WO2023079349A1 - Partición de construcción aislante inteligente y proceso de construcción - Google Patents

Partición de construcción aislante inteligente y proceso de construcción Download PDF

Info

Publication number
WO2023079349A1
WO2023079349A1 PCT/IB2021/060292 IB2021060292W WO2023079349A1 WO 2023079349 A1 WO2023079349 A1 WO 2023079349A1 IB 2021060292 W IB2021060292 W IB 2021060292W WO 2023079349 A1 WO2023079349 A1 WO 2023079349A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal
frame
external
window
glass
Prior art date
Application number
PCT/IB2021/060292
Other languages
English (en)
French (fr)
Other versions
WO2023079349A9 (es
WO2023079349A8 (es
Inventor
Mario Valderrama Chaparro
Original Assignee
Mario Valderrama Chaparro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mario Valderrama Chaparro filed Critical Mario Valderrama Chaparro
Priority to PCT/IB2021/060292 priority Critical patent/WO2023079349A1/es
Priority to CN202180012681.1A priority patent/CN116406438A/zh
Priority to CONC2022/0006761A priority patent/CO2022006761A2/es
Publication of WO2023079349A1 publication Critical patent/WO2023079349A1/es
Publication of WO2023079349A9 publication Critical patent/WO2023079349A9/es
Publication of WO2023079349A8 publication Critical patent/WO2023079349A8/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/06Single frames
    • E06B3/24Single frames specially adapted for double glazing
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/67Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B7/00Special arrangements or measures in connection with doors or windows
    • E06B7/02Special arrangements or measures in connection with doors or windows for providing ventilation, e.g. through double windows; Arrangement of ventilation roses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/63Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of windows

Definitions

  • the field of invention is a partition of intelligent noise and temperature insulating construction formed by parallel panels adhered to a fixed or mobile frame; specifically, it proposes glass panels adhered to a frame with sealants, to isolate buildings, vehicles and other enclosures from the internal climate and environment such as windows, doors, walls; the partition includes electronic means, its command, control and automatic execution and by the user in real time, and photovoltaic cells that make the partition self-sufficient and intelligent.
  • the patent application CN210714383U “Solar intelligent shutter 1 ' proposes a blind with blades placed on a window, whose blades are photovoltaic cells that generate energy for a motor and controls to rotate the blades, where the mechanism is self-sufficient and can be controlled remotely.
  • This precedent does not specify a double glass solution like the new patent, which increases energy efficiency, where the new solution has its own sealing mechanism and whose photovoltaic sheet blind is contained between two glasses and the frame, proposing a new way of solve the insulation problem.
  • the patent application CN104775728A "Double-layer ventilation and thermal-insulation window and energy-saving ventilation and air conditioning system” proposes a system for ventilation of a room taking advantage of the heat generated by a double-glazed window to introduce or extract air from one place to another. through ducts and regulation mechanism.
  • the new invention differs from the antecedent because the invention does not generate hot air, but takes advantage of sunlight to generate electricity, which regulates the temperature of the frame with air circulation in the contact spaces of the glasses and the frame, if be a heating system.
  • Windows in art are passive, with little or no reaction to changes on either side, because it has no means to modify its functions.
  • the invention proposes a thermoacoustic partition to isolate rooms from external or internal environments, refrigeration and vehicles, which changes its passive action to a real-time reaction to external or internal changes in temperature and light through electronic means and communication.
  • thermoacoustic partitions to isolate spaces from noise and temperature that propose intelligent window configurations that are based on opacity changes in the glass with films and electricity; but the new invention proposes a less complex and simple solution that is executed with common glass, presenting a partition of insulating construction with parallel glass panels in window frames exposed to atmospheric and environmental changes, to heat and cold on both sides, depending on the season. of the year, which is placed in a privileged position to take advantage of solar energy complemented by electronic means, its command, control and automatic execution or by the user in real time, and by photovoltaic cells, to optimize the insulating capacities of the partition.
  • the invention consists of intelligent thermoacoustic building partitions to take advantage of sunlight and optimize its insulating performance. It proposes a frame made up of profiles made of PVC, aluminium, wood or any other appropriate material in art, to which two or more panels are glued, which may or may not be glass, and create an airtight chamber.
  • the profiles that form the frame have internal channels for air circulation and external spaces where thermal and light sensors are located; actuators such as fans, micro pumps, grilles are also located; and electrically powered microprocessors, cables, reinforcements, apertures, and vents.
  • the planes that create these channels have thermoacoustic bridges built with geometry and material that is softer than that of the frame.
  • Photovoltaic cells are located inside the hermetic chamber attached to the internal walls of the frame exposed to the sun, which supply electricity to sensors that activate actuators via microprocessor instructions. In this blind space is also located whose sheets are photovoltaic cells that generate electricity.
  • the photocells incorporated into the device make it self-sufficient in energy and generate surplus. It has a microprocessor with automatic action instructions, modified digitally or with voice, through cell phone and internet, so that the components act in real time according to changes in the environment and user needs.
  • a window is exposed to atmospheric and environmental elements, to heat and cold on both sides, with the possibility of taking advantage of solar energy at a profitable investment in various ways.
  • the insulating construction partition presented in one embodiment of the invention is a thermoacoustic window useful in rooms, buildings, work spaces that require isolating noise and temperature from the outside or isolating internal spaces in factories, hotels, meeting places or in mobile rooms.
  • the intelligent thermoacoustic window of the present invention has two or more glasses with thermal and acoustic functionalities according to the following configurations:
  • the thermal function is determined with photocells on the internal perimeter, shutter-photocell, fan, microprocessor, control and algorithm that does not require a micropump.
  • the acoustic function is configured with photocells on the internal perimeter, glass supports, fan, microprocessor, control and algorithm; a vacuum in the hermetic chamber that is maintained with a micro pump and does not have a blind.
  • Fig. 1 shows a perspective view of a thermoacoustic window, with a frame to which two panels are hermetically adhered, and form an airtight internal chamber (9), openings for air inlet and outlet. It also shows sensors, fans, supports between the glass panels so that they do not deform or break due to atmospheric pressure once the air is extracted. It shows photovoltaic panels placed on the perimeter of the hermetic internal part, on a fixed inclined plane.
  • Fig. 2A and Fig. 2B show perspectives of the partition with glass panels, where the main components have been separated to better identify the elements described in Fig. 1 and their location.
  • Fig. 3A and Fig. 3B show a cross-section of the window and the details in perspective of the profile with which the frame that serves as a support for the panels and the electronic and command components is built.
  • Fig. 4 shows another window modality, where the profile used to build the frame that supports the panels and the electronic and control components has a horizontal plane where the photovoltaic cells are located.
  • Fig. 5 shows another window modality to be placed over a window installed in a building, without modifying the already installed one or the building façade.
  • Fig. 6 shows a 90° coupling located at the corners that form the frame to ensure hermetic closure with sealants and atmospheric pressure.
  • Fig. 7 shows various ways of hooking or gripping and fixing the partition and window to the structure where it will be located.
  • Fig. 8 shows a possible shape of the valve to create a vacuum, remove moisture and inject some fluid into the hermetic cavity.
  • Fig. 6A shows the 90° hermetic seal coupling (36) that is located in the internal corners of the internal upper channel (1) with soft coextruded to ensure hermetic closure with sealants and atmospheric pressure.
  • Fig. 6B shows the 90° sealing coupling (36) with soft material coextruded (45) and its location at the inside corners of the upper channel.
  • Fig. 7A, and Fig. 7B show one form of the valve for vacuuming, removing moisture, and injecting fluids into the sealed cavity.
  • Fig. 8 shows a way of anchoring and fixing the partition and window frame to the structure where it will be located.
  • Fig. 9A and Fig. 9B show various ways of accessing the interior of the hermetic internal chamber (9) of the partition. It also shows the modality where the planes of the internal profile-cover (15) and external cover (15'), and the vertical planes that form the lower channel (2) are curved. DETAILED DESCRIPTION OF THE INVENTION
  • the invention presents an intelligent thermoacoustic construction partition, preferably a window exposed to atmospheric and environmental elements, hot and cold on both sides, depending on the time of year, which offers possibilities that solar energy can be used at a profitable investment.
  • Said window is placed in a privileged position to take advantage of solar energy in various ways. Current designs do not incorporate the options offered by current technology.
  • the invention proposes a thermoacoustic partition to isolate closed rooms from external or internal hot or cold environments, in buildings, houses, workplaces, factories. Also applicable in refrigeration and vehicles.
  • the partition consists of a frame made of PVC, aluminium, wood or combinations of them, to which two or more insulating panels are glued, and if these are transparent, they are a thermoacoustic window that creates an airtight internal cavity. Inside this cavity, on its internal perimeter, photovoltaic cells and pressure and light sensors are located.
  • the device is self-sufficient in energy and generates surplus.
  • the external and internal sides of the frame have covers on both sides, which cover the lower and upper external channels, the contact edges of glasses and frame, and create space where components, commands and cables can be located. These covers have openings that match the ventilation grilles of the profile channels.
  • the profile is designed with the characteristics outlined and the components to be incorporated exist in the market at profitable prices, they are small in size, reliable and durable; They are part of various applications of daily and continuous use by people and in industries.
  • An example is the cell phone that has pressure sensors, proximity sensors, microphones.
  • the profile, the components and control commands have been incorporated into a system that optimizes the behavior of the partition in the face of climatic and noise changes, which can be modified according to circumstances and need and create Artificial Intelligence (AI) to adjust automatically.
  • AI Artificial Intelligence
  • the electricity to operate them is obtained with photovoltaic cells incorporated into the device, it is self-sufficient in energy consumption and can incorporate additional variables and elements. It is an automatic active window or at the user's will, whose instructions can be incorporated and modified before and after it is installed, with manual or voice controls. Algorithms can make it act with Artificial Intelligence (AI).
  • the intelligent thermoacoustic construction partition preferably intelligent window type, optimizes its performance according to climate and environmental changes on both sides to reduce costs, energy consumption and increase user comfort and well-being. Its operation is regulated by instructions to its components based on the information recorded by its sensors, according to the standard method in these cases:
  • A. Intelligent thermoacoustic window information detectors made up of the following elements: a. Temperature sensors, attached to the outer edges of the glass. It can be 1 or 2, located in a corner or in the center of the lower and upper glass edges. If only 1 place at the bottom, where temperature will be higher than the top edge. b. Luminance sensor, located in the interior space created by the two panels of glass. With your information the blind will be activated. c. Atmospheric pressure sensor. Located in the hermetic chamber formed by panels and frame. It will be installed in windows whose main function is to insulate noise. With your information the micro pump will be activated. d. Photovoltaic inclination according to the position of the sun.
  • Air inlet and outlet grilles There can be four, at least two, located one in the internal and external lower and upper parts of the window. Its normal position is “closed”. They open according to the temperature of the glass edges, when starting the fan.
  • F. Wireless communication Built in microprocessor.
  • Blind motor Raises, lowers the blind and determines the opening of the leaves when it is down, like adjusting the blinds manually. It can be a step motor or another that allows acting for a set time and stopping according to instructions.
  • Micro pump Located in the lower channel of the frame profile, it connects to the space created by the frame and the two glasses, sealing this wall by atmospheric pressure from outside. This seal is part of a duct and valve that allows air to be removed from the space created between the two glasses. When you create a vacuum, the duct closes. The valve made of flexible material that connects the micro pump to extract air.
  • Air inlet and outlet grilles are elements that are glued to the internal walls of the lower channel of the window frame. It is a flat plate that slides through two slots and is kept closed by spring pressure, which yields to open when the fan starts operating. They can also be opened when you want to ventilate the channels by unforced air circulation, for example, if the temperature is 40°C.
  • T temperature
  • Se External Sensor
  • Si Internal Sensor
  • Re External, internal grid
  • Luminance sensor located in the interior space created by the two glass panels. With your information the blind will be activated.
  • Air inlet and outlet grilles There can be four, at least two, located one in the internal and external lower and upper parts of the window. Its normal position is “closed”. It opens according to the temperature of the edges of the glasses, while the fan is activated.
  • Wireless communicator Built-in microprocessor or other element in parallel windows.
  • the window there are sensors, actuators, microprocessor and photovoltaic cells, as an autonomous unit. However, if it is a set of similarly positioned windows, it is not necessary for each window to have all the components. In this case, there will be a main window or base that contains sensors, actuators, a microprocessor and photovoltaic cells, from which instructions for parallel windows, which have conditions similar to the main one. In the parallels there will only be actuators and photovoltaic cells, which will be activated with the information from the sensors and instructions from the main one.
  • the number of parallel windows will depend on the capacity of the microprocessor and may have a specific printed card to fulfill the functions of the intelligent thermoacoustic window.
  • the microprocessor is a component capable of controlling, for example, 20, 50 or more windows with instructions on a card designed to fulfill the functions of an intelligent thermoacoustic window.
  • the operation and communication use available Internet of Things platforms.
  • the proposed smart thermoacoustic window has several application options:
  • Fig. 1 shows a perspective view of a thermoacoustic window, with a frame (29) built with profiles to which an internal panel (50) and an external panel (50') are fixed, which can be made of internal glass (3) and an external glass (3') to form a thermoacoustic window.
  • the features are shown in detail in Fig. 3A and Fig. 3B.
  • the horizontal planes of the profile with which the frame (29) of the window is built and that delimit the upper channel (1) and the lower channel (2) have flexible joints (10) of oval shape incorporated into the profile by coextrusion on its three surfaces.
  • This flexible joint has the purpose of damping vibrations and pressures between the panels and reducing thermal and acoustic flows.
  • the lower plane of the profile has sealing gaskets (11) that serve as a seal between the thermoacoustic window and the structure where it is installed, it also has fixing means to the structure where it is installed, described in Fig. 6.
  • Fig. 2 shows a perspective of the partition with glass panels, where the internal glass (3) and the external glass (3') have been separated from the frame (29) to show the location of the elements described in Fig. 1.
  • Fig. 3A shows a cross-section perspective of the lower part profile with which the thermo-acoustic window is created. It shows an airtight internal chamber (9) between the internal glass (3), the external glass (3') and the frame (29) that forms an upper channel (1) through which air circulates to cool the contact edges of the glass and frame. It also shows sealant-glue material (4) in the part of the profile that joins the glass panels to the frame (29).
  • the upper channel (1) is connected to the internal lower channel (2) through a cavity (8), which in turn communicates with the internal and external side of the window through openings with lateral grilles, a grill air inlet (6) and air outlet grille (7), where the air flows by convection or forced, electrically controlled at will.
  • the hermetic internal chamber (9) there are pressure and light sensors (17), panels with photovoltaic cells (13).
  • a vacuum is created, when the main function is acoustic insulation, in which case the support grids (12) are located between the glass panels so that they do not deform or break due to atmospheric pressure.
  • These support grids (12) have co-extrusions for acoustic and thermal damping.
  • micro vacuum pump and its valve not shown
  • microprocessor 27
  • cables motors
  • micro vacuum pump fan
  • frame reinforcements are located.
  • Temperature sensors (5) are attached to the internal glass (3) and external glass (3'), which send information to control and regulate the action of the fan (14), the inlet grill (6), and the external outlet grill. (7'), internal outlet grill (7) and lowering, raising and unfolding of the blind (40), shown in Fig. 3B. Ventilation can also be by convection with the action of the inlet grill (6) and the external outlet grill (7'). This ventilation is important to dissipate the heat that accumulates in the panels exposed to the sun, reducing its transmission to the frame and to the second panel. In addition, in thermoacoustic windows, the contact edges of the panels and glass heat up more than the rest of the panel and can affect the sealants-glues and violate the initial tightness.
  • Cables and controls are located in the internal upper side cavity (18) and internal lower cavity (19) to connect sensors and actuators with the microprocessor (27).
  • the external and internal cavities can be more than two on each side if the profile is designed for more than two panels.
  • the window has panels with photovoltaic cells (13) placed on the perimeter of the hermetic internal chamber (9), between the internal panel (50), external panel (50') opaque or transparent glass, internal (3) and external ( 3'), on the side of the frame (29) exposed to the sun, which generate electricity to operate controls, sensors, register instructions and regulate the actuators installed inside the profile, such as fans.
  • the system has instructions and control parameters in a microprocessor (27), which can be modified directly or remotely by the user, by cell phone, depending on the environment and weather conditions by operating the fan, raising, lowering, folding the blind, at certain hours, depending on light and temperature conditions. It also has a storage for the electricity generated by the photovoltaic cells, not shown.
  • thermoacoustic panel (29) has coextruded sealing gaskets (11) that serve as a hermetic seal between the thermoacoustic panel (29) and the structure where it is installed. It also shows a container with a desiccant (25) located in the upper channel (1) that communicates with the hermetic internal chamber (9) through an orifice with hermetic seal and that can be replaced by accessing from the upper internal lateral cavity (18) through an opening. (not shown), which is sealed with lid and gaskets.
  • Fig. 3B shows a section cut of the profile of the upper part of the window exploded to create the thermo-acoustic window. It shows the location of the blind (40) and part of its panels, which may be photovoltaic cells. It shows the external glass (3') and the internal glass (3) and the other parts mentioned in Fig. 3A.
  • Fig. 4 shows a cross section of the profile with which the frame (29) is built, which serves as a support for the internal panel (50) of internal glass (3) and the external panel (50') of external glass (3') and they form the thermoacoustic window, with the same characteristics described in Fig. 3A, except that the first upper plane of separation of the panels is horizontal, that is, it forms an angle of 90° with them.
  • the photovoltaic cells (13) are accommodated, which will rotate to be in an optimal position to capture solar rays.
  • the turning and tracking of the sun is done by means of a mechanism of rotation and solar tracking (20) and the solar tracking sensor (21) that is in the art.
  • the fan (14) is in a horizontal position.
  • the resistance is not a source of heating, the room will have its own heating. It is a question of increasing the temperature of the glasses and of the insulating glues, which tend to crystallize at low temperatures. For example, raising the edges by 1 to 3 °C, instead of -10 °C raising to -7 °C would be enough to preserve adherents.
  • Fig. 5 shows another window modality to be placed over a window in a building, without modifying the one already installed.
  • the external plane is a flat contact surface (24) with the frame (29) of the installed window to adhere it with glues, double-sided tapes and other appropriate elements to fix and maintain hermetic seal.
  • the depth of the frame is adequate to accommodate it in the space that generally exists between the existing window and the internal edge of the supporting structure.
  • Fig. 6A shows a 90° hermetic seal coupling (36) located in the corners that form the frame (29) to ensure hermetic closure with sealants and atmospheric pressure in the internal corners of the upper channel (1) whose union forms the frame and hermetic closure.
  • the corner contacts of the frame formed with PVC profiles are joined by heat, solvent and sealants to prevent moisture, particles and unwanted elements from entering the hermetic internal chamber (9), when a vacuum is made in this internal chamber seal (9) through the pump, it is necessary to maintain a hermetic seal.
  • this hermetic coupling is placed in the internal corner of the upper channel (1) close to the closed space.
  • This coupling is made up of an area in the corner (26) formed by coextruded material that is softer than the walls (39) that secure it inside the upper channel (1), which due to atmospheric pressure on this area in the corner (26) will maintain in position the sealants over this joint; the 90° tight seal coupling (36) has spaces (38) for air circulation in the upper channel (1 ).
  • Fig. 6B shows the location of the 90° hermetic seal coupling (36) in the internal corners of the upper channel (1) whose union forms the frame (29) and the hermetic closure, the area in the corner (26) of soft material (Four. Five). Other characteristics of this location are described in the previous figures.
  • Fig. 7A and Fig. 7B show a valve (37) that is fluid communication between the internal hermetic chamber (9) and the outside, to extract air, remove humidity, demist and add some fluid in the internal hermetic chamber (9).
  • One or several valves are placed in the frame, located as appropriate for its function. It is made up of a ring (30) that is inserted into a hole in the wall of the profile to fix it by elasticity of the material and atmospheric pressure, which acts on the external section (36) of flexible material in contact with a plane of the frame (29), that by atmospheric pressure seals; Fluid communication continues through ducts (31) along the valve and tubes, from the hole (32) in the hermetic internal chamber (9), to a coupling (34) in cooperation with that of the pump that suck or inject.
  • the closure is done with the valve (37) by atmospheric pressure on the internal planes that form the cavity (33) inside the valve, which has a cut (35) in the wall where the duct (31) joins.
  • the valve is opened by pressing the side walls of the valve so that the cut (35) in the wall separates.
  • Part of the ducts (31) can be solid or flexible.
  • the cooperating coupling (34), the valve (37) and the ducts (31) are located in the lower channel (2) and in the internal upper lateral cavity (18) to which access is obtained by removing the profile-cover (15). .
  • Fig. 8 shows a way to anchor and fix the window to the supporting structure where it will be located.
  • This anchor frame (41) consists of a cavity (43) where pressure penetrates the lower horizontal wall of the window frame that has a cooperating coupling (44) along it, which secures the window to the anchor frame (41).
  • This anchor frame (41) is secured to the perimeter of the supporting structure where the window will be placed and it will be slid against the anchor frame (41) so that it inserts the cooperating coupling (44) in the cavity (43).
  • the anchor frame profile (41) has an external surface (42), endings (52) made of soft material that act as a seal when making contact with the frame (29) of the window and with the supporting structure.
  • FIG. 9A shows a window modality where it is possible to separate the internal part of the window fixed to the wall to access the interior of the closed section of the hermetic internal chamber (9).
  • Fig. 9B shows the window modality separated from the internal part of the window fixed to the wall.
  • 9B show the general characteristics of the window described in the previous figures, the closed section formed by the upper channel (1), by the lower channel (2) and the internal upper lateral cavity (18) and
  • thermoacoustic window of the invention has elements that, when converting it from passive to active, may require repairing or updating some of its components, either due to damage, failure or obsolescence.
  • new electronic, communication and photocell components are developed that make it convenient to change them.
  • Fans and other elements located in the lower channel (2) can also be accessed through openings in their vertical planes, through which they were installed.
  • the blind (40) to repair and change the photovoltaic cells, it is necessary to access the hermetic internal chamber (9), which can be done in at least two ways: a) removing the internal glass (3) detaching it from the frame, with a steel rope as vehicle windshields are removed; b) separate the removable internal side of the window that closes the hermetic internal chamber (9), with which the components for the required action are accessed. Once accomplished, place the internal secured area with the contact points around the entire frame. At these closing points, sealants are applied, but glues should not be used, since would prevent opening the hermetic internal chamber (9) on the next occasion. They can be complemented with small screws in the contact perimeter of the fixed part and the removable internal side. To repair the outer panel (50') the entire window is removed as indicated in Fig. 8.
  • thermoacoustic window is built in the following stages:
  • thermoacoustic window which will vary in some aspects if the window is for thermal or acoustic insulation, which includes: a. Place glue or double-sided tape on frame edges (29) or inside panel (50) and outside panel (50') parallel. b. Seal and caulk joint corners of the frame (29). This sealing is critical if the main purpose of the window is sound insulation.
  • the stamps are made manually or with a robotic machine. On top of this seal, sealant-adhesive material (4) is placed to reinforce hermeticity with the help of pressure. atmospheric.
  • c. Install Attach 90° watertight seal (36) at each corner. Installation of micro vacuum pump, Installation of supports, adhere glass to the frame.
  • Yo. Check assemblies, cables, microprocessor (27), controls. Perform tests.

Abstract

Partición termoacústica de construcción para aislar habitaciones de ambientes externos o internos, de refrigeración y vehículos. La partición consta de marco con paneles aislantes adheridos herméticamente, transparentes o no. Si se adhieren vidrios, marco y paneles crean cámara hermética al aire donde ubican sensor de presión, lumínico y seguimiento solar. En su perímetro interno tiene celdas fotovoltaicas y persiana cuyas láminas son celdas fotovoltaicas que lo hacen autosuficiente en energía. El perfil del marco tiene canales para circular aire, donde se ubica resistencia eléctrica que en invierno sube temperatura de bordes de paneles, en otro se ubican ventiladores, sensores de temperatura, micro bomba, cables y refuerzos. Los planos horizontales que crean estos canales tienen puentes termoacústicos coextruidos. Tiene microprocesador con instrucciones automáticas o modificadas digitalmente, con voz y a distancia, para que componentes actúen en tiempo real, según cambios de ambiente que puede ser con Inteligencia Artificial.

Description

PARTICIÓN DE CONSTRUCCIÓN AISLANTE INTELIGENTE Y PROCESO DE CONSTRUCCIÓN
Campo de la invención
El campo de invención es una partición de construcción aislante inteligente de ruidos y temperatura formada por paneles paralelos adheridos a un marco fijo o móvil; específicamente propone paneles de vidrio adheridos a un marco con sellantes, para aislar edificaciones, vehículos y otros recintos del clima y ambiente internos como ventanas, puertas, paredes; la partición incluye medios electrónicos, su comando, control y ejecución automática y por el usuario en tiempo real, y celdas fotovoltaicas que hacen la partición autosuficiente e inteligente.
Estado de la Técnica
Varias patentes proponen particiones de construcción, ventanas y puertas, como soluciones de aislamiento termoacústico y uso de fotoceldas para aprovechar energía solar y medios para controlar sus componentes, como solución conocida se mencionan entre otras los siguientes antecedentes:
La solicitud de patente CN210714383U “ Solar intelligent shutter1’ propone una persiana con láminas colocada sobre una ventana, cuyas láminas son celdas fotovoltaicas que generan energía para un motor y controles para girar las láminas, donde el mecanismo es autosuficiente y puede ser controlado remotamente. Este antecedente, no especifica una solución con doble vidrio como la nueva patente, que aumenta la eficiencia energética, donde la nueva solución tiene su propio mecanismo de sellado y cuya persiana de láminas fotovoltaicas está contenida entre dos vidrios y el marco proponiendo una nueva manera de solucionar el problema de aislamiento. La solicitud de patente CN104775728A “Double-layer ventilation and thermal-insulation window and energy-saving ventilation and air conditioning system" propone sistema para ventilación de una habitación aprovechando el calor generado por ventana de doble vidrio para introducir o sacar aire de un lugar a través de ductos y mecanismo de regulación. La nueva invención difiere del antecedente porque la invención no genera aire caliente, sino que aprovecha la luz solar para generar electricidad, que regula la temperatura del marco con circulación de aire en los espacios de contacto de los vidrios y el marco, si ser un sistema de calefacción. Las ventanas en el arte son pasivas, con poca o ninguna reacción a cambios a ambos lados, porque no tiene medios para modificar sus funciones. La invención propone una partición termoacústica para aislar habitaciones de ambientes externos o internos, de refrigeración y vehículos, que cambie su acción pasiva a reacción en tiempo real ante cambios externos o internos de temperatura y luz mediante medios electrónicos y comunicación.
En el arte hay particiones termoacústicas eficientes para aislar espacios de ruido y temperatura que proponen configuraciones de ventanas inteligentes que se basan en cambios de opacidad en los vidrios con películas y electricidad; pero la nueva invención propone una solución menos compleja y simple que se ejecuta con vidrios corrientes, presentando una partición de construcción aislante con paneles de vidrio paralelos en marcos de ventanas expuestas a cambios atmosféricos y ambientales, a calor y frió en ambos lados, según época del año, que está colocada en una posición privilegiada para aprovechar la energía solar complementada con medios electrónicos, su comando, control y ejecución automática o por el usuario en tiempo real, y por celdas fotovoltaicas, para optimizar capacidades aislantes de la partición.
Breve descripción de la invención
La invención consiste de particiones de construcción termoacústicas inteligentes para aprovechar la luz solar y optimizar su desempeño aislante. Propone un marco formado por perfiles construidos con PVC, aluminio, madera o cualquiera otro material apropiado en el arte, al cual se pegan dos o más paneles, que pueden ser vidrios o no, y crean cámara hermética. Los perfiles que forman el marco tienen canales internos para circulación de aire y espacios externos donde se ubican sensores térmicos y lumínicos; se ubican también los actuadores tales como los ventiladores, micro bombas, rejillas; y los microprocesadores, cables, refuerzos, aperturas y rejillas de ventilación accionados eléctricamente. Los planos que crean estos canales tienen puentes termoacústicos construidos con geometría y material más blando que el del marco. Estos elementos y espacios externos cubiertas por tapa en todo los perímetros externos e internos, fijadas al cuerpo del marco. Celdas fotovoltaicas se ubican dentro de la cámara hermética adheridas a las paredes internas del marco expuestas al sol, que suministran electricidad a sensores que vía instrucciones en microprocesador acciona actuadores. En este espacio también se ubica persiana cuyas láminas son celdas fotovoltaicas que generan electricidad.
Las fotoceldas incorporadas al dispositivo lo hacen autosuficiente en energía y genera excedentes. Tiene microprocesador con instrucciones de acción automática, modificadas digitalmente o con voz, a través de celular e internet, para que los componentes actúen en tiempo real según cambios de ambiente y necesidades del usuario.
Una ventana está expuesta a elementos atmosféricos y ambientales, a calor y frió en ambos lados, con posibilidades de aprovechar la energía solar a inversión rentable en varias formas.
La partición de construcción aislante presentada en una modalidad de la invención es una ventana termoacústica útil en habitaciones, edificios, espacios de trabajo que requieran aislar ruido y temperatura del exterior o aislar espacios internos en fábricas, hoteles, lugares de reunión o en habitáculos móviles.
La ventana termoacústica inteligente de la presente invención tiene dos o más vidrios con funcionalidades térmica y acústica según las siguientes configuraciones:
La función térmica está determinada con fotoceldas en perímetro interno, persiana- fotocelda, ventilador, microprocesador, control y algoritmo que no requiere de micro bomba. La función acústica se configura con fotoceldas en perímetro interno, soportes de vidrios, ventilador, microprocesador, control y algoritmo; un vacío en la cámara hermética que se mantiene con micro bomba y no presenta persiana.
Breve descripción de las figuras
La Fig. 1 muestra perspectiva de una ventana termoacústica, con marco al cual se adhieren herméticamente dos paneles, y forman cámara interna hermética (9) al aire, aperturas para entrada y salida de aire. Muestra también sensores, ventiladores, soportes entre los paneles de vidrio para que no se deformen ni quiebren por presión atmosférica una vez que se extrae el aire. Muestra paneles fotovoltaicos colocados en el perímetro de la parte interna hermética, en plano inclinado fijo. Las Fig. 2A y la Fig. 2B muestran perspectivas de la partición con paneles de vidrio, donde los principales componentes se han separado para mejor identificar los elementos descritos en la Fig. 1 y su ubicación.
Las Fig. 3A y la Fig. 3B muestran corte de sección de la ventana y los detalles en perspectiva de perfil con el que se construye el marco que sirve de soporte a los paneles y a los componentes electrónicos y de comando.
La Fig. 4 muestra otra modalidad de la ventana, donde el de perfil con el que se construye el marco que sirve de soporte a los paneles y a los componentes electrónicos y de comando tiene plano horizontal donde se ubican celdas fotovoltaicas.
La Fig. 5 muestra otra modalidad de la ventana para ser sobre puesta a una ventana instalada en una construcción, sin modificar la ya instalada ni la fachada de la construcción.
La Fig. 6 muestra un acople de 90° ubicado en las esquinas que forman el marco para asegurar el cierre hermético con sellantes y presión atmosférica.
La Fig. 7 muestra vahas formas de enganche o agarre y fijación de la partición y ventana a la estructura donde se ubicará.
Fig. 8 muestra una posible forma de la válvula para hacer vacío, quitar humedad e inyectar algún fluido dentro de la cavidad hermética.
La Fig. 6A muestra el acople sello hermético de 90° (36) que es ubicado en las esquinas internas del canal superior (1 ) interno con coextruido blando para asegurar el cierre hermético con sellantes y presión atmosférica.
La Fig. 6B muestra el acople sello hermético de 90° (36) con coextruido de material blando (45) y su ubicación en las esquinas internas del canal superior.
La Fig. 7A, y la Fig. 7B muestran una forma de la válvula para hacer vacío, quitar humedad e inyectar fluidos dentro de la cavidad hermética.
Las Fig. 8 muestra una forma de marco anclaje y fijación de la partición y ventana a la estructura donde se ubicará.
La Fig. 9A y la Fig. 9B muestran vahas formas de acceder al interior de la cámara interna hermética (9) de la partición. Muestra también la modalidad donde los planos del perfil- tapa interno (15) y cubierta externa (15’), y los planos verticales que forman el canal inferior (2) son curvos. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La invención presenta una partición de construcción termoacústica inteligente, preferiblemente una ventana expuesta a elementos atmosféricos y ambientales, a calor y frió en ambos lados, según la época del año, lo cual ofrece posibilidades que se pueden aprovechar la energía solar a inversión rentable. Dicha ventana está colocada en una posición privilegiada para aprovechar la energía solar en varias formas. Los diseños actuales no incorporan las opciones que ofrece la tecnología actual.
La invención propone una partición termoacústica para aislar habitaciones cerradas de ambientes de calor o frió externos o internos, en edificios, casas, lugares de trabajo, fábricas. También aplicable en refrigeración y vehículos. La partición consta de un marco construidos de PVC, aluminio, madera o combinaciones de ellos, a los cuales se pegan dos o más paneles aislantes, y si éstos son transparentes, son una ventana termoacústica que crea una cavidad interna hermética al aire. Dentro de esta cavidad, en su perímetro interno se ubican celdas fotovoltaicas y sensores de presión y lumínicos.
Dentro del marco hay canales independientes para circular aire, por convección o forzada, con rejillas accionadas eléctricamente para abrir o cerrar según instrucciones. En los canales independientes se colocan ventiladores, micro bomba de vacío, microprocesador, motor que acciona persiana, cables y refuerzos, accionados con electricidad generada por foto celdas.
Dentro del espacio entre paneles y marco hay persiana o materiales plegables cuyas superficies son fotoceldas. El dispositivo es autosuficiente en energía y genera excedentes.
Tiene un microprocesador con instrucciones para que los componentes indicados actúen según ambiente, que pueden ser automáticas, modificadas digitalmente o con voz. Las condiciones ambientales y necesidades del usuario, pueden convertir el dispositivo operable con Inteligencia Artificial, con algoritmos apropiados, no incluidos en esta invención.
Los lados externos e internos del marco tienen cubiertas a ambos lados, que cubren los canales externos inferior y superior, los bordes de contacto de vidrios y marco, y crean espacio donde puede ubicarse componentes, comandos y cables. Estas cubiertas tienen aperturas coincidentes con las rejillas de ventilación de los canales del perfil.
El perfil es diseñado con las características esbozadas y los componentes a incorporar existen en el mercado a precios rentables, son de tamaño pequeño, confiables y durables; son parte de diversas aplicaciones de uso diario y continuo por personas y en industrias. Un ejemplo es el teléfono celular que tiene sensores de presión, de proximidad, micrófonos.
El perfil, los componentes y comandos de control, se han incorporado en un sistema que optimiza el comportamiento de la partición ante los cambios climáticos y de ruido, que pueden ser modificados según circunstancias y necesidad y crear la Inteligencia Artificial (IA) para que se ajusten automáticamente. La electricidad para operarlos se obtiene con celdas fotovoltaicas incorporadas al dispositivo, es autosuficiente en consumo de energía y puede incorporar variables y elementos adicionales. Es una ventana activa automática o a voluntad del usuario, cuyas instrucciones se pueden incorporar y modificar antes y después de instalada, con controles manuales o de voz. Algoritmos pueden hacer que actúe con Inteligencia Artificial (IA).
Descripción de los componentes
La partición de construcción termoacústica inteligente, preferiblemente tipo ventana inteligente optimiza su desempeño de acuerdo con los cambios climáticos y ambientales a ambos lados para reducir costos, consumo de energía y aumentar comodidad y bienestar del usuario. Su funcionamiento está regulado por instrucciones a sus componentes basado en la información que registran sus sensores, según método estándar en estos casos:
A. Detectores de información de la ventana termoacústica inteligente compuesto por los siguientes elementos: a. Sensores de temperatura, adheridos en los bordes externos del vidrio. Puede ser 1 o 2, ubicados en una esquina o en centro de borde de vidrios inferior y superior. Si sólo 1 colocar en la parte inferior, donde temperatura será más alta que el borde superior. b. Sensor de luminancia, ubicado en el espacio interior creado por los dos paneles de vidrio. Con su información se accionará la persiana. c. Sensor de presión atmosférica. Ubicado en la cámara hermética formado por paneles y marco. Se instalará en ventanas cuya función principal es aislar ruidos. Con su información se accionará la micro bomba. d. Inclinación fotovoltaica según posición del sol. En miniatura, igual a los que usan en celdas fotovoltaica. e. Rejillas entrada y salida de aire. Pueden ser cuatro, mínimo dos, ubicadas una en las partes interna y externa inferior y superior de la ventana. Su posición normal es “cerrado”. Se abren según temperatura de bordes de vidrios, al iniciar ventilador. f. Comunicación inalámbrica. Incorporado en microprocesador.
B. Actuadores que son operadores de comandos de la ventana termoacústica inteligente:
1 . Ventilador. Colocado dentro del perfil, en el canal inferior, hohzontalmente. Opera cuando la temperatura del borde del vidrio sea igual al valor dado, por ejemplo 40°C y parará cuando esta temperatura sea 35°C.
2. Motor de la persiana. Sube, baja la persiana y determina la apertura de las hojas cuando está baja, como se ajustan las persianas manualmente. Puede ser un step motoru otro que permita actuar por tiempo establecido y parar según instrucciones.
3. Micro bomba. Ubicada en el canal inferior del perfil del marco, se conecta al espacio creado por el marco y los dos vidrios, haciendo sello en esta pared por presión atmosférica desde afuera. Este sello es parte de un ducto y válvula que permite sacar aire del espacio creado entre los dos vidrios. Cuando crea vacío, el ducto se cierra. La válvula hecha de material flexible que conecta la micro bomba para extraer aire.
4. Resistencia eléctrica ubicada dentro de los canales del perfil.
5. Rejillas entrada y salida de aire. Son elementos que se pegan a las paredes internas del canal inferior del marco de la ventana. Es una placa plana que se desliza por dos ranuras y que se mantiene cerrada por presión de resortes, que ceden para abrir, cuando inicia operación el ventilador. También pueden abrirse cuando se quiere ventilar los canales por circulación de aire no forzada, por ejemplo, si temperatura es de 40°C.
6. Rotación y seguimiento solar. Para mejor incidencia solar sobre celda fotovoltaicas.
C. Instrucciones y comunicación de la ventana termoacústica inteligente. Microprocesador con instrucciones para:
1 . Sensores de temperatura, adheridos en el borde del vidrio, en contacto con marco. Verano, Si TSe > TSi en 5°C o Si TSe > 35°C Inicie Ventilador y abra Rejillas externas
Invierno, Si TSe < TSi en 2°C o Si TSe < -5°C Inicie Ventilador y abra Rejillas internas
Donde: T = temperatura, Se = Sensor externo, Si = Sensor Interno, Re, R¡ = Rejilla externa, interna
2. Sensor de luminancia, ubicado en el espacio interior creado por los dos paneles de vidrio. Con su información se accionará la persiana.
Si SLx = 40 Cds, Baje persiana. Donde: SLx = Sensor lúmenes, cd= Candela.
3. Sensor de presión. Colocado en la cámara hermética formada por el marco y los dos paneles.
Si SPa= 1 bar, Inicie micro bomba aire. Pare si Spa=0.8 bar. Donde: SPa = Sensor Presión
4. Inclinación fotovoltaica según posición solar. Inclinación de las celdas fotovoltaica de la ventana.
5. Resistencia eléctrica ubicada dentro del canal superior del perfil.
Invierno, Si TSe < TSi en 2°C o Si TSe < -5°C Inicie Resistencia, Ventilador y abra Rejillas internas.
6. Rejillas entrada y salida de aire. Pueden ser cuatro, mínimo dos, ubicadas una en las partes interna y externa inferior y superior de la ventana. Su posición normal es “cerrado”. Se abre según temperatura de los bordes de los vidrios, al tiempo que se acciona el ventilador.
7. Comunicador inalámbrico. Incorporado en microprocesador o en otro elemento en las ventanas paralelas.
8. Almacenamiento de datos para ser transmitidos por cable o inalámbrico y ser analizados en equipo externo.
D. Instrucciones al microprocesador y comunicación
En la ventana hay sensores, actuadores, microprocesador y celdas fotovoltaicas, como unidad autónoma. Sin embargo, si se trata de un conjunto de ventana ubicadas en posición similar, no es necesario que cada ventana tenga todos los componentes. En ese caso habrá una ventana principal o base que contiene sensores, actuadores, microprocesador y celdas fotovoltaicas, desde la cual saldrán instrucciones para ventanas paralelas, que tengan condiciones similares a la principal. En las paralelas habrá sólo actuadores y celdas fotovoltaicas, que se activarán con la información de los sensores e instrucciones de la principal.
El número de ventanas paralelas dependerá de la capacidad del microprocesador y podrá tener tarjeta impresa específica para cumplir las funciones de la ventana termoacústica inteligente.
En una tercera modalidad, el microprocesador es un componente con capacidad de gobernar, por ejemplo, 20, 50 o más ventanas con instrucciones en tarjeta diseñada para cumplir las funciones de ventana termoacústica inteligente. En todas estas modalidades la operación y comunicación usa plataformas disponibles de Internet de las Cosas.
La ventana termoacústica inteligente propuesta tiene varias opciones de aplicación:
1. Térmica con fotoceldas en perímetro interno, persiana-fotocelda, microprocesador, control y algoritmo. No micro bomba
2. Acústica con fotoceldas en perímetro interno, soportes de vidrios, microprocesador, control y algoritmo. Vacío en cámara hermética y micro bomba. No persiana.
3. Sobreponer sobre Ventana instalada, sin afectar ventana o fachada
Descripción detallada de las Figuras
Las siguientes figuras y descripción ¡lustran las ¡deas y funciones de la invención, las cuales pueden ser expresadas e ¡lustradas en otras diversas formas y por tanto deben tomarse como una de las formas de mejor explicar la invención.
Fig. 1 muestra perspectiva de una ventana termoacústica, con un marco (29) construido con perfiles a los que se fijan un panel interno (50) y un panel externo (50’), que pueden ser de un vidrio interno (3) y un vidrio externo (3’) para formar una ventana termoacústica. Las características se muestran en detalle en la Fig. 3A y Fig. 3B.
Los planos horizontales del perfil con el que se construye el marco (29) de la ventana y que delimitan el canal superior (1 ) y el canal inferior (2) tienen uniones flexibles (10) de forma ovalada incorporada en el perfil por coextrusión en sus tres superficies. Esta unión flexible tiene el propósito de amortiguar vibraciones y presiones entre los paneles y reducir flujos térmico y acústico.
El plano inferior del perfil tiene empaques de sello (11 ) que sirven de sello entre la ventana termoacústica y la estructura donde se instala, tiene también medios de fijación a la estructura donde se instale, descritos en la Fig . 6.
Tiene rejillas de soporte (12) entre los paneles de vidrio para que no se deformen ni quiebren por presión atmosférica una vez que se extrae el aire, en ventanas con función principal aislamiento de ruidos. Estos soportes tienen en sus planos materiales blandos coextruidos para amortiguación acústica y térmica.
Fig. 2 muestra perspectiva de la partición con paneles de vidrio, donde el vidrio interno (3) y el vidrio externo (3’) se han separado del marco (29) para mostrar la ubicación de los elementos descritos en la Fig. 1 .
Fig. 3A muestra perspectiva de corte de sección del perfil de la parte inferior con el que se crea la ventana termo-acústica. Muestra cámara interna hermética (9) al aire entre el vidrio interno (3), el vidrio externo (3’) y marco (29) que forma un canal superior (1 ) por donde circula aire para enfriar los bordes de contacto de vidrios y marco. Muestra también material sellante-pegante (4) en la parte del perfil que une los paneles de vidrio al marco (29).
El canal superior (1 ) está comunicado con el canal inferior (2) interno a través de una cavidad (8), que a su vez se comunica con el lado interno y externo de la ventana a través de aperturas con rejillas laterales, una rejilla de entrada de aire (6) y rejilla de salida de aire (7) de aire, donde el aire fluye por convección o forzada, controladas eléctricamente a voluntad. En la cámara interna hermética (9) se ubican sensor de presión y lumínico (17), paneles con celdas fotovoltaicas (13). En esta cámara interna hermética (9) se crea vacío, cuando la función principal es aislamiento acústico, en cuyo caso se ubican las rejillas de soporte (12) entre los paneles de vidrio para que no se deformen ni quiebren por presión atmosférica. Estas rejillas de soporte (12) tienen coextruidos para amortiguación acústica y térmica. En el canal inferior (2) interno del perfil que forma el marco, se ubican micro bomba de vacío y su válvula (no mostradas), microprocesador (27), cables, motores, micro bomba de vacío, ventilador (14), que se comunica con la cavidad (8) en el plano horizontal de los dos canales. En el canal inferior (2) interno se ubican refuerzos del marco.
En cada esquina del lado externo de los vidrios en la cavidad lateral superior interna (18) y a la cavidad superior externa (18’), que están cubiertas por el perfil-tapa interno (15) y perfil de cubierta externa (15’), se ubican sensores de temperatura (5) adheridos al vidrio interno (3) y al vidrio externo (3’), que envían información para controlar y regular acción de ventilador (14), la rejilla de entrada (6), rejilla de salida externa (7’), rejilla de salida interna (7) y descenso, ascenso y despliegue de la persiana (40), mostrada en la Fig . 3B. La ventilación puede ser también por convección con la acción de la rejilla de entrada (6) y la rejilla de salida externa (7’). Esta ventilación es importante para disipar el calor que se acumula en los paneles expuestos al sol, reducir su transmisión al marco y al segundo panel. Además, en ventanas termoacústicas los bordes de contacto de paneles y vidrios se calientan más que el resto del panel y pueden afectar los sellantes-pegantes y vulnerar la hermeticidad inicial.
En la cavidad lateral superior interna (18) y cavidad inferior interna (19) internas se ubican cables y controles para unir sensores y actuadores con el microprocesador (27). Las cavidades externas e internas pueden ser más de dos a cada lado si el perfil se diseña para más de dos paneles.
Muestra uniones flexibles (10) incorporada en el perfil por coextrusión en sus tres superficies. Esta unión flexible tiene el propósito de amortiguar vibraciones y presiones entre los paneles y amortiguar flujos térmico y acústico.
La ventana tiene paneles con celdas fotovoltaicas (13) colocados en el perímetro de la cámara interna hermética (9), entre el panel interno (50), panel externo (50’) opacos o transparentes de vidrio, interno (3) y externo (3’), del lado del marco (29) expuestos al sol, que generan electricidad para operar control, sensores, registrar instrucciones y regular los actuadores instalados dentro del perfil, como ventiladores. El sistema tiene instrucciones y parámetros de control en un microprocesador (27), que pueden ser modificadas en forma directa o remota por el usuario, por celular, según el ambiente y condiciones del clima al actuar ventilador, subir, bajar, plegar la persiana, a determinadas horas, según condiciones de luz y temperatura. Tiene también un almacenador de la electricidad generada por las celdas fotovoltaicas, no mostrado. Tiene empaques de sello (11 ) coextruidos que sirven de cierre hermético entre el panel termoacústico (29) y la estructura donde se instala. Muestra también recipiente con desecante (25) ubicado en canal superior (1 ) que se comunica con la cámara interna hermética (9) a través de orificio con sello hermético y que se puede reemplazar accediendo desde la cavidad lateral superior interna (18) por apertura (no mostrada), que se sella con tapa y empaques.
Fig. 3B muestra corte de sección del perfil de la parte superior de la ventana explosionada para crear la ventana termo-acústica. Muestra la ubicación de la persiana (40) y de parte de sus paneles, que pueden ser celdas fotovoltaicas. Muestra el vidrio externo (3’) y el vidrio interno (3) y las demás partes mencionadas en la Fig. 3A.
Fig. 4 muestra corte transversal del perfil con el que se construye el marco (29) que sirve de soporte al panel interno (50) de vidrio interno (3) y al panel externo (50’) de vidrio externo (3’) y forman la ventana termoacústica, con las mismas características descritas en la Fig. 3A, excepto porque el primer plano superior de separación de los paneles es horizontal, es decir, forma ángulo de 90° con éstos. Sobre este plano horizontal se acomodan las celdas fotovoltaicas (13) que rotarán para estar en posición óptima para captar rayos solares. El giro y seguimiento del sol se hacen mediante mecanismo de rotación y seguimiento solar (20) y el sensor de seguimiento solar (21 ) que hay en el arte. El ventilador (14) está en posición horizontal.
Muestra también una resistencia eléctrica (23) por donde circula corriente generada por celdas fotovoltaicas ubicadas en los bordes internos del marco (29), en el espacio cerrado de la cámara interna hermética (9) y por la persiana con sus láminas desplegadas. Esta resistencia calienta el canal superior (1 ) y el canal inferior (2) que está colocada dentro del perfil, sobre la cual actuará un ventilador para distribuir el calor en los canales internos de la ventana y mantener los bordes de los vidrios a alguna temperatura mayor que la ventana tendría sin esta resistencia; en este caso se abre la rejilla de entrada de aire (6). La rejilla de salida de aire (7) superior se mantiene cerrada. Esta resistencia es aplicable en condiciones de una ventana en una región de estaciones, en el invierno, donde el sol es cuatro a cinco horas en el día, con incidencia baja sobre las celdas fotovoltaicas. Si bien el calor generado por la resistencia es bajo, es importante para mantener la integridad estructural de la ventana, dado que evita que los pegantes de vidrios a marco llegan a temperaturas muy bajas bajo cero, además de reducir la pérdida de calor a través de la ventana. Sin embargo, la resistencia no es fuente de calefacción, la habitación tendrá su propia calefacción. Se trata de aumentar la temperatura de los vidrios y de los pegantes aislantes, que tienden a cristalizarse a bajas temperaturas. Por ejemplo, subir 1 a 3 °C los bordes, en vez de -10°C subir a - 7°C sería suficiente para conservar adherentes.
Fig. 5 muestra otra modalidad de la ventana para ser sobre puesta a una ventana en una construcción, sin modificar la ya instalada. En esta modalidad el plano externo es una superficie plana de contacto (24) con el marco (29) de la ventana instalada para adherirla con pegantes, cintas de doble faz y otros elementos apropiados para fijar y mantener sello hermético. En esta modalidad la profundidad del marco es adecuado para acomodarlo en el espacio que generalmente hay entre la ventana existente y el borde interno de la estructura portante.
Fig. 6A muestra un acople sello hermético de 90° (36) ubicado en las esquinas que forman el marco (29) para asegurar el cierre hermético con sellantes y presión atmosférica en las esquinas internas del canal superior (1 ) cuya unión forma el marco y el cierre hermético. Si bien los contactos de las esquinas del marco formado con perfiles de PVC son unidos por calor, solvente y sellantes para impedir que humedad, partículas y elementos no deseados penetren a la cámara interna hermética (9), cuando se hace vacío en esta cámara interna hermética (9) a través de la bomba, es necesario mantener cierre hermético. Para reforzar el cierre se coloca, además de los cierres anteriores, este acople hermético en la esquina interna del canal superior (1 ) próxima al espacio cerrado. Este acople está compuesto por un área en la esquina (26) formada por material coextruido más blando que las paredes (39) que lo aseguran dentro del canal superior (1 ), que por presión atmosférica sobre esta área en la esquina (26) mantendrá en posición los sellantes sobre esta unión; el acople sello hermético de 90° (36) tiene espacios (38) para circular aire en el canal superior (1 ). Fig. 6B muestra la ubicación del acople sello hermético de 90° (36) en las esquinas internas del canal superior (1 ) cuya unión forma el marco (29) y el cierre hermético, el área en la esquina (26) de material blando (45). Otras características de esta ubicación están descritas en las figuras anteriores.
Fig. 7A y Fig. 7B muestran una válvula (37) que es comunicación fluida entre la cámara interna hermética (9) y el exterior, para extraer aire, retirar humedad, desempañar y agregar algún fluido en la cámara interna hermética (9). Se coloca una o varias válvulas en el marco, ubicadas según convenga para su función. Está compuesta por anillo (30) que se inserta en orificio en la pared del perfil para fijarlo por elasticidad del material y presión atmosférica, que actúa sobre la sección externa (36) de material flexible en contacto con un plano del marco (29), que por presión atmosférica sella; la comunicación fluida continúa a través de ductos (31 ) a lo largo de la válvula y tubos, desde el orificio (32) en la cámara interna hermética (9), hasta un acople (34) de forma cooperante con el de la bomba que hace succión o inyecta. El cierre se hace con la válvula (37) por presión atmosférica sobre los planos internos que forman la cavidad (33) dentro de válvula, que tiene un corte (35) en la pared donde se une el ducto (31 ). La válvula se abre presionando las paredes laterales de la válvula de modo que el corte (35) en la pared se separe. Parte de los ductos (31 ) puede ser sólido o flexible. El acople (34) cooperante, la válvula (37) y los ductos (31 ) se ubican en el canal inferior (2) y en la cavidad lateral superior interna (18) al cual se tiene acceso retirando el perfil-tapa (15).
Fig. 8 muestra una forma de anclar y fijar la ventana a la estructura portante donde se ubicará. Este marco ancla (41 ) consta de una cavidad (43) donde penetra por presión la pared inferior horizontal del marco de la ventana que tiene a lo largo acople cooperante (44) lo cual asegura la ventana al marco ancla (41 ). Este marco ancla (41 ) se asegura en el perímetro de la estructura portante donde se colocará la ventana y ésta será deslizada contra el marco ancla (41 ) para que inserte el acople cooperante (44) en la cavidad (43). El perfil marco ancla (41 ) tiene superficie externa (42), terminaciones (52) de material blando que actúan como sello al hacer contacto con el marco (29) de la ventana y con la estructura portante. En esta forma es posible retirar la ventana para reparación y cambio del panel roto, dejando el marco ancla (41 ) en posición, sobre el cual se coloca la ventana una vez reparada. Fig. 9A muestra una modalidad de ventana donde es posible separar la parte interna de la ventana fijada al muro para acceder al interior de la sección cerrada de la cámara interna hermética (9). La Fig. 9B muestra la modalidad de ventana separada de la parte interna de la ventana fijada al muro. La Fig. 9A y Fig. 9B muestran las características generales de la ventana descritas en las figuras anteriores, la sección cerrada formada por el canal superior (1 ), por el canal inferior (2) y la cavidad lateral superior interna (18) y además la sección fija (46) a la estructura y la sección removible (47), los puntos de cierre (48) en la sección removible (47) y puntos de cierre (49) en la sección fija (46). Muestra también la modalidad donde los planos del perfil-tapa (15), cubierta externa (15’), y los planos verticales (51 ) que forman el canal inferior (2) son curvos. El propósito de estas curvaturas es reducir incidencia de ondas de ruido y mejorar la capacidad aislante acústica.
Las particiones de construcción y más específicamente las ventanas donde los paneles son acristalamientos, por su carácter pasivo, son elementos construidos e instalados para que permanezcan en operación por muchos años sin intervención para reparaciones, excepto por rotura de vidrios y fallas en herrajes. Sin embargo, la ventana termoacústica de la invención tiene elementos que, al convertirla de pasiva en activa, puede requerir reparar o actualizar algunos de sus componentes, bien por daños, fallas o por obsolescencia. Por ejemplo, es posible que se desarrollen nuevos componentes electrónicos, de comunicación y de fotoceldas que hagan conveniente su cambio. En el diseño de la invención propuesta es posible acceder a la mayor parte de cambios sólo quitando el perfil-tapa interno (15) para acceder a motores, sensores, cables y conexiones. También se puede acceder a ventiladores y otros elementos ubicados en el canal inferior (2) a través de aperturas en sus planos verticales, a través de las cuales fueron instalados. Sin embargo, para acceder a la persiana (40), para reparar y cambiar las celdas fotovoltaicas, es necesario acceder la cámara interna hermética (9), que se puede hacer en al menos dos formas: a) retirando el vidrio interior (3) despegándolo del marco, con una cuerda de acero como se retiran los parabrisas de vehículos; b) separar el lado interno removible de la ventana que cierra la cámara interna hermética (9), con lo cual se accede a los componentes para la acción requerida. Una vez cumplida, colocar el área interna asegurada con los puntos de contacto alrededor de todo el marco. En estos puntos de cierre se ponen sellantes, pero no se deben usar pegantes, dado que impedirían abrir la cámara interna hermética (9) en próxima ocasión. Pueden complementarse con pequeños tornillos en el perímetro de contacto de la parte fija y el lado interno removible. Para reparar el panel externo (50’) se retira toda la ventana como se indica en la Fig. 8.
Estas formas de apertura no aplican cuando la ventana se usa principalmente para aislamiento acústico donde la cámara interna hermética (9) es hermética al aire. En este caso el vidrio interno (3) se debe retirar despegándolo del marco. Cumplida la tarea, el vidrio interno se adhiere al marco y se hace vacío.
PRODUCCIÓN DE LA VENTANA TERMOACÚSTICA INTELIGENTE
La ventana termoacústica inteligente se construye en las siguientes etapas:
A. Fabricar perfiles de PVC, por extrusión del material, el perfil-tapa (15), el perfil-tapa externo (15’), las rejillas de soporte (12), el panel interno (50) y el panel externo (50’) que puede ser de vidrio interno (3) y vidrio externo (3’). Los planos horizontales que forman los canales internos del perfil tienen coextruidos con forma general ovalada como parte integral del perfil, no son colocados después, para amortiguar ruido e interrumpan flujo térmico. Pueden ser del mismo material modificado más blando. También son coextruidos los empaques de sello (1 1 ) entre la ventana y la estructura portante.
B. Fabricar rejilla de entrada de aire (6) y rejilla de salida de aire (7), deslizadores y mecanismo para abrir-cerrar, para ser insertado en cavidades (16).
C. Armar componentes electrónicos, de instrucciones de acciones a desempeñar en microprocesador (27), accionados por comandos digitales, remotos y voz. Incluye cableados de conexión. Este conjunto se arma en proceso especializado separado, y se entrega en un conjunto para ser instalado dentro de la ventana termoacústica.
D. Construir la ventana termoacústica, que variará en algunos aspectos si la ventana es para aislamiento térmico o acústico, que incluye: a. Colocar pegantes o cinta doble faz en bordes de marco (29) o en el panel interior (50) y el panel exterior (50’) paralelos. b. Sellar y calafatear esquinas de unión del marco (29). Este sellado es crítico si la ventana tiene como fin principal aislamiento acústico. Los sellos se hacen manualmente o con máquina robótica. Encima de este sellado se coloca material sellante-pegante (4) para reforzar hermeticidad con ayuda de presión atmosférica. c. Instalar Acople sello hermético de 90° (36) en cada esquina. Instalación de micro bomba de vacío, Instalación de soportes, adherir vidrios al marco. Para ventanas cuya función principal es aislamiento acústico realizar prueba de sello hermético en el conjunto. d. Colocar rejillas de soporte (12) entre paneles de vidrio, que son decorativos; consistentes en láminas de PVC, acrílico o vidrios, transparentes, cuyo grosor puede ser 1 a 1 .5 cm y ancho igual al espacio que separa los paneles de vidrio interno (3) y vidrio externo (3’), unos 2 o 2.6 cm, igual a la dimensión entre los lados internos de los vidrios, más adición en coextruidos blandos para corregir variaciones de construcción. e. Ubicar uno o vahos los ventiladores (14) en canal inferior (2) de circulación de aire, que se comunica con canal superior (1 ) vía cavidad (8) en plano horizontal para refrigerar o calentar bordes de contacto de paneles y marco. Esta circulación de flujo de aire es por convección o forzado. f. Colocar refuerzos en canal (2) y ubicar electrónica, ubicando la resistencia eléctrica (23) en canal superior (1 ). g. Colocar y conectar sensores de temperatura (5), sensores de presión y lumínicos (17), ventilador (14), mecanismo de rotación y seguimiento solar (20), celdas fotovoltaicas (13) y resistencia eléctrica (23) en el canal superior (1 ) del perfil. h. Instalar persiana (40) en la cámara interna hermética (9) entre los dos paneles de vidrio, para ventanas termoacústicas cuya función principal es aislamiento térmico; motor ubicado canal inferior (2). i. Revisar ensambles, cables, microprocesador (27), controles. Realizar pruebas.

Claims

REIVINDICACIONES
1 . Una partición de construcción aislante termoacústica inteligente autosuficiente y que genera excedentes de energía CARACTERIZADA por: a. un marco (29) construido con perfiles cuyos planos forman canales internos con un canal superior (1 ) en cuyos lados externos de sus planos verticales se adhieren con sellantes un panel interior (50) y un panel exterior (50’) paralelos, aislantes, transparentes como vidrios (3, 3’), o no trasparentes, que forman una cámara interna hermética (9) entre dichos paneles y el marco (29); b. lados externos de los planos verticales del canal superior (1 ) sobre los cuales se coloca sellante-pegante (4) para fijar los paneles aislantes coextruidos con material más blando que los del cuerpo rígido del perfil; c. tres coextruidos de unión flexible (10) con material más blando que los del cuerpo rígido del perfil en los planos horizontales que separan el canal superior (1 ), el canal inferior (2) y la cámara interna hermética (9), que, por diferencia de material y geometría, funcionan como puentes para reducir transmisión térmica y ondas sonoras; d. celdas fotovoltaicas (13) adheridas en los planos internos del marco (29) que forma la cámara interna hermética (9) donde se ubican sensores de temperatura (5), sensor presión y lumínico (17), sensor de seguimiento solar (21 ); e. resistencia eléctrica (23) ubicada dentro del canal superior (1 ). f. sensores térmicos (5) adheridos al panel interior (50) y al panel exterior (50’) ubicados en cada esquina del lado externo de los paneles en la cavidad lateral superior interna (18) y a la cavidad superior externa (18’), que se comunican con sensores de presión y lumínico (17) que regulan ventiladores (14), rejilla de entrada de aire (6) y rejilla de salida de aire (7) y su apertura para ventilación por convección o forzada y descenso o ascenso de persiana (40) y sensor de seguimiento solar (21 ); g. microprocesador (27) ubicado en el canal inferior (2) o en la cavidad lateral superior interna (18) conectados a los sensores con instrucciones y algoritmos para recibir información de sensores y accionar en forma automática y por comandos digitales y voz usando internet y comandos de teléfono celular e Internet para optimizar el desempeño de la partición o de varias particiones en tiempo real ante cambios ambientales y necesidades del usuario; h. ventilador (14), mecanismo de rotación y seguimiento solar (20), resistencia eléctrica (23) conectados a las celdas fotovoltaicas y al microprocesador (27); i. acople sello hermético de 90° (36) que sella herméticamente la unión de las esquinas del canal superior (1 ) del perfil con el que se construye el marco, compuesto por un área en la esquina (26) de material blando (45) formada por material coextruido más blando que las paredes (39) que lo aseguran dentro del canal superior (1 ), que por presión atmosférica mantiene en posición los sellantes sobre esta unión del ángulo y tiene espacios (38) para circular aire; j. perfil-tapa interno (15) y perfil-tapa externo (15’) que cubren el perímetro de la cavidad lateral superior interna (18), la cavidad superior externa (18’), la cavidad inferior externa (19’), y la cavidad inferior interna (19) que son espacios abiertos internos y externos del marco (29) de acceso a los componentes electrónicos (27) y comandos para mantenimiento, reparación y reemplazo; k. un recipiente con desecante (25) ubicado en canal superior (1 ) que se comunica con cámara interna hermética (9); l. válvulas (37) de comunicación entre la cámara interna hermética (9) y el exterior, para extraer aire, retirar humedad, desempañar y agregar algún fluido en la cámara interna hermética (9); m. marco ancla (41 ) para fijar la partición a la estructura soporte.
2. Una partición de construcción aislante termoacústica inteligente autosuficiente de acuerdo con la reivindicación 1 CARACTERIZADA porque la resistencia eléctrica (23) está ubicada dentro del canal superior (1 ) y cuyo calor es disipado en todo el canal por el ventilador (14) de los bordes contacto al que se fijan con pegante-sellante (4) el vidrio interno (3) y el vidrio externo3’) al marco (29).
3. Una partición de construcción aislante termoacústica inteligente autosuficiente de acuerdo con la reivindicación 1 CARACTERIZADA porque el marco (29) tiene un canal superior (1 ) comunicado con el canal inferior (2) a través de una cavidad (8), que a su vez se comunica con el lado interno y externo de la ventana a través de aperturas con rejillas laterales; rejilla de entrada de aire (6) y rejilla de salida de aire (7) donde el aire por convección o forzada, controladas eléctricamente automáticamente y a voluntad.
4. Una partición de construcción aislante termoacústica inteligente autosuficiente de acuerdo con la reivindicación 1 CARACTERIZADA porque el marco (29) tiene cavidades externas al área a aislar, una cavidad superior externa (18’) y una cavidad inferior externa (19’); y tiene cavidades internas al área a aislar, una cavidad lateral superior interna (18) y una cavidad inferior interna (19); donde estas cavidades están cubiertas por el perfil-tapa interno (15) y el perfil-tapa externo (15’) con uniones flexibles (10) por coextrusión en sus tres superficies para amortiguar vibraciones y presiones entre los paneles y reducir flujos térmico y acústico. Una partición de construcción aislante termoacústica inteligente autosuficiente de acuerdo con la reivindicación 1 CARACTERIZADA porque la cámara interna hermética (9) tiene rejillas de soporte (12) entre los paneles para que no se deformen ni quiebren por presión atmosférica; y tiene válvulas (37) de conexión entre la cavidad interna hermética (9) y el exterior compuestas por anillo (30) que se inserta en orificio en la pared del perfil para fijarlo por elasticidad del material y presión atmosférica que actúa sobre la sección externa y comunica a través de ductos (31 ) a lo largo de la válvula y tubos, desde el orificio (32) en cámara interna hermética (9), hasta un acople (34) de forma cooperante con el de la bomba que hace succión o inyecta. Una partición de construcción aislante termoacústica inteligente autosuficiente de acuerdo con la reivindicación 1 CARACTERIZADA porque panel interior (50) y un panel exterior (50’) son el vidrio interno (3) y el vidrio externo (3’); la cámara interna hermética (9) entre marco (29), el panel de vidrio interno (3) y el panel de vidrio externo (3’) tiene vacío que es mantenido con micro bomba ubicada en el canal superior (1 ) o canal inferior (2) y un soporte (12) para evitar su deformación y rotura. Una partición de construcción aislante termoacústica inteligente autosuficiente de acuerdo con la reivindicación 1 CARACTERIZADA porque la ventana está sobrepuesta pegada a una existente en una construcción, sin modificar la existente ni la fachada de la construcción, donde el marco ancla (41 ) consta de una cavidad (43) donde penetra por presión una prolongación del marco (29) de la ventana con un acople cooperante (44) que asegura la ventana y tiene un marco ancla (41 ) con una superficie externa (42) y dos terminaciones (52) de material blando que hace contacto con la ventana y la estructura soporte. Una partición de construcción aislante termoacústica inteligente autosuficiente de acuerdo con la reivindicación 1 CARACTERIZADA porque el recipiente con desecante (25) ubicado en canal superior (1 ) se comunica con la cámara interna hermética (9) a través de orificio con sello hermético (28), conectado con la cavidad lateral superior interna (18) de reemplazo del recipiente con desecante (25). Un proceso de construcción de una partición de construcción aislante inteligente tipo ventana termoacústica autosuficiente y que genera excedentes de energía CARACTERIZADA por los siguientes pasos: 21
A. Fabricar perfiles de PVC, por extrusión del material, el perfil-tapa (15), el perfil- tapa externo (15’), las rejillas de soporte (12), el panel interno (50) y el panel externo (50’) que puede ser de vidrio interno (3) y vidrio externo (3’). Los planos horizontales que forman los canales internos del perfil tienen coextruidos con forma general ovalada como parte integral del perfil, no son colocados después, para amortiguar ruido e interrumpan flujo térmico. Pueden ser del mismo material modificado más blando. También son coextruidos los empaques de sello (1 1 ) entre la ventana y la estructura portante.
B. Fabricar rejilla de entrada de aire (6) y rejilla de salida de aire (7), deslizadores y mecanismo para abrir-cerrar, para ser insertado en cavidades (16).
C. Armar componentes electrónicos, de instrucciones de acciones a desempeñar en microprocesador (27), accionados por comandos digitales, remotos y voz. Incluye cableados de conexión. Este conjunto se arma en proceso especializado separado, y se entrega en un conjunto para ser instalado dentro de la ventana termoacústica.
D. Construir la ventana termoacústica, que variará en algunos aspectos si la ventana es para aislamiento térmico o acústico, que incluye: a. Colocar pegantes o cinta doble faz en bordes de marco (29) o en el panel interior (50) y el panel exterior (50’) paralelos. b. Sellar y calafatear esquinas de unión del marco (29). Este sellado es crítico si la ventana tiene como fin principal aislamiento acústico. Los sellos se hacen manualmente o con máquina robótica. Encima de este sellado se coloca material sellante-pegante (4) para reforzar hermeticidad con ayuda de presión atmosférica. c. Instalar Acople sello hermético de 90° (36) en cada esquina. Instalación de micro bomba de vacío, Instalación de soportes, adherir vidrios al marco. Para ventanas cuya función principal es aislamiento acústico realizar prueba de sello hermético en el conjunto. d. Colocar rejillas de soporte (12) entre paneles de vidrio, que son decorativos; consistentes en láminas de PVC, acrílico o vidrios, transparentes, cuyo grosor puede ser 1 a 1 .5 cm y ancho igual al espacio que separa los paneles de vidrio interno (3) y vidrio externo (3’), unos 2 o 2.6 cm, igual a la dimensión entre los lados internos de los vidrios, más adición en coextruidos blandos para corregir variaciones de construcción. 22 e. Ubicar uno o vahos ventiladores (14) en canal inferior (2) de circulación de aire, que se comunica con canal superior (1 ) vía cavidad (8) en plano horizontal para refrigerar o calentar bordes de contacto de paneles y marco. Esta circulación de flujo de aire es por convección o forzado. f. Colocar refuerzos en canal (2) y ubicar electrónica, ubicando la resistencia eléctrica (23) en canal superior (1 ). g. Colocar y conectar sensores de temperatura (5), sensores de presión y lumínicos (17), ventilador (14), mecanismo para rotación y seguimiento solar (20), celdas fotovoltaicas (13). Instalar resistencia eléctrica (23) en el canal superior (1 ) del perfil. h. Instalar persiana (40) en la cámara interna hermética (9) entre los dos paneles de vidrio, para ventanas termoacústicas cuya función principal es aislamiento térmico; motor ubicado canal inferior (2). i. Revisar ensambles, cables, microprocesador (27), controles. Realizar pruebas.
PCT/IB2021/060292 2021-11-05 2021-11-05 Partición de construcción aislante inteligente y proceso de construcción WO2023079349A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/IB2021/060292 WO2023079349A1 (es) 2021-11-05 2021-11-05 Partición de construcción aislante inteligente y proceso de construcción
CN202180012681.1A CN116406438A (zh) 2021-11-05 2021-11-05 智能绝缘结构隔板及构造工艺
CONC2022/0006761A CO2022006761A2 (es) 2021-11-05 2022-05-23 Partición de construcción aislante inteligente y proceso de construcción

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2021/060292 WO2023079349A1 (es) 2021-11-05 2021-11-05 Partición de construcción aislante inteligente y proceso de construcción

Publications (3)

Publication Number Publication Date
WO2023079349A1 true WO2023079349A1 (es) 2023-05-11
WO2023079349A9 WO2023079349A9 (es) 2023-07-20
WO2023079349A8 WO2023079349A8 (es) 2023-11-09

Family

ID=86240757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/060292 WO2023079349A1 (es) 2021-11-05 2021-11-05 Partición de construcción aislante inteligente y proceso de construcción

Country Status (3)

Country Link
CN (1) CN116406438A (es)
CO (1) CO2022006761A2 (es)
WO (1) WO2023079349A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4641466A (en) * 1983-11-09 1987-02-10 Oy Partek Ab Window
US5221363A (en) * 1991-02-28 1993-06-22 Lockheed Missiles & Space Company, Inc. Solar cell window fitting
US20120279147A1 (en) * 2009-09-18 2012-11-08 Solarpath, Inc. Solar window apparatus and method
CN108798391A (zh) * 2018-07-26 2018-11-13 湖南人文科技学院 一种光伏节能窗及功率跟踪方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4641466A (en) * 1983-11-09 1987-02-10 Oy Partek Ab Window
US5221363A (en) * 1991-02-28 1993-06-22 Lockheed Missiles & Space Company, Inc. Solar cell window fitting
US20120279147A1 (en) * 2009-09-18 2012-11-08 Solarpath, Inc. Solar window apparatus and method
CN108798391A (zh) * 2018-07-26 2018-11-13 湖南人文科技学院 一种光伏节能窗及功率跟踪方法

Also Published As

Publication number Publication date
CN116406438A (zh) 2023-07-07
WO2023079349A9 (es) 2023-07-20
WO2023079349A8 (es) 2023-11-09
CO2022006761A2 (es) 2023-05-19

Similar Documents

Publication Publication Date Title
US10221612B2 (en) Infill electrochromic windows
JP6905797B2 (ja) カーテンウォール
ES2654396T3 (es) Carpintería que permite una gestión de la circulación de aire en un edificio
WO2016086062A1 (en) Infill electrochromic windows
KR20150070508A (ko) 공기정화기능을 갖춘 자연 난방 창호
CN109025766A (zh) 一种通风保温窗
WO2023079349A1 (es) Partición de construcción aislante inteligente y proceso de construcción
US10526836B2 (en) Adhesive-attached window glazing assembly, multi-glazed window assembly and method therefor
KR20200113529A (ko) 실내 환기 및 공기정화 창문
CN112031601A (zh) 防水防撞推拉门窗以及复合门窗
JP4866024B2 (ja) カーテンウォール構造
CN213573766U (zh) 一种可旋转闭合的百叶窗
JP2008057304A (ja) サッシ窓の換気装置
CN213599514U (zh) 一种建筑外墙通风装置
CN217632161U (zh) 一种公共建筑用防风门
CN203821658U (zh) 内循环双层呼吸式节能幕墙
CN216346823U (zh) 一种门窗通风器
CN213205339U (zh) 一种绿色建筑自然通风结构
KR101163168B1 (ko) 창호의 이중창 구조
CN216276517U (zh) 一种建筑天窗结构
US20230160256A1 (en) Adhesive-attached window glazing assembly, multi-glazed window assembly and method therefor
US20200141180A1 (en) Adhesive-attached window glazing assembly, multi-glazed window assembly and method therefor
KR20110048803A (ko) 공동주택 이중창호
JPH029039Y2 (es)
HRP20220845A1 (hr) Modul elementa stakleno-metalne fasade sa zatvorenom šupljinom (k-ccf)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17758400

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963179

Country of ref document: EP

Kind code of ref document: A1