそれぞれに対する最適化プロセスが繰り返し行われることで、パラメータの最適値が算出される。また、並進量を規定する3軸は、患者を計画位置に配置するための寝台の移動軸と一致し、x軸は仰向けに寝台に横たわった患者から見て右から左に向かう方向(Right-Left direction:RL方向)、y軸は足から頭に向かう方向(Superior-Inferior direction:SI方向)、z軸は背中から腹部に向かう方向(Anterior-Posterior:AP方向)を向いている。
しかしながら、最適化計算を行うパラメータの軸が撮影装置の撮影軸と異なる場合、最適化計算において、パラメータの最適値に到達できなかったり、最適化計算における計算量が増加したりすることがある。
これに対して特許文献1及び2には、最適化計算において、各成分に対する最適化プロセスが終了した後で透視X線画像を撮影する撮影軸に沿った方向に対する1次元方向の最適化プロセスを追加することで、最適化計算における最適化プロセスを繰り返す計算回数を軽減化する技術が開示されている。
また、特許文献3には、撮影軸に沿った方向に対する並進量の最適化を、その透視撮影軸に直交する1方向によってのみ評価することで、透視X線画像の枚数を削減して、患者の位置決めに係る時間の短縮化を図る技術が開示されている。
特許文献1及び2に開示された技術では、通常の多次元成分に対する最適化プロセスが終了した後で、撮影軸に沿った方向に対する最適化プロセスが追加されているため、1計算あたりの最適化プロセスが増加するため、計算時間の低減率が低いという問題がある。
また、特許文献3に開示された技術では、画像上の関心領域の位置によっては、パラメータの最適値を算出することが困難になるという問題がある。例えば、小さな関心領域が画像の端に設定された場合、ある撮影軸に沿った方向に対する並進量を変化させると、その撮影軸に直交する別の撮影軸で取得した画像上では、関心領域内の位置決め対象構造物が画像の端又は中心部へに移動して関心領域の外に外れてしまうことがある。この場合、最適値の算出が難しい。
本開示の目的は、計算時間をより低減しながら精度の高い患者位置決めを可能とする位置決め装置、放射線治療装置及び位置決め方法を提供することにある。
本開示の一態様に従う位置決め装置は、被検者が搭載される寝台の位置を制御する位置決め装置であって、前記寝台が並進移動する複数の移動軸とは異なる向きの複数の撮影軸のそれぞれに沿って前記被検者を撮影することで複数の透視画像を取得する画像取得部と、前記被検者の3次元透視画像を各撮影軸に応じた複数の面のそれぞれに投影した複数の疑似透視画像を作成する作成部と、各透視画像と各疑似透視画像との類似度を計算する計算部と、前記類似度に基づいて、前記複数の撮影軸を含む複数の最適化軸のそれぞれに沿った複数の並進方向と、複数の回転軸を中心とした複数の回転方向とのそれぞれについて、各透視画像と各疑似透視画像とが最も一致するような、前記寝台の移動量を算出する最適化部と、を備える。
本発明によれば、計算時間をより低減しながら精度の高い患者位置決めが可能になる。
以下、本開示の実施形態について図面を参照して説明する。
なお、以下の記載及び図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略及び簡略化がなされている。本発明は、他の種々の形態でも実施することが可能である。特に限定しない限り、各構成要素は単数でも複数でもよい。また、実施形態を説明する図において、同一の機能を有する箇所には同一の符号を付し、その繰り返しの説明は省略することがある。また、図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、図面に開示された位置、大きさ、形状、範囲などに限定されない。また、同一あるいは同様の構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。
図1は、本開示の一実施形態に係る粒子線治療システムの全体構成を示す図である。図1に示す粒子線治療システムAは、被検者である患者Bを標的として粒子線を照射するための装置群を有する放射線治療装置である。粒子線治療システムAは、加速器1と、ビーム輸送装置2と、ガントリ3と、照射ノズル4と、FPD5A及び5Bと、X線管6A及び6Bと、寝台7と、ロボットアーム8と、通信装置9と、データサーバ10と、治療計画装置11と、透視X線画像撮影装置12と、寝台制御装置13と、患者位置決め装置20とを備える。
加速器1は、患者Bに照射する粒子線を生成する粒子線生成器であり、粒子線を、患者Bの治療に適したエネルギーになるまで加速して出力する。ビーム輸送装置2は、加速器1から出力された粒子線をガントリ3まで輸送する。粒子線の種類は、特に限定されず、例えば、陽子線又は炭素線などである。
ガントリ3及び照射ノズル4は、加速器1から輸送された粒子線を患者Bに照射する照射装置である。ガントリ3は、加速器1から輸送された粒子線を患者Bに照射する照射角度を調整する。具体的には、ガントリ3は、患者Bを囲って360°の回転することが可能な回転機構を有し、回転することにより照射角度を調整する。照射ノズル4は、ガントリ3に備わっており、ガントリ3まで輸送された粒子線を患者Bに照射する。照射ノズル4には、粒子線の形状を患者の患部の形状に合うように調整する機構が組み込まれていてもよい。
FPD5A及び5BとX線管6A及び6Bとは、患者Bの透視撮影を行う撮影体系を構成する。FPD5A及び5Bは、X線を検出して患者Bを撮影する平面状の検出器である。X線管6A及び6Bは、X線を出力する。FPD5A及びX線管6Aは、X線管6Aから出力されたX線がFPD5Aにて検出されるように対向して配置され、FPD5B及びX線管6Bは、X線管6Bから出力されたX線がFPD5Bにて検出されるように対向して配置される。FPD5Aの中心とX線管6Aとを結ぶ軸と、FPD5Bの中心とX線管6Bとを結ぶ軸とが患者を撮影する2つの撮影軸となる。2つの撮影軸は、互いに直交することが好ましいが、互いに直交していなくてもよい。また、粒子線治療システムAは、FPD及びX線管をそれぞれ3つ以上備えてもよい。この場合、撮影軸も3つ以上となる。
寝台7は、患者Bに粒子線を照射する際に患者Bを載せる台である。ロボットアーム8は、寝台7を移動させる装置である。具体的には、ロボットアーム8は、寝台7に対して、複数の移動軸のそれぞれに沿った複数の並進方向への並進移動と、複数の回転軸を中心とした複数の回転方向への回転移動とを行う。本実施形態では、移動軸と回転軸同一であり、移動軸(回転軸)は3つある。また、各移動軸は、寝台7に仰向けに横たわった患者Bから見て右から左に向かう方向(RL方向)、患者Bの足から頭に向かう方向(SI方向)、背中から腹部に向かう方向(AP方向)を向いている。
通信装置9は、データサーバ10、治療計画装置11及び患者位置決め装置20を互いに通信可能に接続する。
データサーバ10は、患者Bの粒子線治療に関する種々の情報を格納する格納装置である。データサーバ10は、例えば、患者Bの3次元透視画像情報と、患者Bの治療計画を示す治療計画情報とを格納する。3次元透視画像は、患者の形状及び電子密度をボクセル単位で示す情報を含む。3次元透視画像は、例えば、コンピュータ断層(Computed Tomography:CT)撮影画像であり、事前(患者Bの治療計画情報を作成する前)に生成される。治療計画情報は、3次元透視画像に基づいて生成される。また、治療計画情報は、治療時の患者Bの配置である計画配置を示す計画配置情報を含む。患者Bの配置は、患者Bの位置及び角度(姿勢)を示し、寝台7の位置及び角度によって定まる。
治療計画装置11は、データサーバ10に格納された3次元透視画像情報に基づいて、患者Bの治療計画を作成し、その治療計画を示す治療計画情報をデータサーバ10に格納する。
透視X線画像撮影装置12は、FPD5A及びX線管6Aと、FPD5B及びX線管6Bとをそれぞれ制御して、患者Bを互いに異なる角度から撮影した複数の透視X線画像を取得し、その取得した透視X線画像は位置決め装置20に送信する。透視X線画像は、本実施形態では、2つある。
寝台制御装置13は、ロボットアーム8を制御して寝台7の配置を調整することで、患者Bの配置を調整する。
患者位置決め装置20は、データサーバ10に格納された3次元透視画像情報及び治療計画情報と、透視X線画像撮影装置12にて取得された透視X線画像とに基づいて、患者Bの位置決め処理を実行する。
患者Bの位置決め処理は、患者Bの粒子線治療の開始前に、寝台7に載せられた患者Bを治療計画情報にて示される計画配置と同じ配置にする処理である。患者位置決め装置20は、寝台制御装置13を介してロボットアーム8を制御して寝台7の位置及び角度を調整することで、患者Bを計画配置と同じ配置にする。
位置決め処理が終了すると、実際に患者Bの粒子線治療が行われる。具体的には、加速器1にて治療に適したエネルギーまで加速された粒子線がビーム輸送装置2を介してガントリ3に輸送される。粒子線は、ガントリ3にて適切な方向に偏向され、照射ノズル4を通過して患者Bの患部に照射される。
以下、位置決め装置20についてより詳細に説明する。
位置決め装置20は、図1に示すように、画像取得部21と、疑似透視X線画像作成部22と、ROI描画部23と、類似度計算部24と、最適化計算処理部25と、画像表示部26と、制御部27とを有する。
画像取得部21は、データサーバ10から通信装置9を介して3次元透視画像情報を取得し、透視X線画像撮影装置12から透視X線画像を取得する。
疑似透視X線画像作成部22は、画像取得部21にて取得された3次元透視画像を、透視X線画像を撮影する各撮影軸に応じた複数の面のそれぞれに投影した複数の疑似透視画像である複数の疑似透視X線画像を作成する作成部である。疑似透視X線画像作成部22は、透視X線画像を生成した撮影体系と同じ仮想的な空間上で患者Bの3次元画像を配置して投影処理することで疑似透視X線画像を作成する。撮影軸に応じた面は、例えば、撮影軸に直交する面である。
ROI描画部23は、疑似透視X線画像における患者の位置決めに使用する関心領域であるROIを特定する。具体的には、ROI描画部23は、疑似透視X線画像を表示して、ユーザに疑似透視X線画像上にROIを描画させることで、ROIを特定する。ROIは、例えば、骨のような位置決め対象構造物を含むように描画される。
類似度計算部24は、ROI描画部23にて特定されたROIにおける透視X線画像と疑似透視X線画像との類似度を計算する。本実施形態では、類似度計算部24は、2つの撮影軸のそれぞれに対応する透視X線画像と疑似透視X線画像との類似度の合計値を計算する。4
類似度は、画像の類似の度合いを評価可能な指標であれば、特に限定されないが、例えば、相互情報量又は正規化相互相関(Zero-mean Normalized Cross Correlation:ZNCC)係数である。正規化相互相関係数SZNCCは、式(1)で計算される。
ここで、g(i,j)は透視X線画像の画素(i,j)の画素値、f(i,j)は疑似透X線画像の画素(i,j)の画素値、μgは透視X線画像の平均輝度値、μfは疑似透視X線画像の平均輝度値である。
最適化計算処理部25は、類似度計算部24にて算出された類似度に基づいて、ROI描画部23にて特定されたROIにおいて透視X線画像と疑似透視X線画像とが最も一致するような、寝台7の移動量を算出する最適化部である。具体的には、最適化計算処理部25は、所定の最適化計算手法を用いて、寝台7の並進移動及び回転移動の移動量に対応する配置パラメータの値を最適化することで、寝台7の移動量を算出する。配置パラメータは、並進移動に関する3つの自由度と、回転移動に関する3つの自由度とを有する。最適化計算手法は、特に限定されないが、例えば、準ニュートン法に属するBFGS(Broyden-Fletcher-Goldfarb-Shanno)法、ネルダー-ミード(Nelder-Mead)法、又は、パウエル(Powell)法などである。
画像表示部26は、種々の情報及び画像を表示する表示部である。例えば、画像表示部26は、透視X線画像、疑似透視X線画像、及び、ROI領域を示すROI画像などを表示する。
制御部27は、寝台制御装置13を制御して、寝台7の配置を調整することで、患者Bの配置を調整する。
以上の機能を有する位置決め装置20は、コンピュータ装置のような種々の情報処理が可能な情報処理装置にて実現することができる。情報処理装置は、例えば、演算素子、記憶媒体及び通信インターフェースを有し、さらに、必要に応じてマウス及びキーボードのような入力部と、ディスプレイのような表示部とを有する。
演算素子は、例えば、CPU(Central Processing Unit)及びFPGA(Field-Programmable Gate Array)などのプロセッサである。記憶媒体は、例えば、HDD(Hard Disk Drive)などの磁気記憶媒体、RAM(Random Access Memory)、ROM(Read Only Memory)及びSSD(Solid State Drive)などの半導体記憶媒体などである。また、記憶媒体として、DVD(Digital Versatile Disk)などの光ディスク及び光ディスクドライブの組み合わせが用いられてもよい。さらに、記憶媒体として、磁気テープメディアのような他の高値の記憶媒体が用いられてもよい。
記憶媒体には、ファームウェアなどのプログラムが格納されている。位置決め装置20の動作開始時(例えば電源投入時)に、演算素子がプログラムを記憶媒体から読み出して実行することにより、位置決め装置20の各部21~27が実現され、全体の一連の制御が実行される。また、記憶媒体には、プログラム以外にも、位置決め装置20の各処理に必要なデータ等が格納される。
なお、本実施形態の位置決め装置20は、複数の情報処理装置が通信ネットワークを介して通信可能に構成された、いわゆるクラウドコンピューティングにて構成されてもよい。
以下、患者位置決め装置20による患者位置決め処理について、図2から図6を用いてより詳細に説明する。
図2は、患者位置決め処理の一例を説明するためのフローチャートである。
なお、患者Bは寝台7のセットアップポジションに配置されているものとする。セットアップポジションとは、患者Bを計画配置と同じ配置にするための位置である。例えば、寝台7上の患者Bの体表の位置が治療室内に設置された赤外線レーザを用いて測定され、その位置に基づいて、患者Bが寝台7のセットアップポジションに配置される。
患者位置決め処理では、先ず、制御部27は、データサーバ10から治療計画情報を取得し、その治療計画情報に含まれる計画配置情報に基づいて、寝台制御装置13を介してロボットアーム8を制御して、患者Bの配置が計画配置情報にて示される計画配置となるように、患者Bを載せた寝台7を移動させる(ステップS100)。このとき、寝台7に載せられた患者Bの位置決め対象構造物が、FPD5A及び5BとX線管6A及び6Bとで形成されるX線の照射領域に含まれる。
その後、画像取得部21は、透視X線画像撮影装置12を介して、患者Bを互いに異なる複数の方向から撮影した複数の透視X線画像情報を取得する(ステップS101)。本実施形態では、画像取得部21は、2つの撮影軸に沿った2つの方向から撮影した2つ透視X線画像情報を取得する。
疑似透視X線画像作成部22は、データサーバ10から3次元透視画像情報を取得し、その3次元透視画像情報に基づいて、配置パラメータの変位量の初期値を設定する(ステップS102)。例えば、疑似透視X線画像作成部22は、3次元透視画像情報を画像表示部26に表示し、ユーザに初期値を入力させるこ。なお、疑似透視X線画像作成部22は、ユーザを介さずに、所定の値を初期値として設定してもよい。
疑似透視X線画像作成部22は、透視X線画像情報の撮影体系と同じ撮影体系を想定して3次元透視画像情報を平面に投影することにより、2つの疑似透視X線画像を作成する(ステップS103)。
ROI描画部23は、疑似透視X線画像情報を表示して、ユーザにて描画されたROIを特定する。類似度計算部24は、そのROIにおける透視X線画像情報と疑似透視X線画像情報との類似度を計算する(ステップS104)。
最適化計算処理部25は、類似度が予め設定した収束条件を満たすか否かを判定する(ステップS105)。
類似度が収束条件を満たさない場合(ステップS105:No)、最適化計算処理部25は、配置パラメータを調整するための最適化処理を行うことで、配置パラメータを最適化する(ステップS106)。
一方、類似度が収束条件を満たす場合(ステップS105:Yes)、制御部27は、調整した配置パラメータに基づいて、寝台制御装置13を介して寝台7を移動させ(ステップS107)、患者位置決め処理を終了する。これにより、患者を現在の配置から治療計画時の配置へと移動させ、精密に位置決めすることが可能となる。その後、実際の粒子線の照射が行われる。
図3は、図2のステップS102~106の処理である最適化計算処理をより詳細に説明するためのフローチャートである。
最適化計算処理では、最適化計算処理部25は、配置パラメータの6成分に対して、最適化を行う最適化順番を設定する(ステップS200)。ここでは、最適化計算処理部25は、最適化順序を、並進量に関する3成分、回転量に関する3成分の順とする。以下、並進量の関する成分を並進パラメータ、回転量に関する成分を回転パラメータと呼ぶこともある。なお、図2では、ステップS200の処理については省略している。また、図3では、最適化計算処理部25以外で行われる処理(例えば、ステップS103及びS104の処理)については省略している。
最適化計算処理部25は、最適化順番に従って、並進パラメータの3成分のそれぞれについて、順番に並進パラメータの値を最適化する1次元最適化計算を実施する(ステップS201)。1次元最適化計算は、公知のBrent法などを用いることで、最適化の対象となる最適軸に沿った1次元方向において、ROI内の透視X線画像情報と疑似透視X線画像情報との類似度が最も大きくなるパラメータの値を計算する処理である。
図4は、並進パラメータの最適化軸の一例を示す図である。図4の例では、寝台7が並進移動する移動軸をx(RL)軸、y(SI)軸及びz(AP)軸としている。並進パラメータの最適化軸は、FPD5Aの中心とX線管6Aを結ぶ撮影軸であるFPD1軸と、FPD5Bの中心とX線管6Bを結ぶ撮影軸であるFPD2軸と、y軸である。
本実施形態のようにFPD1軸及びFPD2軸とx軸及びz軸が互いに異なる場合(図4の例では、45度ずつ傾いて配置されている)、x軸及びz軸を最適化軸とすると、最適化が困難となる最適化困難事象が発生する恐れがある。これに対して、本実施形態では、x軸及びz軸を最適化軸とした2つの並進方向の最適化計算を行わずに、並進パラメータの最適化軸をFPD1軸、FPD2軸及びy軸とすることで、最適化困難事象を抑制することを可能にしている。最適化困難事象は、1次元方向の最適化計算を行った結果が他の方向の最適化計算の結果に影響を与え、最適化計算の繰り返し回数が増加したり、局所最適解の影響により最適値に到達できなかったりする事象である。
図5及び図6は、最適化困難現象をより詳細に説明するための図である。
図5は、最適化軸と撮影体系(FPD5A及び5B、並びにX線管6A及び6B)との関係を示す図である。図5の例では、FPD1軸及びFPD2軸は、y軸に直交する平面(x軸及びz軸で形成される平面)に沿った方向を向き、それぞれx軸及びz軸から45度ずれている。
図6は、透視X線画像と疑似透視X線画像との類似度であるマッチングスコアの分布を表すスコアマップ画像を示す図である。スコアマップ画像は、具体的には、位置決め対象構造物の計画配置上の位置に対する相対位置ごとに、マッチングスコアを示す画像である。スコアマップ画像の濃淡は、マッチングスコアの大きさを表しており、明るいほどマッチングスコアが高いことを示す。
図6(a)に示すスコアマップ画像100は、最適化軸を寝台7の移動軸(x軸、y軸及びz軸)とした場合におけるx軸及びz軸方向のマッチングスコアの分布を表し、図6(b)に示すスコアマップ画像101は、本実施形態のように、最適化軸をFPD1軸、FPD2軸及びy軸とした場合のFPD1軸及びFPD2軸方向の分布を表す。
図6(a)の場合、スコアマップ画像100では、マッチングスコアが高い高スコア帯200が斜め方向に存在している。これは、高スコア帯200が撮影軸(FPD1軸及びFPD2軸)に沿って現れるためである。
このとき、治療計画における位置決め対象構造物の位置が位置Aであるときに位置決め対象構造物が位置Bに存在した場合、マッチングスコアは、スコアマップ画像100における位置Bに対応した値となる。1次元最適化計算では、対象となる最適化軸に沿った1次元方向においてマチングスコアが最も高くなるようにパラメータの値が決定される。例えば、x軸方向の最適化計算の後に、y軸方向及びz軸方向の最適化計算が行われると、位置決め対象構造物のスコアマップ画像100における位置が直ぐに位置Aとならず、位置Bのx方向側に存在する高スコア帯200の位置に最適化される。その後、最適化計算が繰り返されることにより、位置決め対象構造物のスコアマップ画像100における位置は、高スコア帯200内でジグザクとx方向及びz方向の値を更新していく。これにより、最適化計算の繰り返し回数が増加し、場合によっては、パラメータの値が局所最適化されてしまい、適切な値に到達できないことがある。
一方、本実施形態のように最適化軸を撮影軸であるFPD1軸及びFPD2軸とした場合のスコアマップ画像101では、高スコア帯201は、最適化軸に沿って存在することとなる。このため、上述したような位置決め対象構造物のスコアマップ画像100における位置がジグザグと更新されることを抑制することが可能となり、パラメータの値を効率的に適切な値に最適化できる。
図3の説明に戻る。ステップS201が終了すると、最適化計算処理部25は、回転成分の各成分に対する1次元最適化計算を実施する(ステップS202)。回転成分の最適化計算では、最適化軸(回転軸)を、寝台7の移動軸(x、y、z)と同一としてもよいし、並進成分の最適化軸(FPD1軸、FPD2軸、y軸)と同一としてもよい。
最適化計算処理部25は、配置パラメータの最適化計算の結果である最適化結果が収束条件を満たすか否かを判定する(ステップS203)。
例えば、最適化計算手法としてパウエル法が使用される場合、最適化計算処理部25は、今回の最適化結果におけるマッチングスコア(類似度)をfret、前回の最適化結果におけるマッチングスコアをfpとした場合、式(2)が満たされる場合、最適化結果が収束条件を満たすと判定する。
ここで、rは、相対許容誤差値と呼ばれる定数値であり、例えば、予め定められてもよいし、ユーザにて設定可能であってもよい。なお、|fp-fret|は、今回の最適化結果におけるマッチングスコアの前回の最適化結果におけるマッチングスコアからの変化量を表し、(|fp|+|fret|)/2は、今回の最適化結果におけるマッチングスコアと前回の最適化結果におけるマッチングスコアの平均値を表す。
収束条件が満たされていない場合(ステップS203:No)、最適化計算処理部25は、追加の最適化計算プロセスが必要か否かを判定する(ステップS204)。
例えば、最適化計算手法としてパウエル法が使用される場合、最適化計算処理部25は、式(3)で表される3つの関数f0、fN及びfEを使用して、追加の最適化計算が必要か否かを判定する。
関数f0は、現在の最適化計算の前の開始点P0におけるマッチングスコア、関数fNは、現在の最適化計算の後の最適化点PNにおけるマッチングポイントを示す。また、関数fEは、開始点P0から最適化点PNに向かう方向である平均移動方向に、最適化点PNから、開始点P0から最適化点PNまでの距離と同じ距離進んだ点におけるマッチングポイントを示す。なお、開始点P0及び最適化点PNは、位置決め対象構造物のスコアマップ画像100における点(位置)を表す。
最適化計算処理部25は、関数f0、fN及びfEに関する以下の式(4)及び式(5)の少なくとも一方に該当する場合、追加の最適化計算を行う必要がないと判定する。
ここで、Δfは、現在の最適化計算において、最適化軸のそれぞれの方向に沿ったマッチングスコアの減少量のうち、最も変化量が大きい値の絶対値である。
式(4)に該当する場合、平均移動方向に沿ったマッチングスコアの減少量が一方向の成分のみに依存したものであることを示す。また、式(5)に該当する場合、マッチングスコアの値が既に局所最適解となっていることを示す。
追加の最適化計算が必要な場合(ステップS204:Yes)、最適化計算処理部25は、追加の最適化計算を実施し(ステップS205)、ステップS201の処理に戻る。追加の最適化計算は、開始点P0から最適化点PNに向かう平均移動方向に対する1次元の最適化計算である。
追加の最適化計算処理が不要な場合(ステップS204:No)、最適化計算処理部25は、最適化計算の繰り返し回数(ステップS201及びS202の処理を含む最適化処理が実行された回数)が予め指定された上限数に到達したか否かを判断する(ステップS206)。
繰り返し回数が上限値に到達していない場合(ステップS206:No)、ステップS201の処理が再度実行される。
また、収束条件が満たされる場合(ステップS203:Yes)、及び、繰り返し回数が上限値に到達した場合(ステップS206:Yes)、最適化計算処理部25は、配置パラメータの値を最適化後の値に決定して(ステップS207)、図2のステップS107に移行する。
なお、本実施形態では、放射線治療装置として、粒子線治療システムを例示したが、放射線治療装置は、粒子線治療システムに限らず、X線などの非粒子線を用いた放射線治療システムでもよい。この場合、加速器1は、例えば、X線を出力する電子線加速器で構成される。
以上説明したように本実施形態では、画像取得部21は、患者Bが搭載される寝台7が並進移動する複数の移動軸とは異なる向きの複数の撮影軸のそれぞれに沿って患者Bを撮影した複数の透視X線画像を取得する。疑似透視X線画像作成部22は、患者Bの3次元透視画像を各撮影軸に応じた複数の面のそれぞれに投影した複数の疑似透視X線画像を作成する。類似度計算部24は、各透視X線画像と各疑似透視X線画像との類似度を計算する。最適化計算処理部25は、類似度に基づいて、複数の撮影軸を含む複数の最適化軸のそれぞれに沿った複数の並進方向と、複数の回転軸を中心とした複数の回転方向とのそれぞれについて、各透視X線画像と各疑似透視X線画像とが最も一致するような、寝台7の移動量を算出する。
したがって、複数の撮影軸に沿った方向で最適化計算が行われるため、パラメータの最適値に到達できなかったり、計算回数が増加したりすることを軽減することが可能となる。このため、計算時間をより低減しながら精度の高い患者位置決めが可能となる。
また、本実施形態では、撮影軸は、互いに略直交している。このため、パラメータの最適化をより適切に行うことが可能となる。
また、本実施形態では、撮影軸は2つである。したがって、必要最小限の方向について最適化計算を行うことが可能となるため、計算量の増加を抑制することが可能となる。
また、本実施形態では、撮影軸は、移動軸のいずれか2つの軸で形成される平面に沿った方向を向いている。したがって、最適化計算をより適切に行うことが可能となる。
また、本実施形態では、回転軸は最適化軸と同一であるため、最適化計算をより適切に行うことが可能となる。
また、本実施形態では、ROI内の領域が最も一致するように寝台7の移動量が算出されるため、最適化計算をより適切に行うことが可能となる。
上述した本開示の実施形態は、本開示の説明のための例示であり、本開示の範囲をそれらの実施形態にのみ限定する趣旨ではない。当業者は、本開示の範囲を逸脱することなしに、他の様々な態様で本開示を実施することができる。
A…粒子線治療システム、B…患者、1…加速器、2…ビーム輸送装置、3…ガントリ、4…照射ノズル、5A…FPD、5B…FPD、6A…X線管、6B…X線管、7…寝台、8…ロボットアーム、9…通信装置患者、10…データサーバ、11…治療計画装置、12…透視X線画像撮影装置、13…寝台制御装置、20…患者位置決め装置、21…疑似透視X線画像作成部、22…ROI描画部、23…類似度計算部、24…最適化計算処理部、25…画像表示部、26…制御部
Claims (8)
- 被検者が搭載される寝台の位置を制御する位置決め装置であって、
前記寝台が並進移動する複数の移動軸とは異なる向きの複数の撮影軸のそれぞれに沿って前記被検者を撮影した複数の透視画像を取得する画像取得部と、
前記被検者の3次元透視画像を各撮影軸に応じた複数の面のそれぞれに投影した複数の疑似透視画像を作成する作成部と、
各透視画像と各疑似透視画像との類似度を計算する計算部と、
前記類似度に基づいて、前記複数の撮影軸を含む複数の最適化軸のそれぞれに沿った複数の並進方向と、複数の回転軸を中心とした複数の回転方向とのそれぞれについて、各透視画像と各疑似透視画像とが最も一致するような、前記寝台の移動量を算出する最適化部と、を備える位置決め装置。 - 前記複数の撮影軸は、互いに略直交している、請求項1に記載の位置決め装置。
- 前記撮影軸は、2つである、請求項1に記載の位置決め装置。
- 前記移動軸は、2つ以上あり、
前記撮影軸は、前記移動軸のいずれか2つの軸で形成される平面に沿った方向を向いている、請求項3に記載の位置決め装置。 - 前記回転軸は、前記最適化軸と同一である、請求項1に記載の位置決め装置。
- 前記最適化部は、前記疑似透視画像上に設定された関心領域と、当該関心領域に対応する前記透視画像上の領域とが最も一致するように、前記寝台の移動量を算出する、請求項1に記載の位置決め装置。
- 請求項1に記載の位置決め装置と、
前記位置決め装置にて算出された移動量に基づいて前記寝台を移動させる寝台制御装置と、
前記移動された寝台に搭載された被検者に放射線を照射する照射装置と、を有する放射線治療装置。 - 被検者が搭載される寝台の位置を制御する位置決め装置による位置決め方法であって、
前記寝台が並進移動する複数の移動軸とは異なる向きの複数の撮影軸のそれぞれに沿って前記被検者を撮影した複数の透視画像を取得し、
前記被検者の3次元透視画像を各撮影軸に応じた複数の面のそれぞれに投影した複数の疑似透視画像を作成し、
各透視画像と各疑似透視画像との類似度を計算し、
前記類似度に基づいて、前記複数の撮影軸を含む複数の最適化軸のそれぞれに沿った複数の並進方向と、複数の回転軸を中心とした複数の回転方向とのそれぞれについて、各透視画像と各疑似透視画像とが最も一致するような、前記寝台の移動量を算出する、位置決め方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22889636.1A EP4431149A1 (en) | 2021-11-08 | 2022-08-12 | Positioning device, radiation therapy device, and positioning method |
CN202280057672.9A CN117836035A (zh) | 2021-11-08 | 2022-08-12 | 定位装置、放射线治疗装置以及定位方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-181771 | 2021-11-08 | ||
JP2021181771A JP2023069702A (ja) | 2021-11-08 | 2021-11-08 | 位置決め装置、放射線治療装置及び位置決め方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023079811A1 true WO2023079811A1 (ja) | 2023-05-11 |
Family
ID=86241186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/030807 WO2023079811A1 (ja) | 2021-11-08 | 2022-08-12 | 位置決め装置、放射線治療装置及び位置決め方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4431149A1 (ja) |
JP (1) | JP2023069702A (ja) |
CN (1) | CN117836035A (ja) |
WO (1) | WO2023079811A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013099431A (ja) * | 2011-11-08 | 2013-05-23 | Natl Inst Of Radiological Sciences | 放射線治療における患者自動位置決め装置及び方法並びに患者自動位置決め用プログラム |
JP2017189285A (ja) * | 2016-04-12 | 2017-10-19 | 株式会社島津製作所 | 位置決め装置および位置決め方法 |
-
2021
- 2021-11-08 JP JP2021181771A patent/JP2023069702A/ja active Pending
-
2022
- 2022-08-12 CN CN202280057672.9A patent/CN117836035A/zh active Pending
- 2022-08-12 EP EP22889636.1A patent/EP4431149A1/en active Pending
- 2022-08-12 WO PCT/JP2022/030807 patent/WO2023079811A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013099431A (ja) * | 2011-11-08 | 2013-05-23 | Natl Inst Of Radiological Sciences | 放射線治療における患者自動位置決め装置及び方法並びに患者自動位置決め用プログラム |
JP2017189285A (ja) * | 2016-04-12 | 2017-10-19 | 株式会社島津製作所 | 位置決め装置および位置決め方法 |
JP6668902B2 (ja) | 2016-04-12 | 2020-03-18 | 株式会社島津製作所 | 位置決め装置および位置決め装置の作動方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117836035A (zh) | 2024-04-05 |
JP2023069702A (ja) | 2023-05-18 |
EP4431149A1 (en) | 2024-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10549116B2 (en) | Radiotherapy utilizing the entire 4PI solid angle | |
US9830718B2 (en) | Image processor, image processing method, and treatment system | |
JP6377762B2 (ja) | 画像誘導放射線治療 | |
US7532705B2 (en) | Systems and methods for localizing a target for radiotherapy based on digital tomosynthesis | |
US6853702B2 (en) | Radiation therapy dosimetry quality control process | |
CN109310881B (zh) | 质子治疗设备及其规划设备 | |
JP2000140137A (ja) | 放射線治療の患者位置決め方法及び装置 | |
Conway et al. | CT virtual simulation | |
JP2016144573A (ja) | 画像処理装置および粒子線治療装置 | |
JP2017169627A (ja) | X線撮影機器のアライメント調整支援装置、方法及びプログラム | |
US20220054862A1 (en) | Medical image processing device, storage medium, medical device, and treatment system | |
WO2023079811A1 (ja) | 位置決め装置、放射線治療装置及び位置決め方法 | |
US20220401758A1 (en) | Patient anatomical structure change detection method, patient anatomical structure change detection device, and computer program | |
WO2021152881A1 (ja) | 治療計画装置、粒子線治療システム及びコンピュータプログラム | |
WO2023157616A1 (ja) | 位置決め装置、放射線治療装置及び位置決め方法 | |
JP7553264B2 (ja) | 位置決め装置、放射線治療装置、位置決め方法及びコンピュータプログラム | |
TWI645836B (zh) | 粒子線治療裝置及數位重組放射線攝影影像作成方法 | |
WO2022107399A1 (ja) | 位置決め装置、放射線治療システム、および位置決め方法 | |
JP2008119380A (ja) | ベッド位置決めシステム及びベッド位置決め方法 | |
EP3338860A1 (en) | Registration of particle beam radiography data | |
US20240350830A1 (en) | Radiotherapy system and method for controlling radiotherapy system | |
US20230368421A1 (en) | Radiation therapy device, medical image processing device, radiation therapy method, and storage medium | |
JP7220403B2 (ja) | 粒子線治療システム、計測粒子線ct画像生成方法、およびct画像生成プログラム | |
WO2023228461A1 (ja) | 放射線治療システムおよび放射線治療システムの制御方法 | |
JP2023023437A (ja) | 粒子線治療システム、および治療計画装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22889636 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280057672.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022889636 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022889636 Country of ref document: EP Effective date: 20240610 |